Science.gov

Sample records for reservoir simulation problems

  1. Experiences with linear solvers for oil reservoir simulation problems

    SciTech Connect

    Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  2. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  3. Interactive reservoir simulation

    SciTech Connect

    McVay, D.A.; Bastian, P.A. ); Epperson, B.D. )

    1991-11-01

    This paper describes a system that allows engineers to monitor and control a reservoir simulation run during its execution. The system consists of a 3D, three-phase black-oil reservoir simulator running simultaneously with an interactive graphics pre- and postprocessor. Previous authors have described systems that allow monitoring of job execution with simultaneous graphics displays; the system described here is unique in that the engineer can modify simulator and well-control parameters during the execution. While the system will be helpful in detection and correction of time-dependent data problems, it will be very useful in optimizing reservoir management decisions in future performance projections. The system is implemented on an IBM-compatible 486 microcomputer with commercially available multitasking software, although it can be implemented easily on any microcomputer or workstation capable of multitasking. The authors show that implementation of the system required only a moderate amount of modification of the pre- and postprocessor and even less modification of the reservoir simulator.

  4. Trends in reservoir simulation

    SciTech Connect

    Nolen, J.S.

    1995-06-01

    The future of reservoir simulation is driven by two different and, on the surface, paradoxical trends. On the one hand, the user base is on average becoming less experienced, and on the other, increasingly complex models are being built to honor the advances in reservoir-description technology. The job of the software development community is to create software that satisfies both the ease-of-use needs of the novice and the accuracy needs of the integrated geoscience team. One of the near-term effects of these demands will be to improve the capabilities and quality of the fully integrated geoscience work-station. This will include the need for implementation of industry-wide data standards. Reservoir simulators will need to incorporate increasing amounts of interactivity and built-in expertise. Accuracy of results will be improved by increased use of unstructured grids, including automatic gridding software with dynamic capabilities. Additional research will focus on complex wells, including both in-flow performance and wellbore hydraulics. Finally, grid size will continue to escalate in step with advances in hardware and software. The growth of grid size will be mitigated by substantial efforts in upscaling, but ultimately parallel computing must provide the mechanism for continued growth.

  5. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  6. Next generation oil reservoir simulations

    SciTech Connect

    Joubert, W.

    1996-04-01

    This paper describes a collaborative effort between Amoco Production Company, Los Alamos National Laboratory and Cray Research Inc. to develop a next-generation massively parallel oil reservoir simulation code. The simulator, code-named Falcon, enables highly detailed simulations to be performed on a range of platforms such as the Cray T3D and T3E. The code is currently being used by Amoco to perform a sophisticated field study using multiple geostatistical realizations on a scale of 2-5 million grid blocks and 1000-2000 wells. In this paper we discuss the nature of this collaborative effort, the software design and engineering aspects of the code, parallelization experiences, and performance studies. The code will be marketed to the oil industry by a third-party independent software vendor in mid-1996.

  7. Reservoir modeling and simulation of a middle eastern carbonate reservoir

    SciTech Connect

    Sibley, M.J.; Bent, J.V.; Davis, D.W.

    1996-12-31

    A giant Middle Eastern reservoir was modeled and history matched during reservoir simulation. The model was used to help predict reservoir performance under various scenarios and to evaluate the impact on production rates, ultimate recovery and economics. Implementation of an infill, extension, and pressure maintenance plan is in progress. This model overcame shortcomings of previous models of this reservoir through detailed integration of geologic, geophysical, and engineering data. Among the data incorporated were slabbed core, thin sections, core analyses, seismic, isotope, open-hole logs, TDTs, RFTs, field pressure surveys, oil and water production data, and production tests. Significant modifications were made to internal and external reservoir architecture, and a diagenetic barrier was discovered that is the primary barrier to aquifer support. Results of the study include increased booked reserves and production rates, additional infill wells, two reservoir extension area discoveries, and the design and implementation of a pressure maintenance program.

  8. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  9. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  10. Application of a delumping procedure to compositional reservoir simulations

    SciTech Connect

    Stenby, E.H.; Christensen, J.R.; Knudsen, K.; Leibovici, C.

    1996-12-31

    Characterization and lumping are always performed when dealing with reservoir fluids. The number of pseudocomponents in a compositional reservoir simulation is normally between three and eight. In order to optimize the reservoir performance, it is necessary to know a detailed composition of the product stream from the reservoir. This paper deals with the problems of how to come from the lumped system (for which the reservoir simulation was performed) to a description of the full system (which is important in order to optimize the down-stream facilities). The equations of the delumping procedure are shown and the application of the method is illustrated through examples, including a constant volume depletion experiment and the fifth SPE Comparative example with a fluid description from a North Sea reservoir (with the calculated composition after a lumping, an experiment and a delumping).

  11. Simulation of Radon Transport in Geothermal Reservoirs

    SciTech Connect

    Semprini, Lewis; Kruger, Paul

    1983-12-15

    Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

  12. Reservoir Thermal Recover Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  13. Large eddy simulation of a pumped- storage reservoir

    NASA Astrophysics Data System (ADS)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  14. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  15. Reservoir characterization and geostatistical modeling of an eolian reservoir for simulation, East Painter reservoir field, Wyoming

    SciTech Connect

    Singdahlsen, D.S. )

    1991-06-01

    The East Painter structure is a doubly plunging, asymmetric anticline formed on the hanging wall of a back-thrust imbricate near the leading edge of the Absaroka Thrust. The Jurassic Nugget Sandstone is the productive horizon in the East Painter structure. The approximately 900-ft-thick Nugget is a stratigraphically complex and heterogeneous unit deposited by eolian processes in a complex erg setting. The high degree of heterogeneity iwthin the Nugget results from variations in grain size, sorting, mineralogy, and degree and distribution of lamination. The Nugget is comprised of dune, transitional toeset, and interdune facies, each exhibiting different porosity and permeability distributions. Gacies architecture results in both vertical and horizontal stratification of the reservoir. Adequate representation of reservoir heterogeneity is the key to successful modeling of past and future production performance. In addition, a detailed geologic model, based on depositional environment, must be integrated into the simulation to ensure realistic results. Geostatistics provide a method for modeling the spatial reservoir property distirbution while honoring all data values at their sample location. Conditional simulation is a geostatistical technique that generates several equally probably realizations that observe the data and spatial constraints imposed upon them while including fractal variability. Flow simulations of multiple reservoir realizations can provide a probability distribution of reservoir performance that can be used to evaluate risk associated with a project caused by the imcomplete sampling of the reservoir property distribution.

  16. Multiphase control volume finite element simulations of fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    With rapid evolution of hardware and software techniques in energy sector, reservoir simulation has become a powerful tool for field development planning and reservoir management. Many of the widely used commercial simulators were originally designed for structured grids and implemented with finite difference method (FDM). In recent years, technical advances in griding, fluid modeling, linear solver, reservoir and geological modeling, etc. have created new opportunities. At the same time, new reservoir simulation technology is required for solving large-scale heterogeneous problems. A three-dimensional, three-phase black-oil reservoir simulator has been developed using the control volume finite element (CVFE) formulation. Flux-based upstream weighting is employed to ensure flux continuity. The CVFE method is embedded in a fully-implicit formulation. State-of-the-art parallel, linear solvers are used. The implementation takes the advantages of object-oriented programming capabilities of C++ to provide maximum reuse and extensibility for future students. The results from the simulator have excellent agreement with those from commercial simulators. The convergence properties of the new simulator are verified using the method of manufactured solutions. The pressure and saturation solutions are verified to be first-order convergent as expected. The efficiency of the simulators and their capability to handle real large-scale field models are improved by implementing the models in parallel. Another aspect of the work dealt with multiphase flow of fractured reservoirs was performed. The discrete-fracture model is implemented in the simulator. Fractures and faults are represented by lines and planes in two- and three-dimensional spaces, respectively. The difficult task of generating an unstructured mesh for complex domains with fractures and faults is accomplished in this study. Applications of this model for two-phase and three-phase simulations in a variety of fractured

  17. A finite element simulation system in reservoir engineering

    SciTech Connect

    Gu, Xiaozhong

    1996-03-01

    Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.

  18. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  19. A flexible gridding scheme for reservoir simulation

    SciTech Connect

    Verma, S.

    1995-12-31

    This paper describes a new control volume based finite difference scheme for petroleum reservoir simulation which can be used with unstructured grids. The numerical scheme to model fluid flow is shown to be easily used for Voronoi grids in 2D. It can also be used with certain geometrical limitations for 3D Voronoi grids. The scheme can be used without any significant limitations for triangle or tetrahedron based grids where control volumes are constructed around their vertices. It assumes uniform properties inside such control volumes. Full, anisotropic and asymmetric permeability tensor can be easily handled with the proposed method. The permeability tensor can vary from block to block. Thus it will be of great value in modeling fluid flow in reservoirs where principal directions of permeability varies between beds or within a bed. The paper also presents an analysis of some of the published flexible gridding schemes which use a control volume type algebraic approximation and demonstrate the advantages of the method presented here. The technique for grid construction is also discussed. Test results presented here demonstrate the need for proper representation of reservoir geometry to predict the correct flow behavior. The gridding scheme described in this paper achieves that purpose.

  20. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  1. A compositional reservoir simulator on distributed memory parallel computers

    SciTech Connect

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.

  2. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  3. Capillary pressure experiments under simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, J.; Spangenberg, E.

    2012-04-01

    The contribution of residual trapping to a long-term storage of CO2 in saline aquifers mainly depends on the drainage capillary pressure of a reservoir and the hysteresis of the drainage and imbibition branches of the capillary pressure curve. However, the experimental database of capillary pressure measured at relevant pT conditions is still scarce. Here, we present an experimental set-up, which allows for the performance of capillary pressure experiments with a semi-permeable disk (porous plate) at simulated reservoir conditions. In the framework of the EU funded project CO2CARE, drainage and imbibition cycles are performed on Triassic sandstone samples. We use a temperature controlled oil pressure autoclave to apply a maximum confining pressure of 400 bar and a maximum working temperature of 150°C. The fluid displacement, and hence the sample saturation is controlled by a gear pump with a fine resolution of 0.01 ml. Additionally, the capillary pressure experiment is combined with measurements of elastic wave velocities as well as of the electrical resistivity. In this case, P and S wave velocities and the formation resistivity factor are determined as functions of the brine/ CO2 saturation. The experiment provides information about the efficiency of the capillary trapping of the sample and a calibration of the petrophysical properties on saturation.

  4. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  5. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    The objective of this research is to evaluate the preliminary feasibility of commercial geothermal projects, from a sedimentary reservoir with low permeability that requires productivity enhancement, using numerical reservoir simulation. The performance of a sedimentary geothermal reservoir is investigated in terms of reservoir hydraulics and thermal evolution. To build a reliable benchmark for simulation study, validation of the numerical reservoir model with respect to an analytical model is presented, and the process to achieve an acceptable match between the numerical and analytical solutions is described. The analytical model used in this study is based on the work of Gringarten (1978), which consists of a conceptual geothermal reservoir, considering an injection and production well doublet in a homogeneous porous media. A commercial thermal reservoir simulator (STARS from Computer Modeling Group, CMG) is used in this work for numerical modeling. In order to reproduce the analytical model results, the numerical simulation model is modified to include the same assumptions of the analytical model. Simulation model parameters that make the numerical results deviate from the analytical solution, such as the grid block size, time step and no-flow boundary are identified and investigated. An analytical tracer test model proposed by Shook (2000) is numerically modeled. This model allows us to predict the time when the temperature of the produced water decreases by capturing a tracer component at production well. Reservoir simulation models with different porosity and permeability distribution are tested to see the effects of reservoir inhomogeneity and anisotropy. In particular, premature thermal breakthrough due to the presence of high permeability streak in a reservoir model is simulated. In an effort to apply the knowledge we obtained from the analytical solutions, the effects of reservoir rock and water properties, as a function of pressure and temperature, are

  6. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    ERIC Educational Resources Information Center

    Awang, Mariyamni

    2006-01-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary…

  7. Parallel solvers for reservoir simulation on MIMD computers

    SciTech Connect

    Piault, E.; Willien, F.; Roux, F.X.

    1995-12-01

    We have investigated parallel solvers for reservoir simulation. We compare different solvers and preconditioners using T3D and SP1 parallel computers. We use block diagonal domain decomposition preconditioner with non-overlapping sub-domains.

  8. New simulators quantify slimhole effects on reservoir performance

    SciTech Connect

    Azari, M.; Soliman, M.

    1995-03-01

    According to a recent slimhole survey, 60% of the slimhole wells drilled in 1992 were considered an economic success. The remaining 40% of wells drilled, however, either had not been in service long enough for their success to be determined or had failed to provide the expected production results. To more accurately predict production results before choosing to drill a slimhole well, drilling operators must answer the following questions: (1) How would the rate performance and cumulative recovery of a slimhole well compare to a standard well bore completion? (2) How would the reduced tubing ID of a slim hole affect well bore hydraulics? (3) What effect would hole diameter have on the well bore storage period? (4) Will a slimhole well more likely experience serious coning or cresting problems? Reservoir engineers can use several powerful simulators and software programs to determine well performance.

  9. Self-priming hemodynamic reservoir and inline flow meter for a cardiopulmonary bypass simulation.

    PubMed

    Raasch, David; Austin, Jon; Tallman, Richard

    2010-06-01

    Simulator exercises are used at Midwestern University to augment academic and laboratory training toward consolidating particular skills, increasing situation awareness, and preparing the student for practice within the team environment of an operating room. This paper describes an enhanced cardiopulmonary bypass simulator consisting of a self-priming hemodynamic reservoir that includes an inline flow meter. A typical cardiopulmonary bypass adult perfusion circuit was assembled using a roller pump console and integrated oxygenator/heat exchanger/reservoir and primed with 2 liters of water. For patient simulation, a soft-sided reservoir bag was mounted onto an inclined platform. A 1-liter soft-sided bag was placed just above the reservoir, providing an overflow reservoir. The priming line extended to the head of the mannequin. The arterial, venous, and suction lines extended through the open chest. The primed perfusion circuit was connected to ports on the filled reservoir bag. To test the patient simulation, the arterial pump output was adjusted to flow rates ranging from 1-7 liters per minute, with a complete interruption (to zero flow) between each test run. An inline flow meter was added to the bypass circuit and an analog to digital converter board was used to pass flow data into the computer-based simulation program. The use of an inclined hemodynamic reservoir bag proved to be self-priming and functional without problems over a wide range of flows tested. By including a reservoir with the mannequin, plus processing and displaying real-time flow data using the CPB-Sim simulation program, a higher fidelity and more realistic simulation experience was created. PMID:20648900

  10. Spatial and dynamic simulation for Miyun Reservoir waters in Beijing.

    PubMed

    Jia, H; Cheng, S

    2002-01-01

    In order to assist the water quality management in Miyun Reservoir, a spatial and dynamic simulation model system was built. In the model system, GIS was integrated with the WASP5 model. The integrated model system was then calibrated and verified in different sets of field data. The result showed that the integrated model system could characterize the Miyun Reservoir waters. Two scenarios were then designed and analyzed with the integrated model system. It was indicated that the water quality would improve if the cage fishery was banned, the algae blooms might occur in Miyun Reservoir if the low water stage ocurred but loads remained unchanged.

  11. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  12. The sequential method for the black-oil reservoir simulation on unstructured grids

    NASA Astrophysics Data System (ADS)

    Li, Baoyan; Chen, Zhangxin; Huan, Guanren

    2003-11-01

    This paper presents new results for applying the sequential solution method to the black-oil reservoir simulation with unstructured grids. The fully implicit solution method has been successfully applied to reservoir simulation with unstructured grids. However, the complexity of the fully implicit method and the irregularity of the grids result in a very complicated structure of linear equation systems (LESs) and in high computational cost to solve them. To tackle this problem, the sequential method is applied to reduce the size of the LESs. To deal with instable problems caused by the low implicit degree of this method, some practical techniques are introduced to control convergence of Newton-Raphson's iterations which are exploited in the linearization of the governing equations of the black-oil model. These techniques are tested with the benchmark problem of the ninth comparative solution project (CSP) organized by the society of petroleum engineers (SPE) and applied to field-scale models of both saturated and undersaturated reservoirs. The simulation results show that the sequential method uses as little as 20.01% of the memory for solving the LESs and 23.89% of the total computational time of the fully implicit method to reach the same precision for the undersaturated reservoirs, when the same iteration control parameters are used for both solution methods. However, for the saturated reservoirs, the sequential method must use stricter iteration control parameters to reach the same precision as the fully implicit method.

  13. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  14. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J. )

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  15. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  16. A CUDA based parallel multi-phase oil reservoir simulator

    NASA Astrophysics Data System (ADS)

    Zaza, Ayham; Awotunde, Abeeb A.; Fairag, Faisal A.; Al-Mouhamed, Mayez A.

    2016-09-01

    Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in porous media to draw conclusions about the behavior of certain flow variables and well responses. Besides the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel platforms is indispensable. By considering the state of art advances in massively parallel computing and the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be incorporated in such simulations instead of the more expensive, storage demanding and usually utilized GMRES.

  17. Reservoir simulation and geochemical study of Cerro Prieto I wells

    SciTech Connect

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-03-01

    Combined reservoir simulation and geochemical data analysis are used to investigate the effects of recharge and other reservoir processes occurring in the western part of the Cerro Prieto, Mexico, geothermal field (i.e., Cerro Prieto I area). Enthalpy-based temperatures and bottomhole temperatures are calculated based on simplified models of the system, considering different reservoir boundary conditions and zones of contrasting initial temperatures and reservoir properties. By matching the computed trends with geothermometer-based temperature and enthalpy histories of producing wells, the main processes active in the western area of Cerro Prieto are identified. This part of the geothermal system is strongly influenced by nearby groundwater aquifers; cooler waters readily recharge the reservoirs. In response to exploitation, the natural influx of cold water into the shallower alpha reservoir is mainly from the west and down Fault L, while the recharge to the deeper beta reservoir in this part of the field, seems to be only lateral, from the west and possibly south. 11 refs., 12 figs.

  18. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1994-01-01

    TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000 + grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  19. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, Emilio; Moridis, George; Pruess, Karsten

    1994-01-20

    TOUGH2, Lawrence Berkeley Laboratory's general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000+ grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  20. Marine radiocarbon reservoir age simulations for the past 50000 years

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Köhler, Peter; Lohmann, Gerrit

    2016-04-01

    We present simulations of marine radiocarbon reservoir ages using the ocean general circulation model LSG-HAMOCC2s, and evaluate the results with Marine13 raw data records. Our model considers various climatic background states. Radiocarbon cycle boundary conditions are atmospheric Δ14C values according to IntCal13, a recent atmospheric CO2 reconstruction, and spatially variable concentrations of dissolved inorganic carbon derived from marine carbon cycle simulations. Our model reasonably agrees with glacial marine Δ14C records but indicates reservoir ages varying with time, different to the invariant reservoir age corrections applied to the observations and to Marine13. Modelled global-mean reservoir ages are in the range 400-800 years compared to the invariant Marine13 value of 405 years. Self-consistent simulations involving the Cariaco Basin record (which is the most continuous marine record contributing to IntCal13 for periods prior to about 30 kyears) amplify the temporal reservoir age variability with global-mean values of about 350-850 years, and improve the agreement with Δ14C observations in some areas.

  1. An adaptive nonlinear solution scheme for reservoir simulation

    SciTech Connect

    Lett, G.S.

    1996-12-31

    Numerical reservoir simulation involves solving large, nonlinear systems of PDE with strongly discontinuous coefficients. Because of the large demands on computer memory and CPU, most users must perform simulations on very coarse grids. The average properties of the fluids and rocks must be estimated on these grids. These coarse grid {open_quotes}effective{close_quotes} properties are costly to determine, and risky to use, since their optimal values depend on the fluid flow being simulated. Thus, they must be found by trial-and-error techniques, and the more coarse the grid, the poorer the results. This paper describes a numerical reservoir simulator which accepts fine scale properties and automatically generates multiple levels of coarse grid rock and fluid properties. The fine grid properties and the coarse grid simulation results are used to estimate discretization errors with multilevel error expansions. These expansions are local, and identify areas requiring local grid refinement. These refinements are added adoptively by the simulator, and the resulting composite grid equations are solved by a nonlinear Fast Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on each local grid. The nonsymmetric linear system of equations resulting from Newton`s method are in turn solved by a preconditioned Conjugate Gradients-like algorithm. The scheme is demonstrated by performing fine and coarse grid simulations of several multiphase reservoirs from around the world.

  2. Characterization of fluvial sedimentology for reservoir simulation modeling

    SciTech Connect

    Henriquez, A.; Tyler, K.J.; Hurst, A. )

    1990-09-01

    This paper presents a critical study of 3D stochastic simulation of a fluvial reservoir and of the transfer of the geological model to a reservoir simulation grid. The stochastic model is conditioned by sand-body thickness and position in wellbores. Geological input parameters-sand-body orientation and width/thickness ratios-are often difficult to determine, and are invariably subject to interpretation. Net/gross ratio (NGR) and sand-body thickness are more easily estimated. Sand-body connectedness varies, depending on the modeling procedure; however, a sedimentary process-related model gives intermediate values for connectedness between the values for a regular packing model and the stochastic model. The geological model is transferred to a reservoir simulation grid by use of transmissibility multipliers and an NGR value for each block. The transfer of data smooths out much of the detailed geological information, and the calculated recovery factors are insensitive to the continuity measured in the geological model. Hence, the authors propose improvements to the interface between geological and reservoir simulation models.

  3. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  4. On-line Optimization-Based Simulators for Fractured and Non-fractured Reservoirs

    SciTech Connect

    Milind D. Deo

    2005-08-31

    Oil field development is a multi-million dollar business. Reservoir simulation is often used to guide the field management and development process. Reservoir characterization and geologic modeling tools have become increasingly sophisticated. As a result the geologic models produced are complex. Most reservoirs are fractured to a certain extent. The new geologic characterization methods are making it possible to map features such as faults and fractures, field-wide. Significant progress has been made in being able to predict properties of the faults and of the fractured zones. Traditionally, finite difference methods have been employed in discretizing the domains created by geologic means. For complex geometries, finite-element methods of discretization may be more suitable. Since reservoir simulation is a mature science, some of the advances in numerical methods (linear, nonlinear solvers and parallel computing) have not been fully realized in the implementation of most of the simulators. The purpose of this project was to address some of these issues. {sm_bullet} One of the goals of this project was to develop a series of finite-element simulators to handle problems of complex geometry, including systems containing faults and fractures. {sm_bullet} The idea was to incorporate the most modern computing tools; use of modular object-oriented computer languages, the most sophisticated linear and nonlinear solvers, parallel computing methods and good visualization tools. {sm_bullet} One of the tasks of the project was also to demonstrate the construction of fractures and faults in a reservoir using the available data and to assign properties to these features. {sm_bullet} Once the reservoir model is in place, it is desirable to find the operating conditions, which would provide the best reservoir performance. This can be accomplished by utilization optimization tools and coupling them with reservoir simulation. Optimization-based reservoir simulation was one of the

  5. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  6. High performance computing for domestic petroleum reservoir simulation

    SciTech Connect

    Zyvoloski, G.; Auer, L.; Dendy, J.

    1996-06-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. High-performance computing offers the prospect of greatly increasing the resolution at which petroleum reservoirs can be represented in simulation models. The increases in resolution can be achieved through large increases in computational speed and memory, if machine architecture and numerical methods for solution of the multiphase flow equations can be used to advantage. Perhaps more importantly, the increased speed and size of today`s computers make it possible to add physical processes to simulation codes that heretofore were too expensive in terms of computer time and memory to be practical. These factors combine to allow the development of new, more accurate methods for optimizing petroleum reservoir production.

  7. Quantum simulations of physics problems

    NASA Astrophysics Data System (ADS)

    Somma, Rolando D.; Ortiz, Gerardo; Knill, Emanuel H.; Gubernatis, James

    2003-08-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical "questions" more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  8. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  9. Reservoir characterization with sequential Gaussian simulation constrained by diffraction tomography

    SciTech Connect

    Lo, T.W.; Bermawi, A.

    1994-12-31

    A geostatistical approach for reservoir characterization that honors both surface seismic data and wireline data is described. It first computes a velocity profiles with seismic diffraction tomography, then, performs kriging with an external drift and sequential Gaussian simulation using the velocity profiles as soft data and the sonic logs as hard data. The product is a velocity profile with a resolution as high as that of the smoothed sonic logs, showing lateral velocity variations constrained by surface seismic data.

  10. Reservoir simulation studies: Wairakei Geothermal Field, New Zealand. Final report

    SciTech Connect

    Pritchett, J.W.; Rice, L.F.; Garg, S.K.

    1980-01-01

    Numerical reservoir simulation techniques were used to perform a history-match of the Wairakei geothermal system in New Zealand. First, a one-dimensional (vertical) model was chosen; realistic stratigraphy was incorporated and the known production history was imposed. The effects of surface and deep recharge were included. Good matches were obtained, both for the reservoir pressure decline history and changes in average discharge enthalpy with time. Next, multidimensional effects were incorporated by treating with a two-dimensional vertical section. Again, good history matches were obtained, although computed late-time discharge enthalpies were slightly high. It is believed that this disparity arises from inherently three-dimensional effects. Predictive calculations using the two-dimensional model suggest that continued future production will cause little additional reservoir pressure drop, but that thermal degradation will occur. Finally, ground subsidence data at Wairakei was examined. It was concluded that traditional elastic pore-collapse models based on classical soil-mechanics concepts are inadequate to explain the observed surface deformation. It is speculated that the measured subsidence may be due to structural effects such as aseismic slippage of a buried reservoir boundary fault.

  11. Galerkin finite-element simulation of a geothermal reservoir

    USGS Publications Warehouse

    Mercer, J.W.; Pinder, G.F.

    1973-01-01

    The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.

  12. New Simulator for Non-Equilibrium Modeling of Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Qorbani Nashaqi, K.; Jemai, K.; Vafaei, M.

    2014-12-01

    Due to Gibbs phase rule and combination of first and second law of thermodynamics, hydrate in nature cannot be in equilibrium since they come from different parent phases. In this system hydrate formation and dissociation is affected by local variables such as pressure, temperature and composition with mass and energy transport restrictions. Available simulators have attempted to model hydrate phase transition as an equilibrium reaction. Although those which treated the processes of formation and dissociation as kinetics used model of Kim and Bishnoi based on laboratory PVT experiment, and consequently hard to accept up scaling to real reservoirs condition. Additionally, they merely check equilibrium in terms of pressure and temperature projections and disregard thermodynamic requirements for equilibrium especially along axes of concentrations in phases. Non-equilibrium analysis of hydrate involves putting aside all the phase transitions which are not possible and use kinetic evaluation to measure phase transitions progress in each grid block for each time step. This procedure is Similar to geochemical reservoir simulators logic. As a result RetrasoCodeBright has been chosen as hydrate reservoir simulator and our work involves extension of this code. RetrasoCodeBright (RCB) is able to handle competing processes of formation and dissociation of hydrates as pseudo reactions at each node and each time step according to the temperature, pressure and concentration. Hydrates can therefore be implemented into the structure as pseudo minerals, with appropriate kinetic models. In order to implement competing nature of phase transition kinetics of hydrate formation, we use classical nucleation theory based on Kvamme et al. as a simplified model inside RCB and use advanced theories to fit parameters for the model (PFT). Hydrate formation and dissociation can directly be observed through porosity changes in the specific areas of the porous media. In this work which is in

  13. Generation of saturation functions for simulation models of carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Qingfeng

    A rock type is the unit of rock deposited under similar conditions, which went through similar diagenetic processes, producing analogous rock fabric, with distinct set of pore types, and pore throat size distribution, having specific range of porosity and permeability. Rock typing can generally be used as a guide to assign petrophysical characteristics to different zones for detailed reservoir characterization, modeling and simulation, which provide valid frames for reservoir development. It is often assumed that conventional rock types are capable of assigning multiphase flow characteristics, such as capillary pressure and relative permeability to the cells of dynamic simulation models. However, these conventional rock types, or static reservoir rock types (SRRT) fail to capture the actual variability of capillary pressure and relative permeability, due to lack of representation of wettability difference at different elevation above the free water level (FWL) in carbonate reservoirs, especially in the highly heterogeneous reservoirs. This should be resolved through dynamic reservoir rock types (DRRT), in which wettability effect is imposed on the SRRTs to generate saturation functions for simulation models. This research studies Ghedan's comprehensive DRRT model7, and proposes a modified Ghedan's model. First, the defined static rock types are sub-divided into sub-static rock types based on porosity frequency. Second, three curve-fitting programs are coded to generate the related saturation-height functions. These are the modified Ghedan-Okuyiga equation, Cuddy function and Power Law function. Developed from Ghedan-Okuyiga function113, the recommended modified Ghedan-Okuyiga function has been proposed with saturation and implicit porosity as a function of height above FWL in the transition zone. Third, each sub-static rock type is divided into a number of DRRTs by determining the capillary pressure and relative permeability curves in the oil zone from gas

  14. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  15. Assessment of uncertainty and degasification efficiency in coal seam gas drainage through stochastic reservoir simulation

    NASA Astrophysics Data System (ADS)

    Özgen Karacan, C.

    2016-04-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal bed reservoir simulation, as a reservoir management and forecasting tool, is one of the most effective ways to help with these two main objectives. However, as in all modeling and simulation studies, reservoir description and whether observed productions can be predicted are important considerations. Using geostatistical realizations as spatial maps of different coal reservoir properties is a more realistic approach than assuming uniform properties across the field. In fact, this approach can help with simultaneous history matching of multiple wellbores to enhance the confidence in spatial models of different coal properties that are pertinent to degasification. The problem that still remains, however, is the uncertainty in geostatistical, and thus reservoir, simulations originating from partial sampling of the seam that does not properly reflect the stochastic nature of coal property realizations. This study demonstrates the use of geostatistical realizations generated through sequential Gaussian simulation and co-simulation techniques and assesses the uncertainty in coal seam reservoir simulations with history matching errors. 100 individual realizations of 10 coal properties were generated using geostatistical techniques. These realizations were used to create 100 realization bundles (property datasets). Each of these bundles was then used in coal seam reservoir simulations for simultaneous history matching of degasification wells. History matching errors for each bundle were evaluated and the single set of realizations that would minimize the error for all wells was defined. Errors were compared with those of E-type and the average realization of the best matches. The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In

  16. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  17. An inverse problem solution to the flow of tracers in naturally fractured reservoirs

    SciTech Connect

    Jetzabeth Ramirez S.; Fernando Samaniego V.; Fernando Rodriguez; Jesus Rivera R.

    1994-01-20

    This paper presents a solution for the inverse problem to the flow of tracers in naturally fractured reservoirs. The models considered include linear flow in vertical fractures, radial flow in horizontal fractures, and cubic block matrix-fracture geometry. The Rosenbrock method for nonlinear regression used in this study, allowed the estimation of up to six parameters for the cubic block matrix fracture geometry. The nonlinear regression for the three cases was carefully tested against syntetical tracer concentration responses affected by random noise, with the objective of simulating as close as possible step injection field data. Results were obtained within 95 percent confidence limits. The sensitivity of the inverse problem solution on the main parameters that describe this flow problem was investigated. The main features of the nonlinear regression program used in this study are also discussed. The procedure of this study can be applied to interpret tracer tests in naturally fractured reservoirs, allowing the estimation of fracture and matrix parameters of practical interest (longitudinal fracture dispersivity alpha, matrix porosity phi2, fracture half-width w, matrix block size d, matrix diffusion coefficient D2 and the adsorption constant kd). The methodology of this work offers a practical alternative for tracer flow tests interpretation to other techniques.

  18. A new representation of wells in numerical reservoir simulation

    SciTech Connect

    Yu Ding; Renard, G. )

    1994-05-01

    Numerical PI's are used to relate wellblock and wellbore pressures and the flow rate of a well in reservoir simulations by finite difference. This approach is based on an equivalent wellblock radius'', r[sub eq,o]. When nonuniform grids are used, r[sub eq,o] may create an error in wellbore pressure or oil rate. This paper presents a new well representation. The analytical solution for near-well pressure is included by modifying the transmissibilities between gridblocks so that flow around as well is described fully. The new method is applicable to non-uniform grids and nonisolated wells.

  19. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  20. Improved storage efficiency through geologic modeling and reservoir simulation

    SciTech Connect

    Ammer, J.R.; Mroz, T.H.; Covatch, G.L.

    1997-11-01

    The US Department of Energy (DOE), through partnerships with industry, is demonstrating the importance of geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. The geologic modeling and reservoir simulation study for the Natural Fuel Gas Supply Corporation CRADA was completed in September 1995. The results of this study were presented at the 1995 Society of Petroleum Engineers` (SPE) Eastern Regional Meeting. Although there has been no field verification of the modeling results, the study has shown the potential advantages and cost savings opportunities of using horizontal wells for storage enhancement. The geologic modeling for the Equitrans` CRADA was completed in September 1995 and was also presented at the 1995 SPE Eastern Regional Meeting. The reservoir modeling of past field performance was completed in November 1996 and prediction runs are currently being made to investigate the potential of offering either a 10 day or 30 day peaking service in addition to the existing 110 day base load service. Initial results have shown that peaking services can be provided through remediation of well damage and by drilling either several new vertical wells or one new horizontal well. The geologic modeling for the Northern Indiana Public Service Company CRADA was completed in November 1996 with a horizontal well being completed in January 1997. Based on well test results, the well will significantly enhance gas deliverability from the field and will allow the utilization of gas from an area of the storage field that was not accessible from their existing vertical wells. Results are presented from these three case studies.

