Residual stress effects in stress-corrosion cracking
Toribio, J.
1998-04-01
This paper describes a wide variety of residual stress effects in stress-corrosion cracking (SCC) of metallic materials on the basis of previous research of the author on high-strength steel in the form of hot-rolled bars and cold-drawn wires for prestressed concrete. It is seen that internal residual stress fields in the material play a very important -- if not decisive -- role in the SCC behavior of any engineering material, especially residual stresses generated near the free surface or in the vicinity of a crack tip.
Effects of residual stresses on fracture of welded pipes
Hou, Y.C.; Kim, M,; Pan, J.; Brust, F.W.
1996-12-01
Thermal residual stresses induced by multi-pass butt welding processes of stainless steel pipes are obtained by a thermoelastic-plastic finite element analysis with the assumption of axisymmetric conditions. After the welding processes, circumferential part-through cracks are introduced at the locations having the highest axial residual stress. Crack-tip parameters are sought for characterizing the crack-tip stress and deformation field under subsequent applied axial stresses. The computational results indicate that without residual stress mitigation processes, the residual stresses are quite large and the J integrals for several arbitrary paths are path dependent under the range of axial stresses. Therefore, J cannot be used as a characterizing parameter under the applied stresses. The results also show that, as the axial stress becomes large, the J integrals for different paths follow the same trend as those without residual stresses. This indicates that the residual stress effects become less significant when the deformation due to the applied axial stress becomes dominant. Finally, a computationally convenient parameter, the crack tip opening angle (CTOA), which can take into account the effects of residual stresses near the tip, is adopted for characterizing the crack tip deformation. The CTOA results suggest that with residual stresses the propensity for subcritical crack growth via a stress corrosion cracking or fatigue crack growth mechanism in welds may be higher than that without residual stresses.
Effects of residual stress on irradiation hardening in stainless steels
NASA Astrophysics Data System (ADS)
Okubo, N.; Miwa, Y.; Kondo, K.; Kaji, Y.
2009-04-01
Effects of residual stress on irradiation hardening were studied in advance for predicting irradiation assisted stress corrosion cracking. The specimens of SUS316 and SUS316L with several % plastic strains, which correspond to weld residual stress, were prepared by bending and keeping deformation under irradiation. Ion irradiations of 12 MeV Ni 3+ were performed at 330, 400 and 550 oC to 45 dpa. No bended specimen was simultaneously irradiated with the bended specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nanoindenter. The residual stress did not relax even for the case of the higher temperature aging at 500 oC for the same time of irradiation. The residual stress after ion irradiation up to high dpa, however, relaxed at these experimental temperatures. The irradiation hardening of stressed specimen was obviously lower than that of un-stressed one in case of SUS316L irradiated at 300 oC to 12 dpa.
Effect of Measured Welding Residual Stresses on Crack Growth
NASA Technical Reports Server (NTRS)
Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)
1998-01-01
Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.
Impurity Effects on Momentum Transport and Residual Stress
NASA Astrophysics Data System (ADS)
Ko, Sehoon; Jhang, Hogun; Singh, R.
2015-11-01
Impurities are inevitable during tokamak plasma operation because of strong interaction of plasma and plasma facing component and helium ash as a byproduct of fusion process. They cause problems such as radiation power loss and fusion fuel dilution. On the other hands, they are used to diagnosis plasma parameters (CES, XICS etc) and to suppress edge-localized mode by wall-coating. In this research, we study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.
Bioinjection Treatment: Effects of Post-Injection Residual Stress on Left Ventricular Wall Stress
Lee, Lik Chuan; Wall, Samuel T.; Genet, Martin; Hinson, Andy; Guccione, Julius M.
2014-01-01
Injection of biomaterials into diseased myocardium has been associated with decreased myofiber stress, restored left ventricular (LV) geometry and improved LV function. However, its exact mechanism(s) of action remained unclear. In this work, we present the first patient-specific computational model of biomaterial injection that accounts for the possibility of residual strain and stress introduced by this treatment. We show that the presence of residual stress can create more heterogeneous regional myofiber stress and strain fields. Our simulation results show that the treatment generates low stress and stretch areas between injection sites, and high stress and stretch areas between the injections and both the endocardium and epicardium. Globally, these local changes are translated into an increase in average myofiber stress and its standard deviation (from 6.9 ± 4.6 to 11.2 ± 48.8 kPa and 30 ± 15 to 35.1 ± 50.9 kPa at end-diastole and end-systole, respectively). We also show that the myofiber stress field is sensitive to the void-to-injection size ratio – for a constant void size, the myofiber stress field became less heterogeneous with decreasing injection volume. These results suggest that the residual stress and strain possibly generated by biomaterial injection treatment can have large effects on the regional myocardial stress and strain fields, which may be important in the remodeling process. PMID:25065728
Effects of cutting and specimen size on neutron measurement of residual stresses
NASA Astrophysics Data System (ADS)
Law, M.; Luzin, V.; Kirstein, O.
2010-11-01
To perform neutron residual stress measurements it is often necessary to cut samples to a manageable size. The effects of cutting a girth welded pipe were investigated with analytical methods and finite element analysis. The effect of cutting on measured stresses was calculated. A simplified method of modelling residual stresses in welds, "chill modelling", is introduced. In ring slitting a cut is made in the axial direction and the deformation is maeesured. The change in elastic stress can be calculated and added to neutron diffraction measurements made on a cut ring to calculate the original stresses. Residual stress measurements were performed to validate the ring slitting correction using ANSTO's residual stress diffractometer Kowari.
Experimental study of cumulative effect of residual stress on machined surface on HSM
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2010-03-01
The high speed milling experiments are performed for hardened H13 die steel by using coated ball end milling cutter, the experiment was design for testing distribution properties of the residual stress in HSM. And the residual stress of the work-piece surface on the feed and cross feed direction are measured by the X-ray stress analyzer (X-stress 3000), and the distribution characteristics of residual stress is analyzed. The result shows that the residual stress presents gradient distribution on feed direction, and furthermore, the three-dimensional surface micro topography has been observed by the WykoNT9300, it shows that the micro topography has no close relation with the residual stress. In addition, the cumulative effect is discussed for explaining the phenomena. It could be one explanation for the residual stress gradient on the machined surface on mechanism.
Experimental study of cumulative effect of residual stress on machined surface on HSM
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2009-12-01
The high speed milling experiments are performed for hardened H13 die steel by using coated ball end milling cutter, the experiment was design for testing distribution properties of the residual stress in HSM. And the residual stress of the work-piece surface on the feed and cross feed direction are measured by the X-ray stress analyzer (X-stress 3000), and the distribution characteristics of residual stress is analyzed. The result shows that the residual stress presents gradient distribution on feed direction, and furthermore, the three-dimensional surface micro topography has been observed by the WykoNT9300, it shows that the micro topography has no close relation with the residual stress. In addition, the cumulative effect is discussed for explaining the phenomena. It could be one explanation for the residual stress gradient on the machined surface on mechanism.
Residual stress effects on the impact resistance and strength of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.
NASA Technical Reports Server (NTRS)
Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy
2015-01-01
An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.
The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth
NASA Technical Reports Server (NTRS)
Hutchinson, J. W.; Lambropoulos, J. C.
1984-01-01
The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.
Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications
Dong, P.; Rahman, S.; Wilkowski, G.
1997-04-01
This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.
Effect of Residual Stresses on the Hardness of Bulk Metallic Glasses
Wang, L.; Bei, Hongbin; Gao, Y. F.; Lu, Zhao Ping; Nieh, T. G.
2011-01-01
Nanoindentation experiments were conducted on Zr-based metallic glass samples, which were elastically and plastically bent in order to investigate the effect of residual stresses on hardness. It was found that tensile residual stress reduced the hardness significantly, while compressive residual stress produced only a small effect on the hardness. These observations are consistent with three-dimensional continuum-plasticity-based finite-element simulations. The hardness was also found to vary more significantly with residual stresses, in particular in tension, than that caused by shear-banding-induced softening, suggesting hardness measurement is a practical method for the evaluation of tensile residual stresses in a metallic glass. Hardness variation in the bent sample was correlated with the residual-stress induced volume dilatation through a free-volume-based model. In this paper, we also present a detailed stress analysis based on yield asymmetry under tension and compression to describe the distribution of residual stresses in bent metallic glass specimens. The calculations agree well with the hardness variations measured experimentally.
Effect of preheat on residual stress distributions in arc-welded mild steel plates
Adedayo, S.M.; Adeyemi, M.B.
2000-02-01
Residual stress distribution in the longitudinal and transverse directions on a 6-mm-thick arc-welded mild steel plate was experimentally examined with and without initial preheat. Stress measurements were completed by monitoring strain changes on mounted strain gauges resulting from successive milling of the welded plate specimens. Machining stresses were also compensated for by carrying out measurements of strain changes due to milling operation of a stress-free unwelded annealed mild steel plate. High tensile residual stresses exist close to the weld line in both longitudinal and transverse stresses. Maximum longitudinal residual stress values existing close to the weld line are reduced (between 50 and 75%) due to the effect of initial metal preheat of 200 C of the welded steel plate.
NASA Technical Reports Server (NTRS)
Chen, Po; Malone, Tina; Bod, Robert; Torres, Pablo
2000-01-01
Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.
NASA Technical Reports Server (NTRS)
Chen, P.; Malone, T.; Bond, R.; Torres, P.
2001-01-01
Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.
Effect of Residual Stress on Fatigue Failure of Carbonitrided Low-Carbon Steel
NASA Astrophysics Data System (ADS)
Kanchanomai, C.; Limtrakarn, W.
2008-12-01
The effect of residual stress on fatigue behavior and mechanisms of carbonitrided AISI 1015 steel under uniaxial cyclic loading has been experimentally studied. By progressive removal of thin surface layers using an electropolishing technique and subsequent residual stress measurements using an x-ray diffraction technique, the compressive residual stress at the surface was approximately 900 MPa. The stress decreased toward the center, and became stable tensile residual stress of approximately 20 MPa. The fatigue resistance of carbonitrided AISI 1015 steel was higher than that of AISI 1015 steel due to the presence of compressive residual stress in case layer. The fatigue limit of AISI 1015 steels with and without carbonitriding was 340 and 300 MPa, respectively. Subsurface cracks initiated at the case-core interface, i.e. approximately 400 μm from the surface. With increasing number of stress cycles, the subsurface cracks coalesced and propagated intergranularly through the case layer. After some incubation cycles, the subsurface cracks reached the surface of specimen, and became a main crack. During this stage, the stress increased, and caused the formation of voids in core material. Consequently, the crack propagated through the core material, interacted with voids, and caused complete fracture.
Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon
NASA Technical Reports Server (NTRS)
Ray, Sujit K.; Utku, Senol
1990-01-01
Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.
Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Luo, W.; Selvadurai, U.; Tillmann, W.
2016-01-01
The wear resistance of thermal spray coatings mainly depends on coating properties such as the microstructure, hardness, and porosity, as well as on the residual stress in the coating. The residual stress is induced by a variety of influences e.g., temperature gradients, difference of the thermal expansion coefficient of the coating/substrate materials, and the geometry of the components. To investigate the residual stress, the impulse excitation technique was employed to measure the Young's and shear moduli. The residual stress was determined by the hole-drilling method and x-ray diffraction. Pin-on-Disk and Pin-on-Tube tests were used to investigate the wear behavior. After the wear tests, the wear volume was measured by means of a 3D-profilometer. The results show that the value of the residual stress can be modified by varying the coating thickness and the substrate geometry. The compressive stress in the HVOF-sprayed WC-Co coatings has a significant positive influence on the wear resistance whereas the tensile stress has a negative effect.
A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress
Ko, S. H. Jhang, Hogun; Singh, R.
2015-08-15
We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.
Residual stresses in welded plates
NASA Technical Reports Server (NTRS)
Bernstein, Edward L.
1994-01-01
The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.
Fiber-matrix interface effects in the presence of thermally induced residual stresses
Nimmer, R.P. )
1990-01-01
The mechanics of transversely loaded high-temperature composites with a thermally induced residual stress field and a vanishingly weak fiber-matrix interface strength was investigated using two analytical models. In particular, the effects of several physical properties defining the performance of the constituent fiber, matrix, and interface are examined relative to their effect on composite's behavior. Both models demonstrate that, if there is a thermally induced residual stress field in the composite, the initial transverse modulus for the composite will be the same regardless of whether there is a well-bonded or an unbonded interface. 10 refs.
NASA Astrophysics Data System (ADS)
Iyota, M.; Mikami, Y.; Hashimoto, T.; Taniguchi, K.; Ikeda, R.; Mochizuki, M.
2012-08-01
This study examines the effect of the electrode force condition on the nugget diameter and residual stress in spot welded high-strength steel sheets. Numerical simulations of spot welding were performed to examine the nugget diameter and residual stress. The results indicate that adjusting the force profile changes the current density and stress state at the spot welds. Therefore, choosing an appropriate force profile extends the nugget diameter and reduces the residual stress.
The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters
Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre
2013-08-01
With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.
Residual stresses in material processing
Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.
1994-09-01
Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.
Arc-discharge effects on residual stress and refractive index in single-mode optical fibers.
Wang, Pengfei; Jenkins, Micah H; Gaylord, Thomas K
2016-03-20
Arc-discharge effects on the residual stress and refractive index in single-mode optical fibers are investigated using a previously developed three-dimensional concurrent stress-index measurement method. Using commercial optical fibers and a commercial fusion splicer, the residual stress and refractive index perturbations caused by weak electrical arc discharges in single-mode fibers were measured. Refractive index changes greater than 10^{-4} and longitudinal perturbation lengths of less than 500 μm were shown to be possible. The subsequent prospects for arc-induced long-period fiber gratings are analyzed, and a typical transmission resonance is predicted to have a depth of 56 dB and a bandwidth of 0.08 nm at a wavelength of 1585 nm. The results of this investigation will be useful in modeling device performance and optimization of arc-induced long-period fiber grating fabrication. PMID:27140587
The effect of microstructure on residual-stress development in short-fiber composites
Eduljee, R.F.
1991-01-01
The aim of this study was the identification of the key processing and microstructural parameters that affect thermal residual stresses through a series of parametric analyses on an infinite-plate geometry. In these analyses polycarbonate was chosen as a representative amorphous resin while polyetheretherketone (PEEK) was used as an example of a semicrystalline resin. The residual stress model of Indenbom was used to investigate residual stresses in amorphous polymers. Due to the inapplicability of this model to semicrystalline polymers and composites where the material properties varied through the thickness of the specimen, a residual stress model based on incremental stress analysis was developed. The parametric analyses on the neat polymers showed that the thermal history and the thermoelastic properties played major roles in the residual stress development in both amorphous and semicrystalline polymers. Crystallization increased the level of residual stresses. The mechanisms for this increase are discussed.
The effect of focused ion beam machining on residual stress and crack morphologies in alumina
NASA Astrophysics Data System (ADS)
Inkson, B. J.; Leclere, D.; Elfallagh, F.; Derby, B.
2006-02-01
Focused ion beams (FIB) are widely used to locally sputter away material from surfaces at the nanoscale, but the effect of localised geometry changes and surface damage generated by FIB processing on material stress states are poorly understood. Evolution of stress states has been investigated in alumina samples with high local residual stress concentrations around nanoindents and scratches. Crack morphologies under the nanoindents and scratches have been investigated with respect to the location and geometry of the 'cross-sectional' surface trenches machined by FIB. It is found that the density of cracks observed around the nanoindentation sites depends on the location and milling sequence of the cross-sectional FIB trenches which alter local stress states. Cr3+ fluorescence spectroscopy has additionally been used to map stresses around alumina scratch and FIB-machined surface trenches.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.
2015-01-01
Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.
NASA Astrophysics Data System (ADS)
Tang, Dapei
2015-07-01
A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.
Effects of WC size and amount on the thermal residual stress in WC–Ni composites
Seol, K.; Krawitz, A. D.; Richardson, J. W.; Weisbrook, C. M.
2005-05-01
We studied the effects of WC particle size and volume fraction on the magnitude and distribution of thermal residual stresses (TRS) in WC–Ni cemented carbide composites by neutron powder diffraction. Samples of high (0.3) and low (0.1) Ni volume fraction and coarse (1.7 m) and fine (0.5 m) WC particle size were employed. Thermal residual strain and stress values were obtained at temperatures between 100 and 900 K. Moreover, the magnitude of the mean (compressive) WC stress increased as WC fraction decreased, while the mean (tensile) Ni stress did the opposite. For both phases, stresses were highest for fine WC particles, reaching over 3 GPa in Ni. Elastic strain distributions, due to the sharp edges and corners of WC particles, were characterized by analyzing diffraction peak widths. The range of stress increased with the magnitude of the TRS. Even though the mean TRS is compressive in WC, regions of tension exist, and, for Ni, regions of compression are present.
The effects of machine parameters on residual stress determined using micro-Raman spectroscopy
Sparks, R.G.; Enloe, W.S.; Paesler, M.A.
1988-12-01
The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.
The effect of cutting speed on residual stresses when orthogonal cutting TC4
NASA Astrophysics Data System (ADS)
Liu, Chaofeng; Wang, Zengqiang; Zhang, Guang; Liu, Lei
2015-09-01
As one of the most important parameters in mental cutting, cutting speed has a significant influence on residual stress. Finite element method and experiment method are used to study the relationship between cutting speed and residual stress when orthogonal cutting TC4 titanium alloy. The result of simulation and experiment shows that: when the cutting speed is low, the residual stress in axial direction is compressive stress and gradually converts to tensile stress with the increase of cutting speed, but it will convert to compressive stress again if the cutting speed continues to increase; the residual stress in tangential direction is constant to compressive stress and it will decrease with the increase of cutting speed.
Piezoresistive Effect for Near-Surface Eddy Current Residual Stress Assessment
Yu, F.; Nagy, P.B.
2005-04-09
This paper discusses the relationship between isothermal and adiabatic piezoresistive properties of metals. The piezoresistive effect, i.e., stress-dependence of the electrical resistivity, can be exploited for nondestructive residual stress assessment using eddy current measurements. First, the paper establishes the relationship between the familiar isothermal piezoresistivity coefficients measured under uniaxial tension and hydrostatic pressure and the relevant isothermal electroelastic coefficients measured under uniaxial and biaxial stress conditions either by non-directional circular or directional elliptical eddy current coils. In order to quantitatively assess the prevailing residual stress from eddy current conductivity measurements, the electroelastic coefficients must be first determined. These calibration measurements are usually conducted on a reference specimen of the material to be tested using cyclic uniaxial loads between 0.1 and 10 Hz, which is fast enough to produce adiabatic conditions. It is demonstrated that in high-conductivity metals such calibration measurements must be corrected for the thermoelastic effect, which is always positive, i.e., it increases the conductivity in tension, when the material cools down, and reduces it in compression, when the material heats up.
Effect of residual stress on modal patterns of MEMS vibratory gyroscope
NASA Astrophysics Data System (ADS)
Dutta, Shankar; Panchal, Abha; Kumar, Manoj; Pal, Ramjay; Bhan, R. K.
2016-04-01
Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 - 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.
Thermal residual stresses and their toughening effect in Al{sub 2}O{sub 3} platelet reinforced glass
Todd, R.I.; Sinclair, R.; Yallee, R.B.; Young, R.J.; Boccaccini, A.R.
1999-09-08
Fluorescence spectroscopy has been used to measure the thermal residual stresses in Al{sub 2}O{sub 3}-platelet/borosilicate glass composites. Tensile residual stresses were found in the platelets, implying the presence of compressive residual stresses in the glass matrix. Measurements of stresses in the bulk of the composite could be obtained using fluorescence from platelets below the specimen surface. The measured stresses lay between the predictions of models for spherical particles and thin platelets, but were closer to the former for the range of platelet contents investigated (5--30 vol.%). Estimates of the increase in toughness associated with the compressive residual stresses in the matrix suggest that this mechanism makes a significant contribution to the toughening effect of the Al{sub 2}O{sub 3} platelets.
The effect of residual stress on performance of high temperature coatings
NASA Technical Reports Server (NTRS)
1972-01-01
Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.
Residual stress patterns in steel welds
Spooner, S.; Hubbard, C.R.; Wang, X.L.; David, S.A.; Holden, T.M.; Root, J.H.; Swainson, I.
1994-12-31
Neutron strain scanning of residual stress is a valuable nondestructive tool for evaluation of residual stress in welds. The penetrating characteristic of neutrons permits mapping of strain patterns with a spatial resolution approaching 1mm at depths of 20mm in steels. While the overall patterns of the residual stress tensor in a weld are understood, the detailed patterns depend on welding process parameters and the effects of solid state transformation. The residual strain profiles in two multi-pass austenitic welds and a ferritic steel weld are presented. The stress-free lattice parameters within the fusion zone and the adjacent heat affected zone in the two austenitic welds show that the interpretation of residual stress from strains are affected by welding parameters. An interpretation of the residual strain pattern in the ferritic steel plate can be made using the strain measurements of a Gleeble test bar which has undergone the solid state austenite decomposition.
NASA Astrophysics Data System (ADS)
Rhouma, A. Ben; Sidhom, H.; Braham, C.; Lédion, J.; Fitzpatrick, M. E.
2001-10-01
Surface finishing treatments such as shot blasting and wire brushing can be beneficial in improving the integrity of machined surfaces of austenitic stainless steels. These operations optimize in-service properties such as resistance to pitting corrosion and stress corrosion cracking (SCC). In this study, ground steel surfaces were subjected to a series of sand blasting and wire brushing treatments. The surfaces were then characterized by their hardness, surface residual stress state, and resistance to stress corrosion and pitting corrosion. Some samples were selected for depth profiling of residual stress. It is found that surface hardening and the generation of near-surface compressive residual stress are the benefits that can be introduced by sand blasting and brushing operations.
Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6
NASA Astrophysics Data System (ADS)
Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.
2016-02-01
The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.
Longitudinal residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1976-01-01
A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.
Axial residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1978-01-01
The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.
NASA Astrophysics Data System (ADS)
Lados, Diana A.; Apelian, Diran
2006-01-01
The fatigue crack growth (FCG) behavior of various types of alloys is significantly affected by the presence of residual stress induced by manufacturing and post-manufacturing processes. There is a qualitative understanding of the effects of residual stress on fatigue behavior, but the effects are not comprehensively quantified or accounted for. The difficulty in quantifying these effects is largely due to the complexity of residual-stress measurements (especially considering that parts produced in similar conditions can have different residual-stress levels) and the lack of mathematical models able to convert experimental data with residual stress into residual-stress-free data. This article provides experimental, testing, and mathematical techniques to account for residual-stress effects on crack growth rate data, together with two methods for eliminating residual stresses in crack growth test specimens. Fracture-mechanics concepts are used to calculate, in simple and convenient ways, stress-intensity factors caused by residual stresses. The method is advantageous, considering that stress-intensity factors are determined before the actual test is conducted. Further on, residual-stress-intensity factors are used to predict the residual-stress distribution in compact tension (CT) specimens prior to testing. Five cast Al-Si-Mg alloys with three Si levels (in unmodified (UM) as well as Sr-modified (M) conditions) were analyzed both with and without residual stress. Fatigue cracks are grown under both constant stress ratio, R=0.1, and constant maximum stress-intensity factor, K max = const., conditions. The mechanisms involved in crack growth through residual-stress fields are presented.
Effects of ion irradiation on the residual stresses in Cr thin films
NASA Astrophysics Data System (ADS)
Misra, A.; Fayeulle, S.; Kung, H.; Mitchell, T. E.; Nastasi, M.
1998-08-01
Cr films sputtered onto {100} Si substrates at room temperature were found to be under residual tension, as revealed by wafer curvature measurements. A 150 nm thick Cr film was bombarded with 300 keV Ar ions after deposition. The intrinsic residual tensile stress increased slightly and then decreased with further increase in the ion dose. For ion doses >1×1015ions/cm2, the stress in the film became compressive and increased with increasing dose. Transmission electron microscopy revealed that the grain boundaries in as-deposited Cr have columnar porosity. A Cr film, ion irradiated to a dose of 5×1015ions/cm2, showed no grain boundary porosity. The changes in the residual stress during ion irradiation are explained by considering Ar incorporation in the film and the manner in which irradiation may change the interatomic distances and forces.
NASA Astrophysics Data System (ADS)
Ranjbar-Far, M.; Absi, J.; Mariaux, G.; Shahidi, S.
2010-09-01
This work is focused on the effect of the residual stresses resulting from the coating process and thermal cycling on the failure mechanisms within the thermal barrier coating (TBC) system. To reach this objective, we studied the effect of the substrate preheating and cooling rate on the coating process conditions. A new thermomechanical finite element model (FEM) considering a nonhomogeneous temperature distribution has been developed. In the results, we observed a critical stress corresponding to a low substrate temperature and high cooling rate during spraying of the top-coat material. Moreover, the analysis of the stress distribution after service shows that more critical stresses are obtained in the case where residual stresses are taken into account.
NASA Astrophysics Data System (ADS)
Ahmad, Bilal; Fitzpatrick, Michael E.
2015-03-01
Specimens of DH36 marine steel were prepared with welded attachments. Residual stress measurements were made on the samples as-welded, following an ultrasonic peening treatment, and following accelerated corrosion exposure after ultrasonic peening. Neutron diffraction and the contour method were used for determining the residual stress profiles. The welding introduces tensile near-surface residual stress, approaching the material yield strength, and the ultrasonic peening overlays this with a compressive residual stress. Material removal by corrosion decreases the peak surface compressive stress slightly, by removal of a layer of stressed material, but does not cause significant redistribution of the residual stress profile.
NASA Astrophysics Data System (ADS)
Aalami-Aleagha, M. E.; Feli, S.; Foroutan, M.; Borzabadyfarahany, E.
2011-01-01
This study is involved on modeling a standard welding procedure specification (SWPS) for a multi pass weld of pipes, and the effect of increase in electrode velocity on thermal cycle and induced residual stress have been investigated. A double ellipsoidal model for weld heat source density and an appropriate coordinate system with a rotation around the pipe is adopted to simulate properly the sequence of weld properly. A 3D finite element analysis (FEA) is carried out using a commercial code and the validation of the model is confirmed by previous works. Temperature-dependent thermo-mechanical behavior for material properties and birth and death technique for elements of deposited filler layer are employed to model the weld. By a thermal analysis and uncouple residual stress the peak temperature, cooling rate, weld pool geometry and induced residual stress in heat affected zone (HAZ) are evaluated. The results indicate that peak temperatures against the time reasonably follows the sequence of weld and by increasing electrode velocity, the value of peak temperatures in a certain point of HAZ is reduced. The final hoop residual stress pattern for points underlying in HAZ influenced by the rise in electrode velocity, however the axial residual stress seems to be more influenced.
NASA Astrophysics Data System (ADS)
Li, Zhichao; Ferguson, B. Lynn; Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Fett, Greg
2014-12-01
Computer simulation is used to predict the residual stresses and distortion of a full-float truck axle shaft that has been induction scan hardened. Flux2D® is used to model the electromagnetic behavior and the power distributions inside the axle shaft in terms of time. The power distributions are imported and mapped into DANTE® model for thermal, phase transformation, and stress analysis. The truck axle shaft has three main geometrical regions: the flange/filet, the shaft, and the spline. Both induction heating and spray quenching processes have significant effect on the quenching results: distortion and residual stress distributions. In this study, the effects of spray quenching severity on residual stresses and distortion are investigated using modeling. The spray quenching rate can be adjusted by spray nozzle design, ratio of polymer solution, and quenchant flow rate. Different quenching rates are modeled by assigning different heat transfer coefficients as thermal boundary conditions during spray quenching. In this paper, three heat transfer coefficients, 5, 12, and 25 kW/(m2 °C), are applied while keeping all other conditions constant. With the understanding of effects of heating and quenching on residual stresses and distortion of induction hardened parts, the induction hardening process can be optimized for improved part performance.
NASA Astrophysics Data System (ADS)
Abbas, Musharaf; Hasham, Hasan Junaid; Baig, Yasir
2016-02-01
Numerical-based finite element investigation has been conducted to explain the effect of bond coat thickness on stress distribution in traditional and nanostructured yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBC). Stress components have been determined to quantitatively analyze the mechanical response of both kinds of coatings under the thermal shock effect. It has been found that maximum radial tensile and compressive stresses that exist at thermally grown oxide (TGO)/bond coat interface and within TGO respectively decrease with an increase in bond coat thickness. Effect of bond coat thickness on axial tensile stresses is not significant. However, axial compressive stresses that exist at the edge of the specimen near bond coat/substrate interface decrease appreciably with the increase in bond coat thickness. Residual stress profile as a function of bond coat thickness is further explained for comparative analysis of both coatings to draw some useful conclusions helpful in failure studies of TBCs.
NASA Astrophysics Data System (ADS)
Chen, Q.; Mao, W. G.; Zhou, Y. C.; Lu, C.
2010-09-01
Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2O 3-stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.
NASA Astrophysics Data System (ADS)
Rubio-González, C.; Gomez-Rosas, G.; Ocaña, J. L.; Molpeceres, C.; Banderas, A.; Porro, J.; Morales, M.
2006-07-01
Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm 2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy.
Effect of residual stresses induced by prestressing on rolling element fatigue life
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1972-01-01
A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.
Residual stress measurements in carbon steel
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Min, N.
1986-01-01
External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.
NASA Astrophysics Data System (ADS)
Askar, Shadid; Torkelson, John
2015-03-01
The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Lu, J. Z.; Zhang, Y. K.; Wen, D. P.; Ren, X. D.; Zhou, J. Z.
2014-10-01
Laser shock processing (LSP) is a unique surface treatment technique. It induces high-depth compressive residual stresses for improved fatigue or stress corrosion cracking resistance. FEM simulation is an effective method to predict material behavior by LSP. A 2D quarter-infinite model was used to simulate the material behaviors of commercially pure Al by LSP. Different peak pressure with different laser spot diameter was applied to surface of pure Al. Each simulation included two steps: (i) explicit dynamics analysis for the analysis of the LSP; (ii) static equilibrium analysis for springback deformation analysis. The following conclusions could be made: (1) Plastically affected depth increased with the increase of laser spot diameter. There was an ultimate value about plastically affected depth when the laser spot diameter increased to some value, and the ultimate value was consistent with Ballard' model. When the laser spot diameter was small, there still existed tensile residual stresses on the surface layer of material although the peak pressure was below 2.5 HEL. When the diameter laser spot diameter was big enough, the tensile residual stresses on the surface layer of material were converted into compressive residual stresses although the peak pressure was higher than 2.5 HEL.
NASA Technical Reports Server (NTRS)
Bagg, Stacey D.; Sochalski-Kolbus, Lindsay M.; Bunn, Jeffrey R.
2016-01-01
The NASA Marshall Space Flight Center (MSFC) is developing Additive Manufacturing (AM) - both in-space AM for on-demand parts, tools, or structures, and on-earth AM for rapid, reduced-cost, small volume production of complex space-flight hardware. Selective Laser Melting (SLM) is an on-earth AM technology that MSFC is using to build Alloy 718 rocket engine components. An understanding of the SLM-718 material properties is required to design, build, and qualify these components for space flight. Residual stresses and are of particular interest for this AM process, since SLM is a series of approximately 100 micron-wide welds, where highly non-linear heating and cooling, severe thermal gradients and repeated thermal cycling can result in high residual stresses within the component. These stresses may cause degraded material properties, and warp or distort the geometry of the SLM component. The distortions can render the component out-of-tolerance when inspected, and even interrupt or halt the build process if the warped material prevents the SLM machine from operating properly. The component must be scrapped and re-designed, which is time consuming and costly. If residual stresses are better understood, and can be predicted, these effects can be mitigated early in the component's design. the compressive residual stresses in the z-direction were highest in the chess sample, followed by island then continuous. This may be due to the binding nature of the segments
PUFF TOO: a residual stress experiment
Smith, C.W.
1980-04-01
Following the passage of the dynamic effects in a contained explosive detonation, there remains a strong compressive stress field in the material about the cavity. In this experiment, a 454-kg (1000 lb) sphere of high explosive was detonated in saturated ashfall tuff. Instrumentation measured peak stresses over the range of 0.1 to 6.0 GPa (1 to 6 kbar) and the complete stress-time waveform, including the so-called residual stress, at the 0.1 GPa (1 kbar) peak stress range. Mineback revealed detonation-induced fractures and fractures induced by postevent work.
NASA Astrophysics Data System (ADS)
Ulutan, Durul
2013-01-01
In the aerospace industry, titanium and nickel-based alloys are frequently used for critical structural components, especially due to their higher strength at both low and high temperatures, and higher wear and chemical degradation resistance. However, because of their unfavorable thermal properties, deformation and friction-induced microstructural changes prevent the end products from having good surface integrity properties. In addition to surface roughness, microhardness changes, and microstructural alterations, the machining-induced residual stress profiles of titanium and nickel-based alloys contribute in the surface integrity of these products. Therefore, it is essential to create a comprehensive method that predicts the residual stress outcomes of machining processes, and understand how machining parameters (cutting speed, uncut chip thickness, depth of cut, etc.) or tool parameters (tool rake angle, cutting edge radius, tool material/coating, etc.) affect the machining-induced residual stresses. Since experiments involve a certain amount of error in measurements, physics-based simulation experiments should also involve an uncertainty in the predicted values, and a rich set of simulation experiments are utilized to create expected value and variance for predictions. As the first part of this research, a method to determine the friction coefficients during machining from practical experiments was introduced. Using these friction coefficients, finite element-based simulation experiments were utilized to determine flow stress characteristics of materials and then to predict the machining-induced forces and residual stresses, and the results were validated using the experimental findings. A sensitivity analysis on the numerical parameters was conducted to understand the effect of changing physical and numerical parameters, increasing the confidence on the selected parameters, and the effect of machining parameters on machining-induced forces and residual
RESIDUAL STRESSES IN 3013 CONTAINERS
Mickalonis, J.; Dunn, K.
2009-11-10
The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.
NASA Astrophysics Data System (ADS)
Luo, Bing-Chi; Li, Kai; Zhang, Ji-Qiang; Luo, Jiang-Shan; Wu, Wei-Dong; Tang, Yong-Jian
2016-02-01
The residual stress in beryllium films fabricated on K9 substrates by using magnetron sputtering deposition is measured by using a curvature method and is theoretically estimated by using the Nix and Clemens (NC) model. The experimental results indicate that the 1.3-μm-thick film is always in a tensile state for pressure variations in the range from 0.4 to 1.2 Pa. When the sputtering gas pressure is increased, the average stress increases at first, after which it decreases by a remarkable amount. The observed descending trend of the tensile stress when the sputtering gas pressure is beyond 0.6 Pa is mainly attributed to the grain size in the film being larger than that in the film when the pressure is below 0.6 Pa. The maximal residual stress of 552 MPa at a sputtering gas pressure of 0.6 Pa is close to the tensile strength (550 MPa) of the corresponding beryllium bulk material and is about 8 times smaller than that calculated by using the N-C model. In addition, the surface morphologies of the as-fabricated films reveal fibrous grains while the cross-sectional morphologies are characterized by a coarsening of columnar grains. The measured electric resistivity of each film strongly depends on its porosity and the sizes of its grains.
