Sample records for residual setup error

  1. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs‐at‐risk margination using daily CT on‐rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul

    2014-01-01

    Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr

  2. Efficacy and workload analysis of a fixed vertical couch position technique and a fixed‐action–level protocol in whole‐breast radiotherapy

    PubMed Central

    Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2015-01-01

    Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no‐action–level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record‐and‐verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole‐breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position‐based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior–inferior setup errors during fractions 1–12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed‐action–level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off‐line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5 mm reduced the frequency of mediolateral and superior–inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off‐line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed‐action–level protocol with 2.5 mm correction threshold, for correction of the mediolateral and the superior–inferior setup errors, was proved to provide adequate and comparable patient setup accuracy in WBRT and WBRT with additional LN irradiation. PACS numbers: 87.53.Kn, 87.57.‐s

  3. Setup errors and effectiveness of Optical Laser 3D Surface imaging system (Sentinel) in postoperative radiotherapy of breast cancer.

    PubMed

    Wei, Xiaobo; Liu, Mengjiao; Ding, Yun; Li, Qilin; Cheng, Changhai; Zong, Xian; Yin, Wenming; Chen, Jie; Gu, Wendong

    2018-05-08

    Breast-conserving surgery (BCS) plus postoperative radiotherapy has become the standard treatment for early-stage breast cancer. The aim of this study was to compare the setup accuracy of optical surface imaging by the Sentinel system with cone-beam computerized tomography (CBCT) imaging currently used in our clinic for patients received BCS. Two optical surface scans were acquired before and immediately after couch movement correction. The correlation between the setup errors as determined by the initial optical surface scan and CBCT was analyzed. The deviation of the second optical surface scan from the reference planning CT was considered an estimate for the residual errors for the new method for patient setup correction. The consequences in terms for necessary planning target volume (PTV) margins for treatment sessions without setup correction applied. We analyzed 145 scans in 27 patients treated for early stage breast cancer. The setup errors of skin marker based patient alignment by optical surface scan and CBCT were correlated, and the residual setup errors as determined by the optical surface scan after couch movement correction were reduced. Optical surface imaging provides a convenient method for improving the setup accuracy for breast cancer patient without unnecessary imaging dose.

  4. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  5. First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy.

    PubMed

    Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi

    2012-09-01

    Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.

  6. Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: Comparison of two arm fixation devices and the effect of arm position correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapanen, Mika; Department of Medical Physics, Tampere University Hospital; Laaksomaa, Marko, E-mail: Marko.Laaksomaa@pshp.fi

    2016-04-01

    Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors andmore » setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.« less

  7. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less

  8. Reduction of prostate intrafraction motion using gas-release rectal balloons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Zhong; Zhao Tianyu; Li Zuofeng

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated withmore » the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.« less

  9. Cone-Beam CT Assessment of Interfraction and Intrafraction Setup Error of Two Head-and-Neck Cancer Thermoplastic Masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velec, Michael; Waldron, John N.; O'Sullivan, Brian

    2010-03-01

    Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (sigma) and systematic (SIGMA) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use ofmore » Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction sigma was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction SIGMA was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction sigma and SIGMA were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.« less

  10. Image guidance in prostate cancer - can offline corrections be an effective substitute for daily online imaging?

    PubMed

    Prasad, Devleena; Das, Pinaki; Saha, Niladri S; Chatterjee, Sanjoy; Achari, Rimpa; Mallick, Indranil

    2014-01-01

    This aim of this study was to determine if a less resource-intensive and established offline correction protocol - the No Action Level (NAL) protocol was as effective as daily online corrections of setup deviations in curative high-dose radiotherapy of prostate cancer. A total of 683 daily megavoltage CT (MVCT) or kilovoltage CT (kvCBCT) images of 30 patients with localized prostate cancer treated with intensity modulated radiotherapy were evaluated. Daily image-guidance was performed and setup errors in three translational axes recorded. The NAL protocol was simulated by using the mean shift calculated from the first five fractions and implemented on all subsequent treatments. Using the imaging data from the remaining fractions, the daily residual error (RE) was determined. The proportion of fractions where the RE was greater than 3,5 and 7 mm was calculated, and also the actual PTV margin that would be required if the offline protocol was followed. Using the NAL protocol reduced the systematic but not the random errors. Corrections made using the NAL protocol resulted in small and acceptable RE in the mediolateral (ML) and superoinferior (SI) directions with 46/533 (8.1%) and 48/533 (5%) residual shifts above 5 mm. However; residual errors greater than 5mm in the anteroposterior (AP) direction remained in 181/533 (34%) of fractions. The PTV margins calculated based on residual errors were 5mm, 5mm and 13 mm in the ML, SI and AP directions respectively. Offline correction using the NAL protocol resulted in unacceptably high residual errors in the AP direction, due to random uncertainties of rectal and bladder filling. Daily online imaging and corrections remain the standard image guidance policy for highly conformal radiotherapy of prostate cancer.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Court, L

    Purpose: Despite daily image guidance setup uncertainties can be high when treating large areas of the body. The aim of this study was to measure local uncertainties inside the PTV for patients receiving IMRT to the mediastinum region. Methods: Eleven lymphoma patients that received radiotherapy (breath-hold) to the mediastinum were included in this study. The treated region could range all the way from the neck to the diaphragm. Each patient had a CT scan with a CT-on-rails system prior to every treatment. The entire PTV region was matched to the planning CT using automatic rigid registration. The PTV was thenmore » split into 5 regions: neck, supraclavicular, superior mediastinum, upper heart, lower heart. Additional auto-registrations for each of the 5 local PTV regions were performed. The residual local setup errors were calculated as the difference between the final global PTV position and the individual final local PTV positions for the AP, SI and RL directions. For each patient 4 CT scans were analyzed (1 per week of treatment). Results: The residual mean group error (M) and standard deviation of the inter-patient (or systematic) error (Σ) were lowest in the RL direction of the superior mediastinum (0.0mm and 0.5mm) and highest in the RL direction of the lower heart (3.5mm and 2.9mm). The standard deviation of the inter-fraction (or random) error (σ) was lowest in the RL direction of the superior mediastinum (0.5mm) and highest in the SI direction of the lower heart (3.9mm) The directionality of local uncertainties is important; a superior residual error in the lower heart for example keeps it in the global PTV. Conclusion: There is a complex relationship between breath-holding and positioning uncertainties that needs further investigation. Residual setup uncertainties can be significant even under daily CT image guidance when treating large regions of the body.« less

  12. SU-F-T-642: Sub Millimeter Accurate Setup of More Than Three Vertebrae in Spinal SBRT with 6D Couch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X; Zhao, Z; Yang, J

    Purpose: To assess the initial setup accuracy in treating more than 3 vertebral body levels in spinal SBRT using a 6D couch. Methods: We retrospectively analyzed last 20 spinal SBRT patients (4 cervical, 9 thoracic, 7 lumbar/sacrum) treated in our clinic. These patients in customized immobilization device were treated in 1 or 3 fractions. Initial setup used ExacTrac and Brainlab 6D couch to align target within 1 mm and 1 degree, following by a cone beam CT (CBCT) for verification. Our current standard practice allows treating a maximum of three continuous vertebrae. Here we assess the possibility to achieve submore » millimeter setup accuracy for more than three vertebrae by examining the residual error in every slice of CBCT. The CBCT had a range of 17.5 cm, which covered 5 to 9 continuous vertebrae depending on the patient and target location. In the study, CBCT from the 1st fraction treatment was rigidly registered with the planning CT in Pinnacle. The residual setup error of a vertebra was determined by expanding the vertebra contour on the planning CT to be large enough to enclose the corresponding vertebra on CBCT. The margin of the expansion was considered as setup error. Results: Out of the 20 patients analyzed, initial setup accuracy can be achieved within 1 mm for a span of 5 or more vertebrae starting from T2 vertebra to inferior vertebra levels. 2 cervical and 2 upper thoracic patients showed the cervical spine was difficult to achieve sub millimeter accuracy for multi levels without a customized immobilization headrest. Conclusion: If the curvature of spinal columns can be reproduced in customized immobilization device during treatment as simulation, multiple continuous vertebrae can be setup within 1 mm with the use of a 6D couch.« less

  13. Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: intrafraction motion analysis accounting for all six degrees of freedom.

    PubMed

    Hyde, Derek; Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C Shun; Ma, Lijun; Sahgal, Arjun

    2012-03-01

    To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1° tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1° degree after the first 10 patients. Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1°. In analyzing the impact of the time interval for verification imaging (10 ± 3 min) and subsequent image acquisitions (17 ± 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis (± SD) were 0.7 ± 0.5 mm and 0.5 ± 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1° correction threshold, the target was localized to within 1.2 mm and 0.9° with 95% confidence. Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion allowing for safe spine SBRT delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Evaluation of overall setup accuracy and adequate setup margins in pelvic image-guided radiotherapy: Comparison of the male and female patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laaksomaa, Marko, E-mail: marko.laaksomaa@pshp.fi; Kapanen, Mika; Department of Medical Physics, Tampere University Hospital

    We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance.more » The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients.« less

  15. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra

    2013-10-01

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less

  16. Image guidance during head-and-neck cancer radiation therapy: analysis of alignment trends with in-room cone-beam computed tomography scans.

    PubMed

    Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy

    2012-06-01

    On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Improved setup and positioning accuracy using a three‐point customized cushion/mask/bite‐block immobilization system for stereotactic reirradiation of head and neck cancer

    PubMed Central

    Wang, He; Wang, Congjun; Tung, Samuel; Dimmitt, Andrew Wilson; Wong, Pei Fong; Edson, Mark A.; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Gunn, Gary B.; Takiar, Vinita; Wang, Xin A.; Luo, Dershan; Yang, James N.; Wong, Jennifer

    2016-01-01

    The purpose of this study was to investigate the setup and positioning uncertainty of a custom cushion/mask/bite‐block (CMB) immobilization system and determine PTV margin for image‐guided head and neck stereotactic ablative radiotherapy (HN‐SABR). We analyzed 105 treatment sessions among 21 patients treated with HN‐SABR for recurrent head and neck cancers using a custom CMB immobilization system. Initial patient setup was performed using the ExacTrac infrared (IR) tracking system and initial setup errors were based on comparison of ExacTrac IR tracking system to corrected online ExacTrac X‐rays images registered to treatment plans. Residual setup errors were determined using repeat verification X‐ray. The online ExacTrac corrections were compared to cone‐beam CT (CBCT) before treatment to assess agreement. Intrafractional positioning errors were determined using prebeam X‐rays. The systematic and random errors were analyzed. The initial translational setup errors were −0.8±1.3 mm, −0.8±1.6 mm, and 0.3±1.9 mm in AP, CC, and LR directions, respectively, with a three‐dimensional (3D) vector of 2.7±1.4 mm. The initial rotational errors were up to 2.4° if 6D couch is not available. CBCT agreed with ExacTrac X‐ray images to within 2 mm and 2.5°. The intrafractional uncertainties were 0.1±0.6 mm, 0.1±0.6 mm, and 0.2±0.5 mm in AP, CC, and LR directions, respectively, and 0.0∘±0.5°, 0.0∘±0.6°, and −0.1∘±0.4∘ in yaw, roll, and pitch direction, respectively. The translational vector was 0.9±0.6 mm. The calculated PTV margins mPTV(90,95) were within 1.6 mm when using image guidance for online setup correction. The use of image guidance for online setup correction, in combination with our customized CMB device, highly restricted target motion during treatments and provided robust immobilization to ensure minimum dose of 95% to target volume with 2.0 mm PTV margin for HN‐SABR. PACS number(s): 87.55.ne PMID:27167275

  18. Teaching Cancer Patients the Value of Correct Positioning During Radiotherapy Using Visual Aids and Practical Exercises.

    PubMed

    Hansen, Helle; Nielsen, Berit Kjærside; Boejen, Annette; Vestergaard, Anne

    2018-06-01

    The aim of this study was to investigate if teaching patients about positioning before radiotherapy treatment would (a) reduce the residual rotational set-up errors, (b) reduce the number of repositionings and (c) improve patients' sense of control by increasing self-efficacy and reducing distress. Patients were randomized to either standard care (control group) or standard care and a teaching session combining visual aids and practical exercises (intervention group). Daily images from the treatment sessions were evaluated off-line. Both groups filled in a questionnaire before and at the end of the treatment course on various aspects of cooperation with the staff regarding positioning. Comparisons of residual rotational set-up errors showed an improvement in the intervention group compared to the control group. No significant differences were found in number of repositionings, self-efficacy or distress. Results show that it is possible to teach patients about positioning and thereby improve precision in positioning. Teaching patients about positioning did not seem to affect self-efficacy or distress scores at baseline and at the end of the treatment course.

  19. SU-F-J-65: Prediction of Patient Setup Errors and Errors in the Calibration Curve from Prompt Gamma Proton Range Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, J; Labarbe, R; Sterpin, E

    2016-06-15

    Purpose: To understand the extent to which the prompt gamma camera measurements can be used to predict the residual proton range due to setup errors and errors in the calibration curve. Methods: We generated ten variations on a default calibration curve (CC) and ten corresponding range maps (RM). Starting with the default RM, we chose a square array of N beamlets, which were then rotated by a random angle θ and shifted by a random vector s. We added a 5% distal Gaussian noise to each beamlet in order to introduce discrepancies that exist between the ranges predicted from themore » prompt gamma measurements and those simulated with Monte Carlo algorithms. For each RM, s, θ, along with an offset u in the CC, were optimized using a simple Euclidian distance between the default ranges and the ranges produced by the given RM. Results: The application of our method lead to the maximal overrange of 2.0mm and underrange of 0.6mm on average. Compared to the situations where s, θ, and u were ignored, these values were larger: 2.1mm and 4.3mm. In order to quantify the need for setup error corrections, we also performed computations in which u was corrected for, but s and θ were not. This yielded: 3.2mm and 3.2mm. The average computation time for 170 beamlets was 65 seconds. Conclusion: These results emphasize the necessity to correct for setup errors and the errors in the calibration curve. The simplicity and speed of our method makes it a good candidate for being implemented as a tool for in-room adaptive therapy. This work also demonstrates that the Prompt gamma range measurements can indeed be useful in the effort to reduce range errors. Given these results, and barring further refinements, this approach is a promising step towards an adaptive proton radiotherapy.« less

  20. Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Zhong, E-mail: zsu@floridaproton.org; Zhang Lisha; Murphy, Martin

    Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data:more » the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for {>=}91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.« less

  1. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamezawa, H; Fujimoto General Hospital, Miyakonojo, Miyazaki; Arimura, H

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e.,more » averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.« less

  2. Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba

    Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less

  3. An Image-Guided Study of Setup Reproducibility of Postmastectomy Breast Cancer Patients Treated With Inverse-Planned Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Christine H.; Gerry, Emily; Chmura, Steven J.

    2015-01-01

    Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulatedmore » alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional imaging, thus a margin of at least 4 to 8 mm must be retained despite the use of daily IGRT.« less

  4. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less

  5. Cone beam CT-based set-up strategies with and without rotational correction for stereotactic body radiation therapy in the liver.

    PubMed

    Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per

    2017-06-01

    Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.

  6. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  7. Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qinghui; Chan, Maria F.; Burman, Chandra

    2013-12-15

    Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fractionmore » frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V{sub 80%} for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an extreme 3-mm setup error in all three directions simultaneously. It was found that the effect of the setup error on dose coverage was tumor location dependent. It mostly affected the tumors located in the posterior part of the brain, resulting in a minimum coverage of approximately 72%. This was entirely due to the unique geometry of the posterior head.Conclusions: Margin expansion formulas were derived for single-fraction frameless SRS such that the CTV would receive the prescribed dose in 95% of the patients treated for brain cancer. The margins defined in this study are machine-specific and account for nonzero mean systematic error. The margin for single-fraction SRS for a group of machines was also derived in this paper.« less

  8. SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Z; Yip, S; Lewis, J

    2015-06-15

    Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTracmore » and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.« less

  9. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  10. SU-E-J-15: A Patient-Centered Scheme to Mitigate Impacts of Treatment Setup Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L; Southern Medical University, Guangzhou; Tian, Z

    2014-06-01

    Purpose: Current Intensity Modulated Radiation Therapy (IMRT) is plan-centered. At each treatment fraction, we position the patient to match the setup in treatment plan. Inaccurate setup can compromise delivered dose distribution, and hence leading to suboptimal treatments. Moreover, current setup approach via couch shift under image guidance can correct translational errors, while rotational and deformation errors are hard to address. To overcome these problems, we propose in this abstract a patient-centered scheme to mitigate impacts of treatment setup errors. Methods: In the patient-centered scheme, we first position the patient on the couch approximately matching the planned-setup. Our Supercomputing Online Replanningmore » Environment (SCORE) is then employed to design an optimal treatment plan based on the daily patient geometry. It hence mitigates the impacts of treatment setup error and reduces the requirements on setup accuracy. We have conducted simulations studies in 10 head-and-neck (HN) patients to investigate the feasibility of this scheme. Rotational and deformation setup errors were simulated. Specifically, 1, 3, 5, 7 degrees of rotations were put on pitch, roll, and yaw directions; deformation errors were simulated by splitting neck movements into four basic types: rotation, lateral bending, flexion and extension. Setup variation ranges are based on observed numbers in previous studies. Dosimetric impacts of our scheme were evaluated on PTVs and OARs in comparison with original plan dose with original geometry and original plan recalculated dose with new setup geometries. Results: With conventional plan-centered approach, setup error could lead to significant PTV D99 decrease (−0.25∼+32.42%) and contralateral-parotid Dmean increase (−35.09∼+42.90%). The patientcentered approach is effective in mitigating such impacts to 0∼+0.20% and −0.03∼+5.01%, respectively. Computation time is <128 s. Conclusion: Patient-centered scheme is proposed to mitigate setup error impacts using replanning. Its superiority in terms of dosimetric impacts and feasibility has been shown through simulation studies on HN cases.« less

  11. Local setup errors in image-guided radiotherapy for head and neck cancer patients immobilized with a custom-made device.

    PubMed

    Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf

    2011-06-01

    To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Multi-rate cubature Kalman filter based data fusion method with residual compensation to adapt to sampling rate discrepancy in attitude measurement system.

    PubMed

    Guo, Xiaoting; Sun, Changku; Wang, Peng

    2017-08-01

    This paper investigates the multi-rate inertial and vision data fusion problem in nonlinear attitude measurement systems, where the sampling rate of the inertial sensor is much faster than that of the vision sensor. To fully exploit the high frequency inertial data and obtain favorable fusion results, a multi-rate CKF (Cubature Kalman Filter) algorithm with estimated residual compensation is proposed in order to adapt to the problem of sampling rate discrepancy. During inter-sampling of slow observation data, observation noise can be regarded as infinite. The Kalman gain is unknown and approaches zero. The residual is also unknown. Therefore, the filter estimated state cannot be compensated. To obtain compensation at these moments, state error and residual formulas are modified when compared with the observation data available moments. Self-propagation equation of the state error is established to propagate the quantity from the moments with observation to the moments without observation. Besides, a multiplicative adjustment factor is introduced as Kalman gain, which acts on the residual. Then the filter estimated state can be compensated even when there are no visual observation data. The proposed method is tested and verified in a practical setup. Compared with multi-rate CKF without residual compensation and single-rate CKF, a significant improvement is obtained on attitude measurement by using the proposed multi-rate CKF with inter-sampling residual compensation. The experiment results with superior precision and reliability show the effectiveness of the proposed method.

  13. Accumulated Dose in Liver Stereotactic Body Radiotherapy: Positioning, Breathing, and Deformation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velec, Michael, E-mail: michael.velec@rmp.uhn.on.ca; Institute of Medical Science, University of Toronto, Toronto, ON; Moseley, Joanne L.

    2012-07-15

    Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between themore » accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.« less

  14. Helical tomotherapy setup variations in canine nasal tumor patients immobilized with a bite block.

    PubMed

    Kubicek, Lyndsay N; Seo, Songwon; Chappell, Richard J; Jeraj, Robert; Forrest, Lisa J

    2012-01-01

    The purpose of our study was to compare setup variation in four degrees of freedom (vertical, longitudinal, lateral, and roll) between canine nasal tumor patients immobilized with a mattress and bite block, versus a mattress alone. Our secondary aim was to define a clinical target volume (CTV) to planning target volume (PTV) expansion margin based on our mean systematic error values associated with nasal tumor patients immobilized by a mattress and bite block. We evaluated six parameters for setup corrections: systematic error, random error, patient-patient variation in systematic errors, the magnitude of patient-specific random errors (root mean square [RMS]), distance error, and the variation of setup corrections from zero shift. The variations in all parameters were statistically smaller in the group immobilized by a mattress and bite block. The mean setup corrections in the mattress and bite block group ranged from 0.91 mm to 1.59 mm for the translational errors and 0.5°. Although most veterinary radiation facilities do not have access to Image-guided radiotherapy (IGRT), we identified a need for more rigid fixation, established the value of adding IGRT to veterinary radiation therapy, and define the CTV-PTV setup error margin for canine nasal tumor patients immobilized in a mattress and bite block. © 2012 Veterinary Radiology & Ultrasound.

  15. SU-E-J-88: The Study of Setup Error Measured by CBCT in Postoperative Radiotherapy for Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runxiao, L; Aikun, W; Xiaomei, F

    2015-06-15

    Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less

  16. Commissioning and quality assurance of an integrated system for patient positioning and setup verification in particle therapy.

    PubMed

    Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G

    2014-08-01

    In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.

  17. Measuring uncertainty in dose delivered to the cochlea due to setup error during external beam treatment of patients with cancer of the head and neck.

    PubMed

    Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A

    2013-12-01

    To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.

  18. Measuring uncertainty in dose delivered to the cochlea due to setup error during external beam treatment of patients with cancer of the head and neck

    PubMed Central

    Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.

    2013-01-01

    Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510

  19. Automatic image registration performance for two different CBCT systems; variation with imaging dose

    NASA Astrophysics Data System (ADS)

    Barber, J.; Sykes, J. R.; Holloway, L.; Thwaites, D. I.

    2014-03-01

    The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ~5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.

  20. SU-F-T-383: Robustness for Patient Setup Error in Total Body Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H

    Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less

  1. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  2. A review of setup error in supine breast radiotherapy using cone-beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au; Liverpool and Macarthur Cancer Therapy Centres, New South Wales; Ingham Institute of Applied Medical Research, Sydney, New South Wales

    2016-10-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registeringmore » CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.« less

  3. Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto

    2011-04-01

    Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less

  4. Positioning accuracy during VMAT of gynecologic malignancies and the resulting dosimetric impact by a 6-degree-of-freedom couch in combination with daily kilovoltage cone beam computed tomography.

    PubMed

    Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing

    2015-04-26

    To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.

  5. Initial clinical experience with a video-based patient positioning system.

    PubMed

    Johnson, L S; Milliken, B D; Hadley, S W; Pelizzari, C A; Haraf, D J; Chen, G T

    1999-08-01

    To report initial clinical experience with an interactive, video-based patient positioning system that is inexpensive, quick, accurate, and easy to use. System hardware includes two black-and-white CCD cameras, zoom lenses, and a PC equipped with a frame grabber. Custom software is used to acquire and archive video images, as well as to display real-time subtraction images revealing patient misalignment in multiple views. Two studies are described. In the first study, video is used to document the daily setup histories of 5 head and neck patients. Time-lapse cine loops are generated for each patient and used to diagnose and correct common setup errors. In the second study, 6 twice-daily (BID) head and neck patients are positioned according to the following protocol: at AM setups conventional treatment room lasers are used; at PM setups lasers are used initially and then video is used for 1-2 minutes to fine-tune the patient position. Lateral video images and lateral verification films are registered off-line to compare the distribution of setup errors per patient, with and without video assistance. In the first study, video images were used to determine the accuracy of our conventional head and neck setup technique, i.e., alignment of lightcast marks and surface anatomy to treatment room lasers and the light field. For this initial cohort of patients, errors ranged from sigma = 5 to 7 mm and were patient-specific. Time-lapse cine loops of the images revealed sources of the error, and as a result, our localization techniques and immobilization device were modified to improve setup accuracy. After the improvements, conventional setup errors were reduced to sigma = 3 to 5 mm. In the second study, when a stereo pair of live subtraction images were introduced to perform daily "on-line" setup correction, errors were reduced to sigma = 1 to 3 mm. Results depended on patient health and cooperation and the length of time spent fine-tuning the position. An interactive, video-based patient positioning system was shown to reduce setup errors to within 1 to 3 mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. Unlike retrospective portal image analysis, use of two live-video images provides the therapists with immediate feedback and allows for true 3-D positioning and correction of out-of-plane rotation before radiation is delivered. With significant improvement in head and neck alignment and the elimination of setup errors greater than 3 to 5 mm, margins associated with treatment volumes potentially can be reduced, thereby decreasing normal tissue irradiation.

  6. A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.

    PubMed

    Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock

    2005-06-01

    An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.

  7. Comparison of setup accuracy of three different image assessment methods for tangential breast radiotherapy.

    PubMed

    Batumalai, Vikneswary; Phan, Penny; Choong, Callie; Holloway, Lois; Delaney, Geoff P

    2016-12-01

    To compare the differences in setup errors measured with electronic portal image (EPI) and cone-beam computed tomography (CBCT) in patients undergoing tangential breast radiotherapy (RT). Relationship between setup errors, body mass index (BMI) and breast size was assessed. Twenty-five patients undergoing postoperative RT to the breast were consented for this study. Weekly CBCT scans were acquired and retrospectively registered to the planning CT in three dimensions, first using bony anatomy for bony registration (CBCT-B) and again using breast tissue outline for soft tissue registration (CBCT-S). Digitally reconstructed radiographs (DRR) generated from CBCT to simulate EPI were compared to the planning DRR using bony anatomy in the V (parallel to the cranio-caudal axis) and U (perpendicular to V) planes. The systematic (Σ) and random (σ) errors were calculated and correlated with BMI and breast size. The systematic and random errors for EPI (Σ V = 3.7 mm, Σ U = 2.8 mm and σ V = 2.9 mm, σ U = 2.5) and CBCT-B (Σ V = 3.5 mm, Σ U = 3.4 mm and σ V = 2.8 mm, σ U = 2.8) were of similar magnitude in the V and U planes. Similarly, the differences in setup errors for CBCT-B and CBCT-S in three dimensions were less than 1 mm. Only CBCT-S setup error correlated with BMI and breast size. CBCT and EPI show insignificant variation in their ability to detect setup error. These findings suggest no significant differences that would make one modality considered superior over the other and EPI should remain the standard of care for most patients. However, there is a correlation with breast size, BMI and setup error as detected by CBCT-S, justifying the use of CBCT-S for larger patients. © 2016 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  8. Setup deviations for whole-breast radiotherapy with TomoDirect: A comparison of weekly and biweekly image-guided protocols

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hong; Jung, Joo-Young; Bae, Sun Hyun; Moon, Seong Kwon; Cho, Kwang Hwan

    2016-10-01

    The purpose of this study was to compare patient setup deviations for different image-guided protocols (weekly vs. biweekly) that are used in TomoDirect three-dimensional conformal radiotherapy (TD-3DCRT) for whole-breast radiation therapy (WBRT). A total of 138 defined megavoltage computed tomography (MVCT) image sets from 46 breast cancer cases were divided into two groups based on the imaging acquisition times: weekly or biweekly. The mean error, three-dimensional setup displacement error (3D-error), systematic error (Σ), and random error (σ) were calculated for each group. The 3D-errors were 4.29 ± 1.11 mm and 5.02 ± 1.85 mm for the weekly and biweekly groups, respectively; the biweekly error was 14.6% higher than the weekly error. The systematic errors in the roll angle and the x, y, and z directions were 0.48°, 1.72 mm, 2.18 mm, and 1.85 mm for the weekly protocol and 0.21°, 1.24 mm, 1.39 mm, and 1.85 mm for the biweekly protocol. Random errors in the roll angle and the x, y, and z directions were 25.7%, 40.6%, 40.0%, and 40.8% higher in the biweekly group than in the weekly group. For the x, y, and z directions, the distributions of the treatment frequency at less than 5 mm were 98.6%, 91.3%, and 94.2% in the weekly group and 94.2%, 89.9%, and 82.6% in the biweekly group. Moreover, the roll angles with 0 - 1° were 79.7% and 89.9% in the weekly and the biweekly groups, respectively. Overall, the evaluation of setup deviations for the two protocols revealed no significant differences (p > 0.05). Reducing the frequency of MVCT imaging could have promising effects on imaging doses and machine times during treatment. However, the biweekly protocol was associated with increased random setup deviations in the treatment. We have demonstrated a biweekly protocol of TD-3DCRT for WBRT, and we anticipate that our method may provide an alternative approach for considering the uncertainties in the patient setup.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, JY; Hong, DL

    Purpose: The purpose of this study is to investigate the patient set-up error and interfraction target coverage in cervical cancer using image-guided adaptive radiotherapy (IGART) with cone-beam computed tomography (CBCT). Methods: Twenty cervical cancer patients undergoing intensity modulated radiotherapy (IMRT) were randomly selected. All patients were matched to the isocenter using laser with the skin markers. Three dimensional CBCT projections were acquired by the Varian Truebeam treatment system. Set-up errors were evaluated by radiation oncologists, after CBCT correction. The clinical target volume (CTV) was delineated on each CBCT, and the planning target volume (PTV) coverage of each CBCT-CTVs was analyzed.more » Results: A total of 152 CBCT scans were acquired from twenty cervical cancer patients, the mean set-up errors in the longitudinal, vertical, and lateral direction were 3.57, 2.74 and 2.5mm respectively, without CBCT corrections. After corrections, these were decreased to 1.83, 1.44 and 0.97mm. For the target coverage, CBCT-CTV coverage without CBCT correction was 94% (143/152), and 98% (149/152) with correction. Conclusion: Use of CBCT verfication to measure patient setup errors could be applied to improve the treatment accuracy. In addition, the set-up error corrections significantly improve the CTV coverage for cervical cancer patients.« less

  10. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    NASA Astrophysics Data System (ADS)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  11. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, K; Fujibuchi, T; Hirata, H

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less

  12. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less

  13. SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, J; University of Sydney, Sydney, NSW; Sykes, J

    Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less

  14. Force estimation from OCT volumes using 3D CNNs.

    PubMed

    Gessert, Nils; Beringhoff, Jens; Otte, Christoph; Schlaefer, Alexander

    2018-07-01

    Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Our method achieves a mean average error of [Formula: see text] when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of [Formula: see text]. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of [Formula: see text]. Based on the tissue dataset, our methods shows good generalization in between different subjects. We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.