  1. Application of parallel computing techniques to a large-scale reservoir simulation

    SciTech Connect

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-02-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance.

  2. The parallel subdomain-levelset deflation method in reservoir simulation

    NASA Astrophysics Data System (ADS)

    van der Linden, J. H.; Jönsthövel, T. B.; Lukyanov, A. A.; Vuik, C.

    2016-01-01

    Extreme and isolated eigenvalues are known to be harmful to the convergence of an iterative solver. These eigenvalues can be produced by strong heterogeneity in the underlying physics. We can improve the quality of the spectrum by 'deflating' the harmful eigenvalues. In this work, deflation is applied to linear systems in reservoir simulation. In particular, large, sudden differences in the permeability produce extreme eigenvalues. The number and magnitude of these eigenvalues is linked to the number and magnitude of the permeability jumps. Two deflation methods are discussed. Firstly, we state that harmonic Ritz eigenvector deflation, which computes the deflation vectors from the information produced by the linear solver, is unfeasible in modern reservoir simulation due to high costs and lack of parallelism. Secondly, we test a physics-based subdomain-levelset deflation algorithm that constructs the deflation vectors a priori. Numerical experiments show that both methods can improve the performance of the linear solver. We highlight the fact that subdomain-levelset deflation is particularly suitable for a parallel implementation. For cases with well-defined permeability jumps of a factor 104 or higher, parallel physics-based deflation has potential in commercial applications. In particular, the good scalability of parallel subdomain-levelset deflation combined with the robust parallel preconditioner for deflated system suggests the use of this method as an alternative for AMG.

  3. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  4. Foam flooding reservoir simulation algorithm improvement and application

    NASA Astrophysics Data System (ADS)

    Wang, Yining; Wu, Xiaodong; Wang, Ruihe; Lai, Fengpeng; Zhang, Hanhan

    2014-05-01

    As one of the important enhanced oil recovery (EOR) technologies, Foam flooding is being used more and more widely in the oil field development. In order to describe and predict foam flooding, experts at domestic and abroad have established a number of mathematical models of foam flooding (mechanism, empirical and semi-empirical models). Empirical models require less data and apply conveniently, but the accuracy is not enough. The aggregate equilibrium model can describe foam generation, burst and coalescence by mechanism studying, but it is very difficult to accurately describe. The research considers the effects of critical water saturation, critical concentration of foaming agent and critical oil saturation on the sealing ability of foam and considers the effect of oil saturation on the resistance factor for obtaining the gas phase relative permeability and the results were amended by laboratory test, so the accuracy rate is higher. Through the reservoir development concepts simulation and field practical application, the calculation is more accurate and higher.

  5. Homogenization and simulation for compositional flow in naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Chen, Zhangxin

    2007-02-01

    A dual porosity model of multidimensional, multicomponent, multiphase flow in naturally fractured reservoirs is derived by the mathematical theory of homogenization. A fully compositional model is considered where there are N chemical components, each of which may exist in any or all of the three phases: gas, oil, and water. Special attention is paid to developing a general approach to incorporating gravitational forces, pressure gradient effects, and effects of mass transfer between phases. In particular, general equations for the interactions between matrix and fracture systems are obtained under homogenization by a careful scaling of these effects. Using this dual porosity compositional model, numerical experiments are reported for the benchmark problems of the sixth comparative solution project organized by the society of petroleum engineers.

  6. Cost Simulations of Geothermal Reservoir Insurance. Final report

    SciTech Connect

    1982-02-24

    Two of the primary results of the Geothermal Reservoir Insurance Study were the estimation of (1) insurance costs to geothermal developers and users and (2) cost to government of a reinsurance program. Because the cost to industry and government for any geothermal reinsurance program depends on numerous factors that are difficult to determine prior to the exact specification of a detailed program, they estimated these costs based on certain assumptions for several cost parameters. The objective of performing the cost simulations in this study is to provide the DOE with a range of insurance costs and costs to government, based on varying the assumptions reported in the GRIS final report for some of the major cost parameters. The Department of Energy selected the specific cost parameters and assumptions for inclusion in the cost simulation analysis. Section II of the report describes the specific parameters and assumptions that were varied, as well as the methodology used to estimate the resulting industry and government costs. In Section III they provide a detailed summary of the results of the cost simulations. Section IV is an appendix that includes, for each of thirty six different sets of assumptions considered, (1) the estimated expected losses and variance of losses for different geologic project types, (2) the estimated insurance premiums to cover losses, and (3) the resulting cost to government in terms of expected loss, probable maximum loss, and administrative expenses.

  7. Modeling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications

    SciTech Connect

    Pruess, K.

    1988-09-01

    This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. Then we examine applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation technology on geothermal energy development are pointed out. We conclude with considerations on possible future developments in the mathematical modeling of geothermal fields. 45 refs., 4 figs., 2 tabs.

  8. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  9. Chemical stimulation of gas condensate reservoirs: An experimental and simulation study

    NASA Astrophysics Data System (ADS)

    Kumar, Viren

    Well productivity in gas condensate reservoirs is reduced by condensate banking when the bottom hole flowing pressure drops below the dewpoint pressure. Several methods have been proposed to restore gas production rates after a decline due to condensate blocking. Gas injection, hydraulic fracturing, horizontal wells and methanol injection have been tried with limited success. These methods of well stimulation either offer only temporary productivity restoration or are applicable only in some situations. Wettability alteration of the rock in the near well bore region is an economic and efficient method for the enhancement of gas-well deliverability. Altering the wettability of porous media from strongly water-wet or oil-wet to intermediate-wet decreases the residual liquid saturations and results in an increase in the relative permeability to gas. Such treatments also increase the mobility and recovery of condensate from the reservoir. This study validates the above hypothesis and provides a simple and cost-efficient solution to the condensate blocking problem. Screening studies were carried out to identify the chemicals based on structure, solubility and reactivity at reservoir temperature and pressure. Experiments were performed to evaluate these chemicals to improve gas and condensate relative permeabilities. The improvement in relative permeability after chemical treatment was quantified by performing high pressure and high temperature coreflood experiments in Berea sandstone, Texas Cream limestone and reservoir cores using synthetic gas mixtures at reservoir conditions. Experiments were done at high flow rates and for long time periods to evaluate the durability of the treatment. Single well simulation studies were conducted to demonstrate the performance of the chemical treatment in the field. The experimental relative permeability data was modeled using a trapping number dependent relative permeability model and incorporated in the simulations. Effect of

  10. Simulated Three-Point Problems.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1979-01-01

    The concept of sloping bedrock strata is portrayed by simple construction of a cardboard model. By use of wires and graph paper, students simulate the drilling of wells and use standard mathematical operations to determine strike and dip of the model stratum. (RE)

  11. Solving radar detection problems using simulation

    NASA Astrophysics Data System (ADS)

    Curtis Schleher, D.

    1995-04-01

    Simulation is a well-known but often misunderstood method for predicting the detection range of radars. Recent advances in computer software and hardware have made simulation easier to apply and use. Users are putting increased reliance on computer simulation in lieu of more expensive test and evaluation. In this paper, a simulation example is given of a complex radar detection problem which is not solvable using conventional procedures. It is shown how this problem is easily solved using a MATLAB simulation on a personal computer (PC).

  12. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  13. On an iterative ensemble smoother and its application to a reservoir facies estimation problem

    NASA Astrophysics Data System (ADS)

    Luo, Xiaodong; Chen, Yan; Valestrand, Randi; Stordal, Andreas; Lorentzen, Rolf; Nævdal, Geir

    2014-05-01

    For data assimilation problems there are different ways in utilizing the available observations. While certain data assimilation algorithms, for instance, the ensemble Kalman filter (EnKF, see, for examples, Aanonsen et al., 2009; Evensen, 2006) assimilate the observations sequentially in time, other data assimilation algorithms may instead collect the observations at different time instants and assimilate them simultaneously. In general such algorithms can be classified as smoothers. In this aspect, the ensemble smoother (ES, see, for example, Evensen and van Leeuwen, 2000) can be considered as an smoother counterpart of the EnKF. The EnKF has been widely used for reservoir data assimilation (history matching) problems since its introduction to the community of petroleum engineering (Nævdal et al., 2002). The applications of the ES to reservoir data assimilation problems are also investigated recently (see, for example, Skjervheim and Evensen, 2011). Compared to the EnKF, the ES has certain technical advantages, including, for instance, avoiding the restarts associated with each update step in the EnKF and also having fewer variables to update, which may result in a significant reduction in simulation time, while providing similar assimilation results to those obtained by the EnKF (Skjervheim and Evensen, 2011). To further improve the performance of the ES, some iterative ensemble smoothers are suggested in the literature, in which the iterations are carried out in the forms of certain iterative optimization algorithms, e.g., the Gaussian-Newton (Chen and Oliver, 2012) or the Levenberg-Marquardt method (Chen and Oliver, 2013; Emerick and Reynolds, 2012), or in the context of adaptive Gaussian mixture (AGM, see Stordal and Lorentzen, 2013). In Emerick and Reynolds (2012) the iteration formula is derived based on the idea that, for linear observations, the final results of the iterative ES should be equal to the estimate of the EnKF. In Chen and Oliver (2013), the

  14. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  15. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  16. Long-term Reservoir Routing Simulations Using Data-Driven Approaches

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Chowdhary, H.; Chinnayakanahalli, K.; Dodov, B.

    2015-12-01

    Flood is a highly complex natural hazard that accounts for major losses to human societies worldwide. Dams built with the aim of mitigating the flood risk significantly modify river flow regimes but unavailability and/or inaccessibility of proper information about reservoir operational rules impose a big hurdle to global flood modeling. This is specifically critical for flood-prone regions where lack of proper representation of reservoir operation can lead to significant under- or overestimation of the flood magnitude, risk, and losses. With the availability of longer in-situ observational data records, as well as advancements in satellite altimetry techniques for measuring reservoir levels, operational rules can be indirectly deduced. In this study, the observed reservoir levels as well as the historical and forecast time series of inflows are incorporated into a stochastic autoregressive moving average statistical modeling scheme to simulate the releases from the dam at each time step. The resulting operational rule curve is used in a reservoir simulation model to simulate the outflows from the reservoirs. The efficiency of the model is examined for three case studies in the United States, including John Martin Reservoir (CO), Coralville Lake (IA, and specifically for the devastating 2008 flood in the state), and Boca Reservoir (CA). Statistical measures are derived and tested to evaluate the accuracy of the simulated hydrographs against USGS streamflow gauge observations. The results prove the capability of the developed model in simulating reasonably accurate outflows from dams and will be presented at the meeting.

  17. The Simulation of Inflow Discharge and Suspended Sediment Transport Rate for a Reservoir

    NASA Astrophysics Data System (ADS)

    Wu, Ching-Hsien; Chen, Ching-Nuo; Tsai, Chih-Heng; Tsai, Chang-Tai

    2010-05-01

    The major functions of a reservoir include flood-protection, public water-supply, irrigation, hydropower and tourism. Consequently, these functions can provide great contributions for economic development. Therefore, important issues associated with reservoir watersheds such as soil erosion and deposition must be carefully studied in order to enhance watershed management. Accurate and timely estimation of peak flow discharges into a reservoir is very crucial for flood protection strategies and the general safety of the reservoir. In this study, GIS is applied to a physiographical soil erosion-deposition model, using rainfall data as the primary input, to simulate both stream flow hydrographs and sediment transport into a reservoir. In this study, the Shihmen Reservoir watershed is used as an illustrative example. The Shihmen Reservoir, a multiple-purpose reservoir for irrigation, hydropower, public water-supply, flood-protection, and tourism, is located on the mid-stream reach of the Tahan River. High-concentration sediment-containing flood flow events during storm periods are primarily responsible for the turbidity and sedimentation in the Shihmen Reservoir. Therefore, if incoming stream flow and sediment concentration hydrographs can be determined promptly during storm periods, high-concentration turbid water can be diverted from the reservoir and low-concentration water, during the recession, can be stored. Consequently, the deposition of the reservoir can be reduced extending the life of the reservoir. Therefore, the purpose of this project is to establish a physiographic soil erosion-deposition model for the Shihmen Reservoir watershed. Using rainfall data as input, we can simulate the hydrographs of both stream flow and sediment concentration entering the reservoir. The results obtained from our model can be used as a reference to aid in the operation of the Shihmen Reservoir concerning deposition prevention. The numerical studies show that the peak flow and

  18. Fishery management problems and possibilities on large southeastern reservoirs

    USGS Publications Warehouse

    Parsons, John W.

    1958-01-01

    In recognition of these problems, the development and application of sound management procedures may be accomplished by controlling species composition and availability of fish through water level control, timber clearing, application of selective toxicants, commercial fishing, introduction of new fish species, and the management of tailwaters and tributaries. Extended research and interagency cooperation are necessary to properly develop and apply sound management. Promotion of angling and regulation of the fishery may best be realized by providing adequate fishing facilities, elimination of certain restricted areas, and in some cases revision of laws and regulations. Biologists must not only meet the present demands for improved sport fishing but must also balance fish yield by increasing the use of food fish by sport and commercial operations.

  19. G-2 and G-3 reservoirs, Delta South field, Nigeria - 2. Simulation of water injection

    SciTech Connect

    Thakur, G.C.; Stanat, P.L.; Aruna, M.; Ajayi, S.A.; Poston, S.

    1982-01-01

    A description is given of a two-dimensional, three-phase, black-oil simulation of the G-2 and G-3 reservoirs in the Delta South field offshore Nigeria. The purpose of these studies was to investigate, from an engineering standpoint, various operating schemes for optimizing the oil recovery from each of these highly gravity-segregated reservoirs. 4 refs.

  20. An Exact Solution to the Draining Reservoir Problem of the Incompressible and Non-Viscous Liquid

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2009-01-01

    The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…

  1. Universal approximators for multi-objective direct policy search in water reservoir management problems: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca

    2014-05-01

    The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower

  2. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  3. Simulating the effects of adsorption and capillary forces in geothermal reservoirs

    SciTech Connect

    Sta. Maria, Roman B.; Pingol, Alponso S.

    1996-01-24

    Until recently, geothermal reservoir simulators use flat interface thermodynamics to determine the thermodynamic state of the reservoir. Development of new simulators and the modification of existing ones has now incorporated the physics of curved interface thermodynamics. These simulators account for the effects of sorption and capillary forces. The simulators GSS and TETRAD were used to simulate the performance of a hypothetical vapordominated geothermal reservoir. GSS is a simulator specifically developed to account for adsorption by using adsorption isotherms. On the other hand, TETRAD is a commercial simulator that was modified to account for vapor pressure lowering by using capillary pressure relations. GSS and TETRAD yielded similar results. Thus, the two formulations being used to account for curved interface thermodynamics are practically equivalent. Areas for improvement of both GSS and TETRAD were identified. The hysteresis and temperature dependence of sorption and capillary properties are issues that are needed to be addressed.

  4. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  5. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  6. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  7. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.

    PubMed

    Taherian, Fereshte; Marcon, Valentina; Bonaccurso, Elmar; van der Vegt, Nico F A

    2016-10-01

    The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir. PMID:27388133

  8. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.

    PubMed

    Taherian, Fereshte; Marcon, Valentina; Bonaccurso, Elmar; van der Vegt, Nico F A

    2016-10-01

    The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.

  9. Solid hydrocarbon: a migration-of-fines problem in carbonate reservoirs

    SciTech Connect

    Lomando, A.J.

    1986-05-01

    The most familiar example of a migration-of-fines problem is authigenic kaolinite, which can detach, migrate through a pore system, and bridge pore throats, thus reducing permeability. under certain conditions, a similar problem is caused by solid hydrocarbon, independent of a mode of origin, which has precipitated in carbonate pore systems. Cores from several reservoirs in the Lower Cretaceous of east Texas were used as the data base in this study. Three morphotypes of solid hydrocarbon have been identified from thin-section and scanning electron microscope observations: droplets, peanut brittle, and carpets. Droplets are small, individual, rounded particles scattered on pore walls. Peanut brittle ranges from a continuous to discontinuous thin coating with random rounded lumps that probably have droplet precursors. Carpets are thick, continuous coatings and, at the extreme, can effectively occlude whole pores. Initially, solid hydrocarbon reduces permeability without necessarily decreasing porosity significantly. Likewise, solid hydrocarbon cannot be detected directly from wireline logs. Acidizing to enhance communication to the well bore is a common completion procedure in limestone and calcareous sandstone reservoirs. In reservoirs containing solid hydrocarbon, acid etches the substrate and releases solid hydrocarbon, which migrates in the pore system and bridges pore throats. Differential well-bore pressure also may cause solid hydrocarbon to migrate. Therefore, wettability, which controls hydrocarbon adhesion to the pore walls, and the dominant morphotype are important factors in the extent of reservoir damage.

  10. Integration of seismic methods with reservoir simulation, Pikes Peak heavy oil field, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Zou, Ying

    The Pikes Peak heavy oil field has been operated by Husky Energy Ltd since 1981. Steam injection has been successfully employed to increase production. Efforts in geophysics and reservoir engineering have been made to improve interpretations in the mapping of reservoir conditions. This dissertation developed tools and a working flow for integrating the analysis of time-lapse seismic surveys with reservoir simulation, and applied them to the Pikes Peak field. Two time-lapse 2D seismic lines acquired in February 1991 and March 2000 in the eastern part of the field were carefully processed to produce wavelet and structure matched final sections. Reservoir simulation based on the field reservoir production history was carried out. It provided independent complementary information for the time-lapse seismic analysis. A rock physics procedure based on Gassmann's equation and Batzle and Wang's empirical relationship successfully linked the reservoir engineering to the seismic method. Based on the resultant seismic models, synthetic seismic sections were generated as the analogy of field seismic sections. The integrated interpretation for the Pikes Peak reservoir drew the following conclusions: The areas with a gas saturation difference, between two compared time steps, have seismic differences. Thicker gas zones correspond with large reflectivity changes on the top of the reservoir and larger traveltime delays in the seismic section. The thin gas zones only induce large reflectivity changes on the top of the reservoir, and do not have large time delays below the reservoir zone. High temperature regions also correlate with areas having large seismic energy differences. High temperature with thick gas (steam and methane) zones may be evidence for steam existence. The seismic differences at locations far from the production zone are due to the lower pressure that causes solution gas to evolve from the oil. Pressure changes propagate much faster (˜20 m in one month) than

  11. Student Ecosystems Problem Solving Using Computer Simulation.

    ERIC Educational Resources Information Center

    Howse, Melissa A.

    The purpose of this study was to determine the procedural knowledge brought to, and created within, a pond ecology simulation by students. Environmental Decision Making (EDM) is an ecosystems modeling tool that allows users to pose their own problems and seek satisfying solutions. Of specific interest was the performance of biology majors who had…

  12. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  13. Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media

    SciTech Connect

    Mario Cesar Suarez Arriaga; Fernando Samaniego V.; Fernando Rodriguez

    1996-01-24

    The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results show that the homogeneous simplified evaluation of the energy resource in a fractured system, could result in unrealistic estimates of the reservoir capacity to generate electricity.

  14. Numerical simulation of fluid implementing heat transfer in naturally fractured geothermal reservoir with DFN method

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kim, K.; Lee, K.; Lee, H.; Lee, W.

    2015-12-01

    Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is only fracture model and it can't calculate simulation of fluid flow and heat transfer in matrix. Therefore, matrix flow model will be added to this model.

  15. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    NASA Astrophysics Data System (ADS)

    Pecher, Radek

    formulations of the proposed model of the hydraulically fractured wells. Another strong emphasis is put on the realization of the numerical model on a computer using the object-oriented programming. In addition to the graphical editor of input data, a higher-level language is designed to facilitate a universal data interface to the numerical simulator. The final version of the simulator is supplied on a CD-ROM together with the 35 solved example problems.

  16. Mathematical simulation of gas-liquid mixture flow in a reservoir and a wellbore with allowance for the dynamical interactions in the reservoir-well system

    NASA Astrophysics Data System (ADS)

    Abbasov, E. M.; Feyzullayev, Kh. A.

    2016-01-01

    Fluid dynamic processes related to mature oil field development are simulated by applying a numerical algorithm based on the gas-liquid mixture flow equations in a reservoir and a wellbore with allowance for the dynamical interaction in the reservoir-well system. Numerical experiments are performed in which well production characteristics are determined from wellhead parameters.

  17. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  18. Coupling of replica exchange simulations to a non-Boltzmann structure reservoir.

    PubMed

    Roitberg, Adrian E; Okur, Asim; Simmerling, Carlos

    2007-03-15

    Computing converged ensemble properties remains challenging for large biomolecules. Replica exchange molecular dynamics (REMD) can significantly increase the efficiency of conformational sampling by using high temperatures to escape kinetic traps. Several groups, including ours, introduced the idea of coupling replica exchange to a pre-converged, Boltzmann-populated reservoir, usually at a temperature higher than that of the highest temperature replica. This procedure reduces computational cost because the long simulation times needed for extensive sampling are only carried out for a single temperature. However, a weakness of the approach is that the Boltzmann-weighted reservoir can still be difficult to generate. We now present the idea of employing a non-Boltzmann reservoir, whose structures can be generated through more efficient conformational sampling methods. We demonstrate that the approach is rigorous and derive a correct statistical mechanical exchange criterion between the reservoir and the replicas that drives Boltzmann-weighted probabilities for the replicas. We test this approach on the trpzip2 peptide and demonstrate that the resulting thermal stability profile is essentially indistinguishable from that obtained using very long (>100 ns) standard REMD simulations. The convergence of this reservoir-aided REMD is significantly faster than for regular REMD. Furthermore, we demonstrate that modification of the exchange criterion is essential; REMD simulations using a standard exchange function with the non-Boltzmann reservoir produced incorrect results.

  19. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  20. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  1. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the

  2. Motor operated valves problems tests and simulations

    SciTech Connect

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  3. Problems related to water quality and algal control in Lopez Reservoir, San Luis Obispo County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Averett, Robert C.; Hines, Walter G.

    1975-01-01

    A study to determine the present enrichment status of Liopez Reservoir in San Luis Obispo county, California, and to evaluate copper sulfate algal treatment found that stratification in the reservoir regulates nutrient release and that algal control has been ineffective. Nuisance algal blooms, particularly from March to June, have been a problem in the warm multipurpose reservoir since it was initially filled following intense storms in 1968-69. The cyanophyte Anabaena unispora has been dominant; cospecies are the diatoms Stephanodiscus astraea and Cyclotella operculata, and the chlorophytes Pediastrum deplex and Sphaerocystis schroeteri. During an A. unispora bloom in May 1972 the total lake surface cell count was nearly 100,000 cells/ml. Thermal stratification from late spring through autumn results in oxygen deficiency in the hypolimnion and metalimnion caused by bacterial oxidation of organic detritus. The anaerobic conditions favor chemical reduction of organic matter, which constitute 10-14% of the sediment. As algae die, sink to the bottom, and decompose, nutrients are released to the hypolimnion , and with the autumn overturn are spread to the epilimnion. Algal blooms not only hamper recreation, but through depletion of dissolved oxygen in the epilimnion may have caused periodic fishkills. Copper sulfate mixed with sodium citrate and applied at 1.10-1.73 lbs/acre has not significantly reduced algal growth; a method for determining correct dosage is presented. (Lynch-Wisconsin)

  4. Simulation of water temperature in two reservoirs with Delft3d

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Zhou, L. Y.

    2016-08-01

    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  5. Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis

    2008-10-01

    Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1998-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields was completed, a pilot area of approximately 1 mi 2 in one of the fields was chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the demonstration area, (2) demonstrate that economically significant unrecovered oil can be recovered by a CO 2 flood of the demonstration area, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery CO 2 flood and well-completion program will be developed. Through technology transfer workshops and other presentations, the knowledge gained in this study can then be applied to increase production from the more than 100 other Delaware Mountain Group reservoirs.

  7. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more

  8. Problems and Challenges in Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.

    2002-12-01

    We describe problems and challenges in constructing topologically realistic simulations of active earthquake fault systems, focusing on 1) Rationales for incorporating successive hierarchies of physical processes and layers of detail; 2) Computational issues associated with performance, efficiency, and optimization of codes; and 3) Knowledge acquisition, related to data mining, visualization, and comparison with theory. Numerical simulations of physical systems are particularly useful for investigating the relationship between observable multi-scale space-time patterns in data and the fundamentally unobservable, underlying multi-scale dynamics that produce them. In general, simulations are designed to provide physical understanding of fault system processes and their influence on factors such as: 1) Seismic activity through time; 2) Surface displacements observable by GPS, strainmeters and InSAR; 3) Relative importance of fault network topology and frictional processes in determining dynamical behavior; and 4) Partitioning of slip and seismic activity among active strike slip faults in California. As an example of how simulations can provide substantial insight into the collection, processing, and interpretation of observational data, we discuss a new result suggesting that surface observations from NASA space geodetic data can be used to construct a new type of fluctuation metric, a "Local Ginzburg Criterion". Since earthquakes are now interpreted as generalized phase transitions, techniques can be developed that make use of fluctuation-related phenomena to image the underlying dynamics from data. In particular, the form of our friction equations, which are based on laboratory experiments, suggest that the strain rate should be viewed as an "order parameter", whose mean value is high immediate prior to a large earthquake, and jumps discontinuously to a low mean value immediate following the event. From ideas developed in these simulations, we propose a new mapping

  9. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  10. Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing.

    PubMed

    Hinaut, Xavier; Lance, Florian; Droin, Colas; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2015-11-01

    Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing.

  11. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    SciTech Connect

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  12. Application of a new scale up methodology to the simulation of displacement processes in heterogeneous reservoirs

    SciTech Connect

    Durlofsky, L.J.; Milliken, W.J.; Dehghani, K.; Jones, R.C.

    1994-12-31

    A general method for the scale up of highly detailed, heterogeneous reservoir cross sections is presented and applied to the simulation of several recovery processes in a variety of geologic settings. The scale up technique proceeds by first identifying portions of the fine scale reservoir description which could potentially lead to high fluid velocities, typically regions of connected, high permeability. These regions are then modeled in detail while the remainder of the domain is coarsened using a general numerical technique for the calculation of effective permeability. The overall scale up method is applied to the cross sectional simulation of three actual fields. Waterflood, steamflood and miscible flood recovery processes are considered. In all these cases, the scale up technique is shown to give coarsened reservoir descriptions which provide simulation results in very good agreement with those of the detailed reservoir descriptions. For these simulations, speedups in computation times, for the coarsened models relative to their fine grid counterparts, range from a factor of 10 to a factor of 200.

  13. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    SciTech Connect

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A.

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  14. Quantum Simulation of Dissipative Processes without Reservoir Engineering

    PubMed Central

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.

    2015-01-01

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy. PMID:26024437

  15. Quantum simulation of dissipative processes without reservoir engineering

    DOE PAGES

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  16. Mathematical Simulation of Contaminant Flow in Closed Reservoir

    NASA Astrophysics Data System (ADS)

    Agranat, V. M.; Goudov, A. M.; Perminov, V. A.

    2016-01-01

    A mathematical model of the propagation in flooded mine lightweight contaminant due to allocation of groundwater is considered. Mathematical model was based on an analysis of experimental data and using concept and methods from reactive media mechanics. The boundary-value problem is solved numerically using the finite volume method. The distribution of fields of velocities and concentration of impurity particles in a flooded mine have been obtained at different times. These results can be used to analyze mining water treatment process due to environment and evaluate its further possible improvements.

  17. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap

  18. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  19. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Second quarterly report, 1995

    SciTech Connect

    Dutton, S.P.

    1995-06-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine Unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation.

  20. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    SciTech Connect

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  1. Geochemical simulations on CO2-fluid-rock interactions in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, F.; McPherson, B. J.; Lichtner, P. C.; Kaszuba, J. P.; Lo Re, C.; Karra, S.; Lu, C.; Xu, T.

    2012-12-01

    Supercritical CO2 has been suggested as a heat transmission fluid in Enhanced Geothermal Systems (EGS) reservoirs to improve energy extraction. Understanding the geochemical processes of CO2-fluid-rock interactions in EGS reservoirs is significant important to investigate the performance of energy extraction with CO2 instead of water as a working fluid, carbon sequestration and risk assessment. The objectives of this study: (1) to calibrate and evaluate the kinetic rate constants and specific reactive surface areas of minerals based on the batch experimental data conducted by other researchers (collaborators Kaszuba and Lo Ré at the University of Wyoming); (2) to investigate the effects of CO2-fluid-rock geochemical interactions on the energy extraction efficiency, carbon sequestration, and risk assessment. A series of laboratory experiments were conducted (Lo Ré et al., 2012) to investigate the geochemical reactions among water, fractured granite rocks, and injected supercritical CO2 at elevated temperatures of 250 oC, and pressures of 250-450 bars. The batch simulations were firstly conducted to mimic the laboratory experiments with the calibration of mineral reactive surface areas using TOUGHREACT model and parameter estimation software (PEST). Then, we performed 2-D geochemical modeling to simulate the chemical interactions among CO2, fluids, and rocks at high temperatures and pressures of EGS reservoirs. We further investigated the effects of fluid-rock interactions on the energy extraction, carbon sequestration, and risk assessment with CO2 as a heat transmission fluid instead of water for EGS reservoirs. Results of carbonate mineral precipitations suggested that the CO2 as a working fluid instead of water was favorable for EGS reservoirs on the CO2 sequestration. Our simulations also suggested that the energy extraction could be enhanced using CO2 as the transmission fluid compared to water.

  2. Validation of the MUFITS reservoir simulator against standard industrial simulation tools for CO2 storage at the Ketzin pilot site

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Kempka, Thomas; Kühn, Michael; Melnik, Oleg

    2016-04-01

    We give an overview of the reservoir simulator MUFITS capabilities for modelling underground carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers three-phase solid-liquid-gas flows of water, carbon dioxide and salt components. The extended black-oil model is utilized in the BLACKOIL module, which can be applied in the CO2 storage scenarios to two-phase flows of CO2 and brine components. The modules allow comprehensive options including salt precipitation/dissolution, thermal processes, multiple properties regions, and complicated initial vertical equilibration. The PVT tables for the BLACKOIL module can be generated automatically from the GASSTORE module for a given reservoir temperature and brine salinity. We test the simulator against published benchmarking studies. We then consider an application case of CO2 storage at the Ketzin pilot site in Germany. For that purpose, we use a calibrated 3D geological reservoir model comprising a highly heterogeneous distribution of porosity and permeability in a fluvial geological setting. The simulation is conducted using the EOS-module BLACKOIL and the modelling results are in excellent agreement with the results of the industrial simulators applied in previous benchmarks. In particular, the bottom-hole pressure in the injection well, the total mass of dissolved CO2 and spatial CO2 distribution are identical with previously published results.

  3. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to

  4. Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Gao, Xiaogang; Sorooshian, Soroosh; Li, Xin

    2016-03-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others.

  5. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1998-07-31

    The objective of this Class 3 project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two main phases. The original objectives of the reservoir-characterization phase of the project were (1) to provide a detailed understanding of the architecture and heterogeneity of two representative fields of the Delaware Mountain Group, Geraldine Ford and Ford West, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, (2) to chose a demonstration area in one of the fields, and (3) to simulate a CO 2 flood in the demonstration area. The Bureau's industry partner for the initial Phase 1 of the project was Conoco, Inc.. After the reservoir characterization and simulation of an area at the northern end of the Ford Geraldine unit were completed, Conoco decided not to proceed to Phase 2, installation of a CO 2 flood in the demonstration area. This decision by Conoco provides an opportunity for a more extensive field demonstration in East Ford field, with Orla Petco as the industry partner. East Ford field is immediately adjacent to the Ford Geraldine unit and produces from the same Ramsey sandstone channel. Phase 1 of the project has been expanded to include reservoir characterization of East Ford field. This additional reservoir-characterization task provides an excellent opportunity to test the transferability of the geologic model and log-interpretation methods developed during reservoir characterization of the Ford Geraldine unit to another Delaware sandstone field. The objectives of the implementation phase of the project remain the same, to (1) apply the knowledge gained from reservoir characterization and

  6. A methodology for incorporating geomechanically-based fault damage zones models into reservoir simulation

    NASA Astrophysics Data System (ADS)

    Paul, Pijush Kanti

    In the fault damage zone modeling study for a field in the Timor Sea, I present a methodology to incorporate geomechanically-based fault damage zones into reservoir simulation. In the studied field, production history suggests that the mismatch between actual production and model prediction is due to preferential fluid flow through the damage zones associated with the reservoir scale faults, which is not included in the baseline petrophysical model. I analyzed well data to estimate stress heterogeneity and fracture distributions in the reservoir. Image logs show that stress orientations are homogenous at the field scale with a strike-slip/normal faulting stress regime and maximum horizontal stress oriented in NE-SW direction. Observed fracture zones in wells are mostly associated with well scale fault and bed boundaries. These zones do not show any anomalies in production logs or well test data, because most of the fractures are not optimally oriented to the present day stress state, and matrix permeability is high enough to mask any small anomalies from the fracture zones. However, I found that fracture density increases towards the reservoir scale faults, indicating high fracture density zones or damage zones close to these faults, which is consistent with the preferred flow direction indicated by interference and tracer test done between the wells. It is well known from geologic studies that there is a concentration of secondary fractures and faults in a damage zone adjacent to larger faults. Because there is usually inadequate data to incorporate damage zone fractures and faults into reservoir simulation models, in this study I utilized the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir scale faults. The implemented workflow can be used to more routinely incorporate damage zones into reservoir simulation models. Applying this methodology to a real reservoir utilizing

  7. Large-scale three-dimensional geothermal reservoir simulation on small computer systems

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1995-05-01

    The performance of TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport enhanced with the addition of a set of preconditioned conjugate gradient solvers, was tested on three PCs (486-33, 486-66, Pentium-90), a MacIntosh Quadra 800, and a workstation IBM RISC 6000. A two-phase, single porosity, 3-D geothermal reservoir model with 1,411 irregular grid blocks, with production from and injection into the reservoir was used as the test model. The code modifications to TOUGH2 and its setup in each machine environment are described. Computational work per time step and CPU time requirements are reported for each of the machines used. It is concluded that the current PCs provide the best price/performance platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers and high-end workstations.