NASA Astrophysics Data System (ADS)
Zhu, JianGuo; Chen, Wei; Xie, HuiMin
2015-03-01
Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.
Bushko, W.C.; Stokes, V.K.
1995-12-31
The solidification of a molten layer of amorphous thermoplastic between cooled parallel plates is used to model the mechanics of part shrinkage and the buildup of residual stresses in the injection-molding process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The model allows material to be added to fill the space created by the pressure applied during solidification, so that this model can be used to assess packing-pressure effects in injection molding. The interactions between the mold surfaces and the solidifying material are accounted for by modeling different types of constraints through different model boundary conditions. For several different sets of boundary conditions, parametric results are presented on the effects of the packing pressure-the pressure applied during solidification to counteract the effects of volumetric shrinkage of the thermoplastic--on the in-plane and through-thickness shrinkages, and on residual stresses in plaque-like geometries. Plaques that can shrink in the in-plane direction while in the mold are shown to shrink more and to have higher residual stresses than plaques that are fully constrained while in the mold. Although the results are presented in terms of normalized variables based on the properties of bisphenol-A polycarbonate, they can be interpreted for other amorphous thermoplastics such as modified polyphenylene oxide, polyetherimide, and acrylonitrile-butadiene-styrene.
Residual stress depth profiles of ausrolled 9310 gear steel
Paliani, C.M.; Queeney, R.A.; Kozaczek, K.J.
1995-12-31
Residual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 MPa, when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.
Huang, C.C.; Chuang, T.H.; Pan, Y.C.
1997-02-01
The distribution of the residual stresses of electron beam welded SAE 4130 and the effect of stress relief after various post-weld heat treatments (PWHT) were measured using X-ray diffraction. The mechanical properties and microstructure were also examined. Experimental results show that the tensile residual stress increased with the heat input of the electron beam. Most of the residual stresses were relieved by the PWHT at 530 C for 2 h followed by furnace cooling to 50 C. The strength of the welds decreased slightly, and the elongation of the welds increased after PWHT.
NASA Astrophysics Data System (ADS)
Huang, C. C.; Pan, Y. C.; Chuang, T. H.
1997-02-01
The distribution of the residual stresses of electron beam welded SAE 4130 and the effect of stress relief after various post- weld heat treatments (PWHT) were measured using X- ray diffraction. The mechanical properties and microstructure were also examined. Experimental results show that the tensile residual stress increased with the heat input of the electron beam. Most of the residual stresses were relieved by the PWHT at 530 °C for 2 h followed by furnace cooling to 50 °C. The strength of the welds decreased slightly, and the elongation of the welds increased after PWHT.
NASA Astrophysics Data System (ADS)
Probotinanto, Yosafat C.; Raharjo, Wijang W.; Budiana, Eko P.
2016-03-01
Residual stress has great influence on the mechanical properties of polymer composites. Therefore, its formation during the manufacturing process needs to be investigated. The aim of this study is to investigate the influences of cooling rate on the residual stress distribution of the cantala/rHDPE composite by simulation. The simulation was done by using a SOLID227 element type of ANSYS. The cooling rates that used in this study are 0.5°C/minute, 1°C/minute, and 60°C/minute. The values of the residual stress correspond to the increasing of the cooling rate are 1171.31 kPa, 1171.42 kPa, 1172.36 kPa. In the radial direction, the residual stress was tensile inside the fibers, while in the longitudinal direction, the tensile residual stress occurred in the matrix zones and compressive in the fiber zones.
NASA Astrophysics Data System (ADS)
Won, Yoo Jai; Ki, Hyungson
2014-08-01
We have studied, for the first time, the effect of continuously-varying film gradient profiles on the adhesion strength, residual stress, and effective film hardness of diamond-like carbon (DLC) films deposited on stainless steel substrates. Precisely graded DLC films with five polynomial profiles (linear, quadratic, cubic, square root and cubic root profiles) were investigated and compared with pure DLC films, and it was shown that by optimizing the film gradient profile the residual stress and adhesion characteristics can be significantly improved but the effective film hardness can be negatively affected.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei; Ge, Zhiqiang
2016-02-01
New ferritic P92 steel is widely used in modern power plants due to its good combination of mechanical and physical properties. However, cracks are often formed in the welded sections during the fabrication or service. In order to ensure the structure integrity, the effects of residual stresses need to be considered. The objective of this paper is to investigate the influence of arc travelling speed and welding sequences on the residual stresses distribution in the welded sections of P92 pipes by finite element method (FEM). Results show that arc travelling speed and welding sequences have great effects on residual stresses distribution. With the arc travelling speed increasing, the residual stresses increase. Meanwhile, welding sequences of case B present smaller residual stresses and more symmetrical distribution of residual stresses at the weld centre line. Therefore, using slower arc travelling speed and case B welding sequences can be useful to decrease the residual stresses, which provides a reference for optimizing the welding technology and improving the fabrication process of new ferritic P92 welded pipes with small diameter and thick wall.
NASA Astrophysics Data System (ADS)
De la Rosa, Claudia E. Flores; Trejo, Martin Herrera; Román, Manuel Castro; López, Eddy Alfaro
2016-07-01
The shot peening is used in the leaf springs manufacturing process for producing a compressive residual stress field (CRSF) at and near the surface that improves the fatigue resistance. The resulting CRSF is influenced by the surface ferrite thickness associated with the decarburization. Hence, this work aims to extend the knowledge on the influence of the decarburization on the CRSF for the given shot peening conditions. A study on the laboratory scale was conducted for an SAE 5160 steel grade used in the automotive industry. Next, specimens with different decarburization depths were treated using industrial shot peening, and the resulting CRSF was characterized. The CRSF was found to be influenced by the decarburization depth. It is assumed that the elastic deformation mechanism is predominant at low decarburization depths, followed by a zone in which both the elastic and plastic deformation have competing mechanisms that contribute to the CRSF, and at higher decarburization depths, the dominant mechanism is plastic deformation. The values for σsrs and σmcrs decrease as the decarburized depth increases, and suitable CRSFs were obtained below a decarburization depth of 120 µm in industrial leaves. Furthermore, the prediction based on expressions correlating the measured variables was good in these leaves.
NASA Astrophysics Data System (ADS)
De la Rosa, Claudia E. Flores; Trejo, Martin Herrera; Román, Manuel Castro; López, Eddy Alfaro
2016-05-01
The shot peening is used in the leaf springs manufacturing process for producing a compressive residual stress field (CRSF) at and near the surface that improves the fatigue resistance. The resulting CRSF is influenced by the surface ferrite thickness associated with the decarburization. Hence, this work aims to extend the knowledge on the influence of the decarburization on the CRSF for the given shot peening conditions. A study on the laboratory scale was conducted for an SAE 5160 steel grade used in the automotive industry. Next, specimens with different decarburization depths were treated using industrial shot peening, and the resulting CRSF was characterized. The CRSF was found to be influenced by the decarburization depth. It is assumed that the elastic deformation mechanism is predominant at low decarburization depths, followed by a zone in which both the elastic and plastic deformation have competing mechanisms that contribute to the CRSF, and at higher decarburization depths, the dominant mechanism is plastic deformation. The values for σsrs and σmcrs decrease as the decarburized depth increases, and suitable CRSFs were obtained below a decarburization depth of 120 µm in industrial leaves. Furthermore, the prediction based on expressions correlating the measured variables was good in these leaves.
Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2001-01-01
This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.
NASA Astrophysics Data System (ADS)
Taskonak, Burak
Bilayer dental ceramic composites used for fixed partial dentures are becoming more widely used in dental practices because of their biocompatibility, aesthetic properties, and chemical durability. However, large statistical variations in the strength of ceramics are associated with the structural flaws as a result of processing and complex stress states within the surfaces of the materials because of thermal properties of each layer. In addition, partial delaminations of the veneer layer and connector fractures of bilayer ceramic fixed partial dentures (FPDs) have been observed in a clinical study which is a part of this dissertation. Analysis of fracture surfaces of failed FPDs reveals that such fractures of the veneering ceramic are most likely caused by lateral crack growth. Global residual stresses associated with the coefficient of thermal expansion differences between core and veneering ceramics can cause lateral crack initiation. Also, rapid cooling of bilayer ceramics from the sintering temperature of the glass veneer may not allow the interfacial stresses in the viscoelastic glass to relax to equilibrium values. This can further contribute to the propagation of lateral cracks. Furthermore, local residual stresses that develop in the plastic deformation zone below sharp contact areas on the occlusal surface are another contributor to lateral crack growth. Superposition of global residual stresses and a Boussinesq stress field can incrementally increase the possibility of lateral crack growth. The long-range goals of this study are to critically analyze the lateral crack growth mechanisms associated with residual stresses, to modify residual tensile stress distributions by controlled heat treatment, and to minimize the probability of veneering ceramic fractures. Four approaches were used to accomplish these goals: (1) clinical evaluation of a bilayer ceramic fixed partial denture system; (2) fracture surface analysis of clinically failed FPDs; (3
Residual stress determination from a laser-based curvature measurement
W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright
2000-05-08
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Residual Stress Determination from a Laser-Based Curvature Measurement
Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil
2000-05-01
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
NASA Technical Reports Server (NTRS)
Gayda, John
2001-01-01
This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.
A Benchmark Study on Casting Residual Stress
Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.
2012-01-01
Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast
Unnikrishnan, Rahul; Idury, K.S.N. Satish; Ismail, T.P.; Bhadauria, Alok; Shekhawat, S.K.; Khatirkar, Rajesh K.; Sapate, Sanjay G.
2014-07-01
Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual
Residual stress measurement in YBCO thin films.
Cheon, J. H.; Singh, J. P.
2002-05-13
Residual stress in YBCO films on Ag and Hastelloy C substrates was determined by using 3-D optical interferometry and laser scanning to measure the change in curvature radius before and after film deposition. The residual stress was obtained by appropriate analysis of curvature measurements. Consistent with residual thermal stress calculations based on the thermal expansion coefficient mismatch between the substrates and YBCO film, the measured residual stress in the YBCO film on Hastelloy C substrate was tensile, while it was compressive on the Ag substrate. The stress values measured by the two techniques were generally in good agreement, suggesting that optical interferometry and laser scanning have promise for measuring residual stresses in thin films.
Lamination residual stresses in fiber composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1975-01-01
An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.
NASA Astrophysics Data System (ADS)
Bottoli, Federico; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A. J.
2016-08-01
The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed ( ɛ eq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa's in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.
NASA Astrophysics Data System (ADS)
Baghani, Amir; Davami, Parviz; Varahram, Naser; Shabani, Mohsen Ostad
2014-06-01
In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that the mold constraints have a greater effect on the values of residual stress than the cooling rate (thin section) in steel sand casting. Increasing the cooling rate would increase the amount of residual stress, only in the presence of mold constraints. It is also suggested that employing the elastic-plastic stress model for the sand mold will satisfy the experimental results and avoid exaggerated values of residual stress in simulation.
Residual stress in spin-cast polyurethane thin films
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zhang, Li
2015-01-01
Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.
Residual stress in spin-cast polyurethane thin films
Zhang, Hong; Zhang, Li
2015-01-19
Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
Low-field magnetoacoustic residual stress measurement in steel
NASA Technical Reports Server (NTRS)
Namkung, M.; Utrata, D.; Heyman, J. S.; Allison, S. G.
1987-01-01
Much of the recent development of the magnetoacoustic technique has been devoted to refine this technique as a reliable and practical tool for measuring bulk residual stress in steel components. For this, the effects of structural and metallurgical properties on the magnetoacoustic interaction have been studied for various types of steel samples. Also, progress is being made to obtain quantitative residual stress measurements in railroad wheels. This paper reviews the physical basis and the experimental results of the magnetoacoustic stress measurements in steels.
Residual Stress Measurement Using Rectangular Spiral Coils
NASA Astrophysics Data System (ADS)
Sun, Haiyan; Plotnikov, Yuri
2008-02-01
Shot peening process provides compressive residual stress within a depth of about 150˜200 um from the surface. It has been demonstrated that multi-frequency eddy current measurement can be effectively used for the residual stress estimation on Ni-based superalloys. In order to measure the stress profile over the entire compressive zone, the probe needs to work in a wide frequency range from 0.1 MHz to above 50 MHz. Due to its wide bandwidth and high precision fabrication process, spiral coils fabricated on flexible substrate using photolithographic technology are good candidate for this task It is useful to develop a coil model in order to optimize coil design, minimize liftoff effect and maximize coil gauge factor. In this work, a 3D analytical model was used to simulate rectangular spiral coil response on a half-space conductor. The results were compared with commercial available 3D finite element software and experimental results. The analytical model was also used to simulate 4-point calibration process that was used to calculate apparent eddy current conductivity (AECC). The experimental setup was described and AECC profile was obtained for shot-peening samples with different peening intensity and different heat treatment.
Residue stress analysis of molding aspherical plastic lens
NASA Astrophysics Data System (ADS)
Hsu, Ming-Ying; Cheng, Yuan-Chieh; Chang, Shenq-Tsong; Huang, Ting-Ming
2015-09-01
The aspherical plastic lens is widely used in commercial optical products. Warpage and residue stress are two important factors that influence wavefront error. Several investigators have discussed warpage. We propose a methodology to study the effect of residue stress on wavefront error. Mold flow software was adopted to calculate the residue stress in injection processes. Optical software was used to find optical ray paths through the lens. Corresponding Optical Path Different (OPD) in each ray path was simulated by self-developed software. A 50-mm diameter plastic lens was used in this study. The mild- and high-frequency wavefront errors and the stress OPD effect at the injection area were found to be a result of the molding process. The proposed methodology was found to be very suitable for finding the effect of residue stress on wavefront error in plastic lenses.
Residual stresses in injection molded products
NASA Astrophysics Data System (ADS)
Jansen, K. M. B.
2015-12-01
During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature and pressure histories during molding. Precise excimer laser layer removal measurements were performed to verify the predicted residual stress distributions. In addition, detailed shrinkage and warpage measurements on a large series of polymers and for different molding conditions were performed and are shown to compare well with the model predictions.
Effect of substrate temperature on residual stress of ZnO thin films prepared by ion beam deposition
NASA Astrophysics Data System (ADS)
Jeon, Ju-Won; Kim, Myoung; Jang, Lee-Woon; Hoffman, J. L.; Kim, Nam Soo; Lee, In-Hwan
2012-02-01
We have investigated the effect of substrate temperature on micro-structural properties of ZnO thin films prepared by ion beam deposition technique. ZnO thin films were deposited on AlN-buffered Si (111) and sapphire (001) substrates at various substrate temperatures. The structural properties and surface morphologies were examined by high resolution X-ray diffraction (XRD) and field emission scanning electron microscopy, respectively. The RMS roughness was measured by atomic force microscopy. XRD measurements confirmed that the ZnO thin films were grown well on the AlN-buffered Si (111) and sapphire (001) substrates along the c-axis. Minimization of residual stress was carried out by tuning the substrate temperature. The structural properties were notably improved with increasing substrate temperature.
NASA Astrophysics Data System (ADS)
Belhenini, Soufyane; Tougui, Abdellah; Bouchou, Abdelhake; Mohan, Ranganathan; Dosseul, Franck
2014-01-01
Numerous three-dimensional (3D) packaging technologies are currently used for 3D integration. 3D-wafer level package (3D-WLP) appears to be a way to keep increasing the density of the microelectronic components. The reliability of 3D components has to be evaluated on mechanical demonstrators with daisy chains before real production. Numerical modeling is acknowledged as a very efficient tool for design optimization. In this paper, 3D finite-elements calculations are carried out to analyze the effects of molding resin's mechanical properties and thickness on the 3D component's dynamic response under drop loading conditions. Residual stress generated by solder reflow is also discussed. The influences of residual stresses on the numerical estimation of the component behavior during drop loading are studied. Solder reflow residual stresses have an impact on solder plastic strain and die equivalent stress calculations. We have compared the result of two numerical drop test models. Stress-free initial conduction is introduced for the first model. Solder reflow residual stresses are considered as the initial condition for the second drop test model. Quantitative and qualitative comparisons are carried out to show the effect of residual stress in drop test calculations. For the effect of molding resin thickness on the component behavior under drop loading, the stress-free initial condition is considered. The effect of the molding resin's thickness on critical area location is discussed. The solder bump maximum plastic shear strain and the silicon die maximum equivalent stress are used as reliability criteria. Numerical submodeling techniques are used to increase calculation accuracy. Numerical results have contributed to the design optimization of the 3D-WLP component.
Residual Stress Analysis in Thick Uranium Films
Hodge, A M; Foreman, R J; Gallegos, G F
2004-12-06
Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.
NASA Astrophysics Data System (ADS)
Jia, HongSheng; Jia, XiaoPeng; Xu, Yue; Wan, LianRu; Jie, KaiKai; Ma, HongAn
2011-01-01
Polycrystalline diamond compacts (PDC) were synthesized using diamond powder of average crystal size 3-20 μm by the Ni70Mn25Co5 alloy infiltration technique at high temperature and high pressure (HPHT). The surface residual stress of polycrystalline diamond (PCD) layer was measured using micro-Raman spectroscopy with hydrostatic stress model and X-ray diffraction (XRD). Measurements of the stress levels of PCDs show that the residual compressive stresses range from 0.12 to 0.22 GPa, which increase with the crystal size of diamond. Scanning electron microscopy (SEM) was used to observe the morphology of initial diamond grains and PCD cross-section. The results indicate that PCD has a dense and interlaced microstructure with diamond-diamond (D-D) direct bonding. And the smaller the crystal size of diamond, the better the growth of diamond direct bonding and the smaller the binder metal between diamond boundaries will be.
Residual Stresses Modeled in Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.
1998-01-01
Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We
Ultrasonics used to measure residual stress
NASA Technical Reports Server (NTRS)
1967-01-01
Ultrasonic method is used to measure residual stress in metal structures. By using this method, various forms of wave propagation in metals are possible, and more thorough analysis of complex geometric structures may be had.
Sifakakis, Iosif; Eliades, Theodore; Bourauel, Christoph
2015-12-01
The aim of the present study was to compare four different types of fixed canine-to-canine retainer regarding the maximum and residual force system generated on a canine during the intrusive in vitro loading of the rest of the anterior teeth. Retainers constructed from Ortho-FlexTech gold chain 0.038 × 0.016-inch (rectangular, 0.96 × 0.40 mm(²)), Tru-Chrome® 7-strand twisted 0.027-inch (round, 0.68 mm diameter) steel wire, and Wildcat 0.0175-inch (round, 0.44 mm) and 0.0215-inch (round, 0.55 mm) 3-strand Twistflex steel wire bonded on the anterior teeth of an acrylic resin model, installed in the Orthodontic Measurement and Simulation System. The force system on the canine was recorded during the loading of the anterior teeth as well as the residual force system at the same tooth after the unloading. During maximum loading, the gold chain exerted the lowest and the 0.0215-inch archwire the highest force and moment magnitude. Residual forces and moments were exerted on the canine after the unloading in all retainer types, i.e., the evaluated fixed retainers were not passive after in vitro vertical loading. The lowest magnitude was measured in gold chain retainers and the highest in cases of the high formable/low yield strength 0.027-inch archwire. This fact may explain the unexpected movements of teeth bonded on fixed retainers detected long-term in vivo. PMID:26057215
Measurment Of Residual Stress In Ferromagnetic Materials
NASA Technical Reports Server (NTRS)
Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.
1992-01-01
Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.
Residual Stress Predictions in Polycrystalline Alumina
VEDULA,VENKATA R.; GLASS,S. JILL; SAYLOR,DAVID M.; ROHRER,GREGORY S.; CARTER,W. CRAIG; LANGER,STEPHEN A.
1999-12-13
Microstructure-level residual stresses arise in polycrystalline ceramics during processing as a result of thermal expansion anisotropy and crystallographic disorientation across the grain boundaries. Depending upon the grain size, the magnitude of these stresses can be sufficiently high to cause spontaneous microcracking during the processing of these materials. They are also likely to affect where cracks initiate and propagate under macroscopic loading. The magnitudes of residual stresses in untextured and textured alumina samples were predicted using object oriented finite (OOF) element analysis and experimentally determined grain orientations. The crystallographic orientations were obtained by electron-backscattered diffraction (EBSD). The residual stresses were lower and the stress distributions were narrower in the textured samples compared to those in the untextured samples. Crack initiation and propagation were also simulated using the Griffith fracture criterion. The grain boundary to surface energy ratios required for computations were estimated using AFM groove measurements.
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
Residual stresses in cross-ply composite tubes
NASA Technical Reports Server (NTRS)
Cohen, D.; Hyer, M. W.
1984-01-01
The residual thermal stresses in 4-layer cross-ply tubes are studied. The tubes considered has a small radius to wall-thickness ratios and so elasticity solutions were used. The residual thermal stress problem was considered to be axisymmetric and three elasticity solutions were derived and the results compared with the results using classical lamination theory. The comparison illustrates the limitations of classical lamination theory. The three elasticity solutions derived were: plane stress, plane strain, and generalized plane strain, the latter being the most realistic. Residual stresses in both the hoop and axial direction is significant. Stacking arrangement effects the residual stress to some extent, as do the material properties of the individual lamina. The benefits of hybrid construction are briefly discussed.
Residual stress measurements of tension leg platform tendon welds
Kim, D.S.; Smith, J.D.
1994-12-31
Results of fatigue test of prototype welded tendons showed that fatigue life was greatly reduced for the weld repaired joint. Since tensile residual stresses near the fusion boundary were suspected to cause the fatigue life reduction, these residual stresses were measured. Residual stresses of girth welded tendon pipes for a tension leg platform (TLP) were obtained for various fabrication conditions. The stresses were measured experimentally using the blind hole drilling (BHD) technique, X-ray diffraction (XRD) technique and Barkhausen Noise (BHN) method. The results of these measurements illustrate the reliability of each measurement technique. Effects of joint configuration, weld repair, weld cap grinding, and pre-fatigue test on residual stresses were discussed.
Hayashi, Yoshihiro; Otoguro, Saori; Miura, Takahiro; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2014-01-01
A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems. PMID:25109913
Residual Stress Testing of Outer 3013 Containers
Dunn, K.
2004-02-12
A Gas Tungsten Arc Welded (GTAW) outer 3013 container and a laser welded outer 3013 container have been tested for residual stresses according to the American Society for Testing Materials (ASTM) Standard G-36-94 [1]. This ASTM standard describes a procedure for conducting stress-corrosion cracking tests in boiling magnesium chloride (MgCl2) solution. Container sections in both the as-fabricated condition as well as the closure welded condition were evaluated. Significantly large residual stresses were observed in the bottom half of the as-fabricated container, a result of the base to can fabrication weld because through wall cracks were observed perpendicular to the weld. This observation indicates that regardless of the closure weld technique, sufficient residual stresses exist in the as-fabricated container to provide the stress necessary for stress corrosion cracking of the container, at the base fabrication weld. Additionally, sufficiently high residual stresses were observed in both the lid and the body of the GTAW as well as the laser closure welded containers. The stresses are oriented perpendicular to the closure weld in both the container lid and the container body. Although the boiling MgCl2 test is not a quantitative test, a comparison of the test results from the closure welds shows that there are noticeably more through wall cracks in the laser closure welded container than in the GTAW closure welded container.
Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief
NASA Astrophysics Data System (ADS)
Edwards, P.; Ramulu, M.
2015-09-01
The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.
Water aging reverses residual stresses in hydrophilic dental composites.
Park, J W; Ferracane, J L
2014-02-01
Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties. PMID:24272790
Residual stresses and damage in unidirectional model composites
Chatterjee, A.; Moschler, J.W.; Mall, S.; Kerans, R.J.; Pagano, N.J.
1989-10-01
Unidirectional model composites were fabricated with SiC fibers and different borosilicate glasses to study the effect of residual stress states on the damage progression in these composites. A specially designed straining stage was employed to study the failure modes in these materials under stepwise loading. Although both fiber and matrix cracks were observed in all specimens, the mechanisms of failure were found to be different and strongly dependent on the residual stress state in these materials. 15 refs.
Residual stresses and stress corrosion cracking in pipe fittings
Parrington, R.J.; Scott, J.J.; Torres, F.
1994-06-01
Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.
Accuracy evaluation of residual stress measurements
Yerman, J.A.; Kroenke, W.C.; Long, W.H.
1996-05-01
The accuracy of residual stress measurement techniques is difficult to assess due to the lack of available reference standards. To satisfy the need for reference standards, two specimens were designed and developed to provide known stress magnitudes and distributions: one with a uniform stress distribution and one with a nonuniform linear stress distribution. A reusable, portable load fixture was developed for use with each of the two specimens. Extensive bench testing was performed to determine if the specimens provide desired known stress magnitudes and distributions and stability of the known stress with time. The testing indicated that the nonuniform linear specimen and load fixture provided the desired known stress magnitude and distribution but that modifications were required for the uniform stress specimen. A trial use of the specimens and load fixtures using hole drilling was successful.
Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed
2007-01-01
The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.
Residual stresses in weld deposited clad pressure vessels and nozzles
Jones, D.P.; Mabe, W.R.; Shadley, J.R.; Rybicki, E.F.
1998-04-01
Results of through-thickness residual stress measurements are provided for a variety of samples of weld deposited 308/309L stainless steel and Alloy 600 cladding on low-alloy pressure vessel ferritic steels. Clad thicknesses between 5 and 9mm on samples that vary in thickness from 45 to 200mm were studied. The samples were taken from flat plates, from a spherical head of a pressure vessel, from a ring-segment of a nozzle bore, and from the transition radius between a nozzle and a pressure vessel shell. A layer removal method was used to measure the residual stresses. The effects of uncertainties in elastic constants (Young`s modulus and Poisson`s ratio) as well as experimental error are assessed. All measurements were done at room temperature. The results of this work indicate that curvature plays a significant role in cladding residual stress and that tensile residual stresses as high as the yield stress can be measured in the cladding material. Since the vessel from which the spherical and nozzle corner samples were taken was hydrotested, and the flat plate specimens were taken from specimens used in mechanical fatigue testing, these results suggest that rather high tensile residual stresses can be retained in the cladding material even after some mechanical loading associated with hydrotesting and that higher levels of hydrotest loading would be required to alter the cladding residual stresses.
NASA Astrophysics Data System (ADS)
Bray, Don E.; Suh, Ui; Hough, C. L. ``Mickey''
2002-05-01
Experiments conducted on titanium (Ti-64) turbine blades with the LCR ultrasonic wave at 20 MHz showed significant differences in untreated blades and blades treated to increase the subsurface compressive residual stress. Group 1 showed significant differences in the treated and untreated areas, the top and bottom of the blades, high cycle fatigue and cracked and uncracked conditions. Group 2 blades showed significant difference between untreated and treated travel-times at probes located at the blade leading edge.
NASA Astrophysics Data System (ADS)
Wang, Renzhi; Ru, Jilai
2015-03-01
Before 1980s, the circular suspension spring in automobile subjected to torsion fatigue load, under the cyclic normal tensile stresses, the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM) and the fracture surface was under 45° diagonal. Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM, which represents as "stress strengthening mechanism", shot peening technology could be used for improving the fatigue fracture resistance(FFR) of springs. However, since 1990s up to date, in addition to regular NTFM, the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM) or transverse shear fracture mode(TSFM) with the increase of applied cyclic shear stresses, which leads to a remarkable decrease of FFR. However, LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs. The phenomena have been rarely happened before. At present there are few literatures concerning this problem. Based upon the results of force analysis of a spring, there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture. This means that the effect of "stress strengthening mechanism" for improving the FFR of LSFM/TSFM is disappeared basically. During shot peening, however, both of residual stress and cyclic plastic deformed microstructure are induced synchronously like "twins" in the surface layer of a spring. It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the "twins" as a "structure strengthening mechanism" can improve the FFR of LSFM/TSFM. At the same time, it is also shown that the optimum technology of shot peening strengthening must have both "stress strengthening mechanism" and "structure strengthening mechanism" simultaneously so that the
Nondestructive method for measuring residual stresses in metals, a concept
NASA Technical Reports Server (NTRS)
Schwebel, C. D.
1968-01-01
Nondestructive direct measurement of residual surface stresses in metals can be made because metal under stress has a different electrochemical solution potential than in the unstressed condition. The method uses two matched electrolytic cells to cancel extraneous effects on the actual solution potential of the metal specimen.
System and method for measuring residual stress
Prime, Michael B.
2002-01-01
The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.
Modeling Residual Stresses in Ceramic Plates
Cantavella, V.; Moreno, A.; Mezquita, A.; Reig, Y.
2008-02-15
The generation of residual stresses during cooling of layered ceramic plates has been modeled. Each plate comprises a body and two thin layers (engobe and glaze). The model takes into account two types of stresses: thermal stresses, resulting from temperature gradients inside the plate during cooling, and the stresses produced by the mismatch of the coefficient of thermal expansion (CTE) of the layers. The body has been simulated using a linear viscoelastic constitutive equation. The engobe and the glaze layer have been considered as elastic solids below a certain temperature (setting temperature: T{sub a}). Above T{sub a} these two layers have no mechanical influence on the body.
Modeling Residual Stresses in Ceramic Plates
NASA Astrophysics Data System (ADS)
Cantavella, V.; Moreno, A.; Mezquita, A.; Reig, Y.
2008-02-01
The generation of residual stresses during cooling of layered ceramic plates has been modeled. Each plate comprises a body and two thin layers (engobe and glaze). The model takes into account two types of stresses: thermal stresses, resulting from temperature gradients inside the plate during cooling, and the stresses produced by the mismatch of the coefficient of thermal expansion (CTE) of the layers. The body has been simulated using a linear viscoelastic constitutive equation. The engobe and the glaze layer have been considered as elastic solids below a certain temperature (setting temperature: Ta). Above Ta these two layers have no mechanical influence on the body.
Evaluation of residual stress in sputtered tantalum thin-film
NASA Astrophysics Data System (ADS)
Al-masha'al, Asa'ad; Bunting, Andrew; Cheung, Rebecca
2016-05-01
The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90-300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.
On the effect of prestrain and residual stress in thin biological membranes
Rausch, Manuel K.; Kuhl, Ellen
2013-01-01
Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and and tissue engineering of replacement constructs for thin biological membranes. PMID:23976792
NASA Technical Reports Server (NTRS)
Hall, L. R.
1973-01-01
The combined effects of weld-induced residual stresses and flaws on fracture strength were experimentally evaluated by testing Ti-5Al-2.5Sn surface flawed specimens at -320F (-195C) in liquid nitrogen. Flaws were located in weld metal with crack planes either parallel to or perpendicular to gas tungsten arc weld centerlines, and in base metal with the crack plane perpendicular to the rolling direction. Tests were conducted using two different flaw sizes to effect fracture stresses at two different levels including one level either at or near, and one level well below the tensile yield strength. Three different residual stress levels were generated, measured, and tested. Results were evaluated using modified linear elastic fracture mechanics theory.
Residual stresses in a cast iron automotive brake disc rotor
NASA Astrophysics Data System (ADS)
Ripley, Maurice I.; Kirstein, Oliver
2006-11-01
Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed.
Measurement of residual stress in bent pipelines
NASA Astrophysics Data System (ADS)
Alers, G. A.; McColskey, J. D.
2002-05-01
Buried gas and oil pipelines can be subjected to unexpected bending loads caused by such earth movements as earthquakes, wash-outs, road building, or mining subsidence as well as by denting from unintentional digging. In order to make a fitness-for-service assessment, it is necessary to measure any residual stresses that are left in the pipe wall as well as the degree of plastic flow within regions of severe damage. A portable instrument that uses EMATs to rapidly measure ultrasonic shear wave birefringence in the wall of a pipe has been developed and applied to a 5 m (15 ft) long section of 0.56 m (22 in) diameter linepipe loaded in three point bending by a 22 MN (five million pound) load frame. The results showed that: (1) a large correction for shear wave anisotropy caused by texture in the steel had to be introduced and (2) the degree of plastic flow could be deduced from changes in the texture contribution alone. An attempt to separate the stress and texture effects by using SH wave modes in the pipe wall proved unreliable because of magnetostrictive effects in the periodic permanent magnet EMATs used for these experiments.
NASA Astrophysics Data System (ADS)
Grum, J.; Slabe, J. M.
2006-04-01
The paper presents the results of a study on possible application of laser-remelting to repair of narrow and comparatively deep cracks at the surface of highly thermo-mechanically loaded parts made of 12% Ni hot-working maraging tool steel. Laser-remelting of maraging steel is, due to very good weldability and flexibility of the process, very prospective for repair of fatigued surfaces of parts made of this steel at which the presence of surface microcracks may be observed. In addition to the efficiency of crack remelting, the influence of laser-remelting on the heat-affected zone in terms of its microstructure and residual stresses was also studied. The microstructure in the laser-remelted track is cellular/dendritic. In the heat-affected zone surrounding the laser-remelted track, the microstructure varies considerably. A microstructure analysis revealed, in the heat-affected zone, five microstructural zones and sub-zones. Residual stresses measured after laser-remelting are with reference to gradual through-depth changing of the stresses favourable.
Residual stress measurement and microstructural characterization of thick beryllium films
Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A
2008-02-11
Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.
NASA Astrophysics Data System (ADS)
Kim, Sang-Hyun; Woo, Yoonhwan; Boyd, James G.
2014-11-01
The authors (Boyd et al 2007 J. Micromech. Microeng. 17 452-61http://iopscience.iop.org/0960-1317/17/3/006/) presented a methodology for using residual stresses due to mismatch strains as a means of self-assembling microstructures under external loading during material deposition. Assembly of two components was considered: one component was subjected to deposition and was modeled as an Euler-Bernoulli beam, and the other component was not deposited and was modeled as a linear spring. This work experimentally extends Boyd et al (2007 J. Micromech. Microeng. 17 452-61http://iopscience.iop.org/0960-1317/17/3/006/) to account for the effects of process conditions, specifically the electrodeposition current density and temperature, which affect both the Young’s modulus and the mismatch strain. First, nickel was electrodeposited onto an atomic force microscope (AFM) cantilever, and the cantilever deflections at various current densities and temperatures were measured by using the resonance method of AFM and the measured deformation of the cantilever was converted into the quantitative mismatch strain by appropriate mechanics. For a given deposition thickness, the magnitude of the mismatch strain increased with increasing current density or plating temperature. The Young’s modulus decreased with increasing current density and increased slightly with increasing temperature. Next, the self-assembly model was experimentally verified by electrodepositing nickel onto an AFM cantilever beam in contact with a second AFM beam, serving as the spring, that does not undergo deposition. For a given deposition thickness, the spring deflection increased with increasing current density and increasing deposition temperature.
