Cure shrinkage in casting resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J. Brock
2015-02-01
A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.
Hossler, Fred E.; Douglas, John E.
2001-05-01
Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.
[Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].
Kasuga, H; Sato, H; Nakabayashi, N
1980-01-01
Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.
Epoxy-resin patterns speed shell-molding of aluminum parts
NASA Technical Reports Server (NTRS)
1965-01-01
Half patterns cast from commercial epoxy resin containing aluminum powder are used for shell-molding of aluminum parts. The half patterns are cast in plastic molds of the original wooden pattern. Ten serviceable sand resin molds are made from each epoxy pattern.
[Experimental processing of corrosion casts of large animal organs].
Pálek, R; Liška, V; Eberlová, L; Mírka, H; Svoboda, M; Haviar, S; Emingr, M; Brzoň, O; Mik, P; Třeška, V
2018-01-01
Corrosion casts (CCs) are used for the visualization and assessment of hollow structures. CCs with filled capillaries enable (with the help of imaging methods) to obtain data for mathematical organ perfusion modelling. As the processing is more difficult in case of organs with greater volume of the vasculature, mainly organs from small animals have been cast up to now. The aim of this study was to optimize the protocol of corrosion casting of different organs of pig. Porcine organs are relatively easily accessible and frequently used in experimental medicine. Organs from 10 healthy Prestice Black-Pied pigs (6 females, body weight 35-45 kg), were used in this study (liver, spleen, kidneys and small intestine). The organs were dissected, heparin was administered into the systemic circulation and then the vascular bed of the organs was flushed with heparinized saline either in situ (liver) or after their removal (spleen, kidney, small intestine). All handling was done under the water surface to prevent air embolization. The next step was an intraarterial (in case of the liver also intraportal) administration of Biodur E20® (Heidelberg, Germany) resin. After hardening of the resin the organ tissue was dissolved by 15% KOH and the specimen was rinsed with tap water. Voluminous casts were stored in 70% denatured alcohol, the smaller ones were lyophilized. The casts were assessed with a stereomicroscope, computed and microcomputed tomography (CT and microCT), a scanning electron microscope (SEM) and high-resolution digital microscope (HRDM). High-quality CCs of the porcine liver, kidneys, spleen and small intestine were created owing to the sophisticated organ harvesting, the suitable resin and casting procedure. Macroscopic clarity was improved thanks to the possibility of resin dying. Scanning by CT was performed and showed to be a suitable method for the liver cast examination. MicroCT, SEM and HRDM produced images of the most detailed structures of vascular bed. Despite the fact that SEM seems to be an irreplaceable method for CCs quality control, it seems that this modality could be partly replaced by HRDM. MicroCT enabled to obtain data about three-dimensional layout of the vascular bed and data for mathematical modelling of organ perfusion. With regard to the quality of the CCs, they could also be used to teach human anatomy. The protocol of the corrosion casting of the porcine liver, kidneys, spleen and small intestine CCs was optimized. Thanks to different imaging methods, the CCs can be used as a source of data on three-dimensional architecture of the vascular bed. These data can be used for mathematical modeling of organ perfusion which can be helpful for example for optimization of organ resections.Key words: corrosion casts microvasculature Biodur E20® domestic pig animal model.
Rajagopal, Praveen; Chitre, Vidya; Aras, Meena A
2012-01-01
Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.
A step-by-step development of real-size chest model for simulation of thoracoscopic surgery.
Morikawa, Toshiaki; Yamashita, Makoto; Odaka, Makoto; Tsukamoto, Yo; Shibasaki, Takamasa; Mori, Shohei; Asano, Hisatoshi; Akiba, Tadashi
2017-08-01
For the purpose of simulating thoracoscopic surgery, we have conducted stepwise development of a life-like chest model including thorax and intrathoracic organs. First, CT data of the human chest were obtained. First-generation model: based on the CT data, each component of the chest was made from a 3D printer. A hard resin was used for the bony thorax and a rubber-like resin for the vessels and bronchi. Lung parenchyma, muscles and skin were not created. Second-generation model: in addition to the 3D printer, a cast moulding method was used. Each part was casted using a 3D printed master and then assembled. The vasculature and bronchi were casted using silicon resin. The lung parenchyma and mediastinum organs were casted using urethane foam. Chest wall and bony thorax were also casted using a silicon resin. Third-generation model: foamed polyvinyl alcohol (PVA) was newly developed and casted onto the lung parenchyma. The vasculature and bronchi were developed using a soft resin. A PVA plate was made as the mediastinum, and all were combined. The first-generation model showed real distribution of the vasculature and bronchi; it enabled an understanding of the anatomy within the lung. The second-generation model is a total chest dry model, which enabled observation of the total anatomy of the organs and thorax. The third-generation model is a wet organ model. It allowed for realistic simulation of surgical procedures, such as cutting, suturing, stapling and energy device use. This single-use model achieved realistic simulation of thoracoscopic surgery. As the generation advances, the model provides a more realistic simulation of thoracoscopic surgery. Further improvement of the model is needed. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Zeng, Fei-huang; Xu, Yuan-zhi; Fang, Li; Tang, Xiao-shan
2012-02-01
To describe a new technique for fabricating an 3D resin model by 3D reconstruction and rapid prototyping, and to analyze the precision of this method. An optical grating scanner was used to acquire the data of silastic cavity block , digital dental cast was reconstructed with the data through Geomagic Studio image processing software. The final 3D reconstruction was saved in the pattern of Stl. The 3D resin model was fabricated by fuse deposition modeling, and was compared with the digital model and gypsum model. The data of three groups were statistically analyzed using SPSS 16.0 software package. No significant difference was found in gypsum model,digital dental cast and 3D resin model (P>0.05). Rapid prototyping manufacturing and digital modeling would be helpful for dental information acquisition, treatment design, appliance manufacturing, and can improve the communications between patients and doctors.
Improving the fit of implant prosthetics: an in vitro study.
Yannikakis, Stavros; Prombonas, Anthony
2013-01-01
Accurate and passive fit between a prosthesis and its supporting implants has been considered a prerequisite for successful long-term osseointegration. The objective of this in vitro study was to evaluate the strain development during tightening of a five-unit screw-retained superstructure constructed using five different methods. Five-unit screw-retained fixed partial prostheses (n = 25) were fabricated on three implants embedded in an epoxy resin block using five different methods: (1) cobalt-chromium (Co-Cr), plastic cylinders, one-piece cast; (2) Co-Cr, plastic cylinders, framework sectioned, preceramic laser-welding soldering; (3) gold-platinum (Au-Pt), gold cylinders, one-piece cast; (4) Au-Pt, gold cylinders, framework sectioned, preceramic laser-welding soldering; (5) Co-Cr, one-piece cast, and cementation to "passive abutments" (Southern Implants) after final finishing and polishing. Strain gauges (SG) were attached to the fixed partial prosthesis (FPP) and to the resin block to measure the stress created during screw tightening. The combination of Co-Cr alloy and plastic cylinders in a one-piece cast showed such an inadequate fit among the fabricated methods that this group was excluded from the remainder of the experiment. Specimens of Au-Pt cast on gold cylinders in one piece showed higher strain development than the other groups used in this study, with strains ranging from 223.1 to 2,198.1 Μm/m. Sectioning and soldering significantly improved the overall fit. FPPs of Co-Cr in a one-piece cast cemented to "passive abutments" produced the best level of fit, with the least strain development in the prosthesis and the resin block (59 to 204.6 Μm/m). Absolute fit of superstructures on implants is not possible using conventional laboratory procedures. Cementing FPPs onto prefabricated cylinders directly onto the implants significantly reduces strain development compared to the other fabrication methods.
Application of TRIZ Theory in Patternless Casting Manufacturing Technique
NASA Astrophysics Data System (ADS)
Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei
The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.
Bond strengths of custom cast and prefabricated posts luted with two cements.
Aleisa, Khalil Ibrahim
2011-02-01
This in vitro study evaluated the bond strength of custom cast and prefabricated posts luted with resin or zinc phosphate cements into unobturated canals of extracted teeth. Forty-eight custom cast and prefabricated posts were placed into extracted single-rooted human teeth. Post-cavity preparation was 1.5 mm in diameter and 10 mm in depth. Specimens were randomly divided into 4 groups of 12 each. Two of the groups were then luted with resin cement, while the other two groups were luted with zinc phosphate cement. A pull-out bond strength evaluation was performed using a universal testing machine. The Kolmogorov-Smirnov test was used to prove normal distribution. Data were statistically analyzed using two-way ANOVA and the Student t test (alpha = .05). For both luting agents, the prefabricated posts group exhibited significantly less bond strength than the custom cast posts group (P = .0001). There were statistically significant differences in mean bond strength for the prefabricated posts group luted with resin cement vs the group cemented with zinc phosphate cement (P = .002). There was no significant difference between the mean bond strength values of custom cast posts luted with resin cement or zinc phosphate cement. Custom cast posts showed significantly greater bond strength than prefabricated posts when luted with either resin or zinc phosphate cements. The type of cement had less significance on the retention of custom cast posts.
Scheffer, Karl D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.
Scheffer, K.D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.
Accuracy of five implant impression technique: effect of splinting materials and methods
Cho, Sung-Bum
2011-01-01
PURPOSE The aim of this study was to evaluate the effect of dimensional stability of splinting material on the accuracy of master casts. MATERIALS AND METHODS A stainless steel metal model with 6 implants embedded was used as a master model. Implant level impressions were made after square impression copings were splinted using 5 different techniques as follows. (1) Splinted with autopolymerizing resin and sectioned, reconnected to compensate polymerization shrinkage before the impression procedure. (2) Splinted with autopolymerizing resin just before impression procedure. (3) Primary impression made with impression plaster and secondary impression were made over with polyether impression material. (4) Splinted with impression plaster. (5) Splinted with VPS bite registration material. From master model, 5 impressions and 5 experimental casts, total 25 casts were made for each of 5 splinting methods. The distortion values of each splinting methods were measured using coordinate measuring machine, capable of recordings in the x-, y-, z-axes. A one-way analysis of variance (ANOVA) at a confidence level of 95% was used to evaluate the data and Tukey's studentized range test was used to determine significant differences between the groups. RESULTS Group 1 showed best accuracy followed by Group 3 & 4. Group 2 and 5 showed relatively larger distortion value than other groups. No significant difference was found between group 3, 4, 5 in x-axis, group 2, 3, 4 in y-axis and group 1, 3, 4, 5 in z-axis (P<.0001). CONCLUSION Both Splinting impression copings with autopolymerizing resin following compensation of polymerization shrinkage and splinting method with impression plaster can enhance the accuracy of master cast and impression plaster can be used simple and effective splinting material for implant impression procedure. PMID:22259700
NASA Astrophysics Data System (ADS)
Saehana, Sahrul; Darsikin, Muslimin
2016-04-01
This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.
Epoxy hydantoins as matrix resins
NASA Technical Reports Server (NTRS)
Weiss, J.
1983-01-01
Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.
Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.
Lillywhite, Graeme R R; Vohra, Fahim
2015-01-01
Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.
Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T
2003-06-01
The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.
A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation
NASA Astrophysics Data System (ADS)
Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.
2017-02-01
Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.
Laser welding of removable partial denture frameworks.
Brudvik, James S; Lee, Seungbum; Croshaw, Steve N; Reimers, Donald L; Reimers, Dave L
2008-01-01
To identify and measure distortions inherent in the casting process of a Class III mandibular cobalt-chromium (Co-Cr) framework to illustrate the problems faced by the laboratory technician and the clinician and to measure the changes that occur during the correction of the fit discrepancy using laser welding. Five identical castings of a Co-Cr alloy partial denture casting were made and measured between 3 widely separated points using the x, y, and z adjustments of a Nikon Measurescope. The same measurements were made after each of the following clinical and laboratory procedures: sprue removal, sectioning of the casting into 3 parts through the posterior meshwork, fitting the segments to the master cast, picking up the segments using resin, and laser welding of the 3 segments. Measurements of all 5 castings showed a cross-arch decrease after sprue removal, an increase after fitting the segments to the master cast, and a slight decrease after resin pickup and laser welding. Within the limitations of this study, the findings suggest that precise tooth-frame relations can be established by resin pickup and laser welding of segments of Co-Cr removable partial denture frameworks.
Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng
2018-05-17
To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.
Precision of Fit of Titanium and Cast Implant Frameworks Using a New Matching Formula
Sierraalta, Marianella; Vivas, Jose L.; Razzoog, Michael E.; Wang, Rui-Feng
2012-01-01
Statement of the Problem. Fit of prosthodontic frameworks is linked to the lifetime survival of dental implants and maintenance of surrounding bone. Purpose. The purpose of this study was to evaluate and compare the precision of fit of milled one-piece Titanium fixed complete denture frameworks to that of conventional cast frameworks. Material and Methods. Fifteen casts fabricated from a single edentulous CAD/CAM surgical guide were separated in two groups and resin patterns simulating the framework for a fixed complete denture developed. Five casts were sent to dental laboratories to invest, cast in a Palladium-Gold alloy and fit the framework. Ten casts had the resin pattern scanned for fabrication of milled bars in Titanium. Using measuring software, positions of implant replicas in the definitive model were recorded. The three dimensional spatial orientation of each implant replica was matched to the implant replica. Results. Results demonstrated the mean vertical gap of the Cast framework was 0.021 (+0.004) mm and 0.012 (0.002) mm determined by fixed and unfixed best-fit matching coordinate system. For Titanium frameworks they were 0.0037 (+0.0028) mm and 0.0024 (+0.0005) mm, respectively. Conclusions. Milled one-piece Titanium fixed complete denture frameworks provided a more accurate precision of fit then traditional cast frameworks. PMID:22550486
Scanning electron microscopy of bone.
Boyde, Alan
2012-01-01
This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.
Casting made simple using modified sprue design: an in vitro study.
Baskaran, B Eswaran; Geetha Prabhu, K R; Prabhu, R; Krishna, G Phani; Eswaran, M A; Gajapathi, B
2014-01-01
Success in dental casting restorations for fixed partial dentures (FPDs) depends on the castability. Castability is described as the ability of an alloy to faithfully reproduce sharp detail and fine margins of a wax pattern. The goal of a prosthodontist is to provide the patient with restorations that fit precisely. Regardless of the alloy used for casting, the casting technique should yield a casted alloy, which should possess sufficient mass, surface hardness and minimal porosity after casting. Twenty patterns for casting were made from three-dimensional printed resin pattern simulating a 3 unit FPD and casted using modified sprue technique. Later test samples were cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in eight predetermined reference areas. Marginal gap were measured in microns using Video Measuring System (VMS2010F-CIP Corporation, Korea). A portion of the axial wall of the cast abutments depicting premolar and molar were sectioned and embedded in acrylic resin and tested for micro hardness using Reichert Polyvar 2 Met Microhardness tester (Reichert, Austria) and porosity using Quantimet Image Analyzer (Quantimet Corporation London, England). The results obtained for marginal gap, micro hardness, and porosity of all test samples were tabulated, descriptive statistics were calculated and the values were found to be within the clinically acceptable range. The new sprue technique can be an alternative and convenient method for casting which would minimize metal wasting and less time consuming. However, further studies with same technique on various parameters are to be conducted for its broad acceptance.
The Accuracy of Four Impression-making Techniques in Angulated Implants Based on Vertical Gap
Saboury, Abolfazl; Neshandar Asli, Hamid; Dalili Kajan, Zahra
2017-01-01
Statement of the Problem: Precision of the impression taken from implant positions significantly determines accurate fit of implant-supported prostheses. An imprecise impression may produce prosthesis misfit. Purpose: This study aimed to evaluate the accuracy of four impression-making techniques for angulated implants by stereomicroscope through measuring the vertical marginal gaps between the cemented metal framework and the implant analog. Materials and Method: A definitive cast with two 15° mesially angulated implants served as the standard reference for making all the impressions and later for accuracy evaluation. Four groups of five samples were evaluated: (1) closed-tray snap-fit transfer, (2) open-tray nonsplinted impression coping, (3) metal splinted impression coping, and (4) fabricated acrylic resin transfer cap. A gold-palladium framework was fabricated over the angulated implant abutments, the fit of which was used as reference. The gaps between the metal framework and the implant analogs were measured in sample groups. Corresponding means for each technique and the definitive cast were compared by using ANOVA and post hoc tests. Results: The mean marginal gap was 38.16±0µm in definitive cast, 89±19.74µm in group 1, 78.66±20.63µm in group 2, 54.16±24.29µm in group 3, and 55.83±18.30µm in group 4. ANOVA revealed significant differences between the definitive cast and groups 1 and 2, but not with groups 3 and 4 (p< 0.05). Conclusion: Vertical gap measurements showed that metal splinted impression coping and fabricated acrylic resin transfer cap techniques produced quite more accurate impressions than closed-tray snap-fit transfer and open-tray nonsplinted impression coping techniques do. The fabricated acrylic resin transfer cap technique seems to be a reliable impression-making method. PMID:29201973
Hortolà, Policarp
2015-12-01
Some archaeological or ethnographic specimens are unavailable for direct examination using a scanning electron microscope (SEM) due to methodological obstacles or legal issues. In order to assess the feasibility of using SEM synthetic replicas for the identification of bloodstains (BSs) via morphology of red blood cells (RBCs), three fragments of different natural raw material (inorganic, stone; plant, wood; animal, shell) were smeared with peripheral human blood. Afterwards, molds and casts of the bloodstained areas were made using vinyl polysiloxane (VPS) silicone impression and polyurethane (PU) resin casting material, respectively. Then, the original samples and the resulting casts were coated with gold and examined in secondary-electron mode using a high-vacuum SEM. Results suggest that PU resin casts obtained from VPS silicone molds can preserve RBC morphology in BSs, and consequently that synthetic replicas are feasible for SEM identification of BSs on cultural heritage specimens made of natural raw materials. Although the focus of this study was on BSs, the method reported in this paper may be applicable to organic residues other than blood, as well as to the surface of other specimens when, for any reason, the original is unavailable for an SEM.
Effects of resistance form on attachment strength of resin-retained castings.
Wilkes, P W; Shillingburg, H T; Johnson, D L
2000-01-01
This study evaluated the effects of tooth preparation design on resistance to dislodgment of a resin-bonded fixed partial denture (RBFPD). The variations of tooth preparation tested included axial coverage, retentive grooves, and an occlusal rest. Patterns of the tooth preparation designs were prepared and cast in a base metal alloy. Retainer patterns were waxed to refractory casts of metal dies, cast, finished and then bonded to the dies. The complete assemblies were loaded to failure on an Instron mechanical testing machine, and analysis indicated that retainers with occlusal rests were the most resistant. Grooves provided no statistically significant increase in resistance to failure of the cement. Increased axial coverage did not increase resistance to dislodgment. Successful fixed partial dentures (FPDs) depend on cast retainers to resist displacement of the restoration during function. Introduction of resin-bonded restorations opened the possibility of FPDs with minimal reduction of abutments. Specific questions concerning long term success and tooth preparation designs were prominent concerns. The influence of resistance form on overall stability of a restoration was also of particular interest. Buonocore established the foundation for retention of composite resins to acid-pitted enamel. Rochette used this technology to bond perforated cast metal splints to periodontally compromised teeth. A mechanical interlock was created as composite resin engaged these perforations and sustained the cast splint to acid-etched enamel. Howe adapted this design for replacement of anterior teeth by adding porcelain to a metal ceramic framework and then bonding the framework to abutments without tooth preparations. The advantages of these procedures were their conservative nature, esthetics, and ease of rebonding after dislodgment. Livaditis and Thompson adapted the procedure proposed by Tanaka of corrosion-pitting the bonding surface of a base metal alloy. They increased the surface area to be bonded, eliminated the perforations to improve rigidity of the framework, and described tooth preparation modifications of the abutments. They suggested an occlusal rest, establishment of guide planes through axial reduction, and a proximal extension to the facial surface to resist lingual displacement. Simonson, et al., based their anterior tooth preparation design on the configuration suggested by Livaditis which included a slight chamfer finish line plus reduction of the lingual surface to provide a thicker metal framework. Barrack introduced an inlay type tooth preparation for the occlusal rest plus shallow vertical proximal grooves, and Meiers used grooves as an esthetic alternative to proximal extensions. Clinical studies and surveys have identified specific variables involved with success and failure, while in vitro studies have evaluated framework designs, bonding agents, and methods for pitting the metal surface. This study evaluated resistance of RBFPDs to dislodgment of different tooth preparation designs.
Effect of resin coating as a means of preventing marginal leakage beneath full cast crowns.
Kosaka, Satomi; Kajihara, Hirotada; Kurashige, Hisanori; Tanaka, Takuo
2005-03-01
The purpose of this study was to evaluate the effectiveness of resin coating as a means of preventing marginal leakage beneath full cast crowns which were emplaced using different cements. Standard full cast crown preparation was made on 64 extracted premolars. These samples were then divided into four groups, with half of each group coated with dentin coating material after preparation. Crowns were cemented onto the teeth using zinc cement, Fuji I, Vitremer, or C&B Metabond. The samples were thermal-cycled for 10,000 cycles. They were then immersed in erythrosine solution, sectioned, and observed under a microscope. Microleakage analyses were performed using a 0-4 point system. The data were statistically analyzed. There were significant differences between the coated specimens and the uncoated specimens using Fuji I and Vitremer. The results showed that a resin coating could decrease the amount of marginal leakage when applied with these two cements.
Selvaraj, Sunantha; Dorairaj, Jayachandran; Mohan, Jayashree; Simon, Paul
2016-01-01
Introduction: An accurate and passive fit of implant framework prosthesis, as well as the successful surgical operation is suggested as one of the critical requirements for long-term implant success. Objective: The purpose of this in vitro study was to evaluate the accuracy of the master cast using open tray impression technique with conventional and novel splinting materials. Methodology: A mandibular reference model with four ADIN implants was done. Ten custom trays were fabricated using the light curable resin sheets. Medium body polyether impression material was used. These trays were randomly divided between the two groups, with five trays in each group. Impression techniques were divided into two groups namely: Group A: Direct impression technique with open tray impression copings splinted with autopolymerizing acrylic resin (GC pattern resin). Group B: Direct impression technique with open tray impression copings splinted with Pro-temp TM 4 (bis-GMA) syringable temporization material. Thus, final impressions were made. Total of 10 master casts were fabricated. Evaluation of casts using Dynascope-Vision Engineering, TESA microhite two- dimension and coordinate measuring machine were used. Results: Statistical comparisons were made using ANOVA test and post-hoc test. Same amount of deviation values obtained with resin splinted and bis-GMA splinted impression copings. Conclusion: The master cast obtained by both the splinting material exhibits no difference from the reference model. So bis-GMA can be used, which is easy to handle, less time consuming, less technique sensitive, rigid, and readily available material in clinics. PMID:27141167
Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng
2017-12-01
Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high degree of consistency between the digital and stone casts. The maxillary prostheses showed good clinical effectiveness, indicating that the corresponding digital casts met the requirements for clinical application. Based on multisource data from spiral CT and the intraoral scanner, 3D digital casts of maxillary defects were generated using the registration technique. These casts were consistent with conventional stone casts in terms of accuracy and were suitable for clinical use. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Piemjai, Morakot; Nakabayashi, Nobuo
2015-01-01
A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520
Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth
2018-01-01
Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.
Cast dielectric composite linear accelerator
Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM
2009-11-10
A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.
The use of natural teeth in overlay dentures.
Frantz, W R
1975-08-01
A method has been described for the construction of tooth-supported dentures where the natural tooth was utilized and the acrylic resin for the denture base processed directly to the prepared cast. Based on the 112 dentures that were made, this technique is economical, provides support and stabilization, and has full patient acceptance.
Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús
2012-07-01
This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.
Semiconductor surface protection material
NASA Technical Reports Server (NTRS)
Packard, R. D. (Inventor)
1973-01-01
A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.
1985-06-01
of Opaque-Adhesive Containing Opaque Powder ..................... 36 Figure 12. Isosit Resin Condensed into Teflon Tubes ..... 37 Figure 13. Device...millimeter long teflon tube was positioned centrally on each specimen. The Isosit body resin was condensed into the tube using the blunt end of a...8217.*. .’-~ ~**.*~.**.**.*~.**.*%~ 37 Figure 12. Isosit Resin Condensed into Teflon Tubes Wy~WW’. WVtTh. .. . - . - S.. * ***’h.).’ *.~’b
Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza
2003-04-01
A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.
Sealing properties of three luting agents used for complete cast crowns: a bacterial leakage study.
Zmener, O; Pameijer, C H; Rincon, S M H; Serrano, S A; Chaves, C
2013-01-01
To assess the sealing properties of three different luting materials used for cementation of full cast crowns on extracted human premolars. Thirty noncarious human premolars were prepared in a standardized fashion for full cast crown restorations. All margins were placed in dentin. After impressions of the preparations, stone dies were fabricated on which copings were waxed, which were cast in type III alloy using standardized laboratory methods. Teeth were randomly assigned to three groups of 10 samples each (n=10), for which the following cements were used: 1) a resin-modified glass ionomer cement, Rely X Luting Plus (3M ESPE, St Paul, MN, USA); 2) a self-adhesive resin cement, Maxcem Elite (Kerr Corporation, Orange, CA, USA); and 3) a glass ionomer cement, Ketac Cem (3M ESPE), the latter used as control. After cementation the samples were allowed to bench-set for 10 minutes, stored in water at 37°C, subjected to thermal cycling (2000×, between 5°C and 55°C, dwell time 35 seconds), and then stored in sterile phosphate buffer for seven days at 37°C. Subsequently, the occlusal surface was carefully reduced until the dentin was exposed. Finishing on wet sand paper removed the gold flash caused by grinding. After sterilization, the specimens were subjected to bacterial microleakage in a dual chamber apparatus for 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meier survival test. Significant pairwise differences were analyzed using the log-rank test followed by Fisher exact test at a p<0.05 level of significance. Rely X Luting Plus showed the lowest microleakage scores, which statistically differed significantly from Maxcem Elite and Ketac Cem (p<0.05). Rely X Luting Plus cement displayed significantly lower microleakage scores than a self-adhesive resin-based and conventional glass ionomer cement.
Chromium Ions Improve Moisure Resistance of Epoxy Resins
NASA Technical Reports Server (NTRS)
St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.
1986-01-01
Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.
Bonding strength and durability of alkaline-treated titanium to veneering resin.
Ban, Seiji; Kadokawa, Akihiko; Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Tanaka, Takuo
2004-09-01
The shear bonding strengths of a veneering resin to polished, sandblasted, and retention bead-cast commercially pure titanium (cpTi) plates with and without alkaline treatment were measured before and after thermal cycling. The bonding strengths to polished cpTi with and without alkaline treatment decreased remarkably with thermal cycling (p<0.01). The bonding strength to sandblasted cpTi with alkaline treatment at 5,000 thermal cycles showed no significant differences from those before thermal cycling (p>0.05), and those at 20,000 thermal cycles showed values which were quite small (p<0.01). On the other hand, there were no significant differences in the bonding strengths of veneering resin to retention bead-cast cpTi in all conditions (p>0.05). These results suggested that although alkaline treatment is a simple and effective surface modification technique for titanium improving adhesion to resin due to formation of tight-fine rutile particles, it does not provide sufficient bonding durability for long-period restorations.
Taylor, Robert S.; Boyer, Norman W.
1980-01-01
A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, N.W.; Taylor, R.S.
1980-10-28
A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.
Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.
2012-01-01
Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range. Key words:Dental alloy, laser sintering, implant-supported prostheses, vertical discrepancy, vertical misfit. PMID:22322524
Zinc Chloride Influence on The Resins Furan Polymerization to Foundry Moulds
NASA Astrophysics Data System (ADS)
de Miranda, Leila Figueiredo; Vale, Marcus; Júnior, Antonio Hortêncio Munhoz; Masson, Terezinha Jocelen; de Andrade e Silva, Leonardo Gondin
The resins used in foundry molds developed for the automotive market has led to major changes in the manufacturing method of foundry molds. The polymerization of these resins and a subsequent curing are used to connect to the foundry sand in a rigid structure capable of receiving and holding liquid metal. It is essential to know the process of polymerization of these resins and their impact on the final properties of the obtained molds, especially in the mechanical characteristics. In this work it was studied the influence of the addition of zinc chloride (in solution) in the sand-furan resin mixture, with the aim of reducing the relation between the extraction time intervals and time bench life. The results showed that addition of percentages of the order of 5.0wt% to 7.5wt% zinc chloride solution reduces this ratio between 10% and 17%; this means that the casting model may be extracted from the sand mass in a smaller time interval increasing the productivity of manufacturing molds. It was also observed that there was also an increase of 9% to 18% in bench life intervals.
Nissan, Joseph; Rosner, Ofir; Gross, Ora; Pilo, Raphael; Lin, Shaul
2011-04-01
To evaluate the influence of different cement combinations on coronal microleakage in restored endodontically treated teeth using dye penetration. Human, noncarious single-rooted extracted premolars (n = 60) were divided into four experimental groups (each n = 15). After endodontic treatment, different combinations of cements were used to lute prefabricated posts and complete crown restorations: zinc phosphate cement applied on posts and cast crowns (Z) or on zinc phosphate cement posts and resin cement applied on cast crowns (ZR); resin cement applied on posts and zinc phosphate cement applied on cast crowns (RZ); and resin cement applied on posts and cast crowns (R). After artificial aging through thermal cycling (5°C to 55°C) for 2,000 cycles at 38 seconds for each cycle and 15 seconds of dwell time, specimens were immersed for 72 hours in basic fuchsin at 37°C. A buccolingual section was made through the vertical axis of specimens. A Toolmaker's microscope (Mitutoyo) was used to measure (um) dye penetration. The Kruskal-Wallis nonparametric test was used to determine intergroup difference. A nonparametric Mann-Whitney test compared each group regarding its maximal linear penetration depths on the mesial and distal aspects of each specimen (a = 0.05). Dye staining was evident to some degree in all specimens. Among groups Z, ZR, and RZ, no significant difference was shown in dye-penetration depths (mean penetration scores 1,518 to 1,807 um). However, dyepenetration depth was significantly lower in group R compared to the other groups (mean penetration score 1,073 um) (P < .05). Under study conditions, the cement combination offering the best coronal sealing was the one using only resin cement for both posts and crown restorations.
1974-06-01
28 - ABS Resins ................... 012 0.02 Carbon & Free-Cutting Steels%,. . . . . 27 - Acrylics ......................... 0.12 0.10 Alloy...Borosilicate Glasses................. 0.7 - Zinc At Its Alloys ................. 65.3 60.5 Alkyds .... .... .............. 010 0.20 Tungsten Carbide Cermet...cast).............47.6 25 ABS Resins ............ .. IS 3 FlowbnFie ........... 7 - Cellulose Acetate ............ &. 1.9 Pajadafi CW
21 CFR 178.3950 - Tetrahydrofuran.
Code of Federal Regulations, 2010 CFR
2010-04-01
... section. (a) It is used as a solvent in the casting of film from a solution of polymeric resins of vinyl... another in any combination, or it may be used as a solvent in the casting of film prepared from vinyl... in the film does not exceed 1.5 percent by weight of film. ...
Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru
2012-06-01
Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creed, K.E. Jr.
The cause of degradation in the glass transition temperature (T/sub G/) of a partially crystallized polymer was investigated. Sample epoxy resin filled capacitors were cured at 90/sup 0/C for 24 hours, then stored at room atmospheric conditions. These showed typical degradation in T/sub G/ after storage for one month. One set of epoxy resin castings was stored at room atmosphere and another set was stored in a dry box at 0% relative humidity and 27/sup 0/C. The samples at room atmospheric conditions showed typical degradation in T/sub G/, while the T/sub G/ for those stored in the dry box increased.more » Further tests were then made on epoxy resin castings at various curing temperatures and times at both room atmosphere and 0% humidity. Resulting data indicated that absorption of moisture during storage was the predominant cause of T/sub G/ degradation, with stress relaxation another, though smaller, contributing factor.« less
21 CFR 178.3950 - Tetrahydrofuran.
Code of Federal Regulations, 2014 CFR
2014-04-01
... solvent in the casting of film from a solution of polymeric resins of vinyl chloride, vinyl acetate, or..., or it may be used as a solvent in the casting of film prepared from vinyl chloride copolymers complying with § 177.1980 of this chapter. (b) The residual amount of tetrahydrofuran in the film does not...
NASA Astrophysics Data System (ADS)
Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien
2017-06-01
Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.
Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang
2015-01-01
This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.
Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah
2013-01-01
This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.