  8. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.

    PubMed

    Peng, Hui; Zheng, Xilai; Chen, Lei; Wei, Yang

    2016-07-01

    Seasonal manganese pollution has become an increasingly pressing water quality issue for water supply reservoirs in recent years. Manganese is a redox-sensitive element and is released from sediment under anoxic conditions near the sediment-water interface during summer and autumn, when water temperature stratification occurs. The reservoir water temperature and water dynamic conditions directly influence the formation of manganese pollution. Numerical models are useful tools to quantitatively evaluate manganese pollution and its influencing factors. This paper presents a reservoir manganese pollution model by adding a manganese biogeochemical module to a water quality model-CE-QUAL-W2. The model is applied to the Wangjuan reservoir (Qingdao, China), which experiences manganese pollution during summer and autumn. Field data are used to verify the model, and the results show that the model can reproduce the main features of the thermal stratification and manganese distribution. The model is used to evaluate the manganese pollution process and its four influencing factors, including air temperature, water level, wind speed, and wind directions, through different simulation scenarios. The results show that all four factors can influence manganese pollution. High air temperature, high water level, and low wind speed aggravate manganese pollution, while low air temperature, low water level, and high wind speed reduce manganese pollution. Wind that travels in the opposite direction of the flow aggravates manganese pollution, while wind in the same direction as the flow reduces manganese pollution. This study provides useful information to improve our understanding of seasonal manganese pollution in reservoirs, which is important for reservoir manganese pollution warnings and control.

  9. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2004-05-10

    A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

  10. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.

    PubMed

    Peng, Hui; Zheng, Xilai; Chen, Lei; Wei, Yang

    2016-07-01

    Seasonal manganese pollution has become an increasingly pressing water quality issue for water supply reservoirs in recent years. Manganese is a redox-sensitive element and is released from sediment under anoxic conditions near the sediment-water interface during summer and autumn, when water temperature stratification occurs. The reservoir water temperature and water dynamic conditions directly influence the formation of manganese pollution. Numerical models are useful tools to quantitatively evaluate manganese pollution and its influencing factors. This paper presents a reservoir manganese pollution model by adding a manganese biogeochemical module to a water quality model-CE-QUAL-W2. The model is applied to the Wangjuan reservoir (Qingdao, China), which experiences manganese pollution during summer and autumn. Field data are used to verify the model, and the results show that the model can reproduce the main features of the thermal stratification and manganese distribution. The model is used to evaluate the manganese pollution process and its four influencing factors, including air temperature, water level, wind speed, and wind directions, through different simulation scenarios. The results show that all four factors can influence manganese pollution. High air temperature, high water level, and low wind speed aggravate manganese pollution, while low air temperature, low water level, and high wind speed reduce manganese pollution. Wind that travels in the opposite direction of the flow aggravates manganese pollution, while wind in the same direction as the flow reduces manganese pollution. This study provides useful information to improve our understanding of seasonal manganese pollution in reservoirs, which is important for reservoir manganese pollution warnings and control. PMID:27068892

  11. Some Current Problems in Simulator Design, Testing and Use.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Concerned with the general problem of the effectiveness of simulator training, this report reflects information developed during the conduct of aircraft simulator training research projects sponsored by the Air Force, Army, Navy, and Coast Guard. Problems are identified related to simulator design, testing, and use, all of which impact upon…

  12. Simulating California Reservoir Operation Using the Classification and Regression Tree Algorithm Combined with a Shuffled Cross-Validation Scheme

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.; Li, X.

    2015-12-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs, and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as the consideration of policy and regulation, environmental constraints, dry/wet conditions, etc. In this paper, a reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve model's predictive performance. An application study of 9 major reservoirs in California is carried out and the simulated results from different decision tree approaches are compared with observation, including original CART and Random Forest. The statistical measurements show that CART combined with the shuffled cross-validation scheme gives a better predictive performance over the other two methods, especially in simulating the peak flows. The results for simulated controlled outflow, storage changes and storage trajectories also show that the proposed model is able to consistently and reasonably predict the human's reservoir operation decisions. In addition, we found that the operation in the Trinity Lake, Oroville Lake and Shasta Lake are greatly influenced by policy and regulation, while low elevation reservoirs are more sensitive to inflow amount than others.

  13. Simulator sickness: a problem for Army aviation.

    PubMed

    Crowley, J S

    1987-04-01

    "Simulator Sickness" describes a symptom complex frequently reported by pilots during or after flight simulator training. There were 112 helicopter pilots at a U.S. Army AH-1 Cobra Flight Weapons Simulator (FWS) who completed a symptom-oriented subjective questionnaire. Of these, 40% reported symptoms of dysequilibrium; pilots developing simulator sickness had significantly more total and AH-1 flight time. Adaptation to the syndrome occurred with increasing FWS experience. The history and aeromedical significance of simulator sickness are briefly reviewed, and a case report presented. A mandatory grounding policy in use locally is described. Potential treatment strategies are briefly discussed.

  14. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.

    2011-12-01

    Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric concentrations of carbon dioxide (CO2). Given the type, abundance, and accessibility of geologic characterization data, different reservoir modeling techniques can be utilized to build a site model. However, petrophysical properties of a formation can be modeled with simplifying assumptions or with greater detail, the later requiring sophisticated modeling techniques supported by additional data. In GCS where cost of data collection needs to be minimized, will detailed (expensive) reservoir modeling efforts lead to much improved model predictive capability? Is there an optimal level of detail in the reservoir model sufficient for prediction purposes? In Wyoming, GCS into the Nugget Sandstone is proposed. This formation is a deep (>13,000 ft) saline aquifer deposited in eolian environments, exhibiting permeability heterogeneity at multiple scales. Based on a set of characterization data, this study utilizes multiple, increasingly complex reservoir modeling techniques to create a suite of reservoir models including a multiscale, non-stationary heterogeneous model conditioned to a soft depositional model (i.e., training image), a geostatistical (stationary) facies model without conditioning, a geostatistical (stationary) petrophysical model ignoring facies, and finally, a homogeneous model ignoring all aspects of sub-aquifer heterogeneity. All models are built at regional scale with a high-resolution grid (245,133,140 cells) from which a set of local simulation models (448,000 grid cells) are extracted. These are considered alternative conceptual models with which pilot-scale CO2 injection is simulated (50 year duration at 1/10 Mt per year). A computationally efficient sensitivity analysis (SA) is conducted for all models based on a Plackett-Burman Design of Experiment metric. The SA systematically varies key parameters of the models (e.g., variogram structure and principal axes of intrinsic

  15. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1991-10-01

    The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

  16. Computer simulation of reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout

    USGS Publications Warehouse

    Hsieh, Paul

    2010-01-01

    This report describes the application of a computer model to simulate reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout. Reservoir and fluid data used for model development are based on (1) information released in BP's investigation report of the incident, (2) information provided by BP personnel during meetings in Houston, Texas, and (3) calibration by history matching to shut-in pressures measured in the capping stack during the Well Integrity Test. The model is able to closely match the measured shut-in pressures. In the simulation of the 86-day period from the blowout to shut in, the simulated reservoir pressure at the well face declines from the initial reservoir pressure of 11,850 pounds per square inch (psi) to 9,400 psi. After shut in, the simulated reservoir pressure recovers to a final value of 10,300 psi. The pressure does not recover back to the initial pressure owing to reservoir depletion caused by 86 days of oil discharge. The simulated oil flow rate declines from 63,600 stock tank barrels per day just after the Deepwater Horizon blowout to 52,600 stock tank barrels per day just prior to shut in. The simulated total volume of oil discharged is 4.92 million stock tank barrels. The overall uncertainty in the simulated flow rates and total volume of oil discharged is estimated to be + or - 10 percent.

  17. Getting it Together: An Environmental Simulation Problem

    ERIC Educational Resources Information Center

    Hackett, Jay K.

    1975-01-01

    Describes an environmental simulation exercise conducted at an outdoor camp in Colorado. The two simulations involved the physical, social, political and environmental factors which might influence construction of an airport in the Rocky Mountain National Park and factors associated with a nuclear generating plant. (BR)

  18. Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998

    SciTech Connect

    Forster, C.B.; Nielson, D.L.; Deo, M.

    1998-12-01

    An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

  19. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.

    2000-07-07

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two main phases. The original objectives of the reservoir-characterization phase of the project were (1) to provide a detailed understanding of the architecture and heterogeneity of two representative fields of the Delaware Mountain Group, Geraldine Ford and Ford West, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, (2) to chose a demonstration area in one of the fields, and (3) to simulate a CO{sub 2} flood in the demonstration area.

  20. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, Shirley

    1999-11-09

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two main phases. The original objectives of the reservoir-characterization phase of the project were (1) to provide a detailed understanding of the architecture and heterogeneity of two representative fields of the Delaware Mountain Group, Geraldine Ford and Ford West, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, (2) to chose a demonstration area in one of the fields, and (3) to simulate a CO 2 flood in the demonstration area.

  1. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  2. Making Problem-Solving Simulations More Realistic.

    ERIC Educational Resources Information Center

    Cotton, Samuel E.

    2002-01-01

    Many problem-solving activities include mathematical principles but students do not use them during the design and experimentation phases before creating a prototype or product. Restricting the amount and/or type of materials available to students will require them to calculate and requisition the materials needed. (JOW)

  3. Revised Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Miller, Lisa D.

    2009-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in

  4. Geology and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir

    SciTech Connect

    Ann Mattson; Craig B. Forster; Paul B. Anderson; Steve H. Snelgrove; Thomas C. Chidsey, Jr.

    1997-05-20

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Four activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone in the Ivie Creek case-study area: (1) regional stratigraphic interpretation, (2) case-study evaluation, (3) reservoir modeling, and (4) technology transfer.

  5. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    SciTech Connect

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  6. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1992-11-01

    The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

  7. Intergrated 3-D Ground-Penetrating Radar,Outcrop,and Boreholoe Data Applied to Reservoir Characterization and Flow Simulation.

    SciTech Connect

    McMechan et al.

    2001-08-31

    Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research

  8. Integrated 3-D Ground-Penetrating Radar, Outcrop, and Borehole Data Applied to Reservoir Characterization and Flow Simulation

    SciTech Connect

    George McMechan; Rucsandra Corbeanu; Craig Forster; Kristian Soegaard; Xiaoxian Zeng; Carlos Aiken; Robert Szerbiak; Janok Bhattacharya; Michael Wizevich; Xueming Xu; Stephen Snelgrove; Karen Roche; Siang Joo Lim; Djuro Navakovic; Christopher White; Laura Crossey; Deming Wang; John Thurmond; William Hammon III; Mamadou BAlde; Ari Menitove

    2001-08-31

    OAK-B135 (IPLD Cleared) Existing reservoir models are based on 2-D outcrop studies; 3-D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah. The study was conducted at two sites (Corbula Gulch and Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3-D, to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentological features and boundaries.The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of the project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulations through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs.

  9. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area. A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells

  10. Simulation studies of air transport operational problems

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.; Billings, C. E.; Stevenson, J. E.; Ruffell-Smith, H. P.; Cooper, G. E.

    1976-01-01

    An experimental evaluation of the monitored approach procedure for conducting low visibility instrument approaches is described. Four airline crews each flew 16 approaches using the monitored procedure and 16 using a modified standard procedure in a DC-10 simulator under various conditions of visibility, wind shear and turbulence, and radar vectoring scenarios. In terms of system measures of aircrew performance, no major differences were found. Pilot opinion data indicate that there are some desirable characteristics of the monitored procedure, particularly with reference to the increased role of the flight engineer in conducting low visibility approaches. Rationale for developing approach procedures is discussed.

  11. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    -isothermal porous media numerical flow simulator in order to model the evolution and injection-related operational dynamics of The Geysers geothermal field. At the bottom of the domain in the felsite, we impose a constant temperature, constant saturation, low-permeability boundary. Laterally we set no-flow boundaries (no mass or heat flow), while at the top we use a fully aqueous-phase-saturated constant atmospheric pressure boundary condition. We compute initial conditions for two different conceptual models. The first conceptual model has two phases (gas and aqueous) with decreasing proportions of gas from the steam zone downward; the second model has dry steam all the way from the steam zone to the bottom. The first may be more similar to a pre-exploitation condition, before production reduced pressure and dried out the system, while the second is calibrated to the pressure and temperature actually measured in the reservoir today. Our preliminary results are in reasonable agreement with the pressure monitoring at Prati State 31. These results will be used in hydrogeomechanical modeling to plan, design, and validate the effects of injection in the system.

  12. Simulating Thermal-Hydrologic-Mechanical-Chemical Evolution Surrounding Fluid Injection in a Fractured Porous Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Taron, J.; Min, K.; Elsworth, D.

    2006-12-01

    Computational analysis is conducted on the coupled thermal-hydrologic-mechanical-chemical (THMC) behavior of a stimulated EGS geothermal reservoir. Numerical analyses utilize a newly developed simulator capable of examining THMC processes in fractured porous geologic media. The simulator links the thermal-hydrologic- chemical (THC) computational code TOUGHREACT with the mechanical (M) capability of FLAC3D, where the response of pore fluid pressure to mechanical disturbance is treated as an undrained system and mineral precipitation/dissolution generates porosity and permeability change within each dual-permeability continuum. Non-linear permeability response to thermal-hydrologic-mechanical (THM) mechanisms is accommodated via embryonic mechanical and transport constitutive laws, and is considered to act in union with permeability changes associated with the removal or addition of minerals within the system. This construct is applied to the geometry of an injector-withdrawal doublet within the Coso Geothermal field, where in situ stress conditions, thermal state, and mineralogical composition at 3000m depth are extracted from recorded field data. Initial results for feasible parametric settings show that permeability reduction in the vicinity of a cool (80°C) injection well may be significant, within an order of magnitude, and accompanied by large (MPa) changes in the stress field throughout the reservoir for imposed boundary conditions of constant stress.

  13. Finite element method for simulating coupled thermo-hydro-mechanical processes in discretely fractured porous media and application to enhanced geothermal reservoir analysis

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Wong, L.; Bloecher, G.; Cacace, M.; Kolditz, O.

    2012-12-01

    We present our recent development of the finite element method (FEM) for simulating coupled thermo-hydro-mechanical (THM) processes in discretely fractured porous media and an application to geothermal reservoir modeling for the research test site Gross Schoenebeck in Germany operated by the GFZ German Research Centre for Geosciences. Numerical analysis of multi-physics problems in fractured rocks is important for various geotechnical applications. In particular for enhanced geothermal reservoirs where induced fractures and possibly natural fault systems dominate the system behavior, explicit modeling of those characteristic fractures (i.e. discrete fracture models) is essential to get more detailed understanding of in-situ processes and reliable estimations of heat extraction from those deep reservoirs. However, as fractures are mechanical discontinuities, it is difficult to solve the problems using continuity based numerical methods such as the FEM. Currently, equivalent porous medium or multiple continuum model approaches are often only the way to model fractured rocks with the FEM. The authors have recently developed lower-dimensional interface elements (LIEs) for modeling mechanics-involved coupled processes with pre-existing fractures (Watanabe et al. 2012 IJNME). The method does not require any double nodes unlike conventional interface elements. Moreover, for coupled problems, the approach allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. All the code developments have been carried out within the scientific open source project OpenGeoSys (www.opengeosys.net) (Kolditz et al. 2012 EES). Using both traditional and new simulation techniques, a geothermal reservoir model for the research test site Gross Schoenebeck has been developed. Unstructured meshing of the complex faulted reservoir including both rock matrix and fracture elements has been conducted using recently developed automatic

  14. Numerical simulation of a geothermal reservoir in Tuscany (Italy) with application of "Optimal Experimental Design" for finding optimal slimhole sites

    NASA Astrophysics Data System (ADS)

    Ebigbo, Anozie; Padalkina, Katharina; Seidler, Ralf; Thorwart, Martin; Niederau, Jan; Marquart, Gabriele; Dini, Ivano

    2015-04-01

    We study an area of high heat flow, adjacent to the Larderello-Travale and Mt. Amiata geothermal fields in southern Tuscany (Italy) in respect to conductive and advective heat transport in various rock units. We construct a geological three dimensional gridded model, assigned rock properties deduced from logging data in nearby boreholes and rock sample petrophysical lab measurements, and applied numerical simulation technique to resolve the subsurface temperature field and rock units of high fluid flow. We calibrate the model with available temperature depth data from a few shallow and two deep boreholes. We found two rock units (i.e. two depth regions) with permeabilities on the order of 10-14 m2 and considerable fluid flow. In the upper regions fluid flow is mainly driven by topography related pressure gradients while in the deeper layer convective heat transport prevails caused by a deep heat source due to a young granitic intrusion. In a second step we study the problem of finding optimal sites for a slim hole to measure a temperature depth profile for determining the (effective) permeability of a certain rock unit which is not intersected by the slimhole. This question is tackled by methods from optimal experimental design (OED) applied to the numerical simulation model. OED demands the calculation of the Fisher Matrix depending on the slimhole location and the expected permeability of the rock unit in question. An optimization criterion allows finding the optimal locations for a slimhole to minimize the error in determining the permeability of the rock unit. For our study reservoir optimal slimhole locations coincide with regions of high flow rates and large deviations from the mean temperature of the reservoir layer in question.

  15. Simon: Simulating Problems of Rural Community Development in Colombia.

    ERIC Educational Resources Information Center

    Hill, A. David

    1980-01-01

    Describes a problem-solving instructional unit which utilizes a simulation gaming method to help students in an introductory college-level geography course understand rural community development in a developing nation. (DB)

  16. Simulation and control problems in elastic robots

    NASA Technical Reports Server (NTRS)

    Tadikonda, S. S. K.; Baruh, H.

    1989-01-01

    Computational issues associated with modeling and control of robots with revolute joints and elastic arms are considered. A manipulator with one arm and pinned at one end is considered to investigate various aspects of the modeling procedure and the model, and the effect of coupling between the rigid-body and the elastic motions. The rigid-body motion of a manipulator arm is described by means of a reference frame attached to the shadow beam, and the linear elastic operator denoting flexibility is defined with respect to this reference frame. The small elastic motion assumption coupled with the method of assumed modes is used to model the elasticity in the arm. It is shown that only terms up to quadratic in these model amplitudes need to be retained. An important aspect of the coupling between the rigid-body and the elastic motion is the centrifugal stiffening effect. This effect stiffens the elastic structure, as to be expected on physical grounds, gives rise to a time-varying inertia term for the rigid-body motion, and, in general, results in an effective inertia term smaller than the rigid-body inertia term. Simulation results are presented for an elastic beam pinned at one end and free at the other, and rotating in a horizontal plane, and control issues such as the order of the model, number of sensors, and modal extraction are examined within this context.

  17. Hydrothermal simulation of a fractured carbonate reservoir in southern Italy and automated detections of optimal positions for geothermal doublet installations

    NASA Astrophysics Data System (ADS)

    Niederau, Jan; Gomez, Sergio; Ebigbo, Anozie; Inversi, Barbara; Marquart, Gabriele; Scrocca, Davide

    2015-04-01

    In this work, we present the results of hydrothermal simulations for assessing the geothermal potential of a fractured carbonate reservoir in Campania (Guardia Lombardi). Local surface heat flows of up to 90 mW/m² suggest that this area is a potential medium-enthalpy geothermal reservoir. The targeted reservoir rocks are fractured shallow-water carbonates (Jurassic to Cretaceous) of the Apulia Platform. During the Apennine orogeny, those carbonates were affected by at least two tectonic phases: Thrust-related folding of the carbonate platform due to compression followed by extension which caused major normal faulting. Based on seismic interpretation, a discretized structural model is set up, comprising the reservoir unit and the overlying sedimentary cover. The model comprises an area of 42 km × 28 km and extends to a depth of about six kilometers. Results of calibrated hydrothermal reservoir simulations suggest that free convection occurs in some parts of the reservoir. For assessing optimal locations for potential hydrothermal doublet systems, a tool was developed which uses the results of the reservoir simulationsin combination with predefined constraints. Those constraints or minimum requirements consider: a) minimum temperature for operating the doublet system, b) minimum matrix permeability allowing for a pumping rate of 40 L/s, and c) social constraints (location of cities or conservation areas, where the construction of a potential geothermal energy plant would be problematic). The optimization tool ranks possible doublet system locations by evaluating an objective function for the minimum requirements. Those locations are further used to extract smaller models from the big reservoir model and simulate the operation of a hypothetical geothermal doublet system. By assessing the optimized results, an optimal location of a geothermal energy plant would produce water with a temperature of 163 °C from a depth of almost 4 km.

  18. Mineral trapping of CO2 in operated geothermal reservoirs - Numerical simulations on various scales

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Stanjek, Helge; Peiffer, Stefan; Clauser, Christoph

    2013-04-01

    A novel approach to store CO2 not only by hydrodynamic trapping within a reservoir, but to convert dissolved CO2 into the geochemically more stable form of calcite in a reaction with calcium obtained from dissolution of sulphates and alkalinity from feldspars or fly ashes is described here. The presentation gives answers to the key questions: • Where are potential geothermal reservoirs with anhydrite abundant? • Does the transfer of anhydrite into calcite work at all and what are the reaction rates? • What are probable alkalinity sources and how fast are they available? Numerical simulation is a means to quantify the entire process of CO2 storage and to deepen the understanding of the detailed chemical processes. We performed numerical simulations on multiple scales. The relevant scales reach from the micro or thin section scale (ca. 1 cm) to the reservoir scale (ca. 10 km). The idea is to provide constraints for smaller scale models from the larger scale and derive functionality from smaller scale models of processes which cannot be resolved in larger scale models, due to restrictions of discretization of the applied numerical mesh. With regard to the 3 questions above we can conclude that the combination of CO2 storage and geothermal energy production is generally feasible because candidate sites are available, anhydrite is transformable into calcite and alkalinity can be provided by fly ashes (Back et al. 2010) or even in-situ (Kühn and Clauser 2006). Based on our laboratory investigations and numerical studies we are able to estimate the storage potential for mineral trapping of CO2 in geothermal reservoirs (Kühn et al. 2009). On the one hand the maximum is unfortunately less than a million tons over the life time of a geothermal heating plant. On the other hand significant storage capacities are available in geological formations with regard to hydrodynamic trapping for millions of tonnes of carbon dioxide. This is why under the current circumstances

  19. Image analysis for Validation of Simulations of Fluid Mix Problem

    SciTech Connect

    Kamath, C; Miller, P

    2007-01-10

    As computer simulations gain acceptance for the modeling of complex physical phenomena, there is an increasing need to validate these simulation codes by comparing them to experiments. Currently, this is done qualitatively, using a visual approach. This is obviously very subjective and more quantitative metrics are needed, especially to identify simulations which are closer to experiments than other simulations. In this paper, we show how image processing techniques can be effectively used in such comparisons. Using an example from the problem of mixing of two fluids, we show that we can quantitatively compare experimental and simulation images by extracting higher level features to characterize the objects in the images.

  20. Simulation of mineral diagenesis in reservoirs. Application to illite formation in feldspathic sandstones

    SciTech Connect

    Brosse, E.; Bazin, B.; Le Gallo, Y.; Bildstein, O.

    1996-12-31

    Petroleum geologists and production engineers are faced with reservoirs where porosities and permeabilities (poroperm) have been reduced by mineral phases precipitated during the geological evolution. Diagenesis of sandstones is influenced by many factors : initial composition of the sediment, burial history, composition of infiltrated waters. An appraisal of poroperm decline due to mineral diagenesis only can result from an integration of these factors. A quantitative evaluation of diagenetic phenomena is possible using numerical modelling. A first approach of the mineral transformations can be made using a new geochemical modelling software (NEWKIN) applied to closed cells, where aqueous solution and minerals are not in equilibrium initially. Cements of illite and quartz frequently occur in sandstones bearing feldspar, such as Middle Jurassic reservoirs of the Brent Group (East Shetland Basin, North Sea) which today lie between 3500 and 4500 in depth. Results of closed cells simulations are presented, which explore the conditions of illite and silica authigenesis in this Province, particularly in terms of temperature, water composition, and kinetics (oversaturation of the waters with respect to quartz, low pH). Another key of non-equilibrium, in pervious rocks, is the flow of interstitial water. Its role must be appraised by a -{open_quotes}reaction-transport{close_quotes} code. A new software is presented (DIAPHORE), able to solve, at the reservoir scale, in a coupled way : (1) advection of water and chemical elements in the porous volume; (2) mass balance of the considered chemical elements in the rock volume; (3) dissolution-precipitation phenomena occurring locally (using the geochemical code precedently described); (4) a feedback of the mineral transformations on permeability and reactive surface areas through a {open_quotes}textural{close_quotes} model at the grain scale.

  1. Simulation of mineral diagenesis in reservoirs. Application to illite formation in feldspathic sandstones

    SciTech Connect

    Brosse, E.; Bazin, B.; Le Gallo, Y.; Bildstein, O. )

    1996-01-01

    Petroleum geologists and production engineers are faced with reservoirs where porosities and permeabilities (poroperm) have been reduced by mineral phases precipitated during the geological evolution. Diagenesis of sandstones is influenced by many factors : initial composition of the sediment, burial history, composition of infiltrated waters. An appraisal of poroperm decline due to mineral diagenesis only can result from an integration of these factors. A quantitative evaluation of diagenetic phenomena is possible using numerical modelling. A first approach of the mineral transformations can be made using a new geochemical modelling software (NEWKIN) applied to closed cells, where aqueous solution and minerals are not in equilibrium initially. Cements of illite and quartz frequently occur in sandstones bearing feldspar, such as Middle Jurassic reservoirs of the Brent Group (East Shetland Basin, North Sea) which today lie between 3500 and 4500 in depth. Results of closed cells simulations are presented, which explore the conditions of illite and silica authigenesis in this Province, particularly in terms of temperature, water composition, and kinetics (oversaturation of the waters with respect to quartz, low pH). Another key of non-equilibrium, in pervious rocks, is the flow of interstitial water. Its role must be appraised by a -[open quotes]reaction-transport[close quotes] code. A new software is presented (DIAPHORE), able to solve, at the reservoir scale, in a coupled way : (1) advection of water and chemical elements in the porous volume; (2) mass balance of the considered chemical elements in the rock volume; (3) dissolution-precipitation phenomena occurring locally (using the geochemical code precedently described); (4) a feedback of the mineral transformations on permeability and reactive surface areas through a [open quotes]textural[close quotes] model at the grain scale.

  2. The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.

    ERIC Educational Resources Information Center

    Gilbert, R.

    1979-01-01

    Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)

  3. Simulated annealing approach to the max cut problem

    NASA Astrophysics Data System (ADS)

    Sen, Sandip

    1993-03-01

    In this paper we address the problem of partitioning the nodes of a random graph into two sets, so as to maximize the sum of the weights on the edges connecting nodes belonging to different sets. This problem has important real-life counterparts, but has been proven to be NP-complete. As such, a number of heuristic solution techniques have been proposed in literature to address this problem. We propose a stochastic optimization technique, simulated annealing, to find solutions for the max cut problem. Our experiments verify that good solutions to the problem can be found using this algorithm in a reasonable amount of time.

  4. Implict Monte Carlo Radiation Transport Simulations of Four Test Problems

    SciTech Connect

    Gentile, N

    2007-08-01

    Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.

  5. Computer Simulations and Problem-Solving in Probability.

    ERIC Educational Resources Information Center

    Camp, John S.

    1978-01-01

    The purpose of this paper is to present problems (and solutions) from the areas of marketing, population planning, system reliability, and mathematics to show how a computer simulation can be used as a problem-solving strategy in probability. Examples using BASIC and two methods of generating random numbers are given. (Author/MP)

  6. A Simulated Research Problem for Undergraduate Metamorphic Petrology.

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1984-01-01

    Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)

  7. THE ITA PROBLEM: A Ready-to-Use Simulation

    ERIC Educational Resources Information Center

    Halleck, Gene B.

    2008-01-01

    This simulation probes what is known as the "foreign" teaching assistant problem. The "problem" can be found at large state universities in the United States where international graduate students are required to earn their scholarships by teaching undergraduate courses and arises because of a combination of issues, including the oral proficiency…

  8. Analysis of induced seismicity and heat transfer in geothermal reservoirs by coupled simulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan

    . Conversely, at high relative non-dimensional flow rates the propagating pressure pulse is larger and migrates more quickly through the reservoir but the thermal drawdown is uniform across the reservoir and without the presence of a distinct thermal front, and less capable of triggering late-stage seismicity. In Chapter 2 we develop a dimensionless model to predict the thermal drawdown response, and quantify the relationship between the timing and magnitude of late stage seismic event and the induced thermal stress from thermal drawdown. We evaluate the uniformity of thermal drawdown as a function of a dimensionless flow rate QD that scales with fracture spacing s( m), injection rate q (kg/s), and the distance between the injector and the target point L* ( Qd ∝ qs2 / L*). By assuming the dominant heat transfer by heat conduction within the fractured medium, this model is either capable to predict the timing of induced seismicity by the thermal stress by the analytical formula. Due to the significant influence of fracture network geometry in heat transfer and induced seismicity, a discrete fracture network model is developed (Chapter 3) to couple stress and fluid flow in a discontinuous fractured mass represented as a continuum by coupling the continuum simulator TF_FLAC 3D with cell-by-cell discontinuum laws for deformation and flow. Both equivalent medium crack and permeability tensor approaches are employed to characterize preexisting discrete fractures. The evolution of fracture permeability accommodates stress-dependent aperture under different stress states, including normal closure, shear dilation, and for fracture walls out of contact under tensile loading. This discrete fracture network model is applied (Chapter 4) in a generic reservoir with an initial permeability in the range of 10-17 to 10-16 m2, fracture density of ~0.09m -1 and fractures oriented such that either none, one, or both sets of fractures are critically stressed. For a given reservoir with a pre

  9. A virtual company concept for reservoir management

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1998-12-31

    This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

  10. Problems Caused by Microbes and Treatment Strategies Monitoring and Preventing Reservoir Souring Using Molecular Microbiological Methods (MMM)

    NASA Astrophysics Data System (ADS)

    Gittel, Antje

    The injection of seawater during the process of secondary oil recovery in offshore oilfields supplies huge amounts of sulphate to the prokaryotic reservoir communities. Together with the presence of oil organics and their degradation products as electron donors, this facilitates the enrichment and growth of sulphate-reducing prokaryotes (SRP) in the reservoir, as well as in pipings and top-side installations (Sunde and Torsvik, 2005; Vance and Thrasher, 2005). The activity of SRP causes severe economic problems due to the reactivity and toxicity of the produced hydrogen sulphide (H2S), one of the major problems being reservoir souring. Besides the use of broad-spectrum biocides or inhibitors for sulphate reduction, the addition of nitrate effectively decreased the net production of H2S in model column studies (Myhr et al., 2002; Hubert et al., 2005; Dunsmore et al., 2006) and field trials (Telang et al., 1997; Bødtker et al., 2008). The mechanisms by which nitrate addition might affect souring control are (i) the stimulation of heterotrophic nitrate-reducing bacteria (hNRB) that outcompete SRP for electron donors, (ii) the activity of nitrate-reducing, sulphide-oxidising bacteria (NR-SOB), and (iii) the inhibition of SRP by the production of nitrite and nitrous oxides (Sunde and Torsvik, 2005; Hubert and Voordouw, 2007).

  11. Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs: adding Glacier Dynamics to a Hydrological Model

    NASA Astrophysics Data System (ADS)

    Schueller, Felix; Förster, Kristian; Hanzer, Florian; Huttenlau, Matthias; Marzeion, Ben; Strasser, Ulrich; Achleitner, Stefan; Kirnbauer, Robert

    2015-04-01

    Glacier and snow runoff in high alpine regions is an essential process in hydrological research for its high relevance on lower altitude areas and hydro-power generation. MUSICALS II (Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs) seeks to identify and quantify water availability and runoff in alpine headwater catchments. The focus is on future changes due to glacier retreat, altering the multi-day and seasonal runoff available for hydropower operations. Our aim is to investigate and improve runoff forecasts by coupling the semi-distributed hydrological model HQSim with a simple glacier evolution model. The glacier model MMBM (Marzeion Mass Balance Model) with its statistical nature allows for fast modelling of the dynamical properties of glaciers. We present the design of the coupled hydrological application for different hydro power headwater catchments in Tyrol. The capabilities of the glacier model to simulate the selected glaciers is shown. Simulated discharge with the original and the coupled model are compared to downstream gauge measurements. Using the multi-objective optimization algorithm AMALGAM (A Multi-ALgorithm, Genetically Adaptive Multiobjective model), we optimize the glacier module parameters fully automatically. The results show the improvements in runoff modelling for past periods, when altering of glaciated catchment parts is considered. This indicates consideration of this process is mandatory for simulating future developments.