  15. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    PubMed

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  16. SU-E-T-261: Development of An Automated System to Detect Patient Identification and Positioning Errors Prior to Radiotherapy Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, S; Low, D; Lamb, J

    2015-06-15

    Purpose: To develop a system that can automatically detect patient identification and positioning errors using 3D computed tomography (CT) setup images and kilovoltage CT (kVCT) planning images. Methods: Planning kVCT images were collected for head-and-neck (H&N), pelvis, and spine treatments with corresponding 3D cone-beam CT (CBCT) and megavoltage CT (MVCT) setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. Positioning errors were simulated by misaligning the setup image by 1cm to 5cm in the six anatomical directions for H&N and pelvis patients. Misalignments for spine treatments weremore » simulated by registering the setup image to adjacent vertebral bodies on the planning kVCT. A body contour of the setup image was used as an initial mask for image comparison. Images were pre-processed by image filtering and air voxel thresholding, and image pairs were assessed using commonly-used image similarity metrics as well as custom -designed metrics. A linear discriminant analysis classifier was trained and tested on the datasets, and misclassification error (MCE), sensitivity, and specificity estimates were generated using 10-fold cross validation. Results: Our workflow produced MCE estimates of 0.7%, 1.7%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivities and specificities ranged from 98.0% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 96.2% and 98.4%. MCEs for 1cm H&N/pelvis misalignments were 1.3/5.1% and 9.1/8.6% for TomoTherapy and TrueBeam images, respectively. 2cm MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. Vertebral misalignment MCEs were 4.8% and 4.9% for TomoTherapy and TrueBeam images, respectively. Conclusion: Patient identification and gross misalignment errors can be robustly and automatically detected using 3D setup images of two imaging modalities across three commonly-treated anatomical sites.« less

  17. Simulation of Dose to Surrounding Normal Structures in Tangential Breast Radiotherapy Due to Setup Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, Ramachandran; Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi; Department of Radiology, All India Institute of Medical Sciences, New Delhi

    Setup error plays a significant role in the final treatment outcome in radiotherapy. The effect of setup error on the planning target volume (PTV) and surrounding critical structures has been studied and the maximum allowed tolerance in setup error with minimal complications to the surrounding critical structure and acceptable tumor control probability is determined. Twelve patients were selected for this study after breast conservation surgery, wherein 8 patients were right-sided and 4 were left-sided breast. Tangential fields were placed on the 3-dimensional-computed tomography (3D-CT) dataset by isocentric technique and the dose to the PTV, ipsilateral lung (IL), contralateral lung (CLL),more » contralateral breast (CLB), heart, and liver were then computed from dose-volume histograms (DVHs). The planning isocenter was shifted for 3 and 10 mm in all 3 directions (X, Y, Z) to simulate the setup error encountered during treatment. Dosimetric studies were performed for each patient for PTV according to ICRU 50 guidelines: mean doses to PTV, IL, CLL, heart, CLB, liver, and percentage of lung volume that received a dose of 20 Gy or more (V20); percentage of heart volume that received a dose of 30 Gy or more (V30); and volume of liver that received a dose of 50 Gy or more (V50) were calculated for all of the above-mentioned isocenter shifts and compared to the results with zero isocenter shift. Simulation of different isocenter shifts in all 3 directions showed that the isocentric shifts along the posterior direction had a very significant effect on the dose to the heart, IL, CLL, and CLB, which was followed by the lateral direction. The setup error in isocenter should be strictly kept below 3 mm. The study shows that isocenter verification in the case of tangential fields should be performed to reduce future complications to adjacent normal tissues.« less

  18. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Boughalia, A; Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-06-01

    The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy-oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose-volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients.

  19. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  20. Set-up uncertainties: online correction with X-ray volume imaging.

    PubMed

    Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan

    2011-01-01

    To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.

  1. MO-F-CAMPUS-T-05: Correct Or Not to Correct for Rotational Patient Set-Up Errors in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briscoe, M; Ploquin, N; Voroney, JP

    2015-06-15

    Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less

  2. Corrective Techniques and Future Directions for Treatment of Residual Refractive Error Following Cataract Surgery

    PubMed Central

    Moshirfar, Majid; McCaughey, Michael V; Santiago-Caban, Luis

    2015-01-01

    Postoperative residual refractive error following cataract surgery is not an uncommon occurrence for a large proportion of modern-day patients. Residual refractive errors can be broadly classified into 3 main categories: myopic, hyperopic, and astigmatic. The degree to which a residual refractive error adversely affects a patient is dependent on the magnitude of the error, as well as the specific type of intraocular lens the patient possesses. There are a variety of strategies for resolving residual refractive errors that must be individualized for each specific patient scenario. In this review, the authors discuss contemporary methods for rectification of residual refractive error, along with their respective indications/contraindications, and efficacies. PMID:25663845

  3. Corrective Techniques and Future Directions for Treatment of Residual Refractive Error Following Cataract Surgery.

    PubMed

    Moshirfar, Majid; McCaughey, Michael V; Santiago-Caban, Luis

    2014-12-01

    Postoperative residual refractive error following cataract surgery is not an uncommon occurrence for a large proportion of modern-day patients. Residual refractive errors can be broadly classified into 3 main categories: myopic, hyperopic, and astigmatic. The degree to which a residual refractive error adversely affects a patient is dependent on the magnitude of the error, as well as the specific type of intraocular lens the patient possesses. There are a variety of strategies for resolving residual refractive errors that must be individualized for each specific patient scenario. In this review, the authors discuss contemporary methods for rectification of residual refractive error, along with their respective indications/contraindications, and efficacies.

  4. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  5. Impact of patient-specific factors, irradiated left ventricular volume, and treatment set-up errors on the development of myocardial perfusion defects after radiation therapy for left-sided breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli

    2006-11-15

    Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors onmore » the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI {>=}25 kg/m{sup 2} compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI {>=}25 kg/m{sup 2} may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT-induced perfusion defects.« less

  6. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP)

    PubMed Central

    Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-01-01

    Objective: The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). Methods: 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy–oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose–volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. Results: The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. Conclusion: The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. Advances in knowledge: The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients. PMID:25882689

  7. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  8. Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Flury, J.

    2016-12-01

    In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.

  9. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    NASA Astrophysics Data System (ADS)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  10. Automated patient identification and localization error detection using 2-dimensional to 3-dimensional registration of kilovoltage x-ray setup images.

    PubMed

    Lamb, James M; Agazaryan, Nzhde; Low, Daniel A

    2013-10-01

    To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.

    PubMed

    Jani, Shyam S; Low, Daniel A; Lamb, James M

    2015-01-01

    To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lilie L., E-mail: lin@uphs.upenn.edu; Hertan, Lauren; Rengan, Ramesh

    2012-06-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed.more » To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.« less

  13. Positioning accuracy for lung stereotactic body radiotherapy patients determined by on-treatment cone-beam CT imaging

    PubMed Central

    Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P

    2012-01-01

    Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927

  14. Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.

    PubMed

    Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G

    2013-11-04

    Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.

  15. Effects of megavoltage computed tomographic scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy.

    PubMed

    Zhu, Jian; Bai, Tong; Gu, Jiabing; Sun, Ziwen; Wei, Yumei; Li, Baosheng; Yin, Yong

    2018-04-27

    To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of 'fine', 'normal' and 'coarse' were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. MVCT scanning time with pitch of 'fine' was approximately twice of 'normal' and 3 times more than 'coarse' setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of 'fine', only 0.2% or 1.1% of the points analyzed on MVCT of 'normal' or 'coarse' do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI. On pelvic phantom, craniocaudal errors are much smaller than chest, however, AP of 'coarse' presents larger registration errors which can be reduced from 2.90 mm to 0.22 mm by registration technique of 'full image'. AP of 'coarse' with RI of 6 mm is recommended in adaptive radiotherapy (ART) planning to provide craniocaudal longer and faster MVCT scan, while registration technique of 'full image' should be used to avoid large residual error. Considering the trade-off between IGRT and ART, AP of 'normal' with RI of 2 mm was highly recommended in daily practice.

  16. SU-F-J-130: Margin Determination for Hypofractionated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geady, C; Keller, B; Hahn, E

    2016-06-15

    Purpose: To determine the Planning Target Volume (PTV) margin for Hypofractionated Partial Breast Irradiation (HPBI) using the van Herk formalism (M=2.5∑+0.7σ). HPBI is a novel technique intended to provide local control in breast cancer patients not eligible for surgical resection, using 40 Gy in 5 fractions prescribed to the gross disease. Methods: Setup uncertainties were quantified through retrospective analysis of cone-beam computed tomography (CBCT) data sets, collected prior to (prefraction) and after (postfraction) treatment delivery. During simulation and treatment, patients were immobilized using a wing board and an evacuated bag. Prefraction CBCT was rigidly registered to planning 4-dimensional computed tomographymore » (4DCT) using the chest wall and tumor, and translational couch shifts were applied as needed. This clinical workflow was faithfully reproduced in Pinnacle (Philips Medical Systems) to yield residual setup and intrafractional error through translational shifts and rigid registrations (ribs and sternum) of prefraction CBCT to 4DCT and postfraction CBCT to prefraction CBCT, respectively. All ten patients included in this investigation were medically inoperable; the median age was 84 (range, 52–100) years. Results: Systematic (and random) setup uncertainties (in mm) detected for the left-right, craniocaudal and anteroposterior directions were 0.4 (1.5), 0.8 (1.8) and 0.4 (1.0); net uncertainty was determined to be 0.7 (1.5). Rotations >2° in any axis occurred on 8/72 (11.1%) registrations. Conclusion: Preliminary results suggest a non-uniform setup margin (in mm) of 2.2, 3.3 and 1.7 for the left-right, craniocaudal and anteroposterior directions is required for HPBI, given its immobilization techniques and online setup verification protocol. This investigation is ongoing, though published results from similar studies are consistent with the above findings. Determination of margins in breast radiotherapy is a paradigm shift, but a necessary step in moving towards hypofractionated regiments, which may ultimately redefine the standard of care for this select patient population.« less

  17. Practical Use of the Extended No Action Level (eNAL) Correction Protocol for Breast Cancer Patients With Implanted Surgical Clips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl; Quint, Sandra; Baaijens, Margreet

    Purpose: To describe the practical use of the extended No Action Level (eNAL) setup correction protocol for breast cancer patients with surgical clips and evaluate its impact on the setup accuracy of both tumor bed and whole breast during simultaneously integrated boost treatments. Methods and Materials: For 80 patients, two orthogonal planar kilovoltage images and one megavoltage image (for the mediolateral beam) were acquired per fraction throughout the radiotherapy course. For setup correction, the eNAL protocol was applied, based on registration of surgical clips in the lumpectomy cavity. Differences with respect to application of a No Action Level (NAL) protocolmore » or no protocol were quantified for tumor bed and whole breast. The correlation between clip migration during the fractionated treatment and either the method of surgery or the time elapsed from last surgery was investigated. Results: The distance of the clips to their center of mass (COM), averaged over all clips and patients, was reduced by 0.9 {+-} 1.2 mm (mean {+-} 1 SD). Clip migration was similar between the group of patients starting treatment within 100 days after surgery (median, 53 days) and the group starting afterward (median, 163 days) (p = 0.20). Clip migration after conventional breast surgery (closing the breast superficially) or after lumpectomy with partial breast reconstructive techniques (sutured cavity). was not significantly different either (p = 0.22). Application of eNAL on clips resulted in residual systematic errors for the clips' COM of less than 1 mm in each direction, whereas the setup of the breast was within about 2 mm of accuracy. Conclusions: Surgical clips can be safely used for high-accuracy position verification and correction. Given compensation for time trends in the clips' COM throughout the treatment course, eNAL resulted in better setup accuracies for both tumor bed and whole breast than NAL.« less

  18. Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and cone-beam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery.

    PubMed

    Oh, Se An; Park, Jae Won; Yea, Ji Woon; Kim, Sung Kyu

    2017-01-01

    The objective of this study was to evaluate the setup discrepancy between BrainLAB 6 degree-of-freedom (6D) ExacTrac and cone-beam computed tomography (CBCT) used with the imaging guidance system Novalis Tx for intracranial stereotactic radiosurgery. We included 107 consecutive patients for whom white stereotactic head frame masks (R408; Clarity Medical Products, Newark, OH) were used to fix the head during intracranial stereotactic radiosurgery, between August 2012 and July 2016. The patients were immobilized in the same state for both the verification image using 6D ExacTrac and online 3D CBCT. In addition, after radiation treatment, registration between the computed tomography simulation images and the CBCT images was performed with offline 6D fusion in an offline review. The root-mean-square of the difference in the translational dimensions between the ExacTrac system and CBCT was <1.01 mm for online matching and <1.10 mm for offline matching. Furthermore, the root-mean-square of the difference in the rotational dimensions between the ExacTrac system and the CBCT were <0.82° for online matching and <0.95° for offline matching. It was concluded that while the discrepancies in residual setup errors between the ExacTrac 6D X-ray and the CBCT were minor, they should not be ignored.

  19. Comparison of Simulated Contrast Performance of Different Phase Induced Amplitude Apodization (PIAA) Coronagraph Configurations

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Kern, Brian; Kuhnert, Andreas; Shaklan, Stuart

    2013-01-01

    We compare the broadband contrast performances of several Phase Induced Amplitude Apodization (PIAA) coronagraph configurations through modeling and simulations. The basic optical design of the PIAA coronagraph is the same as NASA's High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL). Using a deformable mirror and a broadband wavefront sensing and control algorithm, we create a "dark hole" in the broadband point-spread function (PSF) with an inner working angle (IWA) of 2(f lambda/D)(sub sky). We evaluate two systems in parallel. One is a perfect system having a design PIAA output amplitude and not having any wavefront error at its exit-pupil. The other is a realistic system having a design PIAA output amplitude and the measured residual wavefront error. We also investigate the effect of Lyot stops of various sizes when a postapodizer is and is not present. Our simulations show that the best 7.5%-broadband contrast value achievable with the current PIAA coronagraph is approximately 1.5x10(exp -8).

  20. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    PubMed Central

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  1. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies.

    PubMed

    Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R

    1999-08-01

    Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.

  2. Maximizing the probability of satisfying the clinical goals in radiation therapy treatment planning under setup uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredriksson, Albin, E-mail: albin.fredriksson@raysearchlabs.com; Hårdemark, Björn; Forsgren, Anders

    2015-07-15

    Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical goals in intensity-modulated radiation therapy treatments subject to setup uncertainty. Methods: The authors perform robust optimization in which the clinical goals are constrained to be satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is included as a variable in the optimization. The goal of the optimization is to modify the shape of the uncertainty set in order to maximize the probability that the setup error will fall within the modified set. Because the constraints enforce the clinical goalsmore » to be satisfied under all setup errors within the uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This type of robust optimization is studied with respect to photon and proton therapy applied to a prostate case and compared to robust optimization using an a priori defined uncertainty set. Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of clinical goals than optimization with respect to a priori defined uncertainty sets, both within the reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case, the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account. Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby achieve higher probability of satisfying the clinical goals. This shows that asking for a little less in the optimization sometimes leads to better overall plan quality.« less

  3. Feedforward operation of a lens setup for large defocus and astigmatism correction

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Almasian, MItra; Pozzi, Paolo; Bilderbeek, Rolf; Kalkman, Jeroen; Faber, Dirk J.; Verhaegen, Michel

    2016-04-01

    In this manuscript, we present a lens setup for large defocus and astigmatism correction. A deformable defocus lens and two rotational cylindrical lenses are used to control the defocus and astigmatism. The setup is calibrated using a simple model that allows the calculation of the lens inputs so that a desired defocus and astigmatism are actuated on the eye. The setup is tested by determining the feedforward prediction error, imaging a resolution target, and removing introduced aberrations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegruen, Sabine, E-mail: sabine.levegruen@uni-due.de; Poettgen, Christoph; Abu Jawad, Jehad

    Purpose: To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Methods and Materials: Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after {>=}4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determinedmore » at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Results: Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Conclusion: Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed.« less

  5. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.

    PubMed

    Levegrün, Sabine; Pöttgen, Christoph; Jawad, Jehad Abu; Berkovic, Katharina; Hepp, Rodrigo; Stuschke, Martin

    2013-02-01

    To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after ≥4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determined at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. SU-E-CAMPUS-J-05: Quantitative Investigation of Random and Systematic Uncertainties From Hardware and Software Components in the Frameless 6DBrainLAB ExacTrac System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Jin, H; Hossain, S

    2014-06-15

    Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less

  7. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less

  8. Evaluation of kidney motion and target localization in abdominal SBRT patients

    PubMed Central

    Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick

    2016-01-01

    The purpose of this study was to evaluate bilateral kidney and target translational/rotational intrafraction motion during stereotactic body radiation therapy treatment delivery of primary renal cell carcinoma and oligometastatic adrenal lesions for patients immobilized in the Elekta BodyFIX system. Bilateral kidney motion was assessed at midplane for 30 patients immobilized in a full‐body dual‐vacuum‐cushion system with two patients immobilized via abdominal compression. Intrafraction motion was assessed for 15 patients using kilovoltage cone‐beam computed tomography (kV‐CBCT) datasets (n=151) correlated to the planning CT. Patient positioning was corrected for translational and rotational misalignments using a robotic couch in six degrees of freedom if setup errors exceeded 1 mm and 1°. Absolute bilateral kidney motion between inhale and exhale 4D CT imaging phases for left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions was 1.51±1.00mm,8.10±4.33mm, and 3.08±2.11mm, respectively. Residual setup error determined across CBCT type (pretreatment, intrafraction, and post‐treatment) for x (LR), y (SI), and z (AP) translations was 0.63±0.74mm,1.08±1.38mm, and 0.70±1.00mm; while for x (pitch), y (roll), and z (yaw) rotations was 0.24±0.39°,0.19±0.34°, and 0.26±0.43°, respectively. Targets were localized to within 2.1 mm and 0.8° 95% of the time. The frequency of misalignments in the y direction was significant (p<0.05) when compared to the x and z directions with no significant difference in translations between IMRT and VMAT. This technique is robust using BodyFIX for patient immobilization and reproducible localization of kidney and adrenal targets and daily CBCT image guidance for correction of positional errors to maintain treatment accuracy. PACS number(s): 87.55.‐x, 87.56.‐v, 87.56.Da PMID:27929514

  9. Improved human observer performance in digital reconstructed radiograph verification in head and neck cancer radiotherapy.

    PubMed

    Sturgeon, Jared D; Cox, John A; Mayo, Lauren L; Gunn, G Brandon; Zhang, Lifei; Balter, Peter A; Dong, Lei; Awan, Musaddiq; Kocak-Uzel, Esengul; Mohamed, Abdallah Sherif Radwan; Rosenthal, David I; Fuller, Clifton David

    2015-10-01

    Digitally reconstructed radiographs (DRRs) are routinely used as an a priori reference for setup correction in radiotherapy. The spatial resolution of DRRs may be improved to reduce setup error in fractionated radiotherapy treatment protocols. The influence of finer CT slice thickness reconstruction (STR) and resultant increased resolution DRRs on physician setup accuracy was prospectively evaluated. Four head and neck patient CT-simulation images were acquired and used to create DRR cohorts by varying STRs at 0.5, 1, 2, 2.5, and 3 mm. DRRs were displaced relative to a fixed isocenter using 0-5 mm random shifts in the three cardinal axes. Physician observers reviewed DRRs of varying STRs and displacements and then aligned reference and test DRRs replicating daily KV imaging workflow. A total of 1,064 images were reviewed by four blinded physicians. Observer errors were analyzed using nonparametric statistics (Friedman's test) to determine whether STR cohorts had detectably different displacement profiles. Post hoc bootstrap resampling was applied to evaluate potential generalizability. The observer-based trial revealed a statistically significant difference between cohort means for observer displacement vector error ([Formula: see text]) and for [Formula: see text]-axis [Formula: see text]. Bootstrap analysis suggests a 15% gain in isocenter translational setup error with reduction of STR from 3 mm to [Formula: see text]2 mm, though interobserver variance was a larger feature than STR-associated measurement variance. Higher resolution DRRs generated using finer CT scan STR resulted in improved observer performance at shift detection and could decrease operator-dependent geometric error. Ideally, CT STRs [Formula: see text]2 mm should be utilized for DRR generation in the head and neck.

  10. Evaluation of performance of the MACAO systems at the VLTI

    NASA Astrophysics Data System (ADS)

    Rengaswamy, Sridharan; Haguenauer, Pierre; Brillant, Stephane; Cortes, Angela; Girard, Julien H.; Guisard, Stephane; Paufique, Jérôme; Pino, Andres

    2010-07-01

    Multiple Application Curvature Adaptive Optics (MACAO) systems are used at the coudé focus of the unit telescopes (UTs) at the La-Silla Paranal Observatory, Paranal, to correct for the wave-front aberrations induced by the atmosphere. These systems are in operation since 2005 and are designed to provide beams with 10 mas residual rms tip-tilt error to the VLTI laboratory. We have initiated several technical studies such as measuring the Strehl ratio of the images recorded at the guiding camera of the VLTI, establishing the optimum setup of the MACAO to get collimated and focused beam down to the VLTI laboratory and to the instruments, and ascertaining the data generated by the real time computer, all aimed at characterizing and improving the overall performance of these systems. In this paper we report the current status of these studies.

  11. Combined proportional and additive residual error models in population pharmacokinetic modelling.

    PubMed

    Proost, Johannes H

    2017-11-15

    In pharmacokinetic modelling, a combined proportional and additive residual error model is often preferred over a proportional or additive residual error model. Different approaches have been proposed, but a comparison between approaches is still lacking. The theoretical background of the methods is described. Method VAR assumes that the variance of the residual error is the sum of the statistically independent proportional and additive components; this method can be coded in three ways. Method SD assumes that the standard deviation of the residual error is the sum of the proportional and additive components. Using datasets from literature and simulations based on these datasets, the methods are compared using NONMEM. The different coding of methods VAR yield identical results. Using method SD, the values of the parameters describing residual error are lower than for method VAR, but the values of the structural parameters and their inter-individual variability are hardly affected by the choice of the method. Both methods are valid approaches in combined proportional and additive residual error modelling, and selection may be based on OFV. When the result of an analysis is used for simulation purposes, it is essential that the simulation tool uses the same method as used during analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Noninvasive Body Setup Method for Radiotherapy by Using a Multimodal Image Fusion Technique

    PubMed Central

    Zhang, Jie; Chen, Yunxia; Wang, Chenchen; Chu, Kaiyue; Jin, Jianhua; Huang, Xiaolin; Guan, Yue; Li, Weifeng

    2017-01-01

    Purpose: To minimize the mismatch error between patient surface and immobilization system for tumor location by a noninvasive patient setup method. Materials and Methods: The method, based on a point set registration, proposes a shift for patient positioning by integrating information of the computed tomography scans and that of optical surface landmarks. An evaluation of the method included 3 areas: (1) a validation on a phantom by estimating 100 known mismatch errors between patient surface and immobilization system. (2) Five patients with pelvic tumors were considered. The tumor location errors of the method were measured using the difference between the proposal shift of cone-beam computed tomography and that of our method. (3) The collected setup data from the evaluation of patients were compared with the published performance data of other 2 similar systems. Results: The phantom verification results showed that the method was capable of estimating mismatch error between patient surface and immobilization system in a precision of <0.22 mm. For the pelvic tumor, the method had an average tumor location error of 1.303, 2.602, and 1.684 mm in left–right, anterior–posterior, and superior–inferior directions, respectively. The performance comparison with other 2 similar systems suggested that the method had a better positioning accuracy for pelvic tumor location. Conclusion: By effectively decreasing an interfraction uncertainty source (mismatch error between patient surface and immobilization system) in radiotherapy, the method can improve patient positioning precision for pelvic tumor. PMID:29333959

  13. A service evaluation of on-line image-guided radiotherapy to lower extremity sarcoma: Investigating the workload implications of a 3 mm action level for image assessment and correction prior to delivery.

    PubMed

    Taylor, C; Parker, J; Stratford, J; Warren, M

    2018-05-01

    Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.

  14. Adaptive framework to better characterize errors of apriori fluxes and observational residuals in a Bayesian setup for the urban flux inversions.

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.

    2017-12-01

    The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.

  15. Calibrating page sized Gafchromic EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less

  16. Accuracy of the dose-shift approximation in estimating the delivered dose in SBRT of lung tumors considering setup errors and breathing motions.

    PubMed

    Karlsson, Kristin; Lax, Ingmar; Lindbäck, Elias; Poludniowski, Gavin

    2017-09-01

    Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D 98% ) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.

  17. Benchmarking of a treatment planning system for spot scanning proton therapy: Comparison and analysis of robustness to setup errors of photon IMRT and proton SFUD treatment plans of base of skull meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.

    Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less

  18. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  19. Energetic Residues from Blow-in-Place Detonation of 60-mm and 120-mm Fuzed High-Explosive Mortar Cartridges

    DTIC Science & Technology

    2008-10-01

    ER D C/ CR R EL T R -0 8 -1 9 Energetic Residues from Blow-in-Place Detonation of 60-mm and 120-mm Fuzed High-Explosive Mortar Cartridges...Figure 4. Sample filtration setup. ............................................................................................................. 8 ...15 Table 8 . HE munitions BIP and live-fire detonation energetics residues data. .................................. 17 ERDC/CRREL TR-08

  20. A Study of Vicon System Positioning Performance.

    PubMed

    Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier

    2017-07-07

    Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  1. Speed and Accuracy of Rapid Speech Output by Adolescents with Residual Speech Sound Errors Including Rhotics

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Edwards, Mary Louise

    2009-01-01

    Children with residual speech sound errors are often underserved clinically, yet there has been a lack of recent research elucidating the specific deficits in this population. Adolescents aged 10-14 with residual speech sound errors (RE) that included rhotics were compared to normally speaking peers on tasks assessing speed and accuracy of speech…

  2. Optical phase locked loop for transparent inter-satellite communications.

    PubMed

    Herzog, F; Kudielka, K; Erni, D; Bächtold, W

    2005-05-16

    A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180? 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ;-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 mum.

  3. Optical phase locked loop for transparent inter-satellite communications

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Kudielka, K.; Erni, D.; Bächtold, W.

    2005-05-01

    A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180◦ 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ^-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 μm.

  4. Method for computing self-consistent solution in a gun code

    DOEpatents

    Nelson, Eric M

    2014-09-23

    Complex gun code computations can be made to converge more quickly based on a selection of one or more relaxation parameters. An eigenvalue analysis is applied to error residuals to identify two error eigenvalues that are associated with respective error residuals. Relaxation values can be selected based on these eigenvalues so that error residuals associated with each can be alternately reduced in successive iterations. In some examples, relaxation values that would be unstable if used alone can be used.

  5. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  6. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  7. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, K; Wang, J; Liu, D

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less

  8. Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.

    PubMed

    Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D

    2009-01-01

    Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.

  9. High speed stereovision setup for position and motion estimation of fertilizer particles leaving a centrifugal spreader.

    PubMed

    Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G

    2014-11-13

    A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.

  10. Optical digital to analog conversion performance analysis for indoor set-up conditions

    NASA Astrophysics Data System (ADS)

    Dobesch, Aleš; Alves, Luis Nero; Wilfert, Otakar; Ribeiro, Carlos Gaspar

    2017-10-01

    In visible light communication (VLC) the optical digital to analog conversion (ODAC) approach was proposed as a suitable driving technique able to overcome light-emitting diode's (LED) non-linear characteristic. This concept is analogous to an electrical digital-to-analog converter (EDAC). In other words, digital bits are binary weighted to represent an analog signal. The method supports elementary on-off based modulations able to exploit the essence of LED's non-linear characteristic allowing simultaneous lighting and communication. In the ODAC concept the reconstruction error does not simply rely upon the converter bit depth as in case of EDAC. It rather depends on communication system set-up and geometrical relation between emitter and receiver as well. The paper describes simulation results presenting the ODAC's error performance taking into account: the optical channel, the LED's half power angle (HPA) and the receiver field of view (FOV). The set-up under consideration examines indoor conditions for a square room with 4 m length and 3 m height, operating with one dominant wavelength (blue) and having walls with a reflection coefficient of 0.8. The achieved results reveal that reconstruction error increases for higher data rates as a result of interference due to multipath propagation.

  11. Patient motion tracking in the presence of measurement errors.

    PubMed

    Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter

    2009-01-01

    The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

  12. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  13. Evaluating and improving the representation of heteroscedastic errors in hydrological models

    NASA Astrophysics Data System (ADS)

    McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.

    2013-12-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.

  14. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  15. COMPARISON OF LAPAROSCOPIC SKILLS PERFORMANCE USING SINGLE-SITE ACCESS (SSA) DEVICES VS. AN INDEPENDENT-PORT SSA APPROACH

    PubMed Central

    Schill, Matthew R.; Varela, J. Esteban; Frisella, Margaret M.; Brunt, L. Michael

    2015-01-01

    Background We compared performance of validated laparoscopic tasks on four commercially available single site access (SSA) access devices (AD) versus an independent port (IP) SSA set-up. Methods A prospective, randomized comparison of laparoscopic skills performance on four AD (GelPOINT™, SILS™ Port, SSL Access System™, TriPort™) and one IP SSA set-up was conducted. Eighteen medical students (2nd–4th year), four surgical residents, and five attending surgeons were trained to proficiency in multi-port laparoscopy using four laparoscopic drills (peg transfer, bean drop, pattern cutting, extracorporeal suturing) in a laparoscopic trainer box. Drills were then performed in random order on each IP-SSA and AD-SSA set-up using straight laparoscopic instruments. Repetitions were timed and errors recorded. Data are mean ± SD, and statistical analysis was by two-way ANOVA with Tukey HSD post-hoc tests. Results Attending surgeons had significantly faster total task times than residents or students (p< 0.001), but the difference between residents and students was NS. Pair-wise comparisons revealed significantly faster total task times for the IP-SSA set-up compared to all four AD-SSA’s within the student group only (p<0.05). Total task times for residents and attending surgeons showed a similar profile, but the differences were NS. When data for the three groups was combined, the total task time was less for the IP-SSA set-up than for each of the four AD-SSA set-ups (p < 0.001). Similarly,, the IP-SSA set-up was significantly faster than 3 of 4 AD-SSA set-ups for peg transfer, 3 of 4 for pattern cutting, and 2 of 4 for suturing. No significant differences in error rates between IP-SSA and AD-SSA set-ups were detected. Conclusions When compared to an IP-SSA laparoscopic set-up, single site access devices are associated with longer task performance times in a trainer box model, independent of level of training. Task performance was similar across different SSA devices. PMID:21993938

  16. WE-H-BRC-08: Examining Credentialing Criteria and Poor Performance Indicators for IROC Houston’s Anthropomorphic Head and Neck Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, M; Molineu, A; Taylor, P

    Purpose: To analyze the most recent results of IROC Houston’s anthropomorphic H&N phantom to determine the nature of failing irradiations and the feasibility of altering pass/fail credentialing criteria. Methods: IROC Houston’s H&N phantom, used for IMRT credentialing for NCI-sponsored clinical trials, requires that an institution’s treatment plan must agree with measurement within 7% (TLD doses) and ≥85% pixels must pass 7%/4 mm gamma analysis. 156 phantom irradiations (November 2014 – October 2015) were re-evaluated using tighter criteria: 1) 5% TLD and 5%/4 mm, 2) 5% TLD and 5%/3 mm, 3) 4% TLD and 4%/4 mm, and 4) 3% TLD andmore » 3%/3 mm. Failure/poor performance rates were evaluated with respect to individual film and TLD performance by location in the phantom. Overall poor phantom results were characterized qualitatively as systematic (dosimetric) errors, setup errors/positional shifts, global but non-systematic errors, and errors affecting only a local region. Results: The pass rate for these phantoms using current criteria is 90%. Substituting criteria 1-4 reduces the overall pass rate to 77%, 70%, 63%, and 37%, respectively. Statistical analyses indicated the probability of noise-induced TLD failure at the 5% criterion was <0.5%. Using criteria 1, TLD results were most often the cause of failure (86% failed TLD while 61% failed film), with most failures identified in the primary PTV (77% cases). Other criteria posed similar results. Irradiations that failed from film only were overwhelmingly associated with phantom shifts/setup errors (≥80% cases). Results failing criteria 1 were primarily diagnosed as systematic: 58% of cases. 11% were setup/positioning errors, 8% were global non-systematic errors, and 22% were local errors. Conclusion: This study demonstrates that 5% TLD and 5%/4 mm gamma criteria may be both practically and theoretically achievable. Further work is necessary to diagnose and resolve dosimetric inaccuracy in these trials, particularly for systematic dose errors. This work is funded by NCI Grant CA180803.« less

  17. Statistics of the residual refraction errors in laser ranging data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1977-01-01

    A theoretical model for the range error covariance was derived by assuming that the residual refraction errors are due entirely to errors in the meteorological data which are used to calculate the atmospheric correction. The properties of the covariance function are illustrated by evaluating the theoretical model for the special case of a dense network of weather stations uniformly distributed within a circle.