Lahori, Manesh; Nagrath, Rahul; Agrawal, Prateek
2014-03-01
Single tooth implant retained crowns have become a recognized technique for the replacement of the missing teeth. With the predictable integration of implants, the emphasis is shifted towards precise prosthesis. Minor movement of the impression coping retained inside the impression material can occur during all the procedures, leading to the three-dimensional spatial inaccuracies in the master casts. Therefore, the present study was undertaken with the purpose to evaluate the accuracy of single-tooth implant impression techniques using four different impression copings, so as to obtain a precise definitive cast for a single-unit implant restoration. A maxillary acrylic resin model with a standard single implant in the first molar region was used to simulate a clinical situation. A total of 60 impressions were made with polyvinylsiloxane impression material, which were divided into four groups of 15 impressions each. Group I used non-modified square impression coping, while in group II, III and IV square impression coping were modified differently. Master casts fabricated for all the groups were analyzed to detect rotational position change of the hexagon on the implant replicas in the master casts in reference to the resin model. The master casts obtained with the roughened and adhesive-coated impression copings showed a lower amount of rotational movement than the masters casts achieved with the non-modified impression copings. Hence, the clinician should use sandblasted and adhesive coated impression copings to achieve a more accurate and precise orientation of the implant replicas in the laboratory master casts in single-tooth implant restorations.
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Suárez-García, M Jesús
2012-02-01
This study aimed to evaluate the vertical misfit and microleakage of laser-sintered and vacuum-cast cement-retained implant-supported frameworks. Three-unit implant-fixed structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Pd-Au (CP). Every framework was luted onto 2 prefabricated abutments under constant seating pressure. Each alloy group was randomly divided into three subgroups (n=10) according to the cement used: (1) Ketac Cem Plus (KC); (2) Panavia F 2.0 (PF); and (3) RelyX Unicem 2 Automix (RXU). After 30 days of water ageing, vertical discrepancy was measured by SEM, and marginal microleakage was scored using a digital microscope. Three-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, FDP retainer, and cement type on vertical misfit. Data for marginal microleakage were analysed with Kruskal-Wallis and Dunn's tests (α=0.05). Vertical discrepancy was affected by alloy/manufacturing technique and cement type (p<0.001). Despite the luting agent, LS structures showed the best marginal adaptation, followed by CP, and CC. Within each alloy group, KC provided the best fit, whilst the use of PF or RXU resulted in no significant differences. Regardless of the framework alloy, KC exhibited the highest microleakage scores, whilst PF and RXU showed values that were comparable to each other. Laser-sintered Co-Cr structures achieved the best fit in the study. Notwithstanding the framework alloy, resin-modified glass-ionomer demonstrated better marginal fit but greater microleakage than did MDP-based and self-adhesive dual-cure resin cements. All groups were within the clinically acceptable misfit range. Laser-sintered Co-Cr may be an alternative to cast base metal and noble alloys to obtain passive-fitting structures. Despite showing higher discrepancies, resin cements displayed lower microleakage than resin-modified glass-ionomer. Further research is necessary to determine whether low microleakage scores may guarantee a suitable seal that could compensate for misfit. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.
Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T
1999-03-01
There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.
Obtaining of High Cr Content Cast Iron Materials
NASA Astrophysics Data System (ADS)
Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.
2017-06-01
We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.
Improvements in Fabrication of Sand/Binder Cores for Casting
NASA Technical Reports Server (NTRS)
Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit
2005-01-01
Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.
Rebong, Raymund E; Stewart, Kelton T; Utreja, Achint; Ghoneima, Ahmed A
2018-05-01
The aim of this study was to assess the dimensional accuracy of fused deposition modeling (FDM)-, Polyjet-, and stereolithography (SLA)-produced models by comparing them to traditional plaster casts. A total of 12 maxillary and mandibular posttreatment orthodontic plaster casts were selected from the archives of the Orthodontic Department at the Indiana University School of Dentistry. Plaster models were scanned, saved as stereolithography files, and printed as physical models using three different three-dimensional (3D) printers: Makerbot Replicator (FDM), 3D Systems SLA 6000 (SLA), and Objet Eden500V (Polyjet). A digital caliper was used to obtain measurements on the original plaster models as well as on the printed resin models. Comparison between the 3D printed models and the plaster casts showed no statistically significant differences in most of the parameters. However, FDM was significantly higher on average than were plaster casts in maxillary left mixed plane (MxL-MP) and mandibular intermolar width (Md-IMW). Polyjet was significantly higher on average than were plaster casts in maxillary intercanine width (Mx-ICW), mandibular intercanine width (Md-ICW), and mandibular left mixed plane (MdL-MP). Polyjet was significantly lower on average than were plaster casts in maxillary right vertical plane (MxR-vertical), maxillary left vertical plane (MxL-vertical), mandibular right anteroposterior plane (MdR-AP), mandibular right vertical plane (MdR-vertical), and mandibular left vertical plane (MdL-vertical). SLA was significantly higher on average than were plaster casts in MxL-MP, Md-ICW, and overbite. SLA was significantly lower on average than were plaster casts in MdR-vertical and MdL-vertical. Dental models reconstructed by FDM technology had the fewest dimensional measurement differences compared to plaster models.
Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M
2018-06-15
This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Derafshi, Reza; Ahangari, Ahmad Hasan; Torabi, Kianoosh; Farzin, Mitra
2015-01-01
Background and aims. Because of compromised angulations of implants, the abutments are sometimes prepared. The purpose of this study was to investigate the effect of removing one wall of the implant abutment on the retention of cement-retained crowns. Materials and methods. Four prefabricated abutments were attached to analogues and embedded in acrylic resin blocks. The first abutment was left intact. Axial walls were partially removed from the remaining abutments to produce abutments with three walls. The screw access channel for the first and second abutments were completely filled with composite resin. For the third and fourth abutments, only partial filling was done. Wax-up models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The copings of fourth abutment had an extension into the screw access channel. Copings were cemented with Temp Bond. The castings were removed from the abutment using an Instron machine, and the peak removal force was recorded. A one-way ANOVA was used to test for a significant difference followed by the pairwise comparisons. Results. The abutments with opened screw access channel had a significantly higher retention than the two other abutments. The abutment with removed wall and no engagement into the hole by the castings exhibited the highest retention. Conclusion. Preserving the opening of screw access channel significantly increases the retention where one of the axial walls of implant abutments for cement-retained restorations is removed during preparation. PMID:25973152
A systematic review of dowel (post) and core materials and systems.
Theodosopoulou, Joanna N; Chochlidakis, Konstantinos M
2009-08-01
The aim of this systematic review was to determine which dowel (post) and core system is the most successful when used in vivo to restore endodontically treated teeth. A MEDLINE, a Cochrane, and an EMBASE search (three specified searches) were conducted to identify randomized (RCT) and nonrandomized controlled clinical trials (CCT), cohort (CS), and case control studies (CCS) until January 2008, conducted on humans, and published in English, German, and French, relating to dowel and core systems for restoring endodontically treated teeth. Also, a hand search was conducted, along with contact with the authors when needed. The MEDLINE, Cochrane, and EMBASE searches identified 997, 141, and 25 published articles, respectively. Ten articles from the MEDLINE and seven articles from the Cochrane search (that were also identified in the MEDLINE search) met the inclusion and validity assessment criteria. Six out of the ten studies were RCTs, two were CCTs, and two CSs. The RCT studies suggest that carbon fiber in resin matrix dowels are significantly better than precious alloy cast dowels (number needed to treat, NNT = 8.30). Tapered gold alloy cast dowels are better than ParaPost gold alloy cast dowels (NNT = 13.15). ParaPost prefabricated dowels are slightly better than ParaPost cast dowels (NNT = 175.4). Glass fiber dowels are significantly better than metal screw dowels (NNT = 5.46), but worse than titanium (NNT =-21.73) (moderately). Carbon fiber dowels are worse than gold alloy cast dowels (significantly) (NNT =-5.81) and than amalgam dowels (NNT =-125) (slightly). The CCT studies suggest that metal dowels are better (NNT = 21.73) but also worse than cast dowels (NNT =-33.33) depending on the remaining amount of coronal hard tissue. Quartz fiber dowels show success rates similar to and worse than glass fiber-reinforced dowels (NNT =-37.03). The results from the CS studies suggest that carbon fiber in resin matrix dowels are better (moderately) than carbon fiber + quartz and quartz fiber dowels. Titanium dowels with a composite build-up are better (moderately) than gold alloy cast dowels. According to the studies of the highest levels of evidence, carbon fiber in resin matrix dowels are significantly better than precious alloy cast dowels (RCT). Glass fiber dowels are significantly better than metal screw dowels (RCT) and moderately better than quartz fiber dowels (CCT). Carbon fiber dowels are significantly worse than metal dowels (of precious alloy) (RCT). Prefabricated metal dowels are slightly better than cast dowels (RCT), but moderately worse when no collar of the dentin above the gingiva could be achieved (CCT).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I calculate my facility's... new facility that does not have any of the following operations: Open molding, centrifugal casting... existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I calculate my facility's... new facility that does not have any of the following operations: Open molding, centrifugal casting... existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open...
Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6
Chenoweth, Terrence E.; Yeoman, Frederick A.
1978-01-01
A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.
Soares, Carlos José; Raposo, Luís Henrique Araújo; Soares, Paulo Vinícius; Santos-Filho, Paulo César Freitas; Menezes, Murilo Sousa; Soares, Priscilla Barbosa Ferreira; Magalhães, Denildo
2010-02-01
To test the hypothesis that the type of cement used for fixation of cast dowel-and-cores might influence fracture resistance, fracture mode, and stress distribution of single-rooted teeth restored with this class of metallic dowels. The coronal portion was removed from 40 bovine incisors, leaving a 15 mm root. After endodontic treatment and standardized root canal relief at 10 mm, specimens were embedded in polystyrene resin, and the periodontal ligament was simulated with polyether impression material. The specimens were randomly divided into four groups (n = 10), and restored with Cu-Al cast dowel-and-cores cemented with one of four options: conventional glass ionomer cement (GI); resin-modified glass ionomer cement (GR); dual-cure resin cement (RC); or zinc-phosphate cement (ZP). Sequentially, fracture resistance of the specimens was tested with a tangential load at a 135 degrees angle with a 0.5 mm/min crosshead speed. Data were analyzed using one-way analysis of variance (ANOVA) and the Fisher test. Two-dimensional finite element analysis (2D-FEA) was then performed with representative models of each group simulating a 100 microm cement layer. Results were analyzed based on von Mises stress distribution criteria. The mean fracture resistance values were (in N): RC, 838.2 +/- 135.9; GI, 772.4 +/- 169.8; GR, 613.4 +/- 157.5; ZP, 643.6 +/- 106.7. FEA revealed that RC and GR presented lower stress values than ZP and GI. The higher stress concentration was coincident with more catastrophic failures, and consequently, with lower fracture resistance values. The type of cement influenced fracture resistance, failure mode, and stress distribution on teeth restored with cast dowel-and-cores.
Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús
2013-01-01
This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús
2012-07-01
This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.
[Analysis of anatomical pieces preservation with polyester resin for human anatomy study].
de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro
2013-01-01
To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.
Influence of macromolecular architecture on necking in polymer extrusion film casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher
2015-05-22
Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particlemore » tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)« less
4-META opaque resin--a new resin strongly adhesive to nickel-chromium alloy.
Tanaka, T; Nagata, K; Takeyama, M; Atsuta, M; Nakabayashi, N; Masuhara, E
1981-09-01
1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.
Evaluation of mechanical and thermal properties of commonly used denture base resins.
Phoenix, Rodney D; Mansueto, Michael A; Ackerman, Neal A; Jones, Robert E
2004-03-01
The purpose of this investigation was to evaluate and compare the mechanical and thermal properties of 6 commonly used polymethyl methacrylate denture base resins. Sorption, solubility, color stability, adaptation, flexural stiffness, and hardness were assessed to determine compliance with ADA Specification No. 12. Thermal assessments were performed using differential scanning calorimetry and dynamic mechanical analysis. Results were assessed using statistical and observational analyses. All materials satisfied ADA requirements for sorption, solubility, and color stability. Adaptation testing indicated that microwave-activated systems provided better adaptation to associated casts than conventional heat-activated resins. According to flexural testing results, microwaveable resins were relatively stiff, while rubber-modified resins were more flexible. Differential scanning calorimetry indicated that microwave-activated systems were more completely polymerized than conventional heat-activated materials. The microwaveable resins displayed better adaptation, greater stiffness, and greater surface hardness than other denture base resins included in this investigation. Elastomeric toughening agents yielded decreased stiffness, decreased surface hardness, and decreased glass transition temperatures.
Stronger Fire-Resistant Epoxies
NASA Technical Reports Server (NTRS)
Fohlen, George M.; Parker, John A.; Kumar, Devendra
1988-01-01
New curing agent improves mechanical properties and works at lower temperature. Use of aminophenoxycyclotriphosphazene curing agents yields stronger, more heat- and fire-resistant epoxy resins. Used with solvent if necessary for coating fabrics or casting films.
Retention of metal-ceramic crowns with contemporary dental cements.
Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C
2009-09-01
New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings adequately on ideal preparations because the corresponding removal stresses are comparable with or higher than those associated with zinc phosphate. Powder-liquid resin-modified glass ionomer cement, selected self-adhesive modified-resin cements and conventional resin cements provide additional retention when desired.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
NASA Technical Reports Server (NTRS)
Zimmerman, R. S.; Adams, D. F.; Walrath, D. E.
1984-01-01
One untoughened epoxy baseline resin and three toughened epoxy resin systems were evaluated. The Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914 resin systems were supplied in the uncured state by NASA-Langley and cast into thin flat specimens and round dogbone specimens. Tensile and torsional shear measurements were performed at three temperatures and two moisture conditions. Coefficients of thermal expansion and moisture expansion were also measured. Extensive scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental conditions under which the various specimens were tested. A micromechanics analysis was used to predict the unidirectional composite response under the various test conditions, incorporating the neat resin experimental results as the required input data. The mechanical and physical test results, the scanning electron microscope observations, and the analytical predictions were then correlated.
NASA Technical Reports Server (NTRS)
Zimmerman, R. S.; Adams, D. F.; Walrath, D. E.
1984-01-01
A detailed evaluation of one untoughened epoxy baseline resin and three toughened epoxy resin systems was performed. The Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914 resin systems were supplied in the uncured state by NASA-Langley and cast into thin flat specimens and round dogbone specimens. Tensile and torsional shear measurements were performed at three temperatures and two moisture conditions. Coefficients of thermal expansion and moisture expansion were also measured. Extensive scanning electron microscopic examination of fracture surfaces was performed, to permit the correlation of observed failure modes with the environmental conditions under which the various specimens were tested. A micromechanics analysis was used to predict the unidirectional composite response under the various test conditions, using the neat resin experimental results as the required input data. Mechanical and physical test results, the scanning electron microscope observations, and the analytical predictions were then correlated.
Casting materials and their application in research and teaching.
Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin
2014-04-01
From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.
Lee, Eun-Young; Jun, Sul-Gi; Wright, Robert F.
2015-01-01
PURPOSE To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy. PMID:25722841
Repair of restorations--criteria for decision making and clinical recommendations.
Hickel, Reinhard; Brüshaver, Katrin; Ilie, Nicoleta
2013-01-01
In the last decade, repair of restorations has become more and more popular while teaching repair of restorations is now included in most universities in Europe and North America. The aim of this paper was therefore to systematically review the clinical and the in vitro aspects of repair of restorations by considering different restorative materials--resin-based composites, amalgam, glass-ionomer cements, ceramics or metals. The paper gives also an overview of the occurrences of teaching repair in different universities. Furthermore, the paper outlines criteria for decision making when to treat a defect restoration with refurbishment, repair, replacement or no treatment. The database search strategy for resin based composite restoration repair (n=360) and the following hand search (n=95) retrieved 455 potentially eligible studies. After de-duplication, 260 records were examined by the titles and abstracts. 154 studies were excluded and 106 articles were assessed for eligibility by analyzing the full texts. Following the same search and selection process, 42 studies for amalgam repair, 51 studies for cast, inlay or porcelain restoration repair and 8 studies for teaching were assessed for eligibility by analysis of the full texts. Following databases were analyzed: Cochrane Library, MEDLINE, EMBASE, BIOSIS and PUBMED. Papers were selected if they met the following criteria: replacement, refurbishment or repair of resin composite restorations or amalgam restorations or inlay, cast restoration or porcelain repair. Clinical studies, in vitro studies and reports about teaching were included. Repair of restoration is a valuable method to improve the quality of restorations and is accepted, practiced and taught in many universities. However, there is a need for methodologically sound randomized controlled long-term clinical trials to be able to give an evidence based recommendation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida
2015-01-01
This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (p<0.05) was observed only between Provy (164.44 ± 31.23) and Temp Bond NE (88.48 ± 21.83) after cementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.
Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation
Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Lo Muzio, L
2015-01-01
Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592
Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle
2015-01-01
Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482
Kapoor, Saumya; Balakrishnan, Dhanasekar
2017-01-01
Background For success of any indirect metal restoration, a strong bond between cement and the intaglio surface of metal is imperative. The aim of this study is to evaluate and compare the effect of different surface treatment on the tensile and shear bond strength of different cements with nickel–chromium alloy. Material and Methods 120 premolars were sectioned horizontally parallel to the occlusal surface to expose the dentin. Wax patterns were fabricated for individual tooth followed by casting them in nickel chromium alloy. 60 samples were tested for tensile bond strength, and the remaining 60 for shear bond strength. The samples were divided into three groups (of 20 samples each) as per the following surface treatment: oxidation only, oxidation and sandblasting, or oxidation, sandblasting followed by application of alloy primer. Each group was subdivided into 2 subgroups of 10 samples each, according to the bonding cement i.e RM-GIC and resin cement. Samples were subjected to thermocycling procedure followed by evaluation of bond strength. Results Two-way analyses of variance (ANOVA) was performed to compare the means of tensile and shear bond strength across type of surface treatment and cement, followed by post hoc parametric analysis. For all tests ‘p’ value of less than 0.05 was considered statistically significant. Conclusions The surface treatment of oxidation and sandblasting followed by application of alloy primer offered the maximum tensile and shear bond strength for both RM GIC and resin cement. Resin cement exhibited greater tensile and shear bond strength than RM-GIC for all the three surface treatment methods. Key words:Resin cement, resin modified glass ionomer cement, oxidation, sandblasting, alloy primer, tensile bond strength, shear bond strength, universal testing machine. PMID:28828160
Lee, Bora; Oh, Kyung Chul; Haam, Daewon; Lee, Joon-Hee; Moon, Hong-Seok
2018-02-07
Intraoral scanners are effective for direct digital impression when dental restorations are fabricated using computer-aided design and computer-aided manufacturing (CAD-CAM); however, if the abutment tooth cannot be dried completely or the prepared margin is placed subgingivally, accurate digital images cannot always be guaranteed. The purpose of this in vitro study was to compare the internal and marginal discrepancies of zirconia copings fabricated directly using an intraoral scanner with those fabricated indirectly with impression scanning. Forty-five resin dies fabricated with a 3-dimensional (3D) printer were divided into 3 groups: direct scanning (DS), impression scanning (IMP), and lost-wax casting (LW). For the DS group, a resin die was scanned with an intraoral scanner (Trios; 3Shape), whereas for the IMP group, impressions made with polyether were scanned with a cast scanner (D700; 3Shape). The zirconia copings were fabricated in the same way in the DS and IMP groups. For the LW group, impressions were made in the same way as in the IMP group, and Ni-Cr alloy copings were fabricated using LW. The marginal and internal discrepancies of the copings were measured by cementing them onto resin dies, embedding them in acrylic resin, and sectioning them in a buccolingual direction. The cement layer was measured, and the Kruskal-Wallis test was used to detect significant differences (α=.05). A nonparametric Friedman test was also performed to compare the measurements of each group by location (α=.05). The mean marginal discrepancies in the DS, IMP, and LW groups were 18.1 ±9.8, 23.2 ±17.2, and 32.3 ±18.6 μm (mean ±standard deviation), respectively. The mean internal discrepancies of the DS, IMP, and LW groups in the axial area were 38.0 ±9.1, 47.0 ±16.3, and 36.5 ±15.8 μm, and those in the occlusal area were 36.7 ±16.9, 33.4 ±21.6, and 44.5 ±31.9 μm, respectively. No statistically significant differences were found in marginal or internal discrepancies among groups (P>.05). Within the limitations of this study, the zirconia copings fabricated with CAD-CAM using different digitization methods and Ni-Cr copings fabricated using the lost-wax technique and casting produced clinically acceptable marginal and internal discrepancies. No significant differences were found among the DS, IMP, and LW groups. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Reflective Self-Metallizing Polyimide Films
NASA Technical Reports Server (NTRS)
Thompson, David W. (Inventor); Caplan, Maggie L. (Inventor); St.Clair, Anne (Inventor)
1997-01-01
A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.
Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi
2010-06-01
The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.
Al Mortadi, Noor; Jones, Quentin; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J
2015-11-01
The aim of this study was to fabricate a resin appliance incorporating "wire" components without the use of an analog impression and dental casts using an intraoral scanner and computer technology to build the appliance. This unique alignment of technology offers an enormous reduction in the number of fabrication steps when compared with more traditional methods of manufacture. The prototype incorporated 2 Adams clasps and a fitted labial bow. The alloy components were built from cobalt-chromium in an initial powdered form using established digital technology methods and then inserted into a build of a resin base plate. This article reports the first known use of computer-aided design and additive manufacture to fabricate a resin and alloy appliance, and constitutes proof of the concept for such manufacturing. The original workflow described could be seen as an example for many other similar appliances, perhaps with active components. The scan data were imported into an appropriate specialized computer-aided design software, which was used in conjunction with a force feedback (haptic) interface. The appliance designs were then exported as stereolithography files and transferred to an additive manufacturing machine for fabrication. The results showed that the applied techniques may provide new manufacturing and design opportunities in orthodontics and highlights the need for intraoral-specific additive manufacture materials to be produced and tested for biocompatibility compliance. In a trial, the retainer was fitted orally and judged acceptable by the clinician according to the typical criteria when placing such appliances in situ. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Bejcek, Justin R; Curtis-Robles, Rachel; Riley, Michael; Brundage, Adrienne; Hamer, Gabriel L
2018-01-01
Abstract Arthropod-related morbidity and mortality represent a major threat to human and animal health. An important component of reducing vector-borne diseases and injuries is training the next generation of medical entomologists and educating the public in proper identification of arthropods of medical importance. One challenge of student training and public outreach is achieving a safe mounting technique that allows observation of morphological characteristics, while minimizing damage to specimens that are often difficult to replace. Although resin-embedded specimens are available from commercial retailers, there is a need for a published protocol that allows entomologists to economically create high-quality resin-embedded arthropods for use in teaching and outreach activities. We developed a detailed protocol using readily obtained equipment and supplies for creating resin-embedded arthropods of many species for use in teaching and outreach activities. PMID:29718496
Cements and adhesives for all-ceramic restorations.
Manso, Adriana P; Silva, Nelson R F A; Bonfante, Estevam A; Pegoraro, Thiago A; Dias, Renata A; Carvalho, Ricardo M
2011-04-01
Dental cements are designed to retain restorations, prefabricated or cast posts and cores, and appliances in a stable, and long-lasting position in the oral environment. Resin-based cements were developed to overcome drawbacks of nonresinous materials, including low strength, high solubility, and opacity. Successful cementation of esthetic restorations depends on appropriate treatment to the tooth substrate and intaglio surface of the restoration, which in turn, depends on the ceramic characteristics. A reliable resin cementation procedure can only be achieved if the operator is aware of the mechanisms involved to perform the cementation and material properties. This article addresses current knowledge of resin cementation concepts, exploring the bonding mechanisms that influence long-term clinical success of all-ceramic systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Soft tissue rapid prototyping in neurosurgery.
Vloeberghs, M; Hatfield, F; Daemi, F; Dickens, P
1998-01-01
As part of our research into the fluid hydrodynamics of the human ventricular system, a fused deposition model of the human ventricular system was made using magnetic resonance imaging (MRI) data. This article describes the manufacturing of a positive cast of the ventricles as a first step in the construction of a hollow model. After decryption of the original MRI file (ACR-Nema format), the MRI slices were reassembled semiautomatically and a rapid prototyping station produced a resin model. Because of its ease and speed, this method harbors great potential for teaching purposes, research, and preoperative planning in complex three-dimensional soft tissue targets.
Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.
Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias
2016-05-01
Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p<0.001). Thermal cycling significantly reduced TBS for all groups (p<0.001) excluding groups: AAP(p>0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia particles were 96.7% cohesive. Treatment of zirconia ceramic surfaces with abrasive zirconia particles is a promising method to increase the tensile bond strength without significant damage of the ceramic surface itself. An alternative promising method is slip casting. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Alsharbaty, Mohammed Hussein M; Alikhasi, Marzieh; Zarrati, Simindokht; Shamshiri, Ahmed Reza
2018-02-09
To evaluate the accuracy of a digital implant impression technique using a TRIOS 3Shape intraoral scanner (IOS) compared to conventional implant impression techniques (pick-up and transfer) in clinical situations. Thirty-six patients who had two implants (Implantium, internal connection) ranging in diameter between 3.8 and 4.8 mm in posterior regions participated in this study after signing a consent form. Thirty-six reference models (RM) were fabricated by attaching two impression copings intraorally, splinted with autopolymerizing acrylic resin, verified by sectioning through the middle of the index, and rejoined again with freshly mixed autopolymerizing acrylic resin pattern (Pattern Resin) with the brush bead method. After that, the splinted assemblies were attached to implant analogs (DANSE) and impressed with type III dental stone (Gypsum Microstone) in standard plastic die lock trays. Thirty-six working casts were fabricated for each conventional impression technique (i.e., pick-up and transfer). Thirty-six digital impressions were made with a TRIOS 3Shape IOS. Eight of the digitally scanned files were damaged; 28 digital scan files were retrieved to STL format. A coordinate-measuring machine (CMM) was used to record linear displacement measurements (x, y, and z-coordinates), interimplant distances, and angular displacements for the RMs and conventionally fabricated working casts. CATIA 3D evaluation software was used to assess the digital STL files for the same variables as the CMM measurements. CMM measurements made on the RMs and conventionally fabricated working casts were compared with 3D software measurements made on the digitally scanned files. Data were statistically analyzed using the generalized estimating equation (GEE) with an exchangeable correlation matrix and linear method, followed by the Bonferroni method for pairwise comparisons (α = 0.05). The results showed significant differences between the pick-up and digital groups in all of the measured variables (p < 0.001). Concerning the transfer and digital groups, the results were statistically significant in angular displacement (p < 0.001), distance measurements (p = 0.01), and linear displacement (p = 0.03); however, between the pick-up and transfer groups, there was no statistical significance in all of the measured variables (interimplant distance deviation, linear displacement, and angular displacement deviations). According to the results of this study, the digital implant impression technique had the least accuracy. Based on the study outcomes, distance and angulation errors associated with the intraoral digital implant impressions were too large to fabricate well-fitting restorations for partially edentulous patients. The pick-up implant impression technique was the most accurate, and the transfer technique revealed comparable accuracy to it. © 2018 by the American College of Prosthodontists.
A transparent model of the human scala tympani cavity.
Rebscher, S J; Talbot, N; Bruszewski, W; Heilmann, M; Brasell, J; Merzenich, M M
1996-01-01
A dimensionally accurate clear model of the human scala tympani has been produced to evaluate the insertion and position of clinically applied intracochlear electrodes for electrical stimulation. Replicates of the human scala tympani were made from low melting point metal alloy (LMA) and from polymethylmeth-acrylate (PMMA) resin. The LMA metal casts were embedded in blocks of epoxy and in clear silicone rubber. After removal of the metal alloy, a cavity was produced that accurately models the human scala tympani. Investment casting molds were made from the PMMA scala tympani casts to enable production of multiple LMA casts from which identical models were fabricated. Total dimensional distortion of the LMA casting process was less than 1% in length and 2% in diameter. The models have been successfully integrated into the design process for the iterative development of advanced intracochlear electrode arrays at UCSF. These fabrication techniques are applicable to a wide range of biomedical design problems that require modelling of visually obscured cavities.
de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins
2014-01-01
Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties. PMID:25141200
NASA Astrophysics Data System (ADS)
Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana
2018-03-01
The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.
Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.
Placone, Jesse K; Navarro, Javier; Laslo, Gregory W; Lerman, Max J; Gabard, Alexis R; Herendeen, Gregory J; Falco, Erin E; Tomblyn, Seth; Burnett, Luke; Fisher, John P
2017-01-01
Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.
Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza
2014-01-01
Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group) was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group) the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20). The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20). Data were analyzed with two- way ANOVA (α=0.05). Results: There was no significant difference in the mean transformed retention (Ln-R) between intact abutments (4.90±0.37) and the abutments with 3 walls (4.83±0.25) using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R) was significantly lower in the intact abutment (3.9±0.23) compared to the abutment with 3 walls (4.13±0.33, P=0.027). Conclusion: The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal. PMID:25628660
Zmener, Osvaldo; Pameijer, Cornelis H; Hernández, Sandra
2014-02-01
To assess the sealing properties of four luting materials used for cementation of full cast crowns. 40 human premolars were prepared with a chamfer finish line. Stone dies were fabricated and copings were waxed, invested and cast in gold. Ten samples (n = 10) were randomly assigned to four groups. In two groups, resin modified glass-ionomer cements were used, ACTIVA BioACTIVE-CEMENT/BASE/LINER and FujiCem2; the third group received the self-adhesive resin cement Embrace WetBond, while the fourth group served as control with a zinc phosphate cement. After cementation, excess cement was removed followed by bench-set for 10 minutes. All samples were stored in water at 37 degrees C and subjected to thermal cycling (x2000 between 5 and 55 degrees C). Subsequently the occlusal surface was reduced exposing the dentin. After sterilization the specimens were subjected to bacterial microleakage with E. faecalis in a dual chamber apparatus for a period of 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meyer survival test. Significant pairwise differences were analyzed using the Log Rank test and the Fishers' exact test at P < 0.05. ACTIVA BioACTIVE-CEMENT/BASE/LINER, FujiCem2 and Embrace WetBond showed the lowest microleakage scores and differed statistically significantly (P < 0.05) from zinc phosphate cement.
Bhaskaran, Eswaran; Azhagarasan, N S; Miglani, Saket; Ilango, T; Krishna, G Phani; Gajapathi, B
2013-09-01
Accuracy of the fit of the restoration has always remained as one of the primary factors in determining success of the restoration. A well fitting restoration needs to be accurate both along its margins and internal surface. This study was conducted to comparatively evaluate the marginal gap and internal gap of cobalt-chromium (Co-Cr) copings fabricated by conventional casting procedures and with direct metal laser sintering (DMLS) technique. Among the total of 30 test samples 10 cast copings were made from inlay casting wax and 10 from 3D printed resin pattern. 10 copings were obtained from DMLS technique. All the 30 test samples were then cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in 8 predetermined reference areas. All copings were then removed and partially sectioned and cemented sequentially on same master model for evaluation of internal gap at 4 predetermined reference areas. Both marginal gap and internal gap were measured in microns using video measuring system (VMS2010F). The results obtained for both marginal and internal gap were statistically analyzed and the values fall within the clinically acceptable range. The DMLS technique had an edge over the other two techniques used, as it exhibited minimal gap in the marginal region which is an area of chief concern.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.; Goulet, A.
1981-01-01
The development of pottant compounds is emphasized. Formulation of the butyl acrylate syrup/casting pottant was completed. The formulation contains an ultraviolet stabilizer system and may be cured with an initiator that, unlike former selections, presents no shipping of handling hazards to the user. The catalyzed syrup is stable at room temperature and has a pot life of at least eight hours. The formulation of the ethylene/methyl acrylate lamination pottant was also completed. This compound is the alternative pottant to EVA and is similarly produced as an extruded sheet that is wound into rolls. This resin is inherently nonblocking.
Le, Minh-Tai; Huang, Shyh-Chour
2015-01-01
In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521
NASA Astrophysics Data System (ADS)
Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.
2017-06-01
With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.
NASA Astrophysics Data System (ADS)
Narisawa, M.; Abe, Y.