  12. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  13. A PC/workstation cluster computing environment for reservoir engineering/simulation applications

    SciTech Connect

    Hermes, C.E.; Koo, J.

    1994-12-31

    Like the rest of the petroleum industry, Texaco has been migrating its applications and databases from mainframes to PC`s and workstations. This transition has been very positive from the standpoint that it provides an environment for integrating applications, increases end user productivity, and in general reduces overall computing costs. On the downside, the transition typically results in a dramatic increase in workstation purchases and raises concerns with regards to the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a UNIX computing environment which, to say the least, can be quite frustrating to learn and use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/reservoir simulation computing environment developed at Texaco`s Exploration and Production Technology Department in Houston, Texas. The environment is representative of that under development at several other large oil companies and is based upon a cluster of IBM and Silicon Graphics workstations connected by a fiber optics communications network and engineering PC`s connected to LAN`s or Ethernets. Since computing resources and software licenses are shared among a group of users, the new environment enables us to get more out of our investments in workstation hardware and software.

  14. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    SciTech Connect

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  15. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    SciTech Connect

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  16. Simulating reservoir releases to mitigate climate impacts on fish sustainability below Shasta Lake using stochastic and mechanistic modeling approaches

    NASA Astrophysics Data System (ADS)

    Sapin, J. R.; Saito, L.; Rajagopalan, B.; Caldwell, R. J.

    2013-12-01

    Preservation of the Chinook salmon fishery on the Sacramento River in California has been a major concern since the winter-run Chinook was listed as threatened in 1989. The construction of Shasta Dam and Reservoir in 1945 prevented the salmon from reaching their native cold-water spawning habitat, resulting in severe population declines. The temperature control device (TCD) installed at Shasta Dam in 1997 provides increased capabilities of supplying cold-water habitat downstream of the dam to stimulate salmon spawning. However, increased air temperatures due to climate change could make it more difficult to meet downstream temperature targets with the TCD. By coupling stochastic hydroclimatology generation with two-dimensional hydrodynamic modeling of the reservoir we can simulate TCD operations under extreme climate conditions. This is accomplished by stochastically generating climate and inflow scenarios (created with historical data from NOAA, USGS and USBR) as input into a CE-QUAL-W2 model of the reservoir that can simulate TCD operations. Simulations will investigate if selective withdrawal from multiple gates of the TCD are capable of meeting temperature targets downstream of the dam under extreme hydroclimatic conditions. Moreover, our non-parametric methods for stochastically generating climate and inflow scenarios are capable of producing statistically representative years of extreme wet or extreme dry conditions beyond what is seen in the historical record. This allows us to simulate TCD operations for unprecedented hydroclimatic conditions with implications for climate changes in the watershed. Preliminary results of temperature outputs from simulations of TCD operations under extreme climate conditions with CE-QUAL-W2 will be presented. The conditions chosen for simulation are grounded to real-world managerial concerns by utilizing collaborative workshops with reservoir managers to establish which hydroclimatic scenarios would be of most concern for

  17. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  18. Effects of urban flood-detention reservoirs on peak discharges and flood discharges and flood frequencies, and simulation of flood-detention reservoir outflow hydrographs in two watersheds in Albany, Georgia

    USGS Publications Warehouse

    Hess, G.W.; Inman, E.J.

    1994-01-01

    This report describes the effects of flood-detention reservoirs on downstream peak discharges of two urban tributaries to Kinchafoonee Creek (tributaries 1 and 2) in Albany, Georgia and presents simulated flood-detention reservoir outflow hydrographs. Rainfall-runoff data were collected for six years at two stations in these two urban watersheds. Tributary number 1 basin has a drainage area of 0.12 square miles, contains 23.8 percent impervious area, and contains two detention reservoirs. Tributary number 2 basin has a drainage area of 0.09 square miles, contains 12.9 percent impervious area, and has one detention reservoir. The Distributed Routing Rainfall-Runoff Model (DR3M) was calibrated using rainfall-runoff data collected during 1987- 92 at each station. DR3M was then used to simulate long-term (1906-33, 1941-73) peak discharges for these stations for conditions ranging from the existing condition with all detention reservoirs in place to the condition of no detention reservoirs. Flood-frequency relations based on the long-term peak discharges were developed for each simulation by fitting the logarithms of the annual peak discharge data to a Pearson type III distri- bution curve. The effect of detention reservoirs on peak discharge data to a Pearson type III distributio curve. The effect of detention reservoirs on peak discharges was determined by comparison of simulated flood-frequency peak discharges for conditions with and without the detention reservoirs. The comparisons indicated that the removal of flood-detention reservoirs from the tributary number 1 basin would increase the 10-, 50-, and 100-year peak discharges by 164 to 204 percent. Removal of the reservoir from tributary number 2 basin would increase these discharges by about 145 percent.

  19. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  20. Conformity assessment for seismic monitoring and reservoir simulation at the Ketzin pilot site - how much conformity can be reached?

    NASA Astrophysics Data System (ADS)

    Lüth, Stefan; Ivanova, Alexandra; Kempka, Thomas

    2016-04-01

    The EU CCS Directive defines three high-level criteria which have to be fulfilled by a site operator in the post closure phase of a storage site before liability can be transferred to the public after site closure. One of these high-level requirements is "Demonstrating conformity between observed and simulated plume behaviour". The observed plume behaviour is derived from geophysical and/or geochemical monitoring. Repeated 3D seismic observations have proven to provide the most comprehensive image of a CO2 plume in various projects such as Sleipner, Weyburn, or Ketzin. The simulated plume behaviour is derived from reservoir simulation using a model calibrated with monitoring results. Plume observations using any monitoring method are always affected by limited resolution and detection ability, and reservoir simulations will only be able to provide an approximated representation of the occurring reservoir processes. Therefore, full conformity between observed and simulated plume behaviour is difficult to achieve, if it is at all. It is therefore of crucial importance for each storage site to understand to what degree conformity can be achieved under realistic conditions, comprising noise affected monitoring data and reservoir models based on geological uncertainties. We applied performance criteria (plume footprint area, lateral migration distance, plume volume, and similarity index) for a comparison between monitoring results (4D seismic measurements) and reservoir simulations, considering a range of seismic amplitude values as noise threshold and a range of minimum thickness of the simulated CO2 plume. Relating the performance criteria to the noise and thickness threshold values allows assessing the quality of conformance between simulated and observed behaviour of a CO2 plume. The Ketzin site is provided with a comprehensive monitoring data set and a history-matched reservoir model. Considering the relatively high noise level, which is inherent for land

  1. Impact of integrated 3D reservoir modeling/flow simulation on development of deepwater sands, Mars Field, Gulf of Mexico

    SciTech Connect

    Lerch, C.S.; Johnston, J.R.; Juedeman, M.E.

    1996-12-31

    Prospect Mars is a major Gulf of Mexico deep water oil discovery made under joint partnership between operator Shell Offshore Inc. and partner British Petroleum Inc. The discovery lies in 3000 feet of water, located 130 miles southeast of New Orleans, Louisiana. The field was discovered in 1989 and to date 14 significant reservoir intervals from 10,000 to 19000 feet below sea level have been penetrated. Estimated recoverable reserves for the first phase of field development are in excess of 500 MMBE and development plans include installation of a 24 slot tension leg platform and two subsea wells, with first production in mid-1996. Over a two year period a comprehensive effort was directed at creating a new set of reservoir models utilizing an integrated software package developed at Shell E&P Technology Co. This package is able to incorporate pertinent geological, geophysical, and petrophysical data into 3-D reservoir models which can be used to: (1) estimate reservoir quantity, quality, and continuity, (2) predict reservoir production performance, (3) select development well locations, and (4) facilitate reserve estimation. This software allows interpretations from 3-D seismic, well control, and analog outcrops to be effectively integrated and passed to the reservoir model for flow simulation. This integrated effort at modeling ensured a more realistic reservoir picture upon which to base field development. Almost all the development wells pre-drilled prior to platform installation have been affected or designed based on these reservoir models and well results have been used to keep the models updated and evergreen.

  2. Simulation and Analysis of Converging Shock Wave Test Problems

    SciTech Connect

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  3. Scale bridging in molecular simulation. Recurrent problems and current options

    NASA Astrophysics Data System (ADS)

    Hartmann, Carsten; Delle Site, Luigi

    2015-09-01

    Multiscale and multiphysics approaches have become an integral part of the molecular modeling and simulation toolbox and are used to attack various real-world problems that would be out of reach without these techniques. This special topics issue is devoted to a critical appraisal of some of the most popular scale bridging techniques for molecular simulation. It features regular articles and a "Discussion and Debate" section, in which experts in the field discuss specific articles and general aspects of scale bridging techniques.

  4. Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir.

    PubMed

    Huang, Y L; Huang, G H; Liu, D F; Zhu, H; Sun, W

    2012-10-15

    Although integrated simulation and optimization approaches under stochastic uncertainty have been applied to eutrophication management problems, few studies are reported in eutrophication control planning where multiple formats of uncertainties and nonlinearities are addressed in forms of intervals and probabilistic distributions within an integrated framework. Since the impounding of Three Gorges Reservoir (TGR), China in 2003, the hydraulic conditions and aquatic environment of the Xiangxi Bay (XXB) have changed significantly. The resulting emergence of eutrophication and algal blooms leads to its deteriorated water quality. The XXB becomes an ideal case study area. Thus, a simulation-based inexact chance-constrained nonlinear programming (SICNP) model is developed and applied to eutrophication control planning in the XXB of the TGR under uncertainties. In the SICNP, the wastewater treatment costs for removing total phosphorus (TP) are set as the objective function; effluent discharge standards, stream water quality standards and eutrophication control standards are considered in the constraints; a steady-state simulation model for phosphorus transport and fate is embedded in the environmental standards constraints; the interval programming and chance-constrained approaches are integrated to provide interval decision variables but also the associated risk levels in violating the system constraints. The model results indicate that changes in the violating level (q) will result in different strategy distributions at spatial and temporal scales; the optimal value of cost objective is from [2.74, 13.41] million RMB to [2.25, 13.08] million RMB when q equals from 0.01 to 0.25; the required TP treatment efficiency for the Baisha plant is the most stringent, which is followed by the Xiakou Town and the Zhaojun Town, while the requirement for the Pingyikou cement plant is the least stringent. The model results are useful for making optimal policies on eutrophication

  5. Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir.

    PubMed

    Huang, Y L; Huang, G H; Liu, D F; Zhu, H; Sun, W

    2012-10-15

    Although integrated simulation and optimization approaches under stochastic uncertainty have been applied to eutrophication management problems, few studies are reported in eutrophication control planning where multiple formats of uncertainties and nonlinearities are addressed in forms of intervals and probabilistic distributions within an integrated framework. Since the impounding of Three Gorges Reservoir (TGR), China in 2003, the hydraulic conditions and aquatic environment of the Xiangxi Bay (XXB) have changed significantly. The resulting emergence of eutrophication and algal blooms leads to its deteriorated water quality. The XXB becomes an ideal case study area. Thus, a simulation-based inexact chance-constrained nonlinear programming (SICNP) model is developed and applied to eutrophication control planning in the XXB of the TGR under uncertainties. In the SICNP, the wastewater treatment costs for removing total phosphorus (TP) are set as the objective function; effluent discharge standards, stream water quality standards and eutrophication control standards are considered in the constraints; a steady-state simulation model for phosphorus transport and fate is embedded in the environmental standards constraints; the interval programming and chance-constrained approaches are integrated to provide interval decision variables but also the associated risk levels in violating the system constraints. The model results indicate that changes in the violating level (q) will result in different strategy distributions at spatial and temporal scales; the optimal value of cost objective is from [2.74, 13.41] million RMB to [2.25, 13.08] million RMB when q equals from 0.01 to 0.25; the required TP treatment efficiency for the Baisha plant is the most stringent, which is followed by the Xiakou Town and the Zhaojun Town, while the requirement for the Pingyikou cement plant is the least stringent. The model results are useful for making optimal policies on eutrophication

  6. Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir

    NASA Astrophysics Data System (ADS)

    Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.

    2012-12-01

    Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.

  7. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  8. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  9. [Simulation of nitrogen and phosphorus loss in Siling Reservoir watershed with AnnAGNPS].

    PubMed

    Bian, Jin-yun; Wang, Fei-er; Yang, Jia; Yu, Jie; Lou, Li-ping; Yu, Dan-ping

    2012-08-01

    By using annual agricultural non-point source model (AnnAGNPS), this study simulated the export loading of nitrogen and phosphorus in Siling Reservoir watershed in Tiaoxi Basin, and integrated with the simulation results, the spatial distribution characteristics of non-point source pollution in the watershed was analyzed. The result showed that the export loading of nitrogen and phosphorus had similar characteristics: in the study area, the export loading of nutrients were higher in southern and western regions and lower in northern and eastern regions. Forest land mainly made up of bamboo was the main export source of nitrogen and phosphorus loading with the contribution above 90% of nutrient load of whole watershed. Three fertilization practices such as no fertilizer (CK), site-specific nutrient management (SSNM) and farmers' fertilizaction practice (FFP) were used in the scenario analysis. The scenario analysis showed that to a certain degree, SSNM could reduce the nitrogen and phosphorus loss. Comparing with FFP, the reduction of SSNM in dissolved nitrogen (DN), particle nitrogen (PN), dissolved phosphorus (DP) and particle phosphorus (PP) was 8.17%, 4.33%, 9.08% and 1.02%, respectively.

  10. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  11. The Fermi-Pasta-Ulam problem: Simulation and modern dynamics

    SciTech Connect

    Weissert, T.P.

    1992-01-01

    In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation.

  12. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  13. Intercomparison of simulation models for CO{sub 2} disposal in underground storage reservoirs

    SciTech Connect

    Pruess, K.; Tsang, C.F.; Law, D.; Oldenburg, C.

    2001-01-01

    An intercomparison study between simulation codes for terrestrial sequestration of CO{sub 2} is proposed. The objectives are, on the one hand, to focus and evaluate key processes through numerical simulation and, on the other, to explore the strengths of different codes and achieve acceptance of such codes for use in the development of geologic systems for CO{sub 2} disposal. This will be carried out through the study of a series of test problems by groups using their simulation codes. A progression from simple and uncoupled to increasingly complex and coupled problems is envisioned. The proposed study will attempt to involve interested technical groups worldwide, and will proceed through an iterative process of problem definition, solution comparison, discussion and refinement. The Internet will be used as a medium for communicating and organizing activities, and for a flexible exchange of information and documentation of results. In addition, it is planned to hold a series of workshops. The present write-up includes an initial set of eight proposed test problems and represents the first step in the process. Readers are encouraged to communicate with us at the email address above to indicate their interest and to provide suggestions and input.

  14. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  15. Geothermal reservoir engineering code: comparison and validation

    SciTech Connect

    Not Available

    1981-02-27

    INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

  16. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    PubMed

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  17. Simulation of reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2002-01-01

    A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7

  18. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir.

    SciTech Connect

    Allison, M.L.

    1997-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial- deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) evaluation of the Ivie Creek case-study area and (2) technology transfer. The Ivie Creek case-study evaluation work during the quarter focused on the two parasequence sets, the Kf-1 and Kf-2, in the lower Ferron Sandstone. This work included: (1) clinoform characterization, (2) parasequence characterization from elevation and isopach maps, and (3) three-dimensional facies modeling. Scaled photomosaic panels from the Ivie Creek amphitheater (south-facing outcrop belt) and Quitchupah Canyon (Fig. 1) provide a deterministic framework for two apparent-dip cross sections. These panels along with other photomosaic coverage and data from five drill holes, ten stratigraphic sections, and 22 permeability transacts (Fig. 1), acquired during two field seasons, provided the necessary information for this geologic evaluation and creation of the models to be used

  19. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region.

    PubMed

    Shen, Zhenyao; Qiu, Jiali; Hong, Qian; Chen, Lei

    2014-09-15

    Non-point source (NPS) pollution has become the largest threat to water quality in recent years. Major pollutants, particularly from agricultural activities, which include nitrogen, phosphorus and sediment that have been released into aquatic environments, have caused a range of problems in the Three Gorges Reservoir Region (TGRR), China. It is necessary to identify the spatial and temporal distributions of NPS pollutants and the highly polluted areas for the purpose of watershed management. In this study, the NPS pollutant load was simulated using the Soil and Water Assessment Tool (SWAT) and the small-scale watershed extended method (SWEM). The simulation results for four typical small catchments were extended to the entire watershed leading to estimates of the NPS load from 2001 to 2009. The results demonstrated that the NPS pollution load in the western area was the highest and that agricultural land was the primary pollutant source. The similar annual variation trends of runoff and sediment loads demonstrated that the sediment load was closely related to runoff. The loads of total nitrogen (TN) and total phosphorus (TP) were relatively stable from 2001 to 2007, except for high loads in 2006. The increase in pollution source strength was an important reason for the significant upward trend of TN and TP loads from 2008 to 2009. The rainfall from April to October contributed to the largest amount of runoff, sediment and nutrient loads for the year. The NPS load intensities in each sub-basin reveal large variations in the spatial distribution of different pollutants. It was shown that the temporal and spatial distributions of pollutant loads were positively correlated with the annual rainfall amounts and with human activities. Furthermore, this finding illustrates that conservation practices and nutrient management should be implemented in specific sites during special periods for the purpose of NPS pollution control in the TGRR.

  20. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  1. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  2. Simulation of Sediment Transport Caused by Landslide at Nanhua Reservoir Watershed in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Huang, Cong-Gi; Lin, Huan-Hsuan

    2016-04-01

    As a result of heavy rainfall, steep topography, young and weak geological formations, earthquakes, loose soils, slope land cultivation and other human disturbance, much area in Taiwan are prone to the occurrence of disastrous mass movements such as landslides and sediment disasters. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe changes in watershed environments. Typhoon Morakot in August 2009 caused severe landslides, debris flow, flooding and sediment disasters induced by record-break rainfall. The maximum rainfall of mountain area in Chiayi, Tainan, Kaohsiung and Pingtung County were over 2,900 mm. The study area is located at Nanhua reservoir watershed in southern Taiwan. The numerical model (HEC-RAS 4.1 and FLO-2D) will be used to simulate the sediment transport caused by landslide and the study will find out the separating location of erosion and deposition in the river, the danger area of riverbank, and the safety of the river terrace village under the return period of 50-year, 100-year and 200-year (such as Typhoon Morakot). The results of this study can provide for the disaster risk management of administrative decisions to lessen the impacts of natural hazards and may also be useful for time-space variation of sediment disasters caused by Climate Change.

  3. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred [Northwestern University

    2016-07-12

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  4. Discrete Element Method Simulation of Nonlinear Viscoelastic Stress Wave Problems

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Horie, Y.; Wang, Wenqiang

    2002-07-01

    A DEM(Discrete Element Method) simulation of nonlinear viscoelastic stress wave problems is carried out. The interaction forces among elements are described using a model in which neighbor elements are linked by a nonlinear spring and a certain number of Maxwell components in parallel. By making use of exponential relaxation moduli, it is shown that numerical computation of the convolution integral does not require storing and repeatedly calculating strain history, so that the computational cost is dramatically reduced. To validate the viscoelastic DM2 code1, stress wave propagation in a Maxwell rod with one end subjected to a constant stress loading is simulated. Results excellently fit those from the characteristics calculation. The code is then used to investigate the problem of meso-scale damage in a plastic-bonded explosive under shock loading. Results not only show "compression damage", but also reveal a complex damage evolution. They demonstrate a unique capability of DEM in modeling heterogeneous materials.

  5. Hybrid optimization schemes for simulation-based problems.

    SciTech Connect

    Fowler, Katie; Gray, Genetha Anne; Griffin, Joshua D.

    2010-05-01

    The inclusion of computer simulations in the study and design of complex engineering systems has created a need for efficient approaches to simulation-based optimization. For example, in water resources management problems, optimization problems regularly consist of objective functions and constraints that rely on output from a PDE-based simulator. Various assumptions can be made to simplify either the objective function or the physical system so that gradient-based methods apply, however the incorporation of realistic objection functions can be accomplished given the availability of derivative-free optimization methods. A wide variety of derivative-free methods exist and each method has both advantages and disadvantages. Therefore, to address such problems, we propose a hybrid approach, which allows the combining of beneficial elements of multiple methods in order to more efficiently search the design space. Specifically, in this paper, we illustrate the capabilities of two novel algorithms; one which hybridizes pattern search optimization with Gaussian Process emulation and the other which hybridizes pattern search and a genetic algorithm. We describe the hybrid methods and give some numerical results for a hydrological application which illustrate that the hybrids find an optimal solution under conditions for which traditional optimal search methods fail.

  6. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  7. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  8. Simulated monthly hydrologic data and estimated flood characteristics for Cherry Creek at a proposed reservoir site near Terry, Montana

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.

    1995-01-01

    A monthly hydrologic budget for water years 1937- 92 was developed for the proposed Cherry Creek Reservoir (maximum volume about 14,100 acre-feet). Monthly suspended-sediment loads and dissolved- solids concentrations in the reservoir and flood hydrographs and volumes having recurrence intervals of 25-, 50-, and 100-years were estimated. Monthly streamflow and precipitation were estimated using a mixed-station, record-extension procedure. Monthly suspended-sediment and dissolved-solids concentrations in the reservoir were estimated from regression relations between logarithms of concen- tration and streamflow. The simulation showed that flows that Cherry Creek generally were adequate to maintain the reservoir elevation above the minimum operating level for a seepage loss of 0 cubic ft per square. With a seepage loss rate of 3 cubic ft per square, diversions from the Yellowstone River were required for about on third of the months. Cumulative sediment deposition during the 56-year simulation period was about 138 acre-ft from Cherry Creek alone and was about 149 acre-ft when additional water was imported from the Yellowstone River. The concentration of dissolved solids in the reservoir reached a maximum value of about 2,540 mg/L for a seepage loss of 0 cubic ft per square. For a seepage loss of 3 cubic ft per square, water was imported from the Yellowstone River and the maximum concentration of dissolved solids was about 1,200 mg/L. Volumes for flood discharges were estimated from synthetic 24-hour duration storms that were used in a rainfall-runoff model (HEC-1).

  9. Simulating quantum correlations as a distributed sampling problem

    SciTech Connect

    Degorre, Julien; Laplante, Sophie; Roland, Jeremie

    2005-12-15

    It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, postselection or nonlocal boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a nonlocal box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states.

  10. A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Yeh, Hund-Der; Ashrafi, Khosro; Rezazadeh, Najmeh; Bateni, Sayed M.; Karbassi, Abdulreza; Kachoosangi, Fatemeh Torabi; Moazami, Saber

    2015-11-01

    When the number of computational grids increases, water quality simulation complexities arise. Therefore, using a reduced order framework to express the variations of the objective parameter may facilitate the simulation task and also the interpretation of computational results. In this regard, a new reduced-order approach was proposed to link a water quality simulator model (CE-QUAL-W2, W2) with a data reduction technique (proper orthogonal decomposition, POD). The W2 model simulated spatio-temporal variations of nitrate in the Karkheh Reservoir, Iran. Thereafter, the POD model reduced the dimensions of simulated nitrate in the computational grids. The performance of the developed reduced-order model (ROM) results was evaluated through the comparison of the regenerated nitrate data by the model, and the simulated ones by W2. Findings indicated that the first four modes among 1825 computed ones by ROM conserved approximately over 91% of the nitrate variations. It means that the ROM was capable of showing the spatio-temporal variations of nitrate in the reservoir using the first few modes. Finally, confirmation of ROM indicated that the error of order of magnitude was less than 0.001, for nitrate ROM to regenerate nitrate data using 100 basis functions.

  11. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  12. Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Saad, George; Ghanem, Roger

    2009-04-01

    Model-based predictions of flow in porous media are critically dependent on assumptions and hypotheses that are not always based on first principles and that cannot necessarily be justified on the basis of known prevalent physics. Constitutive models, for instance, fall under this category. While these predictive tools are usually calibrated using observational data, the scatter in the resulting parameters has typically been ignored. In this paper, this scatter is used to construct stochastic process models of the parameters which are then used as the cornerstone in a novel model validation methodology useful for ascertaining the confidence in model-based predictions. The uncertainties are first quantified by representing the unknown model parameters via their polynomial chaos decompositions. These are descriptions of stochastic processes in terms of their coordinates with respect to an orthogonal basis. This is followed by a filtering step to update these representations with measurements as they become available. In order to account for the non-Gaussian nature of model parameters and model errors, an adaptation of the ensemble Kalman filter is developed. Instead of propagating an ensemble of model states forward in time as is suggested within the framework of the ensemble Kalman filter, the proposed approach allows the propagation of a stochastic representation of unknown variables using their respective polynomial chaos decompositions. The model is propagated forward in time by solving the system of partial differential equations using a stochastic projection method. Whenever measurements are available, the proposed data assimilation technique is used to update the stochastic parameters of the numerical model. The proposed method is applied to a black oil reservoir simulation model where measurements are used to stochastically characterize the flow medium and to verify the model validity with specified confidence bounds. The updated model can then be employed to

  13. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    PubMed

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650

  14. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    PubMed Central

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650

  15. Numerical simulation of the blast impact problem using the Direct Simulation Monte Carlo (DSMC) method

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Long, Lyle N.

    2004-10-01

    A particle approach using the Direct Simulation Monte Carlo (DSMC) method is used to solve the problem of blast impact with structures. A novel approach to model the solid boundary condition for particle methods is presented. The solver is validated against an analytical solution of the Riemann shocktube problem and against experiments on interaction of a planar shock with a square cavity. Blast impact simulations are performed for two model shapes, a box and an I-shaped beam, assuming that the solid body does not deform. The solver uses domain decomposition technique to run in parallel. The parallel performance of the solver on two Beowulf clusters is also presented.

  16. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    NASA Astrophysics Data System (ADS)

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-09-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.

  17. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.

    PubMed

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  18. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  19. Combined Simulated Annealing Algorithm for the Discrete Facility Location Problem

    PubMed Central

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2012-01-01

    The combined simulated annealing (CSA) algorithm was developed for the discrete facility location problem (DFLP) in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it. PMID:23049474

  20. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    NASA Astrophysics Data System (ADS)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  1. Low-Sulfate Seawater Injection into Oil Reservoir to Avoid Scaling Problem

    NASA Astrophysics Data System (ADS)

    Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam

    This study presents the results of laboratory experiments carried out to investigate the formation of calcium, strontium and barium sulfates from mixing Angsi seawater or low sulfate seawater with the following sulfate contents (75, 50, 25, 5 and 1%) and formation water contain high concentration of calcium, strontium and barium ions at various temperatures (40-90°C) and atmospheric pressure. The knowledge of solubility of common oil field scale formation and how their solubilities are affected by changes in salinity and temperatures is also studied. Results show a large of precipitation occurred in all jars containing seawater while the amount of precipitation decreased when the low sulfate seawater was used. At higher temperatures the mass of precipitation of CaSO4 and SrSO4 scales increases and the mass of precipitation of BaSO4 scale decreases since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. It can be concluded that even at sulfate content of 1% there may still be a scaling problem.

  2. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF-simulated

  3. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time

  4. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    NASA Astrophysics Data System (ADS)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  5. Performance simulation of an advanced cylindrical thermionic fuel element with a graphite reservoir

    NASA Astrophysics Data System (ADS)

    Young, Timothy J.; Thayer, Kevin L.; Ramalingam, Mysore L.

    1993-07-01

    This paper describes the analytical work to optimize the steady-state electrical and thermal characteristics of an advanced, power producing, cylindrical thermionic fuel element (TFE) operating in a space nuclear reactor. The thermionic converter was equipped with an integral, lamellar graphite-cesium reservoir attached to the non-nuclear fueled TFE emitter lead as a means for supplying cesium vapor for efficient thermionic emission. Five intercalated cesium-graphite compounds were chosen for this analysis and the optimum position for the placement of each candidate reservoir in the TFE lead region was determined. The Advanced Thermionic Initiative (ATI) thermal spectrum, 'driverless' nuclear reactor configuration, with an output of 36 kWe, was used as a basis for the calculations. A coupled thermionic and thermal-hydraulic computer program was integrated with a lead region thermal model to calculate the thermal and electrical output characteristics of the TFE for different reservoir locations. The results of this analysis indicate that the temperature distribution in the lead region of the TFE at steady-state is such that only four of the candidate reservoirs analyzed could be located on the lead and supply the requisite cesium vapor pressure for optimum TFE operation.

  6. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    SciTech Connect

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  7. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    SciTech Connect

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes; Moulton, Sandy

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  8. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    SciTech Connect

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  9. Mathematical simulation of temperatures in deep impoundments: verification tests of the Water Resources Engineers, Inc. model - Horsetooth and Flaming Gorge Reservoirs

    USGS Publications Warehouse

    King, D.L.; Sartoris, Jim J.

    1973-01-01

    Successful use of predictive mathematical models requires verification of the accuracy of the models by applying them to existing situations where the prediction can be compared with reality. A Corps of Engineers' modification of a deep reservoir thermal stratification model developed by Water Resources Engineers, Inc., was applied to two existing Bureau of Reclamation reservoirs for verification. Diffusion coefficients used for the Corps' Detroit Reservoir were found to apply to Horsetooth Reservoir in Colorado, for which very food computer input data were available. The Detroit diffusion coefficients gave a reasonable simulation of Flaming Gorge Reservoir in Wyoming and Utah, which has very complex and variable physical characteristics and for which only average-quality computer input data were available.

  10. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Allison, M.L.

    1995-05-02

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be developed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  11. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, July 1--September 30, 1994

    SciTech Connect

    Allison, M.L.

    1994-10-30

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be developed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a 3-D representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  12. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, April 1, 1997--June 30, 1997

    SciTech Connect

    Allison, M.L.

    1997-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve a reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  13. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  14. Geology and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Chidsey, T.C. Jr.; Anderson, P.B.; Morris, T.H.; Dewey, J.A. Jr.; Mattson, A.; Foster, C.B.; Snelgrove, S.H.; Ryer, T.A.

    1998-05-01

    The objective of the Ferron Sandstone (Utah) project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Both new and existing data is being integrated into a 3-D model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Work on tasks 3 and 4 consisted of developing two- and three-dimensional reservoir models at various scales. The bulk of the work on these tasks is being completed primarily during the last year of the project, and is incorporating the data and results of the regional stratigraphic analysis and case-studies tasks.

  15. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  16. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors.

    PubMed

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8-1 mM (of the 1.7-2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy. PMID:26696994

  17. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors

    PubMed Central

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8–1 mM (of the 1.7–2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy. PMID:26696994

  18. Toward optical signal processing using photonic reservoir computing.

    PubMed

    Vandoorne, Kristof; Dierckx, Wouter; Schrauwen, Benjamin; Verstraeten, David; Baets, Roel; Bienstman, Peter; Van Campenhout, Jan

    2008-07-21

    We propose photonic reservoir computing as a new approach to optical signal processing in the context of large scale pattern recognition problems. Photonic reservoir computing is a photonic implementation of the recently proposed reservoir computing concept, where the dynamics of a network of nonlinear elements are exploited to perform general signal processing tasks. In our proposed photonic implementation, we employ a network of coupled Semiconductor Optical Amplifiers (SOA) as the basic building blocks for the reservoir. Although they differ in many key respects from traditional software-based hyperbolic tangent reservoirs, we show using simulations that such a photonic reservoir can outperform traditional reservoirs on a benchmark classification task. Moreover, a photonic implementation offers the promise of massively parallel information processing with low power and high speed.

  19. Numerical simulation of phase transition problems with explicit interface tracking

    DOE PAGES

    Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; Li, Xiao-lin

    2015-12-19

    Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interfacemore » between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.« less

  20. Numerical simulation of phase transition problems with explicit interface tracking

    SciTech Connect

    Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; Li, Xiao-lin

    2015-12-19

    Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interface between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.

  1. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-28

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek is being described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. For the second field season, detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas.

  2. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  3. Efficient and robust compositional two-phase reservoir simulation in fractured media

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  4. Qualitative analysis and quantitative simulation on Yin-Huang water salinization mechanism in Bei-Da-Gang Reservoir.

    PubMed

    Zhao, Wen-yu; Wang, Qi-shan; Wu, Li-bo; Zhang, Bin; Wang, Xiao-qin

    2005-01-01

    Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River (i.e., Yin-Huang water) becomes saltier and saltier when being stored in the Bei-Da-Gang reservoir. We qualitatively analyze the water salinization mechanism based on mass transfer theory. The main factors are salinity transfer of saline soil, evaporation concentrating, and the agitation of wind. A simulative experimental pond and an evaporation pond were built beside the Bei-Da-Gang reservoir to quantitatively investigate the water salinization based on water and solute balance in the simulative pond. 80% of increased [Cl-] is due to the salinity transfer of the saline soil and the other 20% is due to evaporation concentrating, so the former is the most important factor. We found that the salinization of Yin-Huang water can be described with a zero-dimension linear model.

  5. 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-12-01

    The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.