Residual Stresses and Critical Initial Flaw Size Analyses of Welds
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick
2009-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.
Modelling of residually stressed materials with application to AAA.
Ahamed, T; Dorfmann, L; Ogden, R W
2016-08-01
Residual stresses are generated in living tissues by processes of growth and adaptation and they significantly influence the mechanical behaviour of the tissues. Thus, to effectively model the elastic response of the tissues relative to a residually stressed configuration the residual stresses need to be incorporated into the constitutive equations. The purposes of this paper are (a) to summarise a general elastic constitutive formulation that includes residual stress, (b) to specify the tensors needed for the three-dimensional implementation of the theory in a nonlinear finite element code, and (c) to use the theory and its implementation to evaluate the wall stress distribution in an abdominal aortic aneurysm (AAA) using patient specific geometry and material model parameters. The considered material is anisotropic with two preferred directions indicating the orientation of the collagen fibres in the aortic tissue. The method described in this paper is general and can be used, by specifying appropriate energy functions, to investigate other residually stressed biological systems. PMID:26874252
Determination of Residual Stress in Composite Materials Using Ultrasonic Waves
NASA Technical Reports Server (NTRS)
Rokhlin, S. I.
1997-01-01
The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual
Residual stresses in injection molded shape memory polymer parts
NASA Astrophysics Data System (ADS)
Katmer, Sukran; Esen, Huseyin; Karatas, Cetin
2016-03-01
Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.
Patterns of residual stresses due to welding
NASA Technical Reports Server (NTRS)
Botros, B. M.
1983-01-01
Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.
Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel.
Du, Hualong; Turner, Joseph A
2016-04-01
In this article, the effects of residual stress on the ultrasonic scattering in a quenched steel sample are investigated by calculating the change of spatial variance amplitudes of ultrasonic signals after removing residual stress via annealing. The experimental results show that the average spatial variance amplitude decreases by about 11.89% for a scan area on the quenched surface after removing residual stress. This quantity was used to estimate the residual stress based on the developed stress-dependent backscatter model. In addition, the residual stress on the whole scan area was mapped by calculating the change of the spatial variance amplitude for each subarea after annealing, respectively. Diffuse ultrasonic backscatter signals show a high sensitivity to residual stress such that this technique has potential as a non-destructive method for measuring residual stress. PMID:26784273
NASA Astrophysics Data System (ADS)
Liu, Gang; Yang, Yanqing; Huang, Bin; Luo, Xian; Ouyang, Sheng; Zhao, Guangming; Jin, Na; Li, Pengtao
2016-05-01
This paper studies the effects of substrate temperature on the structural and properties evolution of magnetron sputtered Ti6Al4V films. X-ray diffraction results indicate that the films show a monotonically weakening (0002) texture growth as the substrate temperature rises, and completely transform into a randomly orientated growth at 500 °C deposition. The columnar and equiaxial structures of the films are observed by scanning electron microscope and transmission electron microscope. The structure evolution as a function of homologous temperature Ts/Tm is illustrated by a schematic diagram based on the Structure Zone Model. The film residual stresses are compressive, and decrease with substrate temperature increasing. The film nanohardness decreases as substrate temperature rises, which is thought to be influenced by both the decreasing texture and relaxed residual stress. These results show that the film structure and structure-related properties can be controlled by simply modifying the homologous temperature Ts/Tm.
Finite element calculation of residual stress in dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
Measurement of residual stresses using fracture mechanics weight functions
Fan, Y.
2000-10-01
A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.
NASA Astrophysics Data System (ADS)
Zhang, X.; Misra, A.; Wang, H.; Lima, A. L.; Hundley, M. F.; Hoagland, R. G.
2005-05-01
We have explored the influence of sputtering parameters on the structural, mechanical, and electrical properties of nanoscale twinned 330 stainless steel thin films. As the residual stress in the film is changed from tensile to compressive by varying the growth conditions, the nanoscale twinned structure, the average columnar grain size and texture of the film show little or no change. Hardness of the film in compression reaches 7GPa, compared to about 5.5GPa in films with high residual tension, and an order of magnitude higher than that of bulk 330 stainless steel. Molecular dynamics simulations indicate that twin boundaries pose a strong barrier to glide dislocation transmission under applied in-plane biaxial loading, consistent with the GPa level strengths measured in these films. The increase in the room temperature electrical resistivity of these films, compared to bulk 330 stainless steel, is found to be small, indicating that nanoscale twinned structures may provide the best combination of high mechanical strengths and high electrical conductivity.
Zhang, X.; Misra, A.; Wang, H.; Lima, A.L.; Hundley, M. F.; Hoagland, R.G.
2005-05-01
We have explored the influence of sputtering parameters on the structural, mechanical, and electrical properties of nanoscale twinned 330 stainless steel thin films. As the residual stress in the film is changed from tensile to compressive by varying the growth conditions, the nanoscale twinned structure, the average columnar grain size and texture of the film show little or no change. Hardness of the film in compression reaches 7 GPa, compared to about 5.5 GPa in films with high residual tension, and an order of magnitude higher than that of bulk 330 stainless steel. Molecular dynamics simulations indicate that twin boundaries pose a strong barrier to glide dislocation transmission under applied in-plane biaxial loading, consistent with the GPa level strengths measured in these films. The increase in the room temperature electrical resistivity of these films, compared to bulk 330 stainless steel, is found to be small, indicating that nanoscale twinned structures may provide the best combination of high mechanical strengths and high electrical conductivity.
Residual stresses and vector hysteresis modeling
NASA Astrophysics Data System (ADS)
Ktena, Aphrodite
2016-04-01
Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang
2016-04-01
The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.
Quantifying residual stress in nanoscale thin polymer films via surface wrinkling.
Chung, Jun Young; Chastek, Thomas Q; Fasolka, Michael J; Ro, Hyun Wook; Stafford, Christopher M
2009-04-28
Residual stress, a pervasive consequence of solid materials processing, is stress that remains in a material after external forces have been removed. In polymeric materials, residual stress results from processes, such as film formation, that force and then trap polymer chains into nonequilibrium stressed conformations. In solvent-cast films, which are central to a wide range of technologies, residual stress can cause detrimental effects, including microscopic defect formation and macroscopic dimensional changes. Since residual stress is difficult to measure accurately, particularly in nanoscale thin polymer films, it remains a challenge to understand and control. We present here a quantitative method of assessing residual stress in polymer thin films by monitoring the onset of strain-induced wrinkling instabilities. Using this approach, we show that thin (>100 nm) polystyrene films prepared via spin-coating possess residual stresses of approximately 30 MPa, close to the crazing and yield stress. In contrast to conventional stress measurement techniques such as wafer curvature, our technique has the resolution to measure residual stress in films as thin as 25 nm. Furthermore, we measure the dissipation of residual stress through two relaxation mechanisms: thermal annealing and plasticizer addition. In quantifying the amount of residual stress in these films, we find that the residual stress gradually decreases with increasing annealing time and plasticizer amounts. Our robust and simple route to measure residual stress adds a key component to the understanding of polymer thin film behavior and will enable identification of more effective processing routes that mitigate the detrimental effects of residual stress. PMID:19298053
Measurements of residual stress in fracture mechanics coupons
Prime, Michael B; Hill, Michael R; Nav Dalen, John E
2010-01-01
This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.
Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels
Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.
2012-01-01
Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.
Method For Characterizing Residual Stress In Metals
Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.
2002-12-03
A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.
Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L
2016-02-01
Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. PMID:26458115
FEM simulation of residual stresses induced by laser Peening
NASA Astrophysics Data System (ADS)
Peyre, P.; Sollier, A.; Chaieb, I.; Berthe, L.; Bartnicki, E.; Braham, C.; Fabbro, R.
2003-08-01
Benefits from laser Peening have been demonstrated several times in fields like fatigue, wear or stress corrosion cracking. However, in spite of recent work on the calculation of residual stresses, very few authors have considered a finite element method (FEM) approach to predict laser-induced mechanical effect. This comes mainly from the high strain rates involved during LP (10^6 s^{-1}), that necessitate the precise determination of dynamic properties, and also from the possible combination of thermal and mechanical loadings in the case of LP without protective coatings. In this paper, we aim at presenting a global approach of the problem, starting from the determination of loading conditions and dynamic yield strengths, to finish with FEM calculation of residual stress fields induced on a 12% Cr martensitic stainless steel and a 7075 aluminium alloy.
NASA Astrophysics Data System (ADS)
Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.
2012-02-01
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.
Residual stress variation due to piping processes of austenitic stainless steel
NASA Astrophysics Data System (ADS)
Ihara, R.; Hashimoto, T.; Mochizuki, M.
2012-08-01
In nuclear power plants, stress corrosion cracking (SCC) has been observed near the heat affected zone (HAZ) of the primary loop recirculation pipes made of austenitic stainless steel type 316L. Residual stress is a major cause of SCC. In the joining process of pipes, butt-welding is conducted after machining. Machining is performed to match the inside pipe diameter. Residual stress is generated by both machining and welding. In the case of welding after machining in manufacturing processes of pipes, it appears that residual stress due to machining is varied by the welding thermal cycle. In this study, residual stress variation caused by manufacturing processes was investigated. Residual stress variation was examined by the X-ray diffraction method. The residual stress distribution generated by welding after machining has a local maximum point in the HAZ. The Vickers hardness distribution also has a local maximum point. By the EBSD method, it is clarified that recovery and recrystallization due to welding heat do not occurred in the local maximum point. Residual stress distribution results from the superposition effect of hardening due to machining and welding. The location and value of the local maximum stress are varied by welding conditions. The region of the local maximum stress corresponds to the region where SCC has been observed. Therefore, in addition to a part of the manufacturing processes such as welding or machining, evaluation of all parts of the processes is important to investigate the effect of residual stress distribution on SCC.
Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Lin, Xin; Yang, Gaolin; Song, Menghua; Chen, Jing; Huang, Weidong
2011-02-01
The microstructure and residual stress of laser rapid formed (LRFed) nickel-base superalloy Inconel 718 was investigated. The as-deposited microstructure of an LRFed Inconel 718 alloy is composed of columnar dendrites growing epitaxially along the deposition direction, and the columnar dendrites transformed to unevenly distributed equiaxed grains after annealing treatment at high temperature. Residual stress evaluation in microstructure scale by Vickers micro-indentation method indicates that the residual thermal stress is unevenly distributed in the LRFed sample, and it has a significant effect on the recrystallization during solution annealing treatment. The residual stress is introduced by rapid heating and cooling during laser rapid forming. There is an alternative distribution between high residual stress regions and low residual stress regions, within a single deposited layer, resulting in a similar distribution of recrystallized grain size.
Finite element residual stress analysis of induction heating bended ferritic steel piping
Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae
2014-10-06
Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.
Neutron scattering residual stress measurements on gray cast iron brake discs
Spooner, S.; Payzant, E.A.; Hubbard, C.R.
1996-11-01
Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.
THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES
M. PRIME; A. GONZALES
2000-06-01
We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.
Measuring of residual stresses in thermal sprayed coatings
Brandt, O.C.
1995-12-31
The Modified Almen Method (MAM) uses the deformation of test samples for measuring the residual stress and with small mathematical expenditure it yields the distribution in the coating. This paper presents the basic theory of MAM and the boundary conditions for using this method for the classification of thermal sprayed coatings with respect to the residual stress. The residual stress distribution of different HVOF coatings are shown in this work. Typical spray parameters are compared. The results are also compared with the ones calculated with other methods for the determination of the residual stress in thermal sprayed coatings.
Residual stress and crack propagation in laminated composites
Yttergren, R.M.F.; Zeng, K.; Rowcliffe, D.J.
1994-12-31
Residual stress distributions in several laminated ceramic composites were measured by an indentation technique. The material included alumina-zirconia laminated composites, containing strong interfaces, and alumina-porcelain laminated composites with both weak and strong interfaces. The residual stress in these material originates from the mismatch of the thermal properties, differences in elastic properties, and different shrinkage of the laminates during sintering. An experimental technique is presented which gives a direct view of the residual stress state in the materials. Values of residual tensile stress are presented as a function of position relative to the interface in each material.
Magnetic Barkhausen noise analysis of residual stress and carburization
NASA Astrophysics Data System (ADS)
Stewart, D. M.; Stevens, K. J.; Kaiser, A. B.
2001-04-01
Magnetic Barkhausen noise analysis is an effective non-destructive testing technique for determining both residual stress and carburization, with potential for improving the accuracy of remaining-life estimates of critical components in operational plant such as that used in thermal power stations and the petrochemical industry. We have measured Barkhausen noise in magnetic Durehete 1055 samples under stress and in carburized ethylene pyrolysis tubes. The Barkhausen power as a function of applied field is modeled using Sablik's function for Barkhausen power as a function of irreversible differential permeability (μirr); the Jiles-Atherton model of hysteresis is used to determine μirr as a function of applied field.
NASA Astrophysics Data System (ADS)
Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki
2016-05-01
Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4–1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.
Residual Stress Measurements After Proof and Flight: ETP-0403
NASA Technical Reports Server (NTRS)
Webster, Ronald L..
1997-01-01
The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.
NASA Astrophysics Data System (ADS)
Zhang, Y. K.; Kong, D. J.; Yin, S. M.; Feng, A. X.; Lu, J. Z.; Ge, T.
2006-02-01
The surface of AISI304 TIG welding line was processed by LSP (laser shock processing). The effects on the microstructure, hardness and residual stress of AISI304 welding line by LSP were observed, and its mechanical properties were researched by SEM (scanning electron microscope) and test device of mechanical property. Residual stresses of AISI304 TIG welding line by LSP were measured with Model X-350A X ray analyzer. The test results show that compressive residual stress values of AISI304 TIG welding line by LSP are about 110MPa. Strengthening effects of AISI304 TIG welding line by LSP is very obvious, and fatigue properties of welding line is improved, and tensile residual stresses of welding line are obviously reduced, the distribution of residual stress tends to equality, and service life of AISI304 TIG welding line is improved.
A finite element model for residual stress in repair welds
Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.
1996-03-28
This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.
Grinding Induced Changes in Residual Stresses of Carburized Gears
Lemaster, Robert A; Boggs, Bryan L; Bunn, Jeffrey R; Hubbard, Camden R; Watkins, Thomas R
2009-01-01
This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory. Two of the gears were hobbed, carburized, quenched and tempered, but not finished. The remaining three gears were processed similarly, but were finish ground. The residual stresses were measured at 64 different locations on a tooth from each gear. Residual stresses were also measured at fewer points on other teeth to determine the tooth-to-tooth variation. Tooth profile measurements were made of the finished and unfinished gear samples. The results show a fairly uniform and constant compressive residual field in the nonfinished gears. There was a significant reduction in the average residual stress measured in the finished gears. Additionally, there was a significant increase in the variability of the residual stress that was introduced by the grinding process. Analysis of the data suggests a linear relationship between the change in average residual stress and the amount of material removed by the grinding process.
A residual stress study in similar and dissimilar welds
Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; Coules, Harry E.; Bunn, Jeffrey R; Achuthan, A.
2016-04-01
Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less
NASA Astrophysics Data System (ADS)
Jones, Robert
Parts machined from relatively large thickness cross sections can experience significant deformations from high residual stresses that develop in the part during the heat treatment used to form the aluminum alloy. Uphill quenching is a process that can create a part with low residual stress and stable dimensions when the process is controlled properly. The uphill quenching process involves a solution heat treat, quench, cool to liquid nitrogen, steam blast, and then age to final temper. In this thesis two parts were modeled using ANSYS. The first part underwent the uphill quench process in the rough machined state. The second part was modeled in the stock material shape and only underwent a solution heat treat, quench, and age to final temper. After the residual stress in the second part was predicted the excess material was removed by killing the associated elements and the deformation of the final machined part was predicted. For both parts analyzed measurements were made and compared against predictions with fairly good results.
Residual stresses in darrieus vertical axis wind turbine blades
Veers, P.
1981-04-01
A numerical package called RESID has been assembled to calculate the residual stresses in VAWT blades induced during cold forming. Using a strength of materials - elementary beam theory approach, RESID models the material response with a bilinear stress-strain curve, and the cross-sectional geometry with an array of area increments. Through an iterative solution procedure residual stresses are predicted for a specified final radius of curvature or applied bending moment. RESID results are compared to theoretical solutions for simple geometries and with MARC Finite element results for VAWT blade geometries. Calculating residual stress levels, determining acceptable residual stress levels, and a method of reducing residual stresses are discussed. A complete listing and sample run are included in the appendicies.
Younger, Mandy S.; Eckelmeyer, Kenneth Hall
2007-11-01
Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.
Wang, Jia-Siang; Hsieh, Chih-Chun; Lai, Hsuan-Han; Kuo, Che-Wei; Wu, Paxon Ti-Yuan; Wu, Weite
2015-01-15
A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residual stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.
Residual stress of physical vapor-deposited polycrystalline multilayers
NASA Astrophysics Data System (ADS)
Zhang, Song; Zhang, Hui; Zheng, LiLi
2015-02-01
An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stress are considered to constitute the final residual stress in the model. The deposition process conditions such as deposition temperature, oxygen pressure, and film growth rate are correlated to the full stress model to analyze the final residual stress distribution, and thus the deformation of the deposited multilayer system under different process conditions. Also, the model is numerically realized with in-house built code. A deposition of Ag-Cu multilayer system is simulated with the as-built extended stress model, and the final residual stresses under different deposition conditions are discussed with part of the results compared with experiment from other literature.
Residual stresses in sapphire rods grown by the Stepanov method
NASA Astrophysics Data System (ADS)
Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Galaktionov, E. V.; Maslov, V. N.; Tropp, E. A.
2015-04-01
The residual stresses in cylindrical [0001] sapphire crystals have been studied using the polarization-optical method. The angle between the optical axes 2 V and the difference in the normal components of the tensor of elastic residual stresses (σφ - σ r ) have been determined from the isogyre divergence. It has been found that a tangential tensile stress of no more than 20 MPa acts on the ingot surface. The residual stresses have been compared with the calculated thermoelastic stresses generated during the crystal growth in a given heating zone. It has been shown that the determined pattern of residual stresses can be caused by thermoelastic stresses developing in the immediate vicinity of the crystallization front.
The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075
Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.
2012-03-15
The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity
Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled
NASA Technical Reports Server (NTRS)
Ali, Abdul-Aziz; Bhatt, Ramakrishna T.
2009-01-01
When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.
Consideratons Regarding the Alignment of Diffractometers for Residual stress Analysis
Watkins, Thomas R; Cavin, Odis Burl; Matlock, Beth
2006-01-01
Proper alignment of an X-ray diffractometer is critical to performing credible measurements, particularly for residual stress determinations. This article will emphasize practical aspects of diffractometer alignment and standards usage with regards to residual strain measurement. Essentially, what to do when one is confronted with a residual stress problem and an unfamiliar goniometer. Various alignment techniques, use of standards, and related issues will be discussed.
Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave
NASA Astrophysics Data System (ADS)
Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai
Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.
Residual stress within nanoscale metallic multilayer systems during thermal cycling
Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.
2015-09-21
Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.
Residual stress within nanoscale metallic multilayer systems during thermal cycling
Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.
2015-09-21
Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less
Sharma, Varun; Pandey, Pulak M
2016-08-01
The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation. PMID:27179142
Renaudeau, D; Frances, G; Dubois, S; Gilbert, H; Noblet, J
2013-03-01
Castrated males from 2 lines of purebred French Large White obtained from a divergent selection experiment for their residual feed intake (RFI) over 7 generations were measured for their energy utilization during thermal acclimation to increased ambient temperature. The RFI(+) line consumed more feed than predicted from its performance, whereas the RFI- line consumed less feed. Each pig was exposed to 24°C for 7 d (P0) and thereafter to a constant temperature of 32°C for 3 consecutive periods of 7 d (P1, P2, P3). Feed intake, feeding behavior parameters, digestibility, components of heat production (HP; measured by indirect calorimetry in respiration chambers), and energy, nitrogen, fat, and water balance were measured in pigs offered feed and water ad libitum and individually housed in respiratory chambers. Two identical respiratory chambers were simultaneously used, and 5 pigs of each line were measured successively. Whatever the trait, the interaction between line and period was not significant (P > 0.10). On average, ADFI was greater in the RFI+ than in the RFI- line (1,945 vs. 1,639 g/d; P = 0.051) in relation to an increase of the mean size of each feeding bout (128 vs. 82 g/visit; P < 0.001). There was no line effect on nutrient and energy digestibility. Total HP tended to be greater in RFI+ than in RFI- lines (1,279 vs. 1,137 kJ·kg BW-0.60·d-1; P = 0.065), which tended to retain more energy (968 vs. 798 kJ·kg BW-0.60·d-1; P = 0.050). The sensible heat loss was greater in RFI+ compared with the RFI- line (644 vs. 560 kJ·kg BW-0.60·d-1; P = 0.020). The RFI+ pigs consumed more water (+981 vs. 657 g·kg BW-0.60·d-1; P = 0.085) and produced more urine (589 vs. 292 g·kg BW-0.60·d-1; P < 0.001) than RFI- pigs, whereas water evaporation was similar for both lines. On average, ME intake and HP declined by about 38% and 20%, respectively, from P0 to P1 (P < 0.001). In contrast to ME intake, HP gradually decreased (P < 0.05) from P1 to P3 in connection with
A stress-free model for residual stress assessment using thermoelastic stress analysis
NASA Astrophysics Data System (ADS)
Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.
2015-03-01
Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.
Measurement and theory of the dependence of hardness on residual stress
NASA Astrophysics Data System (ADS)
Abbate, A.; Frankel, J.; Scholz, W.
1993-05-01
The Rockwell C hardness (Rc) was measured as a function of position on the three steel rings cut from tubes with different amounts of autofrettage. These rings had different residual stress profiles through the wall that were measured using an ultrasonic technique. An experimental correlation between residual stress and Rc was obtained. In order to model the effects of residual stress on the measured hardness, the Tresca (linear) and the von Mises-Hencky (power) yield criteria were utilized within a model given by Shaw, Hoshi, and Henry that depicts the stress state within a spherical indenter. The von Mises-Hencky method was more successful in matching the data.
Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning
NASA Astrophysics Data System (ADS)
Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.
Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.
Evaluation Of Residual Stresses In Inner Ring Of The Bearings
NASA Astrophysics Data System (ADS)
Malotová, Šárka; Hemžský, Pavel; Pitela, David; Nicielnik, Henryk; Šoková, Dagmar; Kyncl, Ladislav; Mrázik, Jozef
2015-12-01
Residual stresses are undesirable and it should not be underestimated. They occur in many components and it is necessary to identify and try to avoid them. For detection the Residual stresses, there are many methods, but not all are suitable, because they can completely destroy of the components. The article deals with the evaluation of Residual stresses in the inner rings of Bearings, which are made from steel 100Cr6 (ČSN 14 109.4. The surfaces were turning at different cutting parameters and subsequently are evaluated Residual stresses. The stresses have been evaluated by non - destructive method X - Ray. The experiment was realized in cooperation Faculty of Mechanical Engineering VSB - TU Ostrava and Faculty of Mechanical Engineering of ZU Zilina - machining in the laboratories of ZU Žilina, Slovak Republic.
Methodologies for measuring residual stress distributions in epitaxial thin films
NASA Astrophysics Data System (ADS)
Liu, M.; Ruan, H. H.; Zhang, L. C.
2013-01-01
Residual stresses in a thin film deposited on a dissimilar substrate can bring about various interface or subsurface damages, such as delamination, dislocation, twinning and cracking. In high performance integrated circuits and MEMS, a too high residual stress can significantly alter their electronic properties. A proper residual stress characterization needs the description of full stress tensors and their variations with thickness. The problem is that film thickness measurement requires different means, and that direct measurement techniques to fulfill the tasks are not straightforward. This paper provides a simple method using X-ray diffraction (XRD) and Raman scattering for the measurement of residual stresses and their thickness dependence. Using the epitaxial silicon film on a sapphire substrate as an example, this paper demonstrates that the improved XRD technique can make use of multiple diffraction peaks to give rise to a highly accurate stress tensor. The co-existence of silicon and sapphire peaks in a Raman spectrum then allows a simultaneous measurement of film thickness from the peak intensity ratio and the residual stress from the peak shift. The paper also concludes the relation between film thickness and residual stresses.
Issues related to prediction of residual stresses in titanium alloy matrix composites
Rangaswamy, P.; Jayaraman, N.
1995-01-01
Recently, a detailed study of residual stresses on the as-processed SCS-6/Ti-24Al-11Nb [0]{sub 8} composite, and SCS-6/Beta-21S composites in unidirectional [0]{sub 4}, cross-ply [0/90]s, and quasi-isotropic [0/{+-}45/90]s lay-ups has been completed. In this study, residual stresses have been measured using x-ray diffraction (Sin{sup 2}{Psi}) technique. We have shown that the use of conventional unit cell models consisting of a quarter fiber surrounded by the matrix material to predict residual stresses for verification of experimental results is inadequate. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, the approach taken in extending the conventional unit cell model to the concept of multi-fiber models to predict average stresses are presented. In this process, several modeling issues have been identified. These issues are (i) use of conventional unit models for prediction of average surface residual stresses, (ii) effect of orientation of the sub-surface plies on the residual stresses in the surface ply, (iii) residual stresses in the interior plies, and (iv) constituent material properties.
Photoelastic measurements of residual stresses for NDE
NASA Technical Reports Server (NTRS)
Redner, Alex S.
1988-01-01
Photoelastic measurements of residual strains are used extensively in the QC and inspection of transparent materials. A new method of measurements, based on Spectral Contents Analysis, is described in this paper. The method uses a personal computer for photoelastic data acquisition, eliminating personal skill and subjectivity. the new tool should make the measurements of residual strains for QC simpler and more reliable.
Measured residual stresses in overlay pipe weldments removed from service
Shack, W.J.
1985-02-01
Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs.
Noninvasive in vivo determination of residual strains and stresses.
Donmazov, Samir; Piskin, Senol; Pekkan, Kerem
2015-06-01
Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery
Measuring depth profiles of residual stress with Raman spectroscopy
Enloe, W.S.; Sparks, R.G.; Paesler, M.A.
1988-12-01
Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.
Power-law creep and residual stresses in carbopol microgels
NASA Astrophysics Data System (ADS)
Lidon, Pierre; Manneville, Sebastien
We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.
Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.
2015-01-01
Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.
Ares I-X Upper Stage Simulator Residual Stress Analysis
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick
2008-01-01
The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.
Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise
2013-01-01
The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758
Mode-coupling analysis of residual stresses in colloidal glasses.
Fritschi, S; Fuchs, M; Voigtmann, Th
2014-07-21
We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory. PMID:24841537
Neutron diffractometer RSND for residual stress analysis at CAEP
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Hong; Sun, Guangai; Chen, Bo; Chen, Yanzhou; Pang, Beibei; Zhang, Ying; Wang, Yun; Zhang, Changsheng; Gong, Jian; Liu, Yaoguang
2015-05-01
Residual Stress Neutron Diffractometer (RSND) has been built at China Academy of Engineering Physics (CAEP) in Mianyang. Due to its excellent flexibility, the residual stress measurement on different samples, as well as in-situ study for materials science, can be carried out through RSND. The basic tests on its intensity and resolution and some preliminary experimental results under mechanical load, demonstrate the high quality of RSND.
Digital image correlation utilization in pipeline oriented residual stress estimation
NASA Astrophysics Data System (ADS)
Brynk, Tomasz; Mezyk, Dariusz; Kukla, Dominik
2014-10-01
The aim of the paper is to present an idea of the utilization of Digital Image Correlation (DIC) method for industrial pipelines residual stress oriented investigation. For this purpose results of tests performed in laboratory and industrial conditions are presented. Obtained results showed that DIC method gives reliable near drilled hole strain/displacement distribution maps which may be used for accurate residual stress calculations.
Method for residual stress relief and retained austenite destabilization
Ludtka, Gerard M.
2004-08-10
A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.
Residual Stresses in High-Velocity Oxy-Fuel Metallic Coatings
Terry C. Totemeier; Richard N. Wright; W. David Swank
2004-06-01
X-ray based residual stress measurements were made on type 316 stainless steel and Fe3A1 coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 mm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Difference in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3A1 coatings. Deposition efficiency for both materials is maximized at an intermediate (~600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.
Thermal stress effects in intermetallic matrix composites
NASA Technical Reports Server (NTRS)
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
NASA Astrophysics Data System (ADS)
Mráz, L.; Karlsson, L.; Hamák, I.; Vrána, M.; Mikula, P.
2010-06-01
Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.
Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress
John Martin
2002-02-19
The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.
Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks
Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett
2009-01-01
Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.
NASA Astrophysics Data System (ADS)
Ding, Hu; Wenliang, Zhang; Yuan, Wei; Xiaotian, Zhang; Cong, Ren; Lei, Shan; Yi-feng, Ya; Huiqian, Luo; Shiliang, Li
2016-05-01
We have studied the angular magnetoresistance of iron pnictides BaFe2‑x Ni x As2, which shows clear 180 degree periodicity as fitted by a cosine function. In the x = 0.065 sample, the phase of the two-fold symmetry changes 90 degrees above the tetragonal-to-orthorhombic structural transition temperature T s. Since the phase at low temperature is associated with the rotation of orthorhombic domains by magnetic field, we show that even vacuum grease can push the presence of orthorhombic domains at temperatures much higher than T s. Our results suggest that residual stress may have significant effects in studying the nematic orders and its fluctuations in iron pnictides. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020300), the National Basic Research Program of China (Grant Nos. 2012CB821400 and 2011CBA00110), and the National Natural Science Foundation of China (Grant Nos. 11374011, 11374346, and 11305257).
Residual-stress characterization by use of elastic-wave-scattering measurements
Domany, E.; Gubernatis, J.E.
1982-01-01
The presence of a state of residual stress in a material can impair its structural quality by adversely affecting its elastic limit, yield point, etc. In this paper we derive the appropriate equations for the use of elastic waves to probe an inhomogeneous state of residual stress. As in other treatments of ultrasonic residual stress measurement, we start with nonlinear effects and require knowledge of third order elastic constants. Unlike other treatments, which relate these nonlinear effects to small relative changes in propagation speed of an incident wave, we identify these effects as a source of scattering of the incident wave. Like other treatments, one difficulty with ultrasonic residual stress measurements is separating small residual stress effects from other effects. However, we will give an example of at least one class of problems where this separation appears possible using our approach. It is demonstrated that elastic wave propagation in the presence of non-uniform residual stress can be viewed as a scattering problem. One should note that in various limits, such as that of short wavelength, this scattering problem (as well as any other) can be treated by optical methods (ray bendings, diffraction, etc.). The special features of a scattering situation are expected to be important for smaller wavelengths, and therefore their experimental observability is questionable, and can be resolved only by careful and thorough measurements.
Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites
NASA Technical Reports Server (NTRS)
Naik, R. A.
1991-01-01
The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient (CTE) mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix (F/M) interface which could lead to premature matrix cracking during cooldown. Fiber coatings could be used to reduce thermal residual stresses. A simple closed form analysis, based on a three phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interphase/matrix system. Parametric studies showed that the tensile thermal residual stresses at the F/M interface were very sensitive to the CTE and thickness of the interphase layer. The modulus of the layer had only a moderate effect on tensile residual stresses. For a silicon carbide titanium aluminide composite, the tangential stresses were 20 to 30 pct. larger than the axial stresses, over a wide range of interphase layer properties, indicating a tendency to form radial matrix cracks during cooldown. Guidelines for the selection of appropriate material properties of the fiber coating were also derived in order to minimize thermal residual stresses in the matrix during fabrication.
Residual stresses and plastic deformation in GTA-welded steel
Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )
1993-03-01
Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.
Influence of Reel Lay on Residual Stress and Ultimate Bearing Capacity of Pipe
NASA Astrophysics Data System (ADS)
Liao, Hongqian; Wang, Liquan
Reel lay is a fast and cost-effective way to install subsea pipelines. During reel lay, pipe's repeated plastic bending produces residual stress, which has influence on pipe's ultimate bearing capacity. First, the deformation of pipe in reel lay is analyzed, and the cyclic bending stages are simplified for convenience of theoretical research. Based on the finite element method (FEM), the Ramberg-Osgood model is adopted to describe material's mechanical property with kinematic hardening rule, and five bending stages are simulated. Further, the influence of material parameters and geometry parameters on pipe's residual stress is studied. Finally, the effect of residual stress on pipe's external pressure bearing capacity and tensile capacity is analyzed. Some important conclusions can be drawn: (1) the influence of diameter-thick ratio on residual stress is small, and material parameters' effect on the residual stress is large; (2) the influence of residual stress on pipe's external pressure bearing capacity is small, but its influence on tensile capacity is large.
Gyrokinetic Simulation of Residual Stress from Diamagnetic Velocity Shears
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2010-11-01
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the parallel velocity (and parallel velocity itself) vanishes. Previously [1] we demonstrated with gyrokinetic (GYRO) simulations that TAM pinching from the diamagnetic level shear in the ExB velocity could provide the residual stress needed for spontaneous toroidal rotation. Here we show that the shear in the diamagnetic velocities themselves provide comparable residual stress (and level of stabilization). The sign of the residual stress, quantified by the ratio of TAM flow to ion power flow (M/P), depends on the signs of the various velocity shears as well as ion (ITG) versus electron (TEM) mode directed turbulence. The residual stress from these temperature and density gradient diamagnetic velocity shears is demonstrated in global gyrokinetic simulation of ``null'' rotation DIIID discharges by matching M/P profiles within experimental error. 8pt [1] R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009).
Residual stress measurement and analysis using ultrasonic techniques.
NASA Technical Reports Server (NTRS)
Noronha, P. J.; Chapman, J. R.; Wert, J. J.
1973-01-01
A technique which utilizes ultrasonic radiation has been developed to measure residual stresses in metals. This technique makes it possible to detect and measure the magnitude of the principle stresses and also to obtain their direction. The velocities of ultrasonic waves in materials are measured as the time to travel a fixed path length, and the change in transit time is related to the applied stress. The linear relationship obtained allows a procedure based on this principle to be used for the measurement of residual stress using surface waves and shear waves. A method for plotting stress profiles through a material using surface waves uses varying frequencies for the ultrasonic wave. A limitation of the shear wave method is considered. The system used for this technique is called the Modified Time of Flight System.
Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates
Wang, L; Felicellli, S D; Pratt, Phillip R
2008-01-01
The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.
Residual stresses in weld overlay tubes: A finite element study
Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Feng, Z.; Jirinec, M.J.