2011-06-01
Concentrated slurry of a silicone resin with low carbon content, 3 μm aluminum particles and ethanol were prepared. After casting, addition of cross-linking agent and drying, silicone resin-aluminum composite with thick sheet form was obtained. The prepared sheet was heat-treated at 933 or 1073K with various holding times to characterize formed phases during the heat treatments. XRD patterns and FT-IR spectra revealed free Si formation and existence of Si-O-Si bond at 933K. The Si-O-Si bond, however, disappeared and silicon carbide was formed at 1073K. SEM observation indicated formation of cracks bridged with a number of tiny struts at 933K and conversion to wholly porous structure at 1073K.
Preparation and characterization of a siloxane containing bismaleimide
NASA Technical Reports Server (NTRS)
Maudgal, S.; St. Clair, T. L.
1984-01-01
A novel siloxane containing bismaleimide has been prepared by reacting maleic anhydride, benzophenonetetracarboxylic dianhydride and bis(gamma-aminopropyl)tetramethyldisiloxane. Characterization of this monomer was done by comparing its nuclear magnetic resonance spectrum (NMR) to those of model compounds. Solubility of the prepolymer was tested in amide, chlorinated and ether solvents. Films were cast from solution as well as by melt processing and a cure cycle was determined. Infrared spectrum (IR) of the resulting film was obtained. Thermal polymerization was investigated by differential scanning calorimetry (DSC). Thermal properties of the cured resin were followed by means of thermogravimetric analysis (TGA), torsional braid analysis (TBA) and dynamic mechanical analysis (DMA). Thermomechanical analysis (TMA) was used to study the effect of postcure on the glass transition temperature (Tg) of the resin. Adhesive strength of the resin was obtained at ambient temperature.
Dispersion of borax in plastic is excellent fire-retardant heat insulator
NASA Technical Reports Server (NTRS)
Evans, H.; Hughes, J.; Schmitz, F.
1967-01-01
A mix of borax powder and a chlorinated anhydrous polyester resin yields a plastic composition that is fire-retardant, yields a minimum of toxic gases when heated, and exhibits high thermal insulating properties. This composition can be used as a coating or can be converted into laminated or cast shapes.
Gorczyca, Janusz; Tomaszewski, Krzysztof A; Henry, Brandon Michael; Pękala, Przemysław Andrzej; Pasternak, Artur; Mizia, Ewa; Walocha, Jerzy A
2017-01-01
Detailed knowledge on the development of the pancreas is required to understand the variability in its blood supply. The aim of our study was to use the corrosion casting method combined with scanning electron microscopy to study the organization of the pancreatic microcirculation in human fetuses. The study was conducted on 28 human fetuses aged 18 to 25 gestational weeks. The fetal vasculature was appropriately prepared and then perfused with a low-viscosity Mercox CL-2R resin. The prepared vascular casts of the surface of the fetal pancreas were then examined in scanning electron microscopy and digitally analyzed. The lobular structure of the pancreas has a strong impact on the organization of the microvasculature. The lobular networks were supplied by the interlobular arteries and drained by the interlobular veins. The vascular system of fetal human pancreas has many portal connections, including islet-lobule and islet-duct portal circulations, which likely play a key role in the coordination of both endocrine and exocrine pancreatic functions. The organization of the microvascular network of the human pancreas in fetuses aged 18 to 25 gestational weeks is very similar to that of an adult but with more prominent features suggesting active processes of angiogenesis and vascular remodeling.
Schoberleitner, Christoph; Archodoulaki, Vasiliki-Maria; Koch, Thomas; Lüftl, Sigrid; Werderitsch, Markus; Kuschnig, Gerhard
2013-01-01
To develop a matched sealing material for socket rehabilitation of grey cast iron pipes, an epoxy resin is modified by the addition of different components to improve the flexibility. Three different modifications are made by adding ethylene-propylene diene monomer (EPDM) rubber powder, reactive liquid polymer (ATBN) and epoxidized modifier. In this paper the effect of the modification method as well as the influence of absorption of water on the mechanical and physical properties are analyzed in terms of: tensile strength, modulus of elasticity, adhesion performance, pressure resistance, glass transition temperature and water content. A comparison with neat epoxy shows for all materials that the modulus of elasticity and strength decrease. Unlike other tested modification methods, the modification with rubber powder did not enhance the flexibility. All materials absorb water and a plasticization effect arises with further changes of mechanical and physical properties. The application of the sealant on the grey cast iron leads to a reduction of the strain at break (in comparison to the common tensile test of the pure materials) and has to be evaluated. The main requirement of pressure resistance up to 1 MPa was tested on two chosen materials. Both materials fulfill this requirement. PMID:28788404
Schoberleitner, Christoph; Archodoulaki, Vasiliki-Maria; Koch, Thomas; Lüftl, Sigrid; Werderitsch, Markus; Kuschnig, Gerhard
2013-11-27
To develop a matched sealing material for socket rehabilitation of grey cast iron pipes, an epoxy resin is modified by the addition of different components to improve the flexibility. Three different modifications are made by adding ethylene-propylene diene monomer (EPDM) rubber powder, reactive liquid polymer (ATBN) and epoxidized modifier. In this paper the effect of the modification method as well as the influence of absorption of water on the mechanical and physical properties are analyzed in terms of: tensile strength, modulus of elasticity, adhesion performance, pressure resistance, glass transition temperature and water content. A comparison with neat epoxy shows for all materials that the modulus of elasticity and strength decrease. Unlike other tested modification methods, the modification with rubber powder did not enhance the flexibility. All materials absorb water and a plasticization effect arises with further changes of mechanical and physical properties. The application of the sealant on the grey cast iron leads to a reduction of the strain at break (in comparison to the common tensile test of the pure materials) and has to be evaluated. The main requirement of pressure resistance up to 1 MPa was tested on two chosen materials. Both materials fulfill this requirement.
Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides
2010-08-01
The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.
Hopkins, D S; Phoenix, R D; Abrahamsen, T C
1997-09-01
A technique for the fabrication of light-activated maxillary record bases is described. The use of a segmental polymerization process provides improved palatal adaptation by minimizing the effects of polymerization shrinkage. Utilization of this technique results in record bases that are well adapted to the corresponding master casts.
Polyvinyl alcohol cross-linked with two aldehydes
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)
1982-01-01
A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.
In vitro tensile strength of luting cements on metallic substrate.
Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo
2014-01-01
The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.
Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.
Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe
2018-01-17
In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.
Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores.
Ferrari, M; Vichi, A; García-Godoy, F
2000-05-01
This retrospective study evaluated treatment outcome of cast post and core and Composipost systems after 4 yrs of clinical service. 200 patients were included in the study. They were divided in two groups of 100 endodontically treated teeth restored with a post. Group 1: Composipost systems were luted into root canal following the manufacturer's instructions. Group 2: Cast post and cores were cemented into root canal preparations with a traditional technique. The patients were recalled after 6 months, 1, 2 and 4 yrs and clinical and radiographic examinations were completed. Endodontic and prosthodontic results were recorded. Group 1: 95% of the teeth restored with Composiposts showed clinical success; 3% of these samples were excluded for noncompliance and 2% showed endodontic failure. Group 2: Clinical success was found with 84% of teeth restored with cast post and core. 2% of these samples were excluded for noncompliance, 9% showed root fracture, 2% dislodgment of crown and 3% endodontic failure. Statistical evaluation showed significant differences between Groups 1 and 2 (P < 0.001). The results of this retrospective study indicated that the Composipost system was superior to the conventional cast post and core system after 4 yrs of clinical service.
Zhou, Tuan feng; Wang, Xin zhi; Zhang, Gui rong
2011-02-18
To clinic observation of IPS Empress2 and IPS e.max all ceramic resin bonded fixed partial dentures used in one anterior teeth lost in upper jaw or less than two anterior tooth lost in lower jaw. 22 patients, 26 restorations had been made, which included 16 single-retainer all ceramic resin bonded fixed partial dentures and 10 two-retainers all ceramic resin bonded fixed partial dentures. Secondary caries of the abutments, shade in the margin of the retainers and the integrity of the restorations had been observed at 3 months, 6 months, 1 year, 2 years and 3 years after all ceramic resin bonded fixed partial dentures having been bonded. In the 3 years of clinic observation of the anterior all ceramic resin bonded fixed partial dentures, 1 two-retainers restoration lost bond after it had been made for 3 months, a retainer of one two-retainers restoration was broken after 6 months, but they are still used after modified as one-retainer all ceramic resin bonded fixed partial dentures, 1 two-retainers restoration lost bond two year later, It was integrity and re-bonded again that was still stable. No secondary carries and no shade in margin of the retainers had been found. Their color matches with the nature teeth excellently. The success rate was 88.5%. IPS Empress 2 and IPS e.max all ceramic resin bonded fixed partial dentures should be a good selection in one or two teeth lose in anterior jaws.
NASA Technical Reports Server (NTRS)
Reisine, H.; Simpson, J. I.; Henn, V.
1988-01-01
Experiments were carried out to determine anatomically the planes of the semicircular canals of two juvenile rhesus monkeys, using plastic casts of the semicircular canals, and the anatomical measurements were related to the directional coding of neural signals transmitted by primary afferents innervating the same simicircular canals. In the experiments, animals were prepared for monitoring the eye position by the implantation of silver-silver chloride electrodes into the bony orbit. Following the recording of semicircular canal afferent activity, the animals were sacrificed; plastic casting resin was injected into the bony canals; and, when the temporal bone was demineralized and removed, the coordinates of points spaced along the circumference of the canal casts were measured. A comparison of the sensitivity vectors determined in these experiments and the anatomical measures showed that the average difference between a sensitivity vector and its respective normal vector was 6.3 deg.
In vitro microleakage of luting cements and crown foundation material.
Lindquist, T J; Connolly, J
2001-03-01
Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was demonstrated on the experimental side between cements and the foundations (P=.0001). Within the experimental conditions of this study, less microleakage was recorded with resin-reinforced glass ionomer cement (ideal or contaminated) than with zinc phosphate cement (ideal or contaminated). There also was less microleakage evident with a foundation of silver amalgam or composite when a dentinal bonding agent was used under ideal conditions.
Influence of different materials and techniques to transfer molding in multiple implants.
Faria, Júlio C B; Cruz, Fernando L G; Silva-Concílio, Laís R; Neves, Ana C C
2012-01-01
The aim of this study was to compare different materials and techniques used in transfer molding of multiple implants, by evaluating the space between implants and superstructure. Four external hexagon implants were fixed in a master template and the same on a superstructure. Transfer molding of implants were done using the direct and indirect techniques, with transfers united or not, using the union chemically activated acrylic resin (QA) and other groups polymerized acrylic resin (FT), and sectioned and not split. The casts were made with polyether and models divided into 8 groups (n = 5). The space between the superstructure and the master implants was measured with a microscope and the data was analyzed statistically by Student's t test (p < 0.05). For the material of union there was no significant difference, except when the groups were compared with the resin Duralay QA (G4) and the resin Duolay FT (G8) and groups using resins Duolay QA (G5) and Duolay FT (G7) for the union of the transfers. When comparing the groups who had the union between the transfers and sectioned again united with those in which the union was not severed there was no statistically significant difference. QA resin was superior to the FT with respect to the union of transfers. Techniques with united transfers or not were similar.
Anechoic chamber in industrial plants. [construction materials and structural design
NASA Technical Reports Server (NTRS)
Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.
1974-01-01
A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.
Modified technique for preparation of venous circulation resin casts in the cirrhotic liver.
Vasconcelos, José Olímpio Maia DE; Batista, Laécio Leitão; Pitta, Guilherme Benjamin Brandão; Lacerda, Cláudio Moura
2016-01-01
This study describes two major adaptations for the preparation of resin casts in human cirrhotic liver, harvested at the time of transplantation. The first is the way of fixing the catheter in the ostia of the hepatic and portal veins through a cerclage, so as to prevent displacement of the catheter and / or leakage of the resin during its injection. The second is the extension of corrosion time in the NaOH solution, averaging 6.8 days, with daily replacement the solution until complete removal of parenchymal tissue. We applied the method in 14 cirrhotic livers, with good filling and coloring of the portal and hepatic vein territories, using different colors. This allows an anatomical study of these vessels, able to complement the knowledge of the histopathology in research work, and the planning of therapeutic procedures, such as the Trans-Jugular Intrahepatic Port-Systemic Shunt (TIPS). RESUMO Este estudo descreve duas importantes adaptações para o preparo de moldes de resina em fígado humano cirrótico, captado no momento do transplante: a primeira, é a maneira de fixação dos cateteres nos "óstios" das veias hepáticas e porta, através de uma "cerclagem" dos mesmos, de modo a evitar o deslocamento do cateter e/ou extravasamento da resina durante sua injeção, e a segunda, é o prolongamento do tempo de corrosão na solução de NaOH, atingindo a média de 6,8 dias, com a substituição diária da solução, até a remoção completa do tecido parenquimatoso. O método foi empregado em 14 fígados cirróticos com bom preenchimento e coloração dos territórios das veias porta e hepáticas, utilizando cores distintas. Isto permite um estudo anatômico desses vasos, capaz de complementar os conhecimentos da histopatologia em trabalhos de pesquisa, e planejar procedimentos terapêuticos como a derivação porto-sistêmica intra-hepática transjugular (TIPS - Transjugular Intrahepatic Postosystemic Shunt).
Nasu, Tetsuo
2005-10-01
The resin casts of the respiratory and vascular systems in pigeon lung were examined using a scanning electron microscope. The primary bronchi branched to form many secondary bronchi that anastomosed with each other via the parabronchi. Numerous infundibula protruded from the parabronchi via the atria and ramified into the air capillaries. The pulmonary artery entered into the lung and branched into three vessels that coursed the interparabronchial parts. The intraparabronchial arterioles penetrated the gas-exchange tissue to form the anastomosing networks of blood capillaries. The observation of the double casts of the respiratory and vascular systems revealed three-dimensional complicated networks of air capillaries and blood capillaries.
The manufacture of moulded supportive seating for the handicapped.
Nelham, R L
1975-10-01
The wheelchair-bound population often have difficulty in obtaining a correct or comfortable posture in their chairs and sometimes develop pressure sores from long-duration sitting. This problem is being solved by manufacturing personalised, contoured seats which support the patient over the maximum area possible thereby reducing the pressure on the body and the incidence of pressure sores. A cast is obtained of the patient in a comfortable, medically correct posture and from this cast the seat is vacuum formed in thermoplastic materials or hand layed up in glass fibre reinforced resin. Some correction of deformity may be achieved. It is also possible to use the moulded seat in a vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, A.; Chadwick, T.; Makhlouf, M.
This paper deals with the effects of various solidification variables such as cooling rate, temperature gradient, solidification rate, etc. on the microstructure and shrinkage defects in aluminum alloy (A356) castings. The effects are first predicted using commercial solidification modeling softwares and then verified experimentally. For this work, the authors are considering a rectangular bar cast in a sand mold. Simulation is performed using SIMULOR, a finite volume based casting simulation program. Microstructural variables such as dendritic arm spacing (DAS) and defects (percentage porosity) are calculated from the temperature fields, cooling rate, solidification time, etc. predicted by the computer softwares. Themore » same variables are then calculated experimentally in the foundry. The test piece is cast in a resin (Sodium Silicate) bonded sand mold and the DAS and porosity variables are calculated using Scanning Electron Microscopy and Image Analysis. The predictions from the software are compared with the experimental results. The results are presented and critically analyzed to determine the quality of the predicted results. The usefulness of the commercial solidification modeling softwares as a tool for the foundry are also discussed.« less
Al-Madi, Ebtissam M; Al-Saleh, Samar A; Al-Khudairy, Reem I; Aba-Hussein, Taibah W
2018-04-06
To determine the influence of iatrogenic gaps, type of cement, and time on microleakage of cast posts using spectrophotometer and glucose filtration measurements. Forty-eight single-rooted teeth were divided into eight groups of six teeth each. Teeth were instrumented and obturated, and a cast post was fabricated. In addition to two control groups (positive and negative), a total of six groups were prepared: In four groups, an artificial 2- to 3-mm gap was created between post and residual gutta percha (GP), and two groups were prepared with intimate contact between post and residual GP. Posts were cemented with either zinc phosphate cement or resin cement. Leakage through the post after 1, 8, 14, and 20 days was measured using a glucose penetration model with two different reading methods. Mixed analysis of variance tests were performed to analyze the data. The presence of a gap between the apical end of the post and the most coronal portion of the GP remaining in the root canal after post space preparation increased microleakage significantly. However, microleakage was significantly less when the gap was refilled with GP compared to no gap. There was no difference in leakage between luting cements used. It was concluded that none of the cements were able to prevent microleakage. However, the addition of GP to residual GP did increase the sealing ability.
Zaparolli, Danilo; Peixoto, Raniel Fernandes; Pupim, Denise; Macedo, Ana Paula; Toniollo, Marcelo Bighetti; Mattos, Maria da Glória Chiarello de
2017-12-01
To compare the stress distribution of mandibular full dentures supported with implants according to the bar materials and manufacturing techniques using a qualitative photoelastic analysis. An acrylic master model simulating the mandibular arch was fabricated with four Morse taper implant analogs of 4.5×6mm. Four different bars were manufactured according to different material and techniques: fiber-reinforced resin (G1, Trinia, CAD/CAM), commercially pure titanium (G2, cpTi, CAD/CAM), cobalt‑chromium (G3, Co-Cr, CAD/CAM) and cobalt‑chromium (G4, Co-Cr, conventional cast). Standard clinical and laboratory procedures were used by an experienced dental technician to fabricate 4 mandibular implant-supported dentures. The photoelastic model was created based on the acrylic master model. A load simulation (150N) was performed in total occlusion against the antagonist. Dentures with fiber-reinforced resin bar (G1) exhibited better stress distribution. Dentures with machined Co-Cr bar (G3) exhibited the worst standard of stress distribution, with an overload on the distal part of the posteriors implants, followed by dentures with cast Co-Cr bar (G4) and machined cpTi bar (G2). The fiber-reinforced resin bar exhibited an adequate stress distribution and can serve as a viable alternative for oral rehabilitation with mandibular full dentures supported with implants. Moreover, the use of the G1 group offered advantages including reduced weight and less possible overload to the implants components, leading to the preservation of the support structure. Copyright © 2017 Elsevier B.V. All rights reserved.
An in vitro study of coronal leakage after intraradicular preparation of cast-dowel space.
Pappen, A F; Bravo, M; Gonzalez-Lopez, S; Gonzalez-Rodriguez, M P
2005-09-01
Coronal leakage can produce contamination of periapical tissues, resulting in endodontic failure. The purpose of this in vitro study was to evaluate the ability of 2 sealers to prevent coronal leakage in canals filled with gutta-percha and prepared for cast dowels but without coronal sealing. The crowns of 60 extracted single-rooted teeth were amputated. The root canals were prepared corono-apically and filled with gutta-percha cones and 1 of 2 different endodontic sealers: a resin-based sealer (AH Plus) and a calcium hydroxide-based sealer (Sealapex). Specimens were then stored in water for 7 days to allow the sealers to set. The specimens were prepared in 1 of 2 ways: no preparation for cast dowel or preparation of cast-dowel space (n=15). External surfaces of the roots were sealed with cyanoacrylate cement. The teeth were thermal cycled at 5 degrees and 55 degrees C in water baths (dwell time=30 seconds) for 500 cycles. Specimens were then submerged in 2% methylene blue colorant for 24 hours. Microleakage was measured according to the percentage of area stained with the colorant. Effects of each factor (cast-dowel preparation and type of sealant) on microleakage were analyzed by the Student t test (alpha=.05). The AH Plus and Sealapex sealers with cast-dowel preparation resulted in significantly (P<.001) more leakage compared to sealers with no dowel preparation. Cast dowel-space preparation had a negative influence on the sealing ability of the remnant root-canal filling material.
Holtzer, Mariusz; Dańko, Rafał; Kmita, Angelika
Metalcasting involves having a molten metal poured in a hollow mould to produce metal objects. These moulds are generally made of sand and are chemically bonded, clay-bonded, or even unbounded. There are many binder systems used. Binders based on furfuryl resins constitute currently the highest fraction in the binders no-bake group. Moulding sand, after knocking out the cast, is partially reclaimed, and the remaining part, known as waste foundry sand is used or stored outside the foundry. In this case, the environment hazardous organic compounds and metals can be leached from the moulding sand, thus causing pollution of water and soil. Also during the casting moulds with molten metal, they emit pyrolysis gases containing many different compounds, often dangerous from the BTEX and PAH group, which has adverse impacts on the environment and workers. The article presents the results of research on the impact of the regenerate addition to the moulding sand matrix on emitted gases and the degree of threat to the environment due to leaching of hazardous components. Therefore, for the total assessment of the moulding sands harmfulness, it is necessary to perform investigations concerning the dangerous substances elution into the environment during their management and storage, as well as investigations concerning emissions of hazardous substances (especially from the BTEX and PAHs group) during moulds pouring, cooling, and casting knocking out. Both kinds of investigations indicated that reclaimed sand additions to moulding sands have significantly negative influence on the environment and working conditions.
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf
2010-01-01
The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374
Lalande, David; Hodd, Jeffrey A; Brousseau, John S; Ramos, Van; Dunham, Daniel; Rueggeberg, Frederick
2017-10-14
Because crowns with open margins are a well-known problem and can lead to complications, it is important to assess the accuracy of margins resulting from the use of a new technique. Currently, data regarding the marginal fit of computer-aided design and computer-aided manufacturing (CAD-CAM) technology to fabricate a complete gold crown (CGC) from a castable acrylate resin polymer block are lacking. The purpose of this in vitro study was to compare marginal discrepancy widths of CGCs fabricated by using either conventional hand waxing or acrylate resin polymer blocks generated by using CAD-CAM technology. A plastic model of a first mandibular molar was prepared by using a 1-mm, rounded chamfer margin on the entire circumference of the tooth. The master die was duplicated 30 times, and 15 wax patterns were fabricated by using a manual waxing technique, and 15 were fabricated by using CAD-CAM technology. All patterns were invested and cast, and resulting CGCs were cemented on their respective die by using resin-modified glass ionomer cement. The specimens were then embedded in acrylic resin and sectioned buccolingually. The buccal and lingual marginal discrepancies of each sectioned portion were measured by using microscopy at ×50 magnification. Data were subjected to repeated measures 2-way ANOVA, by using the Tukey post hoc pairwise comparison test (α=.05). The factor of "technique" had no significant influence on marginal discrepancy measurement (P=.431), but a significant effect of "margin location" (P=.019) was noted. The confounding combination of factors was found to be significantly lower marginal discrepancy dimensions of the lingual margin discrepancy than on the buccal side by using CAD-CAM technology. The marginal discrepancy of CAD-CAM acrylate resin crowns was not significantly different from those made with a conventional manual method; however, lingual margin discrepancies present from CAD-CAM-prepared crowns were significantly less than those measured on the respective buccal surface. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)
1985-01-01
The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).
Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin
2015-06-01
MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.
Comparison of retention between maxillary milled and conventional denture bases: A clinical study.
AlHelal, Abdulaziz; AlRumaih, Hamad S; Kattadiyil, Mathew T; Baba, Nadim Z; Goodacre, Charles J
2017-02-01
Clinical studies comparing the retention values of milled denture bases with those of conventionally processed denture bases are lacking. The purpose of this clinical study was to compare the retention values of conventional heat-polymerized denture bases with those of digitally milled maxillary denture bases. Twenty individuals with completely edentulous maxillary arches participated in this study. Definitive polyvinyl siloxane impressions were scanned (iSeries; Dental Wings), and the standard tessellation language files were sent to Global Dental Science for the fabrication of a computer-aided design and computer-aided manufacturing (CAD-CAM) milled denture base (group MB) (AvaDent). The impression was then poured to obtain a definitive cast that was used to fabricate a heat-polymerized acrylic resin denture base resin (group HB). A custom-designed testing device was used to measure denture retention (N). Each denture base was subjected to a vertical pulling force by using an advanced digital force gauge 3 times at 10-minute intervals. The average retention of the 2 fabrication methods was compared using repeated ANOVA (α=.05). Significantly increased retention was observed for the milled denture bases compared with that of the conventional heat-polymerized denture bases (P<.001). The retention offered by milled complete denture bases from prepolymerized poly(methyl methacrylate) resin was significantly higher than that offered by conventional heat- polymerized denture bases. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.
Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A
2004-09-01
Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the cement types provided the highest bonding values with all substrate types. After 14 days of water storage followed by thermal cycling, only the self-adhesive universal resin cement (RelyX Unicem) and 2 of the resin cements (Panavia F and Compolute) exhibited strong bond strengths to specific prosthodontic materials. In contrast, zinc-phosphate, glass ionomer, and resin-modified glass ionomer cements showed the lowest values of all tested cementing agents after 14 days of water storage followed by thermal cycling.
The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin
1997-01-01
Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.
Functionalizing CNTs for Making Epoxy/CNT Composites
NASA Technical Reports Server (NTRS)
Chen, Jian; Rajagopal, Ramasubramaniam
2009-01-01
Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.
Pasquali, Sonia; Iannuzzella, Francesco; Corradini, Mattia; Mattei, Silvia; Bovino, Achiropita; Stefani, Alfredo; Palladino, Giuseppe; Caiazzo, Marialuisa
2015-04-01
In myeloma cast nephropathy, fast reduction of serum free light chain (FLC) levels correlates with renal recovery. Recently, extracorporeal treatments using filters with a high-molecular weight cut-off have been successfully used for FLC removal. However, using these new filters, high cost and elevated albumin leakage are common drawbacks. We studied a new and cheaper therapeutic approach with adsorbent resins to evaluate its efficacy. We treated four patients, affected by dialysis-dependent acute kidney injury (AKI) due to biopsy proven de novo FLC myeloma cast nephropathy. Each patient underwent bortezomib chemotherapy and extracorporeal treatment with the supra-hemodiafiltration with endogenous reinfusion (HFR) technique (Supra-HFR, Bellco Mirandola, Modena, Italy). Supra-HFR is a kind of hemodiafiltration that utilizes separated convection, diffusion and adsorption. The sorbent cartridge has a high affinity for FLC (both κ and λ) but is able to re-infuse albumin, avoiding the need for albumin perfusions. Supra HFR treatments (4 h each) were carried out for eight consecutive days and then every other day. All patients showed a significant reduction of serum FLC, whereas serum albumin concentration remained unchanged. Renal function recovered in three out of four patients. FLC removal with adsorbent resins represents an effective therapeutic strategy that does not require replacement with albumin .
Afify, Ahmed; Haney, Stephan; Verrett, Ronald; Mansueto, Michael; Cray, James; Johnson, Russell
2018-02-01
Studies evaluating the marginal adaptation of available computer-aided design and computer-aided manufacturing (CAD-CAM) noble alloys for metal-ceramic prostheses are lacking. The purpose of this in vitro study was to evaluate the vertical marginal adaptation of cast, milled, and direct metal laser sintered (DMLS) noble metal-ceramic 3-unit fixed partial denture (FDP) frameworks before and after fit adjustments. Two typodont teeth were prepared for metal-ceramic FDP abutments. An acrylic resin pattern of the prepared teeth was fabricated and cast in nickel-chromium (Ni-Cr) alloy. Each specimen group (cast, milled, DMLS) was composed of 12 casts made from 12 impressions (n=12). A single design for the FDP substructure was created on a laboratory scanner and used for designing the specimens in the 3 groups. Each specimen was fitted to its corresponding cast by using up to 5 adjustment cycles, and marginal discrepancies were measured on the master Ni-Cr model before and after laboratory fit adjustments. The milled and DMLS groups had smaller marginal discrepancy measurements than those of the cast group (P<.001). Significant differences were found in the number of adjustments among the groups, with the milled group requiring the minimum number of adjustments, followed by the DMLS and cast groups (F=30.643, P<.001). Metal-ceramic noble alloy frameworks fabricated by using a CAD-CAM workflow had significantly smaller marginal discrepancies compared with those with a traditional cast workflow, with the milled group demonstrating the best marginal fit among the 3 test groups. Manual refining significantly enhanced the marginal fit of all groups. All 3 groups demonstrated marginal discrepancies within the range of clinical acceptability. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Renard, Yohann; Hossu, Gabriela; Chen, Bailiang; Krebs, Marine; Labrousse, Marc; Perez, Manuela
2018-01-01
The objective of this study was to develop a simple and useful injection protocol for imaging cadaveric vascularization and dissection. Mixtures of contrast agent and cast product should provide adequate contrast for two types of ex vivo imaging (MRI and CT) and should harden to allow gross dissection of the injected structures. We tested the most popular contrast agents and cast products, and selected the optimal mixture composition based on their availability and ease of use. All mixtures were first tested in vitro to adjust dilution parameters of each contrast agent and to fine-tune MR imaging acquisition sequences. Mixtures were then injected in 24 pig livers and one human pancreas for MR and computed tomography (CT) imaging before anatomical dissection. Colorized latex, gadobutrol and barite mixture met the above objective. Mixtures composed of copper sulfate (CuSO 4 ) gadoxetic acid (for MRI) and iodine (for CT) gave an inhomogeneous signal or extravasation of the contrast agent. Agar did not harden sufficiently for gross dissection but appears useful for CT and magnetic resonance imaging (MRI) studies without dissection. Silicone was very hard to inject but achieved the goals of the study. Resin is particularly difficult to use but could replace latex as an alternative for corrosion instead of dissection. This injection protocol allows CT and MRI images to be obtained of cadaveric vascularization and anatomical casts in the same anatomic specimen. Post-imaging processing software allow easy 3D reconstruction of complex anatomical structures using this technique. Applications are numerous, e.g. surgical training, teaching methods, postmortem anatomic studies, pathologic studies, and forensic diagnoses. © 2017 Anatomical Society.
New method for shielding electron beams used for head and neck cancer treatment.
Farahani, M; Eichmiller, F C; McLaughlin, W L
1993-01-01
Shields and stents of metals with high atomic number, which are custom cast in molds from the melt, are the materials most widely used to protect surrounding tissues during treatment of skin or oral lesions with therapeutic electron beams. An improved fabrication method is to mix a polysiloxane-metal composite, which is readily cast at room temperature by combining a metal-powder/polysiloxane resin mixture with a hardening catalyst. The purpose of the present study is to compare the shielding effectiveness of two different metal-polysiloxane composites with that of conventional cast Lipowitz metal (50.1% Bi, 26.6% Pb, 13.3% Sn, 10% Cd). Also, a 2(3) factorial experiment was run to investigate the effects and interactions of metal particle size (20-microns vs 100-microns diameter), the atomic weight of the metal (304 stainless steel vs 70% Ag, 30% Cu alloy), and the presence or absence of a layer of unfilled polymer added to the forward-scatter side of the shield. The composites of different thicknesses were made by blending 90% (w/w) metal powder separately with 10% polysiloxane base and catalyst. A thin GafChromic dosimeter film was placed between the shielding material and a polystyrene base to measure the radiation shielding effect of composite disc samples irradiated with a 6-MeV electron beam normal to the flat surface of the disc. The results show that composite shields with the metal of higher atomic weight and density (Ag-Cu) combined with an additional unfilled layer are more effective than the stainless-steel composite with a similar additional unfilled layer, in terms of diminishing the dose at the surface of the polystyrene backing material.(ABSTRACT TRUNCATED AT 250 WORDS)
Method for removing contaminants from plastic resin
Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA
2008-12-09
A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.
Stress on external hexagon and Morse taper implants submitted to immediate loading
Odo, Caroline H.; Pimentel, Marcele J.; Consani, Rafael L.X.; Mesquita, Marcelo F.; Nóbilo, Mauro A.A.
2015-01-01
Background/Aims This study aimed to evaluate the stress distribution around external hexagon (EH) and Morse taper (MT) implants with different prosthetic systems of immediate loading (distal bar (DB), casting technique (CT), and laser welding (LW)) by using photoelastic method. Methods Three infrastructures were manufactured on a model simulating an edentulous lower jaw. All models were composed by five implants (4.1 mm × 13.0 mm) simulating a conventional lower protocol. The samples were divided into six groups. G1: EH implants with DB and acrylic resin; G2: EH implants with titanium infrastructure CT; G3: EH implants with titanium infrastructure attached using LW; G4: MT implants with DB and acrylic resin; G5: MT implants with titanium infrastructure CT; G6: MT implants with titanium infrastructure attached using LW. After the infrastructures construction, the photoelastic models were manufactured and a loading of 4.9 N was applied in the cantilever. Five pre-determined points were analyzed by Fringes software. Results Data showed significant differences between the connection types (p < 0.0001), and there was no significant difference among the techniques used for infrastructure. Conclusion The reduction of the stress levels was more influenced by MT connection (except for CT). Different bar types submitted to immediate loading not influenced stress concentration. PMID:26605142
Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith
NASA Technical Reports Server (NTRS)
2003-01-01
In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeenson
1987-01-01
A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.
Battery plate containing filler with conductive coating
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1986-01-01
The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).
Battery plate containing filler with conductive coating
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1985-01-01
The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).
[A light-cured acrylic adhesive for fixing resin retention devices to the wax pattern].
Matsumura, H; Tanaka, T; Atsuta, M
1990-04-01
A light-cured acrylic adhesive for fixing resin retention devices to the wax pattern was prepared. The adhesive consisted of trimethylolpropane triacrylate, 2-ethylhexyl acrylate, benzoin methyl ether, p dimethylaminobenzaldehyde and p-methoxyphenol. The adhesive could be cured within 20 sec not only by an UV photo curing unit but by a visible-light source with a xenon lamp. The adhesive and retention beads burned out after about an hour in the electric furnace at 400 c. The metal specimens with retention devices were cast in Ag-Pd-Cu-Au alloy with the use of two types of retention beads adhesive. The light-cured adhesive was superior to the conventional one in handling and some other properties. This adhesive may be used to fabricate composite veneered prostheses with minimum errors in laboratory procedure.
1991-01-01
posterior teeth, but also to provide a substructure for cast restorations and to seal endodontically treated roots following surgery.5 Although...in class V cavity preparations in the canines, mandibular second molars , and maxillary bicuspids of dogs. Evaluations were performed 48 hours, 30, 60...Cavit and amalgam prevented leakage under both temperature treatment conditions. Mormati and Chan4 8 immersed extracted molars restored with either
NASA Astrophysics Data System (ADS)
Su, Mingji; Liu, Yong; Zhang, Yuhong; Wang, Zhiguo; Li, Yulin; He, Peixin
2018-04-01
Underwater superoleophobic surfaces are based on the surface with micro-/nanoscale roughness and hydration layer. But the self-cleaning surfaces are usually mechanically weak and will lose their underwater superoleophobicity when the surfaces are corroded or damaged. In this paper, to overcome these problems, the robust underwater superoleophobic coating (HN/ER-coating) has been fabricated successfully through MPS (methacryloxy propyl trimethoxyl silane)-SiO2/PNIPAM (N-isopropylacryamide) hybrid nanoparticles and epoxy resin (ER) via a simple solution-casting method. The SiO2/PNIPAM hybrid nanoparticles can enhance multiscale roughness and excellent abrasion-resistant property, and the epoxy resin can be used as an interlayer between hybrid nanoparticles and substrates to promote the robustness and corrosion resistance of the coating. The obtained coatings have excellent underwater superoleophobicity, and exhibit highly stability in harsh environments (including acid-base, strong ionic strength, mechanical abrasion). Moreover, this coating can provide protective effect on the substrate in corrosive solution, and may also resist bacterial attachment and subsequent biofilm formation because of the presence of high density PNIPAM polymers. Herein, the developed underwater superoleophobic coating can be applied as an effective platform for the applications in underwater instruments, underwater oil transport, marine oil platform and ships.
Materials Selection and Their Characteristics as Used in Rapid Prototyping
NASA Technical Reports Server (NTRS)
Cooper, K.; Salvail, P.; Vesely, E.; Wells, D.
1999-01-01
NASA's Marshall Space Flight Center (MSFC) conducted a program to evaluate six technologies used in Rapid Prototyping (RP) to produce investment casting patterns. In this paper, RP refers to the collective additive fabrication technologies known as Solid Free-Form Fabrication. Such technologies are being used with increasing frequency in manufacturing applications, due in part to their rapidly expanding capabilities to fabricate models from many types of materials. This study used ABS plastic, polycarbonate, TrueForm PM6, epoxy resin, paper, starch, and wax. The baseline model was a semi-complex prototype fuel pump housing, intended for use in the X-33 reusable launch vehicle. All models were shelled in a production- grade colloidal silica ceramic. Primary coats were zircon-base flour with zircon backup, while secondary coats were silica grains with a tabular alumina backup. Each model was shelled in an identical manner, using the same atmospheric conditions and drying times, as well as the same number of layers. Bake-outs and firing cycles were consistent with the leach ability of each material. Preheat and bath temperatures were also kept consistent. All molds were cast in vacuum using a hydrogen-resistant superalloy (NASA- 23) that was developed in-house. The final technical evaluation included detailed measurements of the model and the final casting, in order to determine any dimensional changes caused by different pattern materials, as well as documentation of all defects and any obvious refractory/model reactions. Prototype production costs were estimated for each method and taken into consideration during trade-off analysis.
Zanardi, Piero Rocha; Laia Rocha Zanardi, Raquel; Chaib Stegun, Roberto; Sesma, Newton; Costa, Bru-No; Cruz Laganá, Dalva
2016-01-01
The digital smile design is a practical diagnosis method that can assist the clinician to visualize and measure dentogingival discrepancies. This clinical report aims to present the associated steps, from the diagnosis of the alterations diagnosis through to the final aesthetic result. A 37-years-old female patient presented as her main complaint the tooth form and colour discrepancies. Applying the digital smile design principle, the necessary measures for a harmonic smile correction could be accurately determined. The initial diagnosis led to a wax up of the master cast that was duplicated in acrylic resin directly in the mouth. This temporary restoration guided the periodontal surgery and the final pressed ceramic crown restoration. We conclude that the digital smile design concept seems to be a useful tool to achieve a satisfactory aesthetic result.
Method for regenerating magnetic polyamine-epichlorohydrin resin
Kochen, Robert L.; Navratil, James D.
1997-07-29
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.
Method for regenerating magnetic polyamine-epichlorohydrin resin
Kochen, R.L.; Navratil, J.D.
1997-07-29
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.
Foam, Foam-resin composite and method of making a foam-resin composite
NASA Technical Reports Server (NTRS)
MacArthur, Doug E. (Inventor); Cranston, John A. (Inventor)
1995-01-01
This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.
Fabrication of zein nanostructure
NASA Astrophysics Data System (ADS)
Luecha, Jarupat
The concerns on the increase of polluting plastic wastes as well as the U.S. dependence on imported petrochemical products have driven an attention towards alternative biodegradable polymers from renewable resources. Zein protein, a co-product from ethanol production from corn, is a good candidate. This research project aims to increase zein value by adopting nanotechnology for fabricating advanced zein packaging films and zein microfluidic devices. Two nanotechnology approaches were focused: the polymer nanoclay nanocomposite technique where the nanocomposite structures were created in the zein matrix, and the soft lithography and the microfluidic devices where the micro and nanopatterns were created on the zein film surfaces. The polymer nanoclay nanocomposite technique was adopted in the commonly used zein film fabrication processes which were solvent casting and extrusion blowing methods. The two methods resulted in partially exfoliated nanocomposite structures. The impact of nanoclays on the physical properties of zein films strongly depended on the film preparation techniques. The impact of nanoclay concentration was more pronounced in the films made by extrusion blowing technique than by the solvent casting technique. As the processability limitation for the extrusion blowing technique of the zein sample containing hight nanoclay content, the effect of the nanoclay content on the rheological properties of zein hybrid resins at linear and nonlinear viscoelastic regions were further investigated. A pristine zein resin exhibited soft solid like behavior. On the other hand, the zein hybrid with nanoclay content greater than 5 wt.% showed more liquid like behavior, suggesting that the nanoclays interrupted the entangled zein network. There was good correspondence between the experimental data and the predictions of the Wagner model for the pristine zein resins. However, the model failed to predict the steady shear properties of the zein nanoclay nanocomposite resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.
Improvement and Optimization of Internal Damping in Fiber Reinforced Composite Materials
1986-03-03
Resin Casting ............. 61 5.0 TESTS ON DISCONTINUOUS ALIGNED FIBER REINFORCED COMPOSITES . . . ...................... 63 5.1 Experimental...After some :x..iipulation [ 61 , the longitudinal storage modulus is given by: Vf -+-- -~V (2.9) Eý Eý E P9. t z[(R /r) - ] + cosha.t I-. . 10 where 1...the storage moduluii were fitted with a linear regression given by E . . 61 E’ = 571252.737 + 55.647 x f (psi) (4.1) m Where f is the frequency in
Shah, Rupal Jaydip; Lagdive, Sanjay Balaji; Saini, Shraddha Lalit; Verma, Vishal Bipinbihari; Shah, Satyaprakash Ranjit
2017-01-01
Mandibular resections compromise the balance and symmetry of mandibular functions. Since centuries there has been advent of various prosthetic treatment modalities to improve the masticatory efficiency. Swing lock dentures, a treatment facet with high degree of clinical effectiveness, yet gradually fading into oblivion due to its design complexities, has been resurrected by retaining its indigenous concept of reciprocation, and consolidating aesthetics with introduction of newer breed of aesthetic material (Thermoplastic Acetal resin).
Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations
1985-11-01
Geopolymers for Reinforced Plastics/ Composits ," PACTEC , Society of Plastic Engineers, Costa Mesa, CA, 1979, pp. 151-153. Davidovits, Joseph. 1983...34 Geopolymers II, Processing and Applications of Ultra-High Temperature, Inorganic Matrix Resin for Cast Composite Structures, Molds and Tools for RP/C and...alumino-silicate hydrates with an approximate composition of 3CaO - AI20 3 • 2i0 2 2120, begin to crystallize. As the gels begin to coalesce, bound water
Kaneko, K
1989-09-01
A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.
Orthograde endodontic retreatment of teeth with individual cast posts: report of two cases.
Ramić, Bojana; Stojanac, Igor; Premović, Milica; Drobac, Milan; Petrović, Ljubomir
2012-01-01
The failure of primary endodontic treatment is manifested by various clinical symptoms following endodontic therapy or, more frequently, by the development of chronic inflammatory process in the apex region without any subjective symptoms. In case of unfavorable outcome of the primary endodontic treatment, orthograde endodontic retreatment is the method of choice for a prolonged therapy. Two female patients, 47 and 44 years old, were presented at the Dental Clinic of Vojvodina for endodontic retreatment of teeth 22, 23 and 13, within the repeated prosthetic restoration. Intraradicular individual cast posts were removed using ultrasonic instruments. Remains of gutta-percha were removed by engine driven rotary re-treatment files, root canals were shaped and cleaned using the crown-down technique, and obturated with gutta-percha and epoxy-resin-based sealer using the lateral compaction technique. When there are metal posts or broken instruments in the root canal, the use of ultrasonic instruments is considered a safe method characterized by negligible tooth substance loss and minimal root damage causing fractures and perforations, and the entire procedure is effective and predictable. Non-surgical orthograde endodontic retreatment, when properly performed in accessible and penetrable root canals, achieves a high cure rate, good and lasting results and eliminates the need for radical procedures, such as apical surgery or tooth extraction. When nonsurgical endodontic retreatment is done, treated teeth must be restored by full coronal coverage as soon as possible, to prevent coronal leakage or fracture.
Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins.
Hoshika, Tomohiro; Nishitani, Yoshihiro; Yoshiyama, Masahiro; Key, William O; Brantley, William; Agee, Kelli A; Breschi, Lorenzo; Cadenaro, Milena; Tay, Franklin R; Rueggeberg, Frederick; Pashley, David H
2014-11-01
Adding antimicrobial/anti-MMP quaternary ammonium methacrylates (QAMs) to comonomer blends should not weaken the mechanical properties of dental resins. This work evaluated the degree conversion and mechanical properties of BisGMA/TEGDMA/HEMA (60:30:10) containing 0-15 mass% QAMs A-E (A: 2-acryloxyethyltrimethyl ammonium chloride; B: [3-(methacryloylamino)propyl]trimethylammonium chloride; C: [2-(methacryloxy)ethyl] trimethyl ammonium chloride; D: diallyldimethyl ammonium chloride; E: 2-(methacryloyloxy) ethyltrimethyl ammonium methyl sulfate. Unfilled resins with and without QAM were placed on ATR-FTIR and light-polymerized for 20s in a thin film at 30°C. Unfilled resin beams were casted from square hollow glass tubings. Half of the beams were tested after 3 days of drying (control); the other half were tested wet after 3 days of water storage. Addition of QAMs in control resins significantly increased conversion 600 s after light termination, with the exception of 5% MAPTAC (p<0.05). Increase of QAM content within a formulation significantly increased conversion. Control beams gave dry Young's moduli of ∼700 MPa. Addition of 5, 10 or 15 mass% QAMs produced significant reductions in dry Young's moduli except for 5% B or C. 15 mass% A, B and C lowered the wet Young's moduli of the resin beams by more than 30%. The ultimate tensile stress (UTS) of control dry resin was 89±11 MPa. Addition of 5-10 mass% QAMs had no adverse effect on the dry UTS. After water storage, the UTS of all resin blends fell significantly (p<0.05), especially when 15 wt% QAMs was added. Control dry beams gave fracture toughness (KIC) values of 0.88±0.1 MPa m(1/2). Wet values were significantly higher at 1.02±0.06 (p<0.05). KIC of dry beams varied from 0.85±0.08 at 5% QAMs to 0.49±0.05 at 15% QAMs. Wet beams gave KIC values of 1.02±0.06 MPa m(1/2) that fell to 0.23±0.01 at 15% QAMs. Addition of 10% QAMs increased the degree of conversion of unfilled resins, but lowered wet toughness and UTS; addition of 15% QAMs lowered the mechanical properties of wet resins below acceptable levels. Copyright © 2014 Academy of Dental Materials. All rights reserved.
Maxillary overlay removable partial dentures for the restoration of worn teeth.
Fonseca, Júlio; Nicolau, Pedro; Daher, Tony
2011-04-01
Prolonged tooth maintenance by a more aged population considerably increases the probability of dentists having to treat patients with high levels of tooth wear. Pathological tooth wear, caused primarily by parafunction, seems to be a growing problem that affects a large number of adult patients. The clinical report presents a case of a partially edentulous patient with an elevated degree of wear in the upper jaw caused by attrition and erosion, rehabilitated with a maxillary overlay removable partial denture (ORPD) consisting of a chrome-cobalt (Cr-Co) framework with anterior acrylic resin veneers, posterior cast overlays, and acrylic resin denture bases. Removable partial prosthesis is a treatment alternative when teeth are found to be severely worn or when the patient needs a simple and economical option. Because economics is a conditional factor of the treatment, the clinician should present different treatment alternatives to the patient, in which the overlay prosthesis can be considered.
Ortorp, A; Linden, B; Jemt, T
1999-01-01
The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (< 1%). Even though the cast frameworks had a higher success rate, the overall titanium framework treatment result was well in accordance with the result of the control group. The test groups performed better after clinicians had gained some experience with the technique, and laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.
Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong
2014-04-01
The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P < 0.005). At 3 years, approximately 37 % of F IX GP Extra restorations showed wear slightly more than the adjacent enamel, compared to 28 % of F IX GP Extra+GCP restorations and 21 % of Solare restorations. Although this was not statistically significant, there was a trend that GCP can protect F IX GP Extra against wear. Although both Fuji IX GP Extra and Fuji IX GP Extra with G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.
Yanagida, Hiroaki; Tanoue, Naomi; Ide, Takako; Matsumura, Hideo
2009-07-01
We evaluated the effects of two dual-functional primers and a tribochemical surface modification system on the bond strength between an indirect composite resin and gold alloy or titanium. Disk specimens (diameter, 10 mm; thickness, 2.5 mm) were cast from type 4 gold alloy and commercially pure titanium. The specimens were wetground to a final surface finish using 600-grit silicone carbide paper. The specimens were then air-dried and treated using the following four bonding systems: (1) air-abrasion with 50-70 mum alumina, (2) system 1 + alloy primer, (3) system 1 + metal link primer, and (4) tribochemical silica/silane coating (Rocatec). A light-polymerizing indirect composite resin (Ceramage) was applied to each metal specimen and polymerized according to the manufacturer's specifications. Shear bond strengths (MPa) were determined both before and after thermocycling (4 degrees C and 60 degrees C for 1 min each for 20 000 cycles). The values were compared using analysis of variance, post hoc Scheffe tests, and Mann-Whitney U tests (alpha = 0.05). The strengths decreased after thermocycling for all combinations. For both gold alloy and titanium, the bond strength with air-abrasion only was statistically lower than that with the other three modification methods after thermocycling. Titanium exhibited a significantly higher value (13.4 MPa) than gold alloy (10.5 MPa) with the air. abrasion and alloy primer system. Treatment with the tribochemical system or air abrasion followed by treatment with dual-functional priming agents was found to be effective for enhancement of the bonding between the indirect composite and gold alloy or titanium.
Cast metal, resin-bonded prostheses: a 10-year retrospective study.
Williams, V D; Thayer, K E; Denehy, G E; Boyer, D B
1989-04-01
A sample of 99 resin-bonded prostheses placed over a 10-year period were examined by four clinicians using a standardized criteria sheet. Areas examined included hard tissues, periodontium, retainer and pontic design, retention, the effect of occlusion on framework design and retention rate, and bonding media. The data from 7- and 10-year retrospective studies were compared for meaningful trends. Results showed (1) caries on retainer teeth was 3%, (2) gingival index of the retainer teeth was less than the gingival index of the rest of the mouth (0.7 +/- 0.5 versus 0.9 +/- 0.6), (3) the respective mean probing depths of retainer teeth of 34 patients in the 7- and 10-year studies were 2.2 +/- 0.4 mm and 1.9 +/- 0.7 mm, (4) the debond rate of all the prostheses from all causes was 31%, (5) the debond rate comparing etched metal and perforated retainers from all causes was 32% and 31% [corrected], respectively, and (6) 83% liked the prosthesis; 17% were noncommittal. The authors concluded that the resin-bonded prosthesis may be considered a permanent restoration and a valuable asset in the clinician's armamentarium.
NASA Astrophysics Data System (ADS)
Nakamura, Sachiko; Fujii, Takenori; Matsukawa, Shoji; Katagiri, Masayuki; Fukuyama, Hiroshi
2018-03-01
Cyanate ester (CE) thermoset is a polymer with a high glass-transition temperature of ≈ 300 °C. CE is expected to be an alternative to Stycast 1266 as a sealing and casting glue for low temperature experiments, especially for adsorption experiments where baking of the substrate at T > 100 °C before cooling is required to eliminate surface contaminations. We experimentally confirmed that thermosets of CE monomers are non-porous and absorbs/desorbs water very little from measurements of (1) 4He permeation properties at temperatures from room temperature (RT) to 77 K and of (2) weight gains (δW) after storage for days in water and in air at RT. The 4He permeation is rather large at RT but negligibly small at T ⪅ 130 K where the diffusion constant of 4He in CE is vanishingly small. δW in water and air are 0.3–0.5% and 0.5–1.0%, respectively, which are much smaller than those of Stycast 1266. Therefore, cyanate ester is an excellent alternative to commonly used epoxy resins especially in surface-sensitive experiments at low temperature.
Zinelis, S
2000-11-01
Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and fracture stress. No significant differences were found in percentage elongation values among the groups. Porosity and mechanical properties of cp Ti castings are dependent on the gas type and pressure, whereas the microstructure remains unaffected.
Bonding durability between acrylic resin adhesives and titanium with surface preparations.
Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki
2017-01-31
The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.
Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds
NASA Astrophysics Data System (ADS)
Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.
2013-11-01
The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
NASA Astrophysics Data System (ADS)
Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.
2012-02-01
This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.
Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method
NASA Astrophysics Data System (ADS)
Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.
2017-09-01
The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.
Apparatus and method for removing solvent from carbon dioxide in resin recycling system
Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA
2009-01-06
A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.
CAD/CAM produces dentures with improved fit.
Steinmassl, Otto; Dumfahrt, Herbert; Grunert, Ingrid; Steinmassl, Patricia-Anca
2018-02-22
Resin polymerisation shrinkage reduces the congruence of the denture base with denture-bearing tissues and thereby decreases the retention of conventionally fabricated dentures. CAD/CAM denture manufacturing is a subtractive process, and polymerisation shrinkage is not an issue anymore. Therefore, CAD/CAM dentures are assumed to show a higher denture base congruence than conventionally fabricated dentures. It has been the aim of this study to test this hypothesis. CAD/CAM dentures provided by four different manufacturers (AvaDent, Merz Dental, Whole You, Wieland/Ivoclar) were generated from ten different master casts. Ten conventional dentures (pack and press, long-term heat polymerisation) made from the same master casts served as control group. The master casts and all denture bases were scanned and matched digitally. The absolute incongruences were measured using a 2-mm mesh. Conventionally fabricated dentures showed a mean deviation of 0.105 mm, SD = 0.019 from the master cast. All CAD/CAM dentures showed lower mean incongruences. From all CAD/CAM dentures, AvaDent Digital Dentures showed the highest congruence with the master cast surface with a mean deviation of 0.058 mm, SD = 0.005. Wieland Digital Dentures showed a mean deviation of 0.068 mm, SD = 0.005, Whole You Nexteeth prostheses showed a mean deviation of 0.074 mm, SD = 0.011 and Baltic Denture System prostheses showed a mean deviation of 0.086 mm, SD = 0.012. CAD/CAM produces dentures with better fit than conventional dentures. The present study explains the clinically observed enhanced retention and lower traumatic ulcer-frequency in CAD/CAM dentures.
[Bonding agent influence on shear bond strength of titanium/polyglass interface].
Oyafuso, Denise Kanashiro; Bottino, Marco Antonio; Itinoche, Marcos Koiti; Nasraui, Anna Paula; Costa, Elza Maria Valadares da
2003-09-01
There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.
NASA Astrophysics Data System (ADS)
Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.
2011-04-01
Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.
Kondo, S; Okawa, S; Hanawa, T; Sugawara, T; Ota, M
1981-10-01
Present study is directed towards development for a method of materials evaluation of the static and dynamic properties for dental restorative materials and nondestructive inspection of the dental restorations in oral cavity by acoustic emission (AE) method. AE characteristics and deformation-fracture behavior of hour commercial composite resins under three points bending test are examined in order to evaluate initial and fatigue specimen for conventional and microfilled composite resins. Experimental results obtained are as follows: (1) Deformation-fracture behavior of conventional and microfilled composite resins exhibits different mode, corresponding to relatively brittle and ductile fracture behavior, respectively. Therefore, the primary sources of AE for conventional and microfilled composite resins under bending test are related mainly to the nucleation and propagation of cracks and plastic deformation, respectively. (2) In conventional composite resins under bending test, the burst type AE signal of higher amplitude and shorter decay time and more many AE total counts tend to be observed. In microfilled composite resins under bending test, the burst type AE signal of lower amplitude and longer decay time and more a few total counts tend to be observed. (3) Composite resins, particularly conventional composite resins under unload and repeated bending load are indicative of different AE characteristics. Accordingly, application of AE method for composite resins offers a method to evaluate the static and dynamic strength of composite resins. (4) In conventional composite resins under bending test, as characteristic AE are observed in a few stress regions before fracture, it may be possible to monitor nondestructively the restorations in oral cavity by using AE method.
Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam
2016-01-01
Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.
Removal of radioactive materials and heavy metals from water using magnetic resin
Kochen, R.L.; Navratil, J.D.
1997-01-21
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.
Removal of radioactive materials and heavy metals from water using magnetic resin
Kochen, Robert L.; Navratil, James D.
1997-01-21
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.
Reliability/Maintainability/Testability Design for Dormancy
1988-05-01
compositions was developed thousands of years ago. It has proven to be one of the most durable and strongest substances known. It has been stated that glass can...potting or casting) ,1, Certain foamed resins and low density , hollow beady compounds can be used to reduce .eight r \\dverse l)ielectric Properties I...4.1.1.1 General Characteristics of Fixed Resistors 4.1-13 4.1.1.1.1 Fixed Composition Resistors 4.1-13 4.1.1.1.2 Fixed Film Resistors 4.1-20 4.1.1.1.3
The Effects of Die Relief Agent on the Retention of Full Coverage Castings,
1981-02-19
autopolymerizing resin. A diamond rotary instrument and a high speed dental handpiece using air- water coolant were employed to prepare the crown of each tooth...777 109 502 ARMY INST OF DENTAL RESEARCH WASHINGTON DC F/6 6/5 THE EFFECTS OF DIE RELIEF AGENT ON THE RETENTION OF FULL COYERA--ETC(U) FES 81 S 6...Kuffler" 4W Eugene F.Huget, COL, (Ret.) .9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK U.S. Army Institute of Dental
Ersoy, E; Cetiner, S; Koçak, F
1989-09-01
In post-core applications, addition to the cast designs restorations that are performed on fabrication posts with restorative materials are being used. To improve the physical properties of glass-ionomer cements that are popular today, glass-cermet cements have been introduced and those materials have been proposed to be an alternative restorative material in post-core applications. In this study, the compressive resistance of Ketac-Silver as a core material was investigated comparatively with amalgam and composite resins.
Indirect fabrication of multiple post-and-core patterns with a vinyl polysiloxane matrix.
Sabbak, Sahar Asaad
2002-11-01
In the described technique, a vinyl polysiloxane material is used as a matrix for the indirect fabrication of multiple custom-cast posts and cores. The matrix technique enables the clinician to fabricate multiple posts and cores in a short period of time. The form, harmony, and common axis of preparation for all cores are well controlled before the definitive crown/fixed partial denture restorations are fabricated. Oral tissues are not exposed to the heat of polymerization or the excess monomer of the resin material when this technique is used.
Method of removing contaminants from plastic resins
Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.
2008-11-18
A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.
Method of removing contaminants from plastic resins
Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; Delaurentiis, Gary M [Jamestown, CA
2007-08-07
A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.
Method for removing contaminants from plastic resin
Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.
2008-12-30
A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.
Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi
2016-01-01
For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Pleva, Ed; Ha, Tam T
2012-06-12
High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less
Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing
NASA Astrophysics Data System (ADS)
Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.
2012-06-01
High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.
Effect of ultrasonic vibration on the retention of adhesively luted intra-radicular posts.
Satterthwaite, Julian D; Stokes, Alastair N
2004-09-01
The aim of this study was to determine the effect of prolonged ultrasonic vibration on tensile force necessary to dislodge two different post types luted with an adhesive resin. Extracted human canine teeth were decoronated and root-filled. Either a ceramic or stainless steel intra-radicular post was luted into each root with resin-based cement. Half the samples in each group were randomly assigned to be subjected to ultrasonic vibration of the post (test group), the remaining samples did not receive vibration (control group). The tensile force required to dislodge each post was then determined in a universal testing machine. The mean force required to dislodge the stainless steel posts in the control group was 510.1N (SD 170.6) and in the 'treatment' group it was 539.5N (SD 163.3). For the ceramic posts in the control group the mean force was 447.8N (SD 165.5) and in the 'treatment' group it was 473.9N (SD 137.8). There was no statistical difference between the groups (p = 0.597). Within the limitations of this in-vitro study, the results cast doubt on the ability of application of ultrasonic vibration to displace/loosen intra-radicular posts luted with a resin-based cement.
Accuracy of a new elastomeric impression material for complete-arch dental implant impressions.
Baig, Mirza R; Buzayan, Muaiyed M; Yunus, Norsiah
2018-05-01
The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts. Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05. The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05). The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions. © 2018 John Wiley & Sons Australia, Ltd.
Vascular corrosion casting of normal and pre-eclamptic placentas.
Yin, Geping; Chen, Ming; Li, Juan; Zhao, Xiaoli; Yang, Shujun; Li, Xiuyun; Yuan, Zheng; Wu, Aifang
2017-12-01
Pre-eclampsia is an important cause of maternal and fetal morbidity and mortality that is associated with decreased placental perfusion. In the present study, vascular corrosion casting was used to investigate the differences in structural changes of the fetoplacental vasculature between normal and pre-eclamptic placentas. An improved epoxy resin vascular casting technique was used in the present study. Casting media were infused into 40 normal and 40 pre-eclamptic placentas through umbilical arteries and veins in order to construct three dimensional fetoplacental vasculatures. The number of branches, diameter, morphology and peripheral artery-to-vein ratio were measured for each specimen. The results indicated that the venous system of normal placentas was divided into 5-7 grades of branches and the volume of the vascular bed was 155.5±45.3 ml. In severe pre-eclamptic placentas, the volume was 106.4±36.1 ml, which was significantly lower compared with normal placentas (P<0.01). The venous system of pre-eclamptic placentas was divided into 4-5 grades of branches, which was much more sparse compared with normal placentas. In additions, the diameters of grade 1-3 veins and grade 2-3 arteries were significantly smaller in severe pre-eclampsia (P<0.05). In conclusion, pre-eclamptic placentas displayed a decreased volume of vascular bed, smaller diameters of grade 1-3 veins and grade 2-3 arteries, and an increased peripheral artery-to-vein ratio, which may be a cause of the placental dysfunction during severe pre-eclampsia.
Accuracy of Different Implant Impression Techniques: Evaluation of New Tray Design Concept.
Liu, David Yu; Cader, Fathima Nashmie; Abduo, Jaafar; Palamara, Joseph
2017-12-29
To evaluate implant impression accuracy with a new tray design concept in comparison to nonsplinted and splinted impression techniques for a 2-implant situation. A reference bar titanium framework was fabricated to fit on 2 parallel implants. The framework was used to generate a resin master model with 2 implants that fit precisely against the framework. Three impression techniques were evaluated: (1) nonsplinted, (2) splinted, and (3) nonsplinted with modified tray impressions. All the trays were fabricated from light-cured acrylic resin material with openings that corresponded to the implant impression copings. Ten impressions were taken for each technique using poly(vinyl siloxane) impression material. The impressions were poured with type IV dental stone to generate the test casts. A rosette strain gauge was bonded to the middle of the framework. As the framework retaining screws were tightened on each test cast, the developed strains were recorded until the completion of the tightening to 35 Ncm. The generated strains of the rosette strain gauge were used to calculate the maximum principal strain. A statistically significant difference was observed among the different impression techniques. The modified tray design impression technique was associated with the least framework strains, which indicates greater accuracy compared with the other techniques. There was no significant difference between the splinted and the nonsplinted impression techniques. The new tray design concept appeared to produce more accurate implant impressions than the other techniques. Despite the statistical difference among the impression techniques, the clinical significance of this difference is yet to be determined. © 2017 by the American College of Prosthodontists.
Stevenson, Richard G; Refela, Jane A
2009-01-01
Although in today's dental world implant restorations are considered the standard of care in the replacement of missing teeth, clinical contraindications and patient nonacceptance of implant placement can be encountered. Several scenarios are discussed here in which a single missing tooth can be restored with conservative fixed partial dentures (FPD) that employ cast gold retainers; each with a customized design in order to preserve tooth structure, maintain esthetics, and provide a long-term prognosis. The abutment teeth are prepared for conservative partial coverage restorations by using Brasseler burs (Brasseler USA, Savannah, GA, USA). Impressions are taken of the preparations, along with any retentive features, utilizing either the Vented Pin Channel technique or the Shooshan Plastic Pin technique. The latter technique utilizes Kodex twist drills and corresponding impression pins (Coltene Whaledent Inc., Mahwah, NJ, USA). The conservative FPD with non-rigid connectors is fabricated by using type III gold alloy. The pontic cage portion is chemically prepared utilizing the Panavia F2.0 cement kit (Kuraray America Inc., Houston, TX, USA) or other dual-polymerizing resin cement and restored with any type of direct composite resin material. A palette of opaquers and tints are used for chairside characterization of the esthetic pontic facing. The final polish of the pontic is completed by using FlexiDisc and FlexiBuff discs (Cosmedent Inc., Chicago, IL, USA). CLINICAL SIGNIFICANCE In cases where an implant restoration is contraindicated for replacement of a single tooth, a semi-precision FPD is a conservative, functional, and esthetic alternative.
Ultrasonic mixing of epoxy curing agents
NASA Technical Reports Server (NTRS)
Hodges, W. T.; St.clair, T. L.
1983-01-01
A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.
[A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].
Kimura, H; Teraoka, F
1990-05-01
Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.
Potentiometric perchlorate determination at nanomolar concentrations in vegetables.
Leoterio, Dilmo M S; Paim, Ana Paula S; Belian, Mônica F; Galembeck, André; Lavorante, André F; Pinto, Edgar; Amorim, Célia G; Araújo, Alberto N; Montenegro, Maria C B S M
2017-07-15
In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10 -7 -1.0×10 -3 mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10 -10 mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved Net-Level Filling And Finishing Of Large Castings
NASA Technical Reports Server (NTRS)
Johnson, Erik P.; Brown, Richard F.
1995-01-01
Improved method of vacuum casting of large, generally cylindrical objects to net sizes and shapes reduces amount of direct manual labor by workers in proximity to cast material. Original application for which method devised is fabrication of solid rocket-motor segments containing solid propellant, wherein need to minimize exposure of workers to propellant material being cast. Improved method adaptable to other applications involving large castings of toxic, flammable, or otherwise hazardous materials.
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-11
neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect acoustic...different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis
NASA Astrophysics Data System (ADS)
Ahmad, Nadiah
One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.
Charlier, Phillippe; Coppens, Yves; Augias, Anaïs; Deo, Saudamini; Froesch, Philippe; Huynh-Charlier, Isabelle
2018-01-01
Following a global morphological and micro-CT scan examination of the original and cast of the skeleton of Australopithecus afarensis AL 288 ('Lucy'), Kappelman et al. have recently proposed a diagnosis of a fall from a significant height (a tree) as a cause of her death. According to topographical data from the discovery site, complete re-examination of a high-quality resin cast of the whole skeleton and forensic experience, we propose that the physical process of a vertical deceleration cannot be the only cause for her observed injuries. Two different factors were involved: rolling and multiple impacts in the context of a mudslide and an animal attack with bite marks, multi-focal fractures and violent movement of the body. It is important to consider a differential diagnosis of the observed fossil lesions because environmental factors should not be excluded in this ancient archaeological context as with any modern forensic anthropological case.
Consani, Rafael Leonardo Xediek; Domitti, Saide Sarckis; Consani, Simonides
2002-09-01
The pressure of final closure may be released when the flask is removed from the mechanical or pneumatic press and placed in the spring clamp. This release in pressure may result in dimensional changes that distort the denture base. The purpose of this study was to investigate differences between the dimensional stability of standardized simulated denture bases processed by traditional moist heat-polymerization and those processed by use of a new tension system. A metal master die was fabricated to simulate an edentulous maxillary arch without irregularities in the alveolar ridge walls. A silicone mold of this metallic die was prepared, and 40 stone casts were formed from the mold with type III dental stone. The casts were randomly assigned to 4 test groups (A-D) of 10 specimens each. A uniform denture base pattern was made on each stone cast with a 1.5-mm thickness of base-plate wax, measured with a caliper. The patterns were invested for traditional hot water processing. A polymethyl methacrylate dough was prepared and packed for processing. The flasks in groups A and B were closed with the traditional pressure technique and placed in spring clamps after final closure. The flasks in groups C and D were pressed between the metallic plates of the new tension system after the final closure. The group A and C flasks were immediately immersed in the water processing unit at room temperature (25 degrees +/- 2 degrees C). The unit was programmed to raise the temperature to 74 degrees C over 1 hour, and then maintained the temperature at 74 degrees C for 8 hours. The group B and D flasks were bench stored at room temperature (25 degrees +/- 2 degrees C) for 6 hours and were then subjected to the same moist heat polymerization conditions as groups A and C. All processed dentures were bench cooled for 3 hours. After recovery from the flasks, the base-cast sets were transversally sectioned into 3 parts (corresponding to 3 zones): (1) distal of the canines, (2) mesial of the first molars, and (3) mesial of the posterior palate). These areas had been previously established and standardized by use of a pattern denture in the sawing device to determine the sections in each base-cast set. Base-cast gaps were measured at 5 predetermined points on each section with an optical micrometer that had a tolerance of 0.001 mm. Collected data were analyzed with analysis of variance and Tukey's test. Denture bases processed with the new tension system exhibited significantly better base adaptation than those processed with traditional acrylic resin packing. Immediately after polymerization (Groups A and C), mean dimensional change values were 0.213 +/- 0.055 mm for the traditional packing technique and 0.173 +/- 0.050 mm for new tension system. After delayed polymerization (Groups B and D), the values were 0.216 +/- 0.074 mm for the traditional packing technique and 0.164 +/- 0.032 mm for new tension system. With both techniques, dimensional changes in the posterior palatal zone were greater (conventional = 0.286 +/- 0.038 mm; new system = 0.214 +/- 0.024 mm) than those elsewhere on the base-cast set. Within the limitations of this study, the new tension packing system was associated with decreased dimensional changes in the simulated maxillary denture bases processed with heat-polymerization.
Present status of titanium removable dentures--a review of the literature.
Ohkubo, C; Hanatani, S; Hosoi, T
2008-09-01
Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.
Electronic gap sensor and method
Williams, R.S.; King, E.L.; Campbell, S.L.
1991-08-06
Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.
Electronic gap sensor and method
Williams, Robert S.; King, Edward L.; Campbell, Steven L.
1991-01-01
An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.
Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.
Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob
2017-06-12
A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.
[The working environment control of anhydride hardeners from an epoxy resin system].
Matsumoto, Naomi; Yokota, Kozo; Johyama, Yasushi; Takakura, Toshiyuki
2003-07-01
Epoxy resins are widely used in adhesives, coatings, materials for molds and composites, and encapsulation. Acid anhydrides such as methyltetrahydrophthalic anhydride are being used as curing agents for epoxy resins. The anhydride hardeners are well-known industrial inhalant allergens, inducing predominantly type I allergies. In the electronic components industry, these substances have been consumed in large quantities. Therefore, safe use in the industry demands control of the levels of exposure causing allergic diseases in the workshop. We conducted a prospective survey of two electronics plants to clarify how to control the atmospheric level of the anhydrides in the work environment. Measurements of the levels of the anhydrides in air started according to the Working Environment Measurement Standards (Ministry of Labour Notification No. 46, 1976) in April 2000, along with improvements in the work environment. A value of 40 micrograms/m3 was adopted as the administrative control level to judge the propriety of the working environment control. A total of 2 unit work areas in both plants belonged to Control Class III. The exposure originated from manual loading, casting, uncured hot resins, and leaks in an impregnating-machine or curing ovens. In order to achieve the working environment control, complete enclosure of the source, installation of local exhaust ventilation, and improvement or maintenance of the local exhaust ventilation system were performed on the basis of the results of the working environment measurement, with the result that the work environment was improved (Control Class I). It became evident that these measures were effective just like other noxious substances.
Resin film infusion mold tooling and molding method
NASA Technical Reports Server (NTRS)
Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)
1999-01-01
A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-21
include neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect...a different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...an epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
Method of reducing the green density of a slip cast article
Mangels, John A.; Dickie, Ray A.
1985-01-01
The method disclosed in this specification is one of reducing the green density of an article cast in a slip casting operation. The article is cast from a casting slip containing silicon metal particles, yttrium containing particles, and a small amount of a fluoride salt which is effective to suppress flocculation of the silicon metal particles by y.sup.+3 ions derived from the yttrium containing particles. The method is characterized by the following step. A small amount of compound which produces a cation which will partly flocculate the particles of silicon metal is added to the casting slip. The small amount of this compound is added so that when the casting slip is slip cast into a casting mold, the partly flocculated particles of silicon will interrupt an otherwise orderly packing of the particles of silicon and particles of yttrium. In this manner, the green density of the slip cast article is reduced and the article may be more easily nitrided.
NASA Astrophysics Data System (ADS)
Zulfahmi; Syam, B.; Wirjosentono, B.
2018-02-01
A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polimeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%). The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v = 35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The largest deformation area occurred at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball impact.
Comparative study of two commercially pure titanium casting methods
RODRIGUES, Renata Cristina Silveira; FARIA, Adriana Claudia Lapria; ORSI, Iara Augusta; de MATTOS, Maria da Gloria Chiarello; MACEDO, Ana Paula; RIBEIRO, Ricardo Faria
2010-01-01
The interest in using titanium to fabricate removable partial denture (RPD) frameworks has increased, but there are few studies evaluating the effects of casting methods on clasp behavior. Objective This study compared the occurrence of porosities and the retentive force of commercially pure titanium (CP Ti) and cobalt-chromium (Co-Cr) removable partial denture circumferential clasps cast by induction/centrifugation and plasma/vacuum-pressure. Material and Methods 72 frameworks were cast from CP Ti (n=36) and Co-Cr alloy (n=36; control group). For each material, 18 frameworks were casted by electromagnetic induction and injected by centrifugation, whereas the other 18 were casted by plasma and injected by vacuum-pressure. For each casting method, three subgroups (n=6) were formed: 0.25 mm, 0.50 mm, and 0.75 mm undercuts. The specimens were radiographed and subjected to an insertion/removal test simulating 5 years of framework use. Data were analyzed by ANOVA and Tukey's to compare materials and cast methods (α=0.05). Results Three of 18 specimens of the induction/centrifugation group and 9 of 18 specimens of plasma/vacuum-pressure cast presented porosities, but only 1 and 7 specimens, respectively, were rejected for simulation test. For Co-Cr alloy, no defects were found. Comparing the casting methods, statistically significant differences (p<0.05) were observed only for the Co-Cr alloy with 0.25 mm and 0.50 mm undercuts. Significant differences were found for the 0.25 mm and 0.75 mm undercuts dependent on the material used. For the 0.50 mm undercut, significant differences were found when the materials were induction casted. Conclusion Although both casting methods produced satisfactory CP Ti RPD frameworks, the occurrence of porosities was greater in the plasma/vacuum-pressure than in the induction/centrifugation method, the latter resulting in higher clasp rigidity, generating higher retention force values. PMID:21085805
Development of a new casting method to fabricate U–Zr alloy containing minor actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong Hwan Kim; Hoon Song; Hyung Tae Kim
2014-01-01
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen,more » carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.« less
Maxwell, III, Sherrod L.; Nichols, Sheldon T.
1999-01-01
The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.
Dai, F F; Liu, Y; Xu, T M; Chen, G
2018-04-18
To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.
Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke
2016-06-25
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microvasculature of crotaline snake pit organs: possible function as a heat exchange mechanism.
Amemiya, F; Nakano, M; Goris, R C; Kadota, T; Atobe, Y; Funakoshi, K; Hibiya, K; Kishida, R
1999-01-01
The infrared sensory membranes of the pit organs of pit vipers have an extremely rich capillary vasculature, which has been noted passim in the literature, but never illustrated or studied in detail. We rendered the pit vasculature visible in various ways, namely, by microinjection of India ink, by a combination of ink and succinate dehydrogenase staining, and by making resin casts for scanning electron microscope study. We also used transmission electron microscopy for identifying the types (arterioles, venules, capillaries) of blood vessels. Then we compared the pit vasculature with that of the retina and the dermis. Good visualization of the vasculature was obtained with both ink and resin injection. Arterioles, venules, and capillaries could be distinguished with all methods used. The monolayer vasculature was denser in the pit membrane than in the retina or skin. Each loop of the network enclosed a small number of infrared receptors so that all receptors were in contact with a capillary on at least one side. The forward-looking areas of the pit had a denser network than side-looking areas. Since infrared rays cause nerve impulses by raising the temperature of individual receptors, the capillary network functions not only as a supplier of energy but also as a cooling mechanism to reduce afterimages. Thus the denser network in the forward-looking areas causes these areas to be more sensitive and have better image resolution than the rest of the membrane.
Electrically conductive resinous bond and method of manufacture
Snowden, T.M. Jr.; Wells, B.J.
1985-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
Electrically conductive resinous bond and method of manufacture
Snowden, Jr., Thomas M.; Wells, Barbara J.
1987-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
25 CFR 217.6 - Method of casting votes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Method of casting votes. 217.6 Section 217.6 Indians.... § 217.6 Method of casting votes. Within 30 days after an issue and any analysis provided for in §§ 217.4... superintendent in writing of the number of votes cast for and against the proposed or alternative solutions. If...
Byung-Dae Park; Charles R. Frihart; Yan Yu; Adya P. Singh
2013-01-01
To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of ureaâformaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used...
Choi, Jung-Han; Lim, Young-Jun; Kim, Chang-Whe; Kim, Myung-Joo
2009-01-01
This study evaluated the effect of different screw-tightening sequences, forces, and methods on the stresses generated on a well-fitting internal-connection implant (Astra Tech) superstructure. A metal framework directly connected to four parallel implants was fabricated on a fully edentulous mandibular resin model. Six stone casts with four implant replicas were made from a pickup impression of the superstructure to represent a "well-fitting" situation. Stresses generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two forces (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Stresses were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, stresses were produced by the superstructure connection, regardless of screw-tightening sequence, force, and method. No statistically significant differences for superstructure preload stresses were found based on screw-tightening sequences (-180.0 to -181.6 microm/m) or forces (-163.4 and -169.2 microm/m) (P > .05). However, different screw-tightening methods induced different stresses on the superstructure. The two-step screw-tightening method (-180.1 microm/m) produced significantly higher stress than the one-step method (-169.2 microm/m) (P = .0457). Within the limitations of this in vitro study, screw-tightening sequence and force were not critical factors in the stress generated on a well-fitting internal-connection implant superstructure. The stress caused by the two-step method was greater than that produced using the one-step method. Further studies are needed to evaluate the effect of screw-tightening techniques on preload stress in various different clinical situations.
Tanış, Merve Çakırbay; Akçaboy, Cihan
2015-01-01
Introduction: Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. Methods: 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Results: Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks connecting each other were observed. Conclusion: Tribochemical silica coating is an effective method for achieving an acceptable bond between zirconia and resin cement. Use of a MDP monomer containing resin cement increases the bond strength of sandblasted zirconia. PMID:26705464
Method and solvent composition for regenerating an ion exchange resin
Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.
2002-01-01
A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
ToxCast HTS Assay Development and Retrofitting: Strategies ...
A presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods Slide presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods.
Souza, Jose Everaldo de Aquino; Silva, Nelson Renato Franca Alves da; Coelho, Paulo Guilherme; Zavanelli, Adriana Cristina; Ferracioli, Renata Cristina Silveira Rodrigues; Zavanelli, Ricardo Alexandre
2011-05-01
There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium- titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra care with commercially pure titanium in undercut of 0.75 mm. Frameworks fabricated in Cp Ti tend to decrease in retentive strength over time and have a potential risk of fracture in less than 0.75 mm of undercut.
[Surface characteristics of the acrylic resins according to the polishing methods].
Vitalariu, Anca Mihaela; Lazăr, Lenuţa; Buruiană, Tinca; Diaconu, Diana; Tatarciuc, Monica Silvia
2011-01-01
The objective of this study was to evaluate the effect of the polishing technique and glazing on the porosity of the dental resins. The studied resins were: Castapress/Vertex, Prothyl Hot/Zermack, Rapid Simplified/Vertex, Duracryl Plus/Spofa Dental, Vertex-Soft/Vertex, Superacryl Plus/Spofa Dental. Thirty specimens, five for every resin, of 50/25/2 cm in size were done. One surface of each sample was polished with extrahard tungsten carbide burs, the other surface being polished with extrahard extrafine and diamond burs. The final polishing was done using a conventional method: pumice, water and lathe bristle brush for 90 seconds, 1500 rpm and soft leather polishing wheel for 90 seconds, 3000 rpm. Twenty surfaces were glazed after polishing with Glaze/Bosworth. Vertex Soft specimens were not polished because this is a resilient material. Surface porosity of the acrylic resin specimens was measured by optical microscopy. The lowest porosity was obtained by conventional polishing combined with glazing techniques. No differences between glazed and non/glazed self-curing resin specimens were noticed, but there were differences between self-curing and heat-curing resins. Conventional lathe polishing method is an effective and reliable technique for polishing dental resins. Specimens of self-curing resin had a higher porosity than heat curing resin following the same surface treatment. Higher surface smoothness was obtained by conventional lathe polishing completed by glazing.
Tanış, Merve Çakırbay; Akçaboy, Cihan
2015-01-01
Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks connecting each other were observed. Tribochemical silica coating is an effective method for achieving an acceptable bond between zirconia and resin cement. Use of a MDP monomer containing resin cement increases the bond strength of sandblasted zirconia.
Zhang, Wenyou; He, Jiankang; Li, Xiang; Liu, Yaxiong; Bian, Weiguo; Li, Dichen; Jin, Zhongmin
2014-03-01
To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 +/- 181) N and dynamic creep of (0.74 +/- 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 +/- 103) N and dynamic creep of (1.48 +/- 0.49) mm, showing significant differences (t = 11.617, P = 0.000; t = 2.991, P = 0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
NASA Astrophysics Data System (ADS)
Chen, Youning; Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-02-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity.
Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-01-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity. PMID:29515875
Pneumatic gap sensor and method
Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.
1992-01-01
An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.
Pneumatic gap sensor and method
Bagdal, K.T.; King, E.L.; Follstaedt, D.W.
1992-03-03
An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.
Stoddard, Nathan G [Gettysburg, PA
2011-11-01
Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.
NASA Astrophysics Data System (ADS)
Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.
2015-12-01
Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.
Wong, M S; Cheng, J C Y; Wong, M W; So, S F
2005-04-01
A study was conducted to compare the CAD/CAM method with the conventional manual method in fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis. Ten subjects were recruited for this study. Efficiency analyses of the two methods were performed from cast filling/ digitization process to completion of cast/image rectification. The dimensional changes of the casts/ models rectified by the two cast rectification methods were also investigated. The results demonstrated that the CAD/CAM method was faster than the conventional manual method in the studied processes. The mean rectification time of the CAD/CAM method was shorter than that of the conventional manual method by 108.3 min (63.5%). This indicated that the CAD/CAM method took about 1/3 of the time of the conventional manual to finish cast rectification. In the comparison of cast/image dimensional differences between the conventional manual method and the CAD/CAM method, five major dimensions in each of the five rectified regions namely the axilla, thoracic, lumbar, abdominal and pelvic regions were involved. There were no significant dimensional differences (p < 0.05) in 19 out of the 25 studied dimensions. This study demonstrated that the CAD/CAM system could save the time in the rectification process and offer a relatively high resemblance in cast rectification as compared with the conventional manual method.
Impregnation of soft biological specimens with thermosetting resins and elastomers.
von Hagens, G
1979-06-01
A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.
Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon
2014-11-01
This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.
Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V
2014-02-01
The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.
Passive fit and accuracy of three dental implant impression techniques.
Al Quran, Firas A; Rashdan, Bashar A; Zomar, AbdelRahman A Abu; Weiner, Saul
2012-02-01
To reassess the accuracy of three impression techniques relative to the passive fit of the prosthesis. An edentulous maxillary cast was fabricated in epoxy resin with four dental implants embedded and secured with heat-cured acrylic resin. Three techniques were tested: closed tray, open tray nonsplinted, and open tray splinted. One light-cured custom acrylic tray was fabricated for each impression technique, and transfer copings were attached to the implants. Fifteen impressions for each technique were prepared with medium-bodied consistency polyether. Subsequently, the impressions were poured in type IV die stone. The distances between the implants were measured using a digital micrometer. The statistical analysis of the data was performed with ANOVA and a one-sample t test at a 95% confidence interval. The lowest mean difference in dimensional accuracy was found within the direct (open tray) splinted technique. Also, the one-sample t test showed that the direct splinted technique has the least statistical significant difference from direct nonsplinted and indirect (closed tray) techniques. All discrepancies were less than 100 Μm. Within the limitations of this study, the best accuracy of the definitive prosthesis was achieved when the impression copings were splinted with autopolymerized acrylic resin, sectioned, and rejoined. However, the errors associated with all of these techniques were less than 100 Μm, and based on the current definitions of passive fit, they all would be clinically acceptable.
Stoddard, Nathan G
2015-02-10
Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.
Hui, Catherine; Joughin, Elaine; Nettel-Aguirre, Alberto; Goldstein, Simon; Harder, James; Kiefer, Gerhard; Parsons, David; Brauer, Carmen; Howard, Jason
2014-01-01
Background The Ponseti method of congenital idiopathic clubfoot correction has traditionally specified plaster of Paris (POP) as the cast material of choice; however, there are negative aspects to using POP. We sought to determine the influence of cast material (POP v. semirigid fibreglass [SRF]) on clubfoot correction using the Ponseti method. Methods Patients were randomized to POP or SRF before undergoing the Ponseti method. The primary outcome measure was the number of casts required for clubfoot correction. Secondary outcome measures included the number of casts by severity, ease of cast removal, need for Achilles tenotomy, brace compliance, deformity relapse, need for repeat casting and need for ancillary surgical procedures. Results We enrolled 30 patients: 12 randomized to POP and 18 to SRF. There was no difference in the number of casts required for clubfoot correction between the groups (p = 0.13). According to parents, removal of POP was more difficult (p < 0.001), more time consuming (p < 0.001) and required more than 1 method (p < 0.001). At a final follow-up of 30.8 months, the mean times to deformity relapse requiring repeat casting, surgery or both were 18.7 and 16.4 months for the SRF and POP groups, respectively. Conclusion There was no significant difference in the number of casts required for correction of clubfoot between the 2 materials, but SRF resulted in a more favourable parental experience, which cannot be ignored as it may have a positive impact on psychological well-being despite the increased cost associated. PMID:25078929
Digholkar, Shruti; Madhav, V. N. V.; Palaskar, Jayant
2016-01-01
Purpose: The purpose of this study was to evaluate and compare the flexural strength and microhardness of provisional restorative materials fabricated utilizing rapid prototyping (RP), Computer Assisted Designing and Computer Assisted Milling (CAD-CAM) and conventional method. Materials and Methods: Twenty specimens of dimensions 25 mm × 2 mm × 2 mm (ADA-ANSI specification #27) were fabricated each using: (1) Three dimensional (3D) printed light-cured micro-hybrid filled composite by RP resin group, (2) a milled polymethyl methacrylate (CH) using CAD-CAM (CC resin group), and (3) a conventionally fabricated heat activated polymerized CH resin group. Flexural strength and microhardness were measured and values obtained were evaluated. Results: The measured mean flexural strength values (MegaPascals) were 79.54 (RP resin group), 104.20 (CC resin group), and 95.58 (CH resin group). The measured mean microhardness values (Knoop hardness number) were 32.77 (RP resin group), 25.33 (CC resin group), and 27.36 (CH resin group). The analysis of variance (ANOVA) test shows that there is statistically significant difference in the flexural strength values of the three groups (P < 0.05). According to the pairwise comparison of Tukey's honest significant difference (HSD) test, flexural strength values of CC resin group and CH resin group were higher and statistically significant than those of the RP resin group (P < 0.05). However, there was no significant difference between flexural strength values of CC resin and CH resin group (P = 0.64). The difference in microhardness values of the three groups was statistically significant according to ANOVA as well as the intergroup comparison done using the Tukey's HSD (post hoc) test (P < 0.05). Conclusions: CC-based CH had the highest flexural strength whereas RP-based 3D printed and light cured micro-hybrid filled composite had the highest microhardness. PMID:27746595
Reusable chelating resins concentrate metal ions from highly dilute solutions
NASA Technical Reports Server (NTRS)
Bauman, A. J.; Weetal, H. H.; Weliky, N.
1966-01-01
Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.
Low-density resin impregnated ceramic article and method for making the same
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)
1997-01-01
A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.
Measurements of volatile compound contents in resins using a moisture analyzer.
Hashimoto, Masanori; Nagano, Futami; Endo, Kazuhiko; Ohno, Hiroki
2010-02-01
The contents of volatile adhesive compounds, such as water, solvents, and residual unpolymerized monomers, affect the integrity and durability of adhesive bonding. However, there is no method available that can be used to rapidly assess the residual solvent or water contents of adhesive resins. This study examined the effectiveness of a digital moisture analyzer to measure the volatile compound contents of resins. Five self-etching adhesives and seven experimental light-cured resins prepared with different contents (0, 10, and 20% by weight) of water or solvents (acetone and ethanol) were examined in this study. The resins were prepared using different methods (with and without air blast or light-curing) to simulate the clinical conditions of adhesive application. Resin weight changes (% of weight loss) were determined as the residual volatile compound contents, using the moisture analyzer. After the measurements, the resin films were examined using a scanning electron microscope. The weight changes of the resins were found to depend on the amount of water or solvents evaporating from the resin. Water and solvents were evaporated by air blast or light-curing, but some of the water and solvents remained in the cured resin. The moisture analyzer is easy to operate and is a useful instrument for using to measure the residual volatile compound contents of adhesive resin.
Evans, Angela; Chowdhury, Mamun; Rana, Sohel; Rahman, Shariar; Mahboob, Abu Hena
2017-01-01
The management of congenital talipes equino varus ( clubfoot deformity ) has been transformed in the last 20 years as surgical correction has been replaced by the non-surgical Ponseti method. The Ponseti method, consists of corrective serial casting followed by maintenance bracing, and has been repeatedly demonstrated to give best results - regarded as the 'gold standard' treatment for paediatric clubfoot. To develop the study protocol Level 2 evidence was used to modify the corrective casting phase of the Ponseti method in children aged up to 12 months. Using Level 4 evidence, the percutaneous Achilles tenotomy (PAT) was performed using a 19-gauge needle instead of a scalpel blade, a technique found to reduce bleeding and scarring. A total of 123 children participated in this study; 88 male, 35 female. Both feet were affected in 67 cases, left only in 22 cases, right only in 34 cases. Typical clubfeet were found in 112/123 cases, six atypical, five syndromic. The average age at first cast was 51 days (13-240 days).The average number of casts applied was five (2-10 casts). The average number of days between the first cast and brace was 37.8 days (10-122 days), including 21 days in a post-PAT cast. Hence, average time of corrective casts was 17 days.Parents preferred the reduced casting time, and were less concerned about unseen skin wounds.PAT was performed in 103/123 cases, using the needle technique. All post tenotomy casts were in situ for three weeks. Minor complications occurred in seven cases - four cases had skin lesions, three cases disrupted casting phase. At another site, 452 PAT were performed using the needle technique. The 'fast cast' protocol Ponseti casting was successfully used in infants aged less than 8 months. Extended manual manipulation of two minutes was the essential modification. Parents preferred the faster treatment phase, and ability to closer observe the foot and skin. The treating physiotherapists preferred the 'fast cast' protocol, achieving better correction with less complication. The needle technique for PAT is a further improvement for the Ponseti method.
Noe, Gregory B.
2011-01-01
A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.
Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thunga, Mahendra; Bauer, Amy; Obusek, Kristine
2014-08-01
Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-sectionmore » analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.« less
Method and device for fabricating dispersion fuel comprising fission product collection spaces
Shaber, Eric L; Fielding, Randall S
2015-05-05
A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.
2013-03-01
effluent by ion chromatography (method described in Appendix A) Resin Separation Will remove >95% of fully exhausted resin (below mid-lateral...and retain >95% of the unexhausted resin (above the mid-lateral). 1) Mass balance on ClO4- during each cycle using ion chromatography and resin...Application Note 134, “Determination of Low Concentrations of Perchlorate in Drinking and Ground Waters Using Ion Chromatography ” and Product Note
Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur
2013-12-01
Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high level of castability (98.5% on average) was achieved overall. The frequency of casting failures as a function of alloy type and casting method was determined. Failure was defined as a castability index score of <100%. Three of 28 possible comparisons between alloy and casting combinations were statistically significant. The results suggested that casting technique affects the castability index of alloys. Radiographic analysis detected large porosities in regions near the edge of the castability pattern and infrequently adjacent to noncast segments. All castings acquired traces of elements found in the casting crucibles. The grain size for each dental casting alloy was generally finer for specimens produced by the induction/vacuum-pressure method. The difference was substantial for JO and L. This study demonstrated a relation between casting techniques and some physical properties of metal ceramic casting alloys. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Cork-resin ablative insulation for complex surfaces and method for applying the same
NASA Technical Reports Server (NTRS)
Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)
1980-01-01
A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubouchi, Masatoshi; Hojo, Hidemitsu
The thermal shock resistance of epoxy resin specimens toughened with carboxy-terminated poly(butadiene-acrylonitrile) (CTBN) and poly-glycol were tested using a new notched disk-type specimen. The new thermal shock testing method consists of quenching a notched disk-type specimen and applying a theoretical analysis to the test results to determine crack propagation conditions. For both toughened epoxy resins, this test method evaluated improvements in thermal shock resistance. The thermal shock resistance of epoxy resin toughened with CTBN exhibited a maximum at a 35 parts per hundred resin content of CTBN. The epoxy resin toughened with polyglycol exhibited improved thermal shock resistance with increasingmore » glycol content. 7 refs., 14 figs., 1 tab.« less
[Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].
Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an
2012-07-01
To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P < 0.05). Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.
Liu, Zhen; Wang, Jieyin; Gao, Wenyuan; Man, Shuli; Wang, Ying; Liu, Changxiao
2013-07-01
Saponins are active compounds in natural products. Many researchers have tried to find the method for knowing their concentration in herbs. Some methods, such as solid-liquid extraction and solvent extraction, have been developed. However, the extraction methods of the steroidal saponins from Paris polyphylla Smith var. yunnanensis (Liliaceae) are not fully researched. To establish a simple extraction method for the separation of steroidal saponins from the rhizomes of P. polyphylla Smith var. yunnanensis. Macroporous adsorption resins were used for the separation of steroidal saponins. To select the most suitable resins, seven kinds of macroporous resins were selected in this study. The static adsorption and desorption tests on macroporous resins were determined. Also, we optimized the temperature and the ethanol concentration in the extraction method by the contents of five kinds of saponins. Then, we compared the extraction method with two other methods. D101 resin demonstrated the best adsorption and desorption properties for steroidal saponins. Its adsorption data fits best to the Freundlich adsorption model. The contents of steroidal saponins in the product were 4.83-fold increased with recovery yields of 85.47%. The process achieved simple and effective enrichment and separation for steroidal saponins. The method provides a scientific basis for large-scale preparation of steroidal saponins from the Rhizoma Paridis and other plants.
NASA Astrophysics Data System (ADS)
Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell
2016-04-01
Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14N-/12C14N- ratio. We identified various states of decomposition within a same sample, associated with a high heterogeneity of δ13C values of plant residues. We also recognized various labelled microorganisms, mainly bacteria and fungi, underlining their participation in residues decomposition. δ13C values were higher in casts than soil aggregates and decreased between 8 and 54 weeks for both samples. Herrmann, A.M., Ritz, K., Nunan, N., Clode, P.L., Pett-Ridge, J., Kilburn, M.R., Murphy, D.V., O'Donnell, A.G., Stockdale, E.A., 2007. Nano-scale secondary ion mass spectrometry - A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry. 39, 1835-1850. Vidal, A., Remusat, L., Watteau, F., Derenne, S., Quenea K., 2016. Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry. Soil Biology and Biochemistry. Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., Kögel-Knabner, I., 2014. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications 5.
Chemical analysis of monomers in epoxy resins based on bisphenols F and A.
Pontén, A; Zimerson, E; Sörensen, O; Bruze, M
2004-05-01
Diglycidyl ether of bisphenol A (DGEBA) is the monomer and most important contact allergen in epoxy resin(s) based on bisphenol A (DGEBA-R). Both thin-layer chromatography (TLC) and high-pressure liquid chromatography (HPLC) methods are available for the analysis of products containing DGEBA-R. With respect to detection and quantification, epoxy resins of the bisphenol F-type, i.e. epoxy resins containing the isomers of diglycidyl ethers of bisphenol F (DGEBF), are not as well investigated as DGEBA-R. The isomers of DGEBF are p,p'-DGEBF, o,p'-DGEBF and o,o'-DGEBF. Both p,p'-DGEBF and o,p'-DGEBF have been shown to be contact allergens in humans, and all 3 isomers are sensitizers in the guinea pig maximization test. We aimed (i). to develop HPLC methods for separation and purification of the individual DGEBF isomers, (ii). to detect and quantify the DGEBF isomers in epoxy resins of the bisphenol F-type and (iii). to evaluate and develop the TLC as a method for the detection of the DGEBF monomers. We found the total content of the DGEBF isomers in the investigated epoxy resins of the bisphenol F-type to vary from 17.0 to 81.7% w/w. Some of them also contained 0.1-2.4% w/w DGEBA. The HPLC method showed a sensitivity that was 2000-20 000x higher than that obtained with the TLC method for the DGEBF monomers. We concluded that the range of the DGEBF isomer content in epoxy resins of the bisphenol F-type is approximately the same as the monomer content in liquid compared to solid DGEBA-R. The relevance of contact allergy to DGEBA-R can remain unrecognized if the suspected product is an epoxy resin of the bisphenol F-type, which is analysed with the TLC method.
Rowe, Philip
2013-01-01
Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164
Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan
2013-01-01
Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.
Compression failure mechanisms of composite structures
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Sohi, M.; Moon, S.
1986-01-01
An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.
Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; ...
2016-01-11
Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N 2 462, CO 2/N 2 97, and O 2/N 2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N 2 156, CO 2/N 2 88, and O 2/N 2 7.7.« less
Respiratory morbidity of pattern and model makers exposed to wood, plastic, and metal products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robins, T.G.; Haboubi, G.; Demers, R.Y.
Pattern and model makers are skilled tradespersons who may be exposed to hardwoods, softwoods, phenol-formaldehyde resin-impregnated woods, epoxy and polyester/styrene resin systems, and welding and metal-casting fumes. The relationship of respiratory symptoms (wheezing, chronic bronchitis, dyspnea) and pulmonary function (FVC% predicted, FEV1% predicted, FEV1/FVC% predicted) with interview-derived cumulative exposure estimates to specific workplace agents and to all work with wood, plastic, or metal products was investigated in 751 pattern and model makers in southeast Michigan. In stratified analyses and age- and smoking-adjusted linear and logistic regression models, measures of cumulative wood exposures were associated with decrements in pulmonary function andmore » dyspnea, but not with other symptoms. In similar analyses, measures of cumulative plastic exposures were associated with wheezing, chronic bronchitis, and dyspnea, but not with decrements in pulmonary function. Prior studies of exposure levels among pattern and model makers and of respiratory health effects of specific agents among other occupational groups support the plausibility of wood-related effects more strongly than that of plastic-related effects.« less
ERYTHROPOIETIC FACTOR PURIFICATION
White, W.F.; Schlueter, R.J.
1962-05-01
A method is given for purifying and concentrating the blood plasma erythropoietic factor. Anemic sheep plasma is contacted three times successively with ion exchange resins: an anion exchange resin, a cation exchange resin at a pH of about 5, and a cation exchange resin at a pH of about 6. (AEC)
Approaches to Design and Evaluation of Sandwich Composites
NASA Technical Reports Server (NTRS)
Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)
2001-01-01
This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.
Salvaged castings and methods of salvaging castings with defective cast cooling bumps
Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles
2002-01-01
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.
High Throughput Method of Extracting and Counting Strontium-90 in Urine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, I.; Kaminski, M.; Mertz, C.
2016-03-01
A method has been developed for the rapid extraction of Sr-90 from the urine of individuals exposed to radiation in a terrorist attack. The method employs two chromatographic ion-exchange materials: Diphonix resin and Sr resin, both of which are commercially available. The Diphonix resin reduces the alkali ion concentrations below 10 mM, and the Sr resin concentrates and decontaminates strontium-90. Experimental and calculational data are given for a variety of test conditions. On the basis of these results, a flowsheet has been developed for the rapid concentration and extraction of Sr-90 from human urine samples for subsequent beta-counting.
New methods and materials for molding and casting ice formations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Richter, G. Paul
1987-01-01
This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.
Method of purifying neutral organophosphorus extractants
Horwitz, E. Philip; Gatrone, Ralph C.; Chiarizia, Renato
1988-01-01
A method for removing acidic contaminants from neutral mono and bifunctional organophosphorous extractants by contacting the extractant with a macroporous cation exchange resin in the H.sup.+ state followed by contact with a macroporous anion exchange resin in the OH.sup.- state, whereupon the resins take up the acidic contaminants from the extractant, purifying the extractant and improving its extraction capability.
Gagani, Abedin I.; Echtermeyer, Andreas T.
2018-01-01
Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described. PMID:29641451
Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T
2018-04-11
Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.
Oliveira, Ilione Kruschewsky Costa Sousa; Arsati, Ynara Bosco de Oliveira Lima; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes
2012-01-01
This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP) cement or resin cement (RC), the specimens were divided into 3 groups (n = 10) according to the waiting time for core preparation: no preparation (control), 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min) until failure. Two-way ANOVA (time versus cement) and the Tukey tests (P < 0.05) showed significantly higher (P < 0.05) tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation.
[Microleakage of various cementing agents for casting ceramics].
Weng, Wei-min; Zhang, Xiu-yin; Zhang, Fu-qiang
2009-12-01
To observe and compare the microleakage of different composite resin cement systems for IPS Empress 2 ceramics base. Sixteen healthy non-carious human molars were selected in the study. Class V ceramic inlay was prepared by IPS Empress 2 ceramics. The samples were divided into two groups, eight in each group. RelyX Unicem and Variolink 2 were used for bonding respectively in 2 groups. All specimens were stored in water at 37 degrees centigrade for 24 hours, then the specimens were subjected to 500 thermocycles ranging from 5 degrees centigrade to 55 degrees centigrade. Eight specimens in each group were evaluated by dye penetration. The microleakage was examined with light microscope. Statistical analysis was performed with SPSS11.0 software package. Enamel margins exhibited lower leakage than dentin margins by using two cementing agents for casting ceramics (P<0.05). The depth of dye for Variolink 2 and RelyX Unicem at enamel and dentin was not significantly different (P>0.05). The microleakage of Variolink 2 and RelyX Unicem for IPS Empress 2 ceramics base has similar sealing abilities.
Solid Insulated Switchgear and Investigation of its Mechanical and Electrical Reliability
NASA Astrophysics Data System (ADS)
Sato, Junichi; Kinoshita, Susumu; Sakaguchi, Osamu; Miyagawa, Masaru; Shimizu, Toshio; Homma, Mitsutaka
SF6 gas is applied widely to medium voltage switchgear because of its high insulation reliability and down-sizing ability. However, SF6 gas was placed on the list of greenhouse gases under the Kyoto Protocol in 1997. Since then, the investigation and development concerning SF6-free or less has carried out activity. Therefore, we paid attention to the solid material which has higher dielectric strength than SF6, and we have newly developed solid insulated switchgear (SIS) achieved by molding all main circuit. A new epoxy casting material is applied, which contains a great deal of spherical silica and a small amount of rubber particles. This new material has the high mechanical strength, high thermal resistance, high toughness, and also high dielectric strength because of directly molding the vacuum bottle, down-sizing and reliability. This paper describes about the technology of a new epoxy casting material which achieves the SIS. In addition, the mechanical and electrical reliability test of SIS applied a new epoxy resin are carried out, and effectiveness of the development material and the mechanical and electrical reliability of SIS are verified.
Hall, Stephen A; Howlin, Brendan J; Hamerton, Ian; Baidak, Alex; Billaud, Claude; Ward, Steven
2012-01-01
The construction of molecular models of crosslinked polymers is an area of some difficulty and considerable interest. We report here a new method of constructing these models and validate the method by modelling three epoxy systems based on the epoxy monomers bisphenol F diglycidyl ether (BFDGE) and triglycidyl-p-amino phenol (TGAP) with the curing agent diamino diphenyl sulphone (DDS). The main emphasis of the work concerns the improvement of the techniques for the molecular simulation of these epoxies and specific attention is paid towards model construction techniques, including automated model building and prediction of glass transition temperatures (T(g)). Typical models comprise some 4200-4600 atoms (ca. 120-130 monomers). In a parallel empirical study, these systems have been cast, cured and analysed by dynamic mechanical thermal analysis (DMTA) to measure T(g). Results for the three epoxy systems yield good agreement with experimental T(g) ranges of 200-220°C, 270-285°C and 285-290°C with corresponding simulated ranges of 210-230°C, 250-300°C, and 250-300°C respectively.
Hall, Stephen A.; Howlin, Brendan J; Hamerton, Ian; Baidak, Alex; Billaud, Claude; Ward, Steven
2012-01-01
The construction of molecular models of crosslinked polymers is an area of some difficulty and considerable interest. We report here a new method of constructing these models and validate the method by modelling three epoxy systems based on the epoxy monomers bisphenol F diglycidyl ether (BFDGE) and triglycidyl-p-amino phenol (TGAP) with the curing agent diamino diphenyl sulphone (DDS). The main emphasis of the work concerns the improvement of the techniques for the molecular simulation of these epoxies and specific attention is paid towards model construction techniques, including automated model building and prediction of glass transition temperatures (Tg). Typical models comprise some 4200–4600 atoms (ca. 120–130 monomers). In a parallel empirical study, these systems have been cast, cured and analysed by dynamic mechanical thermal analysis (DMTA) to measure Tg. Results for the three epoxy systems yield good agreement with experimental Tg ranges of 200–220°C, 270–285°C and 285–290°C with corresponding simulated ranges of 210–230°C, 250–300°C, and 250–300°C respectively. PMID:22916182
21 CFR 177.1585 - Polyestercarbonate resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... solution intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a...
21 CFR 177.1585 - Polyestercarbonate resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... solution intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a...
21 CFR 177.1585 - Polyestercarbonate resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a Single...
21 CFR 177.1585 - Polyestercarbonate resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... solution intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a...
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.
1991-01-01
A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.
Transmutation Fuel Fabrication-Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney; Grover, Blair Kenneth
ABSTRACT Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscalmore » year 2016.« less
Rough case-based reasoning system for continues casting
NASA Astrophysics Data System (ADS)
Su, Wenbin; Lei, Zhufeng
2018-04-01
The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.
Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing
2015-01-20
The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments.
Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing
2015-01-01
The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments. PMID:25608656
Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F
2016-07-01
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Resin purification from Dragons Blood by using sub critical solvent extraction method
NASA Astrophysics Data System (ADS)
Saifuddin; Nahar
2018-04-01
Jernang resin (dragon blood) is the world's most expensive sap. The resin obtained from jernang that grows only on the islands of Sumatra and Borneo. Jernang resin is in demand by the State of China, Hong Kong, and Singapore since they contain compounds that have the potential dracohordin as a medicinal ingredient in the biological and pharmacological activity such as antimicrobial, antiviral, antitumor and cytotoxic activity. The resin extracting process has conventionally been done by drizzly with maceration method as one way of processing jernang, which is done by people in Bireuen, Aceh. However, there are still significant obstacles, namely the quality of the yield that obtained lower than the jernang resin. The technological innovation carried out by forceful extraction process maceration by using methanol produced a yield that is higher than the extraction process maceration method carried out in Bireuen. Nevertheless, the use of methanol as a solvent would raise the production costs due to the price, which is relatively more expensive and non-environmentally friendly. To overcome the problem, this research proposed a process, which is known as subcritical solvent method. This process is cheap, and also abundant and environmentally friendly. The results show that the quality of jernang resins is better than the one that obtained by the processing group in Bireuen. The quality of the obtained jernang by maceration method is a class-A quality based on the quality specification requirements of jernang (SNI 1671: 2010) that has resin (b/b) 73%, water (w/w) of 6.8%, ash (w/b) 7%, impurity (w/w) 32%, the melting point of 88°C and red colours. While the two-stage treatment obtained a class between class-A and super quality, with the resin (b/b) 0.86%, water (w/w) of 6.5%, ash (w/w) of 2.8%, levels of impurities (w/w) of 9%, the melting point of 88 °C and dark-red colours.
Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.
Tsumita, M; Kokubo, Y; Kano, T
2012-09-01
The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.
Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom
2017-01-01
Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776
Rehabilitation of a missing ear with an implant retained auricular prosthesis
Guttal, Satyabodh Sheshraj; Shanbhag, Shruti; Kulkarni, Sudhindra S.; Thakur, Srinath L.
2015-01-01
Burns can leave a patient with a severely debilitating disability even after treatment. The objectives of burn rehabilitation are to minimize the adverse effects caused by the injury while rehabilitating the patient's physical and psychological well-being, maximizing social integration. Long-term success of maxillofacial prostheses mainly depends on the retention. Extra oral implant retained prostheses have proved to be a predictable treatment option for maxillofacial rehabilitation. Replacement of a severely deformed external ear with burned tissues may be satisfactorily accomplished by a cosmetic prosthesis anchored by implants integrated in the skull. The use of such implants is now a well-recognized method for creating a stable result in maxillofacial rehabilitation. This case report describes a safe, simple and economical method for the rehabilitation of a patient with missing right auricle using an implant supported silicone prosthesis. The implant was placed in the mastoid region of the temporal bone. Reconstruction of the ear was done with auricular silicone prosthesis, retained using magnets incorporated in an autopolymerizing resin shim to decrease the weight of the prosthesis on a single implant. This method eliminates the need of tedious laboratory procedures and exact casting and fitting requirements of a metal substructure while minimizing the overall weight and cost of the prosthesis while maintaining adequate support, esthetics and retention of the prosthesis. PMID:26929490
Casting fine grained, fully dense, strong inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.
2015-11-24
Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.
Kim, Sumin; Kim, Jin-A; An, Jae-Yoon; Kim, Hyun-Joong; Kim, Shin Do; Park, Jin Chul
2007-10-01
Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was
Resin impregnation of cellulose nanofibril films facilitated by water swelling
Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu
2013-01-01
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying...
Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan
2013-07-01
Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order tomore » prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.« less
Pazzaglia, Ugo E; Congiu, Terenzio
2013-02-01
A casting technique with methyl-methacrylate (MMA) was applied to the study of the osteon lacunar-canalicular network of human and rabbit cortical bone. The MMA monomer infiltration inside the vascular canals and from these into the lacunar-canalicular system was driven by capillarity, helped by evaporation and the resulting negative pressure in a system of small pipes. There was uniform, centrifugal penetration of the resin inside some osteons, but this was limited to a depth of four to five layers of lacunae. Moreover, not all of the osteon population was infiltrated. This failure can be the result of one of two factors: the incomplete removal of organic debris from the canal and canalicular systems, and lack of drainage at the osteon external border. These data suggest that each secondary osteon is a closed system with a peripheral barrier (represented by the reversal line). As the resin advances into the osteon, the air contained inside the canalicula is compressed and its pressure increases until infiltration is stopped. The casts gave a reliable visualization of the lacunar shape, position and connections between the lacunae without the need for manipulations such as cutting or sawing. Two systems of canalicula could be distinguished, the equatorial, which connected the lacunae (therefore the osteocytes) lying on the same concentric level, and the radial, which established connections between different levels. The equatorial canalicula radiated from the lacunar border forming ramifications on a planar surface around the lacuna, whereas the radial canalicula had a predominantly straight direction perpendicular to the equatorial plane. The mean length of the radial canalicula was 40.12 ± 10.26 μm in rabbits and 38.4 ± 7.35 μm in human osteons; their mean diameter was 174.4 ± 71.12 nm and 195.7 ± 79.58 nm, respectively. The mean equatorial canalicula diameter was 237 ± 66.04 nm in rabbit and 249.7 ± 73.78 nm in human bones, both significantly larger (P < 0.001) than the radial. There were no significant differences between the two species. The lacunar surface measured on the equatorial plane was higher in rabbit than in man, but the difference was not statistically significant. The cast of the lacunar-canalicular network obtained with the reported technique allows a direct, 3-D representation of the system architecture and illustrates how the connections between osteocytes are organized. The comparison with models derived by the assumption of the role of hydraulic conductance and other mechanistic functions provides descriptive, morphological data to the ongoing discussion on the Haversian system biology. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.
Hanselman, Travis A; Graetz, Donald A; Obreza, Thomas A
2004-01-01
In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments.
NASA Technical Reports Server (NTRS)
Rheineck, A. E.; Heskin, R. A.; Hill, L. W.
1972-01-01
The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.
Dier, Tobias K F; Fleckenstein, Marco; Militz, Holger; Volmer, Dietrich A
2017-05-01
Chemical degradation is an efficient method to obtain bio-oils and other compounds from lignin. Lignin bio-oils are potential substitutes for the phenol component of phenol formaldehyde (PF) resins. Here, we developed an analytical method based on high resolution mass spectrometry that provided structural information for the synthesized lignin-derived resins and supported the prediction of their properties. Different model resins based on typical lignin degradation products were analyzed by electrospray ionization in negative ionization mode. Utilizing enhanced mass defect filter techniques provided detailed structural information of the lignin-based model resins and readily complemented the analytical data from differential scanning calorimetry and thermogravimetric analysis. Relative reactivity and chemical diversity of the phenol substitutes were significant determinants of the outcome of the PF resin synthesis and thus controlled the areas of application of the resulting polymers. Graphical abstract ᅟ.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Upadhyaya, Viram; Bhargava, Akshay; Parkash, Hari; Chittaranjan, B; Kumar, Vivek
2016-01-01
Different postdesigns and materials are available; however, no consensus exists regarding superiority for stress distribution. The aim of this study was to evaluate the effect of design and material of post with or without ferrule on stress distribution using finite element analysis. A total of 12 three-dimensional (3D) axisymmetric models of postretained central incisors were made: Six with ferrule design and six without it. Three of these six models had tapered posts, and three had parallel posts. The materials tested were titanium post with a composite resin core, nickel chromium cast post and core, and fiber reinforced composite (FRC) post with a composite resin core. The stress analysis was done using ANSYS software. The load of 100 N at an angle of 45 was applied 2 mm cervical to incisal edge on the palatal surface and results were analyzed using 3D von Mises criteria. The highest amount of stress was in the cervical region. Overall, the stress in the tapered postsystem was more than the parallel one. FRC post and composite resin core recorded minimal stresses within the post but the stresses transmitted to cervical dentin were more as compared to other systems. Minimal stresses in cervical dentine were observed where the remaining coronal dentin was strengthen by ferrule. A rigid material with high modulus of elasticity for post and core system creates most uniform stress distribution pattern. Ferrule provides uniform distribution of stresses and decreases the cervical stresses.
Ramseyer, Simon T; Helbling, Christoph; Lussi, Adrian
2015-06-01
In the present case series, the authors report on seven cases of erosively worn dentitions (98 posterior teeth) which were treated with direct resin composite. In all cases, both arches were restored by using the so-called stamp technique. All patients were treated with standardized materials and protocols. Prior to treatment, a waxup was made on die-cast models to build up the loss of occlusion as well as ensure the optimal future anatomy and function of the eroded teeth to be restored. During treatment, teeth were restored by using templates of silicone (ie, two "stamps," one on the vestibular, one on the oral aspect of each tooth), which were filled with resin composite in order to transfer the planned, future restoration (ie, in the shape of the waxup) from the extra- to the intraoral situation. Baseline examinations were performed in all patients after treatment, and photographs as well as radiographs were taken. To evaluate the outcome, the modified United States Public Health Service criteria (USPHS) were used. The patients were re-assessed after a mean observation time of 40 months (40.8 ± 7.2 months). The overall outcome of the restorations was good, and almost exclusively "Alpha" scores were given. Only the marginal integrity and the anatomical form received a "Charlie" score (10.2%) in two cases. Direct resin composite restorations made with the stamp technique are a valuable treatment option for restoring erosively worn dentitions.
Thermoset polymers via ring opening metathesis polymerization of functionalized oils
Larock, Richard C; Henna, Phillip H; Kessier, Michael R
2012-11-27
The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.
Bitar, KM; Ferdhany, ME; Saw, A
2016-01-01
Introduction: Hip spica casting is an important component of treatment for developmental dysplasia of the hip (DDH) and popular treatment method for femur fractures in children. Breakage at the hip region is a relatively common problem of this cast. We have developed a three-slab technique of hip spica application using fibreglass as the cast material. The purpose of this review was to evaluate the physical durability of the spica cast and skin complications with its use. Methodology: A retrospective review of children with various conditions requiring hip spica immobilisation which was applied using our method. Study duration was from 1st of January 2014 until 31st December 2015. Our main outcomes were cast breakage and skin complications. For children with hip instability, the first cast would be changed after one month, and the second cast about two months later. Results: Twenty-one children were included, with an average age of 2.2 years. The most common indication for spica immobilisation was developmental dysplasia of the hip. One child had skin irritation after spica application. No spica breakage was noted. Conclusion: This study showed that the three-slab method of hip spica cast application using fibreglass material was durable and safe with low risk of skin complications. PMID:28553442
Analysis of curing process and thermal properties of phenol-urea-formaldehyde cocondensed resins
Bunchiro Tomita; Masahiko Ohyama; Atsushi Itoh; Kiyoto Doi; Chung-Yun Hse
1994-01-01
The curing processes of resols, urea-formaldehyde (UF) resins, their mechanical blends, and phenol-urea cocondensed resins, as well as the reaction of 2,4,6-trimethylolphenol with urea were investiiated with the torsional braid analysis method. The thermal stabilities of these resins after curing also were compared. The results were as follows: (1) In the curing...
Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu
2015-08-01
In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.
Freeze Tape Cast Thick Mo Doped Li 4Ti 5O 12 Electrodes for Lithium-Ion Batteries
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit; ...
2017-08-30
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
Use of metal conditioner on reinforcement wires to improve denture repair strengths.
Shimizu, Hiroshi; Mori, Nobuaki; Takahashi, Yutaka
2008-03-01
The purpose of this study was to evaluate the transverse strength of denture base resin repaired with autopolymerizing resin and metal wire using a metal conditioner, along with the synergistic effect of a surface preparation for denture base resin. It was found that the use of Co-Cr-Ni wires air abraded with 50 microm alumina, followed by treatment with a metal conditioner and dichloromethane for denture base resin, was the most effective method for repairing fractured denture base resin.
Resin rodlets in shale and coal (Lower Cretaceous), Baltimore Canyon Trough
Lyons, P.C.; Hatcher, P.G.; Minkin, J.A.; Thompson, C.L.; Larson, R.R.; Brown, Z.A.; Pheifer, R.N.
1984-01-01
Rodlets, occurring in shale and coal (uppermost Berriasian to middle Aptian, Lower Cretaceous), were identified from drill cuttings taken from depths between 9330 ft (2844 m) and 11, 460 ft (3493 m) in the Texaco et al., Federal Block 598, No. 2 well, in the Baltimore Canyon Trough. Under the binocular microscope, most of the rodlets appear black, but a few are reddish brown, or brownish and translucent on thin edges. They range in diameter from about 0.4 to 1.7 mm and are commonly flattened. The rodlets break with a conchoidal fracture, and some show an apparent cellular cast on their longitudinal surfaces. When polished and viewed in reflected light, the rodlets appear dark gray and have an average random reflectance of less than 0.1% whereas mean maximum reflectances are 0.48-0.55% for vitrinite in the associated shale and coal. These vitrinite reflectances indicate either subbituminous A or high-volatile C bituminous coal. The rodlets fluoresce dull gray yellow to dull yellow. The scanning electron microscope (SEM) and light microscope reveal the presence of swirl-like features in the rodlet interiors. Minerals associated with the rodlets occur as sand-size grains attached to the outer surface, as finely disseminated interior grains, and as fracture fillings. Electron microprobe and SEM-energy-dispersive X-ray (EDX) anlayses indicate that the minerals are dominantly clays (probably illite and chlorite) and iron disulfide; calcium carbonate, silicon dioxide, potassium aluminum silicate (feldspar), titanium dioxide, zinc sulfide, and iron sulfate minerals have been also identified. The rodlets were analyzed directly for C, H, N, O, and total S and are interpreted as true resins on the basis of C and H contents that range from 75.6 to 80.3 and from 7.4 to 8.7 wt. % (dry, ash-free basis), respectively. Elemental and infrared data support a composition similar to that of resinite from bituminous coal. Elements determined to be organically associated in the rodlets include S (0.2-0.5 wt.%), Cl (0.03-0.1 wt.%), and Si (0.05-0.08 wt.%). The ash content of the resin rodlets ranges from 4 to 24 wt.% and averages 12 wt.%. Total sulfur contents range from 1.7 to 3.6 wt.%. Resins of fossil plants are known to have little or no sulfur and ash; therefore, these data and the presence of minerals in fractures indicate that most of the sulfur and mineral matter were introduced into the resin partly or wholly after the time of brittle fracture of the resin. The probable source of the resin rodlets is fossil pinaceous conifer cones, which are known to have resin canals as much as 2400 ??m in diameter. ?? 1984.
Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha
2011-01-01
The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.
Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption
NASA Astrophysics Data System (ADS)
Konovalov, Konstantin; Sachkov, Victor
2017-11-01
In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.
Method and mold for casting thin metal objects
Pehrson, Brandon P; Moore, Alan F
2014-04-29
Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.
Method for casting thin metal objects
Pehrson, Brandon P; Moore, Alan F
2015-04-14
Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.
Resin transfer molding of textile preforms for aircraft structural applications
NASA Technical Reports Server (NTRS)
Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.
1992-01-01
The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.
A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides
Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.
2014-01-01
Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422
Synthesis and characterizations of melamine-based epoxy resins.
Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele
2013-09-05
A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.
Synthesis and Characterizations of Melamine-Based Epoxy Resins
Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele
2013-01-01
A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials. PMID:24013372
NASA Astrophysics Data System (ADS)
Khalil, Tarek E.; Elbadawy, Hemmat A.; El-Dissouky, Ali
2018-02-01
A new chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) has been synthesized by coupling Amberlite XAD-16 with (2,2‧-ethylenedithio) diethanol using pyridine/CH2Cl2 mixture as a solvent. The chelating resin and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes have been synthesized and characterized by EDS, SEM, XPS, elemental analysis, spectral (IR, UV/Vis, EPR). The thermal analysis of the resin and its metallopolymer complexes indicated an endothermic spontaneous sorption mechanism with the liberation of water of hydration of the metal ions and that adsorbed by the free resin. At the solid liquid interface, the degrees of freedom increased during the sorption of the metal ions onto the resin. The surface area of polymer support and its metallopolymer complexes are estimated by (BJH) method. The batch equilibrium method was used for studying the metal sorption and selectivity at different pH values and different contact times at room temperature. ICP-AES was used to estimate the metal capacity of the resin for sorption of Cu(II), Ni(II), Co(II) and Fe(III) from aqueous solutions utilizing the batch equilibrium method. The sorption tendency of the metal ions by the resin was found to be: Cu(II) > Fe(III) > Co(II) > Ni(II). Adsorption kinetics was found to be fit the pseudo-second order model.
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
Kim, Young Kyung; Park, Hyo-Sang; Kim, Kyo-Han; Kwon, Tae-Yub
2015-10-01
To test the null hypothesis that neither the flexural properties of orthodontic adhesive resins nor the enamel pre-treatment methods would affect metal bracket debonding behaviours, including enamel fracture. A dimethacrylate-based resin (Transbond XT, TX) and two methyl methacrylate (MMA)-based resins (Super-Bond C&B, SB; an experimental light-cured resin, EXP) were tested. Flexural strength and flexural modulus for each resin were measured by a three-point-bending test. Metal brackets were bonded to human enamel pretreated with total-etch (TE) or self-etch adhesive using one of the three resins (a total of six groups, n = 15). After 24 hours of storage in water at 37°C, a shear bond strength (SBS) test was performed using the wire loop method. After debonding, remaining resin on the enamel surfaces and occurrence of enamel fracture were assessed. Statistical significance was set at P < 0.05. The two MMA resins exhibited substantially lower flexural strength and modulus values than the TX resin. The mean SBS values of all groups (10.15-11.09MPa) were statistically equivalent to one another (P > 0.05), except for the TE-TX group (13.51MPa, P < 0.05). The two EXP groups showed less resin remnant. Only in the two TX groups were enamel fractures observed (three cases for each group). The results were drawn only from ex vivo experiments. The hypothesis is rejected. This study suggests that a more flexible MMA resin is favourable for avoiding enamel fracture during metal bracket debonding. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.A.; Smith, C.H.
A carboxyl-terminated butadiene/acrylonitrile (CTBN)/epoxy resin adduct, used to encapsulate electronic devices, was studied to improve its quality and reliability. The average physical and mechanical properties of the amine-cured product were obtained by testing 16 batches of adduct prepared from 13 separate lots of CTBN. It was found that by using a CTBN with a higher acrylonitrile content (or one in which the chemical structure includes carboxyl groups in the chain backbone, in addition to end termination), a clear, soluble liquid adduct that does not separate in storage or transit could be prepared. These materials also produced clear epoxy castings andmore » filled potting compounds with improved impact, flexural, compressive, and tensile strengths.« less
Vitrification of ion exchange resins
Cicero-Herman, Connie A.; Workman, Rhonda Jackson
2001-01-01
The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.
Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Looney, Stephen; Rueggeberg, Frederick A
2009-02-01
The ability of a resin cement to bond to a restorative alloy is critical for maximal crown retention to nonideal preparations. Surface treatment and metal type may have an important role in optimizing resin-to-metal strength. The purpose of this study was to examine the effect of surface pretreatment on the tensile strength of base and noble metals bonded using a conventional resin cement. Cylindrical plastic rods (9.5 mm in diameter), cast in base (Rexillium NBF) or noble metal (IPS d.SIGN 53), were divided into rods 10 mm in length (n=10-12). Specimens were heated in a porcelain furnace to create an oxide layer. Test specimens were further subjected to airborne-particle abrasion (50-microm Al(2)O(3) particles) alone or with the application of a metal primer (Alloy Primer). Similarly treated rod ends were joined using resin cement (RelyX ARC), thermocycled (x500, 5 degrees -55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Debond strength and failure site were recorded. Rank-based ANOVA for unbalanced designs was used to test for significant interaction (alpha=.050). Each pair of treatments was compared separately for each metal (Bonferroni-adjusted significance level of .0083, overall error rate for comparisons, .05). The 2 metals were compared separately for each of the 3 treatments using an adjusted significance level of .017, maintaining an overall error rate of .05. A multinomial logit model was used to describe the effect of metal type and surface pretreatment on failure site location (alpha=.05). Interaction between metal type and surface pretreatment was significant for stress values (P=.019). Metal type did not significantly affect tensile bond strength for any of the compared surface pretreatments. Metal primer significantly improved tensile bond strength for each metal type. Most failures tended to occur as either adhesive or mixed in nature. Metal primer application significantly enhanced tensile bond strength to base and noble metal. No significant differences in tensile strength were found between alloys. Differences in failure site incidence were found to be related to metal type and surface pretreatment.
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2018-03-01
This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-03-30
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.
Method for providing a low density high strength polyurethane foam
Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.
2013-06-18
Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.
NASA Technical Reports Server (NTRS)
Anderson, R. A.; Arnold, D. B.; Johnson, G. A.
1979-01-01
A NASA-funded program is described which aims to develop a resin system for use in the construction of lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke and gas emission, and toxicity (FS&T) characteristics superior to the existing epoxy resin. Candidate resins studied were phenolic, polyimide, and bismaleimide. Based on the results of a series of FS&T as well as mechanical and aesthetic property tests, a phenolic resin was chosen as the superior material. Material and process specifications covering the phenolic resin based materials were prepared and a method of rating sandwich panel performance was developed.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, X.; Johnson, W.L.; Peker, A.
1998-08-25
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, Xianghong; Johnson, William L.; Peker, Atakan
1998-01-01
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.
Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts.
Delong, Ralph; Ko, Ching-Chang; Anderson, Gary C; Hodges, James S; Douglas, W H
2002-12-01
Quantitative measures of occlusal contacts are of paramount importance in the study of chewing dysfunction. A tool is needed to identify and quantify occlusal parameters without occlusal interference caused by the technique of analysis. This laboratory simulation study compared occlusal contacts constructed from 3-dimensional images of dental casts and interocclusal records with contacts found by use of conventional methods. Dental casts of 10 completely dentate adults were mounted in a semi-adjustable Denar articulator. Maximum intercuspal contacts were marked on the casts using red film. Intercuspal records made with an experimental vinyl polysiloxane impression material recorded maximum intercuspation. Three-dimensional virtual models of the casts and interocclusal records were made using custom software and an optical scanner. Contacts were calculated between virtual casts aligned manually (CM), aligned with interocclusal records scanned seated on the mandibular casts (C1) or scanned independently (C2), and directly from virtual interocclusal records (IR). Sensitivity and specificity calculations used the marked contacts as the standard. Contact parameters were compared between method pairs. Statistical comparisons used analysis of variance and the Tukey-Kramer post hoc test (P=<.05). Sensitivities (range 0.76-0.89) did not differ significantly among the 4 methods (P=.14); however, specificities (range 0.89-0.98) were significantly lower for IR (P=.0001). Contact parameters of methods CM, C1, and C2 differed significantly from those of method IR (P<.02). The ranking based on method pair comparisons was C2/C1 > CM/C1 = CM/C2 > C2/IR > CM/IR > C1/IR, where ">" means "closer than." Within the limits of this study, occlusal contacts calculated from aligned virtual casts accurately reproduce articulator contacts.
Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Kantamneni, Ramakrishna; McNamara, Paul M; Hogan, Josh; Wilson, Carol; Leahy, Martin
2016-01-01
Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source. This often results in the formation of marginal gaps, causing pain and damage to the restoration site. In this study, we demonstrate the capabilities of a correlation method applied using a multiple references optical coherence tomography (MR-OCT) architecture to monitor the curing of the resin. A MR-OCT system is used in this study to monitor the curing of the resin. The system operates at the center wavelength of 1310 nm with an A-scan rate of 1200 A-scans per second. The axial and lateral resolution of the system is ∼13 μm and ∼27 μm. The method to determine the intensity correlation between adjacent B-frames is based on the Pearson correlation coefficient for a region of interest. Calculating the correlation coefficient for multiple B-frames related to the first B-frame at regular spaced time points, shows for a noncured resin a reduction of the correlation coefficient over time due to Brownian motion. The time constant of the reduction of the correlation value is a measure for the progress of the polymerization during LED light irradiation of the resin. The proposed approach is potentially a low-cost, powerful and unique optical imaging modality for measuring the curing behavior of dental resin and other resins, coatings, and adhesives in medical and industrial applications. To demonstrate the proposed method to monitor the curing process, a light-activated resin composite from GRADIA DIRECT ANTERIOR (GC Corporation, Japan) is studied. The curing time of resin was measured and monitored as a function of depth. The correlation coefficient method is highly sensitive to Brownian motion. The process of curing results in a change in intensity as measured by the MR-OCT signal and hence can be monitored using this method. These results show that MR-OCT has the potential to measure the curing time and monitor the curing process as a function of depth. Moreover, MR-OCT as a product has potential to be compact, low-cost and to fit into a smartphone. Using such a device for monitoring the curing of the resin will be suitable for dentists in stationary and mobile clinical settings. © 2015 Wiley Periodicals, Inc.
Oliveira, Laís Rani Sales; Braga, Stella Sueli Lourenço; Bicalho, Aline Arêdes; Ribeiro, Maria Tereza Hordones; Price, Richard Bengt; Soares, Carlos José
2018-07-01
To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. The post-gel shrinkage of Z100 was higher than XTRA (P < 0.001). The amount of cusp deformation produced using Z100 was higher compared to XTRA, irrespective of the measurement method used (P < 0.001). The thinner lingual cusp always had a higher CD than the buccal cusp, irrespective of the measurement method (P < 0.001). A positive correlation (r = 0.78) was found between cusp deformation measured by micro-CT or by the strain-gauge method. After hygroscopic expansion of the resin composite, the cusp displacement recovered around 85% (P < 0.001). After restoration, Z100 produced more cracks than XTRA (P = 0.012). Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
...(vinyl fluoride) basic resins have an intrinsic viscosity of not less than 0.75 deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride... (ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers...
Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected by Honey Bees
Wilson, Michael B.; Spivak, Marla; Hegeman, Adrian D.; Rendahl, Aaron; Cohen, Jerry D.
2013-01-01
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees. PMID:24204850
NASA Astrophysics Data System (ADS)
Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin
2018-01-01
Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.
NASA Technical Reports Server (NTRS)
Harrison, E. S.
1973-01-01
This program consisted of two separate though related phases. The initial phase was directed toward improving the mechanical and adhesive properties of the very highly fluorinated-polyurethane resin system derived from the hydroxyl-terminated polyperfluoropropylene oxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate. Various new curing agents for this system were investigated, with the goal of providing a more thermally stable crosslink (cure) mechanism to provide wider applicability and fuller utilization of the outstanding oxygen resistance of the PFPO system. Complete resistance to liquid- and gaseous-oxygen impact at presures as high as 1035 N/sq cm were attained with the use of the PFPO resin castings. The second corollary phase was directed toward investigating the feasibility and optimization of the allophanate cured, urethane extended polymer derived from hydroxyl-terminated polyperfluoropropyleneoxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate, as the adhesive system for use in a weld-bond configuration for liquid oxygen tankage. The synthesis and application procedures of the adhesive system to insure liquid oxygen compatibility (under 10 kg-m loading), and the development of procedures and techniques to provide high quality weld-bonded joint configurations were studied.
Extrahepatic arteries of the human liver - anatomical variants and surgical relevancies.
Németh, Károly; Deshpande, Rahul; Máthé, Zoltán; Szuák, András; Kiss, Mátyás; Korom, Csaba; Nemeskéri, Ágnes; Kóbori, László
2015-10-01
The purpose of our study was to investigate the anatomical variations of the extrahepatic arterial structures of the liver with particular attention to rare variations and their potential impact on liver surgery. A total of 50 human abdominal organ complexes were used to prepare corrosion casts. A multicomponent resin mixture was injected into the abdominal aorta. The portal vein was injected with a different colored resin in 16 cases. Digestion of soft tissues was achieved using cc. KOH solution at 60-65 °C. Extrahepatic arterial variations were classified according to Michels. All specimens underwent 3D volumetric CT reconstruction. Normal anatomy was seen in 42% of cases, and variants were seen in the other 58%. No Michels type VI or X variations were present; however, in 18% of cases the extrahepatic arterial anatomy did not fit into Michels' classification. We report four new extrahepatic arterial variations. In contrast to the available data, normal anatomy was found much less frequently, whereas the prevalence of unclassified arterial variations was higher. We detected four previously unknown variations. Our data may contribute to the reduction of complications during surgical and radiological interventions in the upper abdomen. © 2015 Steunstichting ESOT.
Effect of ultrasonic tip designs on intraradicular post removal.
Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti
2014-11-01
To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-01-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
NASA Astrophysics Data System (ADS)
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-12-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin
2017-01-05
The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Blended polymer materials extractable with supercritical carbon dioxide
NASA Astrophysics Data System (ADS)
Cai, Mei
Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical, physical, thermal, and phase behavior of the blended polymers studied in this dissertation includes solubility in SCF CO2, the melt viscosity, the melting temperature depression, and phase equilibrium under SCF conditions. Several hypotheses are investigated to determine which mechanism plays the major role in the extraction. Finally a novel metal casting process is discussed with the materials developed in this study. This new method utilizes an adhesive or binder film composition for the purpose of building up a casting pattern of resin-bonded aggregate particles. The pattern is then encased in a conventional rigid shell mold that is not susceptible to degradation by SCF CO2. The pattern is then disintegrated within an unaffected mold by exposure to SCF CO 2. This is an efficient and low cost method of making patterns and molds, especially for the casting of a relatively low number of parts such as in prototype evaluations.
Sherrod, S.K.; Belnap, Jayne; Miller, M.E.
2003-01-01
For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.
Sherrod, S.K.; Belnap, J.; Miller, M.E.
2003-01-01
For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses
Pei, Zhipu; Ju, Dongying
2017-01-01
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
Pei, Zhipu; Ju, Dongying
2017-04-17
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, D.
Reillex™ HPQ resin was developed by Los Alamos Laboratory and Reilly Industries Inc. in an effort to increase safety and process efficiency during the recovery and purification of plutonium. Ionac™ A-641, another strong base macroporous anion exchange resin used in the nuclear industry, was known to undergo a runaway reaction in hot nitric acid solutions. Because of this, an extensive amount of thermal analyses testing on the Reillex™ HPQ resin in SRNL was performed in 1999-2001 prior to use. A report on the thermal stability qualification of the Reillex™ HPQ resin in 8M (35%) and 12M (53%) HNO 3 wasmore » reported in 2000. In 2001, the reactivity of Reillex™ HPQ resin in 14.4M (64%) HNO 3 was evaluated. In January of 2001, thermal stability scoping tests were performed on irradiated Reillex™ HPQ resin in 14.4M (64%) HNO 3 (as a worst case scenario) and the results sent to Fauske and Associates to calculate a rupture disk size for the HB-Line resin column. A technical report by Fauske and Associates was issued in February 2001 recommending a 2.0” vent line with a rupture disk set pressure of 60 psig. This calculation was based on ARSST thermal analyses scoping tests at SRNL in which 4 grams of dried resin and 6.0 grams of 64% nitric acid in a 10 gram test cell, produced a maximum pressure rate (dP/dt) of 720 psi/min (12 psi/sec) and a maximum temperature of 250 °C. In 2015, a new batch of Reillex™ HPQ resin was manufactured by Vertellus Industries. A test sample of the resin was sent to SRNL to perform acceptance and qualification thermal stability testing using the ARSST. During these tests, method development was performed to ensure that a representative resin to acid ratios were used while running the tests in the ARSST. Fauske and Associates recommended to either use a full test cell representative of the HB-Line column or a 10 gram sample in the test cell that was representative of the ratios of resin to nitric acid in the actual HB-Line column. An observation was made during method development testing that the 4 grams of resin to 6 grams of 64% acid ratio used in 2001 to determine the rupture disk size did not entirely wet the resin and was not representative of the actual HB-Line column. The results of this study raised questions as to whether the ratio of 4 grams of resin to 6 grams of 64% nitric acid recommended by Fauske and Associates in 2001 was the correct ratio.« less
CTEPP STANDARD OPERATING PROCEDURE FOR PRE-CLEANING FILTERS AND XAD-2 (SOP-5.10)
This SOP summarizes the method for pre-cleaning XAD-2 resin and quartz fiber filters. The procedure provides a cleaning method to help reduce potential background contamination in the resin and filters.
Method for epoxy foam production using a liquid anhydride
Celina, Mathias [Albuquerque, NM
2012-06-05
An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.
Methods for manufacturing geometric multi-crystalline cast materials
Stoddard, Nathan G
2013-11-26
Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.
Methods for manufacturing monocrystalline or near-monocrystalline cast materials
Stoddard, Nathan G
2014-04-29
Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.
Jaarda, M J; Lang, B R; Wang, R F; Edwards, C A
1993-04-01
Composite resins are routinely classified on the basis of filler particle size for purposes of research, clinical applications, and communications. The size and characterizations of filler particles have also been considered a significant factor in the rate of wear of composites. Making valid correlations between the filler particles within a composite and wear requires accuracy of filler particle size and characterization. This study was initiated to examine two methods that would (1) qualify the filler particle content of a composite resin and (2) quantify the number, size, and the area occupied by the filler particles in composite resins. Three composite resins, BIS-FIL I, Visio-Fil, and Ful-Fil, were selected as the materials to be examined, on the basis of their published composite classification type as fine particle. The findings demonstrated that scientific methods are available to examine qualitatively and measure quantitatively the composite resin filler particles in terms of their numbers, sizes, and area occupied by use of a scanning electron microscope and digital imaging. Significant differences in the filler particle numbers, sizes, and the area occupied were found for the three composite resins in this study that were classified as fine particle.
Method for rigless zone abandonment using internally catalyzed resin system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.C.
1980-02-19
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silic flour to control fluid loss.« less
Pereira-Sampaio, Marco A; Henry, Robert W; Favorito, Luciano A; Sampaio, Francisco J B
2012-06-01
To assess the intrarenal arteries injuries after cranial pole nephrectomy in a pig model to compare these findings with those in humans. Polyester resin was injected through the ureter and the renal artery to make three-dimensional casts of 61 pig kidneys. The cranial pole of the kidneys was sectioned at four different sites before the solidification of the resin, and the casts were examined for arterial damage. Section performed through the hilus (15 kidneys): The cranial division of the renal artery was sectioned in two (13.33%) cases, the ventral branch of the cranial division of the renal artery was sectioned in 13 (86.7%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 11 (73.34%) cases. Section at 0.5 cm cranial to the hilus (16 kidneys): The cranial division of the renal artery was sectioned in 1 (6.25%) case, the ventral branch of the cranial division of the renal artery was sectioned in 14 (87.5%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 13 (81.25%) cases. Section at 1.0 cm cranial to the hilus (15 kidneys): The ventral branch of the cranial division of the renal artery was sectioned in five (33.33%) cases, and the dorsal branch of the cranial division of the renal artery was injured in five (33.33%) cases. Section at 1.5 cm cranial to the hilus (15 kidneys): No lesions were found in the main arteries, only in the interlobular branches. As previously demonstrated in humans, sections at 1.0 cm or more cranially to the hilus in pigs also showed a significant decrease in damage to the major intrarenal arteries. Therefore, as regards arterial damage, the pig kidney is a useful model for partial nephrectomy in the cranial (upper) pole.
Phenoxy resins containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.
1984-01-01
As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.
Ozgul, Betul Memis; Orhan, Kaan; Oz, Firdevs Tulga
2015-09-01
We investigated inhibition of lesion progression in artificial enamel lesions. Lesions were created on primary and permanent anterior teeth (n = 10 each) and were divided randomly into two groups with two windows: Group 1 (window A: resin infiltration; window B: negative control) and Group 2 (window A: resin infiltration + fluoride varnish; window B: fluoride varnish). After pH cycling, micro-computed tomography was used to analyze progression of lesion depth and changes in mineral density. Resin infiltration and resin infiltration + fluoride varnish significantly inhibited progression of lesion depth in primary teeth (P < 0.05). Inhibition of lesion depth progression in permanent teeth was significantly greater after treatment with resin infiltration + fluoride varnish than in the negative control (P < 0.05). Change in mineral density was smaller in the resin infiltration and resin infiltration + fluoride varnish groups; however, the difference was not significant for either group (P > 0.05). Resin infiltration is a promising method of inhibiting progression of caries lesions.
Systems and methods for monitoring a solid-liquid interface
Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F
2013-06-11
Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
Cheng, Ting; Nebel, Oliver; Sossi, Paolo A.; Chen, Fukun
2014-01-01
A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction. PMID:26150946
Boyd, G.E.
1958-08-26
A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.
Cast erosion from the cleaning of debris after the use of a cast trimmer.
Hansen, Paul A; Beatty, Mark W
2017-02-01
Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different among the groups. Rinsing the cast under flowing tap water and brushing, or hand washing under flowing tap water, or using a soft camel hair brush in slurry water for 10 seconds had no noticeable effects on the quality of a 20-μm line, and all 3 methods resulted in a clean cast. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Timing of Getter Material Addition in Cementitious Wasteforms
NASA Astrophysics Data System (ADS)
Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.
2015-12-01
A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.
Shi, Fenghui; Dai, Zhishuang; Zhang, Baoyan
2010-07-01
Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (gamma(D)). Based on the Good-van Oss equation, the specific surface tension (gamma(SP)) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the gamma(D) and gamma(SP) of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (chi) between the resin and a series of probes, the solubility parameters (delta) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of delta of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 degrees C, respectively. The dispersive component (delta(D)) and the specific component (delta(SP)) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of delta(D) were higher than those of delta(SP) for the epoxy resin, and both of them decreased with the increase of temperature.
Carbon fiber content measurement in composite
NASA Astrophysics Data System (ADS)
Wang, Qiushi
Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and Malek methods. The activation energy (Ea) of the solid-state process is determined to be 202 kJ mol--1 in an oxidative atmosphere using Kissinger's method, which is 10-15 kJ mol--1 more than the results calculated in a nitrogen atmosphere. The value of the activation energy obtained using Ozawa-Flynn methods is in agreement with that using the Kissinger method. Different degradation mechanisms are used to compare with this value. Based on the analytical result, the actual thermal degradation mechanism of the CPPS is a Dn deceleration type. The carbonization temperature range of the CPPS is the same as pure PPS resin.
Fu, Xiaoming; Peng, Chun; Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin
2017-01-01
To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland-Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011-0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth.
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-01-01
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543
Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.
1978-01-01
An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.
Arora, Aman; Yadav, Avneet; Upadhyaya, Viram; Jain, Prachi; Verma, Mrinalini
2018-01-01
The purpose of this study was to compare the marginal and internal adaptation of cobalt-chromium (Co-Cr) copings fabricated from conventional wax pattern, three-dimensional (3D)-printed resin pattern, and laser sintering technique. A total of thirty copings were made, out of which ten copings were made from 3D-printed resin pattern (Group A), ten from inlay wax pattern (Group B), and ten copings were obtained from direct metal laser sintering (DMLS) technique (Group C). All the thirty samples were seated on their respective dies and sectioned carefully using a laser jet cutter and were evaluated for marginal and internal gaps at the predetermined areas using a stereomicroscope. The values were then analyzed using one-way ANOVA test and post hoc Bonferroni test. One-way ANOVA showed lowest mean marginal discrepancy for DMLS and highest value for copings fabricated from inlay wax. The values for internal discrepancy were highest for DMLS (169.38) and lowest for 3D-printed resin pattern fabricated copings (133.87). Post hoc Bonferroni test for both marginal and internal discrepancies showed nonsignificant difference when Group A was compared to Group B ( P > 0.05) and significant when Group A was compared with Group C ( P < 0.05). Group B showed significant difference ( P < 0.05) when compared with Group C. Marginal and internal discrepancies of all the three casting techniques were within clinically acceptable values. Marginal fit of DMLS was superior as compared to other two techniques, whereas when internal fit was evaluated, conventional technique showed the best internal fit.
Axial displacements in external and internal implant-abutment connection.
Lee, Ji-Hye; Kim, Dae-Gon; Park, Chan-Jin; Cho, Lee-Ra
2014-02-01
The purpose of this study was to evaluate the axial displacement of the abutments during clinical procedures by the tightening torque and cyclic loading. Two different implant-abutment connection systems were used (external butt joint connection [EXT]; internal tapered conical connection [INT]). The master casts with two implant replicas, angulated 10° from each other, were fabricated for each implant connection system. Four types of impression copings were assembled and tightened with the corresponding implants (hex transfer impression coping, non-hex transfer impression coping, hex pick-up impression coping, non-hex pick-up impression coping). Resin splinted abutments and final prosthesis were assembled. The axial displacement was measured from the length of each assembly, which was evaluated repeatedly, after 30 Ncm torque tightening. After 250 N cyclic loading of final prosthesis for 1,000,000 cycles, additional axial displacement was recorded. The mean axial displacement was statistically analyzed (repeated measured ANOVA). There was more axial displacement in the INT group than that of the EXT group in impression copings, resin splinted abutments, and final prosthesis. Less axial displacement was found at 1-piece non-hex transfer type impression coping than other type of impression copings in the INT group. There was more axial displacement at the final prosthesis than resin splinted abutments in the INT and the EXT groups. After 250 N cyclic loading of final prosthesis, the INT group showed more axial displacement than that of the EXT group. Internal tapered conical connection demonstrated a varying amount of axial displacement with tightening torque and cyclic loading. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Strip casting apparatus and method
Williams, R.S.; Baker, D.F.
1988-09-20
Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.
Strip casting apparatus and method
Williams, Robert S.; Baker, Donald F.
1988-01-01
Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.
Method for fabricating thin films of pyrolytic carbon
Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.
1980-03-13
The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.
Method for fabricating thin films of pyrolytic carbon
Brassell, Gilbert W.; Lewis, Jr., John; Weber, Gary W.
1982-01-01
The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.
NASA Astrophysics Data System (ADS)
Puri, Raghav
Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the microstructural complexity of NiCr and CoCr alloys.
Thin sol-gel-derived silica coatings on dental pure titanium casting.
Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M
1999-01-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.
Determining casting defects in near-net shape casting aluminum parts by computed tomography
NASA Astrophysics Data System (ADS)
Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter
2018-03-01
Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods
Lee, Myung-Jin; Kim, Mi-Joo; Kwon, Jae-Sung; Lee, Sang-Bae; Kim, Kwang-Mahn
2017-01-01
Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05). In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05). Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility. PMID:28772647
Technical Development of Slurry Three-Dimensional Printer
NASA Astrophysics Data System (ADS)
Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan
2017-09-01
The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.
Li, Chen; Zheng, Yuanyuan; Wang, Xiaofei; Feng, Shilan; Di, Duolong
2011-12-01
This study developed a feasible process to simultaneously separate and purify polyphenols, including flavonoids and oleuropein, from the leaves of Olea europaea L. Macroporous resins were used as the separation and purification materials. The performance and separation capabilities of eight resins (D101, DM130, HPD450, LSA-21, LSA-40, 07C, LSD001 and HPD600) were systematically evaluated. The contents of target polyphenols in different extracts were determined using ultraviolet (for flavonoids) and high-performance liquid chromatographic (for oleuropein) methods. The static adsorption and desorption results showed that resin LSA-21 had better adsorption properties among the eight resins. Influential factors such as extraction method, pH value of feeding solution, desorption solution, adsorption kinetics and adsorption isotherm, etc. to the extraction and purification of these polyphenols were successively investigated on resin LSA-21. The target flavonoids and oleuropein were selectively purified using resin LSA-21. Compared with the contents in raw leaves, the contents of total flavonoids and oleuropein in the final purified products were increased 13.2-fold (from 16 to 211 g kg(-1) ) and 7.5-fold (from 120 to 902 g kg(-1) ) with recovery yields of 87.9% and 85.6%, respectively. This extraction and purification method could be used in the large-scale enrichment or purification of flavonoids, oleuropein and other polyphenols from O. europaea L. leaves or other herbal materials in industrial, food processing and medical manufacture. Copyright © 2011 Society of Chemical Industry.
A method for the production of weakly acidic cation exchange resins
NASA Astrophysics Data System (ADS)
Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.
1991-12-01
The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.
Fan, Ruiyi; Xie, Feng; Guan, Xueliang; Zhang, Qinglin; Luo, Zhengrong
2014-07-01
A low cost bio-sorbent, named "PPF resin", was prepared by crosslinking the persimmon residual with formaldehyde. The adsorption behavior of PPF resin towards Au(III) from varied HCl and HNO3 concentration solutions was studied. PPF resin could adsorb almost complete Au(III) from high acidic systems. The influence of dilution ratio, solid-liquid ratio and time towards Au(III) from aqua regia leached PCBs liquor was censored in detail by batch and continuous adsorption methods. The PPF resin before and after adsorption was characterized by FT-IR, XRD and XPS spectra which provided evidences for the reduction of Au(III) to Au(0) with a proposed mechanism of Au(III) adsorption-reduction process. After saturated column adsorption of 0.1g PPF resin, 0.0506 g gold (purity: 99.9%) was obtained by the method of incineration. The present results provide a new approach for gold recovery from the secondary resources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers...
Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M
2002-08-01
The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials. Copyright 2002 Wiley Periodicals, Inc.
Verification of a three-dimensional resin transfer molding process simulation model
NASA Technical Reports Server (NTRS)
Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson
1995-01-01
Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.
Pastoret, Marie-Hélène; Bühler, Julia; Weiger, Roland
2017-01-01
PURPOSE To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (± SD). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS Dimensional changes compared to reference values varied between -74.01 and 32.57 µm (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth. PMID:28874996
Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-ureaformaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde under neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...
Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Jovanović, Branislava M; Rajaković, Ljubinka V
2010-07-19
A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation technique. The analytical properties of both procedures were similar: the limit of detection was 0.24 microg L(-1), the limit of quantification was 0.80 microg L(-1) and the relative standard deviations for samples with a content of arsenic from 10.00 to 300.0 microg L(-1) ranged from 1.1 to 5.8%. The interference effects of anions commonly found in water and some organic species which can be present in water were found to be negligible. Verification with certified reference materials proved that the experimental concentrations found for model solutions and real samples were in agreement with the certified values. 2010 Elsevier B.V. All rights reserved.
Method For Removing Volatile Components From A Gel-Cast Ceramic Article
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2004-09-07
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E.; Fong, Hao
2008-01-01
Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Methods Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work of fracture) of the nano FS reinforced resins/composites were tested, and Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Results Impregnation of small mass fractions (1 % and 2.5 %) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5 %), however, did not further improve the mechanical properties (one way ANOVA, P > 0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Significance Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites. PMID:17572485
The Problems Encountered in a CTEV Clinic: Can Better Casting and Bracing Be Accomplished?
Agarwal, Anil; Kumar, Anubrat; Shaharyar, Abbas; Mishra, Madhusudan
2016-09-07
The aim of the study is to create awareness in the practicing health care workers toward the problems encountered during casting and bracing of clubfoot following Ponseti method, and in turn avoid them. Retrospective audit of 6 years' clubfoot clinic records to analyze problems associated with Ponseti method. Problems were encountered in 26 cast and in 6 braced patients. Just 4 patients out of 71 syndromic (5.6%) experienced problems during casting compared with 3% overall incidence. The common problems encountered in casted patients were moisture lesions, hematoma, dermatitis due to occlusion, pressure sores, and fractures. There was excessive bleeding in 1 patient at time of tenotomy. In braced patients, pressure sores and tenderness at tenotomy site were major problems. None of the syndromic patients experienced difficulties during bracing. Problems were encountered with Ponseti method during casting, tenotomy, or bracing. Syndromic children had lesser complication rate than idiopathic clubfeet. It is important to be aware of these problems so that appropriate intervention can be done early. Level IV: Retrospective. © 2016 The Author(s).
Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev
2013-01-01
Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy without compromising on its property such as surface porosity. PMID:24015000
Poco, John F.
1993-01-01
The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.
Zygomatic implant-retained fixed complete denture for an elderly patient.
Baig, Mirza Rustum; Rajan, Gunaseelan; Yunus, Norsiah
2012-06-01
Dental rehabilitation of a completely edentulous geriatric patient has always been a challenge to the clinician, especially in treating those with higher expectations and demands. Treatment duration and the amount of residual alveolar bone available are often important considerations when planning for dental implant-based fixed treatment for these patients. With the introduction of zygomatic implants, a graftless alternative solution has emerged for deficient maxillary bone with provision for immediate loading. This article describes the treatment of a completely edentulous elderly patient using zygomatic implants in conjunction with conventional implants. The implants were immediately loaded using a definitive acrylic resin fixed denture reinforced with a cast metal framework, to provide function and aesthetics. © 2011 The Gerodontology Society and John Wiley & Sons A/S.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.
1982-01-01
The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.
Tape-cast sensors and method of making
Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando H [Santa Fe, NM
2009-08-18
A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.
A new method to acquire 3-D images of a dental cast
NASA Astrophysics Data System (ADS)
Li, Zhongke; Yi, Yaxing; Zhu, Zhen; Li, Hua; Qin, Yongyuan
2006-01-01
This paper introduced our newly developed method to acquire three-dimensional images of a dental cast. A rotatable table, a laser-knife, a mirror, a CCD camera and a personal computer made up of a three-dimensional data acquiring system. A dental cast is placed on the table; the mirror is installed beside the table; a linear laser is projected to the dental cast; the CCD camera is put up above the dental cast, it can take picture of the dental cast and the shadow in the mirror; while the table rotating, the camera records the shape of the laser streak projected on the dental cast, and transmit the data to the computer. After the table rotated one circuit, the computer processes the data, calculates the three-dimensional coordinates of the dental cast's surface. In data processing procedure, artificial neural networks are enrolled to calibrate the lens distortion, map coordinates form screen coordinate system to world coordinate system. According to the three-dimensional coordinates, the computer reconstructs the stereo image of the dental cast. It is essential for computer-aided diagnosis and treatment planning in orthodontics. In comparison with other systems in service, for example, laser beam three-dimensional scanning system, the characteristic of this three-dimensional data acquiring system: a. celerity, it casts only 1 minute to scan a dental cast; b. compact, the machinery is simple and compact; c. no blind zone, a mirror is introduced ably to reduce blind zone.
Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2004-01-01
A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.
Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2003-01-01
A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.
Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma
2015-01-01
Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study. PMID:26929488
Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangirala, Mani
The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less
Method of making a cyanate ester foam
Celina, Mathias C.; Giron, Nicholas Henry
2014-08-05
A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.
Bray, Lane Allan; DesChane, Jaquetta R.
1998-01-01
A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.
Bray, L.A.; DesChane, J.R.
1998-05-05
A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.
Mess, Aylin; Vietzke, Jens-Peter; Rapp, Claudius; Francke, Wittko
2011-10-01
Tackifier resins play an important role as additives in pressure sensitive adhesives (PSAs) to modulate their desired properties. With dependence on their origin and processing, tackifier resins can be multicomponent mixtures. Once they have been incorporated in a polymer matrix, conventional chemical analysis of tackifiers usually tends to be challenging because a suitable sample pretreatment and/or separation is necessary and all characteristic components have to be detected for an unequivocal identification of the resin additive. Nevertheless, a reliable analysis of tackifiers is essential for product quality and safety reasons. A promising approach for the examination of tackifier resins in PSAs is the novel direct analysis in real time mass spectrometry (DART-MS) technique, which enables screening analysis without time-consuming sample preparation. In the present work, four key classes of tackifier resins were studied (rosin, terpene phenolic, polyterpene, and hydrocarbon resins). Their corresponding complex mass spectra were interpreted and used as reference spectra for subsequent analyses. These data were used to analyze tackifier additives in synthetic rubber and acrylic adhesive matrixes. To prove the efficiency of the developed method, complete PSA products containing two or three different tackifiers were analyzed. The tackifier resins were successfully identified, while measurement time and interpretation took less than 10 mins per sample. Determination of resin additives in PSAs can be performed down to 0.1% (w/w, limit of detection) using the three most abundant signals for each tackifier. In summary, DART-MS is a rapid and efficient screening method for the analysis of various tackifiers in PSAs.
Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin
2017-01-01
Objective To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Study design Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland–Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. Results The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011–0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Conclusions Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth. PMID:28640827
SEM corrosion-casts study of the microcirculation of the flat bones in the rat.
Pannarale, L; Morini, S; D'Ubaldo, E; Gaudio, E; Marinozzi, G
1997-04-01
Little is known about the organization of microcirculation in flat bones in comparison with long bones. This study, therefore, helps us to determine the design of this vascular system in flat bones in relation to their structure and function. The organization of microvasculature in parietal, scapula, and ileum bones of 15 young sexually mature rats, aged 6-7 weeks, was studied by light and scanning electron microscopy (SEM) from vascular corrosion cast (vcc), a resin-cast obtained material. Our observations show that the pattern of the microcirculation in flat bones is different in the thick and thin parts of such bones. Where the bone is thinner than 0.4 mm, only periosteal and dural network exist. Larger vessels which do not form a real network connect the two tables of the bones in these regions. In thicker areas, the organization of the microvasculature is similar to that in long bones, with distinct periosteal, cortical and bone marrow networks. Moreover, in different bones, outer networks show slightly different characteristics according to the different adjacent structures (dura mater, muscles etc.). Different types of vessels were recognized by comparing their different diameter, course and endothelial imprints. The microvascular patterns of the flat bones are strongly influenced by the bone thickness. The different microvascular systems can interact both with the bone modelling and remodeling and with the variable metabolic needs, modifying the microvascular pattern and the blood flow. This is even more important in view of the reciprocal influence of the different networks within the same bone.
Fracture resistance of pulpless teeth restored with post-cores and crowns.
Hayashi, Mikako; Takahashi, Yutaka; Imazato, Satoshi; Ebisu, Shigeyuki
2006-05-01
The present study was designed to test the null hypothesis that there is no difference in the fracture resistance of pulpless teeth restored with different types of post-core systems and full coverage crowns. Extracted human upper premolars were restored with a fiber post, prefabricated metallic post or cast metallic post-core. Teeth with full crown preparations without post-core restorations served as a control. All teeth were restored with full coverage crowns. A 90-degree vertical or 45-degree oblique load was applied to the restored teeth with a crosshead speed of 0.5 mm/min, and the fracture loads and mode of fracture were recorded. Under the condition of vertical loading, the fracture load of teeth restored with the cast metallic post-cores was greatest among the groups (two-factor factorial ANOVA and Scheffe's F test, P<0.05). All fractures in teeth restored with all types of post-core systems propagated in the middle portions of roots, including the apices of the posts. Under the condition of oblique loading, the fracture load of teeth restored with pre-fabricated metallic posts was significantly smaller than that in other groups. Two-thirds of fractures in the fiber post group propagated within the cervical area, while most fractures in other groups extended beyond the middle of the roots. From the results of the present investigations, it was concluded that under the conditions of vertical and oblique loadings, the combination of a fiber post and composite resin core with a full cast crown is most protective of the remaining tooth structure.
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
Anatomical study of renal arterial vasculature and its potential impact on partial nephrectomy.
Macchi, Veronica; Crestani, Alessandro; Porzionato, Andrea; Sfriso, Maria Martina; Morra, Aldo; Rossanese, Marta; Novara, Giacomo; De Caro, Raffaele; Ficarra, Vincenzo
2017-07-01
To validate Graves' classification of the intrarenal arteries and to verify the absence of collateral arterial blood supply between different renal segments, in order to maximize peri-operative and functional outcomes of partial nephrectomy. The study was performed on 15 normal kidneys sampled from eight unembalmed cadavers. Kidneys with the surrounding perirenal fat tissue were removed en bloc with the abdominal segment of the aorta. The renal artery was injected with acrylic and radiopaque resins, with the specimen suspended in water. CT examination of the injected kidneys was performed to analyse the branches located deeply. After imaging acquisition, the specimens were treated with sodium hydroxide for removal of the parenchyma to obtain vascular casts. Ten casts (66.6%) showed the classic subdivision of the main artery into single posterior and anterior branches. With regard to the distribution of the segmental or second-order arteries, only two casts (13%) showed a pattern similar to that described by Graves, characterized by four segmental (second-order) branches coming from the anterior renal artery (apical, superior, middle and inferior). In the remaining 13 kidneys (87%) a different arterial vascular network was detected. In 10 casts (80%) a single renal segment was vascularized by two or more different branches coming from an artery leading to another segment (multiple vascularization). Multiple vascularization was observed in three (20%) apical segments, five (33%) superior segments, six (40%) middle segments, seven (47%) inferior segments and two (13%) posterior segments. This study shows that in the human kidneys the arterial vasculature is frequently different from that described by Graves. Moreover, in a significant percentage of cases, a single renal segment receives two or more branches that originate from an artery leading to another segment. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Complete-arch accuracy of intraoral scanners.
Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling
2018-04-30
Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners. Published by Elsevier Inc.
Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure
Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne
2013-01-01
The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321
Li, Y; Zheng, G; Lin, H
2014-12-18
To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2013-01-01
Methods of cyclically heating and cooling an article formed of a static dissipative ETFE resin, such as to reduce an electrical resistivity and/or to increase a tensile strength of the article, and methods of irradiating an article formed of a static dissipative ETFE resin, such as to increase a tensile strength of the article. Also disclosed herein are articles formed of a static dissipative ETFE resin, and processed in accordance with methods disclosed herein. Such an article may include, for example and without limitation, a cable strap to wrap, support, and/or secure one or more wires or cables, such as a cable tie.
Modak, Brenda; Salina, Melissa; Rodilla, Jesús; Torres, René
2009-11-12
Heliotropium sclerocarpum Phil. (Heliotropiaceae) is a resinous bush that grows in the Atacama of northern Chile. The chemical composition of its resinous exudate was analyzed for the first time. One aromatic geranyl derivative: filifolinol (1), one flavanone: naringenin (2) and a new type of 3-oxo-2-arylbenzofuran derivative 3 were isolated and their structures were determined. The antioxidant activity of the phenolic compounds and resin was evaluated using the bleaching of DPPH radical method and expressed as fast reacting equivalents (FRE) and total reacting equivalents (TRE).
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2016-09-17
Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.
Neshandar Asli, Hamid; Dalili Kajan, Zahra; Gholizade, Fatemeh
2018-02-21
Cement-retained implant-supported restorations have advantages over screw-retained restorations but are difficult to retrieve. Identifying the approximate location of the screw access hole (SAH) may reduce damage to the prosthesis. The purpose of this in vitro study was to evaluate the ability of cone beam computed tomography (CBCT) imaging to determine the location and direction of SAHs in cement-retained implant prostheses. Five clear acrylic resin casts were made based on a mandibular model. Several implant osteotomies (n=30) were created on the models with surgical burs, and crowns were made using the standard laboratory method with a transfer coping and the closed tray impression technique. CBCT images from the acrylic resin casts were evaluated by a maxillofacial radiologist who was blind to the locations and angles of the osteotomies. The locations of the access holes were determined on multiplanar reconstruction images and transferred to the clinical crown surface as defined points. Based on cross-sectional images, the predicted angle of the access hole was provided to a prosthodontist who was requested to pierce the crown at the proposed location in the specified direction. If the location and/or direction of the access hole were found, the process was considered successful, as the crown could then be removed from the implant abutment through the SAH. The success rate in the detection of the location and direction of the SAH was calculated, and chi-square and Fisher exact tests were applied for data analysis (α=.05). According to the results of this study, the success rate of CBCT to define the location of SAHs was 83.3% and 80% to determine the direction. No significant differences were found among the different dental groups in determination of the location (P=.79) or the direction (P=.53) of the SAHs. Most of the failures in determining the location and direction of the access hole in the buccolingual and mesiodistal directions were in the buccal and mesial locations of the SAH. The success rate of using CBCT to determine the location of SAHs in straight abutments was 100%. A significant difference was found between angled and straight abutments (P=.042). Using CBCT could help determine the direction and location of SAHs in clinical situations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Method for the chemical separation of GE-68 from its daughter Ga-68
Fitzsimmons, Jonathan M.; Atcher, Robert W.
2010-06-01
The present invention is directed to a generator apparatus for separating a daughter gallium-68 radioisotope substantially free of impurities from a parent gernanium-68 radioisotope, including a first resin-containing column containing parent gernanium-68 radioisotope and daughter gallium-68 radioisotope, a source of first eluent connected to said first resin-containing column for separating daughter gallium-68 radioisotope from the first resin-containing column, said first eluent including citrate whereby the separated gallium is in the form of gallium citrate, a mixing space connected to said first resin-containing column for admixing a source of hydrochloric acid with said separated gallium citrate whereby gallium citrate is converted to gallium tetrachloride, a second resin-containing column for retention of gallium-68 tetrachloride, and, a source of second eluent connected to said second resin-containing column for eluting the daughter gallium-68 radioisotope from said second resin-containing column.
Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
2000-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...
Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method of 13C enriched formaldehyde udner neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field shifts...
Tomita Bunchiro; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde unde neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...
Surface chemistry control for selective fossil resin flotation
Miller, Jan D.; Yi, Ye; Yu, Qiang
1994-01-01
A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.
Surface chemistry control for selective fossil resin flotation
Miller, J.D.; Yi, Y.; Yu, Q.
1994-06-07
A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.
Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum
2016-04-01
Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D
2014-08-01
Enteric viral contaminants in water represent a public health concern, thus methods for detecting these viruses or their indicator microorganisms are needed. Because enteric viruses and their viral indicators are often found at low concentrations in water, their detection requires upfront concentration methods. In this study, a strong basic anion exchange resin was evaluated as an adsorbent material for the concentration of F-RNA coliphages (MS2, Qβ, GA, and HB-P22). These coliphages are recognized as enteric virus surrogates and fecal indicator organisms. Following adsorption of the coliphages from 50ml water samples, direct RNA isolation and real time RT-PCR detection were performed. In water samples containing 10(5)pfu/ml of the F-RNA coliphages, the anion exchange resin (IRA-900) adsorbed over 96.7% of the coliphages present, improving real time RT-PCR detection by 5-7 cycles compared to direct testing. F-RNA coliphage RNA recovery using the integrated method ranged from 12.6% to 77.1%. Resin-based concentration of samples with low levels of the F-RNA coliphages allowed for 10(0)pfu/ml (MS2 and Qβ) and 10(-1)pfu/ml (GA and HB-P22) to be detected. The resin-based method offers considerable advantages in cost, speed, simplicity and field adaptability. Copyright © 2014 Elsevier B.V. All rights reserved.
Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi
2011-01-01
A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.
Poco, J.F.
1993-09-07
The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.
Difference in the color stability of direct and indirect resin composites
LEE, Yong-Keun; YU, Bin; LIM, Ho-Nam; LIM, Jin Ik
2011-01-01
Indirect resin composites are generally regarded to have better color stability than direct resin composites since they possess higher conversion degree Objective The present study aimed at comparing the changes in color (∆E) and color coordinates (∆L, ∆a and ∆b) of one direct (Estelite Sigma: 16 shades) and 2 indirect resin composites (BelleGlass NG: 16 shades; Sinfony: 26 shades) after thermocycling. Material and Methods Resins were packed into a mold and light cured; post-curing was performed on indirect resins. Changes in color and color coordinates of 1-mm-thick specimens were determined after 5,000 cycles of thermocycling on a spectrophotometer. Results ∆E values were in the range of 0.3 to 1.2 units for direct resins, and 0.3 to 1.5 units for indirect resins, which were clinically acceptable (∆E<3.3). Based on t-test, ∆E values were not significantly different by the type of resins (p>0.05), while ∆L, ∆a and ∆b values were significantly different by the type of resins (p<0.05). For indirect resins, ∆E values were influenced by the brand, shade group and shade designation based on three-way ANOVA (p<0.05). Conclusion Direct and indirect resin composites showed similar color stability after 5,000 cycles of thermocycling; however, their changes in the color coordinates were different. PMID:21552717
Development and characterization of soy-based epoxy resins and pultruded FRP composites
NASA Astrophysics Data System (ADS)
Zhu, Jiang
This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.
Koodaryan, Roodabeh; Hafezeqoran, Ali
2016-12-01
Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). The bond strength values of A and S were significantly higher than those of N ( P <.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG ( P <.001). The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.
Durkan, Rukiye; Gürbüz, Ayhan; Yilmaz, Burak; Özel, M Birol; Bağış, Bora
2012-06-26
Microwave and water bath postpolymerization have been suggested as methods to improve the mechanical properties of heat and autopolymerizing acrylic resins. However, the effects of autoclave heating on the fracture properties of autopolymerizing acrylic resins have not been investigated. The aim of this study was to assess the effectiveness of various autoclave postpolymerization methods on the fracture properties of 3 different autopolymerizing acrylic resins. Forty-two specimens of 3 different autopolymerizing acrylic resins (Orthocryl, Paladent RR and Futurajet) were fabricated (40x8x4mm), and each group was further divided into 6 subgroups (n=7). Control group specimens remained as processed (Group 1). The first test group was postpolymerized in a cassette autoclave at 135°C for 6 minutes and the other groups were postpolymerized in a conventional autoclave at 130°C using different time settings (5, 10, 20 or 30 minutes). Fracture toughness was then measured with a three-point bending test. Data were analyzed by ANOVA followed by the Duncan test (α=0.05). The fracture toughness of Orthocryl and Paladent-RR acrylic resins significantly increased following conventional autoclave postpolymerization at 130°C for 10 minutes (P<.05). However, the fracture toughness of autoclave postpolymerized Futurajet was not significantly different than its control specimens (P<.05). The fracture toughness of Futurajet was significantly less than Paladent RR and Orthocryl specimens when autoclaved at 130°C for 10 minutes. Within the limitations of this study, it can be suggested that autoclave postpolymerization is an effective method for increasing the fracture toughness of tested autoploymerized acrylic resins.
Mair, Lawrence; Padipatvuthikul, P
2010-02-01
Resin bonding can be compared to making a sandwich with the tooth on one side and the restoration on the other, a layer of bonding resin is applied to either side and a filled resin (composite) placed in between. This presentation considers factors that influence the restoration side of the sandwich and various ways that the assembled testpieces may be "aged" prior to testing. The materials to be bonded may be either ceramic, metal or composite formed by methods such as casting, pressing, sintering or machining. The fabrication method determines the susceptibility of the bonding surface to physical or chemical modification. The treatment of the surface prior to bonding can be physical (e.g. sandblasting) or chemical (e.g. metal primer); but is more likely to be a combination (e.g. silica deposition+silane). Successful bonding depends on establishing a surface with a high population of unreacted vinyl groups (-CC) that can then be cross-polymerized to the resin in the bonding composite. The physical approach has involved etching or sandblasting the surfaces; but the ability to form a microretentive surface in this way depends on a heterogeneous surface. Noble metals and modern high strength ceramics have a more homogeneous surface and are not easily etched. To overcome this problem a number of ways to deposit a silica layer on the bonding surface have been developed: the Silicoater that involves baking on a silica layer, the Rocatec technique (CoJet) that involves air blasting silica onto the surface in conjunction with an abrasive; and two more modern approaches: sol-gel evaporation and molecular vapor deposition (MVD). All these techniques require the subsequent application of a silane layer to provide the -CC moieties. The use of primers without an intervening silica layer has been tested and found to be successful with some specialized bonding systems that contain agents such as methacryloyloxydecyldihydrogen-phosphate (MDP) (PanaviaEX). AGING OF TESTPIECES PRIOR TO BONDING: The most common type of aging is storage in water at temperatures from ambient to 100 degrees Celsius. This generally decreases bond strengths; but not to catastrophic values. A more exacting pre-test regime is thermal cycling. In some studies this caused a slightly greater reduction in bond strength than storage in water; but in other tests it resulted in total failure. As some testpieces have spontaneously debonded during thermal cycling, it seems sensible to include TC in any screening test of new materials. Mechanical cycling (fatigue) prior to testing has a very significant effect and the bond strength that can withstand 1,000,000 cycles can be one sixth of the bond strength in a simple monotonic test (tensile, shear or compression). Whereas simple monotonic tests provide a blunt instrument for eliminating poorly performing techniques their use for discriminating between established techniques is open to discussion. Copyright 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruey Ong, Huei; Maksudur Rahman Khan, Md.; Ramli, Ridzuan; Shein Hong, Chi; Yunus, Rosli Mohd
2018-03-01
An alkyd resin has been synthesized from palm oil that reacted with glycerol and phthalic anhydride by alcoholysis-polyesterification process and co-catalyzed by CuO nanoparticle. The CuO nanoparticle was pre-prepared in the glycerol via sol gel method, which creates a new reaction condition for resin preparation. The resins were characterized by fourier transform infrared spectroscopy (FTIR), where a new ester linkage bond (C-O-C) was noticed for resin sample. The antimicrobial activity and the curing behaviour of the resin were determined by Kirby-Bauer and differential scanning calorimeter technique. It was found that, the addition of CuO speeded up the reaction rate and played antimicrobial role. Moreover, it shortens the reaction time of alcoholysis and polyesterification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, J.C.; Kuhlman, M.R.; Hannan, S.W.
1987-11-01
The objective of this project was to evaluate a potential collection medium, XAD-4 resin, for collecting nicotine and polynuclear aromatic hydrocarbon (PAH) and to determine whether one collection system and one analytical method will allow quantification of both compound classes in air. The extraction efficiency study was to determine the extraction method to quantitatively remove nicotine and PAH from XAD-4 resin. The results showed that a two-step Soxhlet extraction consisting of dichloromethane followed by ethyl acetate resulted in the best recoveries for both nicotine and PAH. In the sampling efficiency study, XAD-2 and XAD-4 resin were compared, in parallel, formore » collection of PAH and nicotine. Quartz fiber filters were placed upstream of both adsorbents to collect particles. Prior to sampling, both XAD-2 and XAD-4 traps were spiked with known amounts (2 microgram) of perdeuterated PAH and D3-nicotine. The experiments were performed with cigarette smoking and nonsmoking conditions. The spiked PAH were retained well in both adsorbents after exposure to more than 300 cu. m. of indoor air. The spiked XAD-4 resin gave higher recoveries for D3-nicotine than did the spiked XAD-2 resin. The collection efficiency for PAH for both adsorbents is very similar but higher levels of nicotine were collected on XAD-4 resin.« less
Ayzenberg, Mark; Narvaez, Michael; Raphael, James
2018-01-01
Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts. PMID:29770174
Half-heusler alloys with enhanced figure of merit and methods of making
Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher
2015-06-02
Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
Effect of various infection-control methods for light-cure units on the cure of composite resins.
Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C
1998-01-01
This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.
High-refractive index of acrylate embedding resin clarifies mouse brain tissue
NASA Astrophysics Data System (ADS)
Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun
2017-11-01
Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer.
[Study of purity tests for silicone resins].
Sato, Kyoko; Otsuki, Noriko; Ohori, Akio; Chinda, Mitsuru; Furusho, Noriko; Osako, Tsutomu; Akiyama, Hiroshi; Kawamura, Yoko
2012-01-01
In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
Possibility of reconstruction of dental plaster cast from 3D digital study models
2013-01-01
Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330
Determining resin/fiber content of laminates
NASA Technical Reports Server (NTRS)
Garrard, G. G.; Houston, D. W.
1979-01-01
Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.
Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen
2015-04-15
High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of the pore structure of ceramics prepared by the slip casting method
NASA Technical Reports Server (NTRS)
Guzman, I. Y.; Dobysh, A. V.
1984-01-01
The porosity of the slip cast Si3N4 is similar to that of pressed Si3N4 formed at 2500 kg/sq cm. The porosity of cast Si oxynitride is equivalent to that of samples stressed at 10,000 kg/sq cm. Crucibles formed from these materials by slip casting have high thermal shock and corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuyucak, Selcuk; Li, Delin
2013-12-31
Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less
Sherrod, S.K.; Belnap, J.; Miller, M.E.
2002-01-01
Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms—bags, capsules, and membranes—and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, “warm” and “cold.” The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.
Synthesis of phenol-urea-formaldehyde cocondensed resins from UF-concentrate and phenol
Bunchiro Tomita; Mashiko Ohyama; Chung-Yun Hse
1994-01-01
A new synthetic method to obtain phenol-urea-formaldehyde cocondensed resins was developed by reacting phenol with "UF-concentrate", which is a kind of urea-formaldehyde (UF) resin prepared with a high molar ratio of formaldehyde to urea (F/U) such as above 2.5. The products were analyzed with 13C-NMR spectroscopy and gel permeation...
Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
1999-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperaÂtures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...
Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad
2014-01-01
Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehtani, Hitesh Kumar, E-mail: kkraina@gmail.com; Kumar, Rishi, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com
2014-04-24
Poly-(Vinylidene fluoride) PVDF film was prepared by spin casting method to control the pore size of the matrix. The morphological spherulitic structure was confirmed Scanning Electron Microscopy (SEM) after gold sputtering and the presence of β phase was ensured in spin cast PVDF film by the FTIR spectroscopy. The β phase is very important in the application because it improve the properties like piezoelectricity by modifying PVDF crystallinity.
Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method
NASA Technical Reports Server (NTRS)
Yu, H.; Granger, D. A.
1984-01-01
A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.
Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.
Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A
2016-06-01
Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Mechanical characterization of composite repairs for fiberglass wind turbine blades
NASA Astrophysics Data System (ADS)
Chawla, Tanveer Singh
While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part affects the propagation fracture toughness values of the repair. Repairs conducted on surfaces with partially ground top plies possess higher fracture toughness values than those conducted on surfaces with complete top plies ground off. The three top repair resin candidates were then evaluated against the base repair resin under fatigue loading. The specimen configuration and testing method were chosen so as to be able to test hand layup repairs under tension -- tension cyclic loading. It was observed that all three new repair resins perform better than the base repair resin. The selection of the optimum repair resin was based on results from mode I and fatigue testing. Global manufacturing regulations and standards were also of prime concern. The final new repair resin is being used by the company in all of its plants over the globe. The balance of this work involves study of the effect of mixed mode I -- mode II loading on the strength of repairs conducted on fiber reinforced composite parts using hand lay-up technique. The specimens for this part were similar to those manufactured for mode I testing but with different dimensions and layup. They were made and tested in accordance with ASTM D 6671 (Standard Test Method for Mixed Mode I -- Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites). Comparison was made between the fracture toughness of the above chosen optimum repair resin and the base repair resin. At least two levels of mode mixture GII/G (Mode II fracture toughness / Mode I and II fracture toughness) were examined. Also, two levels of grinding were considered (complete ply vs. partial ply ground off) in order to establish the influence of varying top-ply grinding depths on the strength of hand layup repairs conducted on fiberglass composite structures. The results of this work have the potential to improve the repair process for current fiberglass wind turbine blades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek
Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.
NASA Astrophysics Data System (ADS)
Kukade, S. D.; Bawankar, S. V.
2018-02-01
The purpose of the present paper is to report temperature dependence of electrical conductivity on Guaiacol-guanidine hydrochloride-formaldehyde copolymer resin. By using a microwave irradiation technique, various ratios of copolymer resin were synthesized from the reacting monomers, i.e., guaiacol, guanidine hydrochloride and formaldehyde. The characterization of the copolymer resins has been fulfilled by spectral methods viz. ultraviolet visible (UV visible), infrared and proton nuclear magnetic spectroscopy (1H-NMR). The solid state direct current electrical conductivity of synthesized copolymer resins has been measured as a function of temperature. The electrical conductivity values of all the copolymers have been found in the range of a semiconductor.
Liu, Boyan; Dong, Beitao; Yuan, Xiaofan; Kuang, Qirong; Zhao, Qingsheng; Yang, Mei; Liu, Jie; Zhao, Bing
2016-01-01
A simple and efficient chromatographic method for separation of chlorogenic acid from Eupatorium adenophorum Spreng extract was developed. The adsorption properties of nine macroporous resins were evaluated. NKA-II resin showed much better adsorption/desorption properties. The adsorption of chlorogenic acid on NKA-II resin at 25°C was well fitted to Langmuir isotherm model and pseudo-second-order kinetic model. The dynamic adsorption and desorption experiments were carried out on columns packed with NKA-II resin to optimize the separation process. The content of chlorogenic acid in the product increased to 22.17%, with a recovery yield of 82.41%. Copyright © 2015 Elsevier B.V. All rights reserved.
Matrix resin effects in composite delamination - Mode I fracture aspects
NASA Technical Reports Server (NTRS)
Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.
1987-01-01
A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu
2014-07-01
The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.
ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...
Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Steven, W.; Lundin, Carl, W.
2005-09-30
The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs @ -40°C (-40°F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less
Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Steven, W.; Lundin, Carl, D.
2005-09-30
The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs {at} -40 C (-40 F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less
Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method
Falcão-Filho, Hilmo Barreto Leite; de Aguiar, Fábio Afrânio; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Gloria Chiarello; Ribeiro, Ricardo Faria
2012-01-01
PURPOSE Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS The results on the tightened side were significantly lower in Group C (6.43 ± 3.24 µm) when compared to Groups A (16.50 ± 7.55 µm) and B (16.27 ± 1.71 µm) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66±14.30 µm; Group B, 39.48±12.03 µm; Group C, 23.13±8.24 µm) (P<.05). CONCLUSION Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. PMID:22737313
Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan
2015-01-01
Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491
Periodontal healing after bonding treatment of vertical root fracture.
Sugaya, T; Kawanami, M; Noguchi, H; Kato, H; Masaka, N
2001-08-01
Vertical root fractures lead to advanced periodontal breakdown with deep periodontal pockets and vertical bone defects. The purpose of this study is to evaluate clinically the periodontal healing of root fracture treatment using adhesive resin cement. In 22 patients, 23 teeth with vertical root fractures were treated with 4-META/MMA-TBB resin cement. Eleven fractured roots were bonded through the root canal (group A) and 12 fractured roots were bonded extra-orally and replanted (group B). All teeth were then restored with full cast crowns (n=20) or coping (n=3). Mean probing depth was 6.6 mm at pre-treatment and 4.4 mm 6 months after the treatment in group A, and 7.4 mm and 4.6 mm, respectively, in group B. Bleeding scores were 100% at pre-treatment and 36.4% after 6 months in group A and 91.7% and 8.3%, respectively in group B. Radiographic bone level was 56.8% at pretreatment and 59.1% after 6 months in group A, and 18.8% and 29.2%, respectively, in group B. Two roots of group A and three roots of group B were extracted due to refracture, deterioration of periodontal inflammation, mobility, and luxation. The remaining roots (n=18) presented no discomfort to the patients and there was no deterioration of periodontal conditions over a mean period of 33 months (range 14-74 months) in group A and over a mean period of 22 months (range 6-48 months) in group B. There was no ankylosed teeth nor was any root resorption detected. The results suggested that the treatment of vertical root fracture using 4-META/MMA-TBB resin has good prognostic possibilities.
Allison, A.G.
1959-09-01
S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-09-01
Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature rise in pulpal chamber during fabrication of provisional resinous crowns.
Castelnuovo, J; Tjan, A H
1997-11-01
The heat generated during the exothermic polymerization reaction of autopolymerizing resinous materials and the heat generated by ultraviolet lamps during irradiation of photopolymerizing resinous materials could cause pulpal damage when a direct technique is used to fabricate provisional restorations. This could occur if temperature elevations overcome the physiological heat dissipating mechanisms of the dental-periodontal system. This in vitro study compared the rise in temperatures in the pulpal chamber during fabrication of provisional complete veneer crowns by direct method with different autopolymerizing and photopolymerizing resins. The effect of curing resinous crowns in different matrices, such as a polyvinyl siloxane impression and a vaccuum-formed polypropylene sheet, was also evaluated. The results demonstrated that the amount of heat generated during resin polymerization and transmitted to the pulpal chamber could be damaging to pulpal tissues including odontoblasts. When curing of provisional resinous crowns was performed in the polyvinyl siloxane impression, significantly lower temperatures were recorded compared with curing in the vacuum-formed polypropylene sheet. To prevent pulpal damage, effective cooling procedures are strongly recommended when directly fabricating resinous provisional crowns.
Wang, Qiang; Lv, Zhen; Tang, Qian; Gong, Cheng-Bin; Lam, Michael Hon Wah; Ma, Xue-Bing; Chow, Cheuk-Fai
2016-03-01
This study aimed to develop a photoresponsive molecularly imprinted hydrogel (MIH) casting membrane for the determination of trace tetracycline (TC) in milk. This MIH casting membrane combined the specificity of MIHs, the photoresponsive properties of azobenzene, and the portable properties of a membrane. Photoresponsive TC-imprinted MIHs were initially fabricated and then cast on sodium dodecyl sulfonate polyacrylamide gel. After TC removal, a photoresponsive MIH casting membrane was obtained. The photoresponsive properties of the MIH casting membrane were robust, and no obvious photodegradation was observed after 20 cycles. The MIH casting membrane displayed specific affinity to TC upon alternate irradiation at 365 and 440 nm; it could quantitatively uptake and release TC. The TC concentration (0.0-2.0 × 10(-4) mol l(-1)) in aqueous solution displayed a linear relationship with the photoisomerization rate constant of azobenzene within the MIH casting membrane. As such, a quick detection method for trace TC in aqueous foodstuff samples was established. The recovery of this method for TC in milk was investigated with a simple pretreatment of milk, and a high recovery of 100.54-106.35% was obtained. Therefore, the fabricated membrane can be used as a portable molecular sensor that can be easily recycled. Copyright © 2015 John Wiley & Sons, Ltd.
21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies...
21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies...
Apparatus and process for water treatment
Phifer, Mark A.; Nichols, Ralph L.
2001-01-01
An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.M.
1965-10-05
This is a new and improved sand consolidation method wherein an in-situ curing of a resinous fluid is undertaken. This method does not require that the resinous fluids be catalyzed at the surface of the well or well bore as is the case in previous methods. This method consists of, first, pumping an acid-curable consolidating fluid into the unconsolidated sand or earth formation and, secondly, pumping an oil overflush solution containing a halogenated organic or other organic acid or delayed acid-producing chemical. A small quantity of diesel oilspacer may be used between the plastic catalyst solution. The overflush functions tomore » remove permeability, and its acid or acid producing component promotes subsequent hardening of the remaining film of consolidating fluid. Trichloroacetic acid and benzotrichloride are satisfactory to add to the overflush solution for curing the resins. (17 claims)« less
Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting.
Pan, Jingjing; Emanuele, Kathryn; Maher, Eileen; Lin, Zhichao; Healey, Stephanie; Regan, Patrick
2017-08-01
A simple liquid scintillation counting method using DGA/TRU resins for removal of matrix/radiometric interferences, Čerenkov counting for measuring 90 Y, and EDXRF for quantifying Y recovery was validated for analyzing 90 Sr in various foods. Analysis of samples containing energetic β emitters required using TRU resin to avoid false detection and positive bias. Additional 34% increase in Y recovery was obtained by stirring the resin while eluting Y with H 2 C 2 O 4 . The method showed acceptable accuracy (±10%), precision (10%), and detectability (~0.09Bqkg -1 ). Published by Elsevier Ltd.
Resin Dermatitis in a Car Factory
Engel, H. O.; Calnan, C. D.
1966-01-01
An outbreak of dermatitis in a car assembly factory is described; it affected 50 workers who handled rubber weatherstrips coated with an adhesive. The adhesive was found to contain para-tertiary butyl phenol (P.T.B.P.) formaldehyde resin. Of those patch tested 70% gave positive reactions to the adhesive and 65% to the resin. Improved methods of handling and personal protection succeeded in arresting the occurrence of dermatitis. Barrier creams gave no protection in these circumstances. The episode illustrates the different preventive control methods which have to be tried when dealing with a simple skin hazard which cannot be abolished. Images PMID:5904100
Westinghouse modular grinding process - improvement for follow on processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrmann, Henning
2013-07-01
In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompactionmore » (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)« less
[The statistical analysis for the use of the 55,787 finished resin teeth].
Wu, Shu-hong; Yu, Hai-yang; Wang, Lu; Xu, Ling; Xiao, Zhi-li
2010-08-01
To analyze the use situation of finished resin teeth for the different location, and to provide reference for manufacturers of finished resin teeth and all the buyers. To analyze the use situation of finished resin teeth in the Dental Laboratory of the Affiliated Hospital of Stomatology of Chongqing Medical University from January 2006 to December 2008 by using statistic methods. During the use of 55,787 finished resin teeth, the study found some rules. (1) The top use of finished resin teeth was D6 with the percentage of 5.31%, and the lowest use of finished resin teeth was D3 with the percentage of 1.94%. (2) Except the maxillary canines and the mandibular lateral incisors, there was no significant difference between the usage of other same name finished resin teeth (P > 0.05). (3) Among all finished resin teeth, the usage of section B exceeded section A, and the usage of maxillary finished resin teeth exceeded mandibular finished resin teeth (P < 0.05). (4) The use of the complete denture and single complete denture was about 1/3 of the total usage of finished resin teeth. (5) Except the use situation of complete denture and single complete denture, the frequency of simultaneously using mandibular left and right central incisors was the most with the percentage of 81.46%, for the frequency of simultaneously using maxillary left and right canines was 43.26% of the total, which was the lowest. There is significant difference in the use frequency of finished resin teeth for different location. For such reason, the manufacturers should produce finished resin teeth pro rata as well as the buyers for their purchase.
ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS
Bailes, R.H.; Ellis, D.A.; Long, R.S.
1958-12-16
Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.
Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan
2015-01-01
The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (p<0.001) between the groups. Sandblasted group had the highest SBS value (12.85 MPa) in experimental groups. The sandblasting surface treatment is recommended as an effective method of bonding orthodontic metal brackets to nano-hybrid composite resin surfaces.
RTM: Cost-effective processing of composite structures
NASA Technical Reports Server (NTRS)
Hasko, Greg; Dexter, H. Benson
1991-01-01
Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.
Lima, Ana Paula Barbosa; Vitti, Rafael Pino; Amaral, Marina; Neves, Ana Christina Claro; da Silva Concilio, Lais Regiane
2018-04-01
This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (α = .05). he results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values ( P <.05). No statistical differences were found for area of contact points among the groups ( P =.7150). The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.
Single underwater image enhancement based on color cast removal and visibility restoration
NASA Astrophysics Data System (ADS)
Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian
2016-05-01
Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.
High-refractive index of acrylate embedding resin clarifies mouse brain tissue.
Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun
2017-11-01
Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio
2018-04-01
This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.
Zhao, Hui-ru; Ren, Zao; Liu, Chun-ye
2015-04-01
To compare the purification effect of saponins from Ziziphi Spinosae Semen with different types of macroporous adsorption resin, and to optimize its purification technology. The type of macroporous resins was optimized by static adsorption method. The optimum technological conditions of saponins from Ziziphi Spinosae Semen was screened by single factor test and Box-Behnken Design-Response Surface Methodology. AB-8 macroporous resin had better purification effect of total saponins than other resins, optimum technological parameters were as follows: column height-diameter ratio was 5: 1, the concentration of sample solution was 2. 52 mg/mL, resin adsorption quantity was 8. 915 mg/g, eluted by 3 BV water, flow rate of adsorption and elution was 2 BV/h, elution solvent was 75% ethanol, elution solvent volume was 5 BV. AB-8 macroporous resin has a good purification effect on jujuboside A. The optimized technology is stable and feasible.
Epoxy Resins in Electron Microscopy
Finck, Henry
1960-01-01
A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825
Regeneration of strong-base anion-exchange resins by sequential chemical displacement
Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.
2002-01-01
A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.
[Variables effecting casting accuracy of quick heating casting investments].
Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F
1994-06-01
Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.
Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto
2012-05-01
Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.
Keum, Eun-Cheol
2013-01-01
PURPOSE This study evaluated the effectiveness of various methods for removing provisional cement from implant abutments, and what effect these methods have on the retention of prosthesis during the definitive cementation. MATERIALS AND METHODS Forty implant fixture analogues and abutments were embedded in resin blocks. Forty cast crowns were fabricated and divided into 4 groups each containing 10 implants. Group A was cemented directly with the definitive cement (Cem-Implant). The remainder were cemented with provisional cement (Temp-Bond NE), and classified according to the method for cleaning the abutments. Group B used a plastic curette and wet gauze, Group C used a rubber cup and pumice, and Group D used an airborne particle abrasion technique. The abutments were observed using a stereomicroscope after removing the provisional cement. The tensile bond strength was measured after the definitive cementation. Statistical analysis was performed using one-way analysis of variance test (α=.05). RESULTS Group B clearly showed provisional cement remaining, whereas the other groups showed almost no cement. Groups A and B showed a relatively smooth surface. More roughness was observed in Group C, and apparent roughness was noted in Group D. The tensile bond strength tests revealed Group D to have significantly the highest tensile bond strength followed in order by Groups C, A and B. CONCLUSION A plastic curette and wet gauze alone cannot effectively remove the residual provisional cement on the abutment. The definitive retention increased when the abutments were treated with rubber cup/pumice or airborne particle abraded to remove the provisional cement. PMID:24049563
Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library
EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...