  6. Direct simulation of groundwater transit-time distributions using the reservoir theory

    NASA Astrophysics Data System (ADS)

    Etcheverry, David; Perrochet, Pierre

    Groundwater transit times are of interest for the management of water resources, assessment of pollution from non-point sources, and quantitative dating of groundwaters by the use of environmental isotopes. The age of water is the time water has spent in an aquifer since it has entered the system, whereas the transit time is the age of water as it exits the system. Water at the outlet of an aquifer is a mixture of water elements with different transit times, as a consequence of the different flow-line lengths. In this paper, transit-time distributions are calculated by coupling two existing methods, the reservoir theory and a recent age-simulation method. Based on the derivation of the cumulative age distribution over the whole domain, the approach accounts for the whole hydrogeological framework. The method is tested using an analytical example and its applicability illustrated for a regional layered aquifer. Results show the asymmetry and multimodality of the transit-time distribution even in advection-only conditions, due to the aquifer geometry and to the velocity-field heterogeneity. Résumé Les temps de transit des eaux souterraines sont intéressants à connaître pour gérer l'évaluation des ressources en eau dans le cas de pollution à partir de sources non ponctuelles, et aussi pour dater quantitativement les eaux souterraines au moyen des isotopes du milieu. L'âge de l'eau est le temps qu'elle a passé dans un aquifère depuis qu'elle est entrée dans le système, alors que le temps de transit est l'âge de l'eau au moment où elle quitte le système. L'eau à la sortie d'un aquifère est un mélange d'eaux possédant différents temps de transit, du fait des longueurs différentes des lignes de courant suivies. Dans ce papier, les distributions des temps de transit sont calculées en couplant deux méthodes, la théorie du réservoir et une méthode récente de simulation des âges. Basée sur la dérivation de la distribution cumulées des âges sur

  7. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-05-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1995-96, the third year of the project. Most work consisted of interpreting the large quantity of data collected over two field seasons. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir.

  8. Numerical simulations of blast-impact problems using the direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam

    There is an increasing need to design protective structures that can withstand or mitigate the impulsive loading due to the impact of a blast or a shock wave. A preliminary step in designing such structures is the prediction of the pressure loading on the structure. This is called the "load definition." This thesis is focused on a numerical approach to predict the load definition on arbitrary geometries for a given strength of the incident blast/shock wave. A particle approach, namely the Direct Simulation Monte Carlo (DSMC) method, is used as the numerical model. A three-dimensional, time-accurate DSMC flow solver is developed as a part of this study. Embedded surfaces, modeled as triangulations, are used to represent arbitrary-shaped structures. Several techniques to improve the computational efficiency of the algorithm of particle-structure interaction are presented. The code is designed using the Object Oriented Programming (OOP) paradigm. Domain decomposition with message passing is used to solve large problems in parallel. The solver is extensively validated against analytical results and against experiments. Two kinds of geometries, a box and an I-shaped beam are investigated for blast impact. These simulations are performed in both two- and three-dimensions. A major portion of the thesis is dedicated to studying the uncoupled fluid dynamics problem where the structure is assumed to remain stationary and intact during the simulation. A coupled, fluid-structure dynamics problem is solved in one spatial dimension using a simple, spring-mass-damper system to model the dynamics of the structure. A parametric study, by varying the mass, spring constant, and the damping coefficient, to study their effect on the loading and the displacement of the structure is also performed. Finally, the parallel performance of the solver is reported for three sample-size problems on two Beowulf clusters.

  9. The self-similar solutions of the problem of carbon dioxide injection into the reservoir saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.

    2016-10-01

    In this paper the research of carbon dioxide injection into a porous medium initially saturated with methane and its hydrate was performed. The mathematical model of heat and mass transfer in a porous media, accompanied by the formation of carbon dioxide hydrate, is presented. The self-similar solutions, for the axisymmetric problem definition, were built. These solutions describe the distribution of the fluid parameters in a reservoir.

  10. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates

    NASA Astrophysics Data System (ADS)

    Pironon, Jacques; Bourdet, Julien

    2008-10-01

    Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C 14H 30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.

  11. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  12. Stress field respond to massive injection of cold water into a geothermal reservoir study by geomechanical simulation

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Rutqvist, J.

    2015-12-01

    In this paper, we study the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal field during 9 years of injection (from 2003 to 2012). Based on a refined 3D structural model, developed by Calpine Corporation, where the horizon surfaces are mapped, we use the GMS™ GUI to construct a realistic three-dimensional geologic model of the Northwest Geysers geothermal field. This model includes a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (the Normal Temperature Reservoir) within metagraywacke, a hornfels zone (the High Temperature Reservoir), and a felsite layer that is assumed to extend downward to the magmatic heat source. This model is mapped into a rectangular grid for use with the TOUGH-FLAC numerical simulator. Then, we reproduce the injection history of seven active wells between 2003 and 2012. Finally, our results are compared with previous works where the stress tensor was studied from the inversion of focal plane mechanism in the same area and during the same period. As in these publications we find that: (1) changes in the orientation of principal horizontal stress are very small after one decade of injection, and (2) at injection depth significant rotations of the initially vertically oriented maximum compressive principal stress occur in response to changes in the fluid injection rates. As observed in the field, we found that σ1 tilted towards the σ2 direction by approximately 15° when injection rates were at their peak level. Such a rotation consequently results in a local change in the state stress from a normal stress regime (Sv > SHmax> > Shmin) to a strike slip regime (SHmax> Sv > > Shmin) above and below the injection zone. Our results show that thermal processes are the principal cause for the stress tensor rotation.

  13. The use of detailed reservoir description and simulation studies in investigating completion strategies, cormorant, UK North Sea

    SciTech Connect

    Stiles, J.H.; Valenti, N.P.

    1987-01-01

    A portion of the Cormorant field in the U.K. North Sea is being developed using a subsea production system. All layers in the stratified reservoir section are being waterflooded concurrently by perforating the entire interval in both producers and injectors. The permeability contrast among the layers is such that there is potential for severe imbalance in the movement of the waterflood fronts, resulting in large volumes of early water production from high permeability layers and incomplete displacement of oil from less permeable layers. With the high cost of expanding platform facilities or performing workovers on subsea wells to re-distribute production and/or injection, there is considerable incentive to optimise the completions in new wells. This paper describes studies undertaken by Esso Exploration and Production U.K. to evaluate various completion strategies for newe subsea wells. These studies were done to complement work done by the operator, Shell U.K. Explorations and Production. The studies included detailed reservoir description work to define the oil-in-pace and permeability distribution, followed by simulation of the waterflood for a representative reservoir cross-section. Wellbore, flowline and pipeline hydraulics for the complex productions and injection system were included to more accurately model well rates. The results provide general insight into the nature of the displacement when waterflooding a stratified section with a limited nuber of wells. They also provide specific guidance on: (1) dual vs. single completions, (2) perforating, testing and stimulation sequence and (3) the benefits of partially perforating high permeability sands.

  14. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, September 29, 1993--September 29, 1994

    SciTech Connect

    Allison, M.

    1995-07-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah will be collected. Both new and existing data will be integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1993-94, the first year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also developed preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) development of reservoirs models, and (4) field-scale evaluation of exploration strategies.

  15. Reservoir sedimentology

    SciTech Connect

    Tillman, R.W.; Weber, K.J.

    1987-01-01

    Collection of papers focuses on sedimentology of siliclastic sandstone and carbonate reservoirs. Shows how detailed sedimentologic descriptions, when combined with engineering and other subsurface geologic techniques, yield reservoir models useful for reservoir management during field development and secondary and tertiary EOR. Sections cover marine sandstone and carbonate reservoirs; shoreline, deltaic, and fluvial reservoirs; and eolian reservoirs. References follow each paper.

  16. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and

  17. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  18. Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    Allison, M.L.

    1996-04-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial- deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into case-study evaluation, geostatistics, and technology transfer activities. The work focused on one parasequence set, referred to as the Kf-1, in the Willow Springs Wash and Ivie Creek case-study areas. In the Ivie Creek case-study area the Kf-1 represents a river-dominated delta deposit which changes from proximal to distal from east to west. In the Willow Springs Wash case-study area the Kf-1 contains parasequences which represent river-dominated and wave-modified environments of deposition. Interpretations of lithofacies, bounding surfaces, and other geologic information are being used to determine reservoir architecture. Graphical interpretations of important flow boundaries in the case-study areas, identified on photomosaics, are being used to construct cross sections, paleogeographic, maps, and reservoir models. Geostatistical analyses are being incorporated with the geological characterization to develop a three-dimensional model of the reservoirs for fluid-flow simulation.

  19. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation

    PubMed Central

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-01-01

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d−1 in 1999 and 0.52 h d−1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers. PMID:25598557

  20. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. [Quarterly] report, January 1--March 31, 1994

    SciTech Connect

    Allison, M.L.

    1994-04-22

    The objective of this project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir which will allow realistic interwell and reservoir-scale modeling to be used for improved oil-field development in similar reservoirs world wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a 3-D representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for interwell to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduce economic risks, increase recovery from existing oil fields, and provide more reliable reserve calculations. Transfer of the project results to the petroleum industry will be an integral component of the project. The technical progress is divided into several sections corresponding to subtasks outlined in the Regional Stratigraphy Task and the Case Studies Task of the original proposal. The primary objective of the Regional Stratigraphy Task is to provide a more detailed interpretation of the stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek. The morphological framework established from the case studies will be used to generate subsequent flow models for the reservoir types. The primary objective of the Case Study Task is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Sedimentary structures, lithofacies, bounding surfaces, and permeabilities measured along closely spaced traverses (both vertical and horizontal) will be combined with data from core drilling to develop a 3-D morphology of the reservoirs within each case study area.

  1. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual technical progress report, June 13, 1996--June 12, 1997

    SciTech Connect

    Nevans, J.W.; Pregger, B.; Blasingame, T.; Doublet, L.; Freeman, G.; Callard, J.; Moore, D.; Davies, D.; Vessell, R.

    1997-08-01

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. The purpose of this project is to demonstrate the application of advanced secondary recovery technologies to remedy producibility problems in typical shallow shelf carbonate reservoirs of the Permian Basin, Texas. Typical problems include poor sweep efficiency, poor balancing of injection and production rates, and completion techniques that are inadequate for optimal production and injection.

  2. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  3. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    SciTech Connect

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  4. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  5. Numerical Simulation of Magma Reservoirs to Interpret Chrono-Chemical Signal

    NASA Astrophysics Data System (ADS)

    Lovera, O. M.; Harrison, M.; Schmitt, A. K.; Wielicki, M. M.; Tierney, C. R.

    2015-12-01

    We have developed a 2-D finite difference thermokinetic model to describe the evolution of open-system magma reservoirs incorporating crustal assimilation, melt recharge and fractional crystallization. The model is based on a T-crystallization relationship coupled to a zircon growth model calibrated from zircon solubility and a crustal T-assimilation curve from the EC-RAFC models of Spera and Bohrson (2004). Our model takes into account the latent heat of melting and/or solidification and features temperature-dependent thermal diffusivity. Trace element abundances in the melt are calculated through conservation of mass and isotopic speciation allowing prediction of the distribution of ɛHf values in zircons. Applications to model the evolution of deeply emplaced large granitoids (i.e., ~25km, ~15000 km3) show that steady recharge yields a zircon population that records the full spectrum of ɛHf in the system whereas no recharge yields a much narrower range. . Insights gained from modeling reinforce our view that the relationship between assimilation and geothermal structure can be used to estimate past crustal thickness of convergent margins. Modeling of shallow, initially small, subvolcanic magma reservoirs (i.e., ~7 km, ~200 km3) permits insights into zircon age and compositional variability for large silicic volcanic fields and associated calderas. Thermal modeling indicates that substantial recharge is required to maintain magmatic temperatures in the core of an intrusive complex where zircon remains saturated for periods of 100's of kiloyears. Coupled with previously developed statistical methods, zircon rim-ages predicted by the model were compared to the U-Th rim ages measured from five distinct lava domes of the Altiplano-Puna Volcanic Complex erupted between ca. 87 and 120 ka. The fitting constrains the amount of recharge to ~10-3 km3/a between the time of initial intrusion (>500 ka) and the eruption age (75-100 ka). Thus zircons may have the potential to

  6. Subglacial melting associated with activity at Bárdarbunga volcano, Iceland, explored using numerical reservoir simulations

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís

    2015-04-01

    cause rapid increase in geothermal activity. However, a shallow intrusion into a cold groundwater reservoir will have a very muted thermal response even when an intrusion stops within a few tens of meters from the surface. Thus, our results indicate that minor subglacial eruptions, similar or slightly larger than the small eruption north of the glacier on the 29 August, are the most plausible explanation for the formation of the ice cauldrons observed. These results have implications for the understanding and interpretation of thermal signals observed at ice-covered volcanoes, highlighting the importance of reservoir/bedrock thermal state prior to intrusion.

  7. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  8. Problem-Solving in the Pre-Clinical Curriculum: The Uses of Computer Simulations.

    ERIC Educational Resources Information Center

    Michael, Joel A.; Rovick, Allen A.

    1986-01-01

    Promotes the use of computer-based simulations in the pre-clinical medical curriculum as a means of providing students with opportunities for problem solving. Describes simple simulations of skeletal muscle loads, complex simulations of major organ systems and comprehensive simulation models of the entire human body. (TW)

  9. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    SciTech Connect

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  10. Problems in Conducting Research on Computer-Based Simulation.

    ERIC Educational Resources Information Center

    Crawford, Alice M.

    Computer-based simulation (CBS) represents a unique utilization of computers for instruction that combines some of the best features of the technologies of simulation and computer assisted instruction (CAI). CBS grew out of an interest in testing the application of CAI to procedural and perceptual motor skills. With the sophisticated graphics…

  11. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  12. Computer simulation of plasma and N-body problems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Miller, J. B.

    1975-01-01

    The following FORTRAN language computer codes are presented: (1) efficient two- and three-dimensional central force potential solvers; (2) a three-dimensional simulator of an isolated galaxy which incorporates the potential solver; (3) a two-dimensional particle-in-cell simulator of the Jeans instability in an infinite self-gravitating compressible gas; and (4) a two-dimensional particle-in-cell simulator of a rotating self-gravitating compressible gaseous system of which rectangular coordinate and superior polar coordinate versions were written.

  13. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2014-10-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (Polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first two years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, lending itself better for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that

  14. The Wooly Mammoth as a Computer-Simulated Scientific Problem-Solving Tool.

    ERIC Educational Resources Information Center

    Szabo, Michael

    Mammo I and Mammo II are two versions of a computer simulation based upon scientific problems surrounding the finds of carcasses of the Wooly Mammoth in Siberia. The simulation program consists of two parts: the data base and program logic. The purpose of the data pieces is to provide data of an informative nature and to enable problem solvers to…

  15. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  16. Parallel reservoir computing using optical amplifiers.

    PubMed

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  17. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    SciTech Connect

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  18. Design and Performance Frameworks for Constructing Problem-Solving Simulations

    ERIC Educational Resources Information Center

    Stevens, Rons; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks…

  19. Program package FLUX for the simulation of fundamental and applied problems of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Babakov, A. V.

    2016-06-01

    Based on parallel algorithms of a conservative numerical method, a software package for simulating fundamental and applied fluid dynamics problems in a wide range of parameters is developed. The software is implemented on a cluster computer system. Examples of the numerical simulation of three-dimensional problems in various fields of fluid dynamics are discussed, including problems of external flow around bodies, investigation of aerodynamic characteristics of flying vehicles, flows around a set of objects, flows in nozzles, and flows around underwater constructs.

  20. Basic problems of digital simulation of solid rocket motor (SRM) structural reliability

    NASA Astrophysics Data System (ADS)

    Tan, Sanwu; Wang, Binxun

    1993-08-01

    Discussed are several basic problems in the digital simulation of SRM structural reliability, such as verification testing for critical components. Simulations of fiber-reinforced composite cases and SRM solid grains are presented to illustrate the general program of digital simulation for SRM structural reliability.

  1. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, April 1--June 30, 1998

    SciTech Connect

    Chidsey, T.C. Jr.

    1998-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) preparation of the project final report and (2) technology transfer.

  2. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, July 1--September 30, 1997

    SciTech Connect

    Allison, M.L.

    1997-11-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) evaluation of the Ivie Creek and Willow Springs Wash case-study areas and (2) technology transfer.

  3. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    SciTech Connect

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  4. Fundamental problems in porous materials: Experiments & computer simulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhanping

    Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 °C. When building blocks are replaced with graphenes, ultra-flyweight aerogels with pore size larger than 100 nm were made to delay shock waves. More stable rigid porous metal with larger pores (~um) was also fabricated, and its performance and survivability are under investigation. Aside from experimental studies, we also successfully applied numerical simulations to study the mutual interaction between the nonplanar liquid-solid interface and colloidal particles during the freezing of the colloidal suspensions. Colloidal particles can be either rejected or engulfed by the evolving interface depending on the freezing speed and strength of interface-particle interaction. Our interactive simulation was achieved by programming both simulation module and visualization module on high performance GPU devices.

  5. Test Problems for Coupled Earthquake-Tsunami Simulations

    NASA Astrophysics Data System (ADS)

    Behrens, Jörn; Bader, Michael; van Dinther, Ylona; Gabriel, Alice-Agnes; Madden, Elizabeth H.; Rahnema, Kaveh; Ulrich, Thomas; Uphoff, Carsten; Vater, Stefan; Wollherr, Stephanie; van Zelst, Iris

    2016-04-01

    For the project "Advanced Simulation of Coupled Earthquake and Tsunami Events" (ASCETE, funded by the Volkswagen Foundation), a simulation framework for coupled physics-based earthquake rupture generation with tsunami propagation and inundation has been developed. The rupture simulation is performed using an ADER discontinuous Galerkin discretization on an unstructured tetrahedral mesh. It is able to accurately represent complex geometries, is highly parallelized, and works efficiently in high-performance computing environments. An adaptive mesh discretizing the shallow water equations with a Runge-Kutta discontinuous Galerkin (RKDG) scheme subsequently allows for an accurate and efficient representation of the tsunami evolution and inundation at the coast. We aim to validate and understand this new coupled framework between the dynamic earthquake within the earth's crust and the resulting tsunami wave within the ocean using a simplified model setup. The earthquake setup includes a planar, shallowly dipping subduction fault with linear depth-dependent initial stress and strength in a homogeneous elastic medium. Resulting sea floor displacements along an initially planar (and later realistic) bathymetry profile are transferred to the tsunami setup with an initially simple coastal run-up profile. We present preliminary evaluations of the rupture behavior and its interaction with the hydrodynamic wave propagation and coastal inundation. Once validated in this simplified setup, we will constrain the earthquake initial stress and strength conditions from realistic and physically consistent seismo-thermo-mechanical modeling on long timescales.

  6. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  7. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee: Site setting and problem formulation.

    PubMed

    Walls, Suzanne J; Jones, Daniel S; Stojak, Amber R; Carriker, Neil E

    2015-01-01

    A baseline ecological risk assessment (BERA) was performed for residual ash in the Watts Bar Reservoir following a release of fly ash from the Tennessee Valley Authority (TVA) Kingston Fossil Plant. The site consists of parts of 3 rivers in eastern Tennessee comprising over 32 river kilometers. The purpose of the assessment was to determine if residual ash negatively impacts maintenance and reproduction of balanced communities or populations of potentially exposed ecological receptor groups in these rivers. This introductory article summarizes the site and environmental setting, assessment and measurement endpoints, risk characterization methods, and the study approach. Subsequent articles describe ecological risks to fish, benthic invertebrates, aquatic- and riparian-feeding wildlife, and aerial-feeding insectivores; and the role ecological risk characterization played in determining the most effective management of the residual ash, setting project remediation objectives and targets, and designing long-term monitoring to measure the effectiveness of the selected removal action. PMID:25234753

  8. An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations

    NASA Astrophysics Data System (ADS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2014-03-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected ˜120 ppbv ozone at 800 m altitude, but ˜80 ppbv ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: ˜300 ppbv CO at 1200 m, ˜2 ppbv NO2 at 800 m, ˜5 ppbv SO2 at 600 m, and strong aerosol optical scattering (2 × 10-4 m-1) at 600 m. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 m, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, CMAQ forecast simulations with 12 km resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 km and 1.33 km resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as Baltimore on the Chesapeake Bay and downwind areas in the Northeast.

  9. An Elevated Reservoir of Air Pollutants over the Mid-Atlantic States During the 2011 DISCOVER-AQ Campaign: Airborne Measurements and Numerical Simulations

    NASA Technical Reports Server (NTRS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2013-01-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as

  10. Integrating Problem-Based Learning and Simulation: Effects on Student Motivation and Life Skills.

    PubMed

    Roh, Young Sook; Kim, Sang Suk

    2015-07-01

    Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, P<.001), problem solving (F=6.91, P=.001), and self-directed learning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.

  11. FLAG Simulations of the Elasticity Test Problem of Gavrilyuk et al.

    SciTech Connect

    Kamm, James R.; Runnels, Scott R.; Canfield, Thomas R.; Carney, Theodore C.

    2014-04-23

    This report contains a description of the impact problem used to compare hypoelastic and hyperelastic material models, as described by Gavrilyuk, Favrie & Saurel. That description is used to set up hypoelastic simulations in the FLAG hydrocode.

  12. Simulated effects of proposed Arkansas Valley Conduit on hydrodynamics and water quality for projected demands through 2070, Pueblo Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2013-01-01

    The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry

  13. COAMPS Application to Dispersion Scavenging Problem: Heavy Precipitation Simulation

    SciTech Connect

    Chin, H; Cederwall, R

    2004-05-05

    Precipitation scavenging can effectively remove particulates from the atmosphere. Therefore, this process is of importance in the real-time modeling of atmospheric transport for hazardous materials. To account for the rainfall effect in LLNL operational dispersion model, a modified version of a standard below-cloud aerosol scavenging model has been developed to handle the emergency response in this scenario (Loosmore and Cerdewall, 2003, hereafter referred to as LC). Two types of rain data can be used to incorporate precipitation scavenging in the dispersion model; realtime measurements (rain gauge and radar), and model prediction. The former approach has been adopted in LC's study for the below-cloud scavenging problem based on the surface rain measurements. However, the in-cloud scavenging effect remains unresolved as a restriction of available real-time measurements in providing the vertical structure of precipitation systems. The objective of this study is to explore the possibility to incorporate three-dimensional precipitation structure of forecast data into the dispersion model. Therefore, both in-cloud and below-cloud scavenging effects can be included in LLNL aerosol scavenging model. To this end, a mesoscale model (Naval Research Laboratory 3-D weather forecast model, COAMPS) is used to demonstrate this application using a mid-west severe storm case occurring on July 18, 1997.

  14. A simulation-optimization approach to retrieve reservoir releasing strategies under the trade-off objectives considering flooding, sedimentation, turbidity and water supply during typhoons

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; You, G. J. Y.

    2014-12-01

    This study develops a simulation-optimization approach for retrieving optimal multi-layer reservoir conjunctive release strategies considering the natural hazards of sedimentation, turbidity and flooding during typhoon invasion. The purposes of the developed approach are: (1) to apply WASP-based fluid dynamic sediment concentration simulation model and the developed extracting method of ideal releasing practice to search the optimal initial solution for optimization; and (2) to construct the replacing sediment concentration simulation model which embedded in the optimization model. In this study, the optimization model is solved by tabu search, and the optimized releasing hydrograph is then used for construction of the decision model. This study applies Adaptive Network-based Fuzzy Inference System (ANFIS) and Real-time Recurrent Learning Neural Network (RTRLNN) as construction tool of the concentration simulation model for total suspended solids. This developed approach is applied to the Shihmen Reservoir basin, Taiwan. The assessment index of operational outcome of multi-purpose multi-layer conjunctive releasing are maximum sediment concentration at Yuan-Shan weir, sediment removed ratio, highest water level at Shan-Yin Bridge, and final water level in Shihmen reservoir. The analyzed and optimizing results shows the following: (1) The multi-layer releasing during the stages before flood coming and before peak flow possess high potential for flood detention and sedimentation control; and during the stages after peak flow, for turbidity control and storage; (2) The ability of error toleration and adaption of ANFIS is superior, so ANFIS-based sediment concentration simulation model surpass RTRLNN-based model on simulating the mechanism and characteristics of sediment transport; and (3) The developed approach can effectively and automatically retrieve the optimal multi-layer releasing strategies under the trade-off control between flooding, sedimentation, turbidity

  15. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    PubMed

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  16. Developing Clinical Competency in Crisis Event Management: An Integrated Simulation Problem-Based Learning Activity

    ERIC Educational Resources Information Center

    Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.

    2010-01-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…

  17. Analysis, preliminary design and simulation systems for control-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.

    1991-01-01

    Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.

  18. The Effect of Simulation Games on the Learning of Computational Problem Solving

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Cheng, Yuan-Bang; Huang, Chia-Wen

    2011-01-01

    Simulation games are now increasingly applied to many subject domains as they allow students to engage in discovery processes, and may facilitate a flow learning experience. However, the relationship between learning experiences and problem solving strategies in simulation games still remains unclear in the literature. This study, thus, analyzed…

  19. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    SciTech Connect

    Moridis, G.J.; Pruess , K.

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

  20. Navigating the Problem Space: The Medium of Simulation Games in the Teaching of History

    ERIC Educational Resources Information Center

    McCall, Jeremiah

    2012-01-01

    Simulation games can play a critical role in enabling students to navigate the problem spaces of the past while simultaneously critiquing the models designers offer to represent those problem spaces. There is much to be gained through their use. This includes rich opportunities for students to engage the past as independent historians; to consider…

  1. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  2. Interdisciplinary study of reservoir compartments. Quarterly technical progress report, [April 1995--June 1995

    SciTech Connect

    Van Kirk, C.W.; Thompson, R.S.

    1995-07-21

    This United States Department of Energy (DOE) research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Brief summaries are presented for reservoir characterization; documentation of the BVW-BVZ pay discrimination technique; reservoir simulation; and outcrop analog.

  3. Reservoir limnology

    SciTech Connect

    Thornton, K.W.; Kimmel, B.L.; Payne, F.E.

    1990-01-01

    This book addresses reservoirs as unique ecological systems and presents research indicating that reservoirs fall into two or three highly concatenated, interactive ecological systems ranging from riverine to lacustrine or hybrid systems. Includes some controversial concepts about the limnology of reservoirs.

  4. Simulating variable source problems via post processing of individual particle tallies

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-10-20

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source.

  5. The cascade of reservoirs of the ``Mayak`` Plant: Case history and the first version of a computer simulator

    SciTech Connect

    Mironenko, M.V.; Spasennykh, M.Yu.; Polyakov, V.B.

    1994-07-01

    The improvement of the ecological conditions at waste storing reservoirs is an important task of the restoration activity at Production Association (PA) ``Mayak`` (South Urals). The radionuclides mostly {sup 90}Sr, {sup 137}Cs, and chemical pollutants deposited in the reservoir water and in the bottom sediment are very dangerous sources for the contamination of Techa River below the reservoirs and the contamination of groundwater in the surrounding formations. The spreading of radioactive contaminants has both hydrogeological and the chemical features. The thermodynamic approach used to account for physical-chemical interactions between water and the bed rocks based on Gibbs free energy minimization of multicomponent system (H-O-Ca-Mg-K-Na-S-Cl-C-Sr) permitted the authors to calculate the corresponding ionic and complex species existing in the solutions, and to characterize the processes of precipitation and dissolution. The model takes into account the input and output surface and underground water fluxes, mass exchange of the reservoir with the atmosphere, radioactive decay and water-sediment interaction including processes of the {sup 90}Sr and {sup 137}Cs sorption on the grains of the sediment and the radionuclide diffusion in the pore water. This model was used in the retrospective and prognosis calculations of radiation and hydrochemical regime of these reservoirs.

  6. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  7. Simulation of the effects of operating lakes Mendota, Monona, and Waubesa, south-central Wisconsin, as multipurpose reservoirs to maintain dry-weather flow

    USGS Publications Warehouse

    Krug, W.R.

    1999-01-01

    A digital reservoir routing model was used to simulate the operation of Lakes Mendota, Monona, and Waubesa, south-central Wisconsin for various levels of minimum release. Twenty-five years of record (1970?94) were used in model simulation. The amount of water available to maintain streamflow and lake levels during dry periods has declined because of extensive pumping of ground water for municipal use and diversion of the effluent around the lakes. The goal of the simulation was to determine whether using the lakes as multipurpose reservoirs to maintain flow during periods of low flow would appreciably lower the lake levels. The model results indicated that it would be possible to maintain a minimum flow of 36 cubic feet per second in all but the driest years simulated (1970, 1976, 1977, 1981, 1989, and 1991) without lowering the lake levels more than they have been lowered from 1970 to 1994 under current operating conditions. Maintaining minimum flow would require detailed computations to guide the operation of the dams during the year.

  8. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  9. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-03-12

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  10. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  11. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  12. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    NASA Astrophysics Data System (ADS)

    Afiqah, K. N.; Mahayuddin, Z. R.

    2016-02-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered.

  13. Multi-time scale Climate Informed Stochastic Hybrid Simulation-Optimization Model (McISH model) for Multi-Purpose Reservoir System

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lall, U.

    2013-12-01

    In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The

  14. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  15. Optimal Control Problem of Feeding Adaptations of Daphnia and Neural Network Simulation

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ov, Mria

    2010-09-01

    A neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints and open final time. The optimal control problem is transcribed into nonlinear programming problem, which is implemented with adaptive critic neural network [9] and recurrent neural network for solving nonlinear proprojection equations [10]. The proposed simulation methods is illustrated by the optimal control problem of feeding adaptation of filter feeders of Daphnia. Results show that adaptive critic based systematic approach and neural network solving of nonlinear equations hold promise for obtaining the optimal control with control and state constraints and open final time.

  16. How to solve complex problems in foundry plants - future of casting simulation -

    NASA Astrophysics Data System (ADS)

    Ohnaka, I.

    2015-06-01

    Although the computer simulation of casting has progressed dramatically over the last decades, there are still many challenges and problems. This paper discusses how to solve complex engineering problems in foundry plants and what we should do in the future, in particular, for casting simulation. First, problem solving procedures including application of computer simulation are demonstrated and various difficulties are pointed-out exemplifying mainly porosity defects in sand castings of spheroidal graphite cast irons. Next, looking back conventional scientific and engineering research to understand casting phenomena, challenges and problems are discussed from problem solving view point, followed by discussion on the issues we should challenge such as how to integrate huge amount of dispersed knowledge in various disciplines, differentiation of science-oriented and engineering-oriented models, professional ethics, how to handle fluctuating materials, initial and boundary conditions, error accumulation, simulation codes as black-box, etc. Finally some suggestions are made on how to challenge the issues such as promotion of research on the simulation based on the science- oriented model and publication of reliable data of casting phenomena in complicated-shaped castings including reconsideration of the evaluation system.

  17. Developing clinical competency in crisis event management: an integrated simulation problem-based learning activity.

    PubMed

    Liaw, S Y; Chen, F G; Klainin, P; Brammer, J; O'Brien, A; Samarasekera, D D

    2010-08-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session would be superior to those who completed the conventional problem-based session. The students were allocated into either simulation with problem-based discussion (SPBD) or problem-based discussion (PBD) for scenarios on respiratory and cardiac distress. Following completion of each scenario, students from both groups were invited to sit an optional individual test involving a systematic assessment and immediate management of a simulated patient facing a crisis event. A total of thirty students participated in the first post test related to a respiratory scenario and thirty-three participated in the second post test related to a cardiac scenario. Their clinical performances were scored using a checklist. Mean test scores for students completing the SPBD were significantly higher than those who completing the PBD for both the first post test (SPBD 20.08, PBD 18.19) and second post test (SPBD 27.56, PBD 23.07). Incorporation of simulation learning activities into problem-based discussion appeared to be an effective educational strategy for teaching nursing students to assess and manage crisis events.

  18. Final Report for LDRD Project on Rapid Problem Setup for Mesh-Based Simulation (Rapsodi)

    SciTech Connect

    Brown, D L; Henshaw, W; Petersson, N A; Fast, P; Chand, K

    2003-02-07

    Under LLNL Exploratory Research LDRD funding, the Rapsodi project developed rapid setup technology for computational physics and engineering problems that require computational representations of complex geometry. Many simulation projects at LLNL involve the solution of partial differential equations in complex 3-D geometries. A significant bottleneck in carrying out these simulations arises in converting some specification of a geometry, such as a computer-aided design (CAD) drawing to a computationally appropriate 3-D mesh that can be used for simulation and analysis. Even using state-of-the-art mesh generation software, this problem setup step typically has required weeks or months, which is often much longer than required to carry out the computational simulation itself. The Rapsodi project built computational tools and designed algorithms that help to significantly reduce this setup time to less than a day for many realistic problems. The project targeted rapid setup technology for computational physics and engineering problems that use mixed-element unstructured meshes, overset meshes or Cartesian-embedded boundary (EB) meshes to represent complex geometry. It also built tools that aid in constructing computational representations of geometry for problems that do not require a mesh. While completely automatic mesh generation is extremely difficult, the amount of manual labor required can be significantly reduced. By developing novel, automated, component-based mesh construction procedures and automated CAD geometry repair and cleanup tools, Rapsodi has significantly reduced the amount of hand crafting required to generate geometry and meshes for scientific simulation codes.

  19. A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems

    NASA Astrophysics Data System (ADS)

    Ayvaz, M. Tamer

    2016-07-01

    In this study, a new simulation-optimization approach is proposed for solving the areal groundwater pollution source identification problems which is an ill-posed inverse problem. In the simulation part of the proposed approach, groundwater flow and pollution transport processes are simulated by modeling the given aquifer system on MODFLOW and MT3DMS models. The developed simulation model is then integrated to a newly proposed hybrid optimization model where a binary genetic algorithm and a generalized reduced gradient method are mutually used. This is a novel approach and it is employed for the first time in the areal pollution source identification problems. The objective of the proposed hybrid optimization approach is to simultaneously identify the spatial distributions and input concentrations of the unknown areal groundwater pollution sources by using the limited number of pollution concentration time series at the monitoring well locations. The applicability of the proposed simulation-optimization approach is evaluated on a hypothetical aquifer model for different pollution source distributions. Furthermore, model performance is evaluated for measurement error conditions, different genetic algorithm parameter combinations, different numbers and locations of the monitoring wells, and different heterogeneous hydraulic conductivity fields. Identified results indicated that the proposed simulation-optimization approach may be an effective way to solve the areal groundwater pollution source identification problems.