  18. Bayesian inversions of a dynamic vegetation model at four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; Francois, L.

    2015-05-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m-2 day-1 and 0.50 to 1.28 mm day-1, respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.

  19. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  20. The U.S. Air Force Photorefractive Keratectomy (PRK) Study: Evaluation of Residual Refractive Error and High- and Low-Contrast Visual Acuity

    DTIC Science & Technology

    2006-07-01

    values for statistical analyses in terms of Snellen equivalent VA (Ref 44) and lines gained vs . lost after PRK . The Snellen VA values shown in the...AFRL-SA-BR-TR-2010-0011 THE U.S. AIR FORCE PHOTOREFRACTIVE KERATECTOMY ( PRK ) STUDY: Evaluation of Residual Refractive Error and High...July 2006 4. TITLE AND SUBTITLE THE U.S. AIR FORCE PHOTOREFRACTIVE KERATECTOMY ( PRK ) STUDY: Evaluation of Residual Refractive Error and High- and

  1. Residual volume on land and when immersed in water: effect on percent body fat.

    PubMed

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P < 0.05). The limits of agreement for residual volumes in both conditions using Bland-Altman plots were -0.430 to 0.508 litres. This range was larger than the trial-to-trial error of residual volume on land (-0.260 to 0.304 litres). Moreover, the relationship between percent body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P < 0.0001), and the errors were approximately -6 to 4% (limits of agreement for percent body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  2. Bone Marrow Sparing in Intensity Modulated Proton Therapy for Cervical Cancer: Efficacy and Robustness under Range and Setup Uncertainties

    PubMed Central

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130

  3. Infant multiple breath washout using a new commercially available device: Ready to replace the previous setup?

    PubMed

    Kentgens, Anne-Christianne; Guidi, Marisa; Korten, Insa; Kohler, Lena; Binggeli, Severin; Singer, Florian; Latzin, Philipp; Anagnostopoulou, Pinelopi

    2018-05-01

    Multiple breath washout (MBW) is a sensitive test to measure lung volumes and ventilation inhomogeneity from infancy on. The commonly used setup for infant MBW, based on ultrasonic flowmeter, requires extensive signal processing, which may reduce robustness. A new setup may overcome some previous limitations but formal validation is lacking. We assessed the feasibility of infant MBW testing with the new setup and compared functional residual capacity (FRC) values of the old and the new setup in vivo and in vitro. We performed MBW in four healthy infants and four infants with cystic fibrosis, as well as in a Plexiglas lung simulator using realistic lung volumes and breathing patterns, with the new (Exhalyzer D, Spiroware 3.2.0, Ecomedics) and the old setup (Exhalyzer D, WBreath 3.18.0, ndd) in random sequence. The technical feasibility of MBW with the new device-setup was 100%. Intra-subject variability in FRC was low in both setups, but differences in FRC between the setups were considerable (mean relative difference 39.7%, range 18.9; 65.7, P = 0.008). Corrections of software settings decreased FRC differences (14.0%, -6.4; 42.3, P = 0.08). Results were confirmed in vitro. MBW measurements with the new setup were feasible in infants. However, despite attempts to correct software settings, outcomes between setups were not interchangeable. Further work is needed before widespread application of the new setup can be recommended. © 2018 Wiley Periodicals, Inc.

  4. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer.

    PubMed

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-11-01

    To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. SU-F-J-24: Setup Uncertainty and Margin of the ExacTrac 6D Image Guide System for Patients with Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Oh, S; Yea, J

    Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with themore » systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.« less

  6. Residue frequencies and pairing preferences at protein-protein interfaces.

    PubMed

    Glaser, F; Steinberg, D M; Vakser, I A; Ben-Tal, N

    2001-05-01

    We used a nonredundant set of 621 protein-protein interfaces of known high-resolution structure to derive residue composition and residue-residue contact preferences. The residue composition at the interfaces, in entire proteins and in whole genomes correlates well, indicating the statistical strength of the data set. Differences between amino acid distributions were observed for interfaces with buried surface area of less than 1,000 A(2) versus interfaces with area of more than 5,000 A(2). Hydrophobic residues were abundant in large interfaces while polar residues were more abundant in small interfaces. The largest residue-residue preferences at the interface were recorded for interactions between pairs of large hydrophobic residues, such as Trp and Leu, and the smallest preferences for pairs of small residues, such as Gly and Ala. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity, in agreement with previous reports. A bootstrap procedure, lacking from previous studies, was used for error estimation. It showed that the statistical errors in the set of pairing preferences are generally small; the average standard error is approximately 0.2, i.e., about 8% of the average value of the pairwise index (2.9). However, for a few pairs (e.g., Ser-Ser and Glu-Asp) the standard error is larger in magnitude than the pairing index, which makes it impossible to tell whether contact formation is favorable or unfavorable. The results are interpreted using physicochemical factors and their implications for the energetics of complex formation and for protein docking are discussed. Proteins 2001;43:89-102. Copyright 2001 Wiley-Liss, Inc.

  7. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    NASA Astrophysics Data System (ADS)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid registration significantly improved the reconstructed image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm provides a remedy for solving the problem of non-coplanar CBCT reconstruction from limited angle of projections by combining the PICCS technique and rigid image registration in an iterative framework. In this proof of concept study, non-coplanar beams with couch rotations of 45° can be effectively verified with the CBCT technique.

  8. SU-E-J-103: Setup Errors Analysis by Cone-Beam CT (CBCT)-Based Imaged-Guided Intensity Modulated Radiotherapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H; Wang, W; Hu, W

    2014-06-01

    Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scanmore » based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7σ). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (σ) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.« less

  9. TH-EF-BRB-11: Volumetric Modulated Arc Therapy for Total Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, L; Folkerts, M; Hrycushko, B

    Purpose: To develop a modern, patient-comfortable total body irradiation (TBI) technique suitable for standard-sized linac vaults. Methods: An indexed rotatable immobilization system (IRIS) was developed to make possible total-body CT imaging and radiation delivery on conventional couches. Treatment consists of multi-isocentric volumetric modulated arc therapy (VMAT) to the upper body and parallel-opposed fields to the lower body. Each isocenter is indexed to the couch and includes a 180° IRIS rotation between the upper and lower body fields. VMAT fields are optimized to satisfy lung dose objectives while achieving a uniform therapeutic dose to the torso. End-to-end tests with a randomore » phantom were used to verify dosimetric characteristics. Treatment plan robustness regarding setup uncertainty was assessed by simulating global and regional isocenter setup shifts on patient data sets. Dosimetric comparisons were made with conventional extended distance, standing TBI (cTBI) plans using a Monte Carlo-based calculation. Treatment efficiency was assessed for eight courses of patient treatment. Results: The IRIS system is level and orthogonal to the scanned CT image plane, with lateral shifts <2mm following rotation. End-to-end tests showed surface doses within ±10% of the prescription dose, field junction doses within ±15% of prescription dose. Plan robustness tests showed <15% changes in dose with global setup errors up to 5mm in each direction. Local 5mm relative setup errors in the chest resulted in < 5% dose changes. Local 5mm shift errors in the pelvic and upper leg junction resulted in <10% dose changes while a 10mm shift error causes dose changes up to 25%. Dosimetric comparison with cTBI showed VMAT-TBI has advantages in preserving chest wall dose with flexibility in leveraging the PTV-body and PTV-lung dose. Conclusion: VMAT-TBI with the IRIS system was shown clinically feasible as a cost-effective approach to TBI for standard-sized linac vaults.« less

  10. Human errors and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Kuselman, Ilya; Pennecchi, Francesca

    2015-04-01

    Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.

  11. Motor-Based Treatment with and without Ultrasound Feedback for Residual Speech-Sound Errors

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Leece, Megan C.; Maas, Edwin

    2017-01-01

    Background: There is a need to develop effective interventions and to compare the efficacy of different interventions for children with residual speech-sound errors (RSSEs). Rhotics (the r-family of sounds) are frequently in error American English-speaking children with RSSEs and are commonly targeted in treatment. One treatment approach involves…

  12. Clinical benefits of new immobilization system for hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma by helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yong; Zhou, Yong-Kang; Chen, Yi-Xing

    Objective: A comprehensive clinical evaluation was conducted, assessing the Body Pro-Lok immobilization and positioning system to facilitate hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma (HCC), using helical tomotherapy to improve treatment precision. Methods: Clinical applications of the Body Pro-Lok system were investigated (as above) in terms of interfractional and intrafractional setup errors and compressive abdominal breath control. To assess interfractional setup errors, a total of 42 patients who were given 5 to 20 fractions of helical tomotherapy for intrahepatic HCC were analyzed. Overall, 15 patients were immobilized using simple vacuum cushion (group A), and the Body Pro-Lok system was used inmore » 27 patients (group B), performing megavoltage computed tomography (MVCT) scans 196 times and 435 times, respectively. Pretreatment MVCT scans were registered to the planning kilovoltage computed tomography (KVCT) for error determination, and group comparisons were made. To establish intrafractional setup errors, 17 patients with intrahepatic HCC were selected at random for immobilization by Body Pro-Lok system, undergoing MVCT scans after helical tomotherapy every week. A total of 46 MVCT re-scans were analyzed for this purpose. In researching breath control, 12 patients, randomly selected, were immobilized by Body Pro-Lok system and subjected to 2-phase 4-dimensional CT (4DCT) scans, with compressive abdominal control or in freely breathing states, respectively. Respiratory-induced liver motion was then compared. Results: Mean interfractional setup errors were as follows: (1) group A: X, 2.97 ± 2.47 mm; Y, 4.85 ± 4.04 mm; and Z, 3.77 ± 3.21 mm; pitch, 0.66 ± 0.62°; roll, 1.09 ± 1.06°; and yaw, 0.85 ± 0.82°; and (2) group B: X, 2.23 ± 1.79 mm; Y, 4.10 ± 3.36 mm; and Z, 1.67 ± 1.91 mm; pitch, 0.45 ± 0.38°; roll, 0.77 ± 0.63°; and yaw, 0.52 ± 0.49°. Between-group differences were statistically significant in 6 directions (p < 0.05). Mean intrafractional setup errors with use of the Body Pro-Lok system were as follows: X, 0.41 ± 0.46 mm; Y, 0.86 ± 0.80 mm; Z, 0.33 ± 0.44 mm; and roll, 0.12 ± 0.19°. Mean liver-induced respiratory motion determinations were as follows: (1) abdominal compression: X, 2.33 ± 1.22 mm; Y, 5.11 ± 2.05 mm; Z, 2.13 ± 1.05 mm; and 3D vector, 6.22 ± 1.94 mm; and (2) free breathing: X, 3.48 ± 1.14 mm; Y, 9.83 ± 3.00 mm; Z, 3.38 ± 1.59 mm; and 3D vector, 11.07 ± 3.16 mm. Between-group differences were statistically different in 4 directions (p < 0.05). Conclusions: The Body Pro-Lok system is capable of improving interfractional and intrafractional setup accuracy and minimizing tumor movement owing to respirations in patients with intrahepatic HCC during hypofractionated helical tomotherapy.« less

  13. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    NASA Astrophysics Data System (ADS)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  14. High precision wavefront control in point spread function engineering for single emitter localization

    NASA Astrophysics Data System (ADS)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  15. Towards coherent combination of 61 fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Heilmann, Anke; Le Dortz, Jérémy; Daniault, Louis; Fsaifes, Ihsan; Bellanger, Séverine; Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Durand, Eric; Brignon, Arnaud; Simon-Boisson, Christophe; Chanteloup, Jean-Christophe

    2018-02-01

    The XCAN project aims at the coherent combination of 61 fiber amplifiers in the femtosecond regime. An important intermediate step towards this goal is the implementation of a seven fiber test setup, which allows to address key scientific and technical challenges which might occur in the scaled version of 61 fibers. This work includes the design and characterization of a support unit able to hold 61 fibers with the high precision required for an efficient coherent combination in tiled aperture configuration. This configuration, in combination with an interferometric phase measurement and active phase control, is particularly well suited for the coherent combination of a very large number of beams. Our first preliminary results with seven fibers include a combination efficiency of 30 % and a residual phase error between two fibers as low as λ/40 rms. Experiments conducted with three fibers in order to evaluate technical improvements revealed an increase of efficiency to 54 %. The combined beam was temporally compressed to 225 fs, which is Fourier transform limited with respect to the measured spectrum.

  16. Empirical parameterization of setup, swash, and runup

    USGS Publications Warehouse

    Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.

    2006-01-01

    Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.

  17. Practical considerations for coil-wrapped Distributed Temperature Sensing setups

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick

    2015-04-01

    Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.

  18. A new method for weakening the combined effect of residual errors on multibeam bathymetric data

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue

    2014-12-01

    Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.

  19. Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.

    PubMed

    Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S

    2008-10-01

    Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.

  20. Effect of Immobilization and Performance Status on Intrafraction Motion for Stereotactic Lung Radiotherapy: Analysis of 133 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Winnie, E-mail: winnie.li@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Purdie, Thomas G.

    2011-12-01

    Purpose: To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Methods and Materials: Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic ({Sigma}) and randommore » ({sigma}) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n = 75], evacuated cushion plus abdominal compression [n = 33], or chest board [n = 25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n = 31), 1 (n = 70), or 2 (n = 32). Results: Using CBCT internal target volume was matched within {+-}3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial-caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p < 0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p = 0.04). Conclusions: Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as frequent image guidance or volumetric arc therapy to correct or limit intrafraction motion.« less

  1. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients.

    PubMed

    Li, Winnie; Purdie, Thomas G; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B C John; Hope, Andrew; Sun, Alexander; Jaffray, David A; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-12-01

    To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n=75], evacuated cushion plus abdominal compression [n=33], or chest board [n=25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n=31), 1 (n=70), or 2 (n=32). Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial-caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p<0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p=0.04). Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as frequent image guidance or volumetric arc therapy to correct or limit intrafraction motion. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn

    2011-06-03

    Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Evaluation of setup uncertainties for single-fraction SRS by comparing two different mask-creation methods

    NASA Astrophysics Data System (ADS)

    Baek, Jong Geun; Jang, Hyun Soo; Oh, Young Kee; Lee, Hyun Jeong; Kim, Eng Chan

    2015-07-01

    The purpose of this study was to evaluate the setup uncertainties for single-fraction stereotactic radiosurgery (SF-SRS) based on clinical data with two different mask-creation methods using pretreatment con-beam computed tomography imaging guidance. Dedicated frameless fixation Brain- LAB masks for 23 patients were created as a routine mask (R-mask) making method, as explained in the BrainLAB's user manual. Alternative masks (A-masks), which were created by modifying the cover range of the R-masks for the patient's head, were used for 23 patients. The systematic errors including these for each mask and stereotactic target localizer were analyzed, and the errors were calculated as the means ± standard deviations (SD) from the left-right (LR), superior-inferior (SI), anterior-posterior (AP), and yaw setup corrections. In addition, the frequencies of the threedimensional (3D) vector length were analyzed. The values of the mean setup corrections for the R-mask in all directions were < 0.7 mm and < 0.1°, whereas the magnitudes of the SDs were relatively large compared to the mean values. In contrast, the means and SDs of the A-mask were smaller than those for the R-mask with the exception of the SD in the AP direction. The means and SDs in the yaw rotational direction for the R-mask and the A-mask system were comparable. 3D vector shifts of larger magnitude occurred more frequently for the R-mask than the A-mask. The setup uncertainties for each mask with the stereotactic localizing system had an asymmetric offset towards the positive AP direction. The A-mask-creation method, which is capable of covering the top of the patient's head, is superior to that for the R-mask, so the use of the A-mask is encouraged for SF-SRS to reduce the setup uncertainties. Moreover, careful mask-making is required to prevent possible setup uncertainties.

  4. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  5. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  6. A periodic review integrated inventory model with controllable setup cost, imperfect items, and inspection errors under service level constraint

    NASA Astrophysics Data System (ADS)

    Saga, R. S.; Jauhari, W. A.; Laksono, P. W.

    2017-11-01

    This paper presents an integrated inventory model which consists of single vendor and buyer. The buyer managed its inventory periodically and orders products from the vendor to satisfy the end customer’s demand, where the annual demand and the ordering cost were in the fuzzy environment. The buyer used a service level constraint instead of the stock-out cost term, so that the stock-out level per cycle was bounded. Then, the vendor produced and delivered products to the buyer. The vendor had a choice to commit an investment to reduce the setup cost. However, the vendor’s production process was imperfect, thus the lot delivered contained some defective products. Moreover, the buyer’s inspection process was not error-free since the inspector could be mistaken in categorizing the product’s quality. The objective was to find the optimum value for the review period, the setup cost, and the number of deliveries in one production cycle which might minimize the joint total cost. Furthermore, the algorithm and numerical example were provided to illustrate the application of the model.

  7. Error floor behavior study of LDPC codes for concatenated codes design

    NASA Astrophysics Data System (ADS)

    Chen, Weigang; Yin, Liuguo; Lu, Jianhua

    2007-11-01

    Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.

  8. Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error

    NASA Astrophysics Data System (ADS)

    Jung, Insung; Koo, Lockjo; Wang, Gi-Nam

    2008-11-01

    The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.

  9. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Charpentier, P; Sayler, E

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less

  10. Couch height–based patient setup for abdominal radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohira, Shingo; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita; Ueda, Yoshihiro

    2016-04-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on themore » computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.« less

  11. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Mark; Tuen Mun Hospital, Hong Kong; Grehn, Melanie

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with themore » original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.« less

  12. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  13. Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.

    2015-12-01

    Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.

  14. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2.more » The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters.« less

  15. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less

  16. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Kim, H; Park, J

    2014-06-15

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of originalmore » contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal tissues than the translational correction.« less

  17. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    PubMed Central

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641

  18. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning.

    PubMed

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A

    2016-05-01

    Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Ozone Profile Retrievals from the OMPS on Suomi NPP

    NASA Astrophysics Data System (ADS)

    Bak, J.; Liu, X.; Kim, J. H.; Haffner, D. P.; Chance, K.; Yang, K.; Sun, K.; Gonzalez Abad, G.

    2017-12-01

    We verify and correct the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) L1B v2.0 data with the aim of producing accurate ozone profile retrievals using an optimal estimation based inversion method in the 302.5-340 nm fitting. The evaluation of available slit functions demonstrates that preflight-measured slit functions well represent OMPS measurements compared to derived Gaussian slit functions. Our OMPS fitting residuals contain significant wavelength and cross-track dependent biases, and thereby serious cross-track striping errors are found in preliminary retrievals, especially in the troposphere. To eliminate the systematic component of the fitting residuals, we apply "soft calibration" to OMPS radiances. With the soft calibration the amplitude of fitting residuals decreases from 1 % to 0.2 % over low/mid latitudes, and thereby the consistency of tropospheric ozone retrievals between OMPS and Ozone Monitoring Instrument (OMI) are substantially improved. A common mode correction is implemented for additional radiometric calibration, which improves retrievals especially at high latitudes where the amplitude of fitting residuals decreases by a factor of 2. We estimate the floor noise error of OMPS measurements from standard deviations of the fitting residuals. The derived error in the Huggins band ( 0.1 %) is 2 times smaller than OMI floor noise error and 2 times larger than OMPS L1B measurement error. The OMPS floor noise errors better constrain our retrievals for maximizing measurement information and stabilizing our fitting residuals. The final precision of the fitting residuals is less than 0.1 % in the low/mid latitude, with 1 degrees of freedom for signal for the tropospheric ozone, so that we meet the general requirements for successful tropospheric ozone retrievals. To assess if the quality of OMPS ozone retrievals could be acceptable for scientific use, we will characterize OMPS ozone profile retrievals, present error analysis, and validate retrievals using a reference dataset. The useful information on the vertical distribution of ozone is limited below 40 km only from OMPS NM measurements due to the absence of Hartley ozone wavelength. This shortcoming will be improved with the joint ozone profile retrieval using Nadir Profiler (NP) measurements covering the 250 to 310 nm range.

  20. The Ballistic Slider.

    ERIC Educational Resources Information Center

    Taylor, David P.

    1995-01-01

    Presents an experiment that demonstrates conservation of momentum and energy using a box on the ground moving backwards as it is struck by a projectile. Discusses lab calculations, setup, management, errors, and improvements. (JRH)

  1. Comparison of 2c- and 3cLIF droplet temperature imaging

    NASA Astrophysics Data System (ADS)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2018-06-01

    This work presents "pulsed 2D-3cLIF-EET" as a measurement setup for micro-droplet internal temperature imaging. The setup relies on a third color channel that allows correcting spatially changing energy transfer rates between the two applied fluorescent dyes. First measurement results are compared with results of two slightly different versions of the recent "pulsed 2D-2cLIF-EET" method. Results reveal a higher temperature measurement accuracy of the recent 2cLIF setup. Average droplet temperature is determined by the 2cLIF setup with an uncertainty of less than 1 K and a spatial deviation of about 3.7 K. The new 3cLIF approach would become competitive, if the existing droplet size dependency is anticipated by an additional calibration and if the processing algorithm includes spatial measurement errors more appropriately.

  2. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    NASA Astrophysics Data System (ADS)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  3. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.

  4. Practical guidance on representing the heteroscedasticity of residual errors of hydrological predictions

    NASA Astrophysics Data System (ADS)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George

    2016-04-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).

  5. Exploring cosmic origins with CORE: Mitigation of systematic effects

    NASA Astrophysics Data System (ADS)

    Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Piat, M.; Pisano, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Rubino-Martin, J.-A.; Salvati, L.; Signorelli, G.; Tartari, A.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Wallis, C.; Young, K.; Zannoni, M.

    2018-04-01

    We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

  6. Evaluation of Robustness to Setup and Range Uncertainties for Head and Neck Patients Treated With Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyapa, Robert; Lowe, Matthew; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester

    Purpose: To evaluate the robustness of head and neck plans for treatment with intensity modulated proton therapy to range and setup errors, and to establish robustness parameters for the planning of future head and neck treatments. Methods and Materials: Ten patients previously treated were evaluated in terms of robustness to range and setup errors. Error bar dose distributions were generated for each plan, from which several metrics were extracted and used to define a robustness database of acceptable parameters over all analyzed plans. The patients were treated in sequentially delivered series, and plans were evaluated for both the first seriesmore » and for the combined error over the whole treatment. To demonstrate the application of such a database in the head and neck, for 1 patient, an alternative treatment plan was generated using a simultaneous integrated boost (SIB) approach and plans of differing numbers of fields. Results: The robustness database for the treatment of head and neck patients is presented. In an example case, comparison of single and multiple field plans against the database show clear improvements in robustness by using multiple fields. A comparison of sequentially delivered series and an SIB approach for this patient show both to be of comparable robustness, although the SIB approach shows a slightly greater sensitivity to uncertainties. Conclusions: A robustness database was created for the treatment of head and neck patients with intensity modulated proton therapy based on previous clinical experience. This will allow the identification of future plans that may benefit from alternative planning approaches to improve robustness.« less

  7. Inter- and Intrafraction Uncertainty in Prostate Bed Image-Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kitty; Palma, David A.; Department of Oncology, University of Western Ontario, London

    2012-10-01

    Purpose: The goals of this study were to measure inter- and intrafraction setup error and prostate bed motion (PBM) in patients undergoing post-prostatectomy image-guided radiotherapy (IGRT) and to propose appropriate population-based three-dimensional clinical target volume to planning target volume (CTV-PTV) margins in both non-IGRT and IGRT scenarios. Methods and Materials: In this prospective study, 14 patients underwent adjuvant or salvage radiotherapy to the prostate bed under image guidance using linac-based kilovoltage cone-beam CT (kV-CBCT). Inter- and intrafraction uncertainty/motion was assessed by offline analysis of three consecutive daily kV-CBCT images of each patient: (1) after initial setup to skin marks, (2)more » after correction for positional error/immediately before radiation treatment, and (3) immediately after treatment. Results: The magnitude of interfraction PBM was 2.1 mm, and intrafraction PBM was 0.4 mm. The maximum inter- and intrafraction prostate bed motion was primarily in the anterior-posterior direction. Margins of at least 3-5 mm with IGRT and 4-7 mm without IGRT (aligning to skin marks) will ensure 95% of the prescribed dose to the clinical target volume in 90% of patients. Conclusions: PBM is a predominant source of intrafraction error compared with setup error and has implications for appropriate PTV margins. Based on inter- and estimated intrafraction motion of the prostate bed using pre- and post-kV-CBCT images, CBCT IGRT to correct for day-to-day variances can potentially reduce CTV-PTV margins by 1-2 mm. CTV-PTV margins for prostate bed treatment in the IGRT and non-IGRT scenarios are proposed; however, in cases with more uncertainty of target delineation and image guidance accuracy, larger margins are recommended.« less

  8. Residual stress analysis of energy-dispersive diffraction data using a two-detector setup: Part I - Theoretical concept

    NASA Astrophysics Data System (ADS)

    Apel, Daniel; Meixner, Matthias; Liehr, Alexander; Klaus, Manuela; Degener, Sebastian; Wagener, Guido; Franz, Christian; Zinn, Wolfgang; Genzel, Christoph; Scholtes, Berthold

    2018-01-01

    A new goniometer setup for energy-dispersive X-ray diffraction is introduced which is based on simultaneous data acquisition with two detectors D1 and D2, both of them freely movable in a horizontal as well as in a vertical plane. From the multitude of measurement configurations that can be realised with this setup, we figured out three efficient concepts which aim at the fast analysis of residual stress depth profiles by combining the diffraction data gathered with the two detectors. The characteristic feature of the first two configurations consists in the vertical (horizontal) positioning of the first (second) detector, which results in a diffraction geometry where the two scattering vectors span a plane that coincides with the X-circle used for sample tilt. Because each detector does see the sample under another viewing angle, both the positive and the negative ψ-branch are covered by just one χ-tilt between 0°and 90°(configuration 1) and 0°and 60°(configuration 2), thus allowing for the simultaneous analysis of the in- and out-of-plane residual stress depth gradients σii(τ) and σi3(τ) (i = 1 , 2), respectively, from data sets dD1hkl(χ) and dD2hkl(χ). The third configuration introduced in this paper is based on a ϕ-rotation of the sample under a constant tilt angle χ and enables a fast and reliable tracing of shear stress fields σi3(τ) (i = 1, 2).

  9. SU-E-T-132: Dosimetric Impact of Positioning Errors in Hypo-Fractionated Cranial Radiation Therapy Using Frameless Stereotactic BrainLAB System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Jin, H; Ali, I

    2014-06-01

    Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin,more » Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion: The initial BrainLAB IR system based on rigidity of the mask-frame setup is not sufficient for accurate stereotactic positioning; however, with X-ray imageguidance sub-millimeter accuracy is achieved with negligible deviations in dose coverage. The angular corrections (mean angle summation=1.84°) are important and cause considerable deviations in dose coverage.« less

  10. SU-F-T-394: Impact of PTV Margins With Taking Into Account Shape Variation On IMRT Plans For Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, T; Arimura, H; Oga, S

    2016-06-15

    Purpose: The purpose of this study was to investigate the impact of planning target volume (PTV) margins with taking into consideration clinical target volume (CTV) shape variations on treatment plans of intensity modulated radiation therapy (IMRT) for prostate cancer. Methods: The systematic errors and the random errors for patient setup errors in right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions were obtained from data of 20 patients, and those for CTV shape variations were calculated from 10 patients, who were weekly scanned using cone beam computed tomography (CBCT). The setup error was defined as the difference in prostate centers betweenmore » planning CT and CBCT images after bone-based registrations. CTV shape variations of high, intermediate and low risk CTVs were calculated for each patient from variances of interfractional shape variations on each vertex of three-dimensional CTV point distributions, which were manually obtained from CTV contours on the CBCT images. PTV margins were calculated using the setup errors with and without CTV shape variations for each risk CTV. Six treatment plans were retrospectively made by using the PTV margins with and without CTV shape variations for the three risk CTVs of 5 test patients. Furthermore, the treatment plans were applied to CBCT images for investigating the impact of shape variations on PTV margins. Results: The percentages of population to cover with the PTV, which satisfies the CTV D98 of 95%, with and without the shape variations were 89.7% and 74.4% for high risk, 89.7% and 76.9% for intermediate risk, 84.6% and 76.9% for low risk, respectively. Conclusion: PTV margins taking into account CTV shape variation provide significant improvement of applicable percentage of population (P < 0.05). This study suggested that CTV shape variation should be taken consideration into determination of the PTV margins.« less

  11. SU-E-J-117: Verification Method for the Detection Accuracy of Automatic Winston Lutz Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, A; Chan, K; Fee, F

    2014-06-01

    Purpose: Winston Lutz test (WLT) has been a standard QA procedure performed prior to SRS treatment, to verify the mechanical iso-center setup accuracy upon different Gantry/Couch movements. Several detection algorithms exist,for analyzing the ball-radiation field alignment automatically. However, the accuracy of these algorithms have not been fully addressed. Here, we reveal the possible errors arise from each step in WLT, and verify the software detection accuracy with the Rectilinear Phantom Pointer (RLPP), a tool commonly used for aligning treatment plan coordinate with mechanical iso-center. Methods: WLT was performed with the radio-opaque ball mounted on a MIS and irradiated onto EDR2more » films. The films were scanned and processed with an in-house Matlab program for automatic iso-center detection. Tests were also performed to identify the errors arise from setup, film development and scanning process. The radioopaque ball was then mounted onto the RLPP, and offset laterally and longitudinally in 7 known positions ( 0, ±0.2, ±0.5, ±0.8 mm) manually for irradiations. The gantry and couch was set to zero degree for all irradiation. The same scanned images were processed repeatedly to check the repeatability of the software. Results: Miminal discrepancies (mean=0.05mm) were detected with 2 films overlapped and irradiated but developed separately. This reveals the error arise from film processor and scanner alone. Maximum setup errors were found to be around 0.2mm, by analyzing data collected from 10 irradiations over 2 months. For the known shift introduced using the RLPP, the results agree with the manual offset, and fit linearly (R{sup 2}>0.99) when plotted relative to the first ball with zero shift. Conclusion: We systematically reveal the possible errors arise from each step in WLT, and introduce a simple method to verify the detection accuracy of our in-house software using a clinically available tool.« less

  12. SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, A Barragan; Sterpin, E; Lee, J

    Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on eachmore » voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided.« less

  13. Precise orbit determination using the batch filter based on particle filtering with genetic resampling approach

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Choi, Eun-Jung; Park, Sang-Young; Park, Chandeok; Lim, Hyung-Chul

    2014-09-01

    In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10-13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.

  14. Errors in radiation oncology: A study in pathways and dosimetric impact

    PubMed Central

    Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff

    2005-01-01

    As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793

  15. Efficacy of Visual-Acoustic Biofeedback Intervention for Residual Rhotic Errors: A Single-Subject Randomization Study

    ERIC Educational Resources Information Center

    Byun, Tara McAllister

    2017-01-01

    Purpose: This study documented the efficacy of visual-acoustic biofeedback intervention for residual rhotic errors, relative to a comparison condition involving traditional articulatory treatment. All participants received both treatments in a single-subject experimental design featuring alternating treatments with blocked randomization of…

  16. Primary Radiometry for the mise-en-pratique: The Laser-Based Radiance Method Applied to a Pyrometer

    NASA Astrophysics Data System (ADS)

    Briaudeau, S.; Sadli, M.; Bourson, F.; Rougi, B.; Rihan, A.; Zondy, J.-J.