1997-01-03
Residual stresses and strains in a tube with circumferential weld overlay were analyzed by the finite element (FE) method. The objective of this work was to develop and verify a FE model, to determine the magnitude and distribution of residual stresses in the weld overlay tube, and to evaluate the significance of two contributing factors to residual stress: (1) difference in material properties between tube and weld material, and (2) thermal gradients in the weld. An axisymmetric FE model was developed to simulate the circumferential two-layer welding process of alloy 625 overlay on SA210 tube. The first layer was modeled as a gas metal arc welding process with filler metal, whereas the autogenous gas tungsten arc welding process was modeled for the second layer. Neutron diffraction technique was used to experimentally determine residual elastic strains in the weld overlay tube. Comparison with the FE results shows overall good agreement. Both the experimental and FE results show high compressive stresses at the inside tube surface and high tensile stresses in the weld overlay. This suggests that weld overlay may be used to relieve tensile or produce compressive stresses at the inside tube surface, which is significant for applications where crack initiation is found at the root pass of the joining weld.
Phase composition and residual stresses in thermal barrier coatings
NASA Astrophysics Data System (ADS)
Betsofen, S. Ya.; Ryabenko, B. V.; Ashmarin, A. A.; Molostov, D. E.
2015-10-01
The phase composition and the residual stresses in multilayer thermal barrier coatings, which consist of an external ZrO2-8Y2O3 ceramic layer, an intermediate gradient (metal ceramic) layer, and a transient metallic NiCrAlY sublayer, are studied. It is shown that an increase in the specific volume of the metallic sublayer as a result of the formation of thermal growing oxide Al2O3 generates high compressive stresses in this sublayer. The ceramic layer undergoes tensile stresses in this case. A method is proposed to estimate the stresses in gradient coatings from X-ray diffraction results.
Development of process to control residual stress distribution of butt weld joint of cylinder
Nayama, Michisuke; Sakamoto, Naruo; Akitomo, Norio; Toyoda, Masao
1995-12-31
The authors develop new process to control residual stress distribution of butt weld joint of cylinder. This process, which is heating circularly at both side of butt weld joint and letting cool, can reduce tensile residual stress on inner surface near weld joint by operation from only outside of cylinder and its required temperature rise of this process is lower than ordinary PWHT (Post Weld Heat Treatment) process. This paper describes the procedure and conditions of the process named ``both side heating`` by authors. The appropriate range of process conditions to get sufficient effect is confirmed by FEM stress history analysis and experiment in this paper. Experiments show that the inner residual stress near weld is reduced to compression from over yield stress at as weld condition in austenitic stainless steel pipe to pipe joints, pipe to elbow joints and pipe to valve joint after application of the process.
On Taylor-Series Approximations of Residual Stress
NASA Technical Reports Server (NTRS)
Pruett, C. David
1999-01-01
Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.
Modeling of residual stresses by HY-100 weldments
Zacharia, T.; Taljat, B.; Radhakrishnan, B.
1997-02-01
Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.
Modeling and experimental verification of thermally induced residual stress in RF-MEMS
NASA Astrophysics Data System (ADS)
Somà, Aurelio; Mubasher Saleem, Muhammad
2015-05-01
Electrostatically actuated radio frequency microelectromechanical systems (RF-MEMS) generally consist of microcantilevers and clamped-clamped microbeams. The presence of residual stress in these microstructures affects the static and dynamic behavior of the device. In this study, nonlinear finite element method (FEM) modeling and the experimental validation of residual stress induced in the clamped-clamped microbeams and the symmetric toggle RF-MEMS switch (STS) is presented. The formation of residual stress due to plastic deformation during the thermal loading-unloading cycle in the plasma etching step of the microfabrication process is explained and modeled using the Bauschinger effect. The difference between the designed and the measured natural frequency and pull-in voltage values for the clamped-clamped microbeams is explained by the presence of the nonhomogenous tensile residual stress. For the STS switch specimens, three-dimensional (3D) FEM models are developed and the initial deflection at zero bias voltage, observed during the optical profile measurements, is explained by the residual stress developed during the plasma etching step. The simulated residual stress due to the plastic deformation is included in the STS models to obtain the switch pull-in voltage. At the end of the simulation process, a good correspondence is obtained between the FEM model results and the experimental measurements for both the clamped-clamped microbeams and the STS switch specimens.
Spatial distribution of residual stresses in glass-ZrO2 sphero-cylindrical bilayers.
Wendler, Michael; Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich
2016-07-01
Residual stresses arising from inhomogeneous cooling after sintering have shown to play a preponderant role in the higher incidence of chippings observed for glass-zirconia dental prostheses. Still, current descriptions of their nature and distribution have failed to reconcile with clinical findings. Therefore, an axisymmetric sphero-cylindrical bilayer model was used in this study to determine the effect of the cooling rate on the final spatial distribution of residual stresses. Zirconia frameworks with two different radii (1.6 and 3.2mm) were CAD/CAM fabricated. Subsequent glass overlays with two different thickness ratios (1:1 and 2:1) were generated and heat pressed onto the zirconia substrates. The obtained structures were submitted to a last firing process and fast- (45°C/s) or slow-cooled (0.5°C/s) to room temperature. Unbonded bilayers were produced by firing glass overlays onto boron nitride coated zirconia. Thin sagittal and transversal sections were obtained from the specimens to assess residual stress distribution by means of light birefringence. The applied cooling rates did not affect distribution or magnitude of radial residual stresses (sagittal sections), whereas increased hoop stress magnitudes were measured (transversal sections) in fast-cooled specimens. A distinct stress nature was observed for the hoop stress component of unbonded overlays after fast cooling. Interaction between stress components seems to govern the final stress distribution, highlighting the importance of a multiaxial assessment of this problem in three-dimensional structures. PMID:27043169
Residual Stress Assessment in Thin Angle Ply Tubes
NASA Astrophysics Data System (ADS)
Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.
2003-05-01
This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.
A three-phase cylinder model for residual and transformational stresses in SMA composites
Berman, J.B.; White, S.R.
1994-12-31
SMA composites are a class of smart materials in which shape memory alloy (SMA) actuators are embedded in a polymer matrix composite. The difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. Similarly, the SMA transformations from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/epoxy interfacial debonding. In this study the residual and transformational stresses are investigated for an SMA wire embedded in a graphite/epoxy composite. A three phase micromechanical model is developed. The SMA wire is assumed to behave as a thermoelastic material. Nitinol{trademark} SMA austenitic and martensitic transformations are modeled using linear piecewise interpolation of the experimental data. The interphase is modeled as a thermoelastic polymer. A transversely isotropic thermoelastic composite is used for the outer phase. Stress-free conditions are assumed immediately before cool down from the cure temperature. The effect of SMA and coating properties on residual and transformational stresses are evaluated. A decrease in stresses at the composite/coating interface is predicted through the use of thick, compliant coatings. Reducing the recovery strain and moving the transformation to higher temperatures are also effective in reducing residual stresses.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai
2015-07-01
The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.
Computational model for residual stresses in a clad plate and clad fracture specimens
Rybicki, E.F.; Stonesifer, R.B.
1986-10-01
This report contains the results from computed residual stresses for three stainless steel clad plate configurations. Each simulates a condition of interest to a study on the effect of surface cracks in the clad layer of reactor pressure vessels. The configurations analyzed were the as-received 118-mm thick clad plate, a 32-mm thick specimen with a full-thickness of cladding weld metal, and a 32-mm thick specimen with a half-thickness of clad layer. The most accurate predictions of the available experimental results were made using the properties of 19Cr-9Ni-Mo-W material. The analytical model assumes that the stresses at the initial condition of 538/sup 0/C for the stress relief anneal are zero. Plastic strains develop during cooling and all subsequent conditions such as machining or temperature changes cause the cladding residual stresses to decrease. In parting-out of specimens from the initial 118-mm thick clad plate, the resulting residual stresses in the clad layer depend upon the sequence of metal removal. If excess base metal is removed first and then somes cladding subsequently removed, the residual stresses in the clad layer are significantly reduced. On the other hand, partial removal of cladding first results in additional plastic deformation in the clad layer and the retention of residual stresses near the material yield strength at the completion of the machining operation.
Residual stress distribution in oxide films formed on Zircaloy-2
NASA Astrophysics Data System (ADS)
Sawabe, T.; Sonoda, T.; Furuya, M.; Kitajima, S.; Takano, H.
2015-11-01
In order to evaluate residual the stress distribution in oxides formed on zirconium alloys, synchrotron X-ray diffraction (XRD) was performed on the oxides formed on Zircaloy-2 after autoclave treatment at a temperature of 360° C in pure water. The use of a micro-beam XRD and a micro-sized cross-sectional sample achieved the detailed local characterization of the oxides. The oxide microstructure was observed by TEM following the micro-beam XRD measurements. The residual compressive stress increased in the vicinity of the oxide/metal interface of the pre-transition oxide. Highly oriented columnar grains of a monoclinic phase were observed in that region. Furthermore, at the interface of the post-first transition oxide, there was only a small increase in the residual compressive stress and the columnar grains had a more random orientation. The volume fraction of the tetragonal phase increased with the residual compressive stress. The results are discussed in terms of the formation and transition of the protective oxide.
ETP-0492, Measured Residual Stresses in CYL S/N 53 Fretted Area
NASA Technical Reports Server (NTRS)
Webster, Ronald L.
1998-01-01
This test report presents the results of a residual stress survey of the inner clevis leg of lightweight cylinder SIN 053 as described by ETP-0492. The intent of this testing was to evaluate the residual stresses that occur in and around the inner clevis leg at the capture feature contact zone during a normal flight cycle. Lightweight case cylinder segment IU50717, S/N L053 from Flight STS-27 exhibited fretting around the contact zone of the inner clevis leg and the capture feature of the field joint. Post flight inspection revealed several large fitting pits on the inside of the inner clevis leg. This cylinder was assigned for both residual stress and metallurgical evaluation. This report is concerned only with the residual so= evaluations. The effects of glass bead cleaning and fi=ing were evaluated using the x-ray diffraction method.
NASA Astrophysics Data System (ADS)
Guan, Shan; Nelson, Bradley J.
2005-04-01
A new technique for electrodeposition of CoNiMnP hard magnetic thin films is developed to provide thin films with low residual stress and magnetic properties useful for MEMS applications. Processing parameters including applied current density, film thickness, pH and temperature of the electrolyte are regulated in order to reduce residual stress of the film. In addition, a hybrid residual stress reliever composed of sodium saccharine and a rare-earth salts mixture of Ce 2(SO 4) 3 and Nd 2(SO 4) 3 is created to further reduce the residual stress, eliminate microcracks and improve surface morphology of the film. The effects of residual stress on the magnetic properties of electrodeposited CoNiMnP hard magnetic films such as coercivity, saturation and residual magnetization are reported in this paper.
NASA Astrophysics Data System (ADS)
Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.
2014-02-01
Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.
Measurements of residual stresses and surface topography using optical techniques
NASA Astrophysics Data System (ADS)
Wang, Baishi
The dissertation presents two breakthrough optical interferometric techniques for the measurements of both whole-field residual stresses and surface topography. First, the whole-field residual stress measurement technique is developed for the first time using moire interferometry and Twyman/Green interferometry coupled high temperature resistant grating technique and thermal annealing. In the measurement, a special high temperature resistant cross grating is firstly made on the sample surface, and the whole-field residual stress relief is achieved by thermal annealing. Moire interferometry and Twyman/Green interferometry are then utilized to measure both in-plane and out-of-plane deformations generated by the residual stress relaxation, and then to obtain the whole-field strain redistribution due to the residual stress relief. The technique has been successfully applied to the measurement of the whole-field generalized 2-D residual stresses (i.e. both in-plane stresses and the out-of-plane normal stresses) in the rail using a transverse rail slice based on plausible assumptions. Its comparison to hole-drilling method with moire interferometry shows good quantitative agreement. Some key issues for further development are identified and discussed. Second, a novel polarization phase-stepping shearing interferometry (PPSSI) is presented for the calibration-free measurement of surface topography regardless of any surface reflectivity variation. The PPSSI incorporates the polarization phase modulation and Nomarski shearing interferometry to measure wavefront phase difference, or surface slope, irrespective of any wavefront amplitude change. The principle and theory of the PPSSI are described using Jones matrix method. Experimental results and its applications to the topographic measurements and flat wafers and speckle samples are shown. In addition, the modulation transfer function (MTF) and impulse response of a PPSSI system are studied both analytically and
Residual stresses in continuous graphite fiber Al metal matrix composites
NASA Technical Reports Server (NTRS)
Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.
1988-01-01
The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.
Nondestructive evaluation of near-surface residual stress in shot-peened nickel-base superalloys
NASA Astrophysics Data System (ADS)
Yu, Feng
Surface enhancement methods, which produce beneficial compressive residual stresses and increased hardness in a shallow near-surface region, are widely used in a number of industrial applications, including gas-turbine engines. Nondestructive evaluation of residual stress gradients in surface-enhanced materials has great significance for turbine engine component life extension and their reliability in service. It has been recently found that, in sharp contrast with most other materials, shot-peened nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, which can be exploited for nondestructive residual stress assessment. The primary goal of this research is to develop a quantitative eddy current method for nondestructive residual stress profiles in surface-treated nickel-base superalloys. Our work have been focused on five different aspects of this issue, namely, (i) validating the noncontacting eddy current technique for electroelastic coefficients calibration, (ii) developing inversion procedures for determining the subsurface residual stress profiles from the measured apparent eddy current conductivity (AECC), (iii) predicting the adverse effect of surface roughness on the eddy current characterization of shot-peened metals, (iv) separating excess AECC caused by the primary residual stress effect from intrinsic conductivity variations caused by material inhomogeneity, and (v) investigating different mechanisms through which cold work could influence the AECC in surface-treated nickel-base superalloys. The results of this dissertation have led to a better understanding of the underlying physical phenomenon of the measured excess AECC on nickel-base engine alloys, and solved a few critical applied issues in eddy current nondestructive residual stress assessment in surface-treated engine components and, ultimately, contributed to the better utilization and safer operation of the Air Force's aging
NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.
2007-01-01
2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.
Residual stress measurements of welded components using synchrotron and neutron diffraction.
Paradowska, A. M.; Price, J. W .H; Finlayson, T. R.; Lienert, U.; Ibrahim, R.; Monash Univ.; Univ. of Melbourne
2007-01-01
Residual stress remains the single largest unknown in industrial damage situations. Residual stresses have a significant effect on corrosion, fracture resistance, creep and corrosion/fatigue performance and a reduction of these stresses is normally desirable. In this research high energy synchrotron (70 keV) radiation (at the Advanced Photon Source) and thermal neutrons (at the Lucas Heights Research Reactor) have been employed to investigate and compare the residual stress characteristics in fully restrained samples with different numbers of weld beads. The aim of the research was to characterize the residual stress distribution which arises in a welded component with increasing number of beads. The number and resolution of the measurements carried out in this work reveal significant features of the residual stress pattern in single bead in the as-welded condition and after post-weld heat treatment. The intention is to provide key data for the validation of design, fitness-for-purpose methodologies and finite-element tools. In this presentation the details of the synchrotron X-ray and neutron techniques will be compared and contrasted, utilizing results from a number of weldment samples.
NASA Astrophysics Data System (ADS)
Soyama, Hitoshi; Nagasaka, Kazuya; Takakuwa, Osamu; Naito, Akima
Introducing compressive residual stress by a cavitating jet into the sub-surface of components used in nuclear power plants can mitigate stress corrosion cracking in these components. Although applying the jet is an effective method for this purpose, it should be used without causing damage to the surface from water jet droplets arising from high-pressure injection of the water jet. Thus, in introducing compressive residual stress, the injection pressure needs to be optimized. In this paper, in order to determine the optimum injection pressure, the residual stress of stainless steel treated by a jet at various injection pressures was measured using an X-ray diffraction method. The injection pressure of the jet was varied from 5 MPa to 300 MPa, and the diameter of the nozzle throat of the jet was varied from 0.35 mm to 2.0 mm. The variation of residual stress with depth was measured by alternating X-ray diffraction measurements with electropolishing. It was revealed that a cavitating jet at an injection pressure of 10 MPa with a nozzle diameter of 2.0 mm can introduce higher compressive residual stress to deeper into stainless steel compared with a jet at 300 MPa with a nozzle diameter of 0.35 mm when the downstream pressure of the nozzle was constant.
Residual Stresses in Porcelain-veneered Zirconia Prostheses
Baldassarri, Marta; Stappert, Christian F. J.; Wolff, Mark S.; Thompson, Van P.; Zhang, Yu
2012-01-01
Objectives Compressive stress has been intentionally introduced into the overlay porcelain of zirconia-ceramic prostheses to prevent veneer fracture. However, recent theoretical analysis has predicted that the residual stresses in the porcelain may be also tensile in nature. This study aims to determine the type and magnitude of the residual stresses in the porcelain veneers of full-contour fixed-dental prostheses (FDPs) with an anatomic zirconia coping design and in control porcelain with the zirconia removed using a well-established Vickers indentation method. Methods Six 3-unit zirconia FDPs were manufactured (NobelBiocare, Gothenburg, Sweden). Porcelain was hand-veneered using a slow cooling rate. Each FDP was sectioned parallel to the occlusal plane for Vickers indentations (n = 143; load = 9.8 N; dwell time = 5 s). Tests were performed in the veneer of porcelain-zirconia specimens (bilayers, n = 4) and porcelain specimens without zirconia cores (monolayers, n = 2). Results The average crack lengths and standard deviation, in the transverse and radial directions (i.e. parallel and perpendicular to the veneer/core interface, respectively), were 67 ± 12 μm and 52 ± 8 μm for the bilayers and 64 ± 8 μm and 64 ± 7 μm for the monolayers. These results indicated a major hoop compressive stress (~40 to 50 MPa) and a moderate radial tensile stress (~10 MPa) in the bulk of the porcelain veneer. Significance Vickers indentation is a powerful method to determine the residual stresses in veneered zirconia systems. Our findings revealed the presence of a radial tensile stress in the overlay porcelain, which may contributed to the large clinical chip fractures observed in these prostheses. PMID:22578663
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-15
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and
A micromechanical study of residual stresses in functionally graded materials
Dao, M.; Gu, P.; Maewal, A.; Asaro, R.J.
1997-08-01
A physically based computational micromechanics model is developed to study random and discrete microstructures in functionally graded materials (FGMs). The influences of discrete microstructure on residual stress distributions at grain size level are examined with respect to material gradient and FGM volume percentage (within a ceramic-FGM-metal three-layer structure). Both thermoelastic and thermoplastic deformation are considered, and the plastic behavior of metal grains is modeled at the single crystal level using crystal plasticity theory. The results are compared with those obtained using a continuous model which does not consider the microstructural randomness and discreteness. In an averaged sense both the micromechanics model and the continuous model give practically the same macroscopic stresses; whereas the discrete micromechanics model predicts fairly high residual stress concentrations at the grain size level (i.e., higher than 700 MPa in 5--6 vol% FGM grains) with only a 300 C temperature drop in a Ni-Al{sub 2}O{sub 3} FGM system. Statistical analysis shows that the residual stress concentrations are insensitive to material gradient and FGM volume percentage. The need to consider microstructural details in FGM microstructures is evident. The results obtained provide some insights for improving the reliability of FGMs against fracture and delamination.
Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi
2013-06-01
To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was
Investigation on Residual Stress Induced by Shot Peening
NASA Astrophysics Data System (ADS)
Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang
2015-03-01
The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.
An approximate method for residual stress calculation infunctionally graded materials
Becker, T.L.
1999-06-02
Thermal residual stresses in functionally graded materials(FGMs) arise primarily from nonlinear spatial variations in the thermalexpansion coefficient, but can be significantly adjusted by variations inmodulus. Thermoelastic analysis of FGMs is complicated by such modulusgradients. A class of problems for which thermal stress solutions formaterials with constant modulus can be used as a basis for approximationsfor FGMs is discussed. The size of the error in this approximation due togradients in elastic modulus is investigated. Analytical and finiteelement solutions for the thermal stresses in various FGM geometries arecompared to results from this approximate method. In a geometry ofpractical interest, a right cylinder graded along the z-axis, the errorfor a Ni-Al2O3 FGM was found to be within 15 percent for all gradientsconsidered. The form of the approximation makes it easier to identifydesirable types of spatial nonlinearity in expansion coefficient andvariations in modulus: this would allow the manipulation of the locationof compressive stresses.
Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2000-01-01
During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.
Dual-axis hole-drilling ESPI residual stress measurements
Steinzig, Michael; Schajer, Gary
2008-01-01
A novel dual-axis ESPI hole-drilling residual stress measurement method is presented. The method enables the evaluation of all the in-plane normal stress components with similar response to measurement errors, significantly lower than with single-axis measurements. A numerical method is described that takes advantage of, and compactly handles, the additional optical data that are available from the second measurement axis. Experimental tests were conducted on a calibrated specimen to demonstrate the proposed method, and the results supported theoretical expectations.
Residual stresses calculation in autofrettage using variable material properties method
Jahed, H.; Dubey, R.N.
1996-12-01
Autofrettaged cylinders are used for variety of applications in chemical and nuclear industries where large internal pressures have to be withstood. Autofrettage is in the process by which beneficial residual stresses are introduced into thick-walled tubes by initially subjected the tube to high internal pressure which causes inelastic deformation. Here, the variable material properties method is employed to obtain elastic-plastic analysis of an autofrettaged tube. This method develops inelastic solution from the elastic solution by treating the material properties as field variables. The distribution of these parameters are obtained in an iterative manner as a part of the solution. An energy based scheme is used to update these variables. The residual stress field of autofrettaged tubes based on the actual material curve and isotropic and kinematic hardening models are obtained. The results are shown to be in good agreement with the published experimental and finite element results.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-01-01
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.
Mechanical relaxation of localized residual stresses associatedwith foreign object damage
Boyce, B.L.; Chen, X.; Peters, J.O.; Hutchinson, J.H.; Ritchie,R.O.
2002-05-01
Foreign-object damage associated with the ingestion ofdebris into aircraft turbine engines can lead to a marked degradation inthe high-cycle fatigue life of turbine components. This degradation isgenerally considered to be associated with the premature initiation offatigue cracks at or near the damage sites; this is suspected to be dueto, at least in part, the impact-induced residual stress state, which canbe strongly tensile in these locations.
Residual Stress Analysis of Overspeeded Disk with Central Hole by X-ray Diffraction
NASA Technical Reports Server (NTRS)
Good, James N
1948-01-01
An X-ray - diffraction analysis of residual surface stresses after plastic strain was introduced in a parallel-sided 3S-O aluminum disk with a central hole by two types of centrifugal overspeed is reported. Both tangential and radial stresses were generally tensile with large local variations near the hole where surface stresses may have been partly superficial. These stresses were both tensile and compressive dependent on the distance from the disk center when mass compression was effected near the hole.
Modelling Of Residual Stresses Induced By High Speed Milling Process
NASA Astrophysics Data System (ADS)
Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas
2011-05-01
Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.
Modelling Of Residual Stresses Induced By High Speed Milling Process
Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas
2011-05-04
Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.
Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes
NASA Astrophysics Data System (ADS)
Tarak, Farzan
Welding, as a joining method in fabrication of engineering products and structural elements, has a direct influence on thermo-mechanical behavior of components in numerous structural applications. Since these thermo-mechanical behaviors have a major role in the life of welding components, predicting thermo-mechanical effects of welding is a major factor in designing of welding components. One of the major of these effects is generation of residual stresses due to welding. These residual stresses are not the causes of failure in the components solely, but they will add to external loads and stresses in operating time. Since, experimental methods are time consuming and expensive, computational simulation of welding process is an effective method to calculate these residual stresses. This investigation focuses on the evaluation of residual stresses and distortions due to circumferential girth welding of austenitic stainless steel pipes using the commercial finite element software ESI Visual-Environment and SYSWELDRTM to simulate welding process. Of particular importance is the comparison of results from three different types of mechanics models: 1) Axisymmetric, 2) Shell, and 3) Full 3-D.
Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys
NASA Astrophysics Data System (ADS)
Yu, F.; Nagy, P. B.
2006-03-01
Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.
Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys
Yu, F.; Nagy, P. B.
2006-03-06
Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.
Residual stress, mechanical behavior and electrical properties of Cu/Nb thin-film multilayers
Griffin, A.J. Jr.; Hundley, M.F.; Jervis, T.R.; Kung, H.H.; Scarborough, W.K.; Walter, K.C.; Nastasi, M.; Embury, J.D.
1995-09-01
Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.
Determination and modeling of residual stress in functionally graded WC-Co
NASA Astrophysics Data System (ADS)
Tahvilian, Leila
Gradual variations in composition and/or structure through the volume of functionally graded materials (FGMs) generally result in corresponding continuous spatial variations in mechanical/physical properties, and often in significant residual stresses that develop during processing. Due to inhomogeneous properties in these materials, residual stress measurement in FGMs can be a very challenging problem. In this study, residual stresses in functionally graded cemented tungsten carbide (FG-WC-Co) were investigated by numerical, analytical and experimental approaches by means of a layer removal technique. The numerical method consisted of finite element analysis (FEA) modeling for the FGM plate, in order to calculate residual stress distribution over the volume and to develop a method for predicting residual stress levels in closely related materials. The analytical procedure embodied a mathematical approach to determine residual stress distributions, and analytically determined values are compared with those obtained from FEA modeling and experimental results. The experimental approach consisted of fabricating and heat treating FG-WC-Co flat samples, then measuring strain changes by strain gauge after each sequential layer removal from the opposite side of the specimen from the graded region. Good agreement was found between analytical, numerical and experimental results. Furthermore, thermal residual stress distribution in FG-WC-Co hollow cylinder was examined with an emphasis on the effects of key variables, the gradient profile and the gradient thickness, on the magnitude and distribution of the stress field. An analytical direct solution based on solving the governing equations of a cylinder composed of a uniform inner core and a functionally graded outer shell was developed. The cylindrical compound was considered as two separate elements: homogeneous cylinder and functionally graded shell. Material properties, such as the elastic modulus and the coefficient of
Residual stress alleviation of aircraft metal structures reinforced with filamentary composites
NASA Technical Reports Server (NTRS)
Kelly, J. B.; June, R. R.
1973-01-01
Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.
Cold pulse and rotation reversals with turbulence spreading and residual stress
NASA Astrophysics Data System (ADS)
Hariri, F.; Naulin, V.; Juul Rasmussen, J.; Xu, G. S.; Yan, N.
2016-05-01
Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition. Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.
Quantification of Residual Stress from Photonic Signatures of Fused Silica
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Hayward, Maurice; Yost, William E.
2013-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress
Phase composition and residual stresses in thermal barrier coatings
NASA Astrophysics Data System (ADS)
Lozovan, A. A.; Betsofen, S. Ya; Ashmarin, A. A.; Ryabenko, B. V.; Ivanova, S. V.
2016-07-01
X-ray study of the phase composition and residual stresses distribution in two-layer APS coatings showed that the ceramic layer consists of t-ZrO2 phase with tetragonal lattice and the metal underlayer γ-solid solution based on nickel. In the transition zone thickness of ∼ 100 pm as the distance from the surface was revealed a gradual transition from t-ZrO2 to γ-solid solution. Increase in the specific volume of the metal underlayer resulting TGO growing leads to the formation of this layer high compressive stresses up to 600 MPa. In this case, the ceramic layer contains tensile stress up to 200 MPa.
Quantification of residual stress from photonic signatures of fused silica
NASA Astrophysics Data System (ADS)
Cramer, K. Elliott; Hayward, Maurice; Yost, William T.
2014-02-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.
Thermoelastic Residual Stresses and Deformations at Laser Treatment
NASA Astrophysics Data System (ADS)
Gusarov, A. V.; Malakhova-Ziablova, I. S.; Pavlov, M. D.
A thermoelastic model implying relaxation of stresses at melting is applied for materials with arbitrary thermoelastic properties and the melting point. The range of Poisson's ratio 0.17 - 0.34 is numerically studied. The residual stresses are independent of the space scale. In narrow remelted zones and beads the maximum longitudinal tensile stress is approximately twice as high as the transverse one. The calculations predict cracking of alumina, even with 1600 oC preheating, plastic deformation or cracking of hard metal alloys H13 and TA6 V, and no destruction of polystyrene and thestrongest grades of quartz glass. The calculation results can be used for predicting the thermomechanical stability of materials at laser treatment.
Residual strain change resulting from stress corrosion in Carrara marble
NASA Astrophysics Data System (ADS)
Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael
2016-04-01
Residual stresses and strains have been shown to play a fundamental role in determining the elastic behavior of engineering materials, yet the effect of these strains on brittle and elastic behavior of rocks remains unclear. In order to evaluate the impact of stored elastic strains on fracture propagation in rock, we undertook a four-month-long three-point bending test on three large 1100 x 100 x 100 mm Carrara Marble samples. This test induced stable low stress conditions in which strains were concentrated at the tip of a saw cut and pre-cracked notch. A corrosive environment was created at the tip of the notch on two samples (M2 and M4) by dripping calcite saturated water (pH ~ 7.5-8). Sample M5 was loaded in the same way, but kept dry. Samples were unloaded prior to failure, and along with an additional non-loaded reference sample (M0), cored into cylindrical subsamples (ø = 50 mm, h = 100 mm) before being tested for changes in residual elastic strains at the SALSA neutron diffractometer at the Institute Laue-Langevin (ILL), Grenoble, France. Three diffraction peaks corresponding to crystallographic planes hkl (110), (104) and (006) were measured in all three spatial directions relative to the notch. Shifts in the diffraction peak position (d) with respect to a strain free state are indicative of intergranular strain, while changes in the width of the peak (FWHM) reflect changes in intragranular strain. We observe distinctly different patterns in residual and volumetric strains in hkℓ (104) and (006) for the dry M5 and wet tested samples (M2 and M4) indicating the presence of water changes the deformation mechanism, while (110) is strained in compression around 200 μstrain in all samples. A broadening of the diffraction peaks (006) and (110) in front of the crack tip is observed in M2 and M4, while M5 shows no changes in the peak width throughout the depth of the sample. We suggest water present at the crack tip increased the rate of corrosion, allowing a
Consequences of Residual Stresses in Thin Polymer Films
NASA Astrophysics Data System (ADS)
Reiter, Guenter
2010-03-01
In our quest for making functional devices smaller, the thickness of polymer films has reached values even smaller than the diameter of the unperturbed molecule. However, despite enormous efforts over the last decade, our understanding of the origin of some puzzling properties of such thin films is still not satisfactory and several peculiar observations remain rather mysterious. In this context, we explore the consequences of the transition from a dilute polymer solution to the glassy state with respect to the properties of polymers in thin films. This transition is likely to result in residual stresses, arising from out-of-equilibrium chain conformations due to rapid solvent loss. Consequently, depending on thermal history and ageing time, such films exhibit significant changes even in the glassy state ^ which we quantify by performing detailed studies of viscoelastic dewetting of thin polystyrene films on solid substrates. We explored relaxation times, residual stresses, and temporal changes of the stability of non-equilibrated thin films as they progress toward stable equilibrium behaviors. To do so, we have focused primarily on times shorter than the reptation time of the polymer. The number of spontaneously nucleated holes per unit area is seen to decrease as the films were aged below the glass transition, showing the meta-stability of the system. The ratio of stress over elastic modulus was found to increase strongly with decreasing film thickness and increasing chain length. Full equilibration of chain conformations required long times comparable to bulk reptation times. However, for chains longer than about 3000 monomers, the residual stress relaxed faster, at a rate independent of chain length. We present some tentative ideas on the relation between these observed atypical mechanical and relaxational behaviors and meta-stable states introduced by sample preparation.
Residual stress induced crystalline to amorphous phase transformation in Nb2O5 quantum dots
NASA Astrophysics Data System (ADS)
Dhawan, Sahil; Dhawan, Tanuj; Vedeshwar, Agnikumar G.
2014-07-01
Nb2O5 quantum dots (QDs) were grown using a simple technique of vacuum thermal evaporation. QDs were found to be crystalline in nature by selected area electron diffraction (SAED) in TEM. Samples with thickness up to 20 nm did not show any significant residual strain. Residual stress effect on band gap of crystalline Nb2O5 was studied for films thicker than 20 nm. Residual strain was determined using SAED of the films with reference to powder X-ray diffraction (XRD). Films thicker than 45 nm become amorphous as analyzed by both SAED and XRD. The optical absorption of films in the range 25-60 nm indicates significantly varying optical band gap of films. The varying band gap with film thickness scales linearly very well with the variation of residual stress with film thickness. The residual stress dependence of band gap of crystalline films yields stress free band gap as 3.37 eV with pressure coefficient of band gap (∂Eg/∂P)T = -29.3 meV/GPa. From this study, the crystalline to amorphous transformation in tetragonal form of M-Nb2O5 has been determined to be at about 14 GPa. Both pressure coefficient of band gap and crystalline to amorphous transition for tetragonal M-Nb2O5 have been determined for the first time in the literature.
Measurement of residual stresses on ceramic materials with high spatial resolution
Kozaczek, K.J.; Ruud, C.O.; Fitting, J.D.
1993-12-31
A fast x-ray diffraction technique has been developed for measuring the residual stresses with high spatial resolution in ceramic materials. This resolution is limited by the mean size of grains and the radiation type. The effective diffraction elastic constants were experimentally determined for alumina as (E/l+{nu})){sub (1016)} = 200 GPa. The accuracy of XRD measurement of residual stresses with the spatial resolution of 170 {mu}m and precision {plus_minus} 15 MPa was verified experimentally by strain gauge measurements. The stress field around a singular Kovar pin brazed to alumina was asymmetric with high tangential stresses in the vicinity of the pin decreasing with the distance from the pin.
Nuño, N; Madrala, A; Plamondon, D
2008-08-28
The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6 MPa in compression are measured for the preheated stem. PMID:18692188
NASA Astrophysics Data System (ADS)
Lombardi, Anthony; D'Elia, Francesco; Ravindran, Comondore; Sediako, Dimitry; Murty, B. S.; MacKay, Robert
2012-12-01
The replacement of nodular cast iron with 319 type aluminum (Al) alloys in gasoline engine blocks is an example of the shift towards the use of lighter alloys in the automotive industry. However, excessive residual stress along the cylinder bore may lead to bore distortion, significantly reducing engine operating efficiency. In the current study, microstructure, mechanical properties and residual stress were characterized along the cylinder bridge of engine blocks following thermal sand reclamation (TSR), T7 heat treatment, and service testing of the casting. Neutron diffraction was effectively used to quantify the residual stress along both the Al cylinder bridge and the adjacent gray cast iron cylinder liners in the hoop, radial, and axial orientations with respect to the cylinder axis. The results suggest that an increase in cooling rate along the cylinder caused a significant refinement in microstructure at the bottom of the cylinder. In turn, this suggested an increase in alloy strength at the bottom of the cylinder relative to the top. This increased strength at the bottom of the cylinder likely reduced the susceptibility of the cylinder to rapid relief of residual stress at elevated temperature. In contrast, the coarse microstructure at the top of the cylinder likely triggered stress relief at an elevated temperature.
Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys
Blodgett, M.P.; Yu, F.; Nagy, P.B.
2005-04-09
Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.