  20. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  1. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    SciTech Connect

    Merzari, E.; Shemon, E. R.; Yu, Y. Q.; Thomas, J. W.; Obabko, A.; Jain, Rajeev; Mahadevan, Vijay; Tautges, Timothy; Solberg, Jerome; Ferencz, Robert Mark; Whitesides, R.

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  2. Problem of long-range forces in the computer simulation of condensed media

    SciTech Connect

    Ceperely, D.

    1980-07-01

    Simulation (both Monte Carlo and molecular dynamical) has become a powerful tool in the study of classical systems of particles interacting with short-range pair potentials. For systems involving long-range forces (e.g., Coulombic, dipolar, hydrodynamic) it is a different story. Relating infinite-system properties to the results of computer simulation involving relatively small numbers of particles, periodically replicated, raises difficult and challenging problems. The purpose of the workshop was to bring together a group of scientists, all of whom share a strong direct interest in clearly formulating and resolving these problems. There were 46 participants, most of whom have been actively engaged in simulations of Hamiltonian models of condensed media. A few participants were scientists who are not primarily concerned, themselves, with simulation, but who are deeply involved in the theory of such models.

  3. Testing Three Problem List Terminologies in a simulated data entry environment.

    PubMed

    Fung, Kin Wah; Xu, Junchuan; Rosenbloom, S Trent; Mohr, David; Maram, Naveen; Suther, Thomas

    2011-01-01

    Three Problem List Terminologies (PLT) were tested using a web-based application simulating a clinical data entry environment to evaluate coverage and coding efficiency. The three PLTs were: the CORE Problem List Subset of SNOMED CT, a clinical subset extracted from the full SNOMED CT and the PLT currently used at the Mayo Clinic. Candidate problem statements were randomly extracted from free text problem list entries contained in two electronic medical record systems. Physician reviewers searched for concepts in one of the three PLTs that most closely matched a problem statement. Altogether 45 reviewers reviewed 15 problems each. The coverage of the much smaller CORE Subset was comparable to Clinical SNOMED for combined exact or partial matches. The CORE Subset required the shortest time to find a concept. This may be related to the smaller size of the pick lists for the CORE Subset.

  4. Computational modeling technique for numerical simulation of immiscible two-phase flow problems involving flow and transport phenomena in porous media with hysteresis

    NASA Astrophysics Data System (ADS)

    Abreu, Eduardo; Lambert, Wanderson

    2012-05-01

    Numerical methods are necessary, and are extremely important, in developing an understanding of the dynamics of multiphase flow of fluids in porous media applications to maximize hydrocarbon recovery as well as to simulate contaminant transport of soluble or insoluble species in groundwater contamination problems. This work deals with a problem very common in water-flooding process in petroleum reservoir to motivate the proposed modeling: the flow of two immiscible and incompressible fluid phases. The system of equations which describe this type of flow is a coupled, highly nonlinear system of time-dependent partial differential equations. The equation for the invading fluid (e.g., water phase) is a convection-dominated, degenerate parabolic partial differential equation whose solutions typically exhibit sharp moving fronts (e.g., moving internal layers with strong gradients) and it is very difficult to approximate numerically. We propose a two-stage numerical method to describe the injection problem for a model of two-phase (water-oil) flow in a porous rock, taking into account both gravity and hysteresis effects for solving transport flow problems in porous media. Indeed, we also investigate the Riemann problem for the one-dimensional, purely hyperbolic system, associated to the full differential model problem at hand. Thus, the use of accurate numerical methods in conjunction with one-dimensional semi-analytical Riemann solutions might provide valuable insight into the qualitative solution behavior of the full nonlinear governing flow system.

  5. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  6. Development and Evaluation of Simulation-Problem-Based Learning for Sex Education.

    PubMed

    Kim, Miok; Shin, Minho

    2016-01-01

    Nurses often encounter clients with sexual problems. A sexual problem is complicated and affects the quality of the client's life, and proper care requires the nurse to understand a variety of sex-related issues. Therefore, effective sex education for nursing students is necessary to prepare them for potential challenges from the client's sexual problems. In this study, we developed a simulation-problem-based sex education program for nursing students. The program immerses the students in a sex-related clinical situation to train them with nursing assessment, intervention skills, patient safety, patient privacy, and communication skills. To evaluate the effect of the program on the student's sexual knowledge and attitude, we provided the experimental group with simulation-problem-based sex education program along with traditional lectures, whereas the control group received only lectures. As a result, there were statistically significant differences in the improvement of knowledge (P < .05) and attitude (P < .05) of the two groups. The results show that the designed program effectively promotes nursing students' sexual knowledge and sexual attitude, and the simulation-problem-based learning is a practical and systematic approach to the sex education of nursing students.

  7. Sustainable reservoir operation

    SciTech Connect

    Smith, Brennan T; Jager, Yetta; March, Patrick

    2007-07-01

    Reservoir releases are typically operated to maximize the efficiency of hydropower production and the value of hydropower produced. In practice, ecological considerations are limited to those required by law. We first describe reservoir optimization methods that include mandated constraints on environmental and other water uses. Next, we describe research to formulate and solve reservoir optimization problems involving both energy and environmental water needs as objectives. Evaluating ecological objectives is a challenge in these problems for several reasons. First, it is difficult to predict how biological populations will respond to flow release patterns. This problem can be circumvented by using ecological models. Second, most optimization methods require complex ecological responses to flow to be quantified by a single metric, preferably a currency that can also represent hydropower benefits. Ecological valuation of instream flows can make optimization methods that require a single currency for the effects of flow on energy and river ecology possible. Third, holistic reservoir optimization problems are unlikely to be structured such that simple solution methods can be used, necessitating the use of flexible numerical methods. One strong advantage of optimal control is the ability to plan for the effects of climate change. We present ideas for developing holistic methods to the point where they can be used for real-time operation of reservoirs. We suggest that developing ecologically sound optimization tools should be a priority for hydropower in light of the increasing value placed on sustaining both the ecological and energy benefits of riverine ecosystems long into the future.

  8. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  9. Finite element simulations involving simultaneous multiple interface fronts in phase change problems

    NASA Technical Reports Server (NTRS)

    Ouyang, Tianhong; Tamma, Kumar K.

    1992-01-01

    The present paper describes the simulation of phase change problems involving simultaneous multiple interface fronts employing the finite element method. Much of the past investigations employing finite elements have been restricted to primarily a single phase change situation. The existence of more than one phase, that is, the presence of multiple phase fronts poses certain challenges and further complications. However, the results provide a very interesting thermal behavior for this class of problems. In this paper, attention is focused on fixed grid methods and the trapezoidal family of one-step methods using the enthalpy formulations. Illustrative examples which handle simultaneous multiple fronts in phase change problems are presented.

  10. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    PubMed

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs.

  11. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    PubMed

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. PMID:26914722

  12. Examining the Accuracy of Astrophysical Disk Simulations with a Generalized Hydrodynamical Test Problem

    NASA Astrophysics Data System (ADS)

    Raskin, Cody; Owen, J. Michael

    2016-11-01

    We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.

  13. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Wei, Z. C.; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T.

    2016-06-01

    The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms.

  14. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.

    PubMed

    Wei, Z C; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T

    2016-06-24

    The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms. PMID:27391709

  15. Teaching Clinical Reasoning and Problem-solving Skills Using Human Patient Simulation

    PubMed Central

    Vyas, Deepti; Ottis, Erica J.; Caligiuri, Frank J.

    2011-01-01

    This paper discusses using human patient simulation (HPS) to expose students to complex dynamic patient cases that require clinical judgment, problem-solving skills, and teamwork skills for success. An example of an HPS exercise used to teach multifaceted clinical concepts in a therapeutics course also is provided. PMID:22171117

  16. Factors Affecting Perceived Learning of Engineering Students in Problem Based Learning Supported by Business Simulation

    ERIC Educational Resources Information Center

    Chaparro-Pelaez, Julian; Iglesias-Pradas, Santiago; Pascual-Miguel, Felix J.; Hernandez-Garcia, Angel

    2013-01-01

    Although literature about problem based learning (PBL) is not scarce, there is little research on experiences about learning methodologies that combine PBL and the use of simulation tools. This lack of studies is even more notable in the case of engineering courses. The motivation for this study is to show how such a combination of PBL and…

  17. Simulation of a Forensic Chemistry Problem: A Multidisciplinary Project for Secondary School Chemistry Students

    NASA Astrophysics Data System (ADS)

    Long, G. A.

    1995-09-01

    A multidisciplinary chemistry project for high school students is presented based upon a forensic theme and team problem solving approach. The project involves data collection and interpretation using FTIR, HPLC, NMR, and TLC. Simulated evidence sample formulations and a sample assignment scheme are presented.

  18. Characterization of Reservoir Heterogeneity from Surface Deformation

    NASA Astrophysics Data System (ADS)

    Maharramov, M.; Zoback, M. D.

    2015-12-01

    In our earlier work we resolved complex evolution of pressure fronts in a heavyoil reservoir undergoing cyclic steam stimulation. Our method was based onsolving a regularized inverse problem for inverting the pore pressure changefrom surface displacements. In this work we extend our method to recoversharp contrasts in induced reservoir pressure that may be due to permeabilitybarriers or hydraulically conductive faults. We demonstrate our method byinverting the pressure change from uplift observations for a synthetic modelof a heterogeneous reservoir undergoing fluid injection. Using the theory ofconstrained optimization, we invert values and locations of sharp pressurecontrasts from noisy measurements of surface deformation, and estimate thelocation of an impermeable boundary between reservoir compartments. In our synthetic model, two highly permeable reservoir compartmentsseparated by a nearly impermeable barrier (first panel) undergo fluid injec-tion. We simulate pressure evolution within the reservoir (second panel) andmodel surface deformation induced by the subsurface pressure change (thirdpanel), adding measurement noise to the result. We invert the noisy sur-face uplift measurements by solving a constrained optimization problem withTikhonov regularization (fourth panel). The result achieves a good inversionquality in areas of finite pressure change but provides only a rough estimatefor the barrier location. However, applying our new inversion technique with atotal-variation regularization that favors sharp model contrasts while penalizingoscillations, we achieve a more accurate approximation of the permeabilitybarrier as a level set of the inverted pressure field (fifth panel). Our new method provides a potentially useful tool for locating sharpsubsurface pressure contrasts from surface uplift observations. The methodcan be used in a variety of applications for identifying subsurface permeabil-ity heterogeneities (such as seals and hydraulically conductive

  19. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  20. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGES

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  1. Simulation of two-phase flow in elbow with problem solving

    NASA Astrophysics Data System (ADS)

    Ahmai, Somayeh; Al-Makky, Ahmed

    2014-04-01

    Multiphase flows occurring in circular curved pipes exhibit important physical phenomena.They are characterized by a large pressure drop and are composed of different phases. In the past, erosion-corrosion was measured through the use of experimental methods. Today numerical simulation models provide a more in depth look into the problem of erosion. Solid particle erosion is of major concern in the industrial engineering sector. In this study, erosion occurring in a (90)-degree elbow has been simulated. The generated two-dimensional data was done through the use of the Commercial software ANSYS Fluent. The primary idea comes from the petrochemicals industry. To overcome this problem, counter measures are proposed in this paper to the piping setup in order to protect pumps from unwanted excessive sand concentrations. Note that the physical properties of the simulated fluid mixture are taken the same as for the real-studied sample.

  2. A proposed simulation optimization model framework for emergency department problems in public hospital

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid

    2015-12-01

    The Emergency Department (ED) is a very complex system with limited resources to support increase in demand. ED services are considered as good quality if they can meet the patient's expectation. Long waiting times and length of stay is always the main problem faced by the management. The management of ED should give greater emphasis on their capacity of resources in order to increase the quality of services, which conforms to patient satisfaction. This paper is a review of work in progress of a study being conducted in a government hospital in Selangor, Malaysia. This paper proposed a simulation optimization model framework which is used to study ED operations and problems as well as to find an optimal solution to the problems. The integration of simulation and optimization is hoped can assist management in decision making process regarding their resource capacity planning in order to improve current and future ED operations.

  3. A simulation of fishway design: An example of simulation in environmental problem solving

    SciTech Connect

    Karisch, S.E.; Power, M.

    1994-05-01

    This paper agrees that modelling provides a convenient and cost-effective means of characterizing and predicting the behaviour of environmental systems disturbed by man. A series of modeling criteria are suggested that aim at compelling modelling work with current data, explicitly represent the current understanding of a system, include considerations of variability, and address predictive uncertainty. Models which do so provide a rigorous framework for the comparison of alternative courses of action. As an example of the methodology, the problems associated with the fishway design, highlighting the required statistical analysis and insights, are discussed. Comparison of the modelling results to those gained from operational experience with real fishways were used to validate model results and ensure model credibility. The models were then used to examine the effect of design on interactions between pools in fishways as a means of selecting the designs which minimized migration stress. 15 refs., 2 figs., 2 tabs.

  4. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D

  5. Numerical simulation of dam-break problem using staggered finite volume method

    NASA Astrophysics Data System (ADS)

    Budiasih, L. K.; Wiryanto, L. H.

    2016-02-01

    A problem in a dam-break is when a wall separating two sides of water is removed. A shock wave occurs and propagates. The behavior of the wave is interesting to be investigated with respect to the water depth and its wave speed. The aim of this research is to model dam-break problem using the non-linear shallow water equations and solve them numerically using staggered finite volume method. The solution is used to simulate the dam-break on a wet bed. Our numerical solution will be compared to the analytical solution of shallow water equations for dam-break problem. The momentum non-conservative finite volume scheme on a staggered grid will give a good agreement for dam-break problem on a wet bed, for depth ratios greater than 0.25.

  6. The coupled airflow and thermal analysis problem in building airflow system simulation

    SciTech Connect

    Axley, J. ); Grot, R. )

    1989-01-01

    The Indoor Air Quality and Ventilation Group at the National Institute for Standards and Technology (NIST, formerly the National Bureau of Standards) has developed a method of building airflow analysis, based upon element assembly techniques, that has been successfully applied to the determination of the macroscopic characteristics of infiltration, exfiltration, and interzonal airflows in complex building airflow systems driven by wind pressures, buoyant forces, and the building HVAC system. This analytical method was formulated to be compatible with a discrete thermal analysis method, also based on element assembly techniques and developed earlier, which may be applied to problems of building thermal analysis. This paper reviews the theoretical bases of these two related methods and presents a theoretical framework for integrating the flow with the thermal analysis methods to solve the coupled airflow and thermal analysis problem in building airflow system simulation. Formulation of the coupled airflow-thermal analysis problem is presented and numerical methods for the solution of this problem are outlined.

  7. Application of a Two-Dimensional Reservoir Water-Quality Model of Beaver Lake, Arkansas, for the Evaluation of Simulated Changes in Input Water Quality, 2001-2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2007-01-01

    L3 and L4 and the least increase occurred at sites L2 and L5 when calibrated daily input phosphorus concentrations were increased. When orthophosphorus was increased in all three tributaries simultaneously by a factor of 10, daily mean orthophosphorus concentrations in the epilimnion of the reservoir were almost 11 times greater than the calibrated concentrations at sites L2 and L5, and 15 times greater in the epilimnion of the reservoir at sites L3 and L4. Phosphorus concentrations in Beaver Lake increased less when nitrogen and phosphorus were increased simultaneously than when phosphorus was increased independently. The greatest simulated increase in algal biomass (represented as chlorophyll a) occurred when nitrogen and phosphorus were increased simultaneously in the three main tributaries. On average, the chlorophyll a values only increased less than 1 microgram per liter when concentrations of nitrogen or phosphorous were increased independently by a factor of 10 at all three tributaries. In comparison, when nitrogen and phosphorus were increased simultaneously by a factor of 10 for all three tributaries, the chlorophyll a concentration increased by about 10 micrograms per liter on average, with a maximum increase of about 57 micrograms per liter in the epilimnion at site L3 in Beaver Lake. Changes in algal biomass with changes in input nitrogen and phosphorus were variable through time in the Beaver Lake model from April 2001 to April 2003. When calibrated daily input nitrogen and phosphorus concentrations were increased simultaneously for the three main tributaries, the increase in chlorophyll a concentration was the greatest in late spring and summer of 2002. Changes in calibrated daily input inorganic suspended solids concentrations were examined because of the effect they may have on water clarity in Beaver Lake. The increase in total suspended solids was greatest in the hypolimnion at the upstream end of Beaver Lake, and negligible changes

  8. Simulation of Runoff and Reservoir Inflow for Use in a Flood-Analysis Model for the Delaware River, Pennsylvania, New Jersey, and New York, 2004-2006

    USGS Publications Warehouse

    Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.

    2010-01-01

    A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network

  9. Feature Extraction from Simulations and Experiments: Preliminary Results Using a Fluid Mix Problem

    SciTech Connect

    Kamath, C; Nguyen, T

    2005-01-04

    Code validation, or comparing the output of computer simulations to experiments, is necessary to determine which simulation is a better approximation to an experiment. It can also be used to determine how the input parameters in a simulation can be modified to yield output that is closer to the experiment. In this report, we discuss our experiences in the use of image processing techniques for extracting features from 2-D simulations and experiments. These features can be used in comparing the output of simulations to experiments, or to other simulations. We first describe the problem domain and the data. We next explain the need for cleaning or denoising the experimental data and discuss the performance of different techniques. Finally, we discuss the features of interest and describe how they can be extracted from the data. The focus in this report is on extracting features from experimental and simulation data for the purpose of code validation; the actual interpretation of these features and their use in code validation is left to the domain experts.

  10. Geomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Walters, Mark; Hartline, Craig; Borgia, Andrea

    2015-12-01

    We present a three-dimensional thermohydromechanical numerical study of the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal reservoir (in California), including a detailed study of the region around one injection well from 2003 to 2012. Initially, after imposing a normal faulting stress regime, we calculated local changes in the stress regime around injection wells. Our results were compared with previously published studies in which the stress state was inferred from inverting the focal plane mechanism of seismic events. Our main finding is that changes in stress tensor orientation are caused by injection-induced progressive cooling of the reservoir, as well as by the seasonal variations in injection rate. Because of the gravity flow and cooling around a liquid zone formed by the injection, the vertical stress reduction is larger and propagates far below the injection well. At the same time, the horizontal stress increases, mostly because of stress redistribution below and above the cooling area. These two phenomena cause the rotation of the stress tensor and the appearance of a strike-slip regime above, inside, and below the cooling area. The cooling and the associated rotation of the stress regime can play a significant role in the observed long-term deepening of the microseismicity below active injection wells.

  11. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    SciTech Connect

    BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.

    1999-10-14

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.

  12. Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach.

    PubMed

    Zouabi-Aloui, Besma; Adelana, Segun Michael; Gueddari, Moncef

    2015-05-01

    This study uses a multidisciplinary approach to simulate the spatial and temporal patterns of hydrodynamics and water quality in a thermally stratified reservoir in the southern side of the Mediterranean Sea in response to water withdrawal elevation using the 2D water quality and laterally averaged hydrodynamic model CE-QUAL-W2. The withdrawal elevation controls largely the transfer of heat and constituents in the dam in particular during thermal stratification. Fifteen scenarios of withdrawal elevation are possible. To identify the most effective scenarios, a hierarchical clustering technique was performed and only four scenarios were clustered. Deep withdrawals deepen the hypoxia, increase the thickness of the metalimnion, and weaken the stratification stability, which facilitate the vertical transfer of heat and dissolved oxygen mainly. Surface withdrawals, however, shrink the metalimnion and tend to strengthen the stratification, resulting in less transfer of matter from the epilimnion to the hypolimnion. Most of the bottom sediment is overlaid by the hypolimnion. The oxygen depletes significantly and waters become anoxic at a few meters depth. For all scenarios, the reservoir experiences a summer hypolimnetic anoxia, which lasts from 42 to 80 days and seems to decrease as withdrawal elevation increases. At the end of stratification, waters below the withdrawal elevation showed a noticeable release of iron, nutrients, and suspended sediments that increases with depth and near-bottom turbulence. Attention should be drawn to shallower withdrawals because they accumulate nutrients and silts continuously in the reservoir, which may deteriorate water quality. Based on these results, a withdrawal elevation rule is presented. This rule may be adjusted to optimize water withdrawal elevation for dams in the region with similar geometry.

  13. Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach.

    PubMed

    Zouabi-Aloui, Besma; Adelana, Segun Michael; Gueddari, Moncef

    2015-05-01

    This study uses a multidisciplinary approach to simulate the spatial and temporal patterns of hydrodynamics and water quality in a thermally stratified reservoir in the southern side of the Mediterranean Sea in response to water withdrawal elevation using the 2D water quality and laterally averaged hydrodynamic model CE-QUAL-W2. The withdrawal elevation controls largely the transfer of heat and constituents in the dam in particular during thermal stratification. Fifteen scenarios of withdrawal elevation are possible. To identify the most effective scenarios, a hierarchical clustering technique was performed and only four scenarios were clustered. Deep withdrawals deepen the hypoxia, increase the thickness of the metalimnion, and weaken the stratification stability, which facilitate the vertical transfer of heat and dissolved oxygen mainly. Surface withdrawals, however, shrink the metalimnion and tend to strengthen the stratification, resulting in less transfer of matter from the epilimnion to the hypolimnion. Most of the bottom sediment is overlaid by the hypolimnion. The oxygen depletes significantly and waters become anoxic at a few meters depth. For all scenarios, the reservoir experiences a summer hypolimnetic anoxia, which lasts from 42 to 80 days and seems to decrease as withdrawal elevation increases. At the end of stratification, waters below the withdrawal elevation showed a noticeable release of iron, nutrients, and suspended sediments that increases with depth and near-bottom turbulence. Attention should be drawn to shallower withdrawals because they accumulate nutrients and silts continuously in the reservoir, which may deteriorate water quality. Based on these results, a withdrawal elevation rule is presented. This rule may be adjusted to optimize water withdrawal elevation for dams in the region with similar geometry. PMID:25910720

  14. Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Broecker, Peter; Trebst, Simon

    2016-08-01

    Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below half filling.

  15. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    NASA Astrophysics Data System (ADS)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-01

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  16. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    SciTech Connect

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  17. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

  18. Numerical simulation of extrusion: A good tool for troubleshooting extrusion problems

    NASA Astrophysics Data System (ADS)

    Touré, Birane; Svabik, Jiri; Veaux, Michael; Bahloul, Walid; Mascia, Jean-Pierre; Abéguilé, Mikael; Seux, Thierry; Hauko, Stig-Jrale

    2013-04-01

    The paper describes different studies linked to extrusion problems encountered during production in the cable industry. Extrusion simulation or rheology analysis can be used to understand the origin of the problems in cable manufacturing and to set up durable industrial solutions by selecting the appropriate compounds, optimizing screw profiles, modifying the geometries of the tooling or adapting the processing conditions. Our investigations based on the COMPUPLAST® Virtual Extrusion Laboratory™ software, have brought large understanding and these investigations are cheaper and faster alternatives to real experiments (trials/errors) when analyzing and optimizing extrusion processes. Three examples are presented in the paper.

  19. Simulator test to study hot-flow problems related to a gas cooled reactor

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.

    1973-01-01

    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.

  20. Carbonate petroleum reservoirs

    SciTech Connect

    Roehl, P.O.; Choquette, P.W.

    1985-01-01

    This book presents papers on the geology of petroleum deposits. Topics considered include diagenesis, porosity, dolomite reservoirs, deposition, reservoir rock, reefs, morphology, fracture-controlled production, Cenozoic reservoirs, Mesozoic reservoirs, and Paleozoic reservoirs.

  1. Sandstone reservoirs

    SciTech Connect

    Weimer, R.J.; Tillman, R.W.

    1982-01-01

    The Rocky Mountain province of the United States contains structural and stratigraphic traps from which petroleum is produced from all types of sandstone reservoirs ranging in age from Cambrian to the Eocene. Three large typical stratigraphic traps in this province, where reservoirs are of Cretaceous age, are described. The Cut Bank Field, Montana produces from aluvial point bar sandstones; Patrick Draw field, Wyoming produces from marine shoreline sandstones; and, Hartzog Draw field, Wyoming produces from marine shelf sandstone. 10 refs.

  2. Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2015-01-01

    Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.

  3. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  4. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    SciTech Connect

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.

  5. Family medicine residents' beliefs, attitudes and performance with problem drinkers: a survey and simulated patient study.

    PubMed

    Kahan, Meldon; Wilson, Lynn; Liu, Eleanor; Borsoi, Diane; Brewster, Joan M; Sobell, Linda C; Sobell, Mark B

    2004-03-01

    Fifty-six second-year family medicine residents completed a survey on their knowledge and beliefs about problem drinkers. Most residents felt responsible for screening and counseling, were confident in their clinical skills in these areas, and scored well on related knowledge questions. However, only 18% felt that problem drinkers would often respond to brief counseling sessions with physicians while 36% felt that moderate drinking was a reasonable goal for patients with severe alcohol dependence. Residents were then visited by unannounced simulated patients (SPs) presenting with alcohol-induced hypertension or insomnia. Residents detected the SP in 45 out of 104 visits. In the 59 undetected SP visits, residents asked about alcohol consumption in 47 visits (80%), discussed the relationship between alcohol use and the presenting complaint in 37 visits (63%), and recommended a specific weekly consumption in 35 visits (59%). Only 31% offered reduced drinking strategies, and most did not ask about features of alcohol dependence. These results suggest that residents have the fundamental clinical skills required to manage the problem drinker who gives a clear history and is receptive to advice. Educational efforts with residents should focus on the importance of systematic screening, taking an alcohol history under more challenging conditions, identifying the subtler presentations of alcohol problems, counselling the less receptive patient at an earlier stage of change, distinguishing the problem drinker from the alcohol-dependent patient, and offering specific behavioral strategies for the problem drinker.

  6. Solution of the optimal plant location and sizing problem using simulated annealing and genetic algorithms

    SciTech Connect

    Rao, R.; Buescher, K.L.; Hanagandi, V.

    1995-12-31

    In the optimal plant location and sizing problem it is desired to optimize cost function involving plant sizes, locations, and production schedules in the face of supply-demand and plant capacity constraints. We will use simulated annealing (SA) and a genetic algorithm (GA) to solve this problem. We will compare these techniques with respect to computational expenses, constraint handling capabilities, and the quality of the solution obtained in general. Simulated Annealing is a combinatorial stochastic optimization technique which has been shown to be effective in obtaining fast suboptimal solutions for computationally, hard problems. The technique is especially attractive since solutions are obtained in polynomial time for problems where an exhaustive search for the global optimum would require exponential time. We propose a synergy between the cluster analysis technique, popular in classical stochastic global optimization, and the GA to accomplish global optimization. This synergy minimizes redundant searches around local optima and enhances the capable it of the GA to explore new areas in the search space.

  7. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005

  8. Mathematica program: its use to simulate metabolic irreversible pathways and inhibition of the first enzyme of a pathway by its end product as visualized with the reservoir model.

    PubMed

    López-Cánovas, Francisco; Gomes, Paula J F; Sillero, Antonio

    2013-08-01

    The main objective of this report is to show the usefulness and versatility of the Mathematica program to simulate enzyme linear pathways and to depict the effect of changing the Vmax and/or Km values of one or more enzymes on the course of the reaction. In addition, analysis of the different types of inhibition of the first enzyme of the pathway by its end product is viewed with the reservoir model for enzyme kinetics. All the data shown here are quantitatively related to the kinetic constants of the implicated enzymes. Particular attention has been paid to calculate the time needed to achieve half of the possible total synthesis of the final product of a metabolic pathway.

  9. Modeling and simulation of dynamic problems in solid mechanics using material point method

    NASA Astrophysics Data System (ADS)

    Dobšíček, Miroslav

    A relatively new computational method, namely Material Point Method (MPM), developed by Prof. Sulsky, from the Particle-In-Cell (PIC) method in computational fluid mechanics, was used for simulations of dynamic problems. In this regard, various dynamic and material simulations have been carried out, which include dynamic crack growth using cohesive zone model, microstructure evolution of closed-cell polymer foam in compression and simulation of granular materials. In this process the MPM algorithm was developed by, either implementing completely newer capabilities of simulation or refining the older versions for increased robustness and versatility. The incorporation of a characteristic length scale in MPM through cohesive zone model allowed investigation of physics-based dynamic crack propagation. The simulations are capable of handling crack growth with crack-tip velocities in both sub-Rayleigh and intersonic regimes. Crack initiation and propagation are the natural outcome of the simulations incorporating the cohesive zone model. Good qualitative agreement was observed between numerical results presented here and the experimental results in terms of the photoelastic stress patterns ahead of the crack-tip. MPM will allow prediction of material properties for microstructures driving the optimization of processing and performance in foam materials through simulation of real microstructures. The simulations are able to capture the various stages of deformations in foam compression. The stress-strain curve simulated from MPM compares reasonably with the experimental results. Based on the results from micro-CT and MPM simulations, it was found that elastic buckling of cell-walls occur even in the elastic regime of compression. Within the elastic region, less than 35% of the cell-wall material carries majority of the compressive load. The particle nature in MPM was found suitable for simulation of granular materials. Contact algorithm has been implemented in MPM to

  10. An analysis on changes in reservoir fluid based on numerical simulation of neutron log using a Monte Carlo N-Particle algorithm

    NASA Astrophysics Data System (ADS)

    Ku, B.; Nam, M.

    2012-12-01

    Neutron logging has been widely used to estimate neutron porosity to evaluate formation properties in oil industry. More recently, neutron logging has been highlighted for monitoring the behavior of CO2 injected into reservoir for geological CO2 sequestration. For a better understanding of neutron log interpretation, Monte Carlo N-Particle (MCNP) algorithm is used to illustrate the response of a neutron tool. In order to obtain calibration curves for the neutron tool, neutron responses are simulated in water-filled limestone, sandstone and dolomite formations of various porosities. Since the salinities (concentration of NaCl) of borehole fluid and formation water are important factors for estimating formation porosity, we first compute and analyze neutron responses for brine-filled formations with different porosities. Further, we consider changes in brine saturation of a reservoir due to hydrocarbon production or geological CO2 sequestration to simulate corresponding neutron logging data. As gas saturation decreases, measured neutron porosity confirms gas effects on neutron logging, which is attributed to the fact that gas has slightly smaller number of hydrogen than brine water. In the meantime, increase in CO2 saturation due to CO2 injection reduces measured neutron porosity giving a clue to estimation the CO2 saturation, since the injected CO2 substitute for the brine water. A further analysis on the reduction gives a strategy for estimating CO2 saturation based on time-lapse neutron logging. This strategy can help monitoring not only geological CO2 sequestration but also CO2 flood for enhanced-oil-recovery. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

  11. Stochastic control of reservoir systems using indicator functions: New enhancements

    NASA Astrophysics Data System (ADS)

    Fletcher, S. G.; Ponnambalam, K.

    2008-12-01

    In our previous works, deterministic release policies were considered for the development of approximations of the two lower moments of the storage volume defined by the dynamic equation of the reservoir in discrete time but in continuous state space. Important innovation in that work was the incorporation of the lower and upper bounds of reservoir systems into the dynamic equation for the storage volume using indicator functions. The current work, which also does not use discretization, looks at an extension of previous developments that incorporates standard operating policies, and also a new randomized release policy, both of which make the moments calculations exact under the assumptions that (1) the sum of current random inflow and the previous storage volume can be described by just the two lower moments and (2) only the means and variances of the inflows are known. First- and second-moment expressions are derived for the stochastic storage state variable and include terms for the failure probabilities (probabilities of spills or deficits). Expected values of the storage state, variances of storage, release policies, and failure probabilities are obtained by solving the optimal reservoir operations problem using nonlinear programming. The various statistics thus obtained from this optimization compare extremely well with those obtained from simulation for the single-reservoir monthly operations problem studied. The exact characterization of the mean and variance of the storage state variable is derived, which is a difficulty in existing formulations based on linear quadratic Gaussian methods. For example, the latter methods have been unable to estimate these moments reasonably accurately, especially for long-term operations, whereas the traditional storage theory based on discretization brings on the "curse of dimensionality." The presentation herein is directed to both traditional reservoir storage theorists who are interested in the design of a reservoir

  12. Critique Panel Comments on Reservoir Engineering DOE Geothermal Technology Development

    SciTech Connect

    Kaspereit, Dennis

    1992-03-24

    As our geothermal fields mature and the inevitable problems arise with their exploitation, it will be reservoir engineers that will evaluate our possible future courses of action in order to solve these problems. But first they must have the right tools and data. To date, the best reservoir engineering tool we have in geothermal is the reservoir simulators. The reason for this is our severe lack of definition of reservoir parameters. Within a simulation there are checks and balances on the interrelation of reservoir parameters that keep the result within certain realistic bounds. These uncertain parameters make most traditional reservoir engineering methods such as volumetrics of little use for anything beyond preliminary work. Parametric studies such as those by Mike Shook help in determining the range and sensitivity of unconstrained variables in simulator work and are valuable. However, as two non-unique simulations can yield similar results on an established field configuration, the same two can then give different results if used for investigating different future scenarios, injection cases or other what-if's. Therefore to use simulators as a development or management tool with greater confidence, a more unique solution is desired, requiring greater definition of the parameters input into the model. By determining these parameters a greater assortment of reservoir engineering methods also becomes available. However, I do not see enough research directed to determining these parameters at this time, and there should be more. These parameters and other methods will be needed to use in the important slim hole evaluations being researched, as simulations are more for developed producing fields with some history, not exploration prospects. One of the best ways to get some of these parameters is by logging methods. The slim hole tools discussed by Peter Lysne on Tuesday afternoon will be needed to get these parameters in exploration prospects. Besides a natural

  13. Development and Application of a Computer Simulation Program to Enhance the Clinical Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Boh, Larry E.; And Others

    1987-01-01

    A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…

  14. Integrated 3D reservoir modeling at Ram-Powell field: A turbidite reservoir in the eastern Gulf of Mexico

    SciTech Connect

    Lerch, C.S.; Bramlett, K.W.; Butler, W.H.