    2011-12-01

    A new setup has been implemented at LCM-LNE-CNAM for the determination "of the spectral responsivity of radiation thermometers for the determination" of the thermodynamic temperature of high-temperature blackbodies at the temperature of a metal-carbon eutectic phase transition. In this new setup, an innovative acoustic-optic modulator feedback loop is used to stabilize the radiance of a wavelength tunable laser. The effect of residual optical interferences on the calibration of a test pyrometer is analyzed. The full uncertainty budget is presented.

  17. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  18. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  19. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  20. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  1. A procedure for the significance testing of unmodeled errors in GNSS observations

    NASA Astrophysics Data System (ADS)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  2. A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray.

    PubMed

    Ma, Ce; Dou, Zuo-Yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-Cheng

    2016-11-01

    We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten k α1 . By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten k α1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.

  3. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  4. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.

    PubMed

    Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T

    2017-01-01

    To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.

  5. Comparative evaluation of user interfaces for robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Becattini, Gabriele; Dellepiane, Massimo; Caldwell, Darwin G

    2011-01-01

    This research investigates the impact of three different control devices and two visualization methods on the precision, safety and ergonomics of a new medical robotic system prototype for assistive laser phonomicrosurgery. This system allows the user to remotely control the surgical laser beam using either a flight simulator type joystick, a joypad, or a pen display system in order to improve the traditional surgical setup composed by a mechanical micromanipulator coupled with a surgical microscope. The experimental setup and protocol followed to obtain quantitative performance data from the control devices tested are fully described here. This includes sets of path following evaluation experiments conducted with ten subjects with different skills, for a total of 700 trials. The data analysis method and experimental results are also presented, demonstrating an average 45% error reduction when using the joypad and up to 60% error reduction when using the pen display system versus the standard phonomicrosurgery setup. These results demonstrate the new system can provide important improvements in terms of surgical precision, ergonomics and safety. In addition, the evaluation method presented here is shown to support an objective selection of control devices for this application.

  6. Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria

    2015-11-01

    The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.

  7. On the use of inexact, pruned hardware in atmospheric modelling

    PubMed Central

    Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.

    2014-01-01

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031

  8. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  9. NOTE: Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake

    2007-08-01

    This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.

  10. SU-F-J-42: Comparison of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Cranial Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Shi, W; Andrews, D

    2016-06-15

    Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patientmore » study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational directions and were within 0.4 degree in the rotational directions.« less

  11. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  13. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less

  14. Experimental assessment of a 3-D plenoptic endoscopic imaging system.

    PubMed

    Le, Hanh N D; Decker, Ryan; Krieger, Axel; Kang, Jin U

    2017-01-01

    An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second.

  15. Experimental assessment of a 3-D plenoptic endoscopic imaging system

    PubMed Central

    Le, Hanh N. D.; Decker, Ryan; Krieger, Axel; Kang, Jin U.

    2017-01-01

    An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second. PMID:29449863

  16. Unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in the outpatient pharmacy.

    PubMed

    Nanji, Karen C; Rothschild, Jeffrey M; Boehne, Jennifer J; Keohane, Carol A; Ash, Joan S; Poon, Eric G

    2014-01-01

    Electronic prescribing systems have often been promoted as a tool for reducing medication errors and adverse drug events. Recent evidence has revealed that adoption of electronic prescribing systems can lead to unintended consequences such as the introduction of new errors. The purpose of this study is to identify and characterize the unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in an outpatient pharmacy. A multidisciplinary team conducted direct observations of workflow in an independent pharmacy and semi-structured interviews with pharmacy staff members about their perceptions of the unrealized potential and residual consequences of electronic prescribing systems. We used qualitative methods to iteratively analyze text data using a grounded theory approach, and derive a list of major themes and subthemes related to the unrealized potential and residual consequences of electronic prescribing. We identified the following five themes: Communication, workflow disruption, cost, technology, and opportunity for new errors. These contained 26 unique subthemes representing different facets of our observations and the pharmacy staff's perceptions of the unrealized potential and residual consequences of electronic prescribing. We offer targeted solutions to improve electronic prescribing systems by addressing the unrealized potential and residual consequences that we identified. These recommendations may be applied not only to improve staff perceptions of electronic prescribing systems but also to improve the design and/or selection of these systems in order to optimize communication and workflow within pharmacies while minimizing both cost and the potential for the introduction of new errors.

  17. Quantile based Tsallis entropy in residual lifetime

    NASA Astrophysics Data System (ADS)

    Khammar, A. H.; Jahanshahi, S. M. A.

    2018-02-01

    Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α. In this paper, we derive the quantile form of this nonadditive's entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi's residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.

  18. A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

    1977-01-01

    The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

  19. Determination of effective complex refractive index of a turbid liquid with surface plasmon resonance phase detection.

    PubMed

    Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li

    2009-03-01

    The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).

  20. Demonstration of Orbit Determination for the Lunar Reconnaissance Orbiter Using One-Way Laser Ranging Data

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; hide

    2016-01-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. More over the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02,November2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12h (approximately equals 6 successive LRO orbits) prevented the successful estimation of arcs with lengths shorter or longer than 2 or 7 days with our given modeling.

  1. Accounting for optical errors in microtensiometry.

    PubMed

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattarivand, Mike; Summers, Clare; Robar, James

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients basedmore » on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.« less

  3. Development of a compact optical absolute frequency reference for space with 10-15 instability.

    PubMed

    Schuldt, Thilo; Döringshoff, Klaus; Kovalchuk, Evgeny V; Keetman, Anja; Pahl, Julia; Peters, Achim; Braxmaier, Claus

    2017-02-01

    We report on a compact and ruggedized setup for laser frequency stabilization employing Doppler-free spectroscopy of molecular iodine near 532 nm. Using a 30 cm long iodine cell in a triple-pass configuration in combination with noise-canceling detection and residual amplitude modulation control, a frequency instability of 6×10-15 at 1 s integration time and a Flicker noise floor below 3×10-15 for integration times between 100 and 1000 s was found. A specific assembly-integration technology was applied for the realization of the spectroscopy setup, ensuring high beam pointing stability and high thermal and mechanical rigidity. The setup was developed with respect to future applications in space, including high-sensitivity interspacecraft interferometry, tests of fundamental physics, and navigation and ranging.

  4. More irregular eye shape in low myopia than in emmetropia.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-09-01

    To improve the description of the peripheral eye shape in myopia and emmetropia by using a new method for continuous measurement of the peripheral refractive state. A scanning photorefractor was designed to record refractive errors in the vertical pupil meridian across the horizontal visual field (up to +/-45 degrees ). The setup consists of a hot mirror that continuously projects the infrared light from a photoretinoscope under different angles of eccentricity into the eye. The movement of the mirror is controlled by using two stepping motors. Refraction in a group of 17 emmetropic subjects and 11 myopic subjects (mean, -4.3 D; SD, 1.7) was measured without spectacle correction. For the analysis of eye shape, the refractive error versus the eccentricity angles was fitted with different polynomials (from second to tenth order). The new setup presents some important advantages over previous techniques: The subject does not have to change gaze during the measurements, and a continuous profile is obtained rather than discrete points. There was a significant difference in the fitting errors between the subjects with myopia and those with emmetropia. Tenth-order polynomials were required in myopic subjects to achieve a quality of fit similar to that in emmetropic subjects fitted with only sixth-order polynomials. Apparently, the peripheral shape of the myopic eye is more "bumpy." A new setup is presented for obtaining continuous peripheral refraction profiles. It was found that the peripheral retinal shape is more irregular even in only moderately myopic eyes, perhaps because the sclera lost some rigidity even at the early stage of myopia.

  5. Concurrent error detecting codes for arithmetic processors

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1979-01-01

    A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.

  6. Accounting for hardware imperfections in EIT image reconstruction algorithms.

    PubMed

    Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.

  7. Iterative Overlap FDE for Multicode DS-CDMA

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuaki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Recently, a new frequency-domain equalization (FDE) technique, called overlap FDE, that requires no GI insertion was proposed. However, the residual inter/intra-block interference (IBI) cannot completely be removed. In addition to this, for multicode direct sequence code division multiple access (DS-CDMA), the presence of residual interchip interference (ICI) after FDE distorts orthogonality among the spreading codes. In this paper, we propose an iterative overlap FDE for multicode DS-CDMA to suppress both the residual IBI and the residual ICI. In the iterative overlap FDE, joint minimum mean square error (MMSE)-FDE and ICI cancellation is repeated a sufficient number of times. The bit error rate (BER) performance with the iterative overlap FDE is evaluated by computer simulation.

  8. SU-E-J-170: Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy (SBRT) Treatment of Pancreatic Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maso, L; Forbang, R Teboh; Zhang, Y

    Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction andmore » a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research Fund for the AAPM Summer Undergraduate Fellowship Program.« less

  9. Developing and implementing a high precision setup system

    NASA Astrophysics Data System (ADS)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from the treatment planning system (TPS) has limited adaptive treatments. A reliable and accurate dosimetric simulation using TPS and in-house software in uncorrected errors has been developed. In SRT, the calculated dose deviation is compared to the original treatment dose with the dose-volume histogram to investigate the dose effect of rotational errors. In summary, this work performed a quality assessment to investigate the overall accuracy of current setup systems. To reach the ideal HPRT, the reliable dosimetric simulation, an effective daily QA program and effective, precise setup systems were developed and validated.

  10. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  11. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).

  12. Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging.

    PubMed

    Lovelock, D Michael; Hua, Chiaho; Wang, Ping; Hunt, Margie; Fournier-Bidoz, Nathalie; Yenice, Kamil; Toner, Sean; Lutz, Wendell; Amols, Howard; Bilsky, Mark; Fuks, Zvi; Yamada, Yoshiya

    2005-08-01

    Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.

  13. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less

  14. Three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic sinus surgery.

    PubMed

    Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W

    2013-12-01

    Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.

  15. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  16. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  17. Improved prediction of hardwood tree biomass derived from wood density estimates and form factors for whole trees

    Treesearch

    David W. MacFarlane; Neil R. Ver Planck

    2012-01-01

    Data from hardwood trees in Michigan were analyzed to investigate how differences in whole-tree form and wood density between trees of different stem diameter relate to residual error in standard-type biomass equations. The results suggested that whole-tree wood density, measured at breast height, explained a significant proportion of residual error in standard-type...

  18. A technique for reducing patient setup uncertainties by aligning and verifying daily positioning of a moving tumor using implanted fiducials

    PubMed Central

    Balter, Peter; Morice, Rodolfo C.; Choi, Bum; Kudchadker, Rajat J.; Bucci, Kara; Chang, Joe Y.; Dong, Lei; Tucker, Susan; Vedam, Sastry; Briere, Tina; Starkschall, George

    2008-01-01

    This study aimed to validate and implement a methodology in which fiducials implanted in the periphery of lung tumors can be used to reduce uncertainties in tumor location. Alignment software that matches marker positions on two‐dimensional (2D) kilovoltage portal images to positions on three‐dimensional (3D) computed tomography data sets was validated using static and moving phantoms. This software also was used to reduce uncertainties in tumor location in a patient with fiducials implanted in the periphery of a lung tumor. Alignment of fiducial locations in orthogonal projection images with corresponding fiducial locations in 3D data sets can position both static and moving phantoms with an accuracy of 1 mm. In a patient, alignment based on fiducial locations reduced systematic errors in the left–right direction by 3 mm and random errors by 2 mm, and random errors in the superior–inferior direction by 3 mm as measured by anterior–posterior cine images. Software that matches fiducial markers on 2D and 3D images is effective for aligning both static and moving fiducials before treatment and can be implemented to reduce patient setup uncertainties. PACS number: 81.40.Wx

  19. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  20. On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Tarpanelli, Angelica; Brocca, Luca; Casalí, Javier

    2018-01-01

    Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve streamflow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the influence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity (namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03-0.15) and efficiency indices (10-45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve streamflow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.

  1. Experimental verification of stopping-power prediction from single- and dual-energy computed tomography in biological tissues

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Russ, Tom; Wohlfahrt, Patrick; Elter, Alina; Runz, Armin; Richter, Christian; Greilich, Steffen

    2018-01-01

    An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84  ±  0.12)% and a mean absolute error of (1.27  ±  0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02  ±  0.15)% and a mean absolute error of (0.10  ±  0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.

  2. Residual-based Methods for Controlling Discretization Error in CFD

    DTIC Science & Technology

    2015-08-24

    discrete equations uh into Equation (3), then subtracting the original (continuous) governing equation 0)~( uL gives 0)()~()(  hhh uuLuL  . If...error from Equation (1) results in )()( hhh uL   (4) which for Burgers’ equation becomes  4 2 4 42 3 3 2 2 126 xO x dx udx dx ud u dx d dx d u...GTEE given in Equation (3) gives the continuous residual )()( hhh uuL  (8) which is analogous to the finite element residual (Ainsworth and

  3. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  4. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  5. Clinical multiphoton and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Darvin, M. E.; Lademann, J.; König, K.

    2012-03-01

    We report on clinical CARS imaging of human skin in vivo with the certified hybrid multiphoton tomograph CARSDermaInspect. The CARS-DermaInspect provides simultaneous imaging of non-fluorescent intradermal lipid and water as well as imaging of two-photon excited fluorescence from intrinsic molecules. Two different excitation schemes for CARS imaging have been realized: In the first setup, a combination of fs oscillator and optical parametric oscillator provided fs-CARS pump and Stokes pulses, respectively. In the second setup a fs oscillator was combined with a photonic crystal fiber which provided a broadband spectrum. A spectral range out of the broadband-spectrum was selected and used for CARS excitation in combination with the residual fs-oscillator output. In both setups, in addition to CARS, single-beam excitation was used for imaging of two-photon excited fluorescence and second harmonic generation signals. Both CARS-excitation systems were successfully used for imaging of lipids inside the skin in vivo.

  6. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  7. Integrity modelling of tropospheric delay models

    NASA Astrophysics Data System (ADS)

    Rózsa, Szabolcs; Bastiaan Ober, Pieter; Mile, Máté; Ambrus, Bence; Juni, Ildikó

    2017-04-01

    The effect of the neutral atmosphere on signal propagation is routinely estimated by various tropospheric delay models in satellite navigation. Although numerous studies can be found in the literature investigating the accuracy of these models, for safety-of-life applications it is crucial to study and model the worst case performance of these models using very low recurrence frequencies. The main objective of the INTegrity of TROpospheric models (INTRO) project funded by the ESA PECS programme is to establish a model (or models) of the residual error of existing tropospheric delay models for safety-of-life applications. Such models are required to overbound rare tropospheric delays and should thus include the tails of the error distributions. Their use should lead to safe error bounds on the user position and should allow computation of protection levels for the horizontal and vertical position errors. The current tropospheric model from the RTCA SBAS Minimal Operational Standards has an associated residual error that equals 0.12 meters in the vertical direction. This value is derived by simply extrapolating the observed distribution of the residuals into the tail (where no data is present) and then taking the point where the cumulative distribution has an exceedance level would be 10-7.While the resulting standard deviation is much higher than the estimated standard variance that best fits the data (0.05 meters), it surely is conservative for most applications. In the context of the INTRO project some widely used and newly developed tropospheric delay models (e.g. RTCA MOPS, ESA GALTROPO and GPT2W) were tested using 16 years of daily ERA-INTERIM Reanalysis numerical weather model data and the raytracing technique. The results showed that the performance of some of the widely applied models have a clear seasonal dependency and it is also affected by a geographical position. In order to provide a more realistic, but still conservative estimation of the residual error of tropospheric delays, the mathematical formulation of the overbounding models are currently under development. This study introduces the main findings of the residual error analysis of the studied tropospheric delay models, and discusses the preliminary analysis of the integrity model development for safety-of-life applications.

  8. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  9. Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.

    PubMed

    Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura

    2016-01-01

    dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.

  10. Influence of erroneous patient records on population pharmacokinetic modeling and individual bayesian estimation.

    PubMed

    van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H

    2012-10-01

    Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.

  11. Using a whole farm model to determine the impacts of mating management on the profitability of pasture-based dairy farms.

    PubMed

    Beukes, P C; Burke, C R; Levy, G; Tiddy, R M

    2010-08-01

    An approach to assessing likely impacts of altering reproductive performance on productivity and profitability in pasture-based dairy farms is described. The basis is the development of a whole farm model (WFM) that simulates the entire farm system and holistically links multiple physical performance factors to profitability. The WFM consists of a framework that links a mechanistic cow model, a pasture model, a crop model, management policies and climate. It simulates individual cows and paddocks, and runs on a day time-step. The WFM was upgraded to include reproductive modeling capability using reference tables and empirical equations describing published relationships between cow factors, physiology and mating management. It predicts reproductive status at any time point for individual cows within a modeled herd. The performance of six commercial pasture-based dairy farms was simulated for the period of 12 months beginning 1 June 2005 (05/06 year) to evaluate the accuracy of the model by comparison with actual outcomes. The model predicted most key performance indicators within an acceptable range of error (residual<10% of observed). The evaluated WFM was then used for the six farms to estimate the profitability of changes in farm "set-up" (farm conditions at the start of the farming year on 1 June) and mating management from 05/06 to 06/07 year. Among the six farms simulated, the 4-week calving rate emerged as an important set-up factor influencing profitability, while reproductive performance during natural bull mating was identified as an area with the greatest opportunity for improvement. The WFM presents utility to explore alternative management strategies to predict likely outcomes to proposed changes to a pasture-based farm system. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Accuracy of off-line bioluminescence imaging to localize targets in preclinical radiation research.

    PubMed

    Tuli, Richard; Armour, Michael; Surmak, Andrew; Reyes, Juvenal; Iordachita, Iulian; Patterson, Michael; Wong, John

    2013-04-01

    In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A small glass bulb containing BL cells was implanted as a BL source in the abdomen of 11 mouse carcasses. Bioluminescence imaging and tomography were acquired for each carcass. Six carcasses were setup visually without immobilization and 5 were restrained in position with tape. All carcasses were setup in treatment position on the SARRP where the centroid position of the bulb on CBCT was taken as "truth". In the 2D visual setup, the carcass was setup by aligning the point of brightest luminescence with the vertical beam axis. In the CBCT assisted setup, the pose of the carcass on CBCT was aligned with that on the 2D BL image for setup. For both 2D setup methods, the offset of the bulb centroid on CBCT from the vertical beam axis was measured. In the BLT-CBCT fusion method, the 3D torso on BLT and CBCT was registered and the 3D offset of the respective source centroids was calculated. The setup results were independent of the carcass being immobilized or not due to the onset of rigor mortis. The 2D offset of the perceived BL source position from the CBCT bulb position was 2.3 mm ± 1.3 mm. The 3D offset between BLT and CBCT was 1.5 mm ± 0.9 mm. Given the rigidity of the carcasses, the setup results represent the best that can be achieved with off-line 2D BLI and 3D BLT. The setup uncertainty would require the use of undesirably large margin of 4-5 mm. The results compel the implementation of on-board BLT capability on the SARRP to eliminate setup error and to improve BLT accuracy.

  13. Accuracy of Off-Line Bioluminescence Imaging to Localize Targets in Preclinical Radiation Research

    PubMed Central

    Tuli, Richard; Armour, Michael; Surmak, Andrew; Reyes, Juvenal; Iordachita, Iulian; Patterson, Michael; Wong, John

    2013-01-01

    In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A small glass bulb containing BL cells was implanted as a BL source in the abdomen of 11 mouse carcasses. Bioluminescence imaging and tomography were acquired for each carcass. Six carcasses were setup visually without immobilization and 5 were restrained in position with tape. All carcasses were setup in treatment position on the SARRP where the centroid position of the bulb on CBCT was taken as “truth”. In the 2D visual setup, the carcass was setup by aligning the point of brightest luminescence with the vertical beam axis. In the CBCT assisted setup, the pose of the carcass on CBCT was aligned with that on the 2D BL image for setup. For both 2D setup methods, the offset of the bulb centroid on CBCT from the vertical beam axis was measured. In the BLT-CBCT fusion method, the 3D torso on BLT and CBCT was registered and the 3D offset of the respective source centroids was calculated. The setup results were independent of the carcass being immobilized or not due to the onset of rigor mortis. The 2D offset of the perceived BL source position from the CBCT bulb position was 2.3 mm ± 1.3 mm. The 3D offset between BLT and CBCT was 1.5 mm ± 0.9 mm. Given the rigidity of the carcasses, the setup results represent the best that can be achieved with off-line 2D BLI and 3D BLT. The setup uncertainty would require the use of undesirably large margin of 4–5 mm. The results compel the implementation of on-board BLT capability on the SARRP to eliminate setup error and to improve BLT accuracy. PMID:23578189

  14. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  15. Roll and pitch set-up errors during volumetric modulated arc delivery: can adapting gantry and collimator angles compensate?

    PubMed

    Hoffmans-Holtzer, Nienke A; Hoffmans, Daan; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R

    2015-03-01

    The purpose of this work was to investigate whether adapting gantry and collimator angles can compensate for roll and pitch setup errors during volumetric modulated arc therapy (VMAT) delivery. Previously delivered clinical plans for locally advanced head-and-neck (H&N) cancer (n = 5), localized prostate cancer (n = 2), and whole brain with simultaneous integrated boost to 5 metastases (WB + 5M, n = 1) were used for this study. Known rigid rotations were introduced in the planning CT scans. To compensate for these, in-house software was used to adapt gantry and collimator angles in the plan. Doses to planning target volumes (PTV) and critical organs at risk (OAR) were calculated with and without compensation and compared with the original clinical plan. Measurements in the sagittal plane in a polystyrene phantom using radiochromic film were compared by gamma (γ) evaluation for 2 H&N cancer patients. For H&N plans, the introduction of 2°-roll and 3°-pitch rotations reduced mean PTV coverage from 98.7 to 96.3%. This improved to 98.1% with gantry and collimator compensation. For prostate plans respective figures were 98.4, 97.5, and 98.4%. For WB + 5M, compensation worked less well, especially for smaller volumes and volumes farther from the isocenter. Mean comparative γ evaluation (3%, 1 mm) between original and pitched plans resulted in 86% γ < 1. The corrected plan restored the mean comparison to 96% γ < 1. Preliminary data suggest that adapting gantry and collimator angles is a promising way to correct roll and pitch set-up errors of < 3° during VMAT for H&N and prostate cancer.

  16. On-Board Imaging Validation of Optically Guided Stereotactic Radiosurgery Positioning System for Conventionally Fractionated Radiotherapy for Paranasal Sinus and Skull Base Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxim, Peter G.; Loo, Billy W.; Murphy, James D.

    2011-11-15

    Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less

  17. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  18. Clinical comparison of positional accuracy and stability between dedicated versus conventional masks for immobilization in cranial stereotactic radiotherapy using 6-degree-of-freedom image guidance system-integrated platform.

    PubMed

    Ohtakara, Kazuhiro; Hayashi, Shinya; Tanaka, Hidekazu; Hoshi, Hiroaki; Kitahara, Masashi; Matsuyama, Katsuya; Okada, Hitoshi

    2012-02-01

    To compare the positioning accuracy and stability of two distinct noninvasive immobilization devices, a dedicated (D-) and conventional (C-) mask, and to evaluate the applicability of a 6-degrees-of-freedom (6D) correction, especially to the C-mask, based on our initial experience with cranial stereotactic radiotherapy (SRT) using ExacTrac (ET)/Robotics integrated into the Novalis Tx platform. The D- and C-masks were the BrainLAB frameless mask system and a general thermoplastic mask used for conventional radiotherapy such as whole brain irradiation, respectively. A total of 148 fractions in 71 patients and 125 fractions in 20 patients were analyzed for the D- and C-masks, respectively. For the C-mask, 3D correction was applied to the initial 10 patients, and thereafter, 6D correction was adopted. The 6D residual errors (REs) in the initial setup, after correction (pre-treatment), and during post-treatment were measured and compared. The D-mask provided no significant benefit for initial setup. The post-treatment median 3D vector displacements (interquatile range) were 0.38 mm (0.22, 0.60) and 0.74 mm (0.49, 1.04) for the D- and C-masks, respectively (p<0.001). The post-treatment maximal translational REs were within 1 mm and 2 mm for the D- and C-masks, respectively, and notably within 1.5 mm for the C-mask with 6D correction. The pre-treatment 3D vector displacements were significantly correlated with those for post-treatment in both masks. The D-mask confers positional stability acceptable for SRT. For the C-mask, 6D correction is also recommended, and an additional setup margin of 0.5 mm to that for the D-mask would be sufficient. The tolerance levels for the pre-treatment REs should similarly be set as small as possible for both systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Multiple transfer standard for calibration and characterization of test setups for LED lamps and luminaires in industry

    NASA Astrophysics Data System (ADS)

    Sperling, A.; Meyer, M.; Pendsa, S.; Jordan, W.; Revtova, E.; Poikonen, T.; Renoux, D.; Blattner, P.

    2018-04-01

    Proper characterization of test setups used in industry for testing and traceable measurement of lighting devices by the substitution method is an important task. According to new standards for testing LED lamps, luminaires and modules, uncertainty budgets are requested because in many cases the properties of the device under test differ from the transfer standard used, which may cause significant errors, for example if a LED-based lamp is tested or calibrated in an integrating sphere which was calibrated with a tungsten lamp. This paper introduces a multiple transfer standard, which was designed not only to transfer a single calibration value (e.g. luminous flux) but also to characterize test setups used for LED measurements with additional provided and calibrated output features to enable the application of the new standards.

  20. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    PubMed

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  1. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.

  2. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors.

    PubMed

    Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir

    2009-06-01

    Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.

  3. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  4. Notice of Violation of IEEE Publication PrinciplesJoint Redundant Residue Number Systems and Module Isolation for Mitigating Single Event Multiple Bit Upsets in Datapath

    NASA Astrophysics Data System (ADS)

    Li, Lei; Hu, Jianhao

    2010-12-01

    Notice of Violation of IEEE Publication Principles"Joint Redundant Residue Number Systems and Module Isolation for Mitigating Single Event Multiple Bit Upsets in Datapath"by Lei Li and Jianhao Hu,in the IEEE Transactions on Nuclear Science, vol.57, no.6, Dec. 2010, pp. 3779-3786After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE's Publication Principles.This paper contains substantial duplication of original text from the paper cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following articles:"Multiple Error Detection and Correction Based on Redundant Residue Number Systems"by Vik Tor Goh and M.U. Siddiqi,in the IEEE Transactions on Communications, vol.56, no.3, March 2008, pp.325-330"A Coding Theory Approach to Error Control in Redundant Residue Number Systems. I: Theory and Single Error Correction"by H. Krishna, K-Y. Lin, and J-D. Sun, in the IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.39, no.1, Jan 1992, pp.8-17In this paper, we propose a joint scheme which combines redundant residue number systems (RRNS) with module isolation (MI) for mitigating single event multiple bit upsets (SEMBUs) in datapath. The proposed hardening scheme employs redundant residues to improve the fault tolerance for datapath and module spacings to guarantee that SEMBUs caused by charge sharing do not propagate among the operation channels of different moduli. The features of RRNS, such as independence, parallel and error correction, are exploited to establish the radiation hardening architecture for the datapath in radiation environments. In the proposed scheme, all of the residues can be processed independently, and most of the soft errors in datapath can be corrected with the redundant relationship of the residues at correction module, which is allocated at the end of the datapath. In the back-end implementation, module isolation technique is used to improve the soft error rate performance for RRNS by physically separating the operation channels of different moduli. The case studies show at least an order of magnitude decrease on the soft error rate (SER) as compared to the NonRHBD designs, and demonstrate that RRNS+MI can reduce the SER from 10-12 to 10-17 when the processing steps of datapath are 106. The proposed scheme can even achieve less area and latency overheads than that without radiation hardening, since RRNS can reduce the operational complexity in datapath.

  5. Bayesian inversions of a dynamic vegetation model in four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; François, L.

    2015-01-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We compare model inversions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a~priori or jointly inferred with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root-mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 g C m-2 day-1, 1.04 to 1.56 g C m-2 day-1, and 0.50 to 1.28 mm day-1, respectively. In validation, mismatches between measured and simulated data are larger, but still with Nash-Sutcliffe efficiency scores above 0.5 for three out of the four sites. Although measurement errors associated with eddy covariance data are known to be heteroscedastic, we showed that assuming a classical linear heteroscedastic model of the residual errors in the inversion do not fully remove heteroscedasticity. Since the employed heteroscedastic error model allows for larger deviations between simulated and measured data as the magnitude of the measured data increases, this error model expectedly lead to poorer data fitting compared to inversions considering a constant variance of the residual errors. Furthermore, sampling the residual error variances along with model parameters results in overall similar model parameter posterior distributions as those obtained by fixing these variances beforehand, while slightly improving model performance. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides model behaviour, difference between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics. Lastly, the possibility of finding a common set of parameters among the four experimental sites is discussed.

  6. Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter

    NASA Technical Reports Server (NTRS)

    Jakab, I.; Bordas, A.

    1974-01-01

    After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.

  7. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient.

    PubMed

    Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai

    2016-06-10

    Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.

  8. Tool Wear Monitoring Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  9. Managing residual refractive error after cataract surgery.

    PubMed

    Sáles, Christopher S; Manche, Edward E

    2015-06-01

    We present a review of keratorefractive and intraocular approaches to managing residual astigmatic and spherical refractive error after cataract surgery, including laser in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), arcuate keratotomy, intraocular lens (IOL) exchange, piggyback IOLs, and light-adjustable IOLs. Currently available literature suggests that laser vision correction, whether LASIK or PRK, yields more effective and predictable outcomes than intraocular surgery. Piggyback IOLs with a rounded-edge profile implanted in the sulcus may be superior to IOL exchange, but both options present potential risks that likely outweigh the refractive benefits except in cases with large residual spherical errors. The light-adjustable IOL may provide an ideal treatment to pseudophakic ametropia by obviating the need for secondary invasive procedures after cataract surgery, but it is not widely available nor has it been sufficiently studied. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.

    PubMed

    Song, Ci; Dai, Yifan; Peng, Xiaoqiang

    2010-07-01

    Classically, a dwell-time map is created with a method such as deconvolution or numerical optimization, with the input being a surface error map and influence function. This dwell-time map is the numerical optimum for minimizing residual form error, but it takes no account of machine dynamics limitations. The map is then reinterpreted as machine speeds and accelerations or decelerations in a separate operation. In this paper we consider combining the two methods in a single optimization by the use of a constrained nonlinear optimization model, which regards both the two-norm of the surface residual error and the dwell-time gradient as an objective function. This enables machine dynamic limitations to be properly considered within the scope of the optimization, reducing both residual surface error and polishing times. Further simulations are introduced to demonstrate the feasibility of the model, and the velocity map is reinterpreted from the dwell time, meeting the requirement of velocity and the limitations of accelerations or decelerations. Indeed, the model and algorithm can also apply to other computer-controlled subaperture methods.

  11. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gierga, David P., E-mail: dgierga@partners.org; Harvard Medical School, Boston, Massachusetts; Turcotte, Julie C.

    2012-12-01

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference wasmore » greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.« less

  12. A randomized control trial evaluating fluorescent ink versus dark ink tattoos for breast radiotherapy

    PubMed Central

    Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A

    2016-01-01

    Objective: The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. Methods: In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σsetup) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. Results: 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σsetup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. Conclusion: UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial. PMID:27710100

  13. A randomized control trial evaluating fluorescent ink versus dark ink tattoos for breast radiotherapy.

    PubMed

    Landeg, Steven J; Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A

    2016-12-01

    The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σ setup ) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σ setup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial.

  14. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  15. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    NASA Astrophysics Data System (ADS)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  17. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    PubMed Central

    2012-01-01

    Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins. PMID:22531060

  18. Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    PubMed

    Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong

    2017-06-01

    The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.