Method and apparatus for determination of material residual stress
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor); Flom, Yury (Inventor)
1993-01-01
A device for the determination of residual stress in a material sample consisting of a sensor coil, adjacent to the material sample, whose resistance varies according to the amount of stress within the material sample, a mechanical push-pull machine for imparting a gradually increasing compressional and tensional force on the material sample, and an impedance gain/phase analyzer and personal computer (PC) for sending an input signal to and receiving an input signal from the sensor coil is presented. The PC will measure and record the change in resistance of the sensor coil and the corresponding amount of strain of the sample. The PC will then determine, from the measurements of change of resistance and corresponding strain of the sample, the point at which the resistance of the sensor coil is at a minimum and the corresponding value and type of strain of the sample at that minimum resistance point, thereby, enabling a calculation of the residual stress in the sample.
Neutron diffraction residual stress studies for aero-engine component applications
NASA Astrophysics Data System (ADS)
Clay, K.; Small, C.
1991-12-01
Computer graphics for a presentation describing how Rolls-Royce is refining the method of residual stress measurement by neutron diffraction to suit the characteristic stress fields of components are presented. Results to date are given. An outline of how this residual stress data is to be used in developing stress models for critical rotating components is given.
The formation mechanism and the influence factor of residual stress in machining
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.
Quantitative assessments of residual stress fields at the surface of alumina hip joints.
Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang
2010-11-01
In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe. PMID:20848660
Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment
Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.
1994-03-01
This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application.
Residual stresses in sputter-deposited copper/330 stainless steel multilayers
Zhang, X.; Misra, A.
2004-12-15
The evolution of residual stresses as a function of bilayer period from 10 nm to 1 {mu}m in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5 to 500 nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.
Residual stresses in sputter-deposited copper/330 stainless steel multilayers
NASA Astrophysics Data System (ADS)
Zhang, X.; Misra, A.
2004-12-01
The evolution of residual stresses as a function of bilayer period from 10nmto1μm in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5to500nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.
Estimation of uncertainty for contour method residual stress measurements
Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.
2014-12-03
This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less
Estimation of uncertainty for contour method residual stress measurements
Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.
2014-12-03
This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).
Xu, Hanbing; Hubbard, Camden R; An, Ke; Wang, Xun-Li; Feng, Zhili; Qu, Jun
2009-01-01
Friction stir processing (FSP) was successfully used to stir and mix nano-sized Al2O3 particles into a Al6061-T6 aluminum plate to form a nanocomposite layer up to 3 mm thick. This nanocomposite surface has demonstrated significantly improved surface hardness, yield strength, and wear-resistance without sacrificing the substrate ductility and conductivity. Neutron diffraction analysis was conducted to determine the residual stress distribution in the nanocomposite surface layer. For comparison, the residual stress of the aluminum surface that was processed similarly but had no particle involved was also measured. Results showed that the macro-level residual stresses in the FSP zone without particles are low due to the annealing effect induced by the long heating time and large heat input. The macro-level residual stresses in the FSP-processed Al-Al2O3 nanocomposite zone are tensile up to 100 MPa in all three directions. The details of the results will be further discussed in the paper.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Junjie; Kong, Fanrong; Liu, Shuang; Kovacevic, Radovan
2015-03-01
A three-dimensional finite element (FE) model was developed to numerically calculate the temperature field and residual-stress field in the autogenous laser welding process. The grid independence of the FE model was verified to eliminate the variation of the heat flux between adjacent elements. A cut-off temperature method with combination of the tensile testing was used to consider the effect of high-temperature material properties on the numerical simulation. The effect of the latent heat of fusion and evaporation was also taken into consideration. High compressive initial stress was presented in the selected high-strength steel plates. A subroutine was written to consider the initial stress in the FE mode. Predicted residual stress agreed well with experimental data obtained by an X-ray diffraction technique. Results showed that the transverse and longitudinal residual stresses prevailed in the autogenous laser welding process, and the thermal stress concentration occurred in the molten pool and its adjacent regions. The effect of the welding speed on the distribution of residual stress was also studied. The values of residual stress decreased with an increase in the welding speed.
Residual Stresses in 21-6-9 Stainless Steel Warm Forgings
Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.
2012-11-14
Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.
Development of residual stress in sol-gel derived Pb(Zr ,Ti)O3 films: An experimental study
NASA Astrophysics Data System (ADS)
Corkovic, S.; Whatmore, R. W.; Zhang, Q.
2008-04-01
Residual stresses develop in the sol-gel-derived ferroelectric thin films during the transformation of the metal-organic gel to the metal oxide upon thermal treatment and due to the thermal and elastic mismatch between the Pb(Zrx,Ti1-x)O3 (PZT) film and the substrate materials during cooling. In this study, residual stresses were determined using the wafer curvature method after the deposition of multilayer PZT film on platinized (100) silicon wafers. A multilayer model for stress analysis was used to calculate the residual stress in PZT films of three different compositions: x =0.4, x =0.52, and x =0.6. Orientation dependent residual stresses were found in compositions containing the tetragonal phase, with x =0.4 and x =0.52. Depending on the fraction of (100) orientated domains low compressive or low tensile stress was found in Pb(Zr0.4Ti0.6)O3 (PZT 40/60). Higher residual stress was found in PZT films consisting of only rhombohedral crystallographic structure (PZT 60/40) while the residual stress in PZT films with morphotropic boundary composition (PZT 52/48) was significantly dependent on the film orientation and the phase composition and could range from 17to90MPa. The effect of the film orientation on residual stress was found to be a function of the anisotropic thermal expansion coefficient of PZT. The contribution of the thermal and elastic properties of materials to the total wafer curvature was investigated and discussed. Finally, the residual stress results calculated with the four layer model were compared to the results calculated using the Stoney equation.
Kekalo, I. B.; Mogil’nikov, P. S.
2015-06-15
The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.
Weld Residual Stress and Distortion Analysis of the ARES I-X Upper Stage Simulator (USS)
NASA Technical Reports Server (NTRS)
Raju, Ivatury; Dawicke, David; Cheston, Derrick; Phillips, Dawn
2008-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. While the main focus of this paper is a discussion of the weld modeling procedures and results for the USS, a short summary of the CIFS assessment is provided.
Thermal stress effects in intermetallic matrix composites. Final report
Wright, P.K.; Sensmeier, M.D.; Kupperman, D.S.; Wadley, H.N.G.
1993-09-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Nondestructive characterization of residual stress within CMOS-based composite microcantilevers
NASA Astrophysics Data System (ADS)
Rendon-Hernandez, Adrian A.; Camacho-Leon, Sergio; Martinez-Chapa, Sergio O.
2013-04-01
Residual stress can affect the performance of thin-film micromachined structures and lead to curling in cantilevers as well as distortion in the frequency of resonant devices. As the origin of residual stress is dependent on the fabrication processes, a nondestructive method for characterization of residual stress independent of processes conditions is desirable for supporting the design of microcantilever-based microsystems. In this paper we present a nondestructive characterization of the residual stress within composite microcantilever beams providing valuable insights toward predicting their deflection profile after mechanical releasing from the substrate. The approach relies on the assumption of a linear gradient stress and a quadratic deflection profile across a composite microcantilever.
NASA Astrophysics Data System (ADS)
Biswas, Debaleen; Sinha, Anil Kumar; Chakraborty, Supratic
2016-10-01
Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10 nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O2 plasma. The residual stress of the films deposited at higher pAr (Ar:O2 = 4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O2 (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-01
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E ×B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E ×B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E ×B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and
Quantification of residual stress from photonic signatures of fused silica
Cramer, K. Elliott; Yost, William T.; Hayward, Maurice
2014-02-18
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup −12} Pa{sup −1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.
Operator Manual for X-ray Residual Stress Mapping
Wright, M.C.
2003-07-30
This document is intended to serve as a operator manual for remote control of the TEC x-ray diffraction system. It is assumed that the reader is familiar with the operation of the SaraTEC{trademark} 1630 Acquisition Manager software for the TEC 1630 X-Ray Diffraction System. This manual describes the operation of the new TEC Remote Serial Control Module (RCSM) that runs on the TEC computer and Run-the-System that runs on the motion control computer. The basic goal is to add enough control of the TEC system to enable stress mapping. In stress mapping, the specimen is positioned using our X-Y-Z-Phi translation system and data is collected using the TEC system. The process is then repeated for the next position using a table of preset positions. X-Y-Z-Phi axis management is handled by ''Run-the-System'', the LabVIEW program originally developed for the Neutron Residual Stress Mapping Facility, running on a separate computer from the one that controls the TEC. Run-the-System also manages all remote start, stop, and configuration commands that are sent to the TEC system. The two computers communicate over an RS-232 serial line.
NASA Astrophysics Data System (ADS)
Purmohamad, H.; Kermanpur, A.; Shamanian, M.
2010-02-01
The residual stresses developed during the circumferential butt gas tungsten arc welding (GTAW) process of Incoloy 800H pipes were simulated using the finite element method. A decoupled thermostructural model was developed in three dimensions. The element birth and death technique was used for the addition of filler material in the weld pool. The Goldak double ellipsoidal model was used to simulate the distribution of arc heat during welding. The plastic behavior of the material was described by Von Mises yield function and the bilinear kinematics hardening was assumed. To validate the thermostructural model, both temperature and residual stress distributions within the pipes were measured using thermocouples and strain gages, respectively. Good agreements were found between the experimental and simulation results. The model was then used to predict distribution of residual stresses during the GTAW of Incoloy 800H pipes and to study effects of process parameters on the residual stresses.
NASA Astrophysics Data System (ADS)
Korobov, A. I.; Izosimova, M. Yu.; Odina, N. I.
2015-05-01
Nonlinear scanning laser vibrometry is used for diagnostics of cylindrical resonators made of polycrystalline aluminum alloy with residual stresses and defects. The diagnostics is performed with flexural Lamb waves. The eigenmode frequency of such a resonator is found to depend on the amplitude of flexural Lamb waves excited in it (the fast dynamics effect), which points to the presence of a nonclassical nonlinear elasticity in the resonator material. Studying the nonlinear interactions between amplitude-modulated flexural Lamb waves in resonators allow the determination of the coordinates of defects and residual strains in them.
NASA Technical Reports Server (NTRS)
Hu, Shoufeng; Nairn, John A.
1992-01-01
An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.
Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation
NASA Astrophysics Data System (ADS)
Li, Wenya; Yang, Kang; Zhang, Dongdong; Zhou, Xianglin
2016-01-01
In this paper, an analysis on the residual stress evolution of cold-sprayed copper coatings on Cu and Al substrates was performed. To investigate the influences of particle velocity, temperature and material combination on the final residual stresses, an integrated frame of calculation was proposed based on the simulation results obtained from the developed thermo-mechanically coupled Eulerian model. In a single Cu splat, generally speaking, the maximum residual stress and plastic deformation are concentrated at the outside contact zone rather than at the center point of initial impact. The action of friction shear between the particle and substrate during impacting should be considered as one of the essential factors on the final residual stress. And the states of residual stresses can vary significantly depending on the material combination, particle velocity, and temperature. In a single pass Cu coating, the residual stress fluctuates across the coating and there exists both compressive stress and tensile stress within the coating. At a certain range of impacting velocities, the resultant residual stresses increase with the increase of particle velocity. The present simulated results are related to the reported experiments by others, showing that the residual stress states and stress change trend are different from some of the reported results.
Nonlinear elastic properties of materials with residual stresses
NASA Astrophysics Data System (ADS)
Korobov, A.; Romanov, A.; Morozov, A.
2012-12-01
The non-linear elastic properties of rock samples and metal samples of microcrystalline aluminium alloy were studied using NRUS method. The residual shear strains were initially introduced in metal samples. In these samples the effect of slow dynamics was also investigated. Based on the analysis of experimental results it was concluded: the effect of slow dynamics, observed in the experiment, can not be explained solely by thermoelastic effects, but it is associated, in our opinion, with the slow relaxation of the internal structure of the samples.
Weyant, , C. M.; Almer, J. D.; Faber, K. T.; Stony Brook Univ.
2009-01-01
High-energy X-rays were used to determine the local phase composition and residual stresses through the thickness of as-sprayed and heat-treated plasma-sprayed thermal barrier coatings consisting of a NiCoCrAlY bond coat and an yttria-stabilized zirconia (YSZ) topcoat produced with through-thickness segmentation cracks. The as-sprayed residual stresses reflected the combined influence of quenching stresses from the plasma spray process, thermal expansion mismatch between the topcoat, bond coat and substrate, and stress relief from the segmentation cracks. Heat treatments led to the formation of a thermally grown oxide (TGO) which was in compression in the plane, as well as relief of quenching stresses and development of a stress gradient in the YSZ topcoat. The high-energy X-ray technique used in this study revealed the effects that TGO and segmentation cracks have on the in-plane stress state of the entire coating.
Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi
2012-01-01
Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.
Residual stress delaying phase transformation in Y-TZP bio-restorations
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud; Hanan, Jay C.
2012-01-01
Engineering favorable residual stress for the complex geometry of bi-layer porcelain-zirconia crowns potentially prevents crack initiation and improves the mechanical performance and lifetime of the dental restoration. In addition to external load, the stress field depends on initial residual stress before loading. Residual stress is the result of factors such as the thermal expansion mismatch of layers and compliance anisotropy of zirconia grains in the process of sintering and cooling. Stress induced phase transformation in zirconia extensively relaxes the residual stress and changes the stress state. The objective of this study is to investigate the coupling between tetragonal to monoclinic phase transformations and residual stress. Residual stress, on the surface of the sectioned single load to failure crown, at 23 points starting from the pure tetragonal and ending at a fully monoclinic region were measured using the micro X-ray diffraction sin2 ψ method. An important observation is the significant range in measured residual stress from a compressive stress of -400 MPa up to tensile stress of 400 MPa and up to 100% tetragonal to monoclinic phase transformation.
Kartal, Mehmet E.
2013-01-01
The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187
Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings
NASA Astrophysics Data System (ADS)
Klusemann, B.; Denzer, R.; Svendsen, B.
2012-01-01
In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D.
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1998-01-01
In recent years, much effort has been spent examining the residual stress-strain states of advanced composites. Such examinations are motivated by a number of significant concerns that affect composite development, processing, and analysis. The room-temperature residual stress states incurred in many advanced composite systems are often quite large and can introduce damage even prior to the first external mechanical loading of the material. These stresses, which are induced during the cooldown following high-temperature consolidation, result from the coefficient of thermal expansion mismatch between the fiber and matrix. Experimental techniques commonly used to evaluate composite internal residual stress states are non-mechanical in nature and generally include forms of x-ray and neutron diffraction. Such approaches are usually complex, involving a number of assumptions and limitations associated with a wide range of issues, including the depth of penetration, the volume of material being assessed, and erroneous effects associated with oriented grains. Furthermore, and more important to the present research, these techniques can assess only "single time" stress in the composite. That is, little, if any, information is obtained that addresses the time-dependent point at which internal stresses begin to accumulate, the manner in which the accumulation occurs, and the presiding relationships between thermoelastic, thermoplastic, and thermoviscous behaviors. To address these critical issues, researchers at the NASA Lewis Research Center developed and implemented an innovative mechanical test technique to examine in real time, the time-dependent thermomechanical stress behavior of a matrix alloy as it went through a consolidation cycle.
Monitoring of residual stresses in injection-molded plastics with holographic interferometry
NASA Astrophysics Data System (ADS)
Sanchez, Lilia A.; Hornberger, Lee E.
2002-01-01
Residual stresses are often trapped in injection-molded plastic parts due to the rapid cooling of the material in this manufacturing process. These stresses are a common source of failure in plastic components in automobiles, appliances and computers and are difficult to measure with conventional residual-stress experimental methods. Real-time holographic interferometry appears to be a viable technique to identify and monitor these stresses in plastic parts. In this investigation, holographic interferometry was used to monitor the relaxation of residual stresses in the plastic-molded actuator arm of a computer hard drive. In the first phase of this study, the relaxation of these residual stresses as a function of temperature was observed. In the second phase, the time to completely relax the residual stresses in the plastic part at an elevated temperature, the annealing temperature, was determined. In the third phase of this investigation, the rate of relaxation of these residual stresses as a function of time at various operating temperatures, was studied. Based on the results of this study, holographic interferometry appears to be a powerful research tool in the study of residual stresses in plastic parts. It also has the potential to be a practical tool for the inspection of manufactured plastic parts for the presence of residual stress.
An analytical method on the surface residual stress for the cutting tool orientation
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2009-12-01
The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.
An analytical method on the surface residual stress for the cutting tool orientation
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2010-03-01
The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.
Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy
Sparks, R.G.; Enloe, W.S.; Paesler, M.A.
1988-12-01
Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.
Thermal Stability of Residual Stresses in Ti-6Al-4V components
NASA Astrophysics Data System (ADS)
Stanojevic, A.; Angerer, P.; Oberwinkler, B.
2016-03-01
The need for light weight design while maintaining a high safety is essential for many components, especially in the aircraft industry. Therefore, it's important to consider every aspect to reduce weight, improve fatigue life and maintain safety of crucial components. Residual stresses are a major factor which can positively influence components and fulfil all three requirements. However, due to the inconstancy of the behaviour of residual stresses during the life time of a component, residual stresses are often neglected. If the behaviour of residual stresses could be described reliably over the entire life time of a component, residual stresses could be taken into account and components could be optimized even further. Mechanical and thermal loads are the main reason for relaxation of residual stresses. This work covers the thermal stability of residual stresses in Ti-6Al-4V components. Therefore, exposure tests at raised temperatures were performed on specimens with different surface conditions. Residual stresses were measured by x-ray diffraction before and after testing. Creep tests were also carried out to describe the creep behaviour and thereby the ability for residual stress relaxation. A correlation between the creep rate and amount of relaxed stress was found. The creep behaviour of the material was described by using a combination of the Norton Power law and the Arrhenius equation. The Zener-Wert-Avrami model was used to describe the residual stress relaxation. With these models a satisfying correlation between measured and calculated data was found. Hence, the relaxation of residual stresses due to thermal load was described reliably.
NASA Astrophysics Data System (ADS)
Hubel, Sebastian; Dillhöfer, Alexander; Rieder, Hans; Spies, Martin; Bamberg, Joachim; Götz, Joshua; Hessert, Roland; Preikszas, Christina
2014-02-01
The evaluation of residual stresses using ultrasound can be a very complex issue, because different material properties may effect the propagation of ultrasonic waves. Nevertheless, in the manufacturing of modern aero engines it is essential to benefit from the full potential of the employed materials. In this context, it is indispensable to test whether ultrasonic stress measurement is applicable for the highly developed nickel- and titanium-based alloys. This contribution contains basic investigations on the achievable measurement effect in samples made of Inconel IN718 and the Titanium alloy Ti 6-2-4-6. Furthermore, we give an overview over the principles of ultrasonic stress measurement using bulk and Rayleigh waves and present first results which are discussed with respect to texture effects and future work.
NASA Astrophysics Data System (ADS)
Liu, Hongxi; Xu, Qian; Zhang, Xiaowei; Wang, Chuanqi; Tang, Baoyin
2013-02-01
Titanium nitride (TiN) films were fabricated on AISI52100 bearing steel surface employing a hybrid plasma immersion ion implantation and deposition (PIIID) technique. The chemical composition, morphology and microstructure of TiN films were characterized by atomic force microscope (AFM), energy dispersive spectrometer (EDS), scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The residual stress of TiN films under different deposition parameter conditions were measured by means of glazing incidence angle X-ray diffraction (GIXRD) method. The influence of film thickness and X-ray glazing incidence angle on residual stress were investigated. AFM observation reveals that the TiN films have extremely smooth surface, high uniformity and efficiency of space filling over large areas. XRD analysis results indicate that TiN phase exists in the surface modified layer and exhibits a preferred orientation with the (2 0 0) plane. The GIXRD data shows that the residual stress in as-deposited TiN films is compressive stress, and the residual stress value decreases with the film thickness and increases with the glazing incidence angle. The compressive stress reduces from 2.164 GPa to 1.163 GPa, which corresponds to the film thickness from 1.5 μm to 4.5 μm, respectively. Reasonably selecting PIIID process parameters for TiN films fabrication, the residual stress in the film can be controlled effectively.
Atomistic modelling of residual stress at UO2 surfaces.
Arayro, Jack; Tréglia, Guy; Ribeiro, Fabienne
2016-01-13
Modelling oxide surface behaviour is of both technological and fundamental interest. In particular, in the case of the UO2 system, which is of major importance in the nuclear industry, it is essential to account for the link between microstructure and macroscopic mechanical properties. Indeed micromechanical models at the mesoscale need to be supplied by the energetic and stress data calculated at the nanoscale. In this framework, we present a theoretical study, coupling an analytical model and thermostatistical simulation to investigate the modifications induced by the presence of a surface regarding atomic relaxation and energetic and stress profiles. In particular, we show that the surface effective thickness as well as the stress profile, which are required by micromechanical approaches, are strongly anisotropic. PMID:26648246
X-ray diffraction measurement of residual stresses in thick, multi-pass steel weldments
Ruud, C.O.; Di Mascio, P.S.; Pangborn, R.N.; Snoha, D.J.
1985-05-01
A unique X-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 21/4 Cr 1 Mo steel plate weldment.
Influence of deposition parameters on residual stress of YbF3 thin film
NASA Astrophysics Data System (ADS)
Zhang, Yao-ping; Fan, Jun-qi; Long, Guo-yun
2016-01-01
YbF3 was proposed as a substitute for ThF4 in anti-reflection or reflection coatings for the infrared range, and the residual stress of YbF3 thin film using APS plasma ion assisted deposition(PIAD) was studied. From the results, we found the anode voltage of PIAD has a large effect on the residual stress of YbF3 thin film, and the refractive index of YbF3 produced with PIAD was higher than without it, with a possible reason close to packing density. Finally, we produced multi-layer reflection coating on a 260mm diameter mono-crystalline silicon substrate. Its surface contour was approximately 0.240λ (λ＝632.8nm), and the absorption was lower than 200ppm, which can satisfy the practical requirement.
Scanning electron acoustic microscopy of residual stresses in ceramics: Theory and experiment
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Qian, Menglu
1992-01-01
Several reviews have highlighted a number of applications of scanning electron acoustic microscopy (SEAM) to metals and semiconductors which show that SEAM can provide new information on surface and near-surface features of such materials, but there have been few studies attempting to determine the capabilities of SEAM for characterizing ceramic materials. We have recently observed image contrast in SEAM from residual stress fields induced in brittle materials by Vickers indentations that is strongly dependent on the electron beam chopping frequency. We have also recently developed a three-dimensional mathematical model of signal generation and contrast in SEAM, appropriate to the brittle materials studied, that we use as a starting point in this paper for modeling the effect of residual stress fields on the generated electron acoustic signal. The influence of the electron beam chopping frequency is also considered under restrictive assumptions.
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Qian, Menglu; Ravichandran, M. V.; Knowles, K. M.
1990-01-01
The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.
NASA Astrophysics Data System (ADS)
Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang
2016-07-01
The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.
Determination of the residual stress tensor in textured zirconium alloy by neutron diffraction
NASA Astrophysics Data System (ADS)
Sumin, V. V.; Papushkin, I. V.; Vasin, R. N.; Venter, А. M.; Balagurov, А. М.
2012-02-01
Results of neutron diffraction studies of crystallographic texture and residual stress tensor components in cold-worked and annealed cylindrical components made from E-110 zirconium alloy are presented. Those components are used as plugs in the fuel elements of the VVER-type reactors; the resident residual stresses influence the durability and safety of the fuel elements. The experiments were carried out on the neutron diffractometers at Dubna (the IBR-2 pulsed reactor) and Berlin Helmholtz-Zentrum (the BER II research reactor). It is shown that the samples have fiber texture that is changed considerably with annealing. The type I residual stress tensors for both samples were calculated by the BulkPathGEO model. The cold worked component has 136-166 MPa tensile residual stress in the radial direction and zero stress along the axial direction. Residual stress values in the annealed component are close to zero.
Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition
NASA Astrophysics Data System (ADS)
Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.
2016-05-01
Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.
Rideout, C. A.; Ritchie, S. J.; Denison, A.
2007-03-21
Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.
NASA Astrophysics Data System (ADS)
Denisov, A. V.; Krymov, V. M.; Punin, Yu. O.
2007-03-01
The effects of an anomalous biaxiality and a residual-stress field in basal-plane-faceted single-crystal sapphire ribbons were studied by an optical polarization method using a conoscopic light beam. Formulas that relate the difference between the principal stresses to the angle of optical-axis divergence are obtained. It is shown that the central regions of the ribbons undergo compressive stresses whereas their edges undergo tensile stresses. As compared to block-free ribbons, the stresses in block-containing ribbons increase more intensely with distance from the seed.
FEM calculation of residual stresses induced by laser shock processing in stainless steels
NASA Astrophysics Data System (ADS)
Peyre, P.; Chaieb, I.; Braham, C.
2007-04-01
Laser shock processing, also known as laser shock peening, generates through a laser-induced plasma, plastic deformation and compressive residual stresses in materials for improved fatigue or stress corrosion cracking resistances. The calculation of mechanical effects is rather complex, due to the severity of the pressure loading imparted in a very short time period (in the ns regime). This produces very high strain rates (106 s-1), which necessitate a precise determination of dynamic properties. Finite element techniques have been applied to predict the residual stress fields induced in two different stainless steels, combining shock wave hydrodynamics and strain rate dependent mechanical behaviour. The predicted residual stress fields for single or multiple laser processes were correlated with those from experimental data, with a specific focus on the influence of process parameters such as pressure pulse amplitude and duration, laser spot size or sacrificial overlay. Among other results, simulations confirmed that the affected depths increased with pulse duration, peak pressure and cyclic deformations, thus reaching much deeper layers (> 0.5 mm) than with any other conventional surface processing. To improve simulations, the use of experimental VISAR determinations to determine pressure loadings and elastic limits under shock conditions (revealing different strain-rate dependences for the two stainless steels considered) was shown to be a key point. Finally, the influence of protective coatings and, more precisely, the simulation of a thermo-mechanical uncoated laser shock processing were addressed and successfully compared with experiments, exhibiting a large tensile surface stress peak affecting a few tenths of micrometres and a compressive sub-surface stress field.
Hsieh, Chih-Chun; Wang, Peng-Shuen; Wang, Jia-Siang; Wu, Weite
2014-01-01
Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ -ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator. PMID:24605068
Residual stress and damage-induced critical fracture on CO2 laser treated fused silica
Matthews, M; Stolken, J; Vignes, R; Norton, M
2009-11-02
Localized damage repair and polishing of silica-based optics using mid- and far-IR CO{sub 2} lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO{sub 2} laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work they present the results of 351 nm, 3 ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO{sub 2} laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1 {approx} 40s square pulse CO{sub 2} laser exposures created over 0.5-1.25 kW/cm{sup 2} with a 1-3 mm 1/e{sup 2} diameter beam (T{sub max} {approx} 1500-3000 K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for T{sub max} {ge} 2000 K. The effect of cooling rate on fictive temperature caused by CO{sub 2} laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.
NASA Technical Reports Server (NTRS)
Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)
1992-01-01
The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.
NASA Astrophysics Data System (ADS)
Zhu, Ronghua; Xie, Huimin; Dai, Xianglu; Zhu, Jianguo; Jin, Aizi
2014-09-01
Stress generated during thin film deposition is a critical issue for many applications. In general, the possible origins of the residual stress include intrinsic and extrinsic stresses. Since high residual stresses can cause detrimental effects on the film, such as delamination and wrinkle, it is of great importance to quantify the residual stress for the optimal design and the evaluation of its mechanical behavior. In this study, a method combining focused ion beam (FIB) milling and geometric phase analysis (GPA) is developed to assess the residual stress of thin films. The procedures of the residual stress measurement using this method include grating fabrication and slot milling by FIB, high-resolution scanning electron microscope (SEM) imaging of the grating before and after stress relaxation, and deformation analysis by GPA. The residual stress can be inferred from the released deformation using the reference displacements of the finite element model. As an application, this method was utilized to measure the residual stress in a TiAlSiN film, and the measured result is in good agreement with that obtained by the curvature method. In order to analyze the measurement error, the influence factors of Ga+ bombardment and the deposited platinum layer on the stress calculation are also discussed in detail.
Bandgap tuning with thermal residual stresses induced in a quantum dot.
Kong, Eui-Hyun; Joo, Soo-Hyun; Park, Hyun-Jin; Song, Seungwoo; Chang, Yong-June; Kim, Hyoung Seop; Jang, Hyun Myung
2014-09-24
Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4-nm-sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD-sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD-based applications. PMID:24832671
Evaluation of Design Strength and Residual Stress in Ceramic/Metal Joint
NASA Astrophysics Data System (ADS)
Huh, Sun Chul; Park, Won Jo; Park, Sung Ho
Since the ceramic has excellent qualities in light weight, abrasion resistance and heat resistance etc, compared with the metal, it has been actively examined in order to apply for the structures such as gas turbine and turbo charger etc, which require high strength and heat resistance. But it is not desirable to be used for the structural material since the ceramic is fragile, so the join with the metal with abundant toughnees has been studied. However, during the cooling process, the joint residual stress develops on the ceramic/metal joint by the difference in thermal expansion coefficient between two materials and it affects the bending strength significantly. Also, in order to use the joint material as the structural material, the study about the fatigue of thermal cycle of actual use statement is necessary. Therefore, to ensure security and improvement of the bending strength of joint material, the state of residual stress distribution to the high temperature-thermal cycle, and studied the effects of thermal cycle and state of residual stress distribution on the strength of joint material as well.
Residual stresses and strength of multilayer tape cast solid oxide fuel and electrolysis half-cells
NASA Astrophysics Data System (ADS)
Charlas, Benoit; Frandsen, Henrik Lund; Brodersen, Karen; Henriksen, Peter Vang; Chen, Ming
2015-08-01
The cost-effectiveness of Solid Oxide Cells production can be improved by introducing "multilayer-tape-casting" (MTC: sequential casting of the layers) and co-sintering of the half-cells. MTC additionally results in more homogeneous layers with strong interfaces. However, the thermal expansion coefficient (TEC) mismatch between the layers, cumulated from high temperature, induces significant residual stresses in the half-cells. Furthermore, it has been observed that MTC half-cells with 4 layers (MTC4: support, fuel electrode, electrolyte and barrier layer) are sometimes more fragile to handle than those with 3 layers (MTC3: without barrier layer). The bending strength of MTC3 and MTC4 under various loading orientations (electrolyte on the tensile or compressive side of the loading) is compared. The analysis, by taking residual stresses into account, shows that the strength of the half-cells with the electrolyte on the compressive side corresponds to the strength of the support. With the loading in the other direction (electrolyte on the tensile side), the origin of the failure is in a different layer for MTC3 (fuel electrode) and for MTC4 (barrier layer). In order to decrease the tensile residual stresses, especially in the outer barrier-layer, possible changes to the layer properties are discussed and some optimization guidelines proposed.
Predicting residual and flow stresses from surface topography created by laser cutting technology
NASA Astrophysics Data System (ADS)
Harničárová, Marta; Valíček, Jan; Öchsner, Andreas; Grznárik, Radovan; Kušnerová, Milena; Neugebauer, Josef; Kozak, Dražan
2013-11-01
The paper deals with the engineering method for laser cutting technology that utilizes stress equations derived from surface topography for determining residual stresses. It presents an original method for residual stress assessment in a non-contact and non-destructive manner. The high temperature around cut edges results in the development of residual stresses during the cutting process, which decreases the quality of the end product. Surface topographical parameters themselves carry information on a concrete state of technological process in the concrete moment of its usage. This method for the assessment of residual stress in materials being cut by a laser beam provides sufficient information on the residual stress state evaluation with sufficient accuracy by applying an analytical and experimental approach. Experiments were conducted on three different materials, namely steel, aluminium alloy and titanium. It was necessary to check calculation by measuring the residual stress distribution in the vicinity of cut edge using the ultrasonic method. The novelty of the method for the determination of residual stresses in a workpiece lies in the physics-based approach focusing on the mechanical and stress-deformation parameters of the material being cut and on the mechanical equilibrium of the system: material properties-tool properties-deformation properties.
In-situ measurement of residual stresses during the nitriding process
Hoffman, F.T.; Kreft, U.; Hirsch, T.; Mayr, P.
1995-12-31
Residual stresses have a strong influence on the properties of nitrided parts. Therefore knowledge of their origin and magnitude is of great interest and a prerequisite if changes in the stresses are intended. From the relevant theories of residual stresses in gas nitrided materials it can be concluded that stresses which are generated during nitriding can be reduced by plastic deformation during the nitriding process and increased during cooling from nitriding temperature to room temperature. The increase of residual stresses in the compound layer should be a result of the volume misfit generated by different thermal expansion coefficients of compound layer and diffusion zone. These theories mentioned have not been confirmed by experimental work up to now. Therefore, one aim of the investigations was to clarify the origin of residual stresses as well as the different influences on the formation of residual stresses. Previously, residual stresses of nitrided parts could only be measured after nitriding. In the present work it will be shown, for the first time, that residual stresses can successfully be determined in situ during the gas nitriding process by a special nitriding device installed in an X-ray diffractometer. By this way the influences of the parameters nitriding potential, nitriding temperature, cooling process, and carbon content of the investigated material can be shown.
Neutron diffraction measurements of residual stresses in friction stir welding: a review
Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; David, Stan A
2011-01-01
Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.
Fluorine Implantation and Residual Stresses in Polysilicon Films
NASA Technical Reports Server (NTRS)
Lowery, Lynn; Zschack, Paul; Angelis, Robert De
1994-01-01
As microelectronic device dimensions are reduced below one micron, the hot carrier effect is a major barrier to continued scaling and VLSI reliability. Several reports have shown that fluorine diffusion into the device gate greatly enhances the resistance to hot carriers. There has been some disagreement as to the mechanism of influence; however, several reports have suggested that the polysilicon is physically modified by the fluorine implant and that the beneficial effects are at least in part due to stress relaxation in the polysilicon.
Castrup, Anna; Kuebel, Christian; Scherer, Torsten; Hahn, Horst
2011-03-15
The authors report the structural properties and residual stresses of 500-nm-thick nanocrystalline Pd and PdAu films on compliant substrates prepared by magnetron sputtering as a function of the pressure of the Ar-sputtering gas. Films were analyzed by x-ray diffraction, cross-sectional transmission electron microscopy, and x-ray photoelectron spectroscopy. At low pressures the metal films exhibit strong compressive stresses, which rapidly change to highly tensile with increasing pressure, and then gradually decrease. Along with this effect a change in microstructure is observed from a dense equiaxed structure at low pressures to distinctive columns with reduced atomic density at the column walls at higher pressures. The preparation of nearly stress-free dense nanocrystalline films is demonstrated.
Transient and residual stresses in dental porcelains as affected by cooling rates.
Asaoka, K; Tesk, J A
1989-06-01
The development of either transient or residual stress in a slab of dental porcelain during cooling was simulated by use of a super-computer. The temperature dependences of the elastic modulus, the thermal expansion coefficient, and the shear viscosity, and the cooling rate dependence of the glass transition temperature, Tg, were considered in this calculation. Internal stress and viscoelastic creep were computed for several cooling rates. Calculated results display stress profiles which agree reasonably well with reported measured profiles in quenched, tempered glasses. The calculated residual surface stress, sigma, could be fit by the following empirical formula, sigma = kl2(q/q0)n, q is the cooling rate, q0 is a reference cooling rate and l is the half-thickness of the porcelain. The method by which residual stress develops is also discussed. This discussion suggests a method for strengthening of the porcelain by the development of high-compressive residual stress on the surface. PMID:2638963
NASA Astrophysics Data System (ADS)
Qin, W. J.; Dong, C.; Li, X.
2016-03-01
High-cycle bending fatigue is the primary failure mode of crankshafts in engines. Compressive residual stresses are often introduced by induction quenching to improve the fatigue strength of crankshafts. The residual stresses, which are commonly obtained by numerical methods, such as the finite element method (FEM), should be included in fatigue failure analysis to predict the fatigue strength of crankshafts accurately. In this study, the simulation method and theory of quenching process are presented and applied to investigate the residual stresses of a diesel engine crankshaft. The coupling calculation of temperature, microstructure, and stress fields of the crankshaft section is conducted by FEM. Then, the fatigue strength of the crankshaft section is analytically assessed by Susmel and Lazzarin's criterion based on the critical plane approach that superimposes the residual stresses onto the bending stresses. The resonant bending fatigue tests of the crankshaft sections are conducted, and the tests and analytical assessments yield consistent results.
Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques
NASA Astrophysics Data System (ADS)
Brauss, Michael E.; Pineault, James A.; Eckersley, John S.
1998-03-01
This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.
NASA Astrophysics Data System (ADS)
Havermann, Dirk; Mathew, Jinesh; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.
2015-09-01
Metal clad single mode optical fibres containing Fibre Bragg Gratings are embedded in stainless steel components using bespoke laser based Selective Laser Melting technology (SLM). Significant residual stresses can be created in SLM manufactured components through the strong thermal gradients during the build process. We demonstrate the ability to monitor these internal stresses through embedded optical fibres with FBGs on a layer to layer basis, confirming estimates from models for residual stresses in additive manufactured components.
Residual stress and debonding analysis using a fiber Bragg grating in a model composite specimen
NASA Astrophysics Data System (ADS)
Colpo, F.; Dunkel, G.; Humbert, L.; Botsis, J.
2005-05-01
Optical Fibre Bragg Grating (FBG) sensors are excellent non-destructive tools for internal strain characterization of composite materials and structures. They can be embedded at selected locations during material preparation to provide accurate in-situ measurements. In this study, long-gauge-FBGs are introduced in cylindrical specimens of epoxy. This configuration is particularly attractive because it simplifies the study of some relevant phenomena in micromechanics of composites, for instance residual stresses and fracture of the fibre-matrix interface. Because the matrix epoxy shrinks during the polymerisation process, the optical sensor undergoes substantial non-uniform strain along the fibre. The response of a FBG to a non-uniform strain distribution is investigated using a new Optical Low-Coherence Reflectometry (OLCR) technique developed at EPFL. This method provides a direct reconstruction of the optical period and the corresponding strain distribution along the grating without any a priori assumption about the strain field. Considering the non-uniform residual strain as a reference state, new Bragg wavelength distributions are obtained for two configurations. First, a new Bragg wavelength distribution is measured as a function of the depth of circular cracks machined in the radial direction. These measurements lead to the knowledge of (a) the zone of perturbation of the reinforcing fibre on the residual stresses and (b) the effect of the presence of the mechanically induced crack on the residual stress state in the specimen. A finite element modelling of the residual stress field based on an equivalent thermo-elastic approach is also proposed, showing a very good agreement with experimental data. Second, an interface crack (debonding) between the epoxy and the fibre is introduced by fatigue and monitored using a specifically designed video acquisition system. The induced variations in the FBG response are measured when the fibre is unloaded and then
Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.
1996-06-01
Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder.
Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.
1994-06-01
Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.
Ingrosso, D; D'angelo, S; di Carlo, E; Perna, A F; Zappia, V; Galletti, P
2000-07-01
Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl
Residual Stress of Multilayer Ceramic Capacitors with Ni-Electrodes (Ni-MLCCs)
NASA Astrophysics Data System (ADS)
Nakano, Yukie; Nomura, Takeshi; Takenaka, Tadashi
2003-09-01
The residual stress of multilayer ceramic capacitors (MLCCs) has been studied. The capacitance decreased significantly under external compressive stress applied to MLCCs in the thickness direction, on the other hand, the capacitance increased under external stress in the width direction. These capacitance changes depended on the number of dielectric layers in MLCCs. The compressive residual stress at the surface of MLCCs has been shown by X-ray diffraction (XRD) analysis. The stress increased with the number of dielectric layers in MLCCs. Moreover the tensile stress was confirmed in the thickness direction of MLCCs by XRD analysis also. Therefore the dependence of electrical characteristics dependence on the number of dielectric layers, i.e., apparent dielectric constant, temperature dependence of capacitance, and aging deterioration can be explained by the residual stress.
NASA Astrophysics Data System (ADS)
Iqbal, N.; Rolph, J.; Moat, R.; Hughes, D.; Hofmann, M.; Kelleher, J.; Baxter, G.; Withers, P. J.; Preuss, M.
2011-12-01
The effect of the base material microstructure on the development of residual stresses across the weld line in inertia friction welds (IFWs) of high-strength nickel-base superalloy RR1000 was studied using neutron diffraction. A comparison was carried out between tubular IFW specimens generated from RR1000 heat treated below (fine grain (FG) structure) and above (coarse grain (CG) structure) the γ'-solvus. Residual stresses were mapped in the as-welded (AW) condition and, after a postweld heat treatment (PWHT), optimized for maximum alloy strength. The highest tensile stresses were generally found in the hoop direction at the weld line near the inner diameter of the tubular-shaped specimens. A comparison between the residual stresses generated in FG and CG RR1000 suggests that the starting microstructure has little influence on the maximum residual stresses generated in the weld even though different levels of energy must be input to achieve a successful weld in each case. The residual stresses in the postweld heat treated samples were about 35 pct less than for the AW condition. Despite the fact that the high-temperature properties of the two parent microstructures are different, no significant differences in terms of stress relief were found between the FG and CG RR1000 IFWs. Since the actual weld microstructures of FG and CG RR1000 inertia welds are very similar, the results suggest that it is the weld microstructure and its associated high-temperature properties rather than the parent material that affects the overall weld stress distribution and its subsequent stress relief.
Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging
NASA Astrophysics Data System (ADS)
Dong, Ya-Bo; Shao, Wen-Zhu; Lu, Liang-Xing; Jiang, Jian-Tang; Zhen, Liang
2015-12-01
In this study, residual stresses after different quenching and aging processes of Al-Cu forged blocks were investigated by numerical simulation method and experimental measurements. An iterative zone-based heat transfer calculation was coupled with the hyperbolic sine-type constitutive model to simulate the residual stress during quenching process. The simulation results were compared with experiment data using both x-ray diffraction and crack compliance methods. The simulation results were in good agreement with the experimental measurements with around 9-13% deviation at the largest. Residual stress reduction can be achieved by decreasing the cooling rate during quenching. Quenching in water with different temperatures of 60, 80, and 100 °C resulted in the maximum compressive residual stress reduction of approximately 28.2, 75.7, and 88.9%, respectively, in Al-Cu alloy samples. When quenched in 10, 20, and 30% PAG solution, the reduction of maximum compressive residual stress in Al-Cu alloy samples was approximately 35.1, 47.8, and 53.2%, respectively. In addition, in order to study the amount of residual stress relief after aging treatments, aging treatments at 140 and 170 °C for different times were also studied. Aging treatment used to obtain the peak-aged (T6) and overaged (T7) condition produces only about 22.5 to 34.7% reduction in residual stresses.
NASA Technical Reports Server (NTRS)
Malone, Tina W.; Graham, Benny F.; Gentz, Steven J. (Technical Monitor)
2001-01-01
Service performance has shown that cryogenic treatment of some metals provides improved strength, fatigue life, and wear resistance to the processed material. Effects such as these were initially discovered by NASA engineers while evaluating spacecraft that had returned from the cold vacuum of space. Factors such as high cost, poor repairability, and poor machinability are currently prohibitive for wide range use of some aerospace aluminum alloys. Application of a cryogenic treatment process to these alloys is expected provide improvements in weldability and weld properties coupled with a reduction in repairs resulting in a significant reduction in the cost to manufacture and life cycle cost of aerospace hardware. The primary purpose of this effort was to evaluate the effects of deep cryogenic treatment of some aluminum alloy plate products, welds, and weld repairs, and optimize a process for the treatment of these materials. The optimized process is being evaluated for improvements in properties of plate and welds, improvements in weldability and repairability of treated materials, and as an alternative technique for the reduction of residual stresses in repaired welds. This paper will present the results of testing and evaluation conducted in this effort. These results will include assessments of changes in strength, toughness, stress corrosion susceptability, weldability, repairability, and reduction in residual stresses of repaired welds.
NASA Astrophysics Data System (ADS)
Ogawa, Masaru
2014-12-01
In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is
ASSESSMENT OF RESIDUAL STRESSES IN SRS AND HANFORD 3013 INNER AND CONVENIENCE CANS
Mickalonis, J.
2009-03-01
Chloride stress corrosion cracking (SCC) is a plausible corrosion mechanism for the stainless steel 3013 containers during their lifetime for plutonium material storage if sufficient electrolyte is present within the container. Contributing factors for SCC, such as fabrication and welding residual stresses, are present in the 3013 cans. Convenience and inner cans from both Hanford and SRS are made by a flow form process, which cold works the stainless steel during fabrication. Additionally, the inner cans also are sealed at the can top with a closure weld to the sealing plug. Only SRS and Hanford were tested since moisture levels were significant for SCC. As part of the 3013 corrosion plan for FY09, testing in a boiling magnesium chloride solution was performed on actual 3013 convenience and inner cans to determine if the residual stresses were sufficient for the initiation and propagation of SCC. Additional testing in a 40% calcium chloride solution was also performed on 304L stainless steel SCC coupons, i.e. stressed teardrop-shaped samples (teardrops), and an inner can welded top to provide comparative results and to assess the effect of residual stresses in a less aggressive environment. The testing performed under this task consisted of 3013 inner and convenience cans and 304L teardrops exposed to a boiling magnesium chloride solutions per ASTM G36 and a 40% calcium chloride solution at 100 C following the guidance of ASTM G123. Cracking occurred in all can types including the inner can bottom and welded top and the bottoms of the SRS and Hanford convenience cans when exposed to the boiling magnesium chloride solution at 155 C. Cracking occurred at different times indicative of the residual stress levels in the cans. 304L teardrops cracked in the shortest time interval and therefore provide a conservative estimate for can performance. Testing in a 40% calcium chloride solution at 100 C demonstrated that cracking occurs in a less aggressive environment but at
NASA Astrophysics Data System (ADS)
Qiu, Wei; Cheng, Cui-Li; Liang, Ren-Rong; Zhao, Chun-Wang; Lei, Zhen-Kun; Zhao, Yu-Cheng; Ma, Lu-Lu; Xu, Jun; Fang, Hua-Jun; Kang, Yi-Lan
2016-07-01
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy (SEM), micro-Raman spectroscopy (MRS), and transmission electron microscopy (TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and cross-section residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel
NASA Astrophysics Data System (ADS)
Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.
2016-07-01
In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.
The influence of alloy composition on residual stresses in heat treated aluminium alloys
Robinson, J.S.; Redington, W.
2015-07-15
The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.
Flower, E.C.; MacEwen, S.R.; Holden, T.M.
1987-05-01
Residual stresses in a body arise from nonuniform plastic deformation and continue to be an important consideration in the design and the fabrication of metal components. The finite element method offers a potentially powerful tool for predicting these stresses. However, it is important to first verify this method through careful analysis and experimentation. This paper describes experiments using neutron and x-ray diffraction to provide quantitative data to compare to finite element analysis predictions of deformation induced residual stress in a plane stress austenitic stainless steel ring. Good agreement was found between the experimental results and the numerical predictions. Effects of the formulation of the finite element model on the analysis, constitutive parameters and effects of machining damage in the experiments are addressed.
NASA Astrophysics Data System (ADS)
Zhu, Ronghua; Xie, Huimin; Xue, Yunfei; Wang, Liang; Li, YanJie
2015-09-01
This paper deals with the characterization of influence parameters on the fabrication of speckle patterns using FIB deposition. In many manufacturing processes the presence of residual stress is disturbing, and can significantly affect the mechanical properties of materials and structures. Digital image correlation (DIC) is validated to be an effective approach for the determination of micro-scale residual stress under the dual-beam microscope (FIB-EB). Considering the high-quality micro-scale speckle pattern is the prerequisite in DIC measurement, the influence parameters on the deposited speckle patterns, such as the quality of the speckle template, total deposition time, ion beam current density, and dwell time, are primarily discussed. Moreover, in the measurement of residual stress, the integrated fabrication technique under the FIB-EB dual-beam system is also explained, covering the following steps: fabrication of the speckle pattern by FIB deposition, slot milling for stress release by FIB, high-resolution SEM imaging before and after stress release as well as the deformation analysis by DIC. As application, the optimized micro-scale speckle patterns are deposited on the surface of laser shock peened metallic glass, and the residual stress distribution on the sample surface is successfully measured.
NASA Astrophysics Data System (ADS)
Chen, Tian; Wang, Linzhi; Tan, Sheng
2016-07-01
Selective laser melting (SLM)-fabricated AlSi10Mg parts were heat-treated under vacuum to eliminate the residual stress. Microstructure evolutions and tensile properties of the SLM-fabricated parts before and after vacuum annealing treatment were studied. The results show that the crystalline structure of SLM-fabricated AlSi10Mg part was not modified after the vacuum annealing treatment. Additionally, the grain refinement had occurred after the vacuum annealing treatment. Moreover, with increasing of the vacuum annealing time, the second phase increased and transformed to spheroidization and coarsening. The SLM-produced parts after vacuum annealing at 300∘C for 2 h had the maximum ultimate tensile strength (UTS), yield strength (YS) and elongation, while the elastic modulus decreased significantly. In addition, the tensile residual stress was found in the as-fabricated AlSi10Mg samples by the microindentation method.
Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study
NASA Astrophysics Data System (ADS)
Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.
2016-05-01
A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.
Residual stress distribution in FeAl weld overlay on steel
Wang, X.L.; Spooner, S.; Hubbard, C.R.; Maziasz, P.J.; Goodwin, G.M.; Feng, Z.; Zacharia, T.
1994-12-31
Neutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.
NASA Astrophysics Data System (ADS)
Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.
2013-02-01
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.
Accurate measurement of residual stress in glass rod by photoelastic experiment
Baek, Tae Hyun; Lee, Jae Choon; Kim, Dong Hyun
1996-12-31
Photoelastic law is used to measure residual stresses in glass rods which have been heat-treated at different temperatures ranging from 560{degrees}C to 665 {degrees}C. This research is performed to analyze the variation of residual stresses with respect to heat-treatment temperatures of glass rods. In order to measure the stresses accurately, both fringe sharpening and fringe multiplication techniques are applied to the determination of photoelastic fringe orders. The experimental results show that all the hoop stress components are changed from tensile stresses to compressive ones at approximate R/R{sub o}=0.6, where R is any measured radius and R{sub o} outer radius. For the borosilicate glass rods which are used in this experiment, residual stresses increase as heat-treatment temperatures are raised from 560{degrees}C to 665{degrees}C. These experimental results are compared with ones calculated by Instant Freezing Numerical Model.
Residual stress in zinc oxide thin films deposited by atomic layer deposition
NASA Astrophysics Data System (ADS)
Elam, David; Kotha, Ramakrishna; Ayon, Arturo; Chabanov, Andrey
2010-10-01
The residual stress in a thin film can have an impact on the electrical and optical properties of the film. In addition, stress is an important consideration when incorporating the material into a microelectromechanical (MEMS) device as large unexpected stresses can cause such a device to fail. The residual stress in ZnO thin films prepared by atomic layer deposition was measured using a radius of curvature technique. The results show relatively low residual stresses on the order of ˜0.1 GPa. The stress is observed to change from tensile to compressive as a function of increasing deposition temperature. The polycrystalline structures of the films are also investigated using XRD techniques.
Residual stress in laser welded dissimilar steel tube-to-tube joints
Sun, Zheng . Lab. of Production Engineering)
1993-09-01
Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.
Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc
2015-09-15
Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. PMID:26143083
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.
2013-10-01
With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
Numerical analysis of residual stress distribution in tubes with spiral weld cladding
Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Swindeman, R.W.; Feng, Z.; Jirinec, M.J.
1998-08-01
Residual stresses and strains in a tube with spiral weld cladding were analyzed by the finite element (FE) method. The objective of this work was to determine the residual stress-strain state in the weld clad tube and verify the developed FE model, which might serve for future parametric sensitivity studies of various welding parameters on residual stresses in such tubes. An axisymmetric FE model was developed to simulate the circumferential weld cladding process of Alloy 625 on SA210 carbon steel tube and to analyze the residual stress-strain state. The analysis was uncoupled in that the thermal and mechanical analyses were conducted in two separate runs. The results show high tensile residual stresses in the weld cladding and at the interface with a gradual transition to compressive stresses at the inner tube surface. A neutron diffraction technique was used to experimentally determine residual elastic strains in the clad tube. Comparison with the FE results shows good overall agreement. The agreement is excellent in radial and axial elastic strain components, whereas the calculated tangential elastic strain overpredicted the measured value. The difference is discussed, and certain conclusions are given. Finally, some attempts on how to prevent or relieve high tensile stresses in the weld cladding are presented and discussed in this paper.
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
Outeiro, Jose C.; Pina, Jose C.; Umbrello, Domenico; Rizzuti, Stefania
2007-05-17
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
NASA Astrophysics Data System (ADS)
Cherukuri, Harish P.; Ulysse, Patrick; Smelser, Ronald E.; Subramanian, Kannan; Kotaru, Deepti
2010-06-01
Rapid quenching of aluminum extrusions often results in residual stresses and distortion. The out-of-plane normal component of the residual stress is typically very large and results in undesirable bending (bowing) of the extruded shape. Three-dimensional models to predict the residual stresses and bending of extruded thin-walled shapes are difficult to implement since the wall-thicknesses are often very small compared with the axial dimensions. In this paper, a generalized plane-strain model is presented to predict the residual stresses and distortion. For illusrative purposes of the model, a Z-shaped extrusion is chosen. The model predicts the bowing of the extruded shape along with the in-plane and out-of-plane stress components. An internal state-variable model is used for the constitutive description. The residual stresses and distortion are studied for cold and warm water quenching and three different cases of spray quenching. The numerical results indicate that cold water quenching and the two spray quenching cases with the higher discharge rates lead to significantly larger residual stresses compared to the remaining two cases. For each case, the out-of-plane bows of the extruded shapes are also shown to be significant.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei
2015-05-01
This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.
Pantoja, Joe Luis; Zhang, Zhihong; Tartibi, Mehrzad; Sun, Kay; Macmillan, Warrick; Guccione, Julius M.; Ge, Liang; Ratcliffe, Mark B.
2016-01-01
Objectives Surgical ventricular restoration (Dor procedure) is generally thought to reduce left ventricular (LV) myofiber stress (FS) but to adversely affect pump function. However, the underlying mechanism is unclear. The goal of this study was to determine the effect of residual stress (RS) on LV FS and pump function after the Dor procedure. Methods Previously described finite element models of the LV based on MRI data obtained in five sheep 16 weeks after antero-apical myocardial infarction were used. Simulated Dacron patches that were elliptical and 25% of the infarct opening area were implanted using a virtual suture technique (VIRTUAL-DOR). In each case, diastole and systole were simulated and RS, FS, LV volumes, systolic and diastolic function, and pump (Starling) function were calculated. Results VIRTUAL-DOR was associated with significant RS that was tensile (2.89±1.31 kPa) in the remote myocardium and compressive (234.15±65.53 kPa) in the borderzone (BZ). VIRTUAL-DOR+RS (compared to VIRTUAL-DOR-NO-RS) was associated with further reduction in regional diastolic and systolic FS with the greatest change in the BZ (43.5-fold and 7.1-fold respectively, p<0.0001). VIRTUAL-DOR+RS was also associated with further reduction in systolic and diastolic volumes (7.9%, p=0.0606 and 10.6%, p=0.0630, respectively). The resultant effect was a further reduction in pump function after VIRTUAL-DOR+RS. Conclusion Residual stress that occurs after the Dor procedure is positive (tensile) in the remote myocardium and negative (compressive) in the BZ and associated with reductions in fiber stress and LV volumes. The resultant effect is a further reduction in LV pump (Starling) function. PMID:26341601
NASA Astrophysics Data System (ADS)
Drezet, J.-M.; Phillion, A. B.
2010-12-01
The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperatures.
A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings
Nair, B. G.; Singh, J. P.; Grimsditch, M.
2000-02-28
Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter
NASA Astrophysics Data System (ADS)
Ciarletta, P.; Destrade, M.; Gower, A. L.
2016-04-01
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.
Residual stress characteristics of butt-welded flange by finite element analysis
NASA Astrophysics Data System (ADS)
Song, Yong-Lun; Yang, Xiao-Hong; Ran, Guo-Wei; Xiao, Tian-Jiao; Yan, Si-Bo
2011-06-01
Finite element simulation is utilized in an aluminum alloy 2014 butt-welded flange under AC Tungsten Inert Gas (AC-TIG) welding condition. The simulated results are in good agreement with the residual stress for the plate test using the actual welding parameters. Furthermore, characteristics of residual stress could be investigated in detail in several aspects, such as the welding structures, the welding sequences, the time intervals, preheating, and repair weld. The intermittent welding may be more convenient and advantageous for the practical applications to reduce the stress, and the local repair welding may cause more stress within the repairing region obviously.
Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers.
Mamdem, Y Sikali; Burov, E; de Montmorillon, L-A; Jaouën, Y; Moreau, G; Gabet, R; Taillade, F
2012-01-16
Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of -20MHz/100g and its linewidth increases. PMID:22274523
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter.
Ciarletta, P; Destrade, M; Gower, A L
2016-01-01
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter
Ciarletta, P.; Destrade, M.; Gower, A. L.
2016-01-01
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413
Stone, H.J.; Withers, P.J.; Roberts, S.M.; Reed, R.C.; Holden, T.M.
1999-07-01
The longitudinal, transverse, and through-thickness (short-transverse) residual stresses in an electron beam-welded plate of Waspaloy, a high-strength nickel-based superalloy, have been characterized using neutron diffraction, X-ray diffraction, and a hole-drilling method. Where possible, the results from the different techniques, and the associated uncertainties, have been compared. For the neutron measurements, the {gamma}/{gamma}{prime} {l_brace}111{r_brace} peak was used for the determination of lattice strains. The X-ray measurements were carried out using Fe K{sub {alpha}} radiation, the sin{sup 2} {psi} technique, and the {l_brace}311{r_brace} {gamma}/{gamma}{prime} composite peak. The Matthar-Soete method was used for the incremental hole-drilling measurements. Unfortunately, due to texture effects, it was not possible to detect the residual stresses within the weld metal by the diffraction-based methods. for the Estimation of residual stresses, plane-specific values of the Young`s modulus and Poisson`s ratio were determined from tensile testpieces using in situ neutron diffractometry. When these data are used, it is found that the neutron, X-ray, and hole-drilling residual stress data are mutually consistent, although the absolute certainties vary with the method employed. The results indicate that, next to the weld, the longitudinal residual stresses approach 1000 MPa and are typically far greater (up to 5 times) than those in the transverse and through-thickness directions. The plastic upset zone has a size which is at least 3 times greater than the cross-sectional area of the weld metal; this suggests that, for accurate analysis of weld-induced distortion, attention should be paid to the evolution of residual stresses in the heat-affected zone as well as the fusion zone.
A New Methodology For In-Situ Residual Stress Measurement In MEMS Structures
NASA Astrophysics Data System (ADS)
Sebastiani, M.; Bemporad, E.; Melone, G.; Rizzi, L.; Korsunsky, A. M.
2010-11-01
In this paper, a new approach is presented for local residual stress measurement in MEMS structures. The newly proposed approach involves incremental focused ion beam (FIB) milling of annular trenches at material surface, combined with high resolution SEM imaging and Digital Image Correlation (DIC) analysis for the measurement of the strain relief over the surface of the remaining central pillar. The proposed technique allows investigating the average residual stress on suspended micro-structures, with a spatial resolution lower than 1 μm. Results are presented for residual stress measurement on double clamped micro-beams, whose layers are obtained by DC-sputtering (PVD) deposition. Residual stresses were also independently measured by the conventional curvature method (Stoney's equation) on a similar homogeneous coating obtained by the same deposition parameters and a comparison and discussion of obtained results is performed.
Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1992-01-01
The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix interface which could lead to premature matrix cracking during cooldown. Fiber coating could be used to reduce thermal residual stresses. A simple closed-form analysis, based on a three-phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interface/matrix system. Guidelines, in the form of simple equations, for the selection of appropriate material properties of the fiber coating, were also derived to minimize thermal residual stresses in the matrix during fabrication.
Laser Treatment of HVOF Coating: Modeling and Measurement of Residual Stress in Coating
NASA Astrophysics Data System (ADS)
Arif, A. F. M.; Yilbas, B. S.
2008-10-01
High-velocity oxy-fuel (HVOF) coating of diamalloy 1005 (similar to Inconel 625 alloy) onto the Ti-6Al-4V alloy is considered and laser-controlled melting of the coating is examined. The residual stress developed after the laser treatment process is modeled using the finite element method (FEM). The experiment is conducted to melt the coating using a laser beam. The residual stress measurement in the coating after the laser treatment process is realized using the XRD technique. The morphological and metallurgical changes in the coating are examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the residual stress reduces at the coating-base material interface and the residual stress predicted agrees with the XRD measurements. A compact and crack-free coating is resulted after the laser treatment process.
A New Methodology For In-Situ Residual Stress Measurement In MEMS Structures
Sebastiani, M.; Bemporad, E.; Melone, G.; Rizzi, L.; Korsunsky, A. M.
2010-11-24
In this paper, a new approach is presented for local residual stress measurement in MEMS structures. The newly proposed approach involves incremental focused ion beam (FIB) milling of annular trenches at material surface, combined with high resolution SEM imaging and Digital Image Correlation (DIC) analysis for the measurement of the strain relief over the surface of the remaining central pillar. The proposed technique allows investigating the average residual stress on suspended micro-structures, with a spatial resolution lower than 1 {mu}m. Results are presented for residual stress measurement on double clamped micro-beams, whose layers are obtained by DC-sputtering (PVD) deposition. Residual stresses were also independently measured by the conventional curvature method (Stoney's equation) on a similar homogeneous coating obtained by the same deposition parameters and a comparison and discussion of obtained results is performed.
Calculation of residual stresses induced during laser quench-hardening of steel
Shishkovskii, I.V.
1992-06-01
We present a theoretical and numerical analysis of the quasi-stationary uncoupled problem of thermoelastic-plasticity with the goal of estimating the amount of residual stress in steel after laser quench-hardening. 18 refs., 3 figs.
Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.
1997-01-01
To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.
Residual stresses in oxide scale formed on Fe-17Cr stainless steel
NASA Astrophysics Data System (ADS)
Li, Ning; Xiao, Ji; Prud'homme, Nathalie; Chen, Zhe; Ji, Vincent
2014-10-01
The purpose of this work was to investigate residual stresses in the oxide scale formed on ferritic stainless steel, which is proposed to be used as interconnector in the planar solid oxide fuel cells (SOFCs). The oxidation of the alloy has been conducted at 700 °C, 800 °C and 900 °C for 12-96 h by thermal gravimetric analysis (TGA) system. The oxide surface morphology, cross-section microstructure and the chemical composition of the oxide scale were studied after oxidation, and the residual stresses distribution of the oxide scale were determined at room temperature. It has been found that the oxide scale composed of an inner Cr2O3 layer and an outer Mn1.5Cr1.5O4 spinel layer, the residual stresses in both oxide layers are compressive and the growth stresses plays an important role. The competition of the stresses generation and relaxation during oxidation and cooling affects the residual stresses level. The evolution of residual stresses in the two layers is different according to the oxidation temperature, and the stresses in the two layers are interactional.
Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples
Stroud, Mary Ann; Prime, Michael Bruce; Veirs, Douglas Kirk; Berg, John M.; Clausen, Bjorn; Worl, Laura Ann; DeWald, Adrian T.
2015-12-08
This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.
Thermography analyses of the hole-drilling residual stress measuring technique
NASA Astrophysics Data System (ADS)
Honner, Milan; Litoš, Pavel; Švantner, Michal
2004-03-01
The paper deals with methods and results of thermography analyses of the hole-drilling residual stress measuring technique. Surface IR properties of the drilling mill and sample with strain gauge rosette of millimeter dimensions are determined by the emissivity and reflectivity measurements. Dynamic surface temperature field measurement is accompanied by the strain measurement during step-by-step drilling. Possible sources of errors in relation to the residual stress determination are discussed.
Creation Of The Residual Stress By Influence Of Wear Of Cutting Tool And Their Analysis
NASA Astrophysics Data System (ADS)
Kordík, Marek; Čilliková, Mária; Mrazik, Jozef; Martinček, Juraj; Janota, Miroslav; Nicielnik, Henryk
2015-12-01
The aim of this paper is analysis of turned bearing ring made of material 14109 (DIN 100Cr6) without heat treatment. For the analysis a mechanical destructive method was chosen. Analysis focused on existence and character of residual stresses after turning operation of bearing ring by tool with different level of wear. The experiment reveals the relationships between residual stress creation and cutting tool wear.
Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Krishna, Ram; Jones, Abbie N.; Edge, Ruth; Marsden, Barry J.
2015-06-01
Micro-Raman microscopy technique is applied to evaluate unevenly distributed residual stresses in the various constituents of polygranular reactor grades graphite. The wavenumber based Raman shift (cm-1) corresponds to the local residual stress and measurements of stress dependent first order Raman spectra in graphite have enabled localized residual stress values to be determined. The bulk polygranular graphite of reactor grades - Gilsocarbon, NBG-18 and PGA - are examined to illustrate the residual stress variations in their constituents. Binder phase and filler particles have shown to be under compressive and tensile stresses, respectively. Among the studied graphite grades, the binder phase in Gilsocarbon has the highest residual stress and NBG-18 has the lowest value. Filler particles in Gilsocarbon have the highest residual stress and PGA showed the lowest, this is most likely due to the morphology of the coke particles used in the manufacturing and applied processing techniques for fabrications. Stresses have also been evaluated along the peripheral of pores and at the tips of the cracks. Cracks in filler and binder phases have shown mixed behaviour, compressive as well as tensile, whereas pores in binder and filler particles have shown compressive behaviour. The stresses in these graphitic constituents are of the order of MPa. Non-destructive analyses presented in this study make the current state-of-the-art technique a powerful method for the study of stress variations near the graphite surface and are expected to increase its use further in property determination analysis of low to highly fluence irradiated graphite samples from the material test reactors.
Phelippeau,A.; Pommier, S.; Tsakalakos, T.; Clavel, M.; Prioul, C.
2006-01-01
Cold drawing steel wires lead to an increase of their mechanical strength and to a drop of their ductility. The increase of their mechanical strength has long been related to the reduction of the various material scales by plastic deformation, but the mechanisms controlling their elongation to failure have received relatively little attention. It is usually found that heavily deformed materials show a tendency to plastic strain localization and necking. However, in this paper it is shown that, though the steel wires are plastically deformed up to strain levels as high as 3.5, a significant capability of plastic deformation is preserved in as-drawn wires. This apparent contradiction is resolved by the existence of residual stresses inside the wire. Finite element analyses have been conducted in order to show that residual stresses, inherited from the drawing process, are sufficient to produce a significant hardening effect during a post-drawing tensile test, without introducing any hardening in the local material behavior. The main conclusion of this paper is that once the material has lost its hardening capabilities, residual stresses, inherited from the process, control the elongation of cold drawn wires. The finite element method allowed also the determination of the residual stress field that would lead to the best agreement between the simulated and the experimental stress strain curve of as-drawn wires.
Extension, inflation and torsion of a residually stressed circular cylindrical tube
NASA Astrophysics Data System (ADS)
Merodio, José; Ogden, Ray W.
2016-03-01
In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.
Verification of residual stresses in flash-butt-weld rails using neutron diffraction
NASA Astrophysics Data System (ADS)
Tawfik, David; Kirstein, Oliver; Mutton, Peter John; Chiu, Wing Kong
2006-11-01
Residual stresses developed during flash-butt welding may play a crucial role in prolonging the fatigue life of the welded tracks under service loading conditions. The finished welds typically exhibit high levels of tensile residual stresses in the web region of the weld. Moreover, the surface condition of the web may contain shear drag or other defects resulting from the shearing process which may lead to the initiation and propagation of fatigue cracks in a horizontal split web failure mode under high axle loads. However, a comprehensive understanding into the residual stress behaviour throughout the complex weld geometry remains unclear and is considered necessary to establish the correct localised post-weld heat treatment modifications intended to lower tensile residual stresses. This investigation used the neutron diffraction technique to analyse residual stresses in an AS60 flash-butt-welded rail cooled under normal operating conditions. The findings will ultimately contribute to developing modifications to the flash-butt-welding procedure to lower tensile residual stresses which may then improve rail performance under high axle load.
Bourke, M.A. ); McGillivray, H.J.; Webster, G.A. . Dept. of Mechanical Engineering); Webster, P.J. . Dept. of Civil Engineering)
1991-01-01
Neutron diffraction has been used to measure the residual stress distributions in uncracked and fatigue cracked rings taken from a high strength, low alloy steel autofrettage tube with a bore diameter of 60mm and a wall thickness of 32mm. Stresses were determined to a precision of {plus minus} 10MPa. Three crack sixes were examines. No appreciable stress redistribution was observed until the crack was grown into a region which originally contained tensile residual hoop stress. When this occurred an increase in residual hoop tension was observed ahead of the crick tip. Qualitative agreement was achieved between the measured hoop stress distribution and values predicted using a boundary element method. 9 refs., 12 figs.
Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Rong, Xin; Wang, Xinqiang; Chen, Guang; Pan, Jianhai; Wang, Ping; Liu, Huapeng; Xu, Fujun; Tan, Pingheng; Shen, Bo
2016-05-01
Residual stress in AlN films grown by molecular beam epitaxy (MBE) has been studied by Raman scattering spectroscopy. A strain-free Raman frequency and a biaxial stress coefficient for E2(high) mode are experimentally determined to be 657.8 ± 0.3 cm-1 and 2.4 ± 0.2 cm-1 / GPa, respectively. By using these parameters, the residual stress of a series of AlN layers grown under different buffer layer conditions has been investigated. The residual compressive stress is found to be obviously decreased by increasing the Al/N beam flux ratio of the buffer layer, indicating the generation of tensile stress due to stronger coalescence of AlN grains, as also confirmed by the in-situ reflection high energy electron diffraction (RHEED) monitoring observation. The stronger coalescence does lead to improved quality of AlN films as expected.
Numerical Analysis of Residual Stress for Copper Base Brazed Stainless Steel Plate-Fin Structure
NASA Astrophysics Data System (ADS)
Xie, Qiaoyun; Ling, Xiang
2010-07-01
Copper base stainless steel plate-fin structure has been widely used as a heat exchanger in many fields. The nonlinear thermal reaction on the residual stress in brazing process of the plate-fin structure was studied in this paper. A finite element model (FEM) was proposed to simulate the heat transfer and the sequential residual stress generated in the plate-fin and filler metals based on thermal elastic-plastic theory. By the stress distribution in four paths marked in the structure obtained from FEM results, it is found that the maximum residual tensile stress occurs in the brazed joint next to the plate side and a crack would initiate in this region. Also, the first principle stresses of reference nodes were calculated and the conclusion is consistent with the simulation results. These results would provide some constructive instructions in the practical brazing procedure.
INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION
Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.
2009-01-01
Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction.
Mapping Residual Stress Distributions at the Micron Scale in Amorphous Materials
NASA Astrophysics Data System (ADS)
Winiarski, Bartlomiej; Langford, Richard M.; Tian, Jiawan; Yokoyama, Yoshihiko; Liaw, Peter K.; Withers, Philip J.
2010-07-01
Residual stresses in crystalline or glassy materials often play a key role in the performance of advanced devices and components. However, stresses in amorphous materials cannot easily be determined at the micron scale by diffraction, or by other conventional laboratory methods. In this article, a technique for mapping residual stress profiles in amorphous materials with high spatial definition is presented. By applying a focused ion beam (FIB)-based semidestructive mechanical relaxation method, the stresses are mapped in a peened and fatigued bulk metallic glass (BMG) (Zr50Cu40Al10 at. pct). The residual stresses are inferred using finite element analysis (FEA) of the surface relaxations, as measured by digital image correlation (DIC), that occur when a microslot is micromachined by FIB. Further, we have shown that acceptable accuracy can in most cases be achieved using a simple analytical model of the slot. It was found that the fatigue cycling significantly changes the distribution of compressive residual stresses with depth in the plastically deformed surface layer. Our observations point to the scalability of this method to map residual stresses in volumes as small as 1 × 1 × 0.2 μm3 or less.
Zuo, Yang Wang, Shaojie
2014-09-15
The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. The transport matrix is demonstrated to satisfy the Onsager's symmetry relation.
NASA Astrophysics Data System (ADS)
Man, C.-S.; Koo, L.; Shepard, M. J.
2002-05-01
We explore the possibility of using the dispersion of Rayleigh waves for nondestructive inspection of the layer of inhomogeneous residual stress induced by low plasticity burnishing (LPB) on Ti-6Al-4V samples, which inherit mirror-smooth surfaces from the LPB treatment. Our findings suggest that, while the acoustoelastic effect is very small in Ti-6Al-4V, the magnitude of the stress gradient involved still leads to a measurable Rayleigh-wave dispersion, from which information on the stress present could be inferred.
NASA Astrophysics Data System (ADS)
Govindaraju, Madhav R.; Katragadda, Gopichand; Wallace, John L.
1998-03-01
High strength steel alloys (such as 300 M) used in naval aircraft engine and landing gear components are subjected to cyclic loading in service and found to be highly susceptible to fatigue cracking. There is a critical need for nondestructive evaluation techniques which can detect both cracking and potential crack nucleation sites within these components. An innovative electromagnetic technology called the stress induced-magnetic-anisotropy (SMA) technique has been proposed to be used to detect and evaluate residual stresses. SMA measures residual stresses by sensing the changes in magnetic flux induced in directions parallel and perpendicular to the stress. A novel probe and instrumentation is being developed to simultaneously detect both subsurface residual stresses and stress-induced cracking in coated and uncoated ferromagnetic structures. Finite element analysis has been used to determine the distribution of magnetic flux density and inductance of the probe under varying AC fields. Using ANSYSTM EMAG, the effect of varying frequency of the excitation field, permeability and dimensions of the core have been analyzed. The paper describes how finite element analysis can be used in design and development of the probe and in understanding its behavior.
Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.
2004-10-04
A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.
NASA Astrophysics Data System (ADS)
Tung, Ryan C.; Garg, Anurag; Kovacs, Andrew; Peroulis, Dimitrios; Raman, Arvind
2013-04-01
Structural parameters of doubly clamped microfabricated beams such as initial curvature, boundary compliance, thickness and mean residual stress are often critical to the performance of microelectromechanical systems (MEMS) and need to be estimated as a part of quality control of the microfabrication process. However, these parameters couple and influence many metrics of device response and thus are very difficult to disentangle and estimate using conventional methods such as the M-test, static mechanical tests, pull-in measurements or dynamic mechanical tests. Here we present a simple, non-destructive experimental method to extract these parameters based on the non-contact measurement of the natural frequencies of the lowest few eigenmodes of the microfabricated beam, and knowledge of Young's modulus and plan dimensions of the beam alone. The method exploits the fact that certain eigenmodes are insensitive to some of these structural parameters which enable a convenient decoupling and estimation of the parameters. As a result, the method does not require complicated finite element analysis, is insensitive to the gap height and introduces no contact wear or dielectric charging effects. Experiments are performed using laser Doppler vibrometry to measure the natural frequencies of doubly clamped, nickel, RF-MEMS capacitive switches and the method is applied to extract the residual stress, beam thickness, boundary compliance and post-release curvature.
Nondestructive testing and characterization of residual stress field using an ultrasonic method
NASA Astrophysics Data System (ADS)
Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng
2016-03-01
To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.
Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.
2002-01-01
The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.
VAIDYA, RAJENDRA U; KAUTZ, DOUGLAS D.; GALLEGOS, DAVID E.
2007-01-30
Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).
Residual Stress Examination In Surface Layers Turned By Auto-Rotary Tool
NASA Astrophysics Data System (ADS)
Struharňanský, Jozef; Stančeková, Dana; Martikáň, Anton; Varga, Daniel; Kuždál, Viktor; Rákoci, Jozef
2015-12-01
In this article, unconventional kinematics of turning is examined with the aim on influence of cutting parameters on surface layers residual stress. The auto-rotary cutting tool prototype for turning was developed, designed and constructed at the University of Zilina. The tool is made of high speed steel. Residual stress examination of material 100Cr6 was performed by non-destructive measuring method of X-ray diffraction. This method is able to determine normal and shear stress conditions without damaging the examined sample.
NASA Astrophysics Data System (ADS)
Correa, C.; Peral, D.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; García-Beltrán, A.; Ocaña, J. L.
2015-10-01
Laser Shock Peening (LSP) is considered as an alternative technology to shot peening (SP) for the induction of compressive residual stresses in metallic alloys in order to improve their fatigue, corrosion and wear resistance. Since laser pulses generated by high-intensity laser systems cover only a small area, laser pulses are generally overlapped and scanned in a zigzag-type pattern to cover completely the surface to be treated. However, zigzag-type scanning patterns induce residual stress anisotropy as collateral effect. The purpose of this paper is to describe and explain, for the first time and with the aid of the numerical model developed by the authors, the influence of the scanning pattern directionality on the residual stress tensor. As an effective solution, the authors propose the application of random-type scanning patterns instead of zigzag-type in order to reduce the mentioned residual stress anisotropy.
NASA Astrophysics Data System (ADS)
Heinze, C.; Schwenk, C.; Rethmeier, M.; Caron, J.
2011-06-01
The usage of continuous cooling transformation (CCT) diagrams in numerical welding simulations is state of the art. Nevertheless, specifications provide limits in chemical composition of materials which result in different CCT behavior and CCT diagrams, respectively. Therefore, it is necessary to analyze the influence of variations in CCT diagrams on the developing residual stresses. In the present paper, four CCT diagrams and their effect on numerical calculation of residual stresses are investigated for the widely used structural steel S355J2 + N welded by the gas metal arc welding (GMAW) process. Rather than performing an arbitrary adjustment of CCT behavior, four justifiable data sets were used as input to the numerical calculation: data available in the Sysweld database, experimental data acquired through Gleeble dilatometry tests, and TTT/CCT predictions calculated from the JMatPro and Edison Welding Institute (EWI) Virtual Joining Portal software. The performed numerical analyses resulted in noticeable deviations in residual stresses considering the different CCT diagrams. Furthermore, possibilities to improve the prediction of distortions and residual stress based on CCT behavior are discussed.
Spooner, S.; Pardue, E.B.S.
1995-12-31
Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
NASA Astrophysics Data System (ADS)
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Dickson, T.L.; Bass, B.R.; McAfee, W.J.
1998-01-01
Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K{sub Ic}, was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4.
An improved algorithm for McDowell's analytical model of residual stress
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-06-01
The analytical model for two-dimensional elastoplastic rolling/sliding contact proposed by McDowell is an important tool for predicting residual stress in rolling/sliding processes. In application of the model, a problem of low predicting precision near the surface layer of the component is found. According to the volumeconstancy of plastic deformation, an improved algorithm for McDowell's model is proposed in order to improve its predicting accuracy of the surface residual stress. In the algorithm, a relationship between three normal stresses perpendicular to each other at any point within the component is derived, and the relationship is applied to McDowell's model. Meanwhile, an unnecessary hypothesis proposed by McDowell can be eliminated to make the model more reasonable. The simulation results show that the surface residual stress predicted by modified method is much closer to the FEM results than the results predicted by McDowell's model under the same simulation conditions.
NASA Astrophysics Data System (ADS)
Fachin, F.; Nikles, S. A.; Dugundji, J.; Wardle, B. L.
2011-09-01
Accurate thin-film characterization is a key requirement in the MEMS industry. Residual stresses determine both the final shape and the functionality of released micromachined structures, and should therefore be accurately assessed. To date, a number of techniques to characterize thin-film materials have been developed, from substrate curvature measurement to methods that exploit the post-release deformation of test structures. These techniques have some major drawbacks, from high implementation costs to accuracy limitations due to improper boundary condition modeling. Here, we present a new technique for the characterization of multilayered, composite MEMS structures that uses easily accessible experimental information on the post-release deformation of microbridges only, with no need for multiple beam lengths. The method is based on an analytical solution of the (post-)buckling problem of microbridges, including the effect of residual stresses (both mean and gradient) and non-ideal clamping (boundary flexibility). The method allows simultaneous characterization of both the mean and the gradient residual stress components, as well as the effective boundary condition associated with the fabrication process, yielding approximately one order of magnitude improvement in resolution compared to extant methods using the same type and number of test structures. The higher resolution is largely attributable to proper accounting for boundary flexibility by our method, with the boundary condition for the structures in this work being ~90% as stiff in bending relative to the commonly assumed perfectly clamped condition. Additional enhancement can be achieved with post-release deformation measurements of simple cantilevers in addition to the microbridges. The method is useful as it ensures very low stress extraction uncertainty using a limited number of microbridge test structures, and it is transferrable to package-stress characterization. The analytical approach can also be
Investigation of residual stresses in a multipass weld in 1 in. stainless steel plate
Spooner, S.; Fernandez Baca, J.A.; David, S.A.; Hubbard, C.R.; Holden, T.M.; Root, J.H.
1994-06-01
Residual stresses and strains were measured in two welded 25-mm thick plates of type 304 stainless steel by the neutron diffraction. The filler metal was type 308 stainless steel and the weld zone had a two phase microstructure in which the austenitic phase lattice parameter differs from the base metal. In these circumstances stain-free samples were taken from the weld zone area for analysis of the lattice parameters and ferrite content using neutron powder diffraction. Corrections for lattice parameter variation were applied permitting the calculation of residual strains and stresses in weld zone, heat affected zone (HAZ) and base metal. One of the two welds was examined without stress relief and the other was given a stress relief treatment consisting of vibration at a frequency below the resonant condition dudng welding. In both plates the largest residual stress component (longitudinal) is found in the fusion zone near the boundary between the weld zone and the heat affected zone. This longitudinal component is 400 {plus_minus} 50 MPa in tension. The normal stresses are generally close to zero although large fluctuations are found in the weld zone. The transverse stresses are as high as 200 MPa in the weld zone and decrease to 50 MPa {plus_minus} 40 MPa. The lattice parameter variation was equivalent to 5 {times} l0{minus}4 compressive strain and the ferrite content approached 9 percent at the center of the weld zone. Variations in residual stresses with thickness through the base metal plate were small. The treated plate and untreated plate showed nearly identical patterns of stress distribution. Differences in the measured stresses between vibratory-stress-relief treated and untreated plates fall within error bars of the stress determination in these particular 25 mm thick 300-type stainless steel plates.
Measurement and modeling of residual stress in net-shape plasma sprayed tubes
Bartlett, A.; Castro, R.G.
1996-09-01
Residual stresses in net-shaped plasma sprayed MoSi{sub 2} tubes were measured by x-ray microdiffraction as a function of radial position in the sample. A tensile to compressive hoop stress profile was measured, ranging 200 MPa in tension at the outer diameter, to -125 MPa at the inner. A force balance model was used to explain the evolution of stresses when incrementally adding layers to the pre-existent material.
Oxidative Stress Induced in Sunflower Seedling Roots by Aqueous Dry Olive-Mill Residues
Garrido, Inmaculada; García-Sánchez, Mercedes; Casimiro, Ilda; Casero, Pedro Joaquin; García-Romera, Inmaculada; Ocampo, Juan Antonio; Espinosa, Francisco
2012-01-01
The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress. PMID:23049960
NASA Astrophysics Data System (ADS)
Blodgett, Mark P.; Nagy, Peter B.
2004-02-01
In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (˜1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique "window of opportunity" for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.
Blodgett, Mark P.; Nagy, Peter B.
2004-02-26
In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.
Wang, Peng-Shuen; Wang, Jia-Siang
2014-01-01
Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ-ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator. PMID:24605068
Residual Stress in Brazing of Submicron Al2O3 to WC-Co
NASA Astrophysics Data System (ADS)
Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.
2016-07-01
This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.
Residual Stress in Brazing of Submicron Al2O3 to WC-Co
NASA Astrophysics Data System (ADS)
Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.
2016-06-01
This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.
Forging And Milling Contribution On Residual Stresses For A Textured Biphasic Titanium Alloy
Deleuze, C.; Fabre, A.; Barrallier, L.; Molinas, O.
2011-01-17
Ti-10V-2Fe-3Al is a biphasic titanium alloy ({alpha}+{beta}) used in aeronautical applications for its mechanical properties, such as its yield strength of 1200 MPa and it weighs 40% less than steel. This alloy is particularly useful for vital parts with complex geometry, because of its high forging capability. In order to predict the capability for fatigue lifetime, the designers need to know the residual stresses. X-Ray diffraction is the main experimental technique used to determine residual stresses on the surface. In this case, stress levels are primarily influenced by the complex forging and milling process. On this alloy in particular, it may be difficult to characterize stress due to modification of the microstructure close to the surface. Results obtained by x-ray analysis depend on the correct definition of the shape of the diffraction peaks. The more precisely defined the position of the peak, the more accurately the stresses are evaluated. This paper presents a method to detect if residual stresses can be characterized by x-ray diffraction. The characterization of hardness seems to be a relevant technique to quickly analyze the capability of x-ray diffraction to determine residual stresses.
Ikuta, F.; Arimoto, K.; Inoue, T.
1996-12-31
Simulated results of structural change, residual stresses and distortion are presented for carbon steel cylinder in the scanning-type induction hardening process by a CAE system {open_quotes}HEARTS (HEAt tReaTment Simulation system){close_quotes}. The system HEARTS has been developed to simulate heat treatment processes based on {open_quotes}metallo-thermo-mechanics{close_quotes} available for describing the coupling effect between metallurgical change due to phase transformation, temperature and inelastic stress/strain. A steel cylinder is treated as an axisymmetric model with scanning internal heat generation and convection boundary. The results under different scanning velocity and magnitude of the heat source from induction coil are compared with experimental data of distortions, volume fraction of metallic phases as well as residual stresses.
Development of ultrasonic tomography for residual stress mapping. Final report
Boland, A.J.; Davis, T.J.; Doctor, S.R.; Harrington, T.P.; Hildebrand, B.P.; Lemon, D.K.; Posakony, G.J.; Skorpik, J.R.
1980-05-01
The volumetric stress distribution in nuclear reactor piping and pressure vessels is becoming an increasingly important parameter in nondestructive evaluation. This report describes research and development of instrumentation leading toward a means of measuring subsurface stress distributions in metals. Based on the principles of Computerized Tomography (CT), an ultrasonic tomographic instrument system has been developed. The microprocessor-based system uses an ultrasonic linear array to acquire time-of-flight data to an accuracy of 0.5 to 1.0 ns. The data is processed using a modified ART (Algebraic Reconstruction Technique) program. A two-dimensional map of the velocity distribution is displayed on a monitor. The velocity distribution is interpreted or calibrated in terms of stress through the acousto-elastic coefficients.
Residual stresses in resistance spot welding: Comparison of simulation and measured results
Sheppard, S.; Syed, M.
1994-12-31
Numerical simulations of welding processes offer researchers and engineers the opportunity to study in detail thermal and mechanical histories created by welding. The objective of this work is to explore the influence of the dynamically changing contact patch size on thermal and mechanical histories in resistance spot welding. To this end, a fully coupled electrical-thermal-mechanical simulation of RSW has been developed. The simulation considers welding and the subsequent cooling of the workpiece. The results of such a simulation are presented for the case of HSLA galvanized sheet and are compared with numerical results where such a coupling was not included. In particular, thermal histories and the final states of residual stresses are compared. Specifically, the fully coupled simulation results show that: (1) There is a 44% reduction in contact area at the faying surface as welding progresses. (2) There are substantial (near yield strength) residual stresses in the annulus surrounding the weld nugget. (3) Cooling rates in the nugget are on the order of 10,000{degrees}F/s when welding with electrode hold time. Rates are closer to 1000{degrees}F/s when there is no electrode hold time. (4) predicted residual stresses compare favorably with measured values. Note that it is extremely difficult (if not impossible) to make residual stress measurements in the area of greatest concern with regards to weld fatigue failure. The predicted residual stresses will be valuable input to engineers and researchers concerned with the fatigue performance of resistance spot welded structures.
NASA Astrophysics Data System (ADS)
Evans, Alexander Dominic; King, Andrew; Pirling, Thilo; Peyre, Patrice; Withers, Phillip John
The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.
Measurement of residual stress in quenched 1045 steel by the nanoindentation method
Zhu Lina; Xu Binshi; Wang Haidou; Wang Chengbiao
2010-12-15
In this paper, the residual stress in quenched AISI 1045 steel was measured by a recently developed nanoindentation technique. Depth control mode was adopted to measure the residual stress. It was found that residual compressive stress was generated in the quenched steel. The material around nanoindents exhibits significant pile-up deformation. A new method was proposed to determine the real contact area for pile-up material on the basis of invariant pile-up morphology of the loaded or unloaded states. The results obtained by the new method were in good agreement with the residual stresses measured by the classical X-ray diffraction (XRD) method. - Research Highlights: {yields} A new method was proposed to measure the real contact area for pile-up materials. {yields} The real contact depth is defined as the sum of h{sub max} and the pile-up height h{sub p}. {yields} The value of residual stress measured by the nanoindentation method was in good agreement with that by the XRD method.
A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test
NASA Astrophysics Data System (ADS)
Yonezu, Akio; Kusano, Ryota; Hiyoshi, Tomohiro; Chen, Xi
2015-01-01
This study proposed a method to evaluate the residual stress and plastic strain of an austenitic stainless steel using a microindentation test. The austenitic stainless steel SUS316L obeys the Ludwick's work hardening law and is subjected to in-plane equi-biaxial residual stress. A numerical experiment with the finite element method (FEM) was carried out to simulate an indentation test for SUS316L having various plastic strains (pre-strains) and residual stresses. It was found that the indentation force increased with increasing pre-strain as well as with compressive residual stress. Next, a parametric FEM study by changing both residual stress σres and pre-strain ɛpre was conducted to deduce the relationship between the indentation curve and the parameters ɛpre and σres (which were employed for the FEM study). This relationship can be expressed by a dimensionless function with simple formulae. Thus, the present method can estimate both ɛpre and σres, when a single indentation test is applied to SUS316L.
Hernandez-Morales, B.; Hawbolt, B.E.; Brimacombe, J.K.
1996-12-31
The residual stress distributions in 38.1 mm-dia., forced convective quenched bars of interstitial-free (IF), 1045 carbon, and alloyed steels were determined by neutron diffraction. The IF and 1045 carbon steel quenched bars exhibited compressive axial and circumferential (hoop) residual stresses near the surface and tensile values at the center. The radial residual stresses were tensile at all radial positions, decreasing towards zero near the surface. In contrast, the measured axial and circumferential components of the residual stress tensor in the alloyed eutectoid steel quenched bar were tensile near the surface and decreased to compressive values at the center. The radial component showed a maximum compressive value at the center and approached zero close to the surface. Metallographic analysis and hardness testing of the three steel specimens, revealed that the IF steel had transformed completely to ferrite, while the 1045 carbon steel bar transformed to martensite near the surface and a mixture of pearlite, ferrite and martensite at the center. On the other hand, the alloyed eutectoid steel specimen transformed entirely to martensite with small amounts of bainite near the center of the rod. The observed differences in the residual stress distributions in the three steels were explained based on the sequence of phase transformations that took place during quenching.
NASA Astrophysics Data System (ADS)
Pavlov, V. F.; Konovalov, G. V.; Minin, B. V.; Kirpichev, V. A.
Results of residual stress measurements and fatigue tests are presented for bolts of VT16 titanium alloy manufactured by various methods. A method is proposed for plotting the maximum-amplitude diagram of the stress cycle of a threaded joint with allowance for the residual stresses in the thread grooves. The calculated results are in good agreement with experimental data.
X-ray diffraction analysis of residual stress in zirconia dental composites
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud
Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.
2014-01-01
Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value. PMID:25276850
Finite Element Modeling and Validation of Residual Stresses in 304 L Girth Welds
Dike, J.J.; Ortega, A.R.; Cadden, C.H.; Rangaswamy, P. Brown, D.
1998-06-01
Three dimensional finite element simulations of thermal and mechanical response of a 304 L stainless steel pipe subjected to a circumferential autogenous gas tungsten arc weld were used to predict residual stresses in the pipe. Energy is input into the thermal model using a volumetric heat source. Temperature histories from the thermal analysis are used as loads in the mechanical analyses. In the mechanical analyses, a state variable constitutive model was used to describe the material behavior. The model accounts for strain rate, temperature, and load path histories. The predicted stresses are compared with x-ray diffraction determinations of residual stress in the hoop and circumferential directions on the outside surface of the pipe. Calculated stress profiles fell within the measured data. Reasons for observed scatter in measured stresses are discussed.
Determination of the residual stress in a centrifuge bowl by neutron diffraction
NASA Astrophysics Data System (ADS)
Albertini, G.; Giuliani, A.; Lin Peng, R.; Manescu, A.; Ponzetti, A.
An experimental study of the stress field in centrifuges for food processing and for agricultural applications was undertaken. The model, the dimensions and the material of the sample are those of the most recent line of production of the Nuova M.A.I.P. company. The rotor is also one of the largest rotors produced by that firm. The residual strains and stresses were determined by using neutron-diffraction techniques before centrifugation and after centrifugation, to evaluate the evolution of stress induced by centrifuging. The upper part of the rotating bowl is investigated, where the highest stress field during centrifugation is theoretically forecast to occur. A data elaboration aiming at avoiding systematic errors leads to the conclusion that no appreciable residual stress is induced by centrifugation.
Mapping residual stresses after foreign object damage using the contour method
Prime, M. B.; Martineau, R. L.
2002-01-01
A 51-mm thick plate of High-Strength Low-Alloy (HSLA-100) steel was impacted by a 6.4 mm diameter tungsten carbide sphere traveling at 2.2 km/sec. The projectile penetration left a 10 mm diameter and 12 mm deep crater. A residual stress map over a cross-section through the crater was measured by the contour method. The predominant feature of the stress map was a peak compressive stress of 900 MPa, or 1.3 times the yield strength, centered about 1.5 crater radii below the crater floor. The results were compared with an explicit finite element simulation of the impact event. The model has good agreement with the measured residual stresses. As part of the study, residual stresses in the as-received HSLA-100 plate were also measured and found to be a typical quenching stress distribution with peak compressive stress of about 165 MPa a few mm below the surface and tensile stress of 200 MPa in the center of the plate thickness.
Residual stress characterization of Al/SiC nanoscale multilayers using X-ray
Singh, DRP; Deng, X.; Chawla, N.; Bai, J.; Hubbard, Camden R; Tang, G; Shen, Y-L
2010-01-01
Nanolayered composites are used in a variety of applications such as wear resistant coatings, thermal barrier coatings, optical and magnetic thin films, and biological coatings. Residual stresses produced in these materials during processing play an important role in controlling their microstructure and properties. In this paper, we have studied the residual stresses in model metal-ceramic Al/SiC nanoscale multilayers produced by physical vapor deposition (magnetron sputtering). X-ray synchrotron radiation was used to measure stresses in the multilayers using the sin{sup 2} {Psi} technique. The stresses were evaluated as a function of layer thicknesses of Al and SiC and also as a function of the number of layers. The stress state of Al in the multilayer was largely compressive, compared to single layer Al stresses. This is attributed to a peening mechanism due to bombardment of the Al layers by SiC and Ar neutrals during deposition. The stress evolution was numerically modeled by a simplified peening process to qualitatively explain the Al thickness-dependent residual stresses.
Residual Stress Characterization of Al/SiC Nanoscale Multilayers using X-ray
D Singh X Deng; N Chawla; J Bai; C Hubbard; G Tang; Y Shen
2011-12-31
Nanolayered composites are used in a variety of applications such as wear resistant coatings, thermal barrier coatings, optical and magnetic thin films, and biological coatings. Residual stresses produced in these materials during processing play an important role in controlling their microstructure and properties. In this paper, we have studied the residual stresses in model metal-ceramic Al/SiC nanoscale multilayers produced by physical vapor deposition (magnetron sputtering). X-ray synchrotron radiation was used to measure stresses in the multilayers using the sin{sup 2} {psi} technique. The stresses were evaluated as a function of layer thicknesses of Al and SiC and also as a function of the number of layers. The stress state of Al in the multilayer was largely compressive, compared to single layer Al stresses. This is attributed to a peening mechanism due to bombardment of the Al layers by SiC and Ar neutrals during deposition. The stress evolution was numerically modeled by a simplified peening process to qualitatively explain the Al thickness-dependent residual stresses.
Residual stresses in a shape welded steel tube by neutron diffraction
NASA Astrophysics Data System (ADS)
Taran, Yu V.; Balagurov, A. M.; Schreiber, J.; Stuhr, U.
2008-03-01
Measurements of the triaxial residual strains in a composite tube from an austenitic stainless steel as a parent material and a shape welded ferritic steel were carried out by the time-of-flight neutron diffraction method on the POLDI instrument at the PSI SINQ neutron pulsed facility. The shape weld is used to build compressive stresses and, as a result, to suppress stress corrosion. Investigations of the residual stresses in such composite tubes are important for developing optimal welding techniques. Calculation of the residual stresses was performed using measurement results with a comb-sample, machined from the tube by the electro-discharge method, as the stress free reference sample. The results of the POLDI measurements of the stress state in the composite tube are presented and compared to the results of the destructive turning out method and theoretical predictions of calculations by the finite element method. Semiquantitative agreement between all the used methods was only observed for the tangential component of the stress tensor. In this case, the ferrite cladding produced a tangential compressive stress of about 800 MPa on the austenitic tube.
Phase transformations and residual stresses in environmental barrier coatings
NASA Astrophysics Data System (ADS)
Harder, Bryan J.
Silicon-based ceramics (SiC, Si3N4) are promising materials for high-temperature structural applications in turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) were developed to protect the underlying substrate. In the case of silicon carbide (SiC), multilayer coating systems consist of a Ba1-xSrxAl2Si 2O8 (BSAS) topcoat, a mullite or mullite + SrAl2Si 2O8 (SAS) interlayer, and a silicon bond coat. In this work, biaxial strains were measured on as-sprayed and heat-treated samples to analyze the stress and phase evolution in the coating system as a function of depth and temperature. Models were used to compare the results with an ideal coating system. In the assprayed state, tensile stresses as high as 175 MPa were measured, and cracking was observed. After thermally cycling the samples, stresses were significantly reduced and cracks in the topcoat had closed. The addition of SAS to the interlayer increased the compressive stress in the BSAS topcoat in thermally-cycled samples, which was desirable for EBC applications. The BSAS topcoat transformed from the as-deposited hexacelsian state to the stable celsian above 1200°C. This phase transformation is accompanied by a CTE reduction. The kinetics of the hexacelsian-to-celsian transformation were quantified for freestanding plasma-sprayed BSAS. Activation energies for bulk bars and crushed powder were determined to be ˜340 kJ/mol and ˜500 kJ/mol, respectively. X-ray diffraction and electron backscatter diffraction were used to establish how microstructural constraints reduce the transformation energy. Barrier coating lifetime and stability are also influenced by exposure to reactive, low-melting point calcium-magnesium-aluminosilicate (CMAS) deposits formed from dust and sand. Multilayer doped aluminosilicate coatings and bulk BSAS material were
NASA Astrophysics Data System (ADS)
Ganguly, S.; James, J. A.; Fitzpatrick, M. E.; Tanguy, A.
2010-06-01
Residual stress measurement using neutron diffraction is becoming an increasingly important tool in engineering stress analysis. To this effect, a new generation of dedicated engineering strain instruments are being built at neutron sources, offering considerable improvements in both counting time and spatial resolution. Alongside these improvements, measurements in complex geometry prototype components are increasingly in demand. As a result, there is a strong drive towards integrated sample positioning systems that allow for simplified setup and operating of experiments on components with complex geometries. The present study details work carried out at the ENGIN-X instrument at the UK’s ISIS pulsed neutron source, on measurements in a prototype metal matrix composite (MMC) aircraft wheel, forged from a billet produced through a powder-metallurgy route. The measurement was designed to obtain the macrostress and misfit stresses developed in the matrix and in the reinforcement phase in the wheel during fabrication. The study also demonstrates the use of the SScanSS software for experimental design and implementation, which was developed to complement the advances in the instrumentation of new strain mapping diffractometers. SScanSS simplifies the precise spatial location of the measuring gauge volume inside such complex components.
Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Raj, Sai V.
2002-01-01
Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.
Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress
NASA Astrophysics Data System (ADS)
Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev
2016-05-01
Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal (σ 11) and shear (τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress (P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress (σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.
Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress
NASA Astrophysics Data System (ADS)
Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev
2016-08-01
Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.
Elastoplastic analysis of process induced residual stresses in thermally sprayed coatings
Chen Yongxiong; Liang Xiubing; Liu Yan; Xu Binshi
2010-07-15
The residual stresses induced from thermal spraying process have been extensively investigated in previous studies. However, most of such works were focused on the elastic deformation range. In this paper, an elastoplastic model for predicting the residual stresses in thermally sprayed coatings was developed, in which two main contributions were considered, namely the deposition induced stress and that due to differential thermal contraction between the substrate and coating during cooling. The deposition induced stress was analyzed based on the assumption that the coating is formed layer-by-layer, and then a misfit strain is accommodated within the multilayer structure after the addition of each layer (plastic deformation is induced consequently). From a knowledge of specimen dimensions, processing temperatures, and material properties, residual stress distributions within the structure can be determined by implementing the model with a simple computer program. A case study for the plasma sprayed NiCoCrAlY on Inconel 718 system was performed finally. Besides some similar phenomena observed from the present study as compared with previous elastic model reported in literature, the elastoplastic model also provides some interesting features for prediction of the residual stresses.
Experimental determination of the residual stresses in a Kraft recovery boiler tube
Wang, Xun-Li; Payzant, E.A.; Taljat, B.
1997-07-01
Neutron diffraction was used to determine the residual stresses in a spiral weld overlay tube used in Kraft recovery boilers by the pulp and paper industry. The specimen was a 2.5 inches OD carbon steel tube covered with a layer of Inconel 625 weld overlay. Residual strains in the carbon steel and weld overlay layers were determined using the ferritic (211) and austenitic (311) reflections, respectively. Residual stresses in each material were derived from the measured strains using Hooke`s law and appropriate elastic constants. Tensile stress regions were found not only in the weld metal but also in the heat affected zone in the carbon steel. The maximum tensile stress was located in the weld overlay layer and was found to be 360 MPa, or about 75% of the yield strength of the weld metal. The experimental data were compared with a finite element analysis based on an uncoupled thermal-mechanical formulation. Overall, the modeling results were in satisfactory agreement with the experimental data, although the hoop strain (stress) appears to have been overestimated by the finite element model. Additional neutron diffraction measurements on an annealed tube confirmed that these welding residual stresses were eliminated after annealing at 900{degrees}C for 20 minutes. 18 refs., 7 figs.
Residual stress analysis of multilayer environmental barrier coatings.
Harder, B.; Almer, J.; Weyant, C.; Lee, K.; Faber, K.; Northwestern Univ.; Rolls-Royce Corp.
2009-02-01
Silicon-based ceramics (SiC, Si{sub 3}N{sub 4}) are promising materials systems for high-temperature structural applications in gas turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) have been developed to shield the underlying substrate and prevent degradation. Here we report on elastic and thermal properties, as well as internal stresses of candidate multilayer coatings, as measured in situ using microfocused high-energy X-rays in a transmission diffraction geometry. Doped aluminosilicate coatings were investigated for their stability on a SiC/SiC melt-infiltrated substrate. The coatings consisted of a Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} topcoat with a mullite or mullite+SrAl{sub 2}Si{sub 2}O{sub 8} interlayer, and a silicon bond coat. A numerical model was used to compare the stress results with an ideal coating system. Experiments were carried out on as-sprayed and heat-treated samples in order to analyze the strain and phase evolution as a function of multilayer depth and temperature. The phase transformation of the topcoat promoted healing of cracks in the EBC and reduced stresses in the underlying layers and the addition of SAS to the interlayer reduced stresses in thermally cycled coatings, but did not stop cracks from forming.
Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.
2012-07-01
A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)
Bi-Metallic Composite Structures With Designed Internal Residual Stress Field
NASA Technical Reports Server (NTRS)
Brice, Craig A.
2014-01-01
Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.
Calculation of residual principal stresses in CVD boron on carbon filaments
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1980-01-01
A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep rates.
Calculation of residual principal stresses in CVD boron on carbon filaments
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1980-01-01
A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.
Effects of bending stresses and tube curvature on remote field eddy current signals
Sutherland, J.; Atherton, D.L.
1997-01-01
The effects of bending stresses and tube curvature on remote field eddy current signals were investigated. This technique is a recognized method for the nondestructive evaluation of ferromagnetic tubing, as used in heat exchangers and boiler systems. Different stress states were examined (elastic stress, plastic deformation, and residual stress) and found to give distinctive behavior. Elastic and residual stresses can appear as wall loss, depending on the operating frequency and baseline used for inspection and interpretation.
Influence of residual stresses on the tensile strength of composite-metal sandwich laminates
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Wong, D. M.
1977-01-01
The tensile strength of boron-epoxy/aluminum sandwich laminates is discussed relative to the residual thermal stresses generated by curing and bonding at elevated temperatures. It is shown that the sandwich laminates investigated exhibit three dinstinct modes of failure, depending upon the fiber orientation of the composite. Sandwich laminates with moderate to high percentage of 0-deg fibers exhibit early failures initiated by edge effect; laminates with moderate to high percentage of 90-deg fibers fail according to a first-ply failure criterion; laminates with moderate to high percentages of plus or minus 45 deg plies fail at strains equal to or greater than the failure strain of the corresponding all-composite laminate.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.; Morel, M.
1991-01-01
A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.
Determination of the residual stress-crack opening relationship of SFRC flexural members
NASA Astrophysics Data System (ADS)
Kaklauskas, Gintaris; Gribniak, Viktor; Meskenas, Adas; Rimkus, Arvydas; Kaklauskas, Arturas; Kupliauskas, Rimantas
2013-10-01
Steel fibre reinforced concrete (SFRC) has become widespread material in building areas such as underground shotcrete structures or industrial floors. However, due to the absence of universally accepted guidelines for SFRC, application fields of this material are still limited. This paper deals with assessment of the residual stresses of tensile SFRC. An adequate method for determination of residual stress-crack opening relation, based on test data of three-point bending beams is proposed. To verify the analysis results a numerical modelling is utilized employing a nonlinear finite element analysis program. Simulated load-crack width curves were compared with the experimental data validating adequacy of the proposed model.
Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.
Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming
2015-02-01
This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812
Longitudinal residual strain and stress-strain relationship in rat small intestine
Dou, Yanling; Fan, Yanhua; Zhao, Jingbo; Gregersen, Hans
2006-01-01
Background To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. Methods The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH2O. Results Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. Conclusion Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous
The effect of academic stress and attachment stress on stress-eaters and stress-undereaters.
Emond, Michael; Ten Eycke, Kayla; Kosmerly, Stacey; Robinson, Adele Lafrance; Stillar, Amanda; Van Blyderveen, Sherry
2016-05-01
It is well established that stress is related to changes in eating patterns. Some individuals are more likely to increase their overall food intake under conditions of stress, whereas others are more likely to consume less food when stressed. Attachment style has been linked to disordered eating and eating disorders; however, comparisons of eating behaviors under attachment versus other types of stress have yet to be explored. The present laboratory study examined the eating patterns in self-identified stress-undereaters and stress-eaters under various types of stress. More specifically, the study examined the effects of academic and attachment stress on calorie, carbohydrate and sugar consumption within these two groups. Under the guise of critiquing student films, university students viewed either one of two stress-inducing videos (academic stress or attachment stress, both designed to be emotionally arousing) or a control video (designed to be emotionally neutral), and their food intake was recorded. Results demonstrated that the video manipulations were effective in inducing stress. Differential patterns of eating were noted based on group and stress condition. Specifically, stress-undereaters ate fewer calories, carbohydrates and sugars than stress-eaters in the academic stress condition, but not in the attachment stress or control condition. Findings suggest that specific types of stressors may influence eating behaviors differently. PMID:26850311
Waffenschmidt, Tobias; Menzel, Andreas
2014-01-01
Various biological tissues are designed to optimally support external loads for complex geometries and mechanobiological structures. This results in complex microstructures of such materials. The design of, for instance, (healthy) arteries, which are in the focus of this work, is characterised by a residually stressed fibre-reinforced multi-layered composite with highly non-linear elastic response. The complex interaction of material properties with the geometry and residual stress effects enables the optimal support under different blood pressures, respectively blood flow, within the vessel. The fibres reinforcing the arterial wall, as well as residual stresses present in the vessel, strongly influence its overall behaviour and performance. Turn-over and remodelling processes of the collagenous fibres occurring in the respective layers - either resulting from natural growth phenomena or from artificially induced changes in loading condition such as stent deployment - support the optimisation of the multi-layered composite structure of arteries for the particular loading conditions present in the artery. Within this contribution, the overall energetic properties of an artery are discussed by means of the inflation, bending and extension of a double-layered cylindrical tube. Different states of residual stresses and different fibre orientations are considered so that, for instance, representative fibre angles that result in extremal states of the total potential energy can be identified. In view of turn-over and remodelling processes, these orientations are considered to constitute preferred directions of fibre alignment. In summary, the main goal of this work is to calculate optimal material, structural and loading parameters by concepts of energy-minimisation. Several numerical studies show that the obtained values - such as the fibre orientations, the residual axial stretch and the opening angle - are in good agreement with respective physiological parameters
Dhawan, Sahil; Vedeshwar, Agnikumar G.; Dhawan, Tanuj
2014-07-28
Nb{sub 2}O{sub 5} quantum dots (QDs) were grown using a simple technique of vacuum thermal evaporation. QDs were found to be crystalline in nature by selected area electron diffraction (SAED) in TEM. Samples with thickness up to 20 nm did not show any significant residual strain. Residual stress effect on band gap of crystalline Nb{sub 2}O{sub 5} was studied for films thicker than 20 nm. Residual strain was determined using SAED of the films with reference to powder X-ray diffraction (XRD). Films thicker than 45 nm become amorphous as analyzed by both SAED and XRD. The optical absorption of films in the range 25–60 nm indicates significantly varying optical band gap of films. The varying band gap with film thickness scales linearly very well with the variation of residual stress with film thickness. The residual stress dependence of band gap of crystalline films yields stress free band gap as 3.37 eV with pressure coefficient of band gap (∂E{sub g}/∂P){sub T} = −29.3 meV/GPa. From this study, the crystalline to amorphous transformation in tetragonal form of M-Nb{sub 2}O{sub 5} has been determined to be at about 14 GPa. Both pressure coefficient of band gap and crystalline to amorphous transition for tetragonal M-Nb{sub 2}O{sub 5} have been determined for the first time in the literature.
Thermoelastic Stress Analysis: The Mean Stress Effect in Metallic Alloys
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
1999-01-01
The primary objective of this study involved the utilization of the thermoelastic stress analysis (TSA) method to demonstrate the mean stress dependence of the thermoelastic constant. Titanium and nickel base alloys, commonly employed in aerospace gas turbines, were the materials of interest. The repeatability of the results was studied through a statistical analysis of the data. Although the mean stress dependence was well established, the ability to confidently quantify it was diminished by the experimental variations. If calibration of the thermoelastic response to mean stress can be successfully implemented, it is feasible to use the relationship to determine a structure's residual stress state.
Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method
Sebastiani, Marco; Eberl, Christoph; Bemporad, Edoardo; Pharr, George Mathews
2011-01-01
A new methodology for the measurement of depth sensitive residual stress profiles of thin coatings with sub-micrometer resolution is presented. The two step method consists of incremental focused ion beam (FIB) ring-core milling, combined with high-resolution in situ SEM-FEG imaging of the relaxing surface and a full field strain analysis by digital image correlation (DIC). The through-thickness profile of the residual stress can be obtained by comparison of the experimentally measured surface strain with finite element modeling using Schajer's integral method. In this work, a chromium nitride (CrN) CAE-PVD 3.0 {mu}m coating on steel substrate, and a gold MS-PVD 1.5 {mu}m on silicon were selected for the experimental implementation. Incremental FIB milling was conducted using an optimized milling strategy that produces minimum re-deposition over the sample surface. Results showed an average residual stress of {sigma} = -5.15 GPa in the CrN coating and {sigma} = +194 MPa in the Au coating. These values are in reasonable agreement with estimates obtained by other conventional techniques. The depth profiles revealed an increasing residual stress from surface to the coating/surface interface for both coatings. This observation is likely related to stress relaxation during grain growth, which was observed in microstructural cross sections, as predicted by existing models for structure-stress evolution in PVD coatings. A correlation between the observed stress gradients and the in-service mechanical behavior of the coatings is proposed. Finally, critical aspects of the technique and the influence of microstructure and elastic anisotropy on stress analysis are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Zhu, Jianguo; Xie, Huimin; Hu, Zhenxing; Chen, Pengwan; Zhang, Qingming
2012-09-01
A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.
Residual stresses in a stainless steel - titanium alloy joint made with the explosive technique
NASA Astrophysics Data System (ADS)
Taran, Yu V.; Balagurov, A. M.; Sabirov, B. M.; Evans, A.; Davydov, V.; Venter, A. M.
2012-02-01
Joining of pipes from stainless steel (SS) and titanium (Ti) alloy still experience serious technical problems. Recently, reliable and hermetic joining of SS and Ti pipes has been achieved with the explosive bonding technique in the Russian Federal Nuclear Center. Such adapters are earmarked for use at the future International Linear Collider. The manufactured SS-Ti adapters have excellent mechanical behavior at room and liquid nitrogen temperatures, during high-pressure tests and thermal cycling. We here report the first neutron diffraction investigation of the residual stresses in a SS-Ti adapter on the POLDI instrument at the SINQ spallation source. The strain scanning across the adapter walls into the SS-SS and SS-Ti pipes sections encompassed measurement of the axial, radial and hoop strain components, which were transformed into residual stresses. The full stress information was successfully determined for the three steel pipes involved in the joint. The residual stresses do not exceed 300 MPa in magnitude. All stress components have tensile values close to the adapter internal surface, whilst they are compressive close to the outer surface. The strong incoherent and weak coherent neutron scattering cross-sections of Ti did not allow for the reliable determination of stresses inside the titanic pipe.
Residual stress of diffusion bonded aluminum-to-stainless steel joins. Final report
Stroud, R.D.; Shackelford, J.F.
1980-09-01
An x-ray method for determination of residual stress as a function of surface position on a metal sample is described. This method is capable of spatial resolution on the order of 0.040 inch (1 mm) and precision positioning of the sample along three orthogonal axes to better than 0.001 inch. A high precision sample holder was designed and fabricated for this purpose. Apparent residual stress was found to be a strong function of sample position with respect to the axis of rotation of the diffractometer circle. This relationship is on the order of 400 to 500 Kpsi/inch for aluminum. The high precision sample holder allowed careful centering of the sample providing true (rather than apparent) residual stress measurements in the range of low stresses (less than 10 Ksi). Comparison was made between applied stress values obtained with strain gage output and those obtained by x-ray diffraction. Correlation was good with the accuracy of stress measurements being approximately +-500 psi.
NASA Astrophysics Data System (ADS)
Montalto, L.; Paone, N.; Scalise, L.; Rinaldi, D.
2015-06-01
The assessment of the stress state of scintillating crystals is an important issue for producers as well as users of such materials, because residual stress may arise during growth process. In this paper, a measurement system, based on the use of a photoelastic, conoscopic optical setup, is proposed for the assessment of stress state in scintillating crystals. Local stress values can be measured on the crystal in order to observe their spatial distribution. With the proposed system, it is possible to vary the dimensions of the inspected measurement volume. It has been validated with reference to a known stress state induced in a birefringent crystal sample and it has been tested for the case of loaded and unloaded samples, showing sub-millimetric spatial resolution and stress uncertainty ≤0.25 MPa. The proposed measurement system is a valid method for the inspection of scintillating crystals required by producers and users of such materials.
Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon
Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio
2010-05-05
This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.
Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.
Green, David J.; Sglavo, Vincenzo M.; Tandon, Rajan
2003-02-11
Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Guojun; Huang, Yu
2016-08-01
Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.
Rund, C.O.; DiMascio, P.S.; Pangborn, R.N.; Snoha, D.J.
1984-06-01
A unique x-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 2 1/4 Cr 1 Mo steel plate weldment.
NASA Astrophysics Data System (ADS)
Kolobov, Yu. R.; Golosov, E. V.; Vershinina, T. N.; Zhidkov, M. V.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.; Ligachev, A. E.
2015-04-01
Surface topography, phase composition and compressive residual stresses were characterized in surface layers of α + β titanium alloys VT6 (Ti-6Al-4V) and VT16 (Ti-3Al-4.5V-5Mo) nanotextured by 744-nm, 120-fs-laser pulses. The relative content of β-phase, along with the residual compressive stresses, increases significantly in both these materials over the depth ~0.2 μ in the nanotextured surface layer comprised by nanograins and remains almost unchanged at higher depths of 1-2 μ in bulk. The laser-driven α → β phase transformation is related to the combined effect of ultrafast heating/cooling, strong (multi-GPa) shock waves, chemical segregation and nanograin formation induced during the ablative surface nanotexturing.
Quantitative measurement of CO2 laser-induced residual stress in fused silica optics
NASA Astrophysics Data System (ADS)
Yang, Liang; Liao, Wei; Miao, Xinxiang; Yuan, Xiaodong; Zheng, Wanguo; Lv, Haibin; Zhou, Guorui; Zu, Xiaotao; Xiang, Xia
2015-05-01
The residual stress field of fused silica induced by continuous wave CO2 laser irradiation is investigated with specific photoelastic methods. Both hoop stress and axial stress in the irradiated zone are measured quantitatively. For the hoop stress along the radial direction, the maximum phase retardance of 30 nm appears at the boundary of the laser distorted zone (680-μm distance to center), and the phase retardance decreases rapidly and linearly inward, and decreases slowly and exponentially outward. For the axial stress, tensile stress lies in a thin surface layer (<280 μm) and compressive stress lies just below the tensile region. Both tensile and compressive stresses increase first and then decrease along the depth direction. The maximum phase retardance induced by axial tensile stress is 150 nm, and the maximum phase retardance caused by axial compression stress is about 75 nm. In addition, the relationship between the maximum axial stress and the deformation height of the laser irradiated zone is also discussed.
Yu, F.; Nagy, P. B.
2006-03-06
Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work.
The residual stress relaxation after fatigue in fine-grained steels
NASA Astrophysics Data System (ADS)
Bruno, G.; Nitschke-Pagel, T.
Since the residual stress (RS) relaxation during and after fatigue can be highly detrimental to the life of components, a study of its variation in welding, after cyclic loading, simulating the operating conditions, has been carried out. Plates of S96QL ferritic steel were investigated in as-welded conditions and subject to 350-MPa load for 100 cycles. Both have composition 0.17% C, 0.8% Cr, 2% Ni, a yield stress of about 1015MPa and were welded with the mechanised TIG technique. The critical points for rupture are usually the notches at the weld toe even if much higher tensile residual stresses can be found mostly in the centre of the weld seam. However, the relaxation of the residual stresses in the weld seam was examined to understand the mechanisms which lead to residual stress relaxation under quasistatic and cyclic loading. A transverse-to-weld scan was done at mid-depth to identify the maximum RS, which turned out to be both in the heat-affected zone and at the weld centre. A through-depth scan was performed to follow the RS profile in both points. Results show that stresses decrease in the fatigued specimen: tensile stresses relax to moderate values below 300MPa and compressive ones to below 100MPa. Especially in the weld, the degree of triaxiality decreases in the tensile region, after loading, which implies a lower risk to crack initiation and void formation. The experimental results match very well to the results of surface and subsurface measurements by means of X-ray diffraction after electrochemical polishing.
Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress.
Araki, Kazutaka; Kusano, Hidewo; Sasaki, Naoyuki; Tanaka, Riko; Hatta, Tomohisa; Fukui, Kazuhiko; Natsume, Tohru
2016-08-01
The protein cysteine residue is one of the amino acids most susceptible to oxidative modifications, frequently caused by oxidative stress. Several applications have enabled cysteine-targeted proteomics analysis with simultaneous detection and quantitation. In this study, we employed a quantitative approach using a set of iodoacetyl-based cysteine reactive isobaric tags (iodoTMT) and evaluated the transient cellular oxidation ratio of free and reversibly modified cysteine thiols under DTT and hydrogen peroxide (H2O2) treatments. DTT treatment (1 mM for 5 min) reduced most cysteine thiols, irrespective of their cellular localizations. It also caused some unique oxidative shifts, including for peroxiredoxin 2 (PRDX2), uroporphyrinogen decarboxylase (UROD), and thioredoxin (TXN), proteins reportedly affected by cellular reactive oxygen species production. Modest H2O2 treatment (50 μM for 5 min) did not cause global oxidations but instead had apparently reductive effects. Moreover, with H2O2, significant oxidative shifts were observed only in redox active proteins, like PRDX2, peroxiredoxin 1 (PRDX1), TXN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Overall, our quantitative data illustrated both H2O2- and reduction-mediated cellular responses, whereby while redox homeostasis is maintained, highly reactive thiols can potentiate the specific, rapid cellular signaling to counteract acute redox stress. PMID:27350002
A Novel Symmetric Test Structure for Residual Stress on MEMS Thin Film
NASA Astrophysics Data System (ADS)
Tu, Chenfeng; Zhou, Zai-Fa; Xu, Yanbo
Residual stress is one of the important parameters of thin films, which can seriously affect the properties, performance and long-term stability of thin films. Stress measurement techniques are therefore essential for both process development and process monitoring. This paper presents a novel symmetric micro strain gauge which can be in situ fabricated. The structure is modeled and simulated in ANSYS. Both compressive and tensile stress can be measured via this strain gauge and the resolution can reach to 0.0005% with optimized dimension.
Pechersky, M.J.
1999-07-06
An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.
Pechersky, Martin J.
1995-01-01
A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.
Pechersky, Martin J.
1999-01-01
An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.
Effects of processing on carbendazim residue in Pleurotus ostreatus.
Xia, Erdong; Tao, Wuqun; Yao, Xi; Wang, Jin; Tang, Feng
2016-07-01
Samples of Pleurotus ostreatus were exposed to fungicide carbendazim to study the effect of processing on the residues. In most cases, processing operations led to a significant decrease in residue levels in the finished products, particularly through washing, drying, and cooking processes. The results indicated that rinsing under running tap water led to more than 70.30% loss in carbendazim residues. When dried under sunlight could remove more than 70.30% residues. There was a 63.90-97.14% reduction after steaming, with processing time extending, the removal rates increased especially for lower initial residue level samples. The residue was almost completely removed by frying combined with microwave heating. Furthermore, boiling the mushrooms reduced the residue in the mushroom and no carbendazim residues were determined in the broth. PMID:27386113
Nondestructive evaluation of residual stress in low-carbon steel
NASA Technical Reports Server (NTRS)
Salama, K.
1984-01-01
The effects of the preferred orientation on the temperature dependence of ultrasonic velocity in low carbon steels are investigated. The sensitivity of the acousto-elastic constant to changes in microstructure is assessed as well as the possibility of determining some mechanical properties of a material by measuring the acousto-elastic constant.
NASA Astrophysics Data System (ADS)
Guzmán, R. E.; Hernández Arroyo, E.
2016-02-01
The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.
A photoelastic assessment of residual stresses in zirconia-veneer crowns.
Belli, R; Monteiro, S; Baratieri, L N; Katte, H; Petschelt, A; Lohbauer, U
2012-03-01
Residual stresses within the veneer are linked to the high prevalence of veneer chipping observed in clinical trials of zirconia prostheses. We hypothesized that the thermal mismatch between the zirconia infrastructure and the veneer porcelain, as well as the rate used for cooling zirconia-veneer crowns, would be directly proportional to the magnitude of residual stresses built within the veneer layer. Two porcelains with different coefficients of thermal expansion were used to veneer zirconia copings, to create high or low thermal mismatches. The crowns were cooled according to a fast- or a slow-cooling protocol. The retardation of polarized light waves was used to calculate the residual stress magnitude and distribution across the veneer, according to the photoelasticity principle, in 1.0-mm-thick crown sections. While thermal mismatch was an important factor influencing the maximum stress development in the veneer, cooling rate had a minor role. Curved surfaces were preferential sites for stress concentration regardless of thermal mismatch or cooling rate. PMID:22262632
A wafer mapping technique for residual stress in surface micromachined films
NASA Astrophysics Data System (ADS)
Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J.
2016-09-01
The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements.
Drezet, J.-M.; Evans, A.; Pirling, T.
2011-05-04
Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.
NASA Astrophysics Data System (ADS)
Drezet, J.-M.; Evans, A.; Pirling, T.
2011-05-01
Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.
Measuring multiple residual-stress components using the contour method and multiple cuts
Prime, Michael B; Swenson, Hunter; Pagliaro, Pierluigi; Zuccarello, Bernardo
2009-01-01
The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.
Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; Payzant, E. Andrew; Kolbus, Lindsay M.
2015-09-08
This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stir zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.
Residual Stress Measurements with Laser Speckle Correlation Interferometry and Local Heat Treating
Pechersky, M.J.; Miller, R.F.; Vikram, C.S.
1994-01-06
A new experimental technique has been devised to measure residual stresses in ductile materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple lumped parameter model is presented to provide a description of the method. This description is followed by presentations of the results of finite element analyses and experimental results with uniaxial test specimens. Excellent agreement between the experiments and the computer analyses were obtained.
Residual stress measurement by successive extension of a slot: A literature review
Prime, M.B.
1997-05-01
This report reviews the technical literature on techniques that employ successive extension of a slot and the resulting deformations to measure residual stress. Such techniques are known variously in the literature as the compliance or crack compliance method, the successive cracking method, the slotting method, and a fracture mechanics based approach. The report introduces the field and describes the basic aspects of these methods. The report then reviews all literature on the theoretical developments of the method. The theory portion first considers forward method solutions including fracture mechanics, finite element, analytical, and body force methods. Then it examines inverse solutions, including incremental inverses and series expansions. Next, the report reviews all experimental applications of slotting methods. Aspects reviewed include the specimen geometry and material, the details of making the slot, the method used to measure deformation, and the theoretical solutions used to solve for stress. Finally, the report makes a brief qualitative comparison between slotting methods and other residual stress measurement methods.
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2010-06-01
Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.
Grassia, Luigi; D'Amore, Alberto
2010-06-02
Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.
Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy
Choi, Sukwon; Griffin, Benjamin A.
2016-01-06
Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less
Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Choi, Sukwon; Griffin, Benjamin A.
2016-02-01
Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertainties for predicting the impact of AlN residual stress on the device performance.
Measurement of residual stresses in deposited films of SOFC component materials
Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y.
1996-12-31
The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.
Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction
NASA Astrophysics Data System (ADS)
Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru
2014-06-01
The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.
NASA Astrophysics Data System (ADS)
Steuwer, A.; Barnes, S. J.; Altenkirch, J.; Johnson, R.; Withers, P. J.
2012-07-01
A set of single pass full penetration friction stir bead-on-plate and butt welds in HSLA-65 steel were produced using a range of traverse speeds (50 to 500 mm/min) and two tool materials (W-Re and PCBN). Part I described the influence of process and tool parameters on the microstructure in the weld region. This article focuses on the influence of these parameters on residual stress, but the presence of retained austenite evident in the diffraction pattern and X-ray tomographic investigations of tool material depositions are also discussed. The residual stress measurements were made using white beam synchrotron X-ray diffraction (SXRD). The residual stresses are affected by the traverse speed as well as the weld tool material. While the peak residual stress at the tool shoulders remained largely unchanged (approximately equal to the nominal yield stress (450 MPa)) irrespective of weld speed or tool type, for the W-Re welds, the width of the tensile section of the residual stress profile decreased with increasing traverse speed (thus decreasing line energy). The effect of increasing traverse speed on the width of the tensile zone was much less pronounced for the PCBN tool material.
NASA Astrophysics Data System (ADS)
Mondal, Arpan Kumar; Biswas, Pankaj; Bag, Swarup
2015-07-01
Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.
Research opportunities and facilities at ORNL`s residual stress user center
Hubbard, C.R.; Watkins, T.R.; Kozaczek, K.; Wang, X.-L.; Spooner, S.
1994-09-01
The High Temperature Materials Laboratory (HTML) User Program at ORNL was established to help solve high-temperature materials problems that limit the efficiency and reliability of advanced energy-conversion systems. Both proprietary and nonproprietary research can be conducted within the user program. The facilities are open to researchers in US industry, universities, and federal laboratories. The Residual Stress User Center (RSUC), one of the six HTML user centers, was recently established and consists of two high precision x-ray diffraction systems for measurement of residual strain and texture. Both biaxial and triaxial residual strain data can be collected. Attachments to the diffraction system include a position sensitive detector and a laser specimen positioning system. The RSUC has capabilities for electropolishing and strain measurement with strain gauges. A complementary neutron diffraction facility has recently been developed and demonstrated at the High Flux Isotope Reactor at ORNL. The neutron diffraction facility enables mapping of macro residual stresses throughout the volume of a component, complementing the near surface stress measurements available by x-ray diffraction. The neutron facility has been proposed as an addition to the RSUC.
NASA Astrophysics Data System (ADS)
Ladison, Julie L.; Ellison, Joseph F.; Allan, Douglas C.; Fladd, David R.; Fanning, Andrew W.; Priestley, Richard
2001-09-01
As optical lithographers push to extend optical lithography technologies to create smaller features with higher NA, lower k1 values and shorter wavelengths, transmitted wavefront specifications for HPFSR fused silica blanks continue to tighten. HPFSR fused silica blanks are typically certified for acceptance using an interferometer operating at a wavelength of 632.8 nm. As the market demands increasingly tighter homogeneity specifications, it has become critical to understand the sources of variation in wavefront measurements. Corning has recently initiated a study to identify those sources of variation. One glass attribute being studied is the impact of residual stress on the wavefront. It is known that residual stresses can alter the refractive index of fused silica. To obtain the residual stress measurements, birefringence measurements were obtained at 632.8 nm for comparison to wavefront measurements at 632.8 nm. The relationship between residual birefringence and transmitted wavefront measurements, at 632.8 nm on Corning HPFSR fused silica blanks, is explored in this paper.
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David J.; Eakins, Daniel E.; Proud, William G.; Savinykh, Andrey S.; Garkushin, Gennady V.; Razorenov, Sergey V.; Kanel, Gennady I.
2014-05-01
Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material strength. With this objective, we performed a careful comparative measurement of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected decay in the elastic precursor state with increasing sample thickness for both aluminium and magnesium alloy. However, we also observed a small change in the magnitude of hysteresis in the elastic-plastic compression-unloading cycle; where qualitatively the peak free-surface velocity also increased with increasing specimen thickness. Interestingly, the observed change in hysteresis as function of specimen thickness for the Ma2 alloy was relatively smaller than the AD1, in contrast with the larger change in precursor magnitude observed for the magnesium. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
NASA Astrophysics Data System (ADS)
Chason, Eric; Guduru, Pradeep R.
2016-05-01
Residual stress is a long-standing issue in thin film growth. Better understanding and control of film stress would lead to enhanced performance and reduced failures. In this work, we review how thin film stress is measured and interpreted. The results are used to describe a comprehensive picture that is emerging of what controls stress evolution. Examples from multiple studies are discussed to illustrate how the stress depends on key parameters (e.g., growth rate, material type, temperature, grain size, morphology, etc.). The corresponding stress-generating mechanisms that have been proposed to explain the data are also described. To develop a fuller understanding, we consider the kinetic factors that determine how much each of these processes contributes to the overall stress under different conditions. This leads to a kinetic model that can predict the dependence of the stress on multiple parameters. The model results are compared with the experiments to show how this approach can explain many features of stress evolution.
Younger, Mandy S.; Eckelmeyer, Kenneth Hall
2007-11-01
This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.
Henriques, B; Miranda, G; Gasik, M; Souza, J C M; Nascimento, R M; Silva, F S
2015-10-01
The aim of this work was to study, using the finite element method (FEM), the distribution of thermal residual stresses arising in metal-ceramic dental restorations after cooling from the processing temperature. Three different interface configurations were studied: with conventional sharp transition; one with a 50% metal-50% ceramic interlayer; and one with a compositionally functionally gradated material (FGM) interlayer. The FE analysis was performed based on experimental data obtained from Dynamic Mechanical Analysis (DMA) and Dilatometry (DIL) studies of the monolithic materials and metal/ceramic composites. Results have shown significant benefits of using the 50% metal-50% ceramic interlayer and the FGM interlayer over the conventional sharp transition interface configuration in reduction of the thermal residual stress and improvement of stress profiles. Maximum stresses magnitudes were reduced by 10% for the crowns with 50% metal-50% ceramic interlayer and by 20% with FGM interlayer. The reduction in stress magnitude and smoothness of the stress distribution profile due to the gradated architectures might explain the improved behavior of these novel dental restorative systems relative to the conventional one, demonstrated by in-vitro studies already reported in literature. PMID:26122789
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Wilt, Thomas E.
1992-01-01
Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.
Residual Stress In Sheet Metal Parts Made By Incremental Forming Process
Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo
2007-05-17
Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.
Arnold, S.M.; Wilt, T.E.
1992-03-01
Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.
Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.
Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E
2015-05-13
Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires. PMID:25826449
Residual Stress In Sheet Metal Parts Made By Incremental Forming Process
NASA Astrophysics Data System (ADS)
Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo
2007-05-01
Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.
Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films
Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G. E-mail: agvedeshwar@gmail.com
2013-11-21
The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different six (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.
The Mechanism of Residual Stress Relief for Various Tin Grain Structures
NASA Astrophysics Data System (ADS)
Yu, Cheng-Fu; Hsieh, Ker-Chang
2010-08-01
A pure tin deposition process was developed with various tin grain structures to study tin whisker formation. Samples were tested for 4000 h to examine whisker formation, grain structures, and intermetallic formation using a focused ion beam (FIB). The lateral side of the FIB-cut cavity displayed tin protrusions after 6 days. These phenomena, along with the growth of tin whiskers and/or hillocks, could illustrate the residual stress relief behavior of various tin grain structures. In full columnar structures, whiskers formed normal to the deposition surface and relieved most of the stress. In contrast, stress relaxation in semicolumnar and random structures is highly likely to occur, and proceeds rapidly in the direction parallel to the deposition surface after only a few days. In comparing mixed grain structures, it is apparent that stress is more likely to be rapidly relieved within structures with fewer grain boundaries.
Method to control residual stress in a film structure and a system thereof
Parthum, Sr., Michael J.
2008-12-30
A method for controlling residual stress in a structure in a MEMS device and a structure thereof includes selecting a total thickness and an overall equivalent stress for the structure. A thickness for each of at least one set of alternating first and second layers is determined to control an internal stress with respect to a neutral axis for each of the at least alternating first and second layers and to form the structure based on the selected total thickness and the selected overall equivalent stress. Each of the at least alternating first and second layers is deposited to the determined thickness for each of the at least alternating first and second layers to form the structure.
NASA Astrophysics Data System (ADS)
Zhang, Y. K.; Feng, A. X.; Lu, J. Z.; Kong, D. J.; Tang, C. P.
2006-01-01
Titanium nitride films are deposited on AISI 304 steel with a hollow-cathode-discharge (HCD) ion-plating technique. The status of residual stresses in TiN thin film coated on AISI304 substrate by HCD is studied by x-ray diffraction stress analyzer. By analyzing morphology of the residual stress of TiN thin film at interface between TiN film and AISI 304 substrate, the adhering mechanism of TiN thin film is understood as follows: the mechanical interlocking had important contribution to the adhesion strength, the thermal stress is the major factor which resulting TiN thin film peeling off spontaneously. The results show that the value of thin film is -210MPa~-650Mpa, and the thermal stress is compressive, the intrinsic stress is tensile, origins of the residual stress are primarily discussed.
NASA Astrophysics Data System (ADS)
Lo, C. C. H.
2012-05-01
This paper reports on a recent study aimed at developing the stress-induced magnetic anisotropy (SMA) technique for characterizing residual stresses in case hardened steel components. The results of SMA measurements performed on flat induction hardened steel discs with different case depths confirm the feasibility of detecting principal stress axes by measuring the angular variation of magnetic permeability. The permeability signals along the principal axes were found to vary monotonically with the residual stresses measured by XRD, but the signals are in general smaller for samples with a larger case depth. The magnetomechanical properties of the martensitic case and ferritic/pearlitic core of the induction hardened sample were studied by measuring magnetostriction curves from strip samples that were cut from the case and core regions, respectively. The case strip shows a significantly lower magnetostriction than the core strip, indicating a weaker stress dependence of magnetic properties for the martensitic case than for the ferritic/pearlitic bulk of the case hardened samples.
Krymov, V. M. Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul’pina, I. L.
2015-05-15
The formation of blocks in shaped sapphire rods of two crystallographic orientations has been investigated. It is shown that, when growth occurs in the direction of the optical c axis, blocks are formed with a higher probability than in the case of growth in the a direction. A model of formation of blocks in rods of different orientations is proposed. The distribution of residual stresses over sapphire rod cross sections is measured by conoscopy. It is found that stresses increase from the middle of a rod to its periphery and reach 20 MPa.
NASA Astrophysics Data System (ADS)
Laribi, M.; Mesrati, N.; Vannes, A. B.; Treheux, D.
2003-06-01
This work presents an experimental determination of residual stresses in 35CrMo4 (Euronorm) low alloyed steel substrates with thermally sprayed coatings. Two different materials were separately deposited. The first one consisted of a blend of two superalloys: Cr-Ni steel and Cr-Mn steel, designated 55E and 65E, respectively. The second material was molybdenum. In a first part, basic characteristics of the deposited layers (metallographic analysis, hardness, and adhesion) are presented. In a second part, the determination of the residual stresses, in both substrate and thermal sprayed layers is performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The influence of a nickel-aluminum (80:20%) bond-coat and/or a post-annealing at 850 °C in air for 1 h is studied.
Relief of Residual Stress in Streamline Tie Rods by Heat Treatment
NASA Technical Reports Server (NTRS)
Pollard, R E; Reinhart, Fred M
1941-01-01
About two-thirds of the residual stress in cold-worked SAE 1050 steel tie rods was relieved by heating 30 minutes at 600 degrees Fahrenheit. Cold-worked austenitic stainless-steel tie rods could be heated at temperatures up to 1000 degrees Fahrenheit without lowering the important physical properties. The corrosion resistance, in laboratory corrosion test, of straight 18:8 and titanium-treated 18:8 materials appeared to be impaired after heating at temperatures above 800 degrees or 900 degrees fahrenheit. Columbium-treated and molybdenum-treated 18:8 steel exhibited improved stability over a wide range of temperatures. Tie rods of either material could be heated 30 minutes with safety at any temperature up to 1000 degrees Fahrenheit. At this temperature most of the residual stress would be relieved.