    1996-12-31

    Ram Powell is a stratigraphically trapped sequence of turbidite reservoirs in 2,500-4,000 ft of water in the Eastern Gulf of Mexico. The discovery was made in 1985 and the field has been the subject of extensive geoscience and engineering studies. In spite of this work there is still significant uncertainty in Ram Powell reserves. The Ram Powell development plan is underway, with fabrication of a tension-leg platform and 60,000 b/d plus 200 MMcf/d facility. Drilling will include 7 high rate horizontal wells and 3 water injection wells. Reserves accessed in this development scheme are approximately 250 million barrels equivalent. Model-based seismic inversion (constrained by 12 appraisal penetrations, rock property data and seismic interpretation) was employed over the main reservoir interval (J, L and N sands) to create models that are consistent with 3D seismic data. These models were used in several simulation studies including element models to determine optimal well placement, and full-field models to predict overall reservoir performance. The results of the study both reduced and enabled management of reservoir volume uncertainty; they were critical for determining the number, horizontal length and placement of wells (vertically and areally). The results also provided the basis for a proposal to increase the facility capacity limits to 70,000 b/d plus 260 MMcf/d. Some significant leanings are (1) model-based inversion is now in a production mode that can be rapidly applied to reservoir problems, (2) many reservoir complexities are simply below seismic resolution and inversion is unable to add with certainty significantly more resolution and, (3) detailed reservoir models that reflect reservoir conditions and are easily manipulated are required for reservoir optimization.

  15. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  16. Simulation of Sub-Drains Performance Using Visual MODFLOW for Slope Water Seepage Problem

    NASA Astrophysics Data System (ADS)

    Baharuddin, M. F. T.; Tajudin, S. A. A.; Abidin, M. H. Z.; Yusoff, N. A.

    2016-07-01

    Numerical simulation technique was used for investigating water seepage problem at the Botanic Park Kuala Lumpur. A proposed sub-drains installation in problematic site location was simulated using Modular Three-Dimensional Finite Difference Groundwater Flow (MODFLOW) software. The results of simulation heads during transient condition showed that heads in between 43 m (water seepage occurred at level 2) until 45 m (water seepage occurred at level 4) which heads measurement are referred to mean sea level. However, elevations measurements for level 2 showed the values between 41 to 42 m from mean sea level and elevations for level 4 between 42 to 45 m from mean sea level. These results indicated an increase in heads for level 2 and level 4 between 1 to 2 m when compared to elevations slope at the level 2 and level 4. The head increases surpass the elevation level of the slope area that causing water seepage at level 2 and level 4. In order to overcome this problems, the heads level need to be decrease to 1 until 2 m by using two options of sub-drain dimension size. Sub-drain with the dimension of 0.0750 m (diameter), 0.10 m (length) and using 4.90 m spacing was the best method to use as it was able to decrease the heads to the required levels of 1 to 2 m.

  17. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    PubMed Central

    Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J. Javier; González-Flores, Carlos

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA. PMID:27413369

  18. Formulation of Contact Problems in Sheet Metal Forming Simulation Using Local Interpolation for Tool Surfaces

    NASA Astrophysics Data System (ADS)

    Hama, Takayuki; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian; Takuda, Hirohiko

    The treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of the sheet metal forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes new techniques for the contact problem using a local interpolation for tool surfaces proposed by Nagata. The Nagata patch enables the creation of tool models that are much more accurate in shape than those of the conventional polyhedral representations. Contact search algorithms between the sheet nodes and the interpolated tool surfaces and a consistent contact tangent stiffness matrix for the sliding sheet nodes were formulated. The proposed contact search algorithms allow robust and accurate contact analyses. The developed algorithms were introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square-cup deep-drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithms yield the proper deformation process, thus demonstrating the validity of the proposed techniques.

  19. Using Elearning techniques to support problem based learning within a clinical simulation laboratory.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2004-01-01

    This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience. PMID:15360935

  20. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA. PMID:27413369

  1. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  2. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  3. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  4. Virtual morality: emotion and action in a simulated three-dimensional "trolley problem".

    PubMed

    Navarrete, C David; McDonald, Melissa M; Mott, Michael L; Asher, Benjamin

    2012-04-01

    Experimentally investigating the relationship between moral judgment and action is difficult when the action of interest entails harming others. We adopt a new approach to this problem by placing subjects in an immersive, virtual reality environment that simulates the classic "trolley problem." In this moral dilemma, the majority of research participants behaved as "moral utilitarians," either (a) acting to cause the death of one individual in order to save the lives of five others, or (b) abstaining from action, when that action would have caused five deaths versus one. Confirming the emotional distinction between moral actions and omissions, autonomic arousal was greater when the utilitarian outcome required action, and increased arousal was associated with a decreased likelihood of utilitarian-biased behavior. This pattern of results held across individuals of different gender, age, and race. PMID:22103331

  5. Complex saddle points and the sign problem in complex Langevin simulation

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya

    2016-10-01

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  6. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  7. Movement simulation of the variable masses in the Gylden-Meshcherskii problem

    SciTech Connect

    Starinova, Olga L.; Salmin, Vadim V.

    2014-12-10

    The Gylden-Meshcherskii problem is used for various cases of dynamics of two points of the variable mass. For example, it describes of double star evolution due to mass loss at the photon expense and the corpuscular activity. Except, it is mathematical model for the movement of spacecraft with propulsion system. In the present work the mass variation laws, allowing a stationary form of the movement differential equations are considered. Movement simulation for all cases was conducted. The relative movement trajectories was constructed as for known Eddington-Jeans laws and for other mass variation laws.

  8. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    SciTech Connect

    Pruess, Karsten

    2003-03-31

    The critical point of CO{sub 2} is at temperature and pressure conditions of T{sub crit} = 31.04 C, P{sub crit} = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO{sub 2} can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO{sub 2} into brine formations would be made at supercritical pressures. However, CO{sub 2} escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO{sub 2} would be in subcritical conditions. An assessment of the fate of leaking CO{sub 2} requires a capability to model not only supercritical but also subcritical CO{sub 2}, as well as phase changes between liquid and gaseous CO{sub 2} in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO{sub 2} mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO{sub 2}. This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO{sub 2} plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO{sub 2} rises to elevations where it begins to boil and evolve a gaseous CO{sub 2} phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO{sub 2} to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO{sub 2} upflow, causes the plume to spread out laterally, and gives rise to dispersed CO{sub 2} discharge at the land surface. Our simulation suggests that temperatures along a CO{sub 2} leakage path may decline to levels low enough so that solid water ice and CO{sub 2} hydrate phases may be formed.

  9. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico

  10. Experimental and simulation studies of pore scale flow and reactive transport associated with supercritical CO2 injection into brine-filled reservoir rocks (Invited)

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Steefel, C. I.; Bourg, I. C.

    2013-12-01

    This talk will review recent research relating to pore scale reactive transport effects done in the context of the Department of Energy-sponsored Energy Frontier Research Center led by Lawrence Berkeley National Laboratory with several other laboratory and University partners. This Center, called the Center for Nanoscale Controls on Geologic CO2 (NCGC) has focused effort on the behavior of supercritical CO2 being injected into and/or residing as capillary trapped-bubbles in sandstone and shale, with particular emphasis on the description of nanoscale to pore scale processes that could provide the basis for advanced simulations. In general, simulation of reservoir-scale behavior of CO2 sequestration assumes a number of mostly qualitative relationships that are defensible as nominal first-order descriptions of single-fluid systems, but neglect the many complications that are associated with a two-phase or three-phase reactive system. The contrasts in properties, and the mixing behavior of scCO2 and brine provide unusual conditions for water-rock interaction, and the NCGC has investigated the underlying issues by a combination of approaches including theoretical and experimental studies of mineral nucleation and growth, experimental studies of brine films, mineral wetting properties, dissolution-precipitation rates and infiltration patterns, molecular dynamic simulations and neutron scattering experiments of fluid properties for fluid confined in nanopores, and various approaches to numerical simulation of reactive transport processes. The work to date has placed new constraints on the thickness of brine films, and also on the wetting properties of CO2 versus brine, a property that varies between minerals and with salinity, and may also change with time as a result of the reactivity of CO2-saturated brine. Mineral dissolution is dependent on reactive surface area, which can be shown to vary by a large factor for various minerals, especially when correlated with

  11. Simulated effects of the 2003 permitted withdrawals and water-management alternatives on reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2004-01-01

    The Hydrologic Simulation ProgramFORTRAN (HSPF) model of the Ipswich River Basin previously developed by the U.S. Geological Survey was modified to evaluate the effects of the 2003 withdrawal permits and water-management alternatives on reservoir storage and yields of the Lynn, Peabody, and SalemBeverly water-supply systems. These systems obtain all or part of their water from the Ipswich River Basin. The HSPF model simulated the complex water budgets to the three supply systems, including effects of regulations that restrict withdrawals by the time of year, minimum streamflow thresholds, and the capacity of each system to pump water from the river. The 2003 permits restrict withdrawals from the Ipswich River between November 1 and May 31 to streamflows above a 1.0 cubic foot per second per square mile (ft3/s/mi2) threshold, to high flows between June 1 and October 31, and to a maximum annual volume. Yields and changes in reservoir storage over the 35-year simulation period (196195) were also evaluated for each system with a hypothetical low-capacity pump, alternative seasonal streamflow thresholds, and withdrawals that result in successive failures (depleted storage). The firm yields, the maximum yields that can be met during a severe drought, calculated for each water-supply system, under the 2003 permitted withdrawals, were 7.31 million gallons per day (Mgal/d) for the Lynn, 3.01 Mgal/d for the Peabody, and 7.98 Mgal/d for the SalemBeverly systems; these yields are 31, 49, and 21 percent less than their average 19982000 demands, respectively. The simulations with the same permit restrictions and a hypothetical low-capacity pump for each system resulted in slightly increased yields for the Lynn and SalemBeverly systems, but a slightly decreased yield for the Peabody system. Simulations to evaluate the effects of alternative streamflow thresholds on water supply indicated that firm yields were generally about twice as sensitive to decreases in the November

  12. Simulation Software

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Various NASA Small Business Innovation Research grants from Marshall Space Flight Center, Langley Research Center and Ames Research Center were used to develop the 'kernel' of COMCO's modeling and simulation software, the PHLEX finite element code. NASA needed it to model designs of flight vehicles; one of many customized commercial applications is UNISIM, a PHLEX-based code for analyzing underground flows in oil reservoirs for Texaco, Inc. COMCO's products simulate a computational mechanics problem, estimate the solution's error and produce the optimal hp-adapted mesh for the accuracy the user chooses. The system is also used as a research or training tool in universities and in mechanical design in industrial corporations.

  13. Reservoir management of Valhall Field, Norway

    SciTech Connect

    York, S.D.; Peng, C.P. )

    1992-08-01

    This paper presents the historical development and the evolution of reservoir simulation models for the Valhall field. Reservoir simulators were used as management tools to determine possible effects of high rock compressibility, fracturing, and fracture permeability decline on primary recovery. These evaluations identified additional development opportunities, resulting in higher ultimate recoveries.

  14. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  15. World, We Have Problems: Simulation for Large Complex, Risky Projects, and Events

    NASA Technical Reports Server (NTRS)

    Elfrey, Priscilla

    2010-01-01

    Prior to a spacewalk during the NASA STS/129 mission in November 2009, Columbia Broadcasting System (CBS) correspondent William Harwood reported astronauts, "were awakened again", as they had been the day previously. Fearing something not properly connected was causing a leak, the crew, both on the ground and in space, stopped and checked everything. The alarm proved false. The crew did complete its work ahead of schedule, but the incident reminds us that correctly connecting hundreds and thousands of entities, subsystems and systems, finding leaks, loosening stuck valves, and adding replacements to very large complex systems over time does not occur magically. Everywhere major projects present similar pressures. Lives are at - risk. Responsibility is heavy. Large natural and human-created disasters introduce parallel difficulties as people work across boundaries their countries, disciplines, languages, and cultures with known immediate dangers as well as the unexpected. NASA has long accepted that when humans have to go where humans cannot go that simulation is the sole solution. The Agency uses simulation to achieve consensus, reduce ambiguity and uncertainty, understand problems, make decisions, support design, do planning and troubleshooting, as well as for operations, training, testing, and evaluation. Simulation is at the heart of all such complex systems, products, projects, programs, and events. Difficult, hazardous short and, especially, long-term activities have a persistent need for simulation from the first insight into a possibly workable idea or answer until the final report perhaps beyond our lifetime is put in the archive. With simulation we create a common mental model, try-out breakdowns of machinery or teamwork, and find opportunity for improvement. Lifecycle simulation proves to be increasingly important as risks and consequences intensify. Across the world, disasters are increasing. We anticipate more of them, as the results of global warming

  16. Simulation of Water-Entry and Water-Exit Problems Using a Moving Mesh Algorithm

    NASA Astrophysics Data System (ADS)

    Panahi, Roozbeh

    2012-06-01

    Simulation of the water-entry and water-exit particularly, at the interface of two phases i.e. water and air due to the effect of flow-induced loads, gravity force and trapped air cushion presence is very complicated. This paper attempts to introduce a finite volume-based moving mesh algorithm in order to simulate such problems in a viscous incompressible two-phase medium. The algorithm employs a fractional step method to deal with the coupling between pressure and velocity fields. Interface is also captured by solving a volume fraction transport equation. A boundary-fitted body-attached mesh of quadrilateral Control Volumes (CVs) is implemented to record hydrodynamic time histories of loads, motions and interfacial flow changes around the structure. Forced water-exit of a cylinder is simulated based on the introduced algorithm, together with free symmetric and asymmetric water-entry of wedges. Results show that the presented algorithm is favorably capable of assessing such complexities when comparing to experimental data.

  17. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions. PMID:25056743

  18. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  19. Improving Gas Storage Development Planning Through Simulation-Optimization

    SciTech Connect

    Johnson, V.M.; Ammer, J.; Trick, M.D.

    2000-07-25

    This is the first of two papers describing the application of simulator-optimization methods to a natural gas storage field development planning problem. The results presented here illustrate the large gains in cost-effectiveness that can be made by employing the reservoir simulator as the foundation for a wide-ranging search for solutions to management problems. The current paper illustrates the application of these techniques given a deterministic view of the reservoir. A companion paper will illustrate adaptations needed to accommodate uncertainties regarding reservoir properties.

  20. The effects of computer-simulated experiments on high school biology students' problem-solving skills and achievement

    NASA Astrophysics Data System (ADS)

    Carmack, Gay Lynn Dickinson

    2000-10-01

    This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.

  1. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  2. Numerical simulation of low gravity draining. [computerized simulation of liquid sloshing in cylindrical tanks, and boundary value problems

    NASA Technical Reports Server (NTRS)

    Bizzell, G. D.; Crane, G. E.

    1976-01-01

    A boundary value problem was solved numerically for a liquid that is assumed to be inviscid and incompressible, having a motion that is irrotational and axisymmetric, and having a constant (5 degrees) solid-liquid contact angle. The avoidance of excessive mesh distortion, encountered with strictly Lagrangian or Eulerian kinematics, was achieved by introducing an auxiliary kinematic velocity field along the free surface in order to vary the trajectories used in integrating the ordinary differential equations simulating the moving boundary. The computation of the velocity potential was based upon a nonuniform triangular mesh which was automatically revised to varying depths to accommodate the motion of the free surface. These methods permitted calculation of draining induced axisymmetric slosh through the many (or fractional) finite amplitude oscillations that can occur depending upon the balance of draining, gravitational, and surface tension forces. Velocity fields, evolution of the free surface with time, and liquid residual volumes were computed for three and one half decades of Weber number and for two Bond numbers, tank fill levels, and drain radii. Comparisons with experimental data are very satisfactory.

  3. Can Multimedia Make Kids Care about Social Studies? The GlobalEd Problem-Based Learning Simulation

    ERIC Educational Resources Information Center

    Ioannou, Andri; Brown, Scott W.; Hannafin, Robert D.; Boyer, Mark A.

    2009-01-01

    This study investigated whether using multimedia-based instructional material in a problem-based social studies simulation enhances student learning about world issues, increases interest in social studies, and generates positive attitudes toward the instruction. The GlobalEd Project, a Web-based international negotiation simulation embedded in…

  4. Characterizing regulated reservoirs dynamics in regional to global scale hydrologic models

    NASA Astrophysics Data System (ADS)

    Beighley, E.; Yoon, Y.; Lee, H.; Pavelsky, T.; Allen, G. H.

    2015-12-01

    Lakes and reservoirs are widely used for water supply and flood control resulting in regulated release of outflows that are nonconcurrent with inflows. In hydrologic modeling applications, accounting for the regulated behavior of reservoirs distributed throughout a river system poses a significant challenge because detailed reservoir operation rules or strategies can be difficult or not possible to obtain. Building on this problem, this study addresses the science questions: Can we model reservoir water storage changes and outlet discharges based on satellite measurements of river water surface elevation and inundated area, and How does repeat cycle, mission duration and measurement uncertainty impact our ability to characterize reservoir behavior? A modeling framework suitable for regional to global applications and based on the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission is presented. Although our framework can be combined with data assimilation techniques for real-time flood forecasting, our goal is to represent reservoir storage patterns in large-scale hydrologic models for simulating: (i) impacts of future climate and/or land cover conditions on water resources, and (ii) synthetic storm events (e.g., 100-yr flood) or event catalogs for flood hazard and risk assessments. In-situ and remotely sensed reservoir dynamics are presented for select locations in the Mississippi River Basin and used in the Hillslope River Routing (HRR) hydrologic model to simulate downstream flow dynamics.

  5. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  6. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  7. Evaluation of Equations of State and Mixing Models for Simulating the Brine-CO2 System with a Lattice Boltzmann Model Under Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Schaap, M. G.

    2013-12-01

    This DOE-funded study is a collaboration between Oregon State University (led by Dr. Dorthe Wildenschild) and the University of Arizona to investigate pore-scale aspects of capillary trapping to enhance the efficiency of geological CO2 sequestration in deep saline aquifers where super-critical conditions prevail. Compared to most current reservoir-scale studies, our research takes several steps back in scale to observe and model trapping at the pore-scale using a combination of computed micro-tomography imaging (performed by OSU) and multi-phase/multi-component lattice Boltzmann (LB) simulations (carried out by UA). The main objective is to quantify how pore-scale mechanisms translate into continuum scale properties that can subsequently support improved modelling of sequestration at large spatio-temporal scales. For the purposes of this project it is important to correctly simulate the physical conditions under which super-critical CO2 will be present after injection into the host rock. In practice this means that the LB model should be able to handle the pressures (P), densities (ρ), temperatures (T) that prevail in deep geological media. A logical way of dealing with is is to combine a single-component LB model with and Equation of State (EOS) that describes the physical interrelations among P, ρ and T (Yuan and Scheafer, 2006). Previously, we showed that the Peng-Robinson (PR) EOS provides an excellent fit to super-critical conditions for the pure CO2 system. However, simulating pure-CO2 systems is not sufficient as the super-critical CO2 will co-exist (and interact) with brine present in the saline aquifers. In effect this means that we need to simulate multi-component systems: one phase being the super-critical CO2, the other phase being a brine of varying salinity. Previously, we have used used a Shan-Chen-type model (Shan Chen, 1993, 1994) as modified by Martys and Chen (1996) for simplified capillari pressure dominated air-water systems in porous media

  8. Decoupling instead of grid coarsening: how to achieve reservoir scale reactive transport simulations in highly heterogeneous settings. Example from CO2 storage

    NASA Astrophysics Data System (ADS)

    De Lucia, M.; Kempka, T.; Kuehn, M.

    2014-12-01

    The characteristics of a typical CO2 storage system allow simplification strategies for reactive transport simulations based on process decoupling. In such systems the feedback of the slow chemical reactions to hydrodynamics is low until the system reaches a substantial hydrodynamic equilibrium. Furthermore, the presence of CO2 is the main driving force for chemical reactions, which are for most reactants kinetically controlled. Hence, the same reaction path is substantially replicated in all elements of the grid exposed to the injected CO2, either in gaseous or in dissolved form. The analysis offully coupled 3D simulations of the Ketzin pilot site for CO2 storage performed with the TOUGHREACT simulator confirms these hypotheses to a large extent, both in homogeneous and in heterogeneous settings. This allows the definition of a simplified one-way coupling combining independent non-reactive hydrodynamic and batch geochemical models. The exposure time to CO2 of each grid element is estimated by the conservative simulations, then the outcome of one single geochemical model per lithofacies is applied to each grid element. A threshold value for the minimum concentration of dissolved CO2 required to start chemical reactions permits to mitigate the discrepancy due to the lack of a mass balance between the independently run simulations. The comparison with fully coupled simulations validates the novel approach. The simplified coupling can tackle a wide class of problems, not only CO2 storage; it allows calculating reactive chemistry on grids comprising millions of elements, overcoming a major limitation of reactive transport models, which are often bounded to 2D radial domains. This is particularly advantageous in highly heterogeneous settings with complex hydrodynamics. The new coupling is demonstrated at full scale for the Ketzin site with simulations up to 15000 years, a result which cannot yet be achieved by fully coupled simulations.

  9. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Summary of project accomplishments; Final report, September 30, 1998

    SciTech Connect

    Ortoleva, P.J.; Sundberg, K.R.; Hoak, T.E.

    1998-12-01

    Major accomplishments of this project occurred in three primary categories: (1) fractured reservoir location and characteristics prediction for exploration and production planning; (2) implications of geologic data analysis and synthesis for exploration and development programs; and (3) fractured reservoir production modeling. The results in each category will be discussed in turn. Seven detailed reports have been processed separately.

  10. Applying simulation modeling to problems in toxicology and risk assessment--a short perspective.

    PubMed

    Andersen, M E; Clewell, H J; Frederick, C B

    1995-08-01

    The goals of this perspective have been to examine areas where quantitative simulation models may be useful in toxicology and related risk assessment fields and to offer suggestions for preparing manuscripts that describe these models. If developments in other disciplines serve as a bell-wether, the use of mathematical models in toxicology will continue to increase, partly, at least, because the new generations of scientists are being trained in an electronic environment where computation of all kinds is learned at an early age. Undoubtedly, however, the utility of these models will be directly tied to the skills of investigators in accurately describing models in their research papers. These publications should convey descriptions of both the insights obtained and the opportunities provided by these models to integrate existing data bases and suggest new and useful experiments. We hope these comments serve to facilitate the expansion of good modeling practices as applied to toxicological problems.

  11. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-05-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed.

  12. On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models. The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and the higher order correlations in the conventional moment closure models of the chemical source term can not be neglected, making the applications of such models impractical. The probability density function (pdf) method offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional models. A grid dependent Monte Carlo scheme was studied, since it is a logical alternative, wherein the number of computer operations increases only linearly with the increase of number of independent variables, as compared to the exponential increase in a conventional finite difference scheme. A new algorithm was devised that satisfies a restriction in the case of pure diffusion or uniform flow problems. Although for nonuniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.

  13. Acoustic velocity log numerical simulation and saturation estimation of gas hydrate reservoir in Shenhu area, South China Sea.

    PubMed

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Liu, Jieqiong

    2013-01-01

    Gas hydrate model and free gas model are established, and two-phase theory (TPT) for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave) velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, respectively, and gas hydrate saturation of research area is estimated by gas hydrate model. In depth of 50 to 245 m below seafloor (mbsf), as sediment porosity decreases, P wave velocity increases gradually; as gas hydrate saturation increases, P wave velocity increases gradually; as free gas saturation increases, P wave velocity decreases. This rule is almost consistent with the previous research result. In depth of 195 to 220 mbsf, the actual measurement of P wave velocity increases significantly relative to the P wave velocity of saturated water modeling, and this layer is determined to be rich in gas hydrate. The average value of gas hydrate saturation estimated from the TPT model is 23.2%, and the maximum saturation is 31.5%, which is basically in accordance with simplified three-phase equation (STPE), effective medium theory (EMT), resistivity log (Rt), and chloride anomaly method.

  14. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  15. Filtering analysis of a direct numerical simulation of the turbulent Rayleigh-Benard problem

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1990-01-01

    A filtering analysis of a turbulent flow was developed which provides details of the path of the kinetic energy of the flow from its creation via thermal production to its dissipation. A low-pass spatial filter is used to split the velocity and the temperature field into a filtered component (composed mainly of scales larger than a specific size, nominally the filter width) and a fluctuation component (scales smaller than a specific size). Variables derived from these fields can fall into one of the above two ranges or be composed of a mixture of scales dominated by scales near the specific size. The filter is used to split the kinetic energy equation into three equations corresponding to the three scale ranges described above. The data from a direct simulation of the Rayleigh-Benard problem for conditions where the flow is turbulent are used to calculate the individual terms in the three kinetic energy equations. This is done for a range of filter widths. These results are used to study the spatial location and the scale range of the thermal energy production, the cascading of kinetic energy, the diffusion of kinetic energy, and the energy dissipation. These results are used to evaluate two subgrid models typically used in large-eddy simulations of turbulence. Subgrid models attempt to model the energy below the filter width that is removed by a low-pass filter.

  16. SimPEG: An open-source framework for geophysical simulations and inverse problems

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Kang, S.; Heagy, L.

    2014-12-01

    Geophysical surveys are powerful tools for obtaining information about the subsurface. Inverse modelling provides a mathematical framework for constructing a model of physical property distributions that are consistent with the data collected by these surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but the inconsistencies between conventions often makes implementations complicated, non-reproducible, or inefficient. We have developed an open source software package for Simulation and Parameter Estimation in Geophysics (SimPEG), which provides a generalized framework for solving geophysical forward and inverse problems. SimPEG is written entirely in Python with minimal dependencies in the hopes that it can be used both as a research tool and for education. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and tailored visualization routines. The framework is modular and object-oriented, which promotes real time experimentation and combination of geophysical problems and inversion methodologies. In this presentation, we will highlight a few geophysical examples, including direct-current resistivity and electromagnetics, and discuss some of the challenges and successes we encountered in developing a flexible and extensible framework. Throughout development of SimPEG we have focused on simplicity, usability, documentation, and extensive testing. By embracing a fully open source development paradigm, we hope to encourage reproducible research, cooperation, and communication to help tackle some of the inherently multidisciplinary problems that face integrated geophysical methods.

  17. Modeling uncertainty in reservoir loss functions using fuzzy sets

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Simonovic, Slobodan P.

    1999-09-01

    Imprecision involved in the definition of reservoir loss functions is addressed using fuzzy set theory concepts. A reservoir operation problem is solved using the concepts of fuzzy mathematical programming. Membership functions from fuzzy set theory are used to represent the decision maker's preferences in the definition of shape of loss curves. These functions are assumed to be known and are used to model the uncertainties. Linear and nonlinear optimization models are developed under fuzzy environment. A new approach is presented that involves development of compromise reservoir operating policies based on the rules from the traditional optimization models and their fuzzy equivalents while considering the preferences of the decision maker. The imprecision associated with the definition of penalty and storage zones and uncertainty in the penalty coefficients are the main issues addressed through this study. The models developed are applied to the Green Reservoir, Kentucky. Simulations are performed to evaluate the operating rules generated by the models considering the uncertainties in the loss functions. Results indicate that the reservoir operating policies are sensitive to change in the shapes of loss functions.

  18. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  19. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  20. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were

  1. A framework for incorporating ecological releases in single reservoir operation

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Brill, Earl D.; Ranjithan, Ranji S.; Sankarasubramanian, A.

    2015-04-01

    Most reservoir operation practices consider downstream environmental flow as a constraint to meet a minimum release. The resulting flow regime may not necessarily provide downstream aquatic conditions to support healthy ecosystems. These effects can be quantified in terms of changes in values of parameters that represent the flow regimes. Numerous studies have focused on determining the ecological response to hydrological alteration caused by reservoir operation. To mitigate hydrological alteration and restore the natural flow regime as much as possible, a reservoir operation framework is proposed to explicitly incorporate ecological flow requirements. A general optimization-based decision model is presented to consider simultaneously the multiple anthropogenic uses of the reservoir and desirable ecological releases represented by parameters that capture the flow regime. Multiple uses of the reservoir, including water supply, hydropower generation, etc., are modeled as a mixed integer programming problem. Hydropower generation, which is represented by a nonlinear function that usually depends on head and water flow, is linearized using a two-dimensional function. Investigations using a reservoir in Virginia, located in the southeastern United States, demonstrate that compared to standard releases based on current operation practice, releases simulated using this framework perform better in mimicking pre-development flows. The tradeoff between anthropogenic use and ecological releases is investigated. The framework is first demonstrated for instances with perfect stream flow information. To examine the flexibility of this framework in reservoir release management, monthly flow forecasts and disaggregated daily flow conditions are incorporated. Retrospective monthly flow forecasts are obtained through regression models that use gridded precipitation forecasts and gridded soil moisture estimates as predictors. A nonparametric method is chosen to disaggregate monthly

  2. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  3. Improved energy recovery from geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  4. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  5. Validation of a Pressure-Based Combustion Simulation Tool Using a Single Element Injector Test Problem

    NASA Technical Reports Server (NTRS)

    Thakur, Siddarth; Wright, Jeffrey

    2006-01-01

    The traditional design and analysis practice for advanced propulsion systems, particularly chemical rocket engines, relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment by non-CFD specialists. A computational tool, called Loci-STREAM is being developed for this purpose. It is a pressure-based, Reynolds-averaged Navier-Stokes (RANS) solver for generalized unstructured grids, which is designed to handle all-speed flows (incompressible to hypersonic) and is particularly suitable for solving multi-species flow in fixed-frame combustion devices. Loci-STREAM integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective of the ongoing work is to develop a robust simulation capability for combustion problems in rocket engines. As an initial step towards validating this capability, a model problem is investigated in the present study which involves a gaseous oxygen/gaseous hydrogen (GO2/GH2) shear coaxial single element injector, for which experimental data are available. The sensitivity of the computed solutions to grid density, grid distribution, different turbulence models, and different near-wall treatments is investigated. A refined grid, which is clustered in the vicinity of

  6. Permeability Evolution During Reactive Flow Experiments on Cores Under CO2 Sequestration Conditions and Development of Fully Coupled Reactive Flow Simulations at the Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Kong, X. Z.; Luhmann, A. J.; Tutolo, B. M.; Seyfried, W. E., Jr.

    2015-12-01

    Physical, chemical, thermal, and mechanical processes can modify permeability and affect CO2 injectivity and reactive fluid flow during geologic CO2 sequestration. Here we report permeability evolutions observed in core-flood experiments using CO2-charged fluids under various formation conditions. Temperature-series experiments on consolidated dolomite cores show a permeability increase due to dissolution, followed by a two-step permeability decrease due to CO2 exsolution and secondary dolomite precipitation, as temperature is increased from 21 to 50°C and then to 100°C, respectively. CO2 mass balance calculations suggest that, under dynamic steady-state conditions, CO2 saturation and its relative permeability can only reach up to ~0.5 and ~0.0065, respectively. Permeability reductions of ~1/3 and mass losses of ~2% are observed both in a 52-day recycling and in two 3-day single-pass experiments with K-feldspar-rich sandstone (150°C, 200 bar). Water chemistry, SEM, and XRCT data suggest feldspar dissolution and precipitation of either boehmite (recycling) or kaolinite (single-pass) during the experiments. These observations indicate that permeability can decrease with increasing porosity due to mineral precipitation in critical pore throats. Single-pass experiments on nine dolomite cores (150°C and 150 bar with NaCl) reveal permeability enhancements and dissolution patterns at different flow rates. Permeability-porosity data indicate an increase in permeability enhancement rate per increase in porosity with reaction progress as dissolution channels lengthen along the core. These experimental observations provide the requisite data for informing up-scaled, fully-coupled reactive transport simulations of CO2 sequestration in interbedded siliclastic-carbonate sedimentary reservoirs, which we present.

  7. Numerical Simulation of the Static Stiffness Problem on a Catenary by using Threads

    NASA Astrophysics Data System (ADS)

    Alberto, A.; Arias, E.; Rojo, T.; Cuartero, F.; Benet, J.

    2007-12-01

    The static problem on the pantograph/catenary interaction consists on obtaining an optimal design of the interaction pantograph/catenary, ensuring suitable placement of the line with the contact wire that has to be parallel to the ground, so that the pantograph can obtain the energy from the line. The loss of contact between the pantograph head and the catenary produces in the train a loss of energy and, consequently, a decrease in the speed. In this paper, we will present a High Performance (HPC) implementation that has been carried out on various algorithms to solve the equilibrium equation of the system in a catenary model. This HPC has been carried out by exploiting some special properties of the involved data structures (iterative methods with preconditioning have been used for the resolution of this system) and on the other hand by applying parallelism. The last point is really very important due to the fact that currently, multicore architecture are present on our desktop, laptop, etc [l]. But, the programmers do not develop the applications taking into account the new features of this architectures and, in fact, they do not take beneffits of number of processors in it. So, also in this paper, a shared memory implementation based on threads is presented for solving the static problem on the pantograph/catenary interaction. This implementation allows to reduce dramatically the execution time in order to be able to carry out the whole simulations in a reasonable time. All these algorithms have been integrated with a user friendly interfaz in a tool software, which is currently used in the industry.