  19. Error model for the SAO 1969 standard earth.

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Roy, N. A.

    1972-01-01

    A method is developed for estimating an error model for geopotential coefficients using satellite tracking data. A single station's apparent timing error for each pass is attributed to geopotential errors. The root sum of the residuals for each station also depends on the geopotential errors, and these are used to select an error model. The model chosen is 1/4 of the difference between the SAO M1 and the APL 3.5 geopotential.

  20. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Jamgade, Ambarish; Ali, Imad

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had amore » shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter for the surrounding normal tissue except for the dose received by the penile bulb and the right hip. Our dosimetric evaluation suggests significant underdosing with inaccurate target localization and emphasizes the importance of accurate patient setup and target localization. Further studies are needed to evaluate the impact of intrafraction organ motion, rotation, and deformation on doses delivered to target volumes.« less

  1. Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper

    Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculatedmore » as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max} underestimated the accumulated heart D{sub max} for 9.1% patients using online and 13.6% patients using offline bony anatomy setup correction, which validated that PRV margin size was adequate. Conclusion: Considerable cardiac position variability relative to the bony anatomy was observed in breast cancer patients. A PRV margin can be used during treatment planning to take these uncertainties into account.« less

  2. MO-FG-CAMPUS-JeP3-01: A Statistical Model for Analyzing the Rotational Error of Single Iso-Center Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J; Dept of Radiation Oncology, New York Weill Cornell Medical Ctr, New York, NY

    Purpose: To develop a generalized statistical model that incorporates the treatment uncertainty from the rotational error of single iso-center technique, and calculate the additional PTV (planning target volume) margin required to compensate for this error. Methods: The random vectors for setup and additional rotation errors in the three-dimensional (3D) patient coordinate system were assumed to follow the 3D independent normal distribution with zero mean, and standard deviations σx, σy, σz, for setup error and a uniform σR for rotational error. Both random vectors were summed, normalized and transformed to the spherical coordinates to derive the chi distribution with 3 degreesmore » of freedom for the radical distance ρ. PTV margin was determined using the critical value of this distribution for 0.05 significant level so that 95% of the time the treatment target would be covered by ρ. The additional PTV margin required to compensate for the rotational error was calculated as a function of σx, σy, σz and σR. Results: The effect of the rotational error is more pronounced for treatments that requires high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2mm PTV margin (or σx =σy=σz=0.7mm), a σR=0.32mm will decrease the PTV coverage from 95% to 90% of the time, or an additional 0.2mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σR>0.3mm will lead to an additional PTV margin that cannot be ignored, and the maximal σR that can be ignored is 0.0064 rad (or 0.37°) for iso-to-target distance=5cm, or 0.0032 rad (or 0.18°) for iso-to-target distance=10cm. Conclusions: The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the iso-center and target is large.« less

  3. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting.

    PubMed

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-09-01

    The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.

  4. Precision improving of double beam shadow moiré interferometer by phase shifting interferometry for the stress of flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye

    2012-09-01

    While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.

  5. A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete

    PubMed Central

    Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam

    2014-01-01

    The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907

  6. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  7. Broadband microwave spectroscopy in Corbino geometry at 3He temperatures

    NASA Astrophysics Data System (ADS)

    Steinberg, Katrin; Scheffler, Marc; Dressel, Martin

    2012-02-01

    A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.

  8. Site‐specific tolerance tables and indexing device to improve patient setup reproducibility

    PubMed Central

    James, Joshua A.; Cetnar, Ashley J.; McCullough, Mark A.; Wang, Brian

    2015-01-01

    While the implementation of tools such as image‐guidance and immobilization devices have helped to prevent geometric misses in radiation therapy, many treatments remain prone to error if these items are not available, not utilized for every fraction, or are misused. The purpose of this project is to design a set of site‐specific treatment tolerance tables to be applied to the treatment couch for use in a record and verify (R&V) system that will insure accurate patient setup with minimal workflow interruption. This project also called for the construction of a simple indexing device to help insure reproducible patient setup for patients that could not be indexed with existing equipment. The tolerance tables were created by retrospective analysis on a total of 66 patients and 1,308 treatments, separating them into five categories based on disease site: lung, head and neck (H&N), breast, pelvis, and abdomen. Couch parameter tolerance tables were designed to encompass 95% of treatments, and were generated by calculating the standard deviation of couch vertical, longitudinal, and lateral values using the first day of treatment as a baseline. We also investigated an alternative method for generating the couch tolerances by updating the baseline values when patient position was verified with image guidance. This was done in order to adapt the tolerances to any gradual changes in patient setup that would not correspond with a mistreatment. The tolerance tables and customizable indexing device were then implemented for a trial period in order to determine the feasibility of the system. During this trial period we collected data from 1,054 fractions from 65 patients. We then analyzed the number of treatments that would have been out of tolerance, as well as whether or not the tolerances or setup techniques should be adjusted. When the couch baseline values were updated with every imaging fraction, the average rate of tolerance violations was 10% for the lung, H&N, abdomen, and pelvis treatments. Using the indexing device, tolerances for patients with pelvic disease decreased (e.g., from 5.3 cm to 4.3 cm longitudinally). Unfortunately, the results from breast patients were highly variable due to the complexity of the setup technique, making the couch an inadequate surrogate for measuring setup accuracy. In summary, we have developed a method to turn the treatment couch parameters within the R&V system into a useful alert tool, which can be implemented at other institutions, in order to identify potential errors in patient setup. PACS numbers: 87.53Kn, 87.55.kh, 87.55.ne, 87.55.km, 87.55K‐, 87.55.Qr PMID:26103475

  9. Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Lindenbergh, R.; Pu, S.

    2016-06-01

    This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.

  10. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  11. SU-E-T-318: The Effect of Patient Positioning Errors On Target Coverage and Cochlear Dose in Stereotactic Radiosurgery Treatment of Acoustic Neuromas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellamonica, D.; Luo, G.; Ding, G.

    Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less

  12. A discontinuous Poisson-Boltzmann equation with interfacial jump: homogenisation and residual error estimate.

    PubMed

    Fellner, Klemens; Kovtunenko, Victor A

    2016-01-01

    A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.

  13. Test-to-Test Repeatability of Results From a Subsonic Wing-Body Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Pendergraft, Odis C., Jr.

    2000-01-01

    Results from three wind tunnel tests in the National Transonic Facility of a model of an advanced-technology, subsonic-transport wing-body configuration have been analyzed to assess the test-to-test repeatability of several aerodynamic parameters. The scatter, as measured by the prediction interval, in the longitudinal force and moment coefficients increases as the Mach number increases. Residual errors with and without the ESP tubes installed suggest a bias leading to lower drag with the tubes installed. Residual errors as well as average values of the longitudinal force and moment coefficients show that there are small bias errors between the different tests.

  14. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  15. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate.

    PubMed

    Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T

    2017-01-01

    A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  16. Clinical Positioning Accuracy for Multisession Stereotactic Radiotherapy With the Gamma Knife Perfexion

    PubMed Central

    Young, Lori A.; Phillips, Mark H.; Cheung, Michael; Halasz, Lia M.; Rockhill, Jason K.

    2017-01-01

    Multisession stereotactic radiation therapy is increasingly being seen as a preferred option for intracranial diseases in close proximity to critical structures and for larger target volumes. The objective of this study is to investigate the reproducibility of the Extend system from Elekta. A retrospective review was conducted for all patients treated with multisession Gamma Knife between July 2010 and June 2015, including both malignant and benign lesions. Eighty-four patients were treated in this 5-year span. The average residual daily setup uncertainty was 0.48 (0.19) mm. We compare measurements of setup uncertainty from the Extend system to measurements performed with a linac-based approach previously used in our center. The Extend system has significantly reduced setup uncertainty for fractionated intracranial treatments at our institution. Positive results were observed in a small population of edentulous patients. The Extend system compares favorably with other approaches to delivering intracranial stereotactic radiotherapy and is a robust, simple-to-use, and precise method for treating multisession intracranial lesions. PMID:28514899

  17. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  18. UCAC3: ASTROMETRIC REDUCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L., E-mail: finch@usno.navy.mi

    2010-06-15

    Presented here are the details of the astrometric reductions from the x, y data to mean right ascension (R.A.), declination (decl.) coordinates of the third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3). For these new reductions we used over 216,000 CCD exposures. The Two-Micron All-Sky Survey (2MASS) data are used extensively to probe for coordinate and coma-like systematic errors in UCAC data mainly caused by the poor charge transfer efficiency of the 4K CCD. Errors up to about 200 mas have been corrected using complex look-up tables handling multiple dependences derived from the residuals. Similarly, field distortions and sub-pixel phasemore » errors have also been evaluated using the residuals with respect to 2MASS. The overall magnitude equation is derived from UCAC calibration field observations alone, independent of external catalogs. Systematic errors of positions at the UCAC observing epoch as presented in UCAC3 are better corrected than in the previous catalogs for most stars. The Tycho-2 catalog is used to obtain final positions on the International Celestial Reference Frame. Residuals of the Tycho-2 reference stars show a small magnitude equation (depending on declination zone) that might be inherent in the Tycho-2 catalog.« less

  19. New approach for the identification of implausible values and outliers in longitudinal childhood anthropometric data.

    PubMed

    Shi, Joy; Korsiak, Jill; Roth, Daniel E

    2018-03-01

    We aimed to demonstrate the use of jackknife residuals to take advantage of the longitudinal nature of available growth data in assessing potential biologically implausible values and outliers. Artificial errors were induced in 5% of length, weight, and head circumference measurements, measured on 1211 participants from the Maternal Vitamin D for Infant Growth (MDIG) trial from birth to 24 months of age. Each child's sex- and age-standardized z-score or raw measurements were regressed as a function of age in child-specific models. Each error responsible for a biologically implausible decrease between a consecutive pair of measurements was identified based on the higher of the two absolute values of jackknife residuals in each pair. In further analyses, outliers were identified as those values beyond fixed cutoffs of the jackknife residuals (e.g., greater than +5 or less than -5 in primary analyses). Kappa, sensitivity, and specificity were calculated over 1000 simulations to assess the ability of the jackknife residual method to detect induced errors and to compare these methods with the use of conditional growth percentiles and conventional cross-sectional methods. Among the induced errors that resulted in a biologically implausible decrease in measurement between two consecutive values, the jackknife residual method identified the correct value in 84.3%-91.5% of these instances when applied to the sex- and age-standardized z-scores, with kappa values ranging from 0.685 to 0.795. Sensitivity and specificity of the jackknife method were higher than those of the conditional growth percentile method, but specificity was lower than for conventional cross-sectional methods. Using jackknife residuals provides a simple method to identify biologically implausible values and outliers in longitudinal child growth data sets in which each child contributes at least 4 serial measurements. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  20. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of themore » absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.« less

  1. Using polarizable POSSIM force field and fuzzy-border continuum solvent model to calculate pK(a) shifts of protein residues.

    PubMed

    Sharma, Ity; Kaminski, George A

    2017-01-15

    Our Fuzzy-Border (FB) continuum solvent model has been extended and modified to produce hydration parameters for small molecules using POlarizable Simulations Second-order Interaction Model (POSSIM) framework with an average error of 0.136 kcal/mol. It was then used to compute pK a shifts for carboxylic and basic residues of the turkey ovomucoid third domain (OMTKY3) protein. The average unsigned errors in the acid and base pK a values were 0.37 and 0.4 pH units, respectively, versus 0.58 and 0.7 pH units as calculated with a previous version of polarizable protein force field and Poisson Boltzmann continuum solvent. This POSSIM/FB result is produced with explicit refitting of the hydration parameters to the pK a values of the carboxylic and basic residues of the OMTKY3 protein; thus, the values of the acidity constants can be viewed as additional fitting target data. In addition to calculating pK a shifts for the OMTKY3 residues, we have studied aspartic acid residues of Rnase Sa. This was done without any further refitting of the parameters and agreement with the experimental pK a values is within an average unsigned error of 0.65 pH units. This result included the Asp79 residue that is buried and thus has a high experimental pK a value of 7.37 units. Thus, the presented model is capable or reproducing pK a results for residues in an environment that is significantly different from the solvated protein surface used in the fitting. Therefore, the POSSIM force field and the FB continuum solvent parameters have been demonstrated to be sufficiently robust and transferable. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Maquilan, G; Anders, M

    Purpose: Full face and neck thermoplastic masks provide standard-of-care immobilization for patients receiving H&N IMRT. However, these masks are uncomfortable and increase skin dose. The purpose of this pilot study was to investigate the feasibility and setup accuracy of open face and neck mask immobilization with OIG. Methods: Ten patients were consented and enrolled to this IRB-approved protocol. Patients were immobilized with open masks securing only forehead and chin. Standard IMRT to 60–70 Gy in 30 fractions were delivered in all cases. Patient simulation information, including isocenter location and CT skin contours, were imported to a commercial OIG system. Onmore » the first day of treatment, patients were initially set up to surface markings and then OIG referenced to face and neck skin regions of interest (ROI) localized on simulation CT images, followed by in-room CBCT. CBCTs were acquired at least weekly while planar OBI was acquired on the days without CBCT. Following 6D robotic couch correction with kV imaging, a new optical real-time surface image was acquired to track intrafraction motion and to serve as a reference surface for setup at the next treatment fraction. Therapists manually recorded total treatment time as well as couch shifts based on kV imaging. Intrafractional ROI motion tracking was automatically recorded. Results: Setup accuracy of OIG was compared with CBCT results. The setup error based on OIG was represented as a 6D shift (vertical/longitudinal/lateral/rotation/pitch/roll). Mean error values were −0.70±3.04mm, −0.69±2.77mm, 0.33±2.67 mm, −0.14±0.94 o, −0.15±1.10o and 0.12±0.82o, respectively for the cohort. Average treatment time was 24.1±9.2 minutes, comparable to standard immobilization. The amplitude of intrafractional ROI motion was 0.69±0.36 mm, driven primarily by respiratory neck motion. Conclusion: OGI can potentially provide accurate setup and treatment tracking for open face and neck immobilization. Study accrual and patient/provider satisfaction survey collection remain ongoing. This study is supported by VisionRT, Ltd.« less

  3. SU-F-J-192: A Quick and Effective Method to Validate Patient’s Daily Setup and Geometry Changes Prior to Proton Treatment Delivery Based On Water Equivalent Thickness Projection Imaging (WETPI) for Head Neck Cancer (HNC) Patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, G; Qin, A; Zhang, J

    Purpose: With the implementation of Cone-beam Computed-Tomography (CBCT) in proton treatment, we introduces a quick and effective tool to verify the patient’s daily setup and geometry changes based on the Water-Equivalent-Thickness Projection-Image(WETPI) from individual beam angle. Methods: A bilateral head neck cancer(HNC) patient previously treated via VMAT was used in this study. The patient received 35 daily CBCT during the whole treatment and there is no significant weight change. The CT numbers of daily CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration(DIR). IMPT plan was generated using 4-field IMPT robust optimization (3.5% rangemore » and 3mm setup uncertainties) with beam angle 60, 135, 300, 225 degree. WETPI within CTV through all beam directions were calculated. 3%/3mm gamma index(GI) were used to provide a quantitative comparison between initial sim-CT and mapped daily CBCT. To simulate an extreme case where human error is involved, a couch bar was manually inserted in front of beam angle 225 degree of one CBCT. WETPI was compared in this scenario. Results: The average of GI passing rate of this patient from different beam angles throughout the treatment course is 91.5 ± 8.6. In the cases with low passing rate, it was found that the difference between shoulder and neck angle as well as the head rest often causes major deviation. This indicates that the most challenge in treating HNC is the setup around neck area. In the extreme case where a couch bar is accidently inserted in the beam line, GI passing rate drops to 52 from 95. Conclusion: WETPI and quantitative gamma analysis give clinicians, therapists and physicists a quick feedback of the patient’s setup accuracy or geometry changes. The tool could effectively avoid some human errors. Furthermore, this tool could be used potentially as an initial signal to trigger plan adaptation.« less

  4. Analysis of target wavefront error for secondary mirror of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  5. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    NASA Astrophysics Data System (ADS)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  6. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE PAGES

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.; ...

    2016-11-30

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  7. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  8. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.

  9. Automated body weight prediction of dairy cows using 3-dimensional vision.

    PubMed

    Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S

    2018-05-01

    The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  10. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).

  11. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs.

    PubMed

    Lemaire, E D; Lamontagne, M; Barclay, H W; John, T; Martel, G

    1991-01-01

    A balance platform setup was defined for use in the determination of the center of gravity in the sagittal plane for a wheelchair and patient. Using the center of gravity information, measurements from the wheelchair and patient (weight, tire coefficients of friction), and various assumptions (constant speed, level-concrete surface, patient-wheelchair system is a rigid body), a method for estimating the rolling resistance for a wheelchair was outlined. The center of gravity and rolling resistance techniques were validated against criterion values (center of gravity error = 1 percent, rolling resistance root mean square error = 0.33 N, rolling resistance Pearson correlation coefficient = 0.995). Consistent results were also obtained from a test dummy and five subjects. Once the center of gravity is known, it is possible to evaluate the stability of a wheelchair (in terms of tipping over) and the interaction between the level of stability and rolling resistance. These quantitative measures are expected to be of use in the setup of wheelchairs with a variable seat angle and variable wheelbase length or when making comparisons between different wheelchairs.

  12. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    PubMed

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dosimetric impact of daily setup variations during treatment of canine nasal tumors using intensity-modulated radiation therapy.

    PubMed

    Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R; Tomé, Wolfgang A; Forrest, Lisa J

    2010-01-01

    Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5 mm (0-10.0 mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9 +/- 3.3 mm. Due to variations, a loss of equivalent uniform dose for target volumes of up to 5.6% was noted which corresponded to a potential loss in tumor control probability of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose and highest normalized dose given to 2% of the volume. Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain.

  14. DOSIMETRIC IMPACT OF DAILY SETUP VARIATIONS DURING TREATMENT OF CANINE NASAL TUMORS USING INTENSITY-MODULATED RADIATION THERAPY

    PubMed Central

    Deveau, Michael A.; Gutiérrez, Alonso N.; Mackie, Thomas R.; Tomé, Wolfgang A.; Forrest, Lisa J.

    2009-01-01

    Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5mm (0-10.0mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9±3.3mm. Due to variations, a loss of equivalent uniform dose (EUD) for target volumes of up to 5.6% was noted which corresponded to a potential loss in TCP of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose (NTDmean) and highest normalized dose given to 2% of the volume (NTD2%). Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain. PMID:20166402

  15. Patterns of intrafractional motion and uncertainties of treatment setup reference systems in accelerated partial breast irradiation for right- and left-sided breast cancer.

    PubMed

    Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G

    2014-01-01

    This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. On the use of programmable hardware and reduced numerical precision in earth-system modeling.

    PubMed

    Düben, Peter D; Russell, Francis P; Niu, Xinyu; Luk, Wayne; Palmer, T N

    2015-09-01

    Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a significant increase in computational performance for simulations in geophysical fluid dynamics compared with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating-point numbers to specific application needs. We analyze the performance-precision trade-off on FPGA hardware for the two-scale Lorenz '95 model. We scale the size of this toy model to that of a high-performance computing application in order to make meaningful performance tests. We identify the minimal level of precision at which changes in model results are not significant compared with a maximal precision version of the model and find that this level is very similar for cases where the model is integrated for very short or long intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive long-term simulations. We also show that an approach to reduce precision with increasing forecast time, when model errors are already accumulated, is very promising. We show that a speed-up of 1.9 times is possible in comparison to FPGA simulations in single precision if precision is reduced with no strong change in model error. The single-precision FPGA setup shows a speed-up of 2.8 times in comparison to our model implementation on two 6-core CPUs for large model setups.

  17. Origins of coevolution between residues distant in protein 3D structures

    PubMed Central

    Ovchinnikov, Sergey; Kamisetty, Hetunandan; Baker, David

    2017-01-01

    Residue pairs that directly coevolve in protein families are generally close in protein 3D structures. Here we study the exceptions to this general trend—directly coevolving residue pairs that are distant in protein structures—to determine the origins of evolutionary pressure on spatially distant residues and to understand the sources of error in contact-based structure prediction. Over a set of 4,000 protein families, we find that 25% of directly coevolving residue pairs are separated by more than 5 Å in protein structures and 3% by more than 15 Å. The majority (91%) of directly coevolving residue pairs in the 5–15 Å range are found to be in contact in at least one homologous structure—these exceptions arise from structural variation in the family in the region containing the residues. Thirty-five percent of the exceptions greater than 15 Å are at homo-oligomeric interfaces, 19% arise from family structural variation, and 27% are in repeat proteins likely reflecting alignment errors. Of the remaining long-range exceptions (<1% of the total number of coupled pairs), many can be attributed to close interactions in an oligomeric state. Overall, the results suggest that directly coevolving residue pairs not in repeat proteins are spatially proximal in at least one biologically relevant protein conformation within the family; we find little evidence for direct coupling between residues at spatially separated allosteric and functional sites or for increased direct coupling between residue pairs on putative allosteric pathways connecting them. PMID:28784799

  18. Soil moisture assimilation using a modified ensemble transform Kalman filter with water balance constraint

    NASA Astrophysics Data System (ADS)

    Wu, Guocan; Zheng, Xiaogu; Dan, Bo

    2016-04-01

    The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.

  19. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  20. SU-E-T-36: An Investigation of the Margin From CTV to PTV Using Retraction Method for Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D; Chen, J; Hao, Y

    Purpose: This work employs the retraction method to compute and evaluate the margin from CTV to PTV based on the influence of target dosimetry of setup errors during cervical carcinoma patients treatment. Methods: Sixteen patients with cervical cancer were treated by Elekta synergy and received a total of 305 KV-CBCT images. The iso-center of the initial plans were changed according to the setup errors to simulate radiotherapy and then recalculated the dose distribution using leaf sequences and MUs for individual plans. The margin from CTV to PTV will be concluded both by the method of retracting (Fixed the PTV ofmore » the original plan, and retract PTV a certain distance defined as simulative organization CTVnx. The minimum distance value from PTV to CTVnx which get specified doses, namely guarantee at least 99% CTV volume can receive the dose of 95%, is the margin CTV to PTV we found) and the former formula method. Results: (1)The setup errors of 16 patients in X, Y and Z directions were(1.13±2.94) mm,(−1.63±7.13) mm,(−0.65±2.25) mm. (2) The distance between CTVx and PTV was 5, 9 and 3mm in X, Y and Z directions According to 2.5+0.7σ. (3) Transplantation plans displayed 99% of CTVx10- CTVx7 and received 95% of prescription dose, but CTVx6- CTVx3 departed from standard of clinic.In order to protect normal tissues, we selected 7mm as the minimum value of the margin from CTV to PTV. Conclusion: We have test an retraction method for the margin from CTV to PTV evaluation. The retraction method is more reliable than the formula method for calculating the margin from the CTV to the PTV, because it represented practice of treatment, and increasing a new method in this field.« less

  1. Optimal marker placement in hadrontherapy: intelligent optimization strategies with augmented Lagrangian pattern search.

    PubMed

    Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido

    2015-02-01

    In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Levels at gaging stations

    USGS Publications Warehouse

    Kenney, Terry A.

    2010-01-01

    Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.

  3. Immobilisation precision in VMAT for oral cancer patients

    NASA Astrophysics Data System (ADS)

    Norfadilah, M. N.; Ahmad, R.; Heng, S. P.; Lam, K. S.; Radzi, A. B. Ahmad; John, L. S. H.

    2017-05-01

    A study was conducted to evaluate and quantify a precision of the interfraction setup with different immobilisation devices throughout the treatment time. Local setup accuracy was analysed for 8 oral cancer patients receiving radiotherapy; 4 with HeadFIX® mouthpiece moulded with wax (HFW) and 4 with 10 ml/cc syringe barrel (SYR). Each patients underwent Image Guided Radiotherapy (IGRT) with total of 209 cone-beam computed tomography (CBCT) data sets for position set up errors measurement. The setup variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. Overall mean displacement (M), the population systematic (Σ) and random (σ) errors and the 3D vector length were calculated. Clinical target volume to planning target volume (CTV-PTV) margins were calculated according to the van Herk formula (2.5Σ+0.7σ). The M values for both group were < 1 mm and < 1° in all translational and rotational directions. This indicate there is no significant imprecision in the equipment (lasers) and during procedure. The interfraction translational 3 dimension vector for HFW and SYR were 1.93±0.66mm and 3.84±1.34mm, respectively. The interfraction average rotational error were 0.00°±0.65° and 0.34°±0.59°, respectively. CTV-PTV margins along the 3 translational axis (Right-Left, Superior-Inferior, Anterior-Posterior) calculated were 3.08, 2.22 and 0.81 mm for HFW and 3.76, 6.24 and 5.06 mm for SYR. The results of this study have demonstrated that HFW more precise in reproducing patient position compared to conventionally used SYR (p<0.001). All margin calculated did not exceed hospital protocol (5mm) except S-I and A-P axes using syringe. For this reason, a daily IGRT is highly recommended to improve the immobilisation precision.

  4. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization.

    PubMed

    Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan

    2016-01-01

    We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients.We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error.The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, -0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and -0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity.The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data.

  5. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization

    PubMed Central

    Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan

    2016-01-01

    Abstract We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients. We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error. The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, −0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and −0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity. The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data. PMID:26765418

  6. Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience.

    PubMed

    Cravo Sá, Ana; Fermento, Ana; Neves, Dalila; Ferreira, Sara; Silva, Teresa; Marques Coelho, Carina; Vaandering, Aude; Roma, Ana; Quaresma, Sérgio; Bonnarens, Emmanuel

    2018-01-01

    In this study, we intend to compare two different setup procedures for female breast cancer patients. Imaging in radiotherapy provides a precise localization of the tumour, increasing the accuracy of the treatment delivery in breast cancer. Twenty breast cancer patients who underwent whole breast radiotherapy (WBRT) were selected for this study. Patients were divided into two groups of ten. Group one (G1) was positioned by tattoos and then the patient positioning was adjusted with the aid of AlignRT (Vision RT, London, UK). In group two (G2), patients were positioned only by tattoos. For both groups, the first 15 fractions were analyzed, a daily kilovoltage (kV) cone beam computed tomography (CBCT) image was made and then the rotational and translational displacements and, posteriorly, the systematic ( Σ ) and random ( σ ) errors were analyzed. The comparison of CBCT displacements for the two groups showed a statistically significant difference in the translational left-right (LR) direction ( ρ  = 0.03), considering that the procedure with AlignRT system has smaller lateral displacements. The results of systematic ( Σ ) and random ( σ ) errors showed that for translational displacements the group positioned only by tattoos (G2) demonstrated higher values of errors when compared with the group positioned with the aid of AlignRT (G1). AlignRT could help the positioning of breast cancer patients; however, it should be used with another imaging method.

  7. A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange

    PubMed Central

    Wang, Boshen; Perez-Rathke, Alan; Li, Renhao; Liang, Jie

    2018-01-01

    Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.

  8. Incorporating a prediction of postgrazing herbage mass into a whole-farm model for pasture-based dairy systems.

    PubMed

    Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C

    2014-07-01

    The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Marker-based quantification of interfractional tumor position variation and the use of markers for setup verification in radiation therapy for esophageal cancer.

    PubMed

    Jin, Peng; van der Horst, Astrid; de Jong, Rianne; van Hooft, Jeanin E; Kamphuis, Martijn; van Wieringen, Niek; Machiels, Melanie; Bel, Arjan; Hulshof, Maarten C C M; Alderliesten, Tanja

    2015-12-01

    The aim of this study was to quantify interfractional esophageal tumor position variation using markers and investigate the use of markers for setup verification. Sixty-five markers placed in the tumor volumes of 24 esophageal cancer patients were identified in computed tomography (CT) and follow-up cone-beam CT. For each patient we calculated pairwise distances between markers over time to evaluate geometric tumor volume variation. We then quantified marker displacements relative to bony anatomy and estimated the variation of systematic (Σ) and random errors (σ). During bony anatomy-based setup verification, we visually inspected whether the markers were inside the planning target volume (PTV) and attempted marker-based registration. Minor time trends with substantial fluctuations in pairwise distances implied tissue deformation. Overall, Σ(σ) in the left-right/cranial-caudal/anterior-posterior direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm; for the proximal stomach, it was 5.4(4.3)/4.9(3.2)/1.9(2.4) mm. After bony anatomy-based setup correction, all markers were inside the PTV. However, due to large tissue deformation, marker-based registration was not feasible. Generally, the interfractional position variation of esophageal tumors is more pronounced in the cranial-caudal direction and in the proximal stomach. Currently, marker-based setup verification is not feasible for clinical routine use, but markers can facilitate the setup verification by inspecting whether the PTV covers the tumor volume adequately. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Comparison between infrared optical and stereoscopic X-ray technologies for patient setup in image guided stereotactic radiotherapy.

    PubMed

    Tagaste, Barbara; Riboldi, Marco; Spadea, Maria F; Bellante, Simone; Baroni, Guido; Cambria, Raffaella; Garibaldi, Cristina; Ciocca, Mario; Catalano, Gianpiero; Alterio, Daniela; Orecchia, Roberto

    2012-04-01

    To compare infrared (IR) optical vs. stereoscopic X-ray technologies for patient setup in image-guided stereotactic radiotherapy. Retrospective data analysis of 233 fractions in 127 patients treated with hypofractionated stereotactic radiotherapy was performed. Patient setup at the linear accelerator was carried out by means of combined IR optical localization and stereoscopic X-ray image fusion in 6 degrees of freedom (6D). Data were analyzed to evaluate the geometric and dosimetric discrepancy between the two patient setup strategies. Differences between IR optical localization and 6D X-ray image fusion parameters were on average within the expected localization accuracy, as limited by CT image resolution (3 mm). A disagreement between the two systems below 1 mm in all directions was measured in patients treated for cranial tumors. In extracranial sites, larger discrepancies and higher variability were observed as a function of the initial patient alignment. The compensation of IR-detected rotational errors resulted in a significantly improved agreement with 6D X-ray image fusion. On the basis of the bony anatomy registrations, the measured differences were found not to be sensitive to patient breathing. The related dosimetric analysis showed that IR-based patient setup caused limited variations in three cases, with 7% maximum dose reduction in the clinical target volume and no dose increase in organs at risk. In conclusion, patient setup driven by IR external surrogates localization in 6D featured comparable accuracy with respect to procedures based on stereoscopic X-ray imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Automated patient setup and gating using cone beam computed tomography projections

    NASA Astrophysics Data System (ADS)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  <  0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  12. National Aeronautics and Space Administration "threat and error" model applied to pediatric cardiac surgery: error cycles precede ∼85% of patient deaths.

    PubMed

    Hickey, Edward J; Nosikova, Yaroslavna; Pham-Hung, Eric; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Redington, Andrew; Van Arsdell, Glen S

    2015-02-01

    We hypothesized that the National Aeronautics and Space Administration "threat and error" model (which is derived from analyzing >30,000 commercial flights, and explains >90% of crashes) is directly applicable to pediatric cardiac surgery. We implemented a unit-wide performance initiative, whereby every surgical admission constitutes a "flight" and is tracked in real time, with the aim of identifying errors. The first 500 consecutive patients (524 flights) were analyzed, with an emphasis on the relationship between error cycles and permanent harmful outcomes. Among 524 patient flights (risk adjustment for congenital heart surgery category: 1-6; median: 2) 68 (13%) involved residual hemodynamic lesions, 13 (2.5%) permanent end-organ injuries, and 7 deaths (1.3%). Preoperatively, 763 threats were identified in 379 (72%) flights. Only 51% of patient flights (267) were error free. In the remaining 257 flights, 430 errors occurred, most commonly related to proficiency (280; 65%) or judgment (69, 16%). In most flights with errors (173 of 257; 67%), an unintended clinical state resulted, ie, the error was consequential. In 60% of consequential errors (n = 110; 21% of total), subsequent cycles of additional error/unintended states occurred. Cycles, particularly those containing multiple errors, were very significantly associated with permanent harmful end-states, including residual hemodynamic lesions (P < .0001), end-organ injury (P < .0001), and death (P < .0001). Deaths were almost always preceded by cycles (6 of 7; P < .0001). Human error, if not mitigated, often leads to cycles of error and unintended patient states, which are dangerous and precede the majority of harmful outcomes. Efforts to manage threats and error cycles (through crew resource management techniques) are likely to yield large increases in patient safety. Copyright © 2015. Published by Elsevier Inc.

  13. Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation.

    PubMed

    Jin, Long; Zhang, Yunong

    2015-07-01

    In this brief, a discrete-time Zhang neural network (DTZNN) model is first proposed, developed, and investigated for online time-varying nonlinear optimization (OTVNO). Then, Newton iteration is shown to be derived from the proposed DTZNN model. In addition, to eliminate the explicit matrix-inversion operation, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is introduced, which can effectively approximate the inverse of Hessian matrix. A DTZNN-BFGS model is thus proposed and investigated for OTVNO, which is the combination of the DTZNN model and the quasi-Newton BFGS method. In addition, theoretical analyses show that, with step-size h=1 and/or with zero initial error, the maximal residual error of the DTZNN model has an O(τ(2)) pattern, whereas the maximal residual error of the Newton iteration has an O(τ) pattern, with τ denoting the sampling gap. Besides, when h ≠ 1 and h ∈ (0,2) , the maximal steady-state residual error of the DTZNN model has an O(τ(2)) pattern. Finally, an illustrative numerical experiment and an application example to manipulator motion generation are provided and analyzed to substantiate the efficacy of the proposed DTZNN and DTZNN-BFGS models for OTVNO.

  14. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Comparison of underflight data with satellite estimates of temperature revealed significant gain calibration errors. The source of the LANDSAT 5 band 6 error and its reproducibility is not yet adequately defined. The error can be accounted for using underflight or ground truth data. When underflight data are used to correct the satellite data, the residual error for the scene studied was 1.3K when the predicted temperatures were compared to measured surface temperature.

  15. Quasi-Likelihood Techniques in a Logistic Regression Equation for Identifying Simulium damnosum s.l. Larval Habitats Intra-cluster Covariates in Togo.

    PubMed

    Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R

    2012-01-01

    The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data. Thereafter, Durbin-Watson test statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG. Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC. The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters. The analyses also revealed that the estimators, levels of turbidity and presence of rocks were statistically significant for the high-ABR-stratified clusters, while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster. Varying and constant coefficient regression models, ABR- stratified GIS-generated clusters, sub-meter resolution satellite imagery, a robust residual intra-cluster diagnostic test, MBR-based histograms, eigendecomposition spatial filter algorithms and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities (i.e., heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat estimators. The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S. damnosum s.l habitats based on spatiotemporal field-sampled count data.

  16. Carbon-Ion Pencil Beam Scanning Treatment With Gated Markerless Tumor Tracking: An Analysis of Positional Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.jp; Karube, Masataka; Shirai, Toshiyuki

    Purpose: Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. Methods and Materials: A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected inmore » real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. Results: The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Conclusions: Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI.« less

  17. Isospin Breaking Corrections to the HVP with Domain Wall Fermions

    NASA Astrophysics Data System (ADS)

    Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher

    2018-03-01

    We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.

  18. New State Records for Lutzomyia shannoni and Lutzomyia vexator

    DTIC Science & Technology

    2009-04-01

    These insects were found in a northeasterly band extending from southwesternKentucky to southwesternOhio. Both specieswere consistently captured...former scenario could presage an increased prevalence of the diseases associated with this group of insects . KEY WORDS leishmaniasis, vesicular... insects . The rest of the trap was then disassembled in reversemannerof setup.Coolerswerenoted toalways contain at least some residual dry ice at the time

  19. Machine-assisted verification of latent fingerprints: first results for nondestructive contact-less optical acquisition techniques with a CWL sensor

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.

  20. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    PubMed

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  1. Cognitive Factors and Residual Speech Errors: Basic Science, Translational Research, and Some Clinical Frameworks.

    PubMed

    Eaton, Catherine Torrington

    2015-11-01

    This article explores the theoretical and empirical relationships between cognitive factors and residual speech errors (RSEs). Definitions of relevant cognitive domains are provided, as well as examples of formal and informal tasks that may be appropriate in assessment. Although studies to date have been limited in number and scope, basic research suggests that cognitive flexibility, short- and long-term memory, and self-monitoring may be areas of weakness in this population. Preliminary evidence has not supported a relationship between inhibitory control, attention, and RSEs; however, further studies that control variables such as language ability and temperament are warranted. Previous translational research has examined the effects of self-monitoring training on residual speech errors. Although results have been mixed, some findings suggest that children with RSEs may benefit from the inclusion of this training. The article closes with a discussion of clinical frameworks that target cognitive skills, including self-monitoring and attention, as a means of facilitating speech sound change. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. To image analysis in computed tomography

    NASA Astrophysics Data System (ADS)

    Chukalina, Marina; Nikolaev, Dmitry; Ingacheva, Anastasia; Buzmakov, Alexey; Yakimchuk, Ivan; Asadchikov, Victor

    2017-03-01

    The presence of errors in tomographic image may lead to misdiagnosis when computed tomography (CT) is used in medicine, or the wrong decision about parameters of technological processes when CT is used in the industrial applications. Two main reasons produce these errors. First, the errors occur on the step corresponding to the measurement, e.g. incorrect calibration and estimation of geometric parameters of the set-up. The second reason is the nature of the tomography reconstruction step. At the stage a mathematical model to calculate the projection data is created. Applied optimization and regularization methods along with their numerical implementations of the method chosen have their own specific errors. Nowadays, a lot of research teams try to analyze these errors and construct the relations between error sources. In this paper, we do not analyze the nature of the final error, but present a new approach for the calculation of its distribution in the reconstructed volume. We hope that the visualization of the error distribution will allow experts to clarify the medical report impression or expert summary given by them after analyzing of CT results. To illustrate the efficiency of the proposed approach we present both the simulation and real data processing results.

  3. In search of periodic signatures in IGS REPRO1 solution

    NASA Astrophysics Data System (ADS)

    Mtamakaya, J. D.; Santos, M. C.; Craymer, M. R.

    2010-12-01

    We have been looking for periodic signatures in the REPRO1 solution recently released by the IGS. At this stage, a selected sub-set of IGS station time series in position and residual domain are under harmonic analysis. We can learn different things from this analysis. From the position domain, we can learn more about actual station motions. From the residual domain, we can learn more about mis-modelled or un-modelled errors. As far as error sources are concerned, we have investigated effects that may be due to tides, atmospheric loading, definition of the position of the figure axis and GPS constellation geometry. This poster presents and discusses our findings and presents insights on errors that need to be modelled or have their models improved.

  4. FALSTAFF: A new tool for fission studies

    NASA Astrophysics Data System (ADS)

    Dore, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.

    2013-12-01

    The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  5. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.

    PubMed

    Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong

    2015-01-01

    Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.

  6. The Impact of Truth Surrogate Variance on Quality Assessment/Assurance in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2016-01-01

    Minimum data volume requirements for wind tunnel testing are reviewed and shown to depend on error tolerance, response model complexity, random error variance in the measurement environment, and maximum acceptable levels of inference error risk. Distinctions are made between such related concepts as quality assurance and quality assessment in response surface modeling, as well as between precision and accuracy. Earlier research on the scaling of wind tunnel tests is extended to account for variance in the truth surrogates used at confirmation sites in the design space to validate proposed response models. A model adequacy metric is presented that represents the fraction of the design space within which model predictions can be expected to satisfy prescribed quality specifications. The impact of inference error on the assessment of response model residuals is reviewed. The number of sites where reasonably well-fitted response models actually predict inadequately is shown to be considerably less than the number of sites where residuals are out of tolerance. The significance of such inference error effects on common response model assessment strategies is examined.

  7. Nonlinear Errors Resulting from Ghost Reflection and Its Coupling with Optical Mixing in Heterodyne Laser Interferometers

    PubMed Central

    Fu, Haijin; Wang, Yue; Tan, Jiubin; Fan, Zhigang

    2018-01-01

    Even after the Heydemann correction, residual nonlinear errors, ranging from hundreds of picometers to several nanometers, are still found in heterodyne laser interferometers. This is a crucial factor impeding the realization of picometer level metrology, but its source and mechanism have barely been investigated. To study this problem, a novel nonlinear model based on optical mixing and coupling with ghost reflection is proposed and then verified by experiments. After intense investigation of this new model’s influence, results indicate that new additional high-order and negative-order nonlinear harmonics, arising from ghost reflection and its coupling with optical mixing, have only a negligible contribution to the overall nonlinear error. In real applications, any effect on the Lissajous trajectory might be invisible due to the small ghost reflectance. However, even a tiny ghost reflection can significantly worsen the effectiveness of the Heydemann correction, or even make this correction completely ineffective, i.e., compensation makes the error larger rather than smaller. Moreover, the residual nonlinear error after correction is dominated only by ghost reflectance. PMID:29498685

  8. SU-E-J-258: Inter- and Intra-Fraction Setup Stability and Couch Change Tolerance for Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teboh, Forbang R; Agee, M; Rowe, L

    2014-06-01

    Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fractionmore » couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion: The inter-fraction reproducibility should serve as a guide to couch tolerances, specific to a site and immobilization. More patients need to be included to make general conclusions.« less

  9. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  10. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems

    NASA Astrophysics Data System (ADS)

    Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.

    2007-02-01

    We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.

  12. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  13. Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion

    NASA Astrophysics Data System (ADS)

    Andrade, João Rodrigo; Martins, Ramon Silva; Thompson, Roney Leon; Mompean, Gilmar; da Silveira Neto, Aristeu

    2018-04-01

    The present paper provides an analysis of the statistical uncertainties associated with direct numerical simulation (DNS) results and experimental data for turbulent channel and pipe flows, showing a new physically based quantification of these errors, to improve the determination of the statistical deviations between DNSs and experiments. The analysis is carried out using a recently proposed criterion by Thompson et al. ["A methodology to evaluate statistical errors in DNS data of plane channel flows," Comput. Fluids 130, 1-7 (2016)] for fully turbulent plane channel flows, where the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of the mean force equation. It also presents how the residual error evolves in time for a DNS of a plane channel flow, and the influence of the Reynolds number on its convergence rate. The root mean square of the residual error is shown in order to capture a single quantitative value of the error associated with the dimensionless averaging time. The evolution in time of the error norm is compared with the final error provided by DNS data of similar Reynolds numbers available in the literature. A direct consequence of this approach is that it was possible to compare different numerical results and experimental data, providing an improved understanding of the convergence of the statistical quantities in turbulent wall-bounded flows.

  14. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  15. Errors in Computing the Normalized Protein Catabolic Rate due to Use of Single-pool Urea Kinetic Modeling or to Omission of the Residual Kidney Urea Clearance.

    PubMed

    Daugirdas, John T

    2017-07-01

    The protein catabolic rate normalized to body size (PCRn) often is computed in dialysis units to obtain information about protein ingestion. However, errors can manifest when inappropriate modeling methods are used. We used a variable volume 2-pool urea kinetic model to examine the percent errors in PCRn due to use of a 1-pool urea kinetic model or after omission of residual urea clearance (Kru). When a single-pool model was used, 2 sources of errors were identified. The first, dependent on the ratio of dialyzer urea clearance to urea distribution volume (K/V), resulted in a 7% inflation of the PCRn when K/V was in the range of 6 mL/min per L. A second, larger error appeared when Kt/V values were below 1.0 and was related to underestimation of urea distribution volume (due to overestimation of effective clearance) by the single-pool model. A previously reported prediction equation for PCRn was valid, but data suggest that it should be modified using 2-pool eKt/V and V coefficients instead of single-pool values. A third source of error, this one unrelated to use of a single-pool model, namely omission of Kru, was shown to result in an underestimation of PCRn, such that each ml/minute Kru per 35 L of V caused a 5.6% underestimate in PCRn. Marked overestimation of PCRn can result due to inappropriate use of a single-pool urea kinetic model, particularly when Kt/V <1.0 (as in short daily dialysis), or after omission of residual native kidney clearance. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Description of the prototype diagnostic residual gas analyzer for ITER.

    PubMed

    Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C

    2014-11-01

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  17. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands.

    PubMed

    Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas

    2012-01-01

    Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  18. A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields.

    PubMed

    Yu, Amy; Fahimian, Benjamin; Million, Lynn; Hsu, Annie

    2017-05-23

    Purpose  Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact Couch TM (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was reduced to a range of 0.4 to 1.3 cm (p < 0.05 with 95% confidence level). The lateral positioning was slightly improved (p < 0.05 with 95% confidence level), while no improvement was observed in the vertical direction. Conclusions The conventional matched field TLI treatment is error-prone to geometrical setup error. The feasibility of full indexing TLI treatments was validated and shown to result in a significant reduction of positioning and shifting errors.

  19. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  20. SU-E-J-172: Bio-Physical Effects of Patients Set-Up Errors According to Whole Breast Irradiation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Suh, T; Park, S

    2015-06-15

    Purpose: The dose-related effects of patient setup errors on biophysical indices were evaluated for conventional wedge (CW) and field-in-field (FIF) whole breast irradiation techniques. Methods: The treatment plans for 10 patients receiving whole left breast irradiation were retrospectively selected. Radiobiological and physical effects caused by dose variations were evaluated by shifting the isocenters and gantry angles of the treatment plans. Dose-volume histograms of the planning target volume (PTV), heart, and lungs were generated, and conformity index (CI), homogeneity index (HI), tumor control probability (TCP), and normal tissue complication probability (NTCP) were determined. Results: For “isocenter shift plan” with posterior direction,more » the D95 of the PTV decreased by approximately 15% and the TCP of the PTV decreased by approximately 50% for the FIF technique and by 40% for the CW; however, the NTCPs of the lungs and heart increased by about 13% and 1%, respectively, for both techniques. Increasing the gantry angle decreased the TCPs of the PTV by 24.4% (CW) and by 34% (FIF). The NTCPs for the two techniques differed by only 3%. In case of CW, the CIs and HIs were much higher than that of the FIF in all cases. It had a significant difference between two techniques (p<0.01). According to our results, however, the FIF had more sensitive response by set up errors rather than CW in bio-physical aspects. Conclusions: The radiobiological-based analysis can detect significant dosimetric errors then, can provide a practical patient quality assurance method to guide the radiobiological and physical effects.« less

  1. SU-E-T-615: Plan Comparison Between Photon IMRT and Proton Plans Incorporating Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, C; Wessels, B; Jesseph, F

    2015-06-15

    Purpose: In this study, we investigate the effect of setup uncertainty on DVH calculations which may impact plan comparison. Methods: Treatment plans (6 MV VMAT calculated on Pinnacle TPS) were chosen for different disease sites: brain, prostate, H&N and spine in this retrospective study. A proton plan (PP) using double scattering beams was generated for each selected VMAT plan subject to the same set of dose-volume constraints as in VMAT. An uncertainty analysis was incorporated on the DVH calculations in which isocenter shifts from 1 to 5 mm in each of the ±x, ±y and ±z directions were used tomore » simulate the setup uncertainty and residual positioning errors. A total of 40 different combinations of isocenter shifts were used in the re-calculation of DVH of the PTV and the various OARs for both the VMAT and the corresponding PT. Results: For the brain case, both VMAT and PP are comparable in PTV coverage and OAR sparing, and VMAT is a clear choice for treatment due to its ease of delivery. However, when incorporating isoshifts in DVH calculations, a significant change in dose-volume relationship emerges. For example, both VMAT and PT provide adequate coverage, even with ±3mm isoshift. However, +3mm isoshift results in increase of V40(Lcochlea, VMAT) from 7.2% in the original plan to 45% and V40(R cochlea, VMAT) from 75% to 92%. For protons, V40(Lcochlea, PT) increases from 62% in the initial plan to 75%, while V40(Rcochea, PT) increases from 7% to 26%. Conclusion: DVH alone may not be sufficient to allow an unequivocal decision in plan comparison, especially when two rival plans are very similar in both PTV coverage and OAR sparing. It is a good practice to incorporate uncertainty analysis on photon and proton plan comparison studies to test the plan robustness in plan evaluation.« less

  2. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  3. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Harrison, A; Eldredge-Hindy, H

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less

  4. Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest

    1997-01-01

    During this period of performance, 1 March 1997 - 31 August 1997, the NOAA-11 SBUV/2 solar spectral irradiance data set was validated using both internal and external assessments. Initial quality checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest as differences between the two scans acquired each day). The sources of these errors were determined and the errors were corrected. Time series were constructed for selected wavelengths and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based model of short- and long-term solar irradiance variations. This analysis suggested that errors due to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis, which will be documented in a manuscript now in preparation, conclusively demonstrates the evolution of solar rotation periodicity and strength during solar cycle 22.

  5. Photonic Doppler velocimetry probe designed with stereo imaging

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  6. LANDSAT/coastal processes

    NASA Technical Reports Server (NTRS)

    James, W. P. (Principal Investigator); Hill, J. M.; Bright, J. B.

    1977-01-01

    The author has identified the following significant results. Correlations between the satellite radiance values water color, Secchi disk visibility, turbidity, and attenuation coefficients were generally good. The residual was due to several factors including systematic errors in the remotely sensed data, errors, small time and space variations in the water quality measurements, and errors caused by experimental design. Satellite radiance values were closely correlated with the optical properties of the water.

  7. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  8. Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission

    NASA Astrophysics Data System (ADS)

    Sandri, P.

    2017-12-01

    The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.

  9. Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy

    PubMed Central

    Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir

    2014-01-01

    We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463

  10. Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study.

    PubMed

    Kobler, Jan-Philipp; Schoppe, Michael; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lüder A; Ortmaier, Tobias

    2014-11-01

    Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.

  11. A framework for multi-criteria assessment of model enhancements

    NASA Astrophysics Data System (ADS)

    Francke, Till; Foerster, Saskia; Brosinsky, Arlena; Delgado, José; Güntner, Andreas; López-Tarazón, José A.; Bronstert, Axel

    2016-04-01

    Modellers are often faced with unsatisfactory model performance for a specific setup of a hydrological model. In these cases, the modeller may try to improve the setup by addressing selected causes for the model errors (i.e. data errors, structural errors). This leads to adding certain "model enhancements" (MEs), e.g. climate data based on more monitoring stations, improved calibration data, modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge, guided by some sensitivity analysis at best. When multiple MEs have been implemented, a resulting improvement in model performance is not easily attributed, especially when considering different aspects of this improvement (e.g. better performance dynamics vs. reduced bias). In this study we present an approach for comparing the effect of multiple MEs in the face of multiple improvement aspects. A stepwise selection approach and structured plots help in addressing the multidimensionality of the problem. The approach is applied to a case study, which employs the meso-scale hydrosedimentological model WASA-SED for a sub-humid catchment. The results suggest that the effect of the MEs is quite diverse, with some MEs (e.g. augmented rainfall data) cause improvements for almost all aspects, while the effect of other MEs is restricted to few aspects or even deteriorate some. These specific results may not be generalizable. However, we suggest that based on studies like this, identifying the most promising MEs to implement may be facilitated.

  12. Polarization errors associated with birefringent waveplates

    NASA Technical Reports Server (NTRS)

    West, Edward A.; Smith, Matthew H.

    1995-01-01

    Although zero-order quartz waveplates are widely used in instrumentation that needs good temperature and field-of-view characteristics, the residual errors associated with these devices can be very important in high-resolution polarimetry measurements. How the field-of-view characteristics are affected by retardation errors and the misalignment of optic axes in a double-crystal waveplate is discussed. The retardation measurements made on zero-order quartz and single-order 'achromatic' waveplates and how the misalignment errors affect those measurements are discussed.

  13. Improving ROLO lunar albedo model using PLEIADES-HR satellites extra-terrestrial observations

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Blanchet, Gwendoline; Colzy, Stéphane; Gross-Colzy, Lydwine

    2017-09-01

    The accurate on orbit radiometric calibration of optical sensors has become a challenge for space agencies which have developed different technics involving on-board calibration systems, ground targets or extra-terrestrial targets. The combination of different approaches and targets is recommended whenever possible and necessary to reach or demonstrate a high accuracy. Among these calibration targets, the moon is widely used through the well-known ROLO (RObotic Lunar Observatory) model developed by USGS. A great and worldwide recognized work was done to characterize the moon albedo which is very stable. However the more and more demanding needs for calibration accuracy have reached the limitations of the model. This paper deals with two mains limitations: the residual error when modelling the phase angle dependency and the absolute accuracy of the model which is no more acceptable for the on orbit calibration of radiometers. Thanks to PLEIADES high resolution satellites agility, a significant data base of moon and stars images was acquired, allowing to show the limitations of ROLO model and to characterize the errors. The phase angle residual dependency is modelled using PLEIADES 1B images acquired for different quasi-complete moon cycles with a phase angle varying by less than 1°. The absolute albedo residual error is modelled using PLEIADES 1A images taken over stars and the moon. The accurate knowledge of the stars spectral irradiance is transferred to the moon spectral albedo using the satellite as a transfer radiometer. This paper describes the data set used, the ROLO model residual errors and their modelling, the quality of the proposed correction and show some calibration results using this improved model.

  14. Rib biomechanical properties exhibit diagnostic potential for accurate ageing in forensic investigations

    PubMed Central

    Bonicelli, Andrea; Xhemali, Bledar; Kranioti, Elena F.

    2017-01-01

    Age estimation remains one of the most challenging tasks in forensic practice when establishing a biological profile of unknown skeletonised remains. Morphological methods based on developmental markers of bones can provide accurate age estimates at a young age, but become highly unreliable for ages over 35 when all developmental markers disappear. This study explores the changes in the biomechanical properties of bone tissue and matrix, which continue to change with age even after skeletal maturity, and their potential value for age estimation. As a proof of concept we investigated the relationship of 28 variables at the macroscopic and microscopic level in rib autopsy samples from 24 individuals. Stepwise regression analysis produced a number of equations one of which with seven variables showed an R2 = 0.949; a mean residual error of 2.13 yrs ±0.4 (SD) and a maximum residual error value of 2.88 yrs. For forensic purposes, by using only bench top machines in tests which can be carried out within 36 hrs, a set of just 3 variables produced an equation with an R2 = 0.902 a mean residual error of 3.38 yrs ±2.6 (SD) and a maximum observed residual error 9.26yrs. This method outstrips all existing age-at-death methods based on ribs, thus providing a novel lab based accurate tool in the forensic investigation of human remains. The present application is optimised for fresh (uncompromised by taphonomic conditions) remains, but the potential of the principle and method is vast once the trends of the biomechanical variables are established for other environmental conditions and circumstances. PMID:28520764

  15. Robust double gain unscented Kalman filter for small satellite attitude estimation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun

    2017-08-01

    Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).

  16. Piggyback intraocular lens implantation to correct pseudophakic refractive error after segmental multifocal intraocular lens implantation.

    PubMed

    Venter, Jan A; Oberholster, Andre; Schallhorn, Steven C; Pelouskova, Martina

    2014-04-01

    To evaluate refractive and visual outcomes of secondary piggyback intraocular lens implantation in patients diagnosed as having residual ametropia following segmental multifocal lens implantation. Data of 80 pseudophakic eyes with ametropia that underwent Sulcoflex aspheric 653L intraocular lens implantation (Rayner Intraocular Lenses Ltd., East Sussex, United Kingdom) to correct residual refractive error were analyzed. All eyes previously had in-the-bag zonal refractive multifocal intraocular lens implantation (Lentis Mplus MF30, models LS-312 and LS-313; Oculentis GmbH, Berlin, Germany) and required residual refractive error correction. Outcome measurements included uncorrected distance visual acuity, corrected distance visual acuity, uncorrected near visual acuity, distance-corrected near visual acuity, manifest refraction, and complications. One-year data are presented in this study. The mean spherical equivalent ranged from -1.75 to +3.25 diopters (D) preoperatively (mean: +0.58 ± 1.15 D) and reduced to -1.25 to +0.50 D (mean: -0.14 ± 0.28 D; P < .01). Postoperatively, 93.8% of eyes were within ±0.50 D and 98.8% were within ±1.00 D of emmetropia. The mean uncorrected distance visual acuity improved significantly from 0.28 ± 0.16 to 0.01 ± 0.10 logMAR and 78.8% of eyes achieved 6/6 (Snellen 20/20) or better postoperatively. The mean uncorrected near visual acuity changed from 0.43 ± 0.28 to 0.19 ± 0.15 logMAR. There was no significant change in corrected distance visual acuity or distance-corrected near visual acuity. No serious intraoperative or postoperative complications requiring secondary intraocular lens removal occurred. Sulcoflex lenses proved to be a predictable and safe option for correcting residual refractive error in patients diagnosed as having pseudophakia. Copyright 2014, SLACK Incorporated.

  17. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  18. A two-factor error model for quantitative steganalysis

    NASA Astrophysics Data System (ADS)

    Böhme, Rainer; Ker, Andrew D.

    2006-02-01

    Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.

  19. Measurement and Predition Errors in Body Composition Assessment and the Search for the Perfect Prediction Equation.

    ERIC Educational Resources Information Center

    Katch, Frank I.; Katch, Victor L.

    1980-01-01

    Sources of error in body composition assessment by laboratory and field methods can be found in hydrostatic weighing, residual air volume, skinfolds, and circumferences. Statistical analysis can and should be used in the measurement of body composition. (CJ)

  20. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  1. SU-E-J-119: What Effect Have the Volume Defined in the Alignment Clipbox for Cervical Cancer Using Automatic Registration Methods for Cone- Beam CT Verification?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W; Yang, H; Wang, Y

    2014-06-01

    Purpose: To investigate the impact of different clipbox volumes with automated registration techniques using commercially available software with on board volumetric imaging(OBI) for treatment verification in cervical cancer patients. Methods: Fifty cervical cancer patients received daily CBCT scans(on-board imaging v1.5 system, Varian Medical Systems) during the first treatment week and weekly thereafter were included this analysis. A total of 450 CBCT scans were registered to the planning CTscan using pelvic clipbox(clipbox-Pelvic) and around PTV clip box(clipbox- PTV). The translations(anterior-posterior, left-right, superior-inferior) and the rotations(yaw, pitch and roll) errors for each matches were recorded. The setup errors and the systematic andmore » random errors for both of the clip-boxes were calculated. Paired Samples t test was used to analysis the differences between clipbox-Pelvic and clipbox-PTV. Results: . The SD of systematic error(σ) was 1.0mm, 2.0mm,3.2mm and 1.9mm,2.3mm, 3.0mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. The average random error(Σ)was 1.7mm, 2.0mm,4.2mm and 1.7mm,3.4mm, 4.4mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. But, only the SI direction was acquired significantly differences between two image registration volumes(p=0.002,p=0.01 for mean and SD). For rotations, the yaw mean/SD and the pitch SD were acquired significantly differences between clipbox-Pelvic and clipbox-PTV. Conclusion: The defined volume for Image registration is important for cervical cancer when 3D/3D match was used. The alignment clipbox can effect the setup errors obtained. Further analysis is need to determine the optimal defined volume to use the image registration in cervical cancer. Conflict of interest: none.« less

  2. SU-E-T-657: Quantitative Assessment of Plan Robustness for Helical Tomotherapy for Head and Neck Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matney, J; Lian, J; Chera, B

    2015-06-15

    Introduction: Geometric uncertainties in daily patient setup can lead to variations in the planned dose, especially when using highly conformal techniques such as helical Tomotherapy. To account for the potential effect of geometric uncertainty, our clinical practice is to expand critical structures by 3mm expansion into planning risk volumes (PRV). The PRV concept assumes the spatial dose cloud is insensitive to patient positioning. However, no tools currently exist to determine if a Tomotherapy plan is robust to the effects of daily setup variation. We objectively quantified the impact of geometric uncertainties on the 3D doses to critical normal tissues duringmore » helical Tomotherapy. Methods: Using a Matlab-based program created and validated by Accuray (Madison, WI), the planned Tomotherapy delivery sinogram recalculated dose on shifted CT datasets. Ten head and neck patients were selected for analysis. To simulate setup uncertainty, the patient anatomy was shifted ±3mm in the longitudinal, lateral and vertical axes. For each potential shift, the recalculated doses to various critical normal tissues were compared to the doses delivered to the PRV in the original plan Results: 18 shifted scenarios created from Tomotherapy plans for three patients with head and neck cancers were analyzed. For all simulated setup errors, the maximum doses to the brainstem, spinal cord, parotids and cochlea were no greater than 0.6Gy of the respective original PRV maximum. Despite 3mm setup shifts, the minimum dose delivered to 95% of the CTVs and PTVs were always within 0.4Gy of the original plan. Conclusions: For head and neck sites treated with Tomotherapy, the use of a 3mm PRV expansion provide a reasonable estimate of the dosimetric effects of 3mm setup uncertainties. Similarly, target coverage appears minimally effected by a 3mm setup uncertainty. Data from a larger number of patients will be presented. Future work will include other anatomical sites.« less

  3. SU-F-P-23: Setup Uncertainties for the Lung Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q; Vigneri, P; Madu, C

    2016-06-15

    Purpose: The Exactrack X-ray system with six degree-of-freedom (6DoF) adjustment ability can be used for setup of lung stereotactic body radiation therapy. The setup uncertainties from ExacTrack 6D system were analyzed. Methods: The Exactrack X-ray 6D image guided radiotherapy system is used in our clinic. The system is an integration of 2 subsystems: (1): an infrared based optical position system and (2) a radiography kV x-ray imaging system. The infrared system monitors reflective body markers on the patient’s skin to assistant in the initial setup. The radiographic kV devices were used for patient positions verification and adjustment. The position verificationmore » was made by fusing the radiographs with the digitally reconstructed radiograph (DRR) images generated by simulation CT images using 6DoF fusion algorithms. Those results were recorded in our system. Gaussian functions were used to fit the data. Results: For 37 lung SBRT patients, the image registration results for the initial setup by using surface markers and for the verifications, were measured. The results were analyzed for 143 treatments. The mean values for the lateral, longitudinal, vertical directions were 0.1, 0.3 and 0.3mm, respectively. The standard deviations for the lateral, longitudinal and vertical directions were 0.62, 0.78 and 0.75mm respectively. The mean values for the rotations around lateral, longitudinal and vertical directions were 0.1, 0.2 and 0.4 degrees respectively, with standard deviations of 0.36, 0.34, and 0.42 degrees. Conclusion: The setup uncertainties for the lung SBRT cases by using Exactrack 6D system were analyzed. The standard deviations of the setup errors were within 1mm for all three directions, and the standard deviations for rotations were within 0.5 degree.« less

  4. Comparative assessment of LANDSAT-D MSS and TM data quality for mapping applications in the Southeast

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.

  5. Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.

    2016-09-01

    This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.

  6. Error Modeling of Multi-baseline Optical Truss. Part II; Application to SIM Metrology Truss Field Dependent Error

    NASA Technical Reports Server (NTRS)

    Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert

    2004-01-01

    The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices reside with the siderostat. The non-common vertex error (NCVE) is treated as a second example. Finally combination of models, and various other errors are discussed.

  7. The Houdini Transformation: True, but Illusory.

    PubMed

    Bentler, Peter M; Molenaar, Peter C M

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model.

  8. The Houdini Transformation: True, but Illusory

    PubMed Central

    Bentler, Peter M.; Molenaar, Peter C. M.

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model. PMID:23180888

  9. Ultrasound visual feedback treatment and practice variability for residual speech sound errors

    PubMed Central

    Preston, Jonathan L.; McCabe, Patricia; Rivera-Campos, Ahmed; Whittle, Jessica L.; Landry, Erik; Maas, Edwin

    2014-01-01

    Purpose The goals were to (1) test the efficacy of a motor-learning based treatment that includes ultrasound visual feedback for individuals with residual speech sound errors, and (2) explore whether the addition of prosodic cueing facilitates speech sound learning. Method A multiple baseline single subject design was used, replicated across 8 participants. For each participant, one sound context was treated with ultrasound plus prosodic cueing for 7 sessions, and another sound context was treated with ultrasound but without prosodic cueing for 7 sessions. Sessions included ultrasound visual feedback as well as non-ultrasound treatment. Word-level probes assessing untreated words were used to evaluate retention and generalization. Results For most participants, increases in accuracy of target sound contexts at the word level were observed with the treatment program regardless of whether prosodic cueing was included. Generalization between onset singletons and clusters was observed, as well as generalization to sentence-level accuracy. There was evidence of retention during post-treatment probes, including at a two-month follow-up. Conclusions A motor-based treatment program that includes ultrasound visual feedback can facilitate learning of speech sounds in individuals with residual speech sound errors. PMID:25087938

  10. Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli

    2017-11-01

    The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.

  11. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  12. Quantum-classical boundary for precision optical phase estimation

    NASA Astrophysics Data System (ADS)

    Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo

    2017-12-01

    Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.

  13. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration

    NASA Astrophysics Data System (ADS)

    Šiaudinytė, Lauryna; Molnar, Gabor; Köning, Rainer; Flügge, Jens

    2018-05-01

    Industrial application versatility of interferometric encoders increases the urge to measure several degrees of freedom. A novel grating interferometer containing a commercially available, minimized Michelson interferometer and three fibre-fed measurement heads is presented in this paper. Moreover, the arrangement is designed for simultaneous displacement measurements in two perpendicular planes. In the proposed setup, beam splitters are located in the fibre heads, therefore the grating is separated from the light source and the photo detector, which influence measurement results by generated heat. The operating principle of the proposed system as well as error sources influencing measurement results are discussed in this paper. Further, the benefits and shortcomings of the setup are presented. A simple Littrow-configuration-based design leads to a compact-size interferometric encoder suitable for multidimensional measurements.

  14. The seasonal cycle of diabatic heat storage in the Pacific Ocean

    USGS Publications Warehouse

    White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.

    2005-01-01

    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Why a simulation system doesn`t match the plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, R.

    1998-03-01

    Process simulations, or mathematical models, are widely used by plant engineers and planners to obtain a better understanding of a particular process. These simulations are used to answer questions such as how can feed rate be increased, how can yields be improved, how can energy consumption be decreased, or how should the available independent variables be set to maximize profit? Although current process simulations are greatly improved over those of the `70s and `80s, there are many reasons why a process simulation doesn`t match the plant. Understanding these reasons can assist in using simulations to maximum advantage. The reasons simulationsmore » do not match the plant may be placed in three main categories: simulation effects or inherent error, sampling and analysis effects of measurement error, and misapplication effects or set-up error.« less

  16. Experimental implementation of the Bacon-Shor code with 10 entangled photons

    NASA Astrophysics Data System (ADS)

    Gimeno-Segovia, Mercedes; Sanders, Barry C.

    The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).

  17. Genomic Prediction Accounting for Residual Heteroskedasticity

    PubMed Central

    Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.

    2015-01-01

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950

  18. Managing numerical errors in random sequential adsorption

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Nowak, Aleksandra

    2016-09-01

    Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.

  19. The Effect of Defense Contracting Requirements on Just-In-Time Implementation

    DTIC Science & Technology

    1988-12-01

    and purchasing efforts negatively impacted. The role of I11 contract uncertainty was weakest and had mixed effects. Difficult negotiations prior to...they recommend differs somewhat. Shingo stresses the use of setup reduction and layout changes early in his sequence with production leveling occurring...consciousness toward quality improvement, and use of foolproof mechanisms to prevent errors), higher level government quality standards stress separate

  20. Quality assurance for kilo- and megavoltage in-room imaging and localization for off- and online setup error correction.

    PubMed

    Balter, James M; Antonuk, Larry E

    2008-01-01

    In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.

  1. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bushuev, A. V.; Kozhin, A. F.; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E.

    2016-12-01

    An active neutron method for measuring the residual mass of 235U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual 235U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of 238U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  2. A comparison of two- and three-dimensional tracer transport within a stratospheric circulation model

    NASA Technical Reports Server (NTRS)

    Schneider, H.-R.; Geller, M. A.

    1985-01-01

    Use of the residual circulation for stratospheric tracer transport has been compared to a fully three-dimensional calculation. The wind fields used in this study were obtained from a global, semispectral, primitive equation model, extending from 10 to 100 km in altitude. Comparisons were done with a passive tracer and an ozone-like substance over a two-month period corresponding to a Northern Hemisphere winter. It was found that the use of the residual circulation can lead to errors in the tracer concentrations of about a factor of 2. The error is made up of two components. One is fluctuating with a period of approximately one month and reflects directly the wave transience that occurs on that time-scale. The second part is increasing steadily over the integration period and results from an overestimate of the vertical transport by the residual circulation. Furthermore, the equatorward and upward mixing that occurs with transport by the three-dimensional circulation at low latitudes is not well reproduced when the residual circulation is used.

  3. A complete methodology towards accuracy and lot-to-lot robustness in on-product overlay metrology using flexible wavelength selection

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; den Boef, Arie; Noot, Marc; Adam, Omer; Grzela, Grzegorz; Fuchs, Andreas; Jak, Martin; Liao, Sax; Chang, Ken; Couraudon, Vincent; Su, Eason; Tzeng, Wilson; Wang, Cathy; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Wang, Y. C.; Cheng, Kevin; Ke, Chih-Ming; Terng, L. G.

    2017-03-01

    The optical coupling between gratings in diffraction-based overlay triggers a swing-curve1,6 like response of the target's signal contrast and overlay sensitivity through measurement wavelengths and polarizations. This means there are distinct measurement recipes (wavelength and polarization combinations) for a given target where signal contrast and overlay sensitivity are located at the optimal parts of the swing-curve that can provide accurate and robust measurements. Some of these optimal recipes can be the ideal choices of settings for production. The user has to stay away from the non-optimal recipe choices (that are located on the undesirable parts of the swing-curve) to avoid possibilities to make overlay measurement error that can be sometimes (depending on the amount of asymmetry and stack) in the order of several "nm". To accurately identify these optimum operating areas of the swing-curve during an experimental setup, one needs to have full-flexibility in wavelength and polarization choices. In this technical publication, a diffraction-based overlay (DBO) measurement tool with many choices of wavelengths and polarizations is utilized on advanced production stacks to study swing-curves. Results show that depending on the stack and the presence of asymmetry, the swing behavior can significantly vary and a solid procedure is needed to identify a recipe during setup that is robust against variations in stack and grating asymmetry. An approach is discussed on how to use this knowledge of swing-curve to identify recipe that is not only accurate at setup, but also robust over the wafer, and wafer-to-wafer. KPIs are reported in run-time to ensure the quality / accuracy of the reading (basically acting as an error bar to overlay measurement).

  4. An embedded checklist in the Anesthesia Information Management System improves pre-anaesthetic induction setup: a randomised controlled trial in a simulation setting.

    PubMed

    Wetmore, Douglas; Goldberg, Andrew; Gandhi, Nishant; Spivack, John; McCormick, Patrick; DeMaria, Samuel

    2016-10-01

    Anaesthesiologists work in a high stress, high consequence environment in which missed steps in preparation may lead to medical errors and potential patient harm. The pre-anaesthetic induction period has been identified as a time in which medical errors can occur. The Anesthesia Patient Safety Foundation has developed a Pre-Anesthetic Induction Patient Safety (PIPS) checklist. We conducted this study to test the effectiveness of this checklist, when embedded in our institutional Anesthesia Information Management System (AIMS), on resident performance in a simulated environment. Using a randomised, controlled, observer-blinded design, we compared performance of anaesthesiology residents in a simulated operating room under production pressure using a checklist in completing a thorough pre-anaesthetic induction evaluation and setup with that of residents with no checklist. The checklist was embedded in the simulated operating room's electronic medical record. Data for 38 anaesthesiology residents shows a statistically significant difference in performance in pre-anaesthetic setup and evaluation as scored by blinded raters (maximum score 22 points), with the checklist group performing better by 7.8 points (p<0.01). The effects of gender and year of residency on total score were not significant. Simulation duration (time to anaesthetic agent administration) was increased significantly by the use of the checklist. Required use of a pre-induction checklist improves anaesthesiology resident performance in a simulated environment. The PIPS checklist as an integrated part of a departmental AIMS warrant further investigation as a quality measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Entropy of space-time outcome in a movement speed-accuracy task.

    PubMed

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    NASA Astrophysics Data System (ADS)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  7. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    NASA Astrophysics Data System (ADS)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  8. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  9. VizieR Online Data Catalog: R136 JKs photometry from VLT/SPHERE EAO (Khorrami+, 2017)

    NASA Astrophysics Data System (ADS)

    Khorrami, Z.; Vakili, F.; Lanz, T.; Langlois, M.; Lagadec, E.; Meyer, M. R.; Robbe-Dubois, S.; Abe, L.; Avenhaus, H.; Beuzit, J. L.; Gratton, R.; Mouillet, D.; Origne, A.; Petit, C.; Ramos, J.

    2017-03-01

    The SPHERE/IRDIS catalog of the common sources between J and Ks-band data on R136. The ID, Xpix and Ypix are the identification and pixel position in the IRDIS K and J image. σK and σJ are the total error (combination of PSF-fitting error, residual errors and the calibration error) in Ks and J images. CK and CJ are the Correlation coefficients between the input PSF and the star, in Ks and J data. (1 data file).

  10. On the timing problem in optical PPM communications.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1971-01-01

    Investigation of the effects of imperfect timing in a direct-detection (noncoherent) optical system using pulse-position-modulation bits. Special emphasis is placed on specification of timing accuracy, and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors, from which average error probabilities can be computed for specific synchronization methods. Of significant importance is shown to be the presence of a residual, or irreducible error probability, due entirely to the timing system, that cannot be overcome by the data channel.

  11. The reliability and validity of a designed setup for the assessment of static back extensor force and endurance in older women with and without hyperkyphosis.

    PubMed

    Roghani, Taybeh; Khalkhali Zavieh, Minoo; Rahimi, Abbas; Talebian, Saeed; Manshadi, Farideh Dehghan; Akbarzadeh Baghban, Alireza; King, Nicole; Katzman, Wendy

    2018-01-25

    The purpose of this study was to investigate the intra-rater reliability and validity of a designed load cell setup for the measurement of back extensor muscle force and endurance. The study sample included 19 older women with hyperkyphosis, mean age 67.0 ± 5.0 years, and 14 older women without hyperkyphosis, mean age 63.0 ± 6.0 years. Maximum back extensor force and endurance were measured in a sitting position with a designed load cell setup. Tests were performed by the same examiner on two separate days within a 72-hour interval. The intra-rater reliability of the measurements was analyzed using intraclass correlation coefficient (ICC), standard errors of measurement (SEM), and minimal detectable change (MDC). The validity of the setup was determined using Pearson correlation analysis and independent t-test. Using our designed load cell, the values of ICC indicated very high reliability of force measurement (hyperkyphosis group: 0.96, normal group: 0.97) and high reliability of endurance measurement (hyperkyphosis group: 0.82, normal group: 0.89). For all tests, the values of SEM and MDC were low in both groups. A significant correlation between two documented forces (load cell force and target force) and significant differences in the muscle force and endurance among the two groups were found. The measurements of static back muscle force and endurance are reliable and valid with our designed setup in older women with and without hyperkyphosis.

  12. Bathymetric surveying with GPS and heave, pitch, and roll compensation

    USGS Publications Warehouse

    Work, P.A.; Hansen, M.; Rogers, W.E.

    1998-01-01

    Field and laboratory tests of a shipborne hydrographic survey system were conducted. The system consists of two 12-channel GPS receivers (one on-board, one fixed on shore), a digital acoustic fathometer, and a digital heave-pitch-roll (HPR) recorder. Laboratory tests of the HPR recorder and fathometer are documented. Results of field tests of the isolated GPS system and then of the entire suite of instruments are presented. A method for data reduction is developed to account for vertical errors introduced by roll and pitch of the survey vessel, which can be substantial (decimeters). The GPS vertical position data are found to be reliable to 2-3 cm and the fathometer to 5 cm in the laboratory. The field test of the complete system in shallow water (<2 m) indicates absolute vertical accuracy of 10-20 cm. Much of this error is attributed to the fathometer. Careful surveying and equipment setup can minimize systematic error and yield much smaller average errors.

  13. An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Wenger, David Paul

    1991-01-01

    The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.

  14. Modeling flow and solute transport at a tile drain field site by explicit representation of preferential flow structures: Equifinality and uncertainty

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Klaus, J.

    2011-12-01

    Rapid flow in connected preferential flow paths is crucial for fast transport of water and solutes through soils, especially at tile drained field sites. The present study tests whether an explicit treatment of worm burrows is feasible for modeling water flow, bromide and pesticide transport in structured heterogeneous soils with a 2-dimensional Richards based model. The essence is to represent worm burrows as morphologically connected paths of low flow resistance and low retention capacity in the spatially highly resolved model domain. The underlying extensive database to test this approach was collected during an irrigation experiment, which investigated transport of bromide and the herbicide Isoproturon at a 900 sqm tile drained field site. In a first step we investigated whether the inherent uncertainty in key data causes equifinality i.e. whether there are several spatial model setups that reproduce tile drain event discharge in an acceptable manner. We found a considerable equifinality in the spatial setup of the model, when key parameters such as the area density of worm burrows and the maximum volumetric water flows inside these macropores were varied within the ranges of either our measurement errors or measurements reported in the literature. Thirteen model runs yielded a Nash-Sutcliffe coefficient of more than 0.9. Also, the flow volumes were in good accordance and peak timing errors where less than or equal to 20 min. In the second step we investigated thus whether this "equifinality" in spatial model setups may be reduced when including the bromide tracer data into the model falsification process. We simulated transport of bromide for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. Four of this 13 model setups allowed to model bromide transport within fixed limits of acceptability. Parameter uncertainty and equifinality could thus be reduced. Thirdly, we selected one of those four setups for simulating transport of Isoproturon, which was applied the day before the irrigation experiment, and tested different parameter combinations to characterise adsorption according to the footprint data base. Simulations could, however, only reproduce the observed event based leaching behaviour, when we allowed for retardation coefficients that were very close to one. This finding is consistent with observations various field observations. We conclude: a) A realistic representation of dominating structures and their topology is of key importance for predicting preferential water and mass flows at tile drained hillslopes. b) Parameter uncertainty and equifinality could be reduced, but a system inherent equifinality in a 2-dimensional Richards based model has to be accepted.

  15. Technical Note: Unified imaging and robotic couch quality assurance.

    PubMed

    Cook, Molly C; Roper, Justin; Elder, Eric S; Schreibmann, Eduard

    2016-09-01

    To introduce a simplified quality assurance (QA) procedure that integrates tests for the linac's imaging components and the robotic couch. Current QA procedures for evaluating the alignment of the imaging system and linac require careful positioning of a phantom at isocenter before image acquisition and analysis. A complementary procedure for the robotic couch requires an initial displacement of the phantom and then evaluates the accuracy of repositioning the phantom at isocenter. We propose a two-in-one procedure that introduces a custom software module and incorporates both checks into one motion for increased efficiency. The phantom was manually set with random translational and rotational shifts, imaged with the in-room imaging system, and then registered to the isocenter using a custom software module. The software measured positioning accuracy by comparing the location of the repositioned phantom with a CAD model of the phantom at isocenter, which is physically verified using the MV port graticule. Repeatability of the custom software was tested by an assessment of internal marker location extraction on a series of scans taken over differing kV and CBCT acquisition parameters. The proposed method was able to correctly position the phantom at isocenter within acceptable 1 mm and 1° SRS tolerances, verified by both physical inspection and the custom software. Residual errors for mechanical accuracy were 0.26 mm vertically, 0.21 mm longitudinally, 0.55 mm laterally, 0.21° in pitch, 0.1° in roll, and 0.67° in yaw. The software module was shown to be robust across various scan acquisition parameters, detecting markers within 0.15 mm translationally in kV acquisitions and within 0.5 mm translationally and 0.3° rotationally across CBCT acquisitions with significant variations in voxel size. Agreement with vendor registration methods was well within 0.5 mm; differences were not statistically significant. As compared to the current two-step approach, the proposed QA procedure streamlines the workflow, accounts for rotational errors in imaging alignment, and simulates a broad range of variations in setup errors seen in clinical practice.

  16. Development of liquid chromatography high resolution mass spectrometry strategies for the screening of complex organic matter: Application to astrophysical simulated materials.

    PubMed

    Eddhif, Balkis; Allavena, Audrey; Liu, Sylvie; Ribette, Thomas; Abou Mrad, Ninette; Chiavassa, Thierry; d'Hendecourt, Louis Le Sergeant; Sternberg, Robert; Danger, Gregoire; Geffroy-Rodier, Claude; Poinot, Pauline

    2018-03-01

    The present work aims at developing two LC-HRMS setups for the screening of organic matter in astrophysical samples. Their analytical development has been demonstrated on a 100-µg residue coming from the photo-thermo chemical processing of a cometary ice analog produced in laboratory. The first 1D-LC-HRMS setup combines a serially coupled columns configuration with HRMS detection. It has allowed to discriminate among different chemical families (amino acids, sugars, nucleobases and oligopeptides) in only one chromatographic run without neither a priori acid hydrolysis nor chemical derivatisation. The second setup is a dual-LC configuration which connects a series of trapping columns with analytical reverse-phase columns. By coupling on-line these two distinct LC units with a HRMS detection, high mass compounds (350

  17. Removal of batch effects using distribution-matching residual networks.

    PubMed

    Shaham, Uri; Stanton, Kelly P; Zhao, Jun; Li, Huamin; Raddassi, Khadir; Montgomery, Ruth; Kluger, Yuval

    2017-08-15

    Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq (scRNA-seq), are plagued with systematic errors that may severely affect statistical analysis if the data are not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual neural network, trained to minimize the Maximum Mean Discrepancy between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and scRNA-seq datasets, and demonstrate that it effectively attenuates batch effects. our codes and data are publicly available at https://github.com/ushaham/BatchEffectRemoval.git. yuval.kluger@yale.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.

    2018-04-01

    The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending angle bias. Similarly, in the nighttime, the scalar κ is too low. However, in this case, the bending angles are already small and the impact of the choice of κ is less pronounced.

  19. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  20. Feedback Augmented Sub-Ranging (FASR) Quantizer

    NASA Technical Reports Server (NTRS)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

  1. Measuring the residual stress of transparent conductive oxide films on PET by the double-beam shadow Moiré interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming; Chiu, Hsuan-Yi; Chen, Guan-Jhen

    2011-09-01

    The purpose of this research was to construct a measurement system which can fast and accurately analyze the residual stress of the flexible electronics. The transparent conductive oxide (TCO) films, tin-doped indium oxide (ITO), were deposited by radio frequency (RF) magnetron sputtering using corresponding oxide targets on PET substrate. As we know that the shadow Moiré interferometry is a useable way to measure the large deformation. So we set up a double beam shadow Moiré interferometer to measure and analyze the residual stress of TCO films on PET. The feature was to develop a mathematical model and combine the image processing software. By the LabVIEW graphical software, we could measure the distance which is between the left and right fringe on the pattern to solve the curvature of deformed surface. Hence, the residual stress could calculate by the Stoney correction formula for the flexible electronics. By combining phase shifting method with shadow Moiré, the measurement resolution and accuracy have been greatly improved. We also had done the error analysis for the system whose relative error could be about 2%. Therefore, shadow Moiré interferometer is a non-destructive, fast, and simple system for the residual stress on TCO/PET films.

  2. Assuring high quality treatment delivery in clinical trials - Results from the Trans-Tasman Radiation Oncology Group (TROG) study 03.04 "RADAR" set-up accuracy study.

    PubMed

    Haworth, Annette; Kearvell, Rachel; Greer, Peter B; Hooton, Ben; Denham, James W; Lamb, David; Duchesne, Gillian; Murray, Judy; Joseph, David

    2009-03-01

    A multi-centre clinical trial for prostate cancer patients provided an opportunity to introduce conformal radiotherapy with dose escalation. To verify adequate treatment accuracy prior to patient recruitment, centres submitted details of a set-up accuracy study (SUAS). We report the results of the SUAS, the variation in clinical practice and the strategies used to help centres improve treatment accuracy. The SUAS required each of the 24 participating centres to collect data on at least 10 pelvic patients imaged on a minimum of 20 occasions. Software was provided for data collection and analysis. Support to centres was provided through educational lectures, the trial quality assurance team and an information booklet. Only two centres had recently carried out a SUAS prior to the trial opening. Systematic errors were generally smaller than those previously reported in the literature. The questionnaire identified many differences in patient set-up protocols. As a result of participating in this QA activity more than 65% of centres improved their treatment delivery accuracy. Conducting a pre-trial SUAS has led to improvement in treatment delivery accuracy in many centres. Treatment techniques and set-up accuracy varied greatly, demonstrating a need to ensure an on-going awareness for such studies in future trials and with the introduction of dose escalation or new technologies.

  3. A-posteriori error estimation for the finite point method with applications to compressible flow

    NASA Astrophysics Data System (ADS)

    Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio

    2017-08-01

    An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

  4. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  5. Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Brown, Judith Alice

    In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less

  6. Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques

    DOE PAGES

    Bishop, Joseph E.; Brown, Judith Alice

    2018-06-15

    In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less

  7. Evaluation of the geomorphometric results and residual values of a robust plane fitting method applied to different DTMs of various scales and accuracy

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Kovács, Gábor

    2013-04-01

    Due to the need for quantitative analysis of various geomorphological landforms, the importance of fast and effective automatic processing of the different kind of digital terrain models (DTMs) is increasing. The robust plane fitting (segmentation) method, developed at the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology, allows the processing of large 3D point clouds (containing millions of points), performs automatic detection of the planar elements of the surface via parameter estimation, and provides a considerable data reduction for the modeled area. Its geoscientific application allows the modeling of different landforms with the fitted planes as planar facets. In our study we aim to analyze the accuracy of the resulting set of fitted planes in terms of accuracy, model reliability and dependence on the input parameters. To this end we used DTMs of different scales and accuracy: (1) artificially generated 3D point cloud model with different magnitudes of error; (2) LiDAR data with 0.1 m error; (3) SRTM (Shuttle Radar Topography Mission) DTM database with 5 m accuracy; (4) DTM data from HRSC (High Resolution Stereo Camera) of the planet Mars with 10 m error. The analysis of the simulated 3D point cloud with normally distributed errors comprised different kinds of statistical tests (for example Chi-square and Kolmogorov-Smirnov tests) applied on the residual values and evaluation of dependence of the residual values on the input parameters. These tests have been repeated on the real data supplemented with the categorization of the segmentation result depending on the input parameters, model reliability and the geomorphological meaning of the fitted planes. The simulation results show that for the artificially generated data with normally distributed errors the null hypothesis can be accepted based on the residual value distribution being also normal, but in case of the test on the real data the residual value distribution is often mixed or unknown. The residual values are found to be dependent on two input parameters (standard deviation and maximum point-plane distance both defining distance thresholds for assigning points to a segment) mainly and the curvature of the surface affected mostly the distributions. The results of the analysis helped to decide which parameter set is the best for further modelling and provides the highest accuracy. With these results in mind the success of quasi-automatic modelling of the planar (for example plateau-like) features became more successful and often provided more accuracy. These studies were carried out partly in the framework of TMIS.ascrea project (Nr. 2001978) financed by the Austrian Research Promotion Agency (FFG); the contribution of ZsK was partly funded by Campus Hungary Internship TÁMOP-424B1.

  8. Arctic Ocean Tides from GRACE Satellite Accelerations

    NASA Astrophysics Data System (ADS)

    Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.

    2010-12-01

    Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these tides directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar tides in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.

  9. FALSTAFF: A New Tool for Fission Fragment Characterization

    NASA Astrophysics Data System (ADS)

    Doré, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.

    2014-05-01

    The future Neutron For Science (NFS) facility to be installed at SPIRAL2 (Caen, France) will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest to the nuclear community, in view of the development of fast reactor technology, will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow for the simultaneous measurement of the velocity and energy of the complementary fragments. The performance of the time-of-flight detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  10. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2more » mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.« less

  11. The use of propagation path corrections to improve regional seismic event location in western China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steck, L.K.; Cogbill, A.H.; Velasco, A.A.

    1999-03-01

    In an effort to improve the ability to locate seismic events in western China using only regional data, the authors have developed empirical propagation path corrections (PPCs) and applied such corrections using both traditional location routines as well as a nonlinear grid search method. Thus far, the authors have concentrated on corrections to observed P arrival times for shallow events using travel-time observations available from the USGS EDRs, the ISC catalogs, their own travel-tim picks from regional data, and data from other catalogs. They relocate events with the algorithm of Bratt and Bache (1988) from a region encompassing China. Formore » individual stations having sufficient data, they produce a map of the regional travel-time residuals from all well-located teleseismic events. From these maps, interpolated PPC surfaces have been constructed using both surface fitting under tension and modified Bayesian kriging. The latter method offers the advantage of providing well-behaved interpolants, but requires that the authors have adequate error estimates associated with the travel-time residuals. To improve error estimates for kriging and event location, they separate measurement error from modeling error. The modeling error is defined as the travel-time variance of a particular model as a function of distance, while the measurement error is defined as the picking error associated with each phase. They estimate measurement errors for arrivals from the EDRs based on roundoff or truncation, and use signal-to-noise for the travel-time picks from the waveform data set.« less

  12. Study of UV imaging technology for noninvasive detection of latent fingerprints

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang

    2013-09-01

    Using UV imaging technology, according to the special absorption 、reflection 、scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carboxylic acid salts etc) to the UV light, weaken or eliminate the background disturbance to increase the brightness contrast of fingerprints with the background, and design、setup the illumination optical system and UV imaging system, the noninvasive detection of latent fingerprints remaining on various object surface are studied. In the illumination optical system, using the 266nm UV Nd:YAG solid state laser as illumination light source, by calculating the best coupling conditions of the laser beam with UV liquid core fiber and analyzing the beam transforming characterizations, we designed and setup the optical system to realize the UV imaging uniform illumination. In the UV imaging system, the UV lens is selected as the fingerprint imaging element, and the UV intensified CCD (ICCD) which consists of a second-generation UV image intensifier and a CCD coupled by fiber plate and taper directly are used as the imaging sensing element. The best imaging conditions of the UV lens with ICCD were analyzed and the imaging system was designed and setup. In this study, by analyzing the factors which influence the detection effect, optimal design and setup the illumination system and imaging system, latent fingerprints on the surface of the paint tin box、plastic、smooth paper、notebook paper and print paper were noninvasive detected and appeared, and the result meet the fingerprint identification requirements in forensic science.

  13. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows

    NASA Astrophysics Data System (ADS)

    Gholipour Peyvandi, R.; Islami Rad, S. Z.

    2017-12-01

    The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.

  14. Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere.

    PubMed

    Vidovic, Luka; Majaron, Boris

    2014-02-01

    Diffuse reflectance spectra (DRS) of biological samples are commonly measured using an integrating sphere (IS). To account for the incident light spectrum, measurement begins by placing a highly reflective white standard against the IS sample opening and collecting the reflected light. After replacing the white standard with the test sample of interest, DRS of the latter is determined as the ratio of the two values at each involved wavelength. However, such a substitution may alter the fluence rate inside the IS. This leads to distortion of measured DRS, which is known as single-beam substitution error (SBSE). Barring the use of more complex experimental setups, the literature states that only approximate corrections of the SBSE are possible, e.g., by using look-up tables generated with calibrated low-reflectivity standards. We present a practical method for elimination of SBSE when using IS equipped with an additional reference port. Two additional measurements performed at this port enable a rigorous elimination of SBSE. Our experimental characterization of SBSE is replicated by theoretical derivation. This offers an alternative possibility of computational removal of SBSE based on advance characterization of a specific DRS setup. The influence of SBSE on quantitative analysis of DRS is illustrated in one application example.

  15. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.

    PubMed

    Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U

    2006-12-01

    This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.

  16. Residual stresses investigations in composite samples by speckle interferometry and specimen repositioning

    NASA Astrophysics Data System (ADS)

    Baldi, Alfonso; Jacquot, Pierre

    2003-05-01

    Graphite-epoxy laminates are subjected to the "incremental hole-drilling" technique in order to investigate the residual stresses acting within each layer of the composite samples. In-plane speckle interferometry is used to measure the displacement field created by each drilling increment around the hole. Our approach features two particularities (1) we rely on the precise repositioning of the samples in the optical set-up after each new boring step, performed by means of a high precision, numerically controlled milling machine in the workshop; (2) for each increment, we acquire three displacement fields, along the length, the width of the samples, and at 45°, using a single symmetrical double beam illumination and a rotary stage holding the specimens. The experimental protocol is described in detail and the experimental results are presented, including a comparison with strain gages. Speckle interferometry appears as a suitable method to respond to the increasing demand for residual stress determination in composite samples.

  17. Fate of vinclozolin, thiabendazole and dimethomorph during storage, handling and forcing of chicory.

    PubMed

    Spanoghe, Pieter; Ryckaert, Bert; Van Gheluwe, Cindy; Van Labeke, Marie-Christine

    2010-02-01

    As part of ongoing research for a sustainable production of Belgian endives, the fate of three fungicides during storage, handling and forcing of witloof chicory roots was investigated. Storage roots are protected against Sclerotinia sp. Fuckel and Phoma exigua var. exigua Desm. by means of vinclozolin and thiabendazole respectively. During hydroponic forcing, the most imminent pathogen is Phytophthora cryptogea Pethybr. & Laff., which is controlled by the use of dimethomorph. Vinclozolin and thiabendazole concentrations on roots remained constant during storage at -1 degrees C. Dermal exposure of the workers in hydroponics was exceeded. Vinclozolin and thiabendazole residues were not detected 2 weeks after hydroponic forcing; dimethomorph was still detected at harvest. At harvest, the vinclozolin concentration in the chicory heads was below the maximum residue limit, but the chicory roots contained residues much above the thiabendazole and dimethomorph maximum residue level. Vinclozolin and thiabendazole residues applied before storage are still present on the roots at the start of the forcing cycle. During the set-up of chicory roots, preventive measures are recommended, as effects of repeated human exposure to low doses of applied fungicides cannot be excluded. Dimethomorph applied at the start of the hydroponic forcing is the only pesticide detected in the drainage water at harvest. The chicory heads were safe for human consumption. However, more attention should be paid to the residues of fungicides in the roots used for cattle feeding.

  18. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M

    2017-02-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO 4 . Final leaching values for some elements and membranes, but not the majority, were below than those of certified coal fly ash (e.g. Al or Cr), a material which is commonly used in construction materials; at the same time, some of these values were reduced to below the Danish law thresholds on the use of contaminated soil in constructions. These results show the potential of ED as a technology to upgrade municipal solid waste incineration residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. MIMO equalization with adaptive step size for few-mode fiber transmission systems.

    PubMed

    van Uden, Roy G H; Okonkwo, Chigo M; Sleiffer, Vincent A J M; de Waardt, Hugo; Koonen, Antonius M J

    2014-01-13

    Optical multiple-input multiple-output (MIMO) transmission systems generally employ minimum mean squared error time or frequency domain equalizers. Using an experimental 3-mode dual polarization coherent transmission setup, we show that the convergence time of the MMSE time domain equalizer (TDE) and frequency domain equalizer (FDE) can be reduced by approximately 50% and 30%, respectively. The criterion used to estimate the system convergence time is the time it takes for the MIMO equalizer to reach an average output error which is within a margin of 5% of the average output error after 50,000 symbols. The convergence reduction difference between the TDE and FDE is attributed to the limited maximum step size for stable convergence of the frequency domain equalizer. The adaptive step size requires a small overhead in the form of a lookup table. It is highlighted that the convergence time reduction is achieved without sacrificing optical signal-to-noise ratio performance.

  20. Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy.

    PubMed

    Zi, Fei; Wu, Xuejian; Zhong, Weicheng; Parker, Richard H; Yu, Chenghui; Budker, Simon; Lu, Xuanhui; Müller, Holger

    2017-04-01

    We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump-probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.

  1. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  2. Genomic Prediction Accounting for Residual Heteroskedasticity.

    PubMed

    Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M

    2015-11-12

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.

  3. Large aluminium convex mirror for the cryo-optical test of the Planck primary reflector

    NASA Astrophysics Data System (ADS)

    Gloesener, P.; Flébus, C.; Cola, M.; Roose, S.; Stockman, Y.; de Chambure, D.

    2017-11-01

    In the frame of the PLANCK mission telescope development, it is requested to measure the reflector changes of the surface figure error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been selected and a dedicated thermo mechanical set-up has been constructed. In order to realise the test set-up for this reflector, a large aluminium convex mirror with radius of 19500 mm has been manufactured. The mirror has to operate in a cryogenic environment lower than 30 K, and has a contribution to the RMS WFE with less than 1 μm between room temperature and cryogenic temperature. This paper summarises the design, manufacturing and characterisation of this mirror, showing it has fulfilled its requirements.

  4. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Liu, W.; Li, B.

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce0.8Fe3CoSb12, up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  5. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus.

    PubMed

    Jacobsen, M K; Liu, W; Li, B

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  6. Elongation measurement using 1-dimensional image correlation method

    NASA Astrophysics Data System (ADS)

    Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan

    2016-11-01

    Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.

  7. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  8. Uncertainty of InSAR velocity fields for measuring long-wavelength displacement

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.

    2014-12-01

    Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and examine the estimated uncertainties in several non-deforming areas. We show the efficiency of the approach to study the continental deformation across the Chaman fault system at the western Indian plate boundary. Ref: Fattahi, H., & Amelung, F., (2014), InSAR uncertainty due to orbital errors, Geophys, J. Int (in press).

  9. Estimating alarm thresholds and the number of components in mixture distributions

    NASA Astrophysics Data System (ADS)

    Burr, Tom; Hamada, Michael S.

    2012-09-01

    Mixtures of probability distributions arise in many nuclear assay and forensic applications, including nuclear weapon detection, neutron multiplicity counting, and in solution monitoring (SM) for nuclear safeguards. SM data is increasingly used to enhance nuclear safeguards in aqueous reprocessing facilities having plutonium in solution form in many tanks. This paper provides background for mixture probability distributions and then focuses on mixtures arising in SM data. SM data can be analyzed by evaluating transfer-mode residuals defined as tank-to-tank transfer differences, and wait-mode residuals defined as changes during non-transfer modes. A previous paper investigated impacts on transfer-mode and wait-mode residuals of event marking errors which arise when the estimated start and/or stop times of tank events such as transfers are somewhat different from the true start and/or stop times. Event marking errors contribute to non-Gaussian behavior and larger variation than predicted on the basis of individual tank calibration studies. This paper illustrates evidence for mixture probability distributions arising from such event marking errors and from effects such as condensation or evaporation during non-transfer modes, and pump carryover during transfer modes. A quantitative assessment of the sample size required to adequately characterize a mixture probability distribution arising in any context is included.

  10. A Truncated Nuclear Norm Regularization Method Based on Weighted Residual Error for Matrix Completion.

    PubMed

    Qing Liu; Zhihui Lai; Zongwei Zhou; Fangjun Kuang; Zhong Jin

    2016-01-01

    Low-rank matrix completion aims to recover a matrix from a small subset of its entries and has received much attention in the field of computer vision. Most existing methods formulate the task as a low-rank matrix approximation problem. A truncated nuclear norm has recently been proposed as a better approximation to the rank of matrix than a nuclear norm. The corresponding optimization method, truncated nuclear norm regularization (TNNR), converges better than the nuclear norm minimization-based methods. However, it is not robust to the number of subtracted singular values and requires a large number of iterations to converge. In this paper, a TNNR method based on weighted residual error (TNNR-WRE) for matrix completion and its extension model (ETNNR-WRE) are proposed. TNNR-WRE assigns different weights to the rows of the residual error matrix in an augmented Lagrange function to accelerate the convergence of the TNNR method. The ETNNR-WRE is much more robust to the number of subtracted singular values than the TNNR-WRE, TNNR alternating direction method of multipliers, and TNNR accelerated proximal gradient with Line search methods. Experimental results using both synthetic and real visual data sets show that the proposed TNNR-WRE and ETNNR-WRE methods perform better than TNNR and Iteratively Reweighted Nuclear Norm (IRNN) methods.

  11. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.

    PubMed

    Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike

    2016-07-01

    High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. Estimating the Uncertainty In Diameter Growth Model Predictions and Its Effects On The Uncertainty of Annual Inventory Estimates

    Treesearch

    Ronald E. McRoberts; Veronica C. Lessard

    2001-01-01

    Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...

  13. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Treesearch

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  14. Reflection measurements of microwave absorbers

    NASA Astrophysics Data System (ADS)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  15. An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON altimetry

    NASA Technical Reports Server (NTRS)

    Tsaoussi, Lucia S.; Koblinsky, Chester J.

    1994-01-01

    In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.

  16. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    NASA Astrophysics Data System (ADS)

    Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.

    2017-08-01

    Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer generated complex and reference interferograms containing artificially introduced intensity variations in the probe and the reference part of the diagnostic beam. These sets of data are subsequently analyzed and the errors of the signal amplitude reconstruction are evaluated.

  17. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, D; Moirano, J; Kanal, K

    Purpose: A fundamental measure performed during an annual physics CT evaluation confirms that system displayed CTDIvol nearly matches the independently measured value in phantom. For wide-beam (z-direction) CT scanners, AAPM Report 111 defined an ideal measurement method; however, the method often lacks practicality. The purpose of this preliminary study is to develop a set of conversion factors for a wide-beam CT scanner, relating the CTDIvol measured with a conventional setup (single CTDI phantom) versus the AAPM Report 111 approach (three abutting CTDI phantoms). Methods: For both the body CTDI and head CTDI, two acquisition setups were used: A) conventional singlemore » phantom and B) triple phantom. Of primary concern were the larger nominal beam widths for which a standard CTDI phantom setup would not provide adequate scatter conditions. Nominal beam width (160 or 120 mm) and kVp (100, 120, 140) were modulated based on the underlying clinical protocol. Exposure measurements were taken using a CT pencil ion chamber in the center and 12 o’clock position, and CTDIvol was calculated with ‘nT’ limited to 100 mm. A conversion factor (CF) was calculated as the ratio of CTDIvol measured in setup B versus setup A. Results: For body CTDI, the CF ranged from 1.04 up to 1.10, indicating a 4–10% difference between usage of one and three phantoms. For a nominal beam width of 160 mm, the CF did vary with selected kVp. For head CTDI at nominal beam widths of 120 and 160 mm, the CF was 1.00 and 1.05, respectively, independent of the kVp used (100, 120, and 140). Conclusions: A clear understanding of the manufacturer method of estimating the displayed CTDIvol is important when interpreting annual test results, as the acquisition setup may lead to an error of up to 10%. With appropriately defined CF, single phantom use is feasible.« less

  19. Impacts of wave-induced circulation in the surf zone on wave setup

    NASA Astrophysics Data System (ADS)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  20. Towards the 1-cm SARAL orbit

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Beckley, Brian D.; Bordyugov, Oleg; Yang, Xu; Wimert, Jesse; Pavlis, Despina

    2016-12-01

    We have investigated the quality of precise orbits for the SARAL altimeter satellite using Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) data from March 14, 2013 to August 10, 2014. We have identified a 4.31 ± 0.14 cm error in the Z (cross-track) direction that defines the center-of-mass of the SARAL satellite in the spacecraft coordinate system, and we have tuned the SLR and DORIS tracking point offsets. After these changes, we reduce the average RMS of the SLR residuals for seven-day arcs from 1.85 to 1.38 cm. We tuned the non-conservative force model for SARAL, reducing the amplitude of the daily adjusted empirical accelerations by eight percent. We find that the best dynamic orbits show altimeter crossover residuals of 5.524 cm over cycles 7-15. Our analysis offers a unique illustration that high-elevation SLR residuals will not necessarily provide an accurate estimate of radial error at the 1-cm level, and that other supporting orbit tests are necessary for a better estimate. Through the application of improved models for handling time-variable gravity, the use of reduced-dynamic orbits, and through an arc-by-arc estimation of the C22 and S22 coefficients, we find from analysis of independent SLR residuals and other tests that we achieve 1.1-1.2 cm radial orbit accuracies for SARAL. The limiting errors stem from the inadequacy of the DPOD2008 and SLRF2008 station complements, and inadequacies in radiation force modeling, especially with respect to spacecraft self-shadowing and modeling of thermal variations due to eclipses.

  1. Improved ambiguity resolution for URTK with dynamic atmosphere constraints

    NASA Astrophysics Data System (ADS)

    Tang, Weiming; Liu, Wenjian; Zou, Xuan; Li, Zongnan; Chen, Liang; Deng, Chenlong; Shi, Chuang

    2016-12-01

    Raw observation processing method with prior knowledge of ionospheric delay could strengthen the ambiguity resolution (AR), but it does not make full use of the relatively longer wavelength of wide-lane (WL) observation. Furthermore, the accuracy of calculated atmospheric delays from the regional augmentation information has quite different in quality, while the atmospheric constraint used in the current methods is usually set to an empirical value. A proper constraint, which matches the accuracy of calculated atmospheric delays, can most effectively compensate the residual systematic biases caused by large inter-station distances. Therefore, the standard deviation of the residual atmospheric parameters should be fine-tuned. This paper presents an atmosphere-constrained AR method for undifferenced network RTK (URTK) rover, whose ambiguities are sequentially fixed according to their wavelengths. Furthermore, this research systematically analyzes the residual atmospheric error and finds that it mainly varies along the positional relationship between the rover and the chosen reference stations. More importantly, its ionospheric part of certain location will also be cyclically influenced every day. Therefore, the standard deviation of residual ionospheric error can be modeled by a daily repeated cosine or other functions with the help of data one day before, and applied by rovers as pseudo-observation. With the data collected at 29 stations from a continuously operating reference station network in Guangdong Province (GDCORS) in China, the efficiency of the proposed approach is confirmed by improving the success and error rates of AR for 10-20 % compared to that of the WL-L1-IF one, as well as making much better positioning accuracy.

  2. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fouriermore » space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, M; Kim, T; Kang, S

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  4. SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, A; Foster, J; Chu, W

    2015-06-15

    Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weeklymore » CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less

  5. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    NASA Technical Reports Server (NTRS)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  6. Reducing the overlay metrology sensitivity to perturbations of the measurement stack

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen

    2017-03-01

    Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.

  7. Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2012-10-01

    In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.

  8. Optimizing X-ray mirror thermal performance using matched profile cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas

    2015-08-07

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle ismore » presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.« less

  9. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    PubMed

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  10. Resolution of a Rank-Deficient Adjustment Model Via an Isomorphic Geometrical Setup with Tensor Structure.

    DTIC Science & Technology

    1987-03-01

    would be transcribed as L =AX - V where L, X, and V are the vectors of constant terms, parametric corrections , and b_o bresiduals, respectively. The...tensor. a Just as du’ represents the parametric corrections in tensor notations, the necessary associated metric tensor a’ corresponds to the variance...observations, n residuals, and 0 n- parametric corrections to X (an initial set of parameters), respectively. b 0 b The vctor L is formed as 1. L where

  11. A Novel Vacuum Packaging Design Process for Microelectromechanical System (MEMS) Quad-Mass Gyroscopes

    DTIC Science & Technology

    2016-09-01

    16 2.2.1 Bake Out 18 2.2.2 Ramp-Up 19 2.2.3 Lid Seal 20 2.2.4 Cool/Purge 22 2.3 Residual Gas Analyzer Experiment 23 3. Results 28 4...Fig. 24 RGA experiment setup .........................................................................24 Fig. 25 RGA output for a 1-h bake out at T...225 °C ......................................25 Fig. 26 RGA output of a 2-h sample for an 8-h bake out .................................26 Fig. 27

  12. Direct carrier-envelope phase control of an amplified laser system.

    PubMed

    Balčiūnas, Tadas; Flöry, Tobias; Baltuška, Andrius; Stanislauskas, Tomas; Antipenkov, Roman; Varanavičius, Arūnas; Steinmeyer, Günter

    2014-03-15

    Direct carrier-envelope phase stabilization of an Yb:KGW MOPA laser system is demonstrated with a residual phase jitter reduced to below 100 mrad, which compares favorably with previous stabilization reports, both of amplified laser systems as well as of ytterbium-based oscillators. This novel stabilization scheme relies on a frequency synthesis scheme and a feed-forward approach. The direct stabilization of a sub-MHz frequency comb from a CPA amplifier not only reduces the phase noise but also greatly simplifies the stabilization setup.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG,H.; AHRENS, L.; BAI, M.

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  14. Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide

    DTIC Science & Technology

    2015-03-26

    holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in

  15. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.

    PubMed

    Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming

    2018-06-15

    In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.

  16. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  17. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  18. Calibration Errors in Interferometric Radio Polarimetry

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  19. Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system.

    PubMed

    Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi

    2011-08-01

    We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

  20. The algebraic decoding of the (41, 21, 9) quadratic residue code

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei

    1992-01-01

    A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.

  1. Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues

    NASA Astrophysics Data System (ADS)

    Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.

    2017-01-01

    Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to be substantially improved in order to withstand harsh aerospace conditions.

  2. A Comprehensive Quality Assurance Program for Personnel and Procedures in Radiation Oncology: Value of Voluntary Error Reporting and Checklists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zafirovski, Aleksandar; Smith, Jeffery

    Purpose: This report describes the value of a voluntary error reporting system and the impact of a series of quality assurance (QA) measures including checklists and timeouts on reported error rates in patients receiving radiation therapy. Methods and Materials: A voluntary error reporting system was instituted with the goal of recording errors, analyzing their clinical impact, and guiding the implementation of targeted QA measures. In response to errors committed in relation to treatment of the wrong patient, wrong treatment site, and wrong dose, a novel initiative involving the use of checklists and timeouts for all staff was implemented. The impactmore » of these and other QA initiatives was analyzed. Results: From 2001 to 2011, a total of 256 errors in 139 patients after 284,810 external radiation treatments (0.09% per treatment) were recorded in our voluntary error database. The incidence of errors related to patient/tumor site, treatment planning/data transfer, and patient setup/treatment delivery was 9%, 40.2%, and 50.8%, respectively. The compliance rate for the checklists and timeouts initiative was 97% (P<.001). These and other QA measures resulted in a significant reduction in many categories of errors. The introduction of checklists and timeouts has been successful in eliminating errors related to wrong patient, wrong site, and wrong dose. Conclusions: A comprehensive QA program that regularly monitors staff compliance together with a robust voluntary error reporting system can reduce or eliminate errors that could result in serious patient injury. We recommend the adoption of these relatively simple QA initiatives including the use of checklists and timeouts for all staff to improve the safety of patients undergoing radiation therapy in the modern era.« less

  3. Effects of monetary reward and punishment on information checking behaviour: An eye-tracking study.

    PubMed

    Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann

    2018-07-01

    The aim of the present study was to investigate the effect of error consequence, as reward or punishment, on individuals' checking behaviour following data entry. This study comprised two eye-tracking experiments that replicate and extend the investigation of Li et al. (2016) into the effect of monetary reward and punishment on data-entry performance. The first experiment adopted the same experimental setup as Li et al. (2016) but additionally used an eye tracker. The experiment validated Li et al. (2016) finding that, when compared to no error consequence, both reward and punishment led to improved data-entry performance in terms of reducing errors, and that no performance difference was found between reward and punishment. The second experiment extended the earlier study by associating error consequence to each individual trial by providing immediate performance feedback to participants. It was found that gradual increment (i.e. reward feedback) also led to significantly more accurate performance than no error consequence. It is unclear whether gradual increment is more effective than gradual decrement because of the small sample size tested. However, this study reasserts the effectiveness of reward on data-entry performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Elfiqi, Abdulaziz E.; Shalaby, Hossam M. H.; Sampei, Seiichi; Obayya, Salah S. A.

    2018-06-01

    We investigate the performance of hybrid L-ary quadrature-amplitude modulation-multi-pulse pulse-position modulation (LQAM-MPPM) techniques over exponentiated Weibull (EW) fading free-space optical (FSO) channel, considering both weather and pointing-error effects. Upper bound and approximate-tight upper bound expressions for the bit-error rate (BER) of LQAM-MPPM techniques over EW FSO channels are obtained, taking into account the effects of fog, beam divergence, and pointing-error. Setup block diagram for both the transmitter and receiver of the LQAM-MPPM/FSO system are introduced and illustrated. The BER expressions are evaluated numerically and the results reveal that LQAM-MPPM technique outperforms ordinary LQAM and MPPM schemes under different fading levels and weather conditions. Furthermore, the effect of modulation-index is investigated and it turned out that a modulation-index greater than 0.4 is required in order to optimize the system performance. Finally, the effect of pointing-error introduces a great power penalty on the LQAM-MPPM system performance. Specifically, at a BER of 10-9, pointing-error introduces power penalties of about 45 and 28 dB for receiver aperture sizes of DR = 50 and 200 mm, respectively.

  5. Analysis of Covariance: Is It the Appropriate Model to Study Change?

    ERIC Educational Resources Information Center

    Marston, Paul T., Borich, Gary D.

    The four main approaches to measuring treatment effects in schools; raw gain, residual gain, covariance, and true scores; were compared. A simulation study showed true score analysis produced a large number of Type-I errors. When corrected for this error, this method showed the least power of the four. This outcome was clearly the result of the…

  6. Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25

    ERIC Educational Resources Information Center

    Kane, Michael T.

    2017-01-01

    By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…

  7. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  8. Quantum stopwatch: how to store time in a quantum memory.

    PubMed

    Yang, Yuxiang; Chiribella, Giulio; Hayashi, Masahito

    2018-05-01

    Quantum mechanics imposes a fundamental trade-off between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the set-up. Here, we introduce a method that, in principle, eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.

  9. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  10. Towards Interpreting the Signal of CO2 Emissions from Megacities by Applying a Lagrangian Receptor-oriented Model to OCO-2 XCO2 data

    NASA Astrophysics Data System (ADS)

    Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.

    2017-12-01

    Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.

  11. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less

  12. On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data

    NASA Astrophysics Data System (ADS)

    Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei

    2014-01-01

    Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.

  13. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J., E-mail: cathryn.trott@curtin.edu.au

    Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional powermore » spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.« less

  14. Residual Seminal Vesicle Displacement in Marker-Based Image-Guided Radiotherapy for Prostate Cancer and the Impact on Margin Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob

    Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due tomore » marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.« less

  15. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  16. Using GPU parallelization to perform realistic simulations of the LPCTrap experiments

    NASA Astrophysics Data System (ADS)

    Fabian, X.; Mauger, F.; Quéméner, G.; Velten, Ph.; Ban, G.; Couratin, C.; Delahaye, P.; Durand, D.; Fabre, B.; Finlay, P.; Fléchard, X.; Liénard, E.; Méry, A.; Naviliat-Cuncic, O.; Pons, B.; Porobic, T.; Severijns, N.; Thomas, J. C.

    2015-11-01

    The LPCTrap setup is a sensitive tool to measure the β - ν angular correlation coefficient, a β ν , which can yield the mixing ratio ρ of a β decay transition. The latter enables the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V u d . In such a measurement, the most relevant observable is the energy distribution of the recoiling daughter nuclei following the nuclear β decay, which is obtained using a time-of-flight technique. In order to maximize the precision, one can reduce the systematic errors through a thorough simulation of the whole set-up, especially with a correct model of the trapped ion cloud. This paper presents such a simulation package and focuses on the ion cloud features; particular attention is therefore paid to realistic descriptions of trapping field dynamics, buffer gas cooling and the N-body space charge effects.

  17. External cavity diode laser setup with two interference filters

    NASA Astrophysics Data System (ADS)

    Martin, Alexander; Baus, Patrick; Birkl, Gerhard

    2016-12-01

    We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.

  18. Physics, ballistics, and psychology: a history of the chronoscope in/as context, 1845-1890.

    PubMed

    Schmidgen, Henning

    2005-02-01

    In Wilhelm Wundt's (1832-1920) Leipzig laboratory and at numerous other research sites, the chronoscope was used to conduct reaction time experiments. The author argues that the history of the chronoscope is the history not of an instrument but of an experimental setup. This setup was initially devised by the English physicist and instrument maker Charles Wheatstone (1802-1875) in the early 1840s. Shortly thereafter, it was improved by the German clockmaker and mechanic Matthäus Hipp (1813-1893). In the 1850s, the chronoscope was introduced to ballistic research. In the early 1860s, Neuchâtel astronomer Adolphe Hirsch (1830-1901) applied it to the problem of physiological time. The extensions and variations of chronoscope use within the contexts of ballistics, physiology, and psychology presented special challenges. These challenges were met with specific attempts to reduce the errors in chronoscopic experiments on shooting stands and in the psychological laboratory.

  19. The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, Sven; De Roeck, Wojciech; Fraas, Martin

    2018-03-01

    The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter ɛ. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.

  20. Magnetostriction measurement by four probe method

    NASA Astrophysics Data System (ADS)

    Dange, S. N.; Radha, S.

    2018-04-01

    The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.

  1. Geometrical pose and structural estimation from a single image for automatic inspection of filter components

    NASA Astrophysics Data System (ADS)

    Liu, Yonghuai; Rodrigues, Marcos A.

    2000-03-01

    This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.

  2. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  3. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  4. SU-E-T-605: RapidArc Combined with DIBH Technique for Thoracic Esophageal Carcinoma: The Potential Value of Target Immobilization and Reduced Lung Density in Dose Escalation.

    PubMed

    Yin, Y; Liu, T; Zhai, D

    2012-06-01

    To compare the dosimetric benefits of Rapidarc (RA) combined with deep inspiration breath-hold (DIBH) with those of other standard techniques, including free breathing (FB) during fixed-field intensity modulated radiation therapy (IMRT) and dual arc RA, in the treatment of patients with thoracic esophageal carcinoma (EC). Ten patients with EC underwent computed tomography (CT) scans under 2 respiration conditions: free-breathing (FB) and DIBH. These scans were used to generate 3-dimensional conformal treatment plans. For breath-hold scans, the patients were brought to reproducible respiration levels using active breathing control (ABC) maneuvers. Planning target volumes (PTVs) for FB plans included a 0.5 cm margin for setup plus a 1 cm margin equal to the extent of tumor motion for respiration. PTVs for DIBH plans included a 0.5 cm margin for setup error and a 0.5 cm margin for residual uncertainty in tumor position. Using a dose level of 60 Gy to the PTV, three treatment plans were generated: IMRT-FB, RA-FB and RA-ABC, and the target and normal tissue volumes were compared, as were the dosimetry parameters. On average, the DIBH technique resulted in increased lung volumes compared with FB techniques. There was no significant differences in gross tumor volume between the two breathing states (p > 0.05); but PTV and heart volume were larger for FB than for DIBH (p < 0.05). The overall CI and HI for the RA-ABC plan was slightly inferior to those of the IMRT- FB and RA-FB plans (p < 0.05 each). With DIBH, the heart was partly out of the beam portals and the average mean heart dose was reduced. Compared with conventional FB, RA combined with DIBH significantly reduced cardiac and pulmonary doses without compromising the target coverage and may reduce treatment toxicity, enabling dose escalation in future prospective studies of patients with EC. © 2012 American Association of Physicists in Medicine.

  5. Inter- and Intrafraction Target Motion in Highly Focused Single Vocal Cord Irradiation of T1a Larynx Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.

    2015-09-01

    Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less

  6. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voort, Sebastian van der; Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft; Water, Steven van de

    Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of themore » simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can be used in minimax robust optimization of IMPT treatment plans to ensure adequate CTV coverage for oropharyngeal cancer patients.« less

  7. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery.

    PubMed

    Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei

    2011-07-01

    Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed algorithm eliminates the need for any population based model parameters in monoscopic image guided radiotherapy and allows accurate and real-time 3D tumor localization on current standard LINACs with a single x-ray imager.

  8. Characterisation of residual ionospheric errors in bending angles using GNSS RO end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Kirchengast, G.; Zhang, K. F.; Norman, R.; Li, Y.; Zhang, S. C.; Carter, B.; Fritzer, J.; Schwaerz, M.; Choy, S. L.; Wu, S. Q.; Tan, Z. X.

    2013-09-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.

  9. Recent Modifications and Validation of QuEChERS-dSPE Coupled to LC-MS and GC-MS Instruments for Determination of Pesticide/Agrochemical Residues in Fruits and Vegetables: Review.

    PubMed

    Lawal, Abubakar; Wong, Richard Chee Seng; Tan, Guan Huat; Abdulra'uf, Lukman Bola; Alsharif, Ali Mohamed Ali

    2018-04-21

    Fruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment. However, the residues have previously been determined using conventionally known techniques, which include liquid-liquid extraction, solid-phase extraction (SPE) and the recently used liquid-phase microextraction techniques. Despite the positive technological effects of these methods, their limitations include; time-consuming, operational difficulty, use of toxic organic solvents, low selective property and expensive extraction setups, with shorter lifespan of instrumental performances. Thus, the potential and maximum use of these methods for pesticides residue determination has resulted in the urgent need for better techniques that will overcome the highlighted drawbacks. Alternatively, attention has been drawn recently towards the use of quick, easy, cheap, effective, rugged and safe technique (QuEChERS) coupled with dispersive solid-phase extraction (dSPE) to overcome the setback challenges experienced by the previous technologies. Conclusively, the reviewed QuEChERS-dSPE techniques and the recent cleanup modifications justifiably prove to be reliable for routine determination and monitoring the concentration levels of pesticide residues using advanced instruments such as high-performance liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.

  10. Effects of Sex on Intra-Individual Variance in Urinary Solutes in Stone-Formers Collected from a Single Clinical Laboratory

    PubMed Central

    Perry, Guy M. L.; Scheinman, Steven J.; Asplin, John R.

    2013-01-01

    Background/Aims Our work in a rodent model of urinary calcium suggests genetic and gender effects on increased residual variability in urine chemistries. Based on these findings, we hypothesized that sex would similarly be associated with residual variation in human urine solutes. Sex-related effects on residuals might affect the establishment of physiological baselines and error in medical assays. Methods We tested the effects of sex on residual variation in urine chemistry by estimating coefficients of variation (CV) for urinary solutes in paired sequential 24-h urines (≤72 hour interval) in 6,758 females and 9,024 males aged 16–80 submitted to a clinical laboratory. Results Females had higher CVs than males for urinary phosphorus overall at the False Discovery Rate (P<0.01). There was no effect of sex on CV for calcium (P>0.3). Males had higher CVs for citrate (P<0.01) from ages 16–45 and females higher CVs for citrate (P<0.01) from ages 56–80, suggesting effects of an extant oestral cycle on residual variance. Conclusions Our findings indicate the effects of sex on residual variance of the excretion of urinary solutes including phosphorus and citrate; differences in CV by sex might reflect dietary lability, differences in the fidelity of reporting or genetic differentiation in renal solute consistency. Such an effect could complicate medical analysis by the addition of random error to phenotypic assays. Renal analysis might require explicit incorporation of heterogeneity among factorial effects, and for sex in particular. PMID:23840293

  11. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  12. Super-global distortion correction for a rotational C-arm x-ray image intensifier.

    PubMed

    Liu, R R; Rudin, S; Bednarek, D R

    1999-09-01

    Image intensifier (II) distortion changes as a function of C-arm rotation angle because of changes in the orientation of the II with the earth's or other stray magnetic fields. For cone-beam computed tomography (CT), distortion correction for all angles is essential. The new super-global distortion correction consists of a model to continuously correct II distortion not only at each location in the image but for every rotational angle of the C arm. Calibration bead images were acquired with a standard C arm in 9 in. II mode. The super-global (SG) model is obtained from the single-plane global correction of the selected calibration images with given sampling angle interval. The fifth-order single-plane global corrections yielded a residual rms error of 0.20 pixels, while the SG model yielded a rms error of 0.21 pixels, a negligibly small difference. We evaluated the accuracy dependence of the SG model on various factors, such as the single-plane global fitting order, SG order, and angular sampling interval. We found that a good SG model can be obtained using a sixth-order SG polynomial fit based on the fifth-order single-plane global correction, and that a 10 degrees sampling interval was sufficient. Thus, the SG model saves processing resources and storage space. The residual errors from the mechanical errors of the x-ray system were also investigated, and found comparable with the SG residual error. Additionally, a single-plane global correction was done in the cylindrical coordinate system, and physical information about pincushion distortion and S distortion were observed and analyzed; however, this method is not recommended due to a lack of calculational efficiency. In conclusion, the SG model provides an accurate, fast, and simple correction for rotational C-arm images, which may be used for cone-beam CT.

  13. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  14. New error calibration tests for gravity models using subset solutions and independent data - Applied to GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.

    1993-01-01

    A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.

  15. The effect of timing errors in optical digital systems.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1972-01-01

    The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

  16. Comparison of the atmospheric- and reduced-pressure HS-SPME strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite.

    PubMed

    Ghiasvand, Ali Reza; Nouriasl, Kolsoum; Yazdankhah, Fatemeh

    2018-01-01

    A low-cost, sensitive and reliable reduced-pressure headspace solid-phase microextraction (HS-SPME) setup was developed and evaluated for direct extraction of residual solvents in commercial antibiotics, followed by determination by gas chromatography with flame ionization detection (GC-FID). A stainless steel narrow wire was made porous and adhesive by platinization by a modified electrophoretic deposition method and coated with a polyaniline/multiwalled carbon nanotube nanocomposite. All experimental variables affecting the extraction efficiency were investigated for both atmospheric-pressure and reduced-pressure conditions. Comparison of the optimal experimental conditions and the results demonstrated that the reduced-pressure strategy leads to a remarkable increase in the extraction efficiency and reduction of the extraction time and temperature (10 min, 25 °Ϲ vs 20 min, 40 °Ϲ). Additionally, the reduced-pressure strategy showed better analytical performances compared with those obtained by the conventional HS-SPME-GC-FID method. Limit of detections, linear dynamic ranges, and relative standard deviations of the reduced-pressure HS-SPME procedure for benzene, toluene, ethylbenzene, and xylene (BTEX) in injectable solid drugs were obtained over the ranges of 20-100 pg g -1 , 0.02-40 μg g -1 , and 2.8-10.2%, respectively. The procedure developed was successful for the analysis of BTEX in commercial containers of penicillin, ampicillin, ceftriaxone, and cefazolin. Graphical abstract Schematic representation of the developed RP-HS-SPME setup.

  17. Deep learning methods for protein torsion angle prediction.

    PubMed

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  18. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.

  19. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  20. User's guide to Monte Carlo methods for evaluating path integrals

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

Top