  8. Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem.

    PubMed

    Wagner, S; Lucka, F; Vorwerk, J; Herrmann, C S; Nolte, G; Burger, M; Wolters, C H

    2016-10-15

    To explore the relationship between transcranial current stimulation (tCS) and the electroencephalography (EEG) forward problem, we investigate and compare accuracy and efficiency of a reciprocal and a direct EEG forward approach for dipolar primary current sources both based on the finite element method (FEM), namely the adjoint approach (AA) and the partial integration approach in conjunction with a transfer matrix concept (PI). By analyzing numerical results, comparing to analytically derived EEG forward potentials and estimating computational complexity in spherical shell models, AA turns out to be essentially identical to PI. It is then proven that AA and PI are also algebraically identical even for general head models. This relation offers a direct link between the EEG forward problem and tCS. We then demonstrate how the quasi-analytical EEG forward solutions in sphere models can be used to validate the numerical accuracies of FEM-based tCS simulation approaches. These approaches differ with respect to the ease with which they can be employed for realistic head modeling based on MRI-derived segmentations. We show that while the accuracy of the most easy to realize approach based on regular hexahedral elements is already quite high, it can be significantly improved if a geometry-adaptation of the elements is employed in conjunction with an isoparametric FEM approach. While the latter approach does not involve any additional difficulties for the user, it reaches the high accuracies of surface-segmentation based tetrahedral FEM, which is considerably more difficult to implement and topologically less flexible in practice. Finally, in a highly realistic head volume conductor model and when compared to the regular alternative, the geometry-adapted hexahedral FEM is shown to result in significant changes in tCS current flow orientation and magnitude up to 45° and a factor of 1.66, respectively. PMID:27125841

  9. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    SciTech Connect

    Yamamoto, K.; Mizuno, Y.; Hibino, S.; Inuzuka, H.; Cao, Y.; Liu, Y.; Yazawa, K.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{sup 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.

  10. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  11. Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator

    SciTech Connect

    Chen Hongwei; Kong Xi; Qin Gan; Zhou Xianyi; Peng Xinhua; Du Jiangfeng; Chong Bo

    2011-03-15

    The method of quantum annealing (QA) is a promising way for solving many optimization problems in both classical and quantum information theory. The main advantage of this approach, compared with the gate model, is the robustness of the operations against errors originated from both external controls and the environment. In this work, we succeed in demonstrating experimentally an application of the method of QA to a simplified version of the traveling salesman problem by simulating the corresponding Schroedinger evolution with a NMR quantum simulator. The experimental results unambiguously yielded the optimal traveling route, in good agreement with the theoretical prediction.

  12. Fault deformation and movement under wide range of slip rates in boundary-value problem simulations

    NASA Astrophysics Data System (ADS)

    Liu, F.; Borja, R. I.

    2008-12-01

    We implement various frictional constitutive laws for fault deformation and movement in the framework of the extended finite element method. Slip rates considered span from microns per second characteristic of fault creep, to meters per second characteristic of seismic slip speeds. For slow slip rates the frictional law is characterized by the regularized Dieterich-Ruina slowness law; for fast slip rates the frictional shear strength varies with the normal stress raised to the power 1/4, in accordance with melt lubrication theory. The extended finite element method allows the fault to pass through the interior of the finite elements, thus resolving the intense deformation without having to align the fault on the element sides. Casting the frictional constitutive laws in a boundary-value problem allows the investigation of the effect of variable coefficient of friction on fault rupture and propagation under traction, displacement, and mixed traction/displacement boundary conditions. In addition to the variable coefficient of friction models, we also implement a slip- weakening model within the extended finite element framework. We present two-dimensional plane strain simulations showing effects of slip rates on fault propagation and slip distributions under various traction and displacement boundary conditions.

  13. Numerical Simulation of Liquid-Structure Interaction Problems in a Tank for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Bucchignani, E.; Pezzella, G.; Matrone, A.

    2009-01-01

    The current perspectives in the aerospace require a particular care for the analysis of several phenomena involving the coupling between the mechanical behaviour and other physics fields such as the fluid- structure interaction problem. This issue is particularly felt within the Reusable Launch Vehicle (RLV) design since, during reentry, such kind of vehicles carries large quantities of Main Engine Cut Off (MECO) residual propellants. The management of the residual propellant remaining in the reusable stage after MECO during a nominal mission is a crucial point for the design with respect to: dimensioning and weight, landing safety issues, and post landing procedures. The goal of this paper is the unsteady numerical simulation of a RLV-like tank configuration, filled with propellant, such as liquid Oxygen (LO2) and/or liquid Hydrogen (LH2), subject to a typical reentry loading environment. The flowfield pressure and the stress field in the tank structure have been evaluated considering the motion of an incompressible fluid with a mobile free surface, in a tank with deforming walls under the action of the liquid pressure. An unsteady Finite Element formulation is used, instead, for modelling the tank. The coupling algorithm, based on a staggered method, belongs to the class of the partition treatment techniques, which allow to solve the fluid and structural fields by means of two distinct models.

  14. Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Menelaou, K.; Yau, M. K.; Martinez, Y.

    2014-09-01

    Some aspects of the problem of secondary eyewall formation (SEF) are investigated with the aid of an idealized model. A series of experiments are conducted, starting with a strong annular vortex embedded in a quiescent background flow and forced by the sustained heating associated with a spiral rainband (control experiment). Following this, two experiments are configured to assess the impact of vertical wind shear (VWS) in the SEF process. The importance of the boundary layer force imbalance is finally investigated in a number of simulations in which surface and boundary layer physics are included. From the control experiment, it is found that in the absence of background environmental flow, the sustained latent heating associated with a spiral rainband can form a secondary eyewall even in the absence of a frictional boundary layer. The presence of VWS acts negatively in the SEF process by disrupting the organization of the potential vorticity induced by the rainband. When boundary layer physics is included, some similarities with previous studies are seen, but there is no SEF. These results suggest that the boundary layer most likely contributes to, rather than initiate, a secondary eyewall. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  15. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  16. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    SciTech Connect

    Ruban, V. P.

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.

  17. How to estimate the heat production of a 'hidden' reservoir in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2008-12-01

    The possibility of a hidden geochemical reservoir in the deep mantle has long been debated in geophysics and geochemistry, because of its bearings on the structure of the core-mantle boundary region, the origin of hotspots, the style of mantle convection, the history of the geomagnetic field, and the thermal evolution of Earth. The geochemical nature of a hidden reservoir, however, has been estimated based on composition models for the bulk silicate Earth, although these models preclude, in principle, the presence of such reservoir. Here we present a new self-consistent framework to estimate the neodymium and samarium concentration of a hidden reservoir and also constrain the heat production of the bulk silicate Earth, based on the notion of early global differentiation. Our geochemical inference is formulated as a nonlinear inverse problem, and the permissible solution space, delineated by Markov chain Monte Carlo simulations, indicates that an early enriched reservoir may occupy ~13% of the mantle with internal heat production of ~6~TW. If a hidden reservoir corresponds to the D" layer instead, its heat production would be only ~4~TW. The heat production of the bulk silicate Earth is estimated to be 18.9±3.8~TW, which is virtually independent of the likely reservoir size.

  18. Mixing of CO2 and CH4 in gas reservoirs: Code comparison studies

    SciTech Connect

    Oldenburg, Curt; Law, D.H.-S.; Le Gallo, Y.; White, S.P.

    2002-07-22

    Simulation of the mixing of carbon dioxide and methane is critical to modeling gas reservoir processes induced by the injection of carbon dioxide. We have compared physical property estimates and simulation results of the mixing of carbon dioxide and methane gases from four numerical simulation codes. Test Problem 1 considers molecular diffusion in a one-dimensional stably stratified system. Test Problem 2 considers molecular diffusion and advection in an unstable two-dimensional system. In general, fair to good agreement was observed between the codes tested.

  19. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir

    SciTech Connect

    Archie R. Taylor; James J. Justice; T. Scott Hickman

    1998-01-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  20. Optimisation of decision making under uncertainty throughout field lifetime: A fractured reservoir example

    NASA Astrophysics Data System (ADS)

    Arnold, Dan; Demyanov, Vasily; Christie, Mike; Bakay, Alexander; Gopa, Konstantin

    2016-10-01

    Assessing the change in uncertainty in reservoir production forecasts over field lifetime is rarely undertaken because of the complexity of joining together the individual workflows. This becomes particularly important in complex fields such as naturally fractured reservoirs. The impact of this problem has been identified in previous and many solutions have been proposed but never implemented on complex reservoir problems due to the computational cost of quantifying uncertainty and optimising the reservoir development, specifically knowing how many and what kind of simulations to run. This paper demonstrates a workflow that propagates uncertainty throughout field lifetime, and into the decision making process by a combination of a metric-based approach, multi-objective optimisation and Bayesian estimation of uncertainty. The workflow propagates uncertainty estimates from appraisal into initial development optimisation, then updates uncertainty through history matching and finally propagates it into late-life optimisation. The combination of techniques applied, namely the metric approach and multi-objective optimisation, help evaluate development options under uncertainty. This was achieved with a significantly reduced number of flow simulations, such that the combined workflow is computationally feasible to run for a real-field problem. This workflow is applied to two synthetic naturally fractured reservoir (NFR) case studies in appraisal, field development, history matching and mid-life EOR stages. The first is a simple sector model, while the second is a more complex full field example based on a real life analogue. This study infers geological uncertainty from an ensemble of models that are based on the carbonate Brazilian outcrop which are propagated through the field lifetime, before and after the start of production, with the inclusion of production data significantly collapsing the spread of P10-P90 in reservoir forecasts. The workflow links uncertainty

  1. Reservoir management of the Hartzog Draw field

    SciTech Connect

    Hunt, R.D.; Hearn, C.L.

    1982-07-01

    The Hartzog Draw field is a recently discovered major oil reservoir in northwestern Wyoming. Initial reservoir performance indicated that the field soon would be depleted below the bubble-point pressure. To evaluate secondary recovery possibiliites, the working interest owners cooperated in an extensive reservoir study. Although there were some unique problems, both in evaluating reservoir data and in obtaining a unitization agreement, this effort led to the formation of the Hartzog Draw Unit within 5 years of field discovery. Secondary recovery by waterflooding has begun, and enhanced recovery possibilities are being evaluated.

  2. Reservoir management of the Hartzog draw field

    SciTech Connect

    Hunt, R.D.; Hearn, C.H.

    1982-07-01

    The Hartzog draw field is a recently discovered major oil reservoir in northeastern Wyoming. Initial reservoir performance indicated that the field soon would be depleted below the bubble-point pressure. To evaluate secondary recovery possibilities, the working interest owners cooperated in an extensive reservoir study. Although there were some unique problems, both in evaluating reservoir data and in obtaining a unitization agreement, this effort led to the formation of the Hartzog Draw Unit within 5 years of field discovery. Secondary recovery by waterflooding has begun, and enhanced recovery possibilities are being evaluated.

  3. Simulating the Camp David Negotiations: A Problem-Solving Tool in Critical Pedagogy

    ERIC Educational Resources Information Center

    McMahon, Sean F.; Miller, Chris

    2013-01-01

    This article reflects critically on simulations. Building on the authors' experience simulating the Palestinian-Israeli-American Camp David negotiations of 2000, they argue that simulations are useful pedagogical tools that encourage creative--but not critical--thinking and constructivist learning. However, they can also have the deleterious…

  4. Simulation-Based Medical Education Is No Better than Problem-Based Discussions and Induces Misjudgment in Self-Assessment

    ERIC Educational Resources Information Center

    Wenk, Manuel; Waurick, Rene; Schotes, David; Wenk, Melanie; Gerdes, Christina; Van Aken, Hugo K.; Popping, Daniel M.

    2009-01-01

    Simulation-based teaching (SBT) is increasingly used in medical education. As an alternative to other teaching methods there is a lack of evidence concerning its efficacy. The aim of this study was to evaluate the potency of SBT in anesthesia in comparison to problem-based discussion (PBD) with students in a randomized controlled setting.…

  5. A Problem-Based Learning Approach to Civics Education: Exploring the Free Exercise Clause with Supreme Court Simulations

    ERIC Educational Resources Information Center

    Pagnotti, John; Russell, William B., III

    2015-01-01

    The purpose of this article is to empower those interested in teaching students powerful and engaging social studies. Through the lens of Supreme Court simulations, this article provides educators with a viable, classroom-tested lesson plan to bring Problem-Based Learning into their classrooms. The specific aim of the lesson is to provide students…

  6. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    ERIC Educational Resources Information Center

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  7. Simulator Building as a Problem-Based Learning Approach for Teaching Students in a Computer Architecture Course

    ERIC Educational Resources Information Center

    Ang, Li-minn; Seng, Kah Phooi

    2008-01-01

    This paper presents a Problem-Based Learning (PBL) approach to support and promote deeper student learning in a computer architecture course. A PBL approach using a simulator building activity was used to teach part of the course. The remainder of the course was taught using a traditional lecture-tutorial approach. Qualitative data was collected…

  8. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Hara, S. , Casteel, J.

    1997-05-11

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  9. Hedging rule for reservoir operations: 2. A numerical model

    NASA Astrophysics Data System (ADS)

    You, Jiing-Yun; Cai, Ximing

    2008-01-01

    Optimization models for reservoir operation analysis usually use a heuristic algorithm to search for the hedging rule. This paper presents a method that derives a hedging rule from theoretical analysis (J.-Y. You and X. Cai, 2008) with an explicit two-period Markov hydrology model, a particular form of nonlinear utility function, and a given inflow probability distribution. The unique procedure is to embed hedging rule derivation based on the marginal utility principle into reservoir operation simulation. The simulation method embedded with the optimization principle for hedging rule derivation will avoid both the inaccuracy problem caused by trail and error with traditional simulation models and the computational difficulty ("curse of dimensionality") with optimization models. Results show utility improvement with the hedging policy compared to the standard operation policy (SOP), considering factors such as reservoir capacity, inflow level and uncertainty, price elasticity and discount rate. Following the theoretical analysis presented in the companion paper, the condition for hedging application, the starting water availability and ending water availability for hedging, is reexamined with the numerical example; the probabilistic performance of hedging and SOP regarding water supply reliability is compared; and some findings from the theoretical analysis are verified numerically.

  10. ENVIRONMENTAL AUDITING: An Integrated Approach to Reservoir Management: The Williston Reservoir Case Study.

    PubMed

    Baker; Young; Arocena

    2000-05-01

    / The management of industrial reservoirs for hydroelectric energy can cause severe impacts to surrounding communities. This study examines the generation of dust along the northern foreshore zones of Williston Reservoir in northern British Columbia. The dust is generated in the spring when the reservoir levels are low and impacts a relocated First Nations' village (Tsay Keh) at the north end of the reservoir. Data were gathered to provide an overview of the physical conditions that contribute to the dust problem, including a social survey, soil analysis, and vegetation inventory. The study provides a scoping method to assess a large-scale and complex problem with respect to dust management along a large reservoir. Methods for dust control include short- and long-term solutions that integrate the use of native vegetation along the foreshore zones of the reservoir.

  11. Artificial neural networks as adjuncts for assessing medical students' problem solving performances on computer-based simulations.

    PubMed

    Stevens, R H; Najafi, K

    1993-04-01

    Artificial neural networks were trained by supervised learning to recognize the test selection patterns associated with students' successful solutions to seven immunology computer-based simulations. New test selection patterns evaluated by the trained neural network were correctly classified as successful or unsuccessful solutions to the problem > 90% of the time. The examination of the neural networks output weights after each test selection revealed a progressive and selective increase for the relevant problem suggesting that a successful solution is represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions were classified by the neural network software into two patterns of students performance. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased toward one of the remaining six incorrect problems suggesting that the student misrepresented the current problem as an instance of a previous problem. Finally, neural network analysis could detect cases where the students switched hypotheses during the problem solving exercises.

  12. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect

    Watney, W.L.

    1992-01-01

    The objectives of this research are to: (1) assist producers in locating and producing petroleum not currently being produced because of technological problems or the inability to identify details of reservoir compartmentalization (2) to decrease risk in field development, (3) accelerate the retrieval and analysis of baseline geoscience information for initial reservoir description. The interdisciplinary data sought in this research will be used to resolve specific problems in correlation of strata and to establish the mechanisms responsible for the Upper Pennsylvanian stratigraphic architecture in the Midcontinent. The data will better constrain ancillary problems related to the validation of depositional sequence and subsequence correlation, subsidence patterns, sedimentation rates, sea-level changes, and the relationship of sedimentary sequences to basement terrains. The geoscientific information, including data from field studies, surface and near-surface reservoir analogues, and regional data base development, will also be used for development of geologic computer process-based simulation models tailored to specific depositional sequences for use in improving prediction of reservoir characteristics. Accomplishments for this quarter are described for the following tasks: depositional sequence characterization; computer modeling; and reservoir development, prediction, and play potential. 11 figs.

  13. [Simulation technologies in anesthesiology, resuscitation and intensive care: state of the problem].

    PubMed

    Pasechnik, I N; Skobelev, E I; Volkova, N N; Sal'nikov, P S

    2014-01-01

    The foundation of simulation technologies application in educational process is presented in the article. It is described difficulties during anesthesiologists-resuscitators training and education of physicians of not intensive care specialty in intensive care methods. It was emphasized that new innovative educational stage is formed at present time. It is simulation stage between preclinical and clinical stages. Theoretical foundation and practical evidence of efficiency of simulation training are expressed in detail. PMID:25589311

  14. Seismic monitoring of heavy oil reservoirs: Rock physics and finite element modelling

    NASA Astrophysics Data System (ADS)

    Theune, Ulrich

    In the past decades, remote monitoring of subsurface processes has attracted increasing attention in geophysics. With repeated geophysical surveys one attempts to detect changes in the physical properties in the underground without directly accessing the earth. This technique has been proven to be very valuable for monitoring enhanced oil recovery programs. This thesis presents an modelling approach for the feasibility analysis for monitoring of a thermal enhanced oil recovery technique applied to heavy oil reservoirs in the Western Canadian Sedimentary Basin. In order to produce heavy oil from shallow reservoirs thermal oil recovery techniques such as the Steam Assisted Gravity Drainage (SAGD) are often employed. As these techniques are expensive and technically challenging, early detection of operational problems is without doubt of great value. However, the feasibility of geophysical monitoring depends on many factors such as the changes in the rock physical properties of the target reservoir. In order to access the feasibility of seismic monitoring for heavy oil reservoirs, a fluid-substitutional rock physical study has been carried out to simulate the steam injection. The second modelling approach is based on a modified finite element algorithm to simulate the propagation of elastic waves in the earth, which has been developed independently in the framework of this thesis. The work summarized in this thesis shows a possibility to access the feasibility of seismic monitoring for heavy oil reservoirs through an extensive rock-physical study. Seismic monitoring is a useful tool in reservoir management decision process. However, the work reported here suggests that seismic monitoring of SAGD processes in the heavy oil reservoirs of the Western Canadian Sedimentary Basin is only feasible in shallow, unconsolidated deposits. For deeper, but otherwise geological similar reservoirs, the SAGD does not create a sufficient change in the rock physical properties to be

  15. Training Students to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO{sub 2} Sequestration Prediction, Simulation, and Monitoring

    SciTech Connect

    Bowen, Brenda

    2013-09-30

    The objective of this project was to expose and train multiple students in geological tools that are essential to reservoir characterization and geologic sequestration including but not limited to advanced petrological methods, mineralogical methods, and geochemical methods; core analysis, and geophysical well-log interpretation. These efforts have included training of multiple students through geologically based curriculum and research using advanced petrological, mineralogical, and geochemical methods. In whole, over the last 3+ years, this award has supported 5,828 hours of student research, supporting the work of several graduate and undergraduate students. They have all received training directly related to ongoing CO{sub 2} sequestration demonstrations. The students have all conducted original scientific research on topics related to understanding the importance of lithological, textural, and compositional variability in formations that are being targeted as CO{sub 2} sequestration reservoirs and seals. This research was linked to the Mount Simon Sandstone reservoir and overlying Eau Claire Formation seal in the Illinois Basin- a system where over one million tons of CO{sub 2} are actively being injected with the first large-scale demonstration of anthropogenic CO{sub 2} storage in the U.S. Student projects focused specifically on 1) reservoir porosity characterization and evaluation, 2) petrographic, mineralogical, and geochemical evidence of fluid-related diagenesis in the caprock, 3) textural changes in reservoir samples exposed to experimental CO{sub 2} + brine conditions, 4) controls on spatial heterogeneity in composition and texture in both the reservoir and seal, 5) the implications of small-scale fractures within the reservoir, and 6) petrographic and stable isotope analyses of carbonates in the seal to understand the burial history of the system. The student-led research associated with this project provided real-time and hands-on experience with a

  16. Characterizing the "Lake Effect" Problem in Coupled GIS-HEC Floodplain Simulations

    NASA Astrophysics Data System (ADS)

    van Eeckhout, M. E.; McLin, S. G.; Coonrod, J. E.

    2002-12-01

    Coupled GIS-HEC modeling applications for floodplain analyses are becoming more commonplace because digital elevation models (DEM) are widely available and software developments for geographical information systems (GIS) continue to improve. The River Analysis System (HEC-RAS) developed by the Corps of Engineers' Hydrologic Engineering Center is widely utilized in the USA for flood insurance studies and hazardous waste facility permitting requirements. The one-dimensional finite difference representation of the governing Saint Venant equations are used to describe hydraulics in the channel and floodplain by a series of cross-sections drawn perpendicular to the prevailing flow directions. Costly surveying tasks are minimized because topographic data are extracted from a DEM using a linked Arc-View GIS software interface (HEC-geoRAS). Ultimately, a floodplain inundation map is generated by the intersection of a three-dimensional triangular irregular network (TIN) representing the land surface and a second TIN representing the water surface. The accuracy of this coupled approach may be of concern, however, since a "lake effect" may be observed in many routine applications. Here predicted floodplain reaches are discontinuous and appear as isolated lakes. This problem is persistent even when high-resolution DEM surveys are available from airborne laser altimetery and aerial photogrammetry. Comparisons of floodplain inundation maps generated from gridded 0.3 m (1 ft), 1.2 m (4 ft), and 10 m (33-ft) DEM data are evaluated for several canyon reaches on Pajarito Plateau near Los Alamos, New Mexico. These floodplains were systematically defined at 15 m (50 ft), 31 m (100 ft), and 61 m (200 ft) cross sectional intervals over channel reaches with slopes varying between 1 and 6 percent. In addition, TIN tolerance (or elevation accuracy) varied between 0.15 m (0.5 ft) and 0.61 m (2 ft). Improvements in DEM resolution did not significantly reduce the "lake effect" or alter

  17. Several basic problems in digital simulation of structural reliability of Solid Rocket Motor (SRM)

    NASA Astrophysics Data System (ADS)

    Tan, Sanwu; Wang, Binxun

    1993-08-01

    The aim of the research, the main technical specifications, the verification test, and the critical technical items are discussed. The simulation process of fiber-reinforced composite cases and the solid grain of the SRM were presented as examples to illustrate the general program of digital simulation for SRM structural reliability.

  18. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, March 13--June 12, 1997

    SciTech Connect

    1997-12-31

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 650 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 3,000 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress in core analysis, reservoir surveillance, well stimulation, validation of reservoir characterization (includes thin section analyses, depositional environments, and paleontologic analysis), material balance decline curve analysis, and validation of reservoir simulation (includes geostatistical and deterministic).

  19. Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs

    SciTech Connect

    Pruess, Karsten

    2006-11-06

    Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

  20. Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages

    ERIC Educational Resources Information Center

    Beal, Carole R.; Stevens, Ronald H.

    2011-01-01

    Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…

  1. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    SciTech Connect

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-05-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

  2. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  3. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  4. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    SciTech Connect

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  5. Numerical simulations and the problem of periodicity in the cratering record.

    PubMed

    Trefil, J S; Raup, D M

    1987-01-01

    Ages of craters in the record of impacts on earth may be uniformly period, totally random, or a mixture of the two. These alternatives are studied through numerical simulation wherein time-series analysis is performed on real and simulated sequences to which random noise has been added to represent age-dating uncertainty. We conclude that the real record is most likely to have been generated by a mixture of random and periodic impacts, with the random events constituting the majority.

  6. Improved Simulation of Subsurface Flow in Heterogeneous Reservoirs Using a Fully Discontinuous Control-Volume-Finite-Element Method, Implicit Timestepping and Dynamic Unstructured Mesh Optimization

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.

    2015-12-01

    We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.

  7. Status of Norris Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  8. simpegEM: An open-source resource for simulation and parameter estimation problems in electromagnetic geophysics

    NASA Astrophysics Data System (ADS)

    Heagy, L. J.; Cockett, R.; Kang, S.; Rosenkjaer, G. K.; Oldenburg, D.

    2015-12-01

    A large suite of problems in applied geophysics can be tackled by simulating and inverting electromagnetic (EM) data. Problems can be treated in the time- or frequency-domain, sources can be magnetic or electric and either natural or controlled, techniques such as primary-secondary may be employed and different problem dimensionalities, including 1D, 2D and 3D, may be considered. To address the inverse problem, derivatives of each of these element must be readily accessible so they may be composed to form the sensitivity for the approach taken. For many applications, efficient algorithms have been designed and implemented. However, inconsistencies between implementations of different problem-types and modeling techniques often limits extensibility and interoperability, particularly when addressing the inverse problem. Building on top of the open-source simulation and gradient based parameter estimation framework, SimPEG (http://simpeg.xyz), we have developed simpegEM to be a modular framework for geophysical problems in electromagnetics. The SimPEG implementation in Python provides finite-volume discretizations for both structured and semi-structured meshes, along with machinery for the inversion, including optimization and regularization routines. The elements of the EM simulation, including the formulation of Maxwell's equations and definitions of the sources and receivers as well as their derivatives are implemented in a modular, object-oriented manner. This structure and organization of the code allow elements to be readily interchanged and extensions made. In this presentation, we discuss an example with steel-cased wells. Steel is highly conductive, has a significant magnetic permeability and is very thin compared to its length, making it a challenging structure to model. Using the open-source frameworks of SimPEG and simpegEM, we solve this using a primary-secondary approach that employs multiple formulations of Maxwell's equations and both a 2D

  9. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  10. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

    SciTech Connect

    Hoak, T.; Jenkins, R.; Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W.; Tuncay, K.; Sundberg, K.

    1998-07-01

    The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.

  11. Evaluation of Global Hydrological Model considering Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2015-12-01

    Construction of reservoirs, especially in the last half of the 20th century, has greatly contributed to the prevention of riverine disasters and the security of water supplies in the world. Since reservoirs markedly alter the river flow in downstream, precise modeling of reservoir operation is necessary for the improvement of river flow simulations. Yet global hydrological simulations considering reservoir operation are still immature - although actual reservoirs are practically operated by considering both meteorological conditions and regional requests within each river basin, modeled reservoirs are operated according to simplified operation schemes optimized for global applicability with less regional variety. Thus, checking the performance of global hydrological models based on the comparison of model outputs with historical observation records is important for better understanding of uncertainties in the hydrological simulation. In this study, we conducted long-term historical hydrological simulations considering 6862 reservoirs worldwide. Simulation settings were based on the protocol of the model intercomparison project, termed ISI-MIP2.1A. We compared time-series of observed and simulated reservoir storage to examine the performance of reservoir operation schemes adopted in the H08 global hydrological model for 29 reservoirs, most of which are located in the United States and Canada, selected by considering data availability on the reservoir operation. We ran the hydrological model under four different meteorological forcing data sets distributed for ISI-MIP2.1A simulations for a historical period. By examining whether the observed water storage lies within the spread of simulated water storage with the four sets of meteorological forcing, we identified a prevailing source of errors in the simulation of the river discharge - reservoir operation schemes or meteorological forcing data.

  12. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq.

    PubMed

    Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S

    2016-01-01

    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation.

  13. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq.

    PubMed

    Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S

    2016-01-01

    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation. PMID:27390638

  14. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  15. Systematic problems with using dark matter simulations to model stellar halos

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Valluri, Monica; Stinson, Greg S.; Debattista, Victor P.; Couchman, H. M. P.; Wadsley, James

    2014-03-10

    The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.

  16. Modeling of matrix acidizing process under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Turegeldieva, Karlygash; Assilbekov, Bakhytzhan; Zhapbasbayev, Uzak; Zolotukhin, Anatoly; Bekibaev, Timur; Kenzhebekov, Nurlan; Gubkin Russian State University of oil; gas Collaboration

    2013-11-01

    Effectiveness of the process depends on the parameters: well choice, geological structure of the reservoir, definition of physical and chemical properties of rocks and fluids, agent choice. There are different mathematical models of the matrix acidizing, including the two scale model. These models describe the process in the core scale and Darcy scale, i.e. in an area with dimensions of several centimeters. It leads to the main problem - how to use these models to the near wellbore scale under reservoir conditions. Some authors have increased the dimensions of the cores in numerical simulations and investigated the influence of the core dimensions to acidizing process. In this paper effort to indirectly solve this problem made. It based on boundary conditions alteration and simultaneous solution of matrix acidizing in damaged zone and reservoir fluid flow models. Furthermore in this work the criterion of the acid injection shut down for optimal breakthrough volume calculation was modified. Influence of boundary conditions on near well-bore zone treatment process was investigated. Science Committee of Ministry of Education and Science of Republic of Kazakhstan.

  17. Structural-geological models of the Ketzin CO2 storage pilot site used for site evaluation, dynamic reservoir simulations, and monitoring purposes

    NASA Astrophysics Data System (ADS)

    Norden, Ben; Kling, Christian; Frykman, Peter; Krawczyk, Charlotte M.

    2013-04-01

    The saline aquifer of the Stuttgart Formation (Upper Triassic) is used for a carbon dioxide (CO2) storage research project at Ketzin, about 25 km west of Berlin (Germany). The structural and lithological site characterization relies on a comprehensive data set, consisting of former exploration data (hydrocarbon and natural gas storage exploration) and of the recent exploration, production, and monitoring data acquired at the CO2 pilot site. The quality of the data in terms of resolution and documentation is variable, covering also different scales. We present an overview of the structural and lithological characterization of the Ketzin CO2 pilot site that is based on the evolution of the geological models prepared for storage site development and site operation. In order to be able to assess risk elements, especially in the early regulatory and permitting stages of the project, the geological model building concentrated on two scales: Firstly, the site scale (called geo-model, comprising the reservoir and its overburden), and, secondly, the reservoir scale, using a higher resolution. The reservoir scale was applied to the target horizon of the CO2 storage (the Triassic Stuttgart Formation) and the Quaternary to Tertiary layers, presenting the near-surface groundwater system. The first geo-models illustrate the geological setting of the Ketzin site as a part of a salt-anticlinal structure based on seismic legacy data. These models were used to give first estimates on the deep natural groundwater flow and to establish pre-drilling profiles, but could not give reliable information on the existence and distribution of faults. Nevertheless, the estimated bed boundaries of the Stuttgart Formation served as an input for the construction of the first reservoir models of the Stuttgart Formation which were used to illustrate the expected variability and heterogeneity in rock properties. The target formation is lithologically very heterogeneous, reflecting a complex

  18. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    SciTech Connect

    Akhil Datta-Gupta

    2003-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approach to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.

  19. Global crop production forecasting - A simulation analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Golden, H.; Neiers, J. W.

    1978-01-01

    Alternative data systems for a global crop production forecasting system were studied with the aid of a unique simulation facility called the Data System Dynamic Simulator (DSDS). Information system requirements were determined and compared with existing and planned data systems, and deficiencies were identified and analyzed. A first step was to determine the data load for an operational global crop production forecasting system as a function of data frequency, crop types, biophases, cloud coverage, and number of satellites. The DSDS was used to correlate the interrelated influence of orbital parameters, crop calendars, and cloud conditions to generate global data loading profiles. Some of the more important conclusions and the main features of the simulation system are presented.

  20. Simulation of heterogeneous flow and the problem of application of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Tsymbal, V. P.; Sechenov, P. A.; Olennikov, A. A.; Padalko, A. G.

    2016-09-01

    The article describes a dissipative structure - gravity separator in the jet-emulsion reactor. The simulation model is based on “first principles” and the Monte Carlo method of statistical tests. Dispersed particles of the charge and reaction products, their possible transformations and variants of interactions are treated as the first level. The core of this model is the process flow of the condensed particles in the vertical gas flow. Taking into account the experience of simulation and the presented considerations the concept of turbulent viscosity for heterogeneous flow is defined, the task and the direction of further investigations are defined.

  1. Using precision gravity data in geothermal reservoir engineering modeling studies

    SciTech Connect

    Atkinson, Paul G.; Pederseen, Jens R.

    1988-01-01

    Precision gravity measurements taken at various times over a geothermal field can be used to derive information about influx into the reservoir. Output from a reservoir simulation program can be used to compute surface gravity fields and time histories. Comparison of such computer results with field-measured gravity data can add confidence to simulation models, and provide insight into reservoir processes. Such a comparison is made for the Bulalo field in the Philippines.

  2. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced