Science.gov

Sample records for resin cement relyx

  1. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements

    PubMed Central

    Shashibhushan, KK; Poornima, P; Reddy, VV Subba

    2016-01-01

    Aims To assess and compare the retentive strength of two dual-polymerized self-adhesive resin cements (RelyX U200, 3M ESPE & SmartCem2, Dentsply Caulk) and a resin-modified glass ionomer cement (RMGIC; RelyX Luting 2, 3M ESPE) on stainless steel crown (SSC). Materials and methods Thirty extracted teeth were mounted on cold cured acrylic resin blocks exposing the crown till the cemento-enamel junction. Pretrimmed, precontoured SSC was selected for a particular tooth. Standardized tooth preparation for SSC was performed by single operator. The crowns were then luted with either RelyX U200 or SmartCem2 or RelyX Luting 2 cement. Retentive strength was tested using Instron universal testing machine. The retentive strength values were recorded and calculated by the formula: Load/Area. Statistical analysis One-way analysis of variance was used for multiple comparisons followed by post hoc Tukey’s test for groupwise comparisons. Unpaired t-test was used for intergroup comparisons. Results RelyX U200 showed significantly higher retentive strength than rest of the two cements (p < 0.001). No significant difference was found between the retentive strength of SmartCem2 and RelyX Luting 2 (p > 0.05). Conclusion The retentive strength of dual-polymerized self-adhesive resin cements was better than RMGIC, and RelyX U200 significantly improved crown retention when compared with SmartCem2 and RelyX Luting 2. How to cite this article Pathak S, Shashibhushan KK, Poornima P, Reddy VVS. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements. Int J Clin Pediatr Dent 2016;9(3):197-200. PMID:27843249

  2. Interfacial ultramorphology evaluation of resin luting cements to dentin: a correlative scanning electron microscopy and transmission electron microscopy analysis.

    PubMed

    Aguiar, Thaiane Rodrigues; Vermelho, Paulo Moreira; André, Carolina Bosso; Giannini, Marcelo

    2013-12-01

    The objective of this study was to analyze the dentin-resin cements interfacial ultramorphologies using two different methods: scanning (SEM) and transmission electron microscopy (TEM). Four commercial products were evaluated: two conventional cementing system (RelyX ARC/Adper™ Scotchbond™ Multi-Purpose Plus, 3M ESPE and Clearfil Esthetic Cement/DC Bond, Kuraray) and two self-adhesive resin cements (RelyX Unicem, 3M ESPE and Clearfil SA Cement, Kuraray). Prepolymerized resin disks (Sinfony, 3M ESPE) were cemented on oclusal dentin surfaces of 24 third human molars, simulating the indirect restorations. After 24 h, teeth were sectioned into 0.9-mm thick slabs and processed for microscopy analyses (SEM or TEM/ n = 3). Qualitative characterization of dentin-resin cement interface was performed. Hybrid layer formation with long and dense resin tags was observed only for RelyX ARC cementing system. Clearfil Esthetic Cement/DC Bond system revealed few and short resin tags formation, whereas no hybridization and resin tags were detected for self-adhesive resin cements. Some interfacial regions exhibited that the self-adhesive resin cements were not bonded to dentin, presenting bubbles or voids at the interfaces. In conclusion, TEM and SEM bonding interface analyses showed ultramorphological variations among resin cements, which are directly related to dental bonding strategies used for each resin cement tested.

  3. Study of deformation of resin cements used in fixing of root posts through fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Pulido, C. A.; Franco, A. P. G. O.; Karam, L. Z.; Kalinowski, H. J.; Gomes, O. M. M.

    2014-05-01

    The aim of the study was to evaluate the polymerization shrinkage "in situ" in resin cements inside the root canal during the fixation of glass fiber posts. For cementation teeth were randomly divided into 2 groups according to the resin cement used: Group1 - resin cement dual Relyx ARC (3M/ESPE), and Group 2 - resin cement dual Relyx U200 (3M/ESPE). Before inserting the resin cement into the root canal, two Bragg grating sensors were recorded and pasted in the region without contact with the canal, one at the apical and other at the coronal thirds of the post. The sensors measured the deformation of the resin cements in coronal and apical root thirds to obtain the values in micro-strain (μɛ).

  4. Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments

    NASA Astrophysics Data System (ADS)

    Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.

    2014-08-01

    The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.

  5. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  6. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    NASA Astrophysics Data System (ADS)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  7. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  8. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  9. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties

    PubMed Central

    Moreira, Francine-Couto-Lima; Alves, Denise-Ramos-Silveira; Estrela, Cyntia-Rodrigues-Araújo; Estrela, Carlos; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Lopes, Lawrence-Gonzaga

    2016-01-01

    Background Silver has a long history of use in medicine as an antimicrobial and anti-inflammatory agent. Silver nanoparticles (NAg) offer the possibility to control the formation oral biofilms through the use of nanoparticles with biocidal, anti-adhesive, and delivery abilities. This study aims to evaluate the antibacterial effect of resin luting cements with and without NAg, and their influence on color, sorption and solubility. Material and Methods NAg were incorporated to two dual-cured resin cements (RelyX ARC (RA) color A1 and RelyX U200 (RU) color A2) in two concentrations (0.05% and 0.07%, in weight), obtaining six experimental groups. Disc specimens (1x6mm) were obtained to verify the antibacterial effect against Streptococcus mutans in BHI broth after immersion for 1min, 5min, 1h, 6h, and 24h (n=3), through optical density readings. Specimens were evaluated for color changes after addition of NAg with a spectrophotometer (n=10). Sorption and solubility tests were also performed, considering storage in water or 75% ethanol for 28 days (n=5), according to ISO 4049:2010. Data were subjected to statistical analysis with ANOVA and Tukey (p=0.05). Results The optical density of the culture broths indicated bacterial growth, with and without NAg. NAg produced significant color change on the resin cements, especially in RA. Solubility values were very low for all groups, while sorption values raised with NAg. The cements with NAg did not show antibacterial activity against S. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Conclusions The resin luting cements with NAg addition did not show antibacterial activity against SS. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Key words:Silver, resin cements, products with antimicrobial action, solubility, color perception tests. PMID:27703610

  10. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  11. Evaluation of bond strength between leucite-based and lithium disilicate-based ceramics to dentin after cementation with conventional and self-adhesive resin agents.

    PubMed

    Rigolin, Fernando J; Miranda, Milton E; Flório, Flávia M; Basting, Roberta T

    2014-01-01

    The aim of this study was to compare the microtensile bond strength of two heat-pressed ceramics (leucite-based--IPS Empress Esthetic/Ivoclar Vivadent, and lithium disilicate-based --IPS e.max Press/Ivoclar Vivadent) to dentin with the use of conventional and self-adhesive resin cements. The occlusal surface of 60 intact human molars was removed and the dentin was exposed. Ceramic blocks were cemented randomly with regard to the cementation systems (n = 10): conventional dual resin cement (Variolink II/Ivoclar Vivadent), conventional self-polymerizing resin cement (Multilink/Ivoclar Vivadent), and dual self-adhesive resin cement (RelyX U100/3M ESPE). The dual cementation systems were photoactivated with a LED light device (Radii Cal, SDI) for 40 seconds. The specimens were sectioned to obtain sticks of approximately 1 mm2 for microtensile tests on a universal testing machine (EMIC). The type of fracture was analyzed under a scanning electron microscope. The Analysis of Variance (ANOVA) and the Tukey test (alpha = 0.05) showed that there was no difference between types of ceramic. Average microtensile bond strength was higher for the conventional dual resin cement (Variolink II) and the self-adhesive dual resin cement (RelyX U100), despite greater prevalence of premature loss of the sticks with the latter. Average bond strength was lower when the conventional self-polymerizing resin cement (Multilink) was used. Leucite-based and lithium disilicate-based cements present similar bond strength to the dentin with conventional dual resin cement (Variolink II) and a dual self-adhesive cement (RelyX U100).

  12. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  13. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  14. The effect of dentin desensitizer on shear bond strength of conventional and self-adhesive resin luting cements after aging.

    PubMed

    Stawarczyk, B; Hartmann, R; Hartmann, L; Roos, M; Ozcan, M; Sailer, I; Hämmerle, C H F

    2011-01-01

    This study tested the impact of Gluma Desensitizer on the shear bond strength (SBS) of two conventional (RelyX ARC, Panavia 21) and two self-adhesive (RelyX Unicem, G-Cem) resin luting cements after water storage and thermocycling. Human third molars (N=880) were embedded in acrylic resin. The buccal dentin was exposed. Teeth were randomly divided into four main groups, and the following cements were adhered: 1) RelyX ARC, 2) Panavia 21, 3) RelyX Unicem, and 4) G-Cem. In half of the teeth in each group, dentin was treated with Gluma Desensitizer. In the conventional cement groups, the corresponding etchant and adhesive systems were applied. SBS of the cements was tested after 1 hour (initial); at 1, 4, 9, 16, and 25 days of water storage; and at 1, 4, 9, 16, and 25 days of thermocycling. SBS data were analyzed by one-way analysis of variance (ANOVA); this was followed by the post hoc Scheffé test and a t-test. Overall, the highest mean SBS (MPa) was obtained by RelyX ARC (ranging from 14.6 ± 3.9 to 17.6 ± 5.2) and the lowest by Panavia 21 in combination with Gluma Desensitizer (ranging from 0.0 to 2.9 ± 1.0). All tested groups with and without desensitizer showed no significant decrease after aging conditions compared with baseline values (p>0.05). Only the Panavia 21/Gluma Desensitizer combination showed a significant decrease after 4 days of thermocyling compared with initial values and 1 day thermocycling. Self-adhesive cements with Gluma Desensitizer showed increased SBS after aging conditions (ranging from 7.4 ± 1.4 to 15.2 ± 3) compared with groups without desensitizer (ranging from 2.6 ± 1.2 to 8.8 ± 2.9). No cohesive failures in dentin were observed in any of the test groups. Although self-adhesive cements with and without desensitizer presented mainly adhesive failures after water storage (95.8%) and thermocyling (100%), conventional cement (RelyX ARC) showed mainly mixed failures (90.8% and 89.2%, after water storage and thermocyling, respectively

  15. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  16. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Youm, Seung-Hyun; Jung, Kyoung-Hwa; Son, Sung-Ae; Kwon, Yong-Hoon

    2015-01-01

    PURPOSE The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (µTBS) of self-adhesive resin cements. MATERIALS AND METHODS Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and µTBS test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest µTBS in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the µTBS of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin. PMID:26330979

  17. Evaluation of ISO 4049: water sorption and water solubility of resin cements.

    PubMed

    Müller, Johannes A; Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 μg mm(-3) except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 μg mm(-3) ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 μg mm(-3) and -1.9 ± 0.13 μg mm(-3) , respectively). All other cements attained positive values in the range of 0.4-0.8 μg mm(-3) . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values.

  18. The impact of endodontic irrigating solutions on the push-out shear bond strength of glass fiber posts luted with resin cements.

    PubMed

    Bueno, Carlos Eduardo da Silveira; Pelegrine, Rina Andrea; Silveira, Cláudia Fernandes de Magalhães; Bueno, Vanessa Castro Pestana da Silveira; Alves, Vanessa de Oliveira; Cunha, Rodrigo Sanches; Pereira, Gisele Damiana da Silveira; Paulillo, Luis Alexandre Maffei Sartini

    2016-01-01

    Resin-based restorative materials, widely used to cement posts, may be influenced by irrigants used during endodontic chemical-mechanical preparation. This study evaluated the impact of endodontic irrigating solutions and adhesive cement systems on the push-out shear bond strength of glass fiber posts to root dentin. Ninety-six bovine incisors were divided into 12 groups (4 irrigants × 3 resin cements; n = 8). Prepared canals were irrigated with saline solution, 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, or 2% chlorhexidine gel, and posts were cemented with RelyX ARC, Panavia F, or RelyX U100. The bond strength was evaluated by means of the push-out test, and results were subjected to analysis of variance. The mean bond strength observed for the combination of 5.25% NaOCl irrigant and RelyX U100 cement was significantly lower (8.82 MPa) than the values found for the other groups (P < 0.05). The other combinations of irrigating solution and resin cement had no adverse effect on the bond strength of the glass fiber posts to dentin.

  19. Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images

    PubMed Central

    Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  20. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    PubMed

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (p<0.05) compared to the U100, except when EDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  1. Effect of silane type and air-drying temperature on bonding fiber post to composite core and resin cement.

    PubMed

    de Rosatto, Camila Maria Peres; Roscoe, Marina Guimarães; Novais, Veridiana Resende; Menezes, Murilo de Sousa; Soares, Carlos José

    2014-01-01

    This study evaluated the influence of silane type and temperature of silane application on push-out bond strength between fiberglass posts with composite resin core and resin cement. One hundred and sixty fiberglass posts (Exacto, Angelus) had the surface treated with hydrogen peroxide 24%. Posts were divided in 8 groups according to two study factors: air-drying temperature after silane application (room temperature and 60 ºC) and silane type: three pre-hydrolyzed--Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE) and one two-component silane--Silane Coupling Agent (Dentsply). The posts (n=10) for testing the bond strength between post and composite core were centered on a cylindrical plastic matrix and composite resin (Filtek Z250 XT, 3M ESPE) that was incrementally inserted and photoactivated. Eighty bovine incisor roots (n=10) were prepared for testing the bond strength between post and resin cement (RelyX U100, 3M ESPE) and received the fiberglass posts. Push-out test was used to measure the bond strength. Data were analyzed by two-way ANOVA followed by Tukey's test (α=0.05). ANOVA revealed that temperature and silane had no influence on bond strength between composite core and post. However, for bond strength between post and resin cement, the temperature increase resulted in a better performance for Silane Coupling Agent, Silano and RelyX Ceramic Primer. At room temperature Silane Coupling Agent showed the lowest bond strength. Effect of the warm air-drying is dependent on the silane composition. In conclusion, the use of silane is influenced by wettability of resinous materials and pre-hydrolyzed silanes are more stable compared with the two-bottle silane.

  2. A study of self-adhesive resin cements for bonding to silver-palladium-copper-gold alloy -- effect of including primer components in cement base.

    PubMed

    Muraguchi, Koichi; Minami, Hiroyuki; Minesaki, Yoshito; Suzuki, Shiro; Tanaka, Takuo

    2011-01-01

    This study investigated the efficacies of adhesive resin cements (Clearfil SA Luting, Maxcem, G-CEM, RelyX Unicem Clicker, Vitremer Paste) for bonding to Ag-Pd-Cu-Au alloy not surface-pretreated with metal primer. For control, Panavia F 2.0 -developed for use with a proprietary metal primer, Alloy Primer- was tested with and without metal primer application. Pairs of alloy disks (10.0 and 8.0 mm in diameters, 3.0 mm thickness) were air-abraded with alumina and bonded with one of the cements. Shear bond strengths (SBSs) were measured before and after 50,000 times of thermocycling. Among Maxcem, RelyX Unicem Clicker and the control, there were no statistical differences in SBS before and after thermocycling. After thermocycling, Clearfil SA Luting exhibited the highest SBS among all the cements. Results showed that Clearfil SA Luting, Maxcem, and RelyX Unicem Clicker were efficacious for bonding to Ag-Pd-Cu-Au alloy after air abrasion surface treatment for the latter.

  3. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  4. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    PubMed Central

    Formaggio, Stephanie Ellen Ferreira; Zambelli, Lígia França Aires; Palialol, Alan Rodrigo Muniz; Marchi, Giselle Maria; Saraceni, Cintia Helena Coury; de Oliveira, Marcelo Tavares

    2016-01-01

    Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and 20 J/cm2) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length × 2 mm in width × 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent. PMID:27847748

  5. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation.

  6. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  7. The effect of curing light and chemical catalyst on the degree of conversion of two dual cured resin luting cements.

    PubMed

    Souza-Junior, Eduardo José; Prieto, Lúcia Trazzi; Soares, Giulliana Panfiglio; Dias, Carlos Tadeu dos Santos; Aguiar, Flávio Henrique Baggio; Paulillo, Luís Alexandre Maffei Sartini

    2012-01-01

    The aim of this study was to evaluate the influence of different curing lights and chemical catalysts on the degree of conversion of resin luting cements. A total of 60 disk-shaped specimens of RelyX ARC or Panavia F of diameter 5 mm and thickness 0.5 mm were prepared and the respective chemical catalyst (Scotchbond Multi-Purpose Plus or ED Primer) was added. The specimens were light-cured using different curing units (an argon ion laser, an LED or a quartz-tungsten-halogen light) through shade A2 composite disks of diameter 10 mm and thickness 2 mm. After 24 h of dry storage at 37°C, the degree of conversion of the resin luting cements was measured by Fourier-transformed infrared spectroscopy. For statistical analysis, ANOVA and the Tukey test were used, with p ≤ 0.05. Panavia F when used without catalyst and cured using the LED or the argon ion laser showed degree of conversion values significantly lower than RelyX ARC, with and without catalyst, and cured with any of the light sources. Therefore, the degree of conversion of Panavia F with ED Primer cured with the quartz-tungsten-halogen light was significantly different from that of RelyX ARC regardless of the use of the chemical catalyst and light curing source. In conclusion, RelyX ARC can be cured satisfactorily with the argon ion laser, LED or quartz-tungsten-halogen light with or without a chemical catalyst. To obtain a satisfactory degree of conversion, Panavia F luting cement should be used with ED Primer and cured with halogen light.

  8. Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro.

    PubMed

    Lührs, A-K; Guhr, S; Günay, H; Geurtsen, W

    2010-04-01

    Self-adhesive resin cements should ease the placement of dental restorations. The purpose of this study was to evaluate their shear bond strength to enamel and dentin. Sixty molars were randomly assigned to 12 test groups (each n = 10), and the approximal surfaces were ground flat to get an enamel and dentin surface with a diameter of at least 4 mm. Ceramic specimens were bonded to the surfaces with either Variolink/Syntac Classic (VSC), Panavia F2.0 (PAF), RelyX Unicem (RLX), Maxcem Elite (MCE), iCem (IC), or an experimental self-adhesive resin cement (EXP). The shear bond strength (crosshead speed: 1 mm/min) was measured after 24-h storage in NaCl (37 degrees C). The fracture modes were determined with a stereomicroscope (magnification, 8-50-fold). VSC had the highest shear bond strength within the enamel groups (42.9 +/- 9 MPa) and IC the lowest (10.5 +/- 4.2 MPa, p < 0.001). The highest dentin shear bond strength was determined for VSC (39.2 +/- 8.9 MPa, p < 0.001) and the lowest for EXP (7.8 +/- 3.9 MPa, p < 0.001). Self-adhesive resin cements fractured mainly between resin and enamel or dentin. The shear bond strength of self-adhesive resin cements was inferior compared to conventional composite resin cements.

  9. The effect of sodium hypochlorite and resin cement systems on push-out bond strength of cemented fiber posts

    PubMed Central

    Alkhudhairy, Fahad I.; Bin-Shuwaish, Mohammed S.

    2016-01-01

    Objective: This study investigated the effect of different endodontic irrigant solutions and resin cement systems on the bond strength of cemented fiber posts. Methods: Sixty human single-rooted anterior teeth were sectioned transversely at 2 mm incisal to the cemento-enamel junction (CEJ). The roots were treated endodontically, and teeth were distributed into six groups: group A, includes 5.25%NaOCl irrigant with MultiCore Flow Core Build-Up material; group B, includes 5.25%NaOCl irrigant with RelyX-Unicem Self-Adhesive Universal Resin Cement; group C, includes 2.5% NaOCl irrigant with MultiCore Flow; group D, includes 2.5%NaOCl irrigant with RelyX-Unicem; group E, includes NaCl, irrigant with MultiCore Flow; and group F, includes NaCl irrigant with RelyX-Unicem. Universal tapered fiber posts (No. 3 RelyX Fiber Post) were cemented, and roots were sectioned into cervical and apical segments. Samples were then subjected to a push-out bond strength test and failure modes were examined. Results: The mean push-out bond strength for group D showed the highest mean value (20.07 MPa), while the lowest value was found in group A. There was a significant difference between groups with regard to the irrigants used (p<0.001), however, no significant difference was found between groups with regard to resin systems (p>0.05). The total mean push-out bond strength of the cervical segments was found to be significantly higher than the apical segments (p<0.001). Conclusion: The irrigant solution have a clear influence on the push-out bond strength of the fiber posts regardless of the cement used. Both adhesive resin systems showed similar bonding strength. PMID:27648037

  10. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  11. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    PubMed Central

    Liu, Chang; Liu, Hong; Qian, Yue-Tong; Zhu, Song; Zhao, Su-Qian

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts. PMID:24177170

  12. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond

  13. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    PubMed Central

    NOVAIS, Veridiana Resende; RAPOSO, Luís Henrique Araújo; de MIRANDA, Rafael Resende; LOPES, Camila de Carvalho Almança; SIMAMOTO, Paulo Cézar; SOARES, Carlos José

    2017-01-01

    Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick. PMID:28198977

  14. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage.

    PubMed

    Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian

    2016-10-01

    The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.

  15. Simulated Wear of Self-Adhesive Resin Cements.

    PubMed

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  16. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  17. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  18. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    PubMed Central

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  19. The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements

    PubMed Central

    Aguiar, Thaiane Rodrigues; André, Carolina Bosso; Ambrosano, Gláucia Maria Boni; Giannini, Marcelo

    2014-01-01

    Purpose. To investigate the effect of light activation on the water sorption (WS) and solubility (SL) of resin cements after 24 h and 7 days. Methods. Disk-shaped specimens were prepared using five dual-polymerized cements (four self-adhesive [RelyX Unicem, MaxCem, SeT and G-Cem] and one conventional [Panavia F 2.0]) and divided according to the curing mode (direct light exposure or self-cure) and water immersion period (24 h or 7 days). Specimens were dry-stored and weighed daily until a constant mass was recorded (M1). Then, specimens were stored in water for either 24 h or 7 days and immediately weighed (M2). After desiccation, specimens were weighed again until a constant mass was achieved (M3). WS and SL were calculated and statistically analyzed by Kruskal-Wallis, Dunn and Mann-Whitney U tests (α = 0.05%). Results. There was a significant increase in WS for all products after one-week immersion in water. The highest water uptake was observed for autopolymerized groups. Extended water immersion significantly affected the SL for most of autopolymerized cements. Significant differences between products were observed in both tests. Conclusions. The curing mode and the water immersion period may affect the mechanical stability of the resin cements, and these differences appear to be product-dependent. PMID:27379329

  20. The effect of repeated bonding on the shear bond strength of different resin cements to enamel and dentin

    PubMed Central

    Atsü, Saadet Sağlam

    2017-01-01

    PURPOSE Cementation failures of restorations are frequently observed in clinical practice. The purpose of this study is to compare the effect of initial and repeated bonding on the bond strengths of different resin cements to enamel and dentin. MATERIALS AND METHODS Ninety human maxillary central incisors were bisected longitudinally. The 180 tooth halves were divided into 2 groups (n = 90) for enamel and dentin bonding. The enamel and dentin groups were further divided into 3 groups (n = 30) for different resin cement types. Composite resin (Filtek Ultimate) cylinders (3 × 3 mm) were prepared and luted to enamel and dentin using Variolink II (Group V), RelyX ARC (Group R), or Panavia F 2.0 (Group P) resin cement. After 24 hours, initial shear bond strengths of the resin cements to enamel and dentin were measured. Using new cylinders, the specimens were de-bonded and re-bonded twice to measure the first and the second bond strengths to enamel and dentin. Failure modes and bonding interfaces were examined. Data were statistically analyzed. RESULTS Initial and repeated bond strengths to enamel were similar for all the groups. The first (15.3 ± 2.2 MPa) and second (10.4 ± 2.2 MPa) bond strengths to dentin were significantly higher in Group V (P<.0001). Second bond strengths of dentin groups were significantly lower than initial and first bond strengths to dentin (P<.0001). CONCLUSION All resin cements have similar initial and repeated bond strengths to enamel. Variolink II has the highest first and second bond strength to dentin. Bond strength to dentin decreases after the first re-bonding for all resin cements. PMID:28243393

  1. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  2. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    PubMed Central

    do Valle, Accácio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; Só, Marcus-Vinícius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer’s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond™ FL, Kerr); G3 - a 3-step total-etch adhesive system (Adper™ Scotchbond™ Multi-Purpose, 3M ESPE); G4 - a 2-step total-etch adhesive system (Adper™ Single Bond 2, 3M ESPE); G5 - a single-step self-etching system (Bond Force, Tokuyama); and G6 - universal bonding system (Single Bond Universal, 3M ESPE). Then, cylinders made of self-adhesive resin cement with polypropylene matrix was cemented in all groups (RelyX U200, 3M ESPE). Bond strength was assessed by submitting the specimens to micro-shear test and was characterized according to the fracture pattern observed through optical microscopy. Results The results were submitted to the Kruskal-Wallis test, which indicated a statistically significant difference between the groups (p=0.04), and Tukey’s multiple comparisons, which indicated a statistically significant difference between G1 and G3 (p<0.05). The microscopic analysis revealed a high prevalence of adhesive failures, followed by mixed fractures, and cohesive failures in the dentin. Conclusions The use of a previous dentin hybridization protocol is able to increase adhesive bonding resistance of self-adhesive resin cement, especially when used Adper™ Scotchbond™ Multi-Purpose system. Key words:Bonding, self-adhesive resin cement, adhesive systems, microshear. PMID:27703609

  3. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  4. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  5. Effect of Steam Autoclaving on the Tensile Strength of Resin Cements Used for Bonding Two-Piece Zirconia Abutments.

    PubMed

    Fadanelli, Marcos Alexandre; Amaral, Flávia Lucisano Botelho do; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso; Sotto-Maior, Bruno Salles; França, Fabiana Mantovani Gomes

    2017-04-01

    The purpose of this study was to evaluate the effects of steam autoclave sterilization on the tensile strength of two types of resin cements used to bond customized CAD/CAM zirconia abutments onto titanium bases. Forty sets of zirconia abutments cemented to screwed titanium bases of implants analogs were divided into 4 groups (n = 10). Two groups were treated with a conventional chemically activated resin cement (ML, Multilink Ivoclar Vivadent) and the other two groups with a self-adhesive dual resin cement (RelyX U200, 3M ESPE). One group from each cement was submitted to steam autoclaving. The autoclave sterilization cycle was performed after 72 hours of cementation for 15 minutes at 121°C and 2.1 Kgf/cm(2). The samples were subjected to tensile strength testing in a universal testing machine (200 Kgf, 0.5 mm/min), from which the means and standard deviations were obtained in Newtons. Results showed (via ANOVA and Tukey's test; α = 0.05) that in the absence of steam autoclaving, no difference was observed in tensile strength between the cements tested: ML: 344.87 (93.79) and U200: 280 (92.42) (P = .314). Steam autoclaving, however, significantly increased tensile strength for the ML: 465.42 (87.87) compared to U200: 289.10 (49.02) (P < .001). Despite the significant increase in the ML samples (P = .013), autoclaving did not affect the tensile strength of the U200 samples (P > 0.05). The authors concluded that steam autoclaving increases the mean tensile strength of the chemically activated cement compared to the dual-cure self-adhesive cement. The performance of both cements evaluated was similar if the sterilization step was disconsidered.

  6. Push-out bond strengths of fiber-reinforced composite posts with various resin cements according to the root level

    PubMed Central

    Chang, Hoon-Sang; Noh, Young-Sin; Lee, Yoon; Min, Kyung-San

    2013-01-01

    PURPOSE The aim of this study was to determine whether the push-out bond strengths between the radicular dentin and fiber reinforced-composite (FRC) posts with various resin cements decreased or not, according to the coronal, middle or apical level of the root. MATERIALS AND METHODS FRC posts were cemented with one of five resin cement groups (RelyX Unicem: Uni, Contax with activator & LuxaCore-Dual: LuA, Contax & LuxaCore-Dual: Lu, Panavia F 2.0: PA, Super-Bond C&B: SB) into extracted human mandibular premolars. The roots were sliced into discs at the coronal, middle and apical levels. Push-out bond strength tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min, and the failure aspect was analyzed. RESULTS There were no significant differences (P>.05) in the bond strengths of the different resin cements at the coronal level, but there were significant differences in the bond strengths at the middle and apical levels (P<.05). Only the Uni and LuA cements did not show any significant decrease in their bond strengths at all the root levels (P>.05); all other groups had a significant decrease in bond strength at the middle or apical level (P<.05). The failure aspect was dominantly cohesive at the coronal level of all resin cements (P<.05), whereas it was dominantly adhesive at the apical level. CONCLUSION All resin cement groups showed decreases in bond strengths at the middle or apical level except LuA and Uni. PMID:24049569

  7. Effects of curing protocol and storage time on the micro-hardness of resin cements used to lute fiber-reinforced resin posts

    PubMed Central

    RAMOS, Marcelo Barbosa; PEGORARO, Thiago Amadei; PEGORARO, Luiz Fernando; CARVALHO, Ricardo Marins

    2012-01-01

    Objectives To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-ESPE and Panavia F 2.0®, Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor® - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent. PMID:23138743

  8. Effects of curing protocols on fluid kinetics and hardness of resin cements.

    PubMed

    Svizero, Nádia da Rocha; Silva, Marília Santos; Alonso, Roberta Caroline Bruschi; Rodrigues, Flávia Pires; Hipólito, Vinícius Di; Carvalho, Ricardo Marins; D'Alpino, Paulo Henrique Perlatti

    2013-01-01

    The effects of polymerization protocols on water sorption/solubility, the diffusion coefficient (D), the flux (J), and the hardness (KH) of two resin cements were evaluated. The materials were manipulated and divided into three groups (n=6) according to the curing protocol: PA=photoactivation (40 s); DP=delayed photoactivation (10 min self-curing plus 40 s photoactivated); CA=chemical activation. After desiccation, the specimens were weighed, stored in water (37ºC), evaluated over 28-days, and hardness recorded. Chemical activation resulted in lower net water uptake, D, and J for RelyX ARC (RX). For Variolink II (VL), CA yielded equivalent D and lower J; however, photoactivation resulted in lower net water uptake. Hardness of VL was less affected by the water storage, irrespective of the polymerization protocol. Considering the water diffusion parameters, VL demonstrated immediate photoactivation dependence; for RX, a chemical activation. Different polymerization protocols affect the fluid kinetics and the hardness of the resin cements tested.

  9. Degree of conversion of a resin cement light-cured through ceramic veneers of different thicknesses and types.

    PubMed

    Runnacles, Patrício; Correr, Gisele Maria; Baratto Filho, Flares; Gonzaga, Carla Castiglia; Furuse, Adilson Yoshio

    2014-01-01

    During the cementation of ceramic veneers the polymerization of resin cements may be jeopardized if the ceramics attenuate the irradiance of the light-curing device. The aim of this study was to evaluate the effect of different types and thicknesses of ceramic veneers on the degree of conversion of a light-cured resin-based cement (RelyX Veneer). The cement was light-cured after interposing ceramic veneers [IPS InLine, IPS Empress Esthetic, IPS e.max LT (low translucency) and IPS e.max HT (high translucency) - Ivoclar Vivadent] of four thicknesses (0.5 mm, 1.0 mm, 1.5 mm and 2.0 mm). As control, the cement was light-cured without interposition of ceramics. The degree of conversion was evaluated by FTIR spectroscopy (n=5). Data were analyzed with one-way ANOVA and Tukey's test (α=0.05). Significant differences were observed among groups (p<0.001). The degree of conversion was similar to the control for all light-cured groups with interposition of ceramics of 0.5 mm and 1.0 mm (p>0.05). Among 1.5-mm-thick veneers, IPS e.max LT was the only one that showed different results from the control (p<0.05). At the thickness of 2.0 mm, only the IPS e.max LT and HT veneers were able to produce cements with degrees of conversion similar to the control (p>0.05). The degree of conversion of the evaluated light-cured resin cement depends on the thickness and type of ceramics employed when veneers thicker than 1.5 mm are cemented.

  10. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  11. Bond strength of a self-adhesive resin cement to enamel and dentin.

    PubMed

    Fernandes, Virgílio Vilas Boas; Rodrigues, José Roberto; da Silva, João Maurício Ferraz; Pagani, Clovis; Souza, Rodrigo Othávio Assunção

    2015-01-01

    The purpose of this study was to evaluate the influence of surface treatments and thermocycling on the microtensile bond strength (μTBS) of self-adhesive resin cement to human enamel and dentin. Eighty human third molars were selected. The crowns of 40 teeth were transversally sectioned, exposing the mid-coronal dentin. The buccal surfaces of the other 40 teeth were grinded to obtain a 5 mm2 flat enamel area. Eighty resin blocks were produced and cemented to the dental surfaces with RelyX Unicem, then grouped according to the surface treatment (n=10): UnicemC with no conditioning, UnicemP with 37% phosphoric acid/15 s, and UnicemPA with 37% phosphoric acid/15 s plus adhesive bonding (Single Bond 2). There were two control groups, one for enamel and the other for dentin: VR with 37% phosphoric acid/15 s plus adhesive bonding (Single Bond 2) plus Variolink II. The enamel-dentin resin cement blocks were sectioned to produce non-trimmed bar specimens, which were divided into two storage conditions: dry, μTBS immediately after cutting; TC (5,000 x; 5°C/55°C). The samples were submitted to μTBS, and data were statistically analyzed by ANOVA and Tukey's test. The results showed statistical differences between UnicemC and the others. UnicemPA and VR showed better bond strength to dentin during the period before and after thermocycling, respectively. For the enamel, UnicemP showed better bond strength for both situations. Only for UnicemPA did the thermocycling significantly decrease the bond strength values. Within the limits of this study, it could be concluded that the bond strength is influenced by the surface treatments, and that thermocycling decreases the bond strength of all groups, but significantly only for UnicemPA.

  12. Self-adhesive resin cements - chemistry, properties and clinical considerations.

    PubMed

    Ferracane, J L; Stansbury, J W; Burke, F J T

    2011-04-01

    Self-adhesive resin cements were introduced to dentistry within the past decade but have gained rapidly in popularity with more than a dozen commercial brands now available. This review article explores their chemical composition and its effect on the setting reaction and adhesion to various substrates, their physical and biological properties that may help to predict their ultimate performance and their clinical performance to date and handling characteristics. The result of this review of self-adhesive resin cements would suggest that these materials may be expected to show similar clinical performance as other resin-based and non-resin based dental cements.

  13. Dentin bonding agents and resin cements--current status.

    PubMed

    Woolsey, G; O'Mahony, A; Hansen, P A

    2000-01-01

    Contemporary restorative dentistry is a rapidly evolving science which challenges the progressive clinician with a plethora of "new and improved" products. Sound product choices should be couched in the prudent consideration of well conducted in vitro and in vivo product research. This review shall list the most recent product developments in dentin bonding agents (fifth generation agents), resin-containing dental cements and the newest generation of dental cements i.e., resin-ionomer dental cements.

  14. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or

  15. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    PubMed Central

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  16. Cytotoxicity of commonly used luting cements -An in vitro study.

    PubMed

    Trumpaite-Vanagiene, Rita; Bukelskiene, Virginija; Aleksejuniene, Jolanta; Puriene, Alina; Baltriukiene, Daiva; Rutkunas, Vygandas

    2015-01-01

    The study aimed to 1) evaluate the cytotoxicity of luting cements: Hoffmann's Zinc Phosphate (Hoffmann's ZP), GC Fuji Plus Resin Modified Glass Ionomer (Fuji Plus RMGI) and 3M ESPE RelyX Unicem Resin Cement (RelyX Unicem RC) and 2) test if pre-washing reduces the cements' cytotoxicity. In vitro human gingival fibroblast (HGF) culture model was chosen. The cytotoxicity was evaluated by MTT test, the cell viability -by staining the cells with AO/EB dye mixture. The means±SD of Cell Survival Ratio (CSR%) were compared among different cement types under two testing conditions, with or without cement pre-washing. The CSR%s were compared by ANOVA and linear multiple regression (LMR). Hoffmann's ZPC was less cytotoxic, while Fuji Plus RMGIC and RelyX Unicem RC were more cytotoxic (ANOVA, p<0.001). The type of cement and cement pre-washing jointly explained 90% of cell survival (LMR, p<0.001, adjusted squared R=0.889). The commonly used luting cements such as Hoffmann's ZP, Fuji Plus RMGI and RelyX Unicem RC may have a cytotoxic potential.

  17. An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement.

    PubMed

    Zhang, Yanli; Sun, Ting; Liu, Ruoyu; Feng, Xiaoli; Chen, Aijie; Shao, Longquan

    2014-01-01

    The effect of zirconia surface treatment by mesoporous zirconia coating on the microtensile bond strength (MTBS) between zirconia and resin cement was investigated in this work. 160 zirconia specimens were prepared and divided into four groups according to surface treatments: (1) airborne-particle-abrasion treatment (APA); (2) glass infiltration and hydrofluoric acid treatment (GI+HF); (3) mesoporous zirconia coating (MZ); and (4) no treatment (C). The as-prepared zirconia specimens were bonded using Panavia F2.0 and RelyX Unicem. The MTBS values were tested using a universal testing machine, and data were analyzed using ANOVA and SNK methods (a=0.05). The MTBS values obtained after GI+HF and MZ treatments were significantly higher than those obtained after APA and C treatments (P<0.05), especially for samples cemented with Panavia F2.0. The results reveal that zirconia surface treatments using GI+HF and MZ yield higher bond strength than those using APA or C, regardless of the resin cements.

  18. Adhesion of different resin cements to enamel and dentin.

    PubMed

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  19. Effects of the application techniques of self-adhesive resin cements on the interfacial integrity and bond strength of fiber posts to dentin

    PubMed Central

    Pedreira, Ana Paula Ribeiro do Vale; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega Rodrigues; Chaves, Sasha Braun; Wang, Linda; Hilgert, Leandro; Garcia, Fernanda Cristina Pimentel

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of an application technique of a glass-fiber post using self-adhesive resin cements on the push-out bond strength and the presence of bubbles in the root thirds. The cements were either applied according to the manufacturer's instruction or using a commercial delivering system (Centrix), at which the cement pastes were collected and applied after manipulation. Material and Methods: Self-adhesive resin cements (RelyX U200/3M ESPE-U200; Maxcem Elite/Kerr-MAX; Clearfil SA Cement/Kuraray-CSA) and a conventional cement (RelyX ARC/3M ESPE-ARC) were used to cement a post and applied either based on the manufacturer's instructions or using a Centrix syringe to deliver the cements directly onto the post of choice, or directly into canal. The roots were scanned with a micro-computed tomography (μCT) and then sectioned into nine 1-mm thick slices for a push-out bond strength test. The μCT images showed the percentage of bubbles in the root thirds (cervical, medium, and apical). Data were analyzed with three-way ANOVA/Tukey (α=0.05). Results: Triple interaction was not significant (p>0.05). The interaction “material” vs “root third” was not significant. A significant interaction was observed between “material” vs “application technique” (p<0.05). For ARC, U200, and MAX, significantly lower percentages of bubbles were observed when the Centrix syringe delivered the cements. Equivalent percentages of voids were observed for CSA, irrespective of the application technique (p>0.05). Significantly higher bond strength was observed when the self-adhesive resin cements were applied using the Centrix delivery system, in comparison with the manufacturer's instructions (p<0.05). Bond strength varied with the root third: cervical>medium>apical (p<0.05). No correlations were found between the bond strength and voids. Conclusions: Bond strength and voids are negatively influenced by the conventional application technique for

  20. Early hardness and shear bond strength of dual-cure resin cement light cured through resin overlays with different dentin-layer thicknesses.

    PubMed

    Chang, H-S; Kim, J-W

    2014-01-01

    The purpose of this study was to investigate whether dentin-layer thickness of resin overlays could affect the early hardness and shear bond strength of dual-cure resin cement (DCRC, RelyX ARC) after light curing with light curing units (LCUs) of various power densities: Optilux 360 (360), Elipar Freelight 2 (FL2), and Elipar S10 (S10). Resin overlays were fabricated using an indirect composite resin (Sinfony) with a dentin layer, an enamel layer, and a translucent layer of 0.5 mm thickness each (0.5-0.5-0.5) or of 0.2 mm, 0.5 mm, and 0.8 mm thickness (0.2-0.5-0.8), respectively. The DCRC was light cured for 40 seconds through the overlays, and surface hardness and shear bond strength to bovine dentin were tested 10 minutes after the start of light curing. Surface hardness was higher when the DCRC was light cured through the 0.2-0.5-0.8 combination than when the DCRC was light cured through the 0.5-0.5-0.5 combination with all LCUs. The ratio of upper surface hardness of DCRC light cured through resin overlays relative to the upper surface hardness of DCRC light cured directly was more than 90% only when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination. The shear bond strength value was higher when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination than when light cured with S10 through the 0.5-0.5-0.5 combination. This study indicates that reducing the dentin-layer thickness while increasing the translucent-layer thickness of resin inlays can increase the photopolymerization of DCRC, thereby increasing the early bond strength of resin inlays to dentin.

  1. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    PubMed Central

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  2. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials.

    PubMed

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 37°C storage in an incubator, Knoop hardness measurements were obtained at the bottom. The data were analyzed with three-way ANOVA, t-test, and one-way ANOVA. Results. The KHN of NX3 was of significantly higher than that of Variolink Veneer (P < 0.05). The KHN of resin cement polymerized under different ceramic types and thicknesses was significant difference (P < 0.05). Conclusion. Resin cements polymerized under different ceramic materials and thicknesses showed statistically significant differences in KHN.

  3. Evaluation of TEGDMA leaching from four resin cements by HPLC

    PubMed Central

    Altintas, Subutay Han; Usumez, Aslihan

    2012-01-01

    Objective The aim of this study was to evaluate the elution of TEGDMA from dual cured resin cements, used for bonding of ceramic restoration by high performance liquid chromatography (HPLC). Methods: Forty freshly extracted caries and restoration free molar teeth used in this study. Standardized Class I preparations were prepared in all teeth. Ceramic inlays were cemented with one of the dual cured resin cements (Variolink II, Rely X ARC, Rely X Unicem and Resilute). After cementation, specimens were stored in 75% ethanol solution. HPLC was used to analyze the amounts of TEGDMA in different time intervals. Two-way ANOVA and Tukey HSD tests were used to evaluate the results (P<.05). Results: The amount of TEGDMA eluted from Resilute was the highest and the amount of TEG-DMA eluted from Rely X Unicem was the lowest (P<.05). The total amount of monomers was the highest after 21 days (P<.05). Conclusion: In the case of resin cements, elution of TEGDMA was the highest in Resilute and lowest in Rely X Unicem. The amount of TEGDMA eluted from resin cements was influenced by the time. PMID:22904653

  4. The evaluation of dual cement resins in orthodontic bonding.

    PubMed

    Smith, R T; Shivapuja, P K

    1993-05-01

    Dual-cement resins are composite resins that are both light activated and chemically cured. They can be cured completely with a visible light source or by the catalyst and base reaction of the material. With the control of setting time, dual cements appear to offer clinicians advantages in orthodontic bonding. The purposes of the present research are to compare various dual cements in regard to orthodontic bonding and to evaluate them in relation to currently used chemically cured and light-cured composite resins for bonding stainless steel mesh-backed orthodontic brackets. Seven currently available orthodontic bonding systems (three light cured and four chemically cured) and three dual cements were evaluated. Each of the 10 groups contained 15 noncarious mandibular incisors. Mandibular incisor brackets were bonded to the teeth in accordance with the manufacturer's recommendation. After bonding, the teeth were stored for 5 days in water at 37 degrees C. An Instron machine (Instron Corp., Canton, Mass.) was used to test samples. All samples were compared with Concise orthodontic bonding composite (3M, St. Paul, Minn.). The results of this investigation show that it is possible to bond solid, mesh-backed metal orthodontic brackets to teeth with a dual cement. The shear bond strengths of the dual cements, as tested in the laboratory, should be adequate to withstand normal orthodontic forces. Increased control of the setting time of the dual cements will allow the clinician more time to correctly position brackets and to remove excess resin before curing. In addition, the clinician can be assured of complete polymerization with the chemical properties of the dual cement resins.

  5. Regional bond strengths to root canal dentin of fiber posts luted with three cementation systems.

    PubMed

    Gomes, Giovana Mongruel; Gomes, Osnara Maria Mongruel; Reis, Alessandra; Gomes, João Carlos; Loguercio, Alessandro Dourado; Calixto, Abraham Lincoln

    2011-01-01

    This study evaluated the influence of the cementation system on the regional push-out bond strength and failure pattern of fiber posts to radicular dentin. The roots of 48 extracted human incisors were prepared and divided into 3 groups (n = 16), according to the cementation system: AdperScotchbond Multi-Purpose + resin cement RelyX ARC (SBMP+ARC); Adper SingleBond 2 + RelyX ARC (SB+ARC) and; RelyX U100 self-adhesive resin cement (U100). The posts were cemented as per manufacturer's instructions for each cementation system. After 1 week, the roots were sectioned transversely into 6 discs. Two discs were obtained from the cervical, middle and apical thirds and the push-out test was carried out. The failure pattern was examined on all debonded specimens. The data were analyzed by two-way repeated measures ANOVA and Tukey's test. When U100 was used, no statistically significant difference (p>0.05) was observed among the different root regions. Statistically higher push-out bond strength values were detected in the cervical third for SBMP+ARC and SB+ARC (p<0.05). The U100 showed significantly more mixed failures than SBMP+ARC in the apical third (p<0.05). In conclusion, the self-adhesive cement RelyX U100 was the only cement not sensitive to the root canal region.

  6. Resin cementation of zirconia ceramics with different bonding agents.

    PubMed

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-03-04

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations.

  7. Resin cementation of zirconia ceramics with different bonding agents

    PubMed Central

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-01-01

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations. PMID:26019653

  8. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    PubMed Central

    CEKIC-NAGAS, Isil; ERGUN, Gulfem

    2011-01-01

    Objective The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods A total of 720 disc-shaped samples (1 mm height and 5 mm diameter) were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem). Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes), light-emitting diode (standard and exponential modes) and plasma arc (normal and ramp-curing modes) curing units through ceramic discs. Then the samples (n=8/per group) were stored dry in the dark at 37ºC for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV). For sorption and solubility tests; the samples were stored in a desiccator at 37ºC and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days) and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. Results Resin cement and light-curing unit had significant effects (p<0.05) on microhardness, diametral tensile strength, water solubility and sorption. However, no significant differences (p>0.05) were obtained with different modes of LCUs. Conclusion The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties. PMID:21710093

  9. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    PubMed Central

    Lee, Yoon; Kim, Jae-Hoon; Woo, Jung-Soo; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n = 16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P < 0.05). Thermocycling significantly reduced μSBS in SBU (22.49 MPa ± 4.11) (P < 0.05), but not in NC (20.68 MPa ± 4.60) and PC (28.77 MPa ± 3.52) (P > 0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling. PMID:26557660

  10. Multi-step adhesive cementation versus one-step adhesive cementation: push-out bond strength between fiber post and root dentin before and after mechanical cycling.

    PubMed

    Amaral, Marina; Rippe, Marilia Pivetta; Bergoli, Cesar Dalmolin; Monaco, Carlo; Valandro, Luiz Felipe

    2011-01-01

    This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.

  11. The effects of tooth preparation cleansing protocols on the bond strength of self-adhesive resin luting cement to contaminated dentin.

    PubMed

    Chaiyabutr, Yada; Kois, John C

    2008-01-01

    This in vitro study evaluated the bond strength of a self-adhesive luting cement after using four different techniques to remove surface contamination on dentin. Extracted human molars were flattened to expose the dentin surface and prepared for full crown preparation. Acrylic temporary crowns were fabricated and placed using temporary cement. The specimens were stored at room temperature with 100% relative humidity for seven days. Following removal of the temporary crowns, the specimens were randomly divided into four groups, and excess provisional cement was removed with (1) a hand instrument (excavator), (2) prophy with a mixture of flour pumice and water (3) aluminous oxide abrasion with a particle size of 27 microm at 40 psi and (4) aluminous oxide abrasion with a particle size of 50 microm at 40 psi. The microstructure morphology of the tooth surface was evaluated and residual materials were detected using SEM and EDS analysis of randomly selected specimens. The ceramics were treated with 9.5% hydrofluoric acid-etch and silanized to the prepared dentin prior to cementing with self-adhesive resin cement (RelyX Unicem, 3M ESPE). The shear bond strength was determined at a crosshead speed of 0.5 mm/minute. The results were analyzed with one-way ANOVA, followed by Tukey's test. Particle abrasion treatment of dentin with an aluminous oxide particle provided the highest values of bond strength, while hand instrument excavation was the lowest (p < 0.05). Aluminous oxide particle size did not significantly influence the bond strength at 40 psi. The use of low pressure and small particle abrasion treated dentin as a mechanical cleansing protocol prior to definitive cementation increased the bond strength of self-adhesive resin-luting cement to dentin following eugenol-containing temporary cement.

  12. The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations.

    PubMed

    Bolhuis, Peter; de Gee, Anton; Feilzer, Albert

    2005-01-01

    Clinical studies have shown that endodontically treated teeth restored with short posts or deficient ferrules show a high failure risk. This study. evaluated the influence of fatigue loading on the quality of the cement layer between prefabricated quartz coated carbon fiber posts with restricted length and the root canal wall in maxillary pre-molars. Two adhesive resin composite cements, chemical-cured Panavia 21 (Group 1) and dual-cured RelyX-ARC (Group 2), and one resin-modified glass-ionomer cement, chemical-cured RelyX (Group 3), delta were selected for this study. Post- and-core restorations were made on single-rooted human maxillary premolars from which the coronal sections were removed at the level of the proximal cemento-enamel junction (CEJ). Following endodontic treatment, a post-and-core restoration with 6-mm post length was prepared for each tooth. The posts were directly cemented into the root canal and, after applying an adhesive (Clearfil Photo Bond), they were built up with a core build-up composite (Clearfil Photo Core). For each group (n=8), half of the specimens were exposed to fatigue loading (10(6) load cycles) almost perpendicular to the axial axis (85 degrees), while the other half were used as the control. Three parallel, transverse root sections, 1.5-mm thick, were cut from each specimen at the apical, medial and coronal location. These sections were examined by Scanning Electron Microscopy (SEM) to evaluate the integrity of the cement layer, while the retention strength of the cemented post sections was determined with the push-out test. The multivariate results of MANOVA showed that the condition main effect (fatigue or control) was not significant (p=0.059); the two other main effects, type of cement and section location, were significant (p=0.001 and p=0.008). For both the push-out strength and SEM evaluation of the cement layer integrity, the results significantly improved from RelyX to RelyX-ARC to Panavia 21 and also from apical to

  13. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    PubMed Central

    Shafie, F.; Doozandeh, M.; Alavi, A.

    2010-01-01

    Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage. Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1 mm below the cemento-enamel junction. Indirect composite inlays were fabricated and the specimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: with chlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storage time. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20× stereomicroscope. Dye penetration was scored using 0–3 criteria. The data was analyzed using Kruskal-Wallis and complementary Dunn tests. Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05). There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6 months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033). In general, gingival margins showed more leakage than occlusal margins. Conclusion: Additionally, resin coating in self-etch (Panavia F2.0) and chlorhexidine application in etch-rinse (Nexus) resin cement reduced microleakage at gingival margins after storage. PMID:21998773

  14. Effect of adhesive resin cements and post surface silanization on the bond strengths of adhesively inserted fiber posts.

    PubMed

    Wrbas, Karl-Thomas; Altenburger, Markus Jörg; Schirrmeister, Jörg Fabian; Bitter, Kerstin; Kielbassa, Andrej Michael

    2007-07-01

    This study evaluated the tensile bond strengths and the effect of silanization of fiber posts inserted with different adhesive systems. Sixty DT Light Posts (size 1) were used. Thirty posts were pretreated with silane. The posts were cemented into form-congruent artificial root canals (12 mm) of bovine dentine. Six groups were formed: G1, Prime&Bond NT/Calibra; G2, Monobond-S+Prime&Bond NT/Calibra; G3, ED Primer/Panavia 21ex; G4, Monobond-S+ED Primer/Panavia 21ex; G5, RelyX Unicem; and G6, Monobond-S+RelyX Unicem. The mean (standard deviation) tensile bond strengths (megapascals) were 7.69 (0.85) for G1, 7.15 (1.01) for G2, 6.73 (0.85) for G3, 6.78 (0.97) for G4, 4.79 (0.58) for G5, and 4.74 (0.88) for G6. G1 achieved significantly higher bond strengths than G3 and G5; G3 had significantly higher values than G5 (P < .05; Scheffé procedure). Silanization had no significant effect (P > .05, one-way analysis of variance). Tensile bond strengths were significantly influenced by the type of resin cement. Silanization of fiber post surfaces seems to have no clinical relevance.

  15. Bonding Effectiveness of Two Adhesive Luting Cements to Glass Fiber Posts: Pull-Out Evaluation of Three Different Post Surface Conditioning Methods

    PubMed Central

    Calabrese, Marco

    2014-01-01

    The purpose of this study was to evaluate the bond strength at the post/resin-cement interface with 3 different surface treatments of glass fiber posts and with 2 different luting resin cements. Sixty glass fiber posts (RelyX Fiber Post) were randomly divided into 3 groups (n = 20) and were luted with a dual-polymerizing self-adhesive universal resin cement (RelyX Unicem) and with a dual-polymerizing resin cement (RelyX ARC). This was carried out in association with a dual-polymerizing adhesive (Scotchbond Multi-Purpose Plus) in simulated plexiglass root canals after receiving three different pretreatment procedures. A pull-out test was performed on each sample to measure bond strengths. Data were analyzed with two-way ANOVA. Two samples from each group were processed for SEM observations in order to investigate the morphologic aspect of the post/cement interface. Both resin cements demonstrated significant different bond strength values (P < 0.0001). The surface treatment result was also statistically significant (P = 0.0465). SEM examination showed a modification of the post surface after pretreatment with methyl methacrylate. The dual-polymerizing self-adhesive universal resin cement achieved higher MPa bond strength values. The use of methyl methacrylate as a surface treatment of glass fiber posts provided a significant increase in bond strengths between the posts and both luting materials. PMID:24987418

  16. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  17. The effect of dentin desensitizers and Nd:YAG laser pre-treatment on microtensile bond strength of self-adhesive resin cement to dentin

    PubMed Central

    Tuncer, Duygu; Yuzugullu, Bulem; Celik, Cigdem

    2014-01-01

    PURPOSE The purpose of this study is to evaluate if pre-treatment with desensitizers have a negative effect on microtensile bond strength before cementing a restoration using recently introduced self-adhesive resin cement to dentin. MATERIALS AND METHODS Thirty-five human molars' occlusal surfaces were ground to expose dentin; and were randomly grouped as (n=5); 1) Gluma-(Glutaraldehyde/HEMA) 2) Aqua-Prep F-(Fluoride), 3) Bisblock-(Oxalate), 4) Cervitec Plus-(Clorhexidine), 5) Smart protect-(Triclosan), 6) Nd:YAG laser, 7) No treatment (control). After applying the selected agent, RelyX U200 self-adhesive resin cement was used to bond composite resin blocks to dentin. All groups were subjected to thermocycling for 1000 cycles between 5-55℃. Each bonded specimen was sectioned to microbars (6 mm × 1 mm × 1 mm) (n=20). Specimens were submitted to microtensile bond strength test at a crosshead speed of 0.5 mm/min. Kolmogorov-Smirnov, Levene's test, Kruskal-Wallis One-way Analysis of Variance, and Conover's nonparametric statistical analysis were used (P<.05). RESULTS Gluma, Smart Protect and Nd:YAG laser treatments showed comparable microtensile bond strengths compared with the control group (P>.05). The microtensile bond strengths of Aqua-Prep F, and Cervitec Plus were similar to each other but significantly lower than the control group (P<.05). Bisblock showed the lowest microtensile bond strength among all groups (P<.001). Most groups showed adhesive failure. CONCLUSION Within the limitation of this study, it is not recommended to use Aqua-prep F, Cervitec Plus and Bisblock on dentin when used with a self-adhesive resin cement due to the decrease they cause in bond strength. Beside, pre-treatment of dentin with Gluma, Smart protect, and Nd:YAG laser do not have a negative effect. PMID:24843392

  18. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    PubMed Central

    Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). RESULTS Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study. PMID:27141252

  19. Radiopacity of resin-modified glass-ionomer restorative cements.

    PubMed

    Sidhu, S K; Shah, P M; Chong, B S; Pitt Ford, T R

    1996-09-01

    This in vitro study compared the relative radiopacities of three commercially available resin-modified glass-ionomer cements (Vitremer, Fuji II LC, and Photac-Fil), an experimental resin-modified glass-ionomer (V-66), two conventional glass-ionomers (ChemFil and Fuji Cap II), and amalgam (as the control). Radiopacity was assessed densitometrically and expressed as equivalent thicknesses of aluminum. All the glass-ionomer cements were more radiopaque than enamel and dentin, with the exception of ChemFil and Photac-Fil. Apart from the control material, the experimental resin-modified glass-ionomer material, V-66, had the highest radiopacity of all the materials tested. Of the three resin-modified glass-ionomer materials tested, Fuji II LC was the most radiopaque and Photac-Fil the least. For the radiopacity of restorative glass-ionomer materials to exceed that of enamel, it should be greater than 1.5 mm of equivalent thickness of aluminum.

  20. Resin-modified glass ionomer cements: fluoride release and uptake.

    PubMed

    Forsten, L

    1995-08-01

    The aim was to study the short- and long-term fluoride release from resin-modified glass ionomer cements (GIC). The aim was also to determine the effect of fluoride treatment of 9-month-old specimens, consistency of the mix, and pH of the environment on the fluoride release. GIC test specimens were continually exposed to running water, and the fluoride release was measured periodically by storing the specimens in 5 ml deionized water for 1 week and measuring the fluoride content of the solution. After 24 h, 1 month, 9 months, and 11 months in running water four of the six resin-modified GICs released as much as or more fluoride than the auto-curing GIC tested for comparison. Fluoride treatment after 9 months also increased the fluoride release of these four brands, as was the case with the conventional GIC. At 24 h and 1 month two of the resin-modified GICs released smaller amounts of fluoride than the other materials, and the fluoride treatment used on those had no or only a minimal effect. Thin consistency of a mix resulted in higher fluoride release for one resin-modified material than a thick mix. Low pH increased the fluoride release for all materials.

  1. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  2. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements.

    PubMed

    Rigoni, Paulo; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2012-01-01

    The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2) associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2), and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2) and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT) immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05). Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  3. Influence of ultrasound, with and without water spray cooling, on removal of posts cemented with resin or zinc phosphate cements.

    PubMed

    Garrido, Angela Delfina Bittencourt; Fonseca, Tabajara Sabbag; Alfredo, Edson; Silva-Sousa, Yara Teresinha Corrêa; Sousa-Neto, Manoel D

    2004-03-01

    The efficacy of ultrasound, with and without water spray, was evaluated in vitro on the amount of force necessary to dislodge posts cemented with resin or zinc phosphate. Forty-two samples were divided into six groups: groups 1, 2, and 3, posts cemented with zinc phosphate; groups 4, 5, and 6, posts cemented with resin (Panavia F); groups 1 and 4 (controls), no ultrasound; groups 2 and 5, ultrasound without water spray; and groups 3 and 6, ultrasound with water spray. The Instron testing machine was used. Ultrasound without water spray significantly reduced (71%) the force necessary to displace posts cemented with Panavia F (p < 0.01); however, this value was similar to the efficacy of ultrasound with water spray for posts cemented with zinc phosphate (reduction of 75%). We conclude that cooling with ultrasound interferes with the force necessary for post removal, depending on the type of cement used.

  4. Influence of cement thickness on resin-zirconia microtensile bond strength

    PubMed Central

    Lee, Tae-Hoon; Ahn, Jin-Soo; Shim, June-Sung; Han, Chong-Hyun

    2011-01-01

    PURPOSE The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (α=95%). RESULTS All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength. PMID:22053241

  5. Curing time effect on the fraction of {sup 137}Cs from cement-ion exchange resins-bentonite clay composition

    SciTech Connect

    Plecas, Ilija; Dimovic, Slavko

    2007-07-01

    To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclides {sup 137}Cs have been studied. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates R{sub n}(cm/d) of {sup 137}Cs from cement ion exchange resins-bentonite matrix after 180 days were measured. The results presented in this paper are examples of results obtained in a 20-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing center. (authors)

  6. Effect of different concentrations of specific inhibitor of matrix metalloproteinases on the shear bond strength of self-adhesive resin cements to dentin

    PubMed Central

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Abed-Kahnamoui, Mehdi; Hamishehkar, Hamed; Gharouni, Mahya

    2017-01-01

    Background Considering the probability of chemical and enzymatic reactions between matrix metalloproteinases (MMPs) in the dentin structure and their specific inhibitors, the aim of the present study was to evaluate the effect of different concentrations of specific inhibitor of MMPs (galardin) on the shear bond strength of self-adhesive resin cements to dentin. Material and Methods Forty-eight sound human premolars were mounted in self-cured acrylic resin after removal of the enamel on the buccal and lingual surfaces. The dentin surfaces achieved were polished and prepared with 600-grit silicon carbide paper. The samples were divided into 3 groups (n=16) based on the concentration of galardin used (with no galardin, galardin at a high concentration and galardin at a low concentration). In addition, 96 composite resin blocks, measuring 3 mm in height and diameter, were prepared. The composite resin blocks were bonded to the buccal and lingual surface dentin with Rely-X Unicem (RXC) and Speed CEM (SPC) self-adhesive resin cements, respectively, according to manufacturers’ instructions. After 24 hours of storage in distilled water at 37°C, the shear bond strength values were determined in MPa and fracture modes were evaluated under a stereomicroscope. Data were analyzed with two-way ANOVA and post-hoc Bonferroni test (α=0.05). Results The shear bond strength of galardin at high concentration was significantly higher than that in the control group and galardin at a low concentrations (P<0.001). In addition, galardin at a low concentration exhibited higher shear bond strength compared to the control group (P=0.005). Furthermore, higher shear bond strength values were reported with the use of RXC compared to SPC (P<0.001). Conclusions Irrigation with galardin increased the shear bond strength of self-adhesive resin cements to dentin and this increase had a direct relationship with the concentration of galardin in the solution. Key words:N-(2(R)-2

  7. [Dentin bonding of cements. The bonding of cements with dentin in combination with various indirect restorative materials].

    PubMed

    Peutzfeldt, Anne; Sahafi, Alireza; Flury, Simon

    2011-01-01

    The number of both luting agents and restorative materials available on the market has rapidly increased. This study compared various types of luting agents when used to bond different indirect, laboratory restorative materials to dentin. Cylinders were produced of six restorative materials (gold alloy, titanium, feldspathic porcelain, leucite-glass ceramic, zirconia, and an indirect resin composite). Following relevant pretreatment, the end surface of the cylinders were luted to ground, human dentin with eight different luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37 °C for one week, the shear bond strength of the specimens was measured and the fracture mode was examined stereo-microscopically. Restorative material and luting agent both had a significant effect on bond strength and there was a significant interaction between the two variables. The zinc phosphate cement and the glass ionomer cements resulted in the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements.

  8. The effect of root canal sealers and timing of cementation on the microlekage of the parapost luted with resin cement

    PubMed Central

    Al Kahtani, Ahmed M.

    2010-01-01

    Objectives The objectives of the study were to study the effect of root canal sealers either eugenol or non-eugenol and timing of cementation on microleakage of the parapost luted with resin cement. Materials and methods Seventy extracted human, single-rooted teeth were instrumented using a crown-down technique. All teeth were instrumented up to a size 50 .04 taper ProFile followed by the use of Gates Glidden drills from size 2 up to 5. Following instrumentation, the teeth were randomly divided into four experimental groups of fifteen teeth each, based on type of root canal sealer (eugenol or non-eugenol sealer) and timing of post cementation (immediate or delayed). The remaining ten teeth were divided into two control groups with five teeth per group. All teeth were tested for microleakage using a fluid filtration method. Results The microleakage of the paraposts luted with resin cement increased over time, irrespective of sealer type or timing of post cementation. Immediate post cementation following obturation with AH26 (non-eugenol sealer) produced the least microleakage at all three time periods at 24 h, 2 months and 3 months. Conclusions The microleakage paraposts luted with resin cement was not influenced by either sealer type or timing of post placement. All experimental groups demonstrated a significant increase in microleakage over time as well as the presence of voids at the resin–dentin interface. PMID:24109165

  9. Surface analysis and shear bond strength of zirconia on resin cements after non-thermal plasma treatment and/or primer application for metallic alloys.

    PubMed

    Vechiato-Filho, Aljomar José; Matos, Adaias Oliveira; Landers, Richard; Goiato, Marcelo Coelho; Rangel, Elidiane Cipriano; De Souza, Grace Mendonça; Barão, Valentim Adelino Ricardo; Dos Santos, Daniela Micheline

    2017-03-01

    There is no established protocol for bonding zirconia (Y-TZP) with resin cements. Non-thermal plasma (NTP) may be an alternative for the clinical problems related to adhesion. The purpose of the present study was to characterize the surface of Y-TZP exposed to methane (CH4) NTP or coated with a layer of primer for metal alloys and the association between the two methods and to evaluate the effect of NTP treatment on bond strength between Y-TZP and two resin cements. A total of 235 Y-TZP discs (8×2mm) were distributed into five groups: Co (no surface treatment), Pr (primer), NTP (methane plasma), Pr+NTP and NTP+Pr. The effect of the treatment type on the surface free energy, morphology, topography and chemical composition of the Y-TZP discs was investigated. The discs were cemented to composite resin substrates using Panavia F2.0 or RelyX U200. Shear bond strength (n=10) analyses were performed (1mm/min) before and after thermocycling (5-55°C, 2000cycles) on the bonded specimens. The data were analyzed with one and three-way ANOVAs and Bonferroni tests (α=0.05). NTP reduced the surface energy and roughness of the Y-TZP discs. SEM-EDS and XPS analyses showed the presence of the organic thin film, which significantly improved the bond strength results when Rely X U200 was used, whereas the primer treatment was more effective with Panavia F2.0. Thermocycling significantly reduced the bond strength results of the NTP and Pr+NTP groups cemented with Rely X U200 and the Pr and NTP+Pr groups cemented with Panavia F2.0. Nonthermal plasma improves the bond strength between Rely X U200 and Y-TZP and also seems to have water-resistant behavior, whereas Panavia F2.0 showed better results when associated with primer.

  10. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    PubMed Central

    DE SOUZA, Grace; BRAGA, Roberto Ruggiero; CESAR, Paulo Francisco; LOPES, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used. PMID:26398507

  11. Correlation between clinical performance and degree of conversion of resin cements: a literature review.

    PubMed

    De Souza, Grace; Braga, Roberto Ruggiero; Cesar, Paulo Francisco; Lopes, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  12. Surface hardness properties of resin-modified glass ionomer cements and polyacid-modified composite resins.

    PubMed

    Bayindir, Yusuf Ziya; Yildiz, Mehmet

    2004-11-15

    In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest.

  13. Orthodontic bracket bonding with a plasma-arc light and resin-reinforced glass ionomer cement.

    PubMed

    Ishikawa, H; Komori, A; Kojima, I; Ando, F

    2001-07-01

    Developments in light-curing technology have led to the introduction of a plasma-arc light-curing unit that delivers high-intensity output for faster curing. The purposes of this study were to determine the shear bond strengths of light-cured resin-reinforced glass ionomer cement cured with a plasma-arc light-curing unit and to evaluate the durability of the resultant bond strength with thermal cycling. Comparisons were made between light-cured resin-reinforced glass ionomer cement and light-cured composite resin. Two light-curing units were used in this study: a plasma-arc light-curing unit and a conventional light-curing unit. The mean shear bond strengths of light-cured resin-reinforced glass ionomer cement with the plasma-arc and the conventional light-curing units were 20.3 MPa and 26.0 MPa, respectively. An analysis of variance showed no statistically significant differences between the plasma-arc and the conventional light-curing units. Light-cured resin-reinforced glass ionomer cement and light-cured composite resin demonstrated similar bond strengths and exhibited no statistical differences. There was no statistical difference in bond strength between the teeth that were thermal cycled and those that were not. Failure sites for the brackets bonded with light-cured resin-reinforced glass ionomer cement appeared to be predominantly at the bracket-adhesive interface. The SDs of light-cured composite resin were high for both light-curing units. Whereas the coefficients of variation for light-cured resin-reinforced glass ionomer cement ranged from 20% to 30%, those of light-cured composite resin ranged from 40% to 60%. The bond strength of light-cured resin-reinforced glass ionomer cement cured with either a conventional light-curing unit or a plasma-arc light-curing unit surpassed the clinically required threshold. The plasma-arc light-curing unit may be an advantageous alternative to the conventional light-curing unit for orthodontic bracket bonding with both

  14. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics.

    PubMed

    Erdem, A; Akar, G C; Erdem, A; Kose, T

    2014-01-01

    This study compares the bond strength of resin cement and yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic with different surface conditioning methods. Two hundred presintered Y-TZP ceramic specimens were prepared, sintered (4 × 4 × 4 mm), and randomly assigned to four equal groups as control (C, no conditioning); airborne particle abraded (APA, air abrasion with 11 μm Al2O3); tribochemical silica coating/silane coupling system (TSC, Rocatec, air abrasion with 110 μm Al2O3, 30 μm silica-coated Al2O3 and silane); and laser (L, Er:YAG laser irradiation treated at a power setting of 200 mJ). After specimen preparation, composite resin cylinders were prepared and cemented with resin cements (Clearfil Esthetic, Panavia F 2.0, Rely X-U100, Super Bond C&B, and Multilink Automix) on the ceramic surfaces and kept in an incubator at 37°C for 60 days. All specimens were tested for shear bond strength with a universal testing machine, and fractured surfaces were evaluated by environmental scanning electron microscopy. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). The bond strengths for C and L groups were not significantly different according to adhesive resin cement. APA and TSC resulted in increased bond strength for Panavia F 2.0 and Rely X-U100 resin cements. Additionally, TSC presented higher bond strength with Multilink Automix. Adhesive fracture between the ceramic and resin cement was the most common failure. Complete cohesive fracture at the ceramic or composite cylinders was not observed. Regardless of the adhesive resin cement used, laser treatment did not improve resin bond strength.

  15. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    SciTech Connect

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventory at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.

  16. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    PubMed

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  17. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    PubMed

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (p<0.05) was observed only between Provy (164.44 ± 31.23) and Temp Bond NE (88.48 ± 21.83) after cementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  18. Push-out bond strength of different translucent fiber posts cemented with self-adhesive resin cement

    PubMed Central

    Bazzo, João Fernando; Pedriali, Maria Beatriz Bergonse Pereira; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Moura, Sandra Kiss; de de Carvalho, Rodrigo Varella

    2016-01-01

    Purpose: Evaluate the bond strength of different translucent fiber posts in the cervical, middle, and apical root thirds cemented with self-adhesive resin cement. Materials and Methods: Sixty single-rooted teeth were randomly divided into five groups according to the fiber post used: Reforpost (opaque [control]), exacto, white post, radix, and Macro-Lock Illusion X-RO. The roots were subjected to chemomechanical preparation and cemented with self-adhesive resin cement. The teeth were sectioned into slices of the different root thirds and tested for bond strength (push-out). Two-way analysis of variance and Bonferroni test were used to verify statistical differences between groups (P < 0.05). Results: No significant difference between the root thirds was detected (P > 0.05). However, the performance of the posts demonstrated a significant difference (P < 0.05). RDX had a lower performance in the apical third (P < 0.05). The other fiber posts had the same performance irrespective of the root third evaluated. The predominant failure pattern was adhesive between resin cement and root dentin. Conclusion: In general, the different translucent fiber posts showed the same performance. Yet, translucent fiber posts did not show superior bond strength compared with the opaque fiber post in any of the root thirds evaluated. PMID:27994324

  19. Comparative Evaluation of Bond Strength of Dual-Cured Resin Cements: An In-Vitro Study

    PubMed Central

    Kumari, R Veena; Poluri, Ramya Krishna; Nagaraj, Hema; Siddaruju, Kishore

    2015-01-01

    Background: To compare the microtensile bond strength of resin cements to enamel and dentin and to determine the type of bond failure using stereomicroscope. Materials and Methods: In this in-vitro study 40 teeth were embedded in acrylic resin and divided into two main groups i.e., Group A for enamel and Group B for dentin. Each group is again subdivided into four subgroups, which are as follows; Subgroup 1 for Calibra resin cement, Subgroup 2 for Paracem, Subgroup 3 for Variolink II and Subgroup 4 for Rely X ARC. These resin cements were applied on enamel and dentin according to manufacturer’s instructions followed by incremental build-up of composite resin on the top of resin cements. Each tooth was sectioned perpendicular to the resin-substrate interface with a slow speed diamond saw under water cooling yielding sections of approximately 1 mm2. On an average, three sections from each tooth were used for testing. The beams obtained after sectioning were stressed to failure under tension in a custom made stainless steel forceps held in a universal testing machine (Lloyd) at a crosshead speed of 1.0 mm/min. Results were analyzed using two-way analysis of variance, independent t-test, and Tukey’s HSD post-hoc test. Results: Cements bonded to enamel substrates showed higher mean bond strength compared to dentin, which is statistically significant. Rely X ARC showed highest mean bond strength to both the substrates. Conclusion: There was a significant difference between the bond strength to enamel and dentin and, Rely X ARC resin cement showed higher bond strength compared with the other groups. PMID:26225104

  20. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    NASA Astrophysics Data System (ADS)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  1. Colour matching of composite resin cements with their corresponding try-in pastes.

    PubMed

    Kampouropoulos, D; Gaintantzopoulou, M; Papazoglou, E; Kakaboura, A

    2014-06-01

    Two shades of four resin cements (Calibra, Clearfil Esthetic, Insure, Variolink II), in light- and dual-curing modes, were tested for colour matching with their corresponding try-in pastes, immediately after photopolymerization and after 24-hour dry and dark storage. Colour measurements were performed for 0.8 mm-thick specimens through a 0.8mm-thick ceramic plate. For each resin cement, colour differences (deltaE) were calculated between the two curing modes, and between the corresponding try-in paste, at baseline and after 24h. deltaE>0 values were detected between all resin cements and their try-in pastes, which were brand/shade/curing mode depended. The try-in pastes of the Variolink II system demonstrated the best colour matching (deltaE<2). Try-in pastes of Calibra and Insure, at both curing modes, did not match at an acceptable value, the shade of their corresponding resin cements (deltaE>3.3). Calibra presented the highest colour differences. deltaE values of the Clearfil Esthetic system immediately after photo-activation ranged between 2 and 3 units. A ceramic restoration may fail aesthetically as a result of not acceptable colour match (deltaE>3.3) between the shade of certain resin cements and their relevant try-in pastes.

  2. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  3. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study

    PubMed Central

    Francisco, Martínez-Rus; Guillermo, Pradíes

    2016-01-01

    Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD) and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE) and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx), Multilink® (Mk), PANAVIA 2.1® (P), and Maxcem® (Mx) and immersed in 10% safranin for 72 hours. 20x magnification lenses were used to observe microleakage areas (μm2) and images software was used to measure AMD areas (μm). Discrepancy and microleakage between the cements were compared with one-way ANOVA test with confidence interval of 95%. Results. Rx Group showed microleakage has lowest value and AMD has highest value. P Group showed microleakage has the highest value and Mk Group presented AMD has lowest value. There were no significative differences between the cements. There were no linear correlations between microleakage and AMD; however a complex regression statistical model obtained allowed formulating an association between both variables (microleakage = AMD0,896). Conclusions. No significative differences were found among 4 types of cements. No linear correlations between AMD and microleakage were found. Clinical Significance. AMD is not easily related to microleakage. Characteristics of cements are fundamental to decreasing of microleakage values. PMID:27721830

  4. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study.

    PubMed

    Cristian, Abad-Coronel; Jeanette, Li; Francisco, Martínez-Rus; Guillermo, Pradíes

    2016-01-01

    Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD) and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE) and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx), Multilink® (Mk), PANAVIA 2.1® (P), and Maxcem® (Mx) and immersed in 10% safranin for 72 hours. 20x magnification lenses were used to observe microleakage areas (μm(2)) and images software was used to measure AMD areas (μm). Discrepancy and microleakage between the cements were compared with one-way ANOVA test with confidence interval of 95%. Results. Rx Group showed microleakage has lowest value and AMD has highest value. P Group showed microleakage has the highest value and Mk Group presented AMD has lowest value. There were no significative differences between the cements. There were no linear correlations between microleakage and AMD; however a complex regression statistical model obtained allowed formulating an association between both variables (microleakage = AMD(0,896)). Conclusions. No significative differences were found among 4 types of cements. No linear correlations between AMD and microleakage were found. Clinical Significance. AMD is not easily related to microleakage. Characteristics of cements are fundamental to decreasing of microleakage values.

  5. Influence of cement type and thickness on polyfiber post adhesion

    PubMed Central

    Uzunoğlu, Emel; Türker, Sevinç Aktemur; Yilmaz, Zeliha

    2014-01-01

    Introduction: To evaluate the effect of two different post space diameters and related resin cement film thicknesses on the bond strength of a polyfiber post. Materials and Methods: A total of 48 premolars were randomly divided into two according to the post space diameter: 1.1 mm and 1.5 mm. Then each group was divided into three sub-groups according to luting cement used: RelyX U100, Panavia F2.0/ED primer, Clearfil SA cement. Spirapost was then luted into the canal using luting cements. Two slices were obtained from each root specimen. Push-out tests were performed. Data was analyzed with Kruskal-Wallis and Connover post-hoc and Mann-Whitney U-test (P < 0.05). Results: Push-out bond strength was found to vary significantly according to type of adhesive system and post space diameter size (P < 0.05). The self-adhesive resin cement RelyX U100 had significantly higher bond strengths compared with the other adhesive system (P < 0.05). The self-etch adhesive system (Panavia F2.0) showed significantly lower bond strengths compared with the other systems (P < 0.05). There was a significant interaction between the luting systems and post space diameter (P < 0.05). Conclusion: The increases in post space diameter significantly reduced the bond strength of Spirapost to root dentine for both groups. PMID:24944450

  6. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    SciTech Connect

    Okamoto, Y.; Shintani, H.; Yamaki, M. )

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy.

  7. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  8. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  9. Bonding All-Ceramic Restorations with Two Resins Cement Techniques: A Clinical Report of Three-Year Follow-Up

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Junior, Amilcar Chagas Freitas; Martini, Ana Paula

    2011-01-01

    Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel. PMID:21912505

  10. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic.

    PubMed

    Guarda, G B; Correr, A B; Gonçalves, L S; Costa, A R; Borges, G A; Sinhoreti, M A C; Correr-Sobrinho, L

    2013-01-01

    SUMMARY Objectives : The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods : A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3-air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6-acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm(2) (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results : The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1-3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4-6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and

  11. Thio-urethane oligomers improve the properties of light-cured resin cements

    PubMed Central

    Bacchi, Ataís; Consani, Rafael L.; Martim, Gedalias C.; Pfeifer, Carmem S.

    2015-01-01

    Thio-urethanes were synthesized by combining 1,6-Hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10–30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10–20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey’s test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by twofold in the experimental groups (from 1.17±0.36 to around 3.23±0.22 MPa.m1/2). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. PMID:25740124

  12. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

    PubMed Central

    Cho, Seok-Hwan; Lopez, Arnaldo; Berzins, David W.; Prasad, Soni; Ahn, Kwang Woo

    2015-01-01

    Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and Methods A total of 80 ceramic veneer discs were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These discs were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into 4 subgroups, based on ceramic disc thickness (0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using ANOVA. Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (P<.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (P<.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (P<.05). However, among the LC subgroups, there was no statistically significant difference among them (P >.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved

  13. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements.

    PubMed

    Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm(2); HPM: 15.0 and 30.4 J/cm(2); XPM: 9.5, 19.3, and 29.7 J/cm(2)) (n = 17). Vickers hardness (HV ) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  14. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    PubMed Central

    Peutzfeldt, Anne; Lussi, Adrian

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2) (n = 17). Vickers hardness (HV) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement. PMID:28044129

  15. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth.

    PubMed

    Pekkan, Gürel; Ozcan, Mutlu

    2012-02-03

    This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin.

  16. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  17. UV irradiation improves the bond strength of resin cement to fiber posts.

    PubMed

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (p<0.05). UV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  18. Effects of Different Surface Treatment Methods and MDP Monomer on Resin Cementation of Zirconia Ceramics an In Vitro Study

    PubMed Central

    Tanış, Merve Çakırbay; Akçaboy, Cihan

    2015-01-01

    Introduction: Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. Methods: 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Results: Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group

  19. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  20. The efficiency of different light sources to polymerize resin cement beneath porcelain laminate veneers.

    PubMed

    Usumez, A; Ozturk, A N; Usumez, S; Ozturk, B

    2004-02-01

    Plasma arc light units for curing resin composites have been introduced with the claim of relatively short curing times. The purpose of this study was to evaluate the efficiency of two different light sources to polymerize dual curing resin cement beneath porcelain laminate veneers. Twenty extracted healthy human maxillary centrals were used. Teeth were sectioned 2 mm below the cemento-enamel junction and crown parts were embedded into self-cure acrylic resin, labial surface facing up. Cavity preparation was carried out on labial surfaces. These teeth were divided into two groups of 10 each. The resin cement/veneer combination was exposed to two different photo polymerization units. A conventional halogen light (Hilux 350, Express Dental Products) and a plasma arc light (Power PAC, ADT) were used to polymerize resin cement. Ten specimens were polymerized conventionally (40 s) and the other specimens by plasma arc curing (PAC) (6 s). Two samples from each tooth measuring 1.2 x 1.2 x 5 mm were prepared. These sections were subjected to microshear testing and failure values were recorded. Statistically significant differences were found between the bond strength of veneers exposed to conventional light and PAC unit (P < 0.001). Samples polymerized with halogen light showed better bond strength. The results of this study suggest that the curing efficiency of PAC through ceramic was lower compared with conventional polymerization for the exposure durations tested in this study.

  1. Effect of endodontic sealer and resin luting strategies on pull-out bond strength of glass fiber posts to dentin.

    PubMed

    Souza-Junior, Eduardo J; Bueno, Vanessa C P S; Dias, Carlos T S; Paulillo, Luís A M S

    2010-01-01

    The aim of this study was to evaluate the influence of eugenol-containing endodontic sealers and luting strategy on the pull-out bond strength of glass fiber posts to dentin. Sixty-four bovine incisors were randomly assigned into two groups of 32 specimens each for obturation procedure with gutta-percha only, or with Pulp Canal Sealer EWT Subsequently, the roots were prepared for the fiber post Reforpost and all specimens of each endodontic sealing procedure were allocated to four groups (n = 8), according to the strategies for post cementation: A) Single Bond 2 and RelyX ARC; B) All Bond 2 and C&B cement; C) All Bond 2 and RelyX ARC; D) Single Bond 2 and C&B Cement. The posts were cemented immediately after the endodontic treatment. The pull-out test was performed at a cross-head speed of 0.5 mm/min in a universal testing machine (EMIC). Data (Kgf) were submitted to a two-way ANOVA and Tukey test (p < or = 0.05). The eugenol-based sealer did not influence the pull-out bond strength of fiber posts regardless of the luting strategy. RelyX ARC showed higher bond strength than C&B Cement when used with Single Bond 2 adhesive system, when the eugenol-based sealer was present. All Bond 2, when associated to all cements studied, promoted similar bond strength, regardless of the eugenol-containing endodontic sealer In conclusion, eugenol-containing sealer did not influence the pull-out bond strength values of the resin luting systems for glass fiber post cementation. The bond system and resin cement association from the same manufacturer had similar bond strength values for dentin.

  2. Leaching properties of Cs-134 from spent ion exchange resins solidified in cement-biochar matrix

    NASA Astrophysics Data System (ADS)

    Laili, Zalina; Yasir, Muhamad Samudi; Yusof, Mohd Abd Wahab

    2016-11-01

    The leaching properties of Cs-134 from spent ion exchange resins solidified in cement-biochar matrix were investigated. The leaching test was conducted according to ANSI/ANS 16.1 method. The leachants used in this experiment were rainwater, groundwater and seawater. After each leach period, the activity of Cs-134 was measured using gamma spectrometry. Based on all the experimental data, the cumulative leach fraction and leachability index were calculated. The compressive strength test of the cement-biochar-spent resins matrices after 90 days of leaching test were also measured. The result showed that the release of Cs-134 from the cement-biochar-spent resins matrices in rainwater, groundwater and seawater were found lower than their control specimen (without biochar). The leachability indices of Cs-134 were found acceptable (i.e. 6) for solidified radioactive waste. It was also observed that the compressive strengths were increased after the leaching test. Thus, this study has shown that the presence of biochar in cement matrix may play a role in retained the Cs-134 in the waste form.

  3. Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement

    PubMed Central

    Ranjbarian, Parisa

    2013-01-01

    PURPOSE Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement. MATERIALS AND METHODS In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% H2O2, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (α=0.05). RESULTS It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among H2O2 + Silane Group and other three groups. CONCLUSION There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds. PMID:23755337

  4. Effect of Coloring–by-Dipping on Microtensile Bond Strength of Zirconia to Resin Cement

    PubMed Central

    Mahshid, Minoo; Berijani, Naeem; Sadr, Seyed Jalil; Homayoon, Sepide Sorour

    2015-01-01

    Objectives: Studies on the effect of coloring procedures on the bond strength of zirconia to resin cement are lacking in the literature. This study evaluated the effect of dipping of zirconia ceramic in different liquid color shades on the microtensile bond strength (MTBS) of zirconia ceramic to resin cement. Materials and Methods: This in vitro study was conducted on 100 microbar specimens divided into five groups of B2, C1, D4, A3 and control (not colored). To prepare the microbars, 20 white zirconia ceramic blocks, measuring 5×11×11 mm, were dipped in A3, B2, C1 or D4 liquid color shades for 10 seconds (five blocks for each color shade) and five blocks were not colored as controls. All the zirconia blocks were sintered in a sintering furnace. Composite blocks of similar dimensions were fabricated and bonded to zirconia ceramic blocks using Panavia F 2.0 resin cement. Zirconia-cement-composite blocks were sectioned into microbars measuring 1×1×10 mm. The MTBS of microbars was measured by a testing machine. Data were analyzed using one-way ANOVA and Tukey’s test. All tests were carried out at 0.05 level of significance. Results: Statistically significant differences were found among the groups in MTBS (P<0.001). The D4 group had the highest MTBS value (39.16 ± 6.52 MPa). Conclusion: Dipping affected the MTBS of zirconia ceramic to Panavia F 2.0 resin cement; however, a similar pattern of change was not seen due to the different liquid color shades. PMID:26884775

  5. Evaluation of four cementation strategies on the push-out bond strength between fiber post and root dentin.

    PubMed

    Bergoli, Cesar Dalmolin; Amaral, Marina; Druck, Carolina Ceolin; Valandro, Luiz Felipe

    2011-01-01

    This trial used push-out testing to evaluate four different fiber post cementation strategies. Specimens of bovine mandibular teeth were randomly allocated into four groups according to cementation strategies (n = 10): ScotchBond MultiPurpose and RelyX ARC (Group 1); AdheSE and Multilink Automix (Group 2); phosphoric acid and RelyX U100 (Group 3); and RelyX U100 (Group 4). Four slices from each specimen (2.0 mm thick) were obtained for the push-out test. All slices were analyzed for failure mode after testing. A one-way ANOVA showed differences between the groups (P = 0.002). A Tukey test indicated that Group 1 had the highest bond strength values (13.96 ± 6.41 MPa). Groups 2 (6.58 ± 2.14 MPa), 3 (5.85 ± 2.57 MPa), and 4 (8.19 ± 2.28 MPa) had similar bond strengths, but all of them were lower than Group 1. A three-step total etching adhesive system, associated with a conventional resin cement, might be a good alternative for fiber post cementation.

  6. Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

    PubMed Central

    Lee, Jung-Jin; Kang, Cheol-Kyun; Oh, Ju-Won

    2015-01-01

    PURPOSE This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling. PMID:25722830

  7. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  8. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    PubMed Central

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  9. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  10. Effect of veneering materials and curing methods on resin cement knoop hardness.

    PubMed

    Tango, Rubens Nisie; Sinhoreti, Mário Alexandre Coelho; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Consani, Rafael Leonardo Xediek

    2007-01-01

    This study evaluated the Knoop hardness of Enforce resin cement activated by the either chemical/physical or physical mode, and light cured directly and through ceramic (HeraCeram) or composite resin (Artglass). Light curing were performed with either conventional halogen light (QTH; XL2500) for 40 s or xenon plasma arc (PAC; Apollo 95E) for 3 s. Bovine incisors had their buccal surfaces flattened and hybridized. On these surfaces a mold was seated and filled with cement. A 1.5-mm-thick disc of the veneering material was seated over this set for light curing. After storage (24 h/37 masculineC), specimens (n=10) were sectioned for hardness (KHN) measurements in a micro-hardness tester (50 gf load/ 15 s). Data were submitted to ANOVA and Tukey's test (alpha=0.05). It was observed that the dual cure mode yielded higher hardness compared to the physical mode alone, except for direct light curing with the QTH unit and through Artglass. Higher hardness was observed with QTH compared to PAC, except for Artglass/dual groups, in which similar hardness means were obtained. Low KHN means were obtained with PAC for both Artglass and HeraCeram. It may be concluded that the hardness of resin cements may be influenced by the presence of an indirect restorative material and the type of light-curing unit.

  11. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  12. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  13. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    PubMed Central

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  14. [Effect of ceramic thickness and resin cement shades on final color of heat-pressed ceramic veneers].

    PubMed

    Ren, D F; Zhan, K R; Chen, X D; Xing, W Z

    2017-02-09

    Objective: To analyze the effect of ceramic materials thickness and resin cement shades on the final color of ceramic veneers in the discolored teeth, and to investigate the color agreement of try-in pastes to the corresponding resin cements. Methods: Sixty artificial maxillary central incisor teeth (C2 shade) were used to simulate the natural discolored teeth and prepared according to veneer tooth preparation protocol. Veneers of different thickness in the body region (0.50 and 0.75 mm) were fabricated using ceramic materials (LT A2 shade, IPS e.max Press). The ceramic veneer specimens were bonded to the artificial teeth using the 6 shades of resin cements (Variolink Veneer: shades of LV-3, LV-2, HV+3; RelyX™ Veneer: shades of TR, A3, WO) (n=5). A clinical spectrophotometer was used to measure the color parameters of ceramic veneers at the cervical, body and incisal regions. Color changes of veneers before and after cementation were calculated and registered as ΔE1, and the changes between try-in paste and the corresponding resin cements were registered as ΔE2. Results: Three-way ANOVA indicated that ΔE1 and ΔE2 values were significantly affected by the ceramic thickness, resin cement shades and measuring regions (P<0.05). The ΔE1 values of six shades ranged from 0.59-8.27. The ΔE1 values were more than 2.72 when the ceramic veneers were cemented with resin cements in shades of HV+3 and WO. The ΔE2 values of six shades ranged from 0.60-2.56. The shades of HV+3, WO and A3 resin cements were more than 1.60. Conclusions: Different thickness of ceramic materials, resin cement shades and measuring regions could affect the final color of ceramic veneers. The color differences of some resin cements and corresponding try-in pastes might be observed in clinical practice.

  15. Effect of home-use fluoride gels on resin-modified glass-ionomer cements.

    PubMed

    El-Badrawy, W A; McComb, D

    1998-01-01

    Acidic fluoride gels have been found to significantly damage conventional glass-ionomer cements. In this study the effect to acidulated phosphate fluoride (APF) and neutral fluoride gels on the recently introduced resin-modified glass ionomers and a polyacid-modified composite resin (Variglass) was studied using scanning electron microscopy (SEM). Five materials were examined: Photac-Fil, Fuji II LC, Vitremer, Variglass, and Ketac-Fil (control). Groups of five specimens of each material were treated for 24 hours with one of the following: 1) distilled water, 2) neutral fluoride gel, 3) APF gel. Surface micro-structure of treated specimens was examined using SEM, and microphotographs were evaluated using a three-point scale. APF was found to have a deleterious effect on all examined materials, while minimal effects resulted from the neutral fluoride gel compared to the control group. Although showing greater resistance to the APF gel than conventional glass-ionomer cements, resin-modified glass-ionomer materials revealed characteristic immersion and erosion behavior, substantiating their differentiation from a hybrid material containing a preponderance of resin.

  16. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID

  17. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties

  18. Effect of adding ethylene glycol dimethacrylate to resin cements: durability against thermal stress of adhesion to titanium.

    PubMed

    Imai, Y; Ikeda, Y

    1997-06-01

    The present study was conducted to examine the effect of the addition of a dimethacrylate to resin cements on bond strength between titanium and resin after thermocycling. Titanium disks, polished and treated with a phosphate monomer, were bonded to acrylic rods using two types of experimental resin cements. The cements were composed of methyl methacrylate (MMA) containing a tributylborane initiator and 0-10 wt% of ethylene glycol dimethacrylate (EGDMA) and two types of polymer component of hard poly (MMA) or soft fluoropolymer (2-6F). The bonded specimens were subjected to a thermocycling test in water and then to tensile strength testing. The addition of 5% or more dimethacrylate monomer to the two MMA-based resin cements caused a drastic decrease in bond strength to the metal after the thermocycling test. The resin prepared with soft 2-6F as a polymer component was significantly more durable than the rigid type resin based on PMMA. However, even a 1% addition of ECDMA to the 2-6F resin resulted in a significant decrease in durability.

  19. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  20. Influence of the Resin Cement Thickness on the Push-Out Bond Strength of Glass Fiber Posts.

    PubMed

    Marcos, Regina Maria Helen-Cot; Kinder, Gustavo Ross; Alfredo, Edson; Quaranta, Tarcisio; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Gonzaga, Carla Castiglia

    2016-01-01

    The objective of the present study was to evaluate the influence of resin cement thickness on the bond strength of prefabricated and customized glass fiber posts after storage in distilled water. Thirty human uniradicular roots were treated endodontically. The roots were divided into 3 groups: THIN (thin cement layer) - post space preparation with #0.5 drill and cementation of #0.5 post; THICK (thick cement layer) - post space preparation with #1 drill and cementation of #0.5 post; and CUSTOM (customized cement layer) - post space preparation with #1 drill and cementation of a customized post (#0.5 glass fiber posts customized with resin composite). All posts were luted with self-adhesive resin cement. The push-out test was carried out after storage for 24 h and 90 days in distilled water at 37 °C. The data were analyzed with three-way ANOVA and Tukey's test (a=0.05). Bond strengths were significantly higher for CUSTOM (9.37 MPa), than for THIN (7.85 MPa) and THICK (7.07 MPa), which were statistically similar. Considering the thirds, the bond strength varied in the sequence: apical (7.13 MPa) < middle (8.22 MPa) = coronal (8.94 MPa). Bond strength for 24 h storage was significantly higher (8.80 MPa) than for 90-day storage (7.40 MPa). It may be concluded that the thickness of resin cement influenced the bond strength of glass fiber posts. The customized posts presented higher bond strength. Storage in water for 90 days affected negatively the values of bond strength, especially for thick cement layers in the apical third.

  1. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization.

    PubMed

    Higashi, Mami; Matsumoto, Mariko; Kawaguchi, Asuka; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of sandblasting and silanization on resin cement bond strengths to CAD/CAM resin blocks. Twenty four blocks (KATANA AVENCIA BLOCK) were divided into two resin cement groups (PANAVIA V5 [PV5] and PANAVIA SA CEMENT HANDMIX [PSA]), and further divided into four subgroups representing different surface treatment methods: no treatment (Ctl), silanization (Si), sandblasting (Sb), and Sb+Si. After resin application, microtensile bond strengths (μTBSs) were measured immediately, 1, 3 and 6 months after water storage. In addition, surfaces resulting from each of the treatment methods were analyzed by scanning electron microscopy (SEM). Three-way analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=370), 'resin cement' (p<0.001, F=103, PSA

  2. Immediate and delayed micro-tensile bond strength of different luting resin cements to different regional dentin.

    PubMed

    Ali, Abdelraheem Mohamed; Hamouda, Ibrahim Mohamed; Ghazy, Mohamed Hamed; Abo-Madina, Manal Mohamed

    2013-03-01

    We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm(2) in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mm/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P < 0.001). Micro-tensile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P < 0.001). Immediate micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P < 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.

  3. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    PubMed

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  4. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media

    PubMed Central

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-01-01

    Statement of the Problem Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. Purpose This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. Materials and Method A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey’s HSD test with p≤ 0.05 set as the level of significance. Results There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). Conclusion The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically. PMID:27284553

  5. 3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

    PubMed Central

    2016-01-01

    PURPOSE To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (µCT) and regional push-out bonding strength. MATERIALS AND METHODS Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using µCT scanner at resolution of 13.7 µm. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the µCT analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal–Wallis and Mann–Whitney U tests (α=.05). RESULTS Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation (44.86 ± 22.71). Multilink N showed the least void surface (3.51 ± 2.24 mm2) and volume (0.01 ± 0.01 mm3). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION µCT proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed. PMID:27141253

  6. Effect of ultrasonic versus manual cementation on the fracture strength of resin composite laminates.

    PubMed

    Ozcan, M; Mese, A

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations 1 mm above the cemento-enamel junction were made on intact human maxillary central incisors (N=60) of similar size with a depth cutting bur. All the prepared teeth were randomly assigned to six experimental groups (10/per group). Using a highly filled polymeric material (Estenia), laminates were produced and finished. The standard thickness of laminates in original tooth form was achieved using the impression molds made prior to tooth preparation. A three-step bonding procedure and dual polymerized resin composite cement (Panavia F 2.0) was employed. The cementation surfaces of the laminates were conditioned (CoJet-Sand, 30 microm SiO2) and silanized (ESPE-Sil). Laminates in Groups 1, 2, 3, 4 and 5 were cemented by five different operators under finger pressure and Group 6 was cemented ultrasonically (Amdent). After excess removal, the laminates were light polymerized. The specimens were stored in water at 37 degrees C for one month prior to the fracture test (universal testing machine, 1 mm/minute). Failure types were classified as: a) Cohesive failure within the composite laminate (Type A), b) Adhesive failure between the tooth and laminate (Type B) and c) Chipping of the laminate with enamel exposure (Type C). No significant difference was found among the mean fracture strength values of the laminates in all the experimental groups (ANOVA, p=0.251). The mean fracture strength values in descending order were: 513 +/- 197, 439 +/- 125, 423 +/- 163, 411 +/- 126, 390 +/- 94, 352 +/- 117 N for Groups 2, 5, 4, 3, 1 and 6, respectively. The majority of failure types was Type A (30/60). While Type B failure was not observed in Group 6 (0/10), Group 1 presented a more frequent incidence of this failure (6/10). The two cementation techniques did not effect the

  7. Influence of resin cement shade on the color and translucency of ceramic veneers

    PubMed Central

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  8. Effects of cyclic stressing on attachment bond strength using glass ionomer cement and composite resin.

    PubMed

    Moseley, H C; Horrocks, E N; Pearson, G J; Davies, E H

    1995-02-01

    Bonded orthodontic brackets were subjected to cyclic loading in order to simulate the effect of occlusal forces. The subsequent effect on bond strength was determined. Stainless steel, mesh-based brackets were bonded to extracted teeth with either composite resin or glass ionomer cement. A jig was designed to subject each bracket to a preselected loading level and the 24-hour shear/peel bond strength of both stressed and unstressed brackets was subsequently measured. Cyclic loading brought about a comparative decrease in bond strength when using both types of material. The potential implications of selecting these different types of bonding material for clinical use are discussed.

  9. Formulation Study on Immobilization of Spent Ion Exchange Resins in Polymer Cements

    SciTech Connect

    Lili Xia; Meiqiong Lin; Bao Liangjin

    2006-07-01

    Applying normal design and correlative computer software, a new matrix material and an excellent waste formulation were developed. Based on the theory calculations and normal design in this paper, using polymer complex cement as immobilization matrix that mixed with simulating spent ion exchange resin a new waste formulation was carried out. The characterization of solidified waste had been done after 28 days curing. The results conformed to the treatment of the waste about the requests of the national standard [GB14569-93-1]. Leach index of the solidified waste was excellent. An optimized formulation was recommended. (authors)

  10. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  11. Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

    PubMed Central

    Kasraei, Shahin; Atefat, Mohammad; Beheshti, Maryam; Safavi, Nassimeh; Mojtahedi, Maryam; Rezaei-Soufi, Loghman

    2014-01-01

    Introduction: Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic. Methods: In this in vitro study thirty discs of zirconia with a diameter of 6 mm and a thickness of 2 mm were randomly divided into two groups of 15. In the test group the zirconia disc surfaces were irradiated by CO2 laser with an output power of 3 W and energy density of 265.39 j/cm2. Composite resin discs were fabricated by plastic molds, measuring 3 mm in diameter and 2 mm in thickness and were cemented on zirconia disk surfaces with Panavia F2.0 resin cement (Kuraray Co. Ltd, Osaka, Japan). Shear bond strength was measured by a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture type was assessed under a stereomicroscope at ×40. Surface morphologies of two specimens of the test group were evaluated under SEM before and after laser pretreatment. Data was analyzed by paired t-test (p value < 0.05). Results: The mean SBS values of the laser and control groups were 12.12 ± 3.02 and 5.97 ± 1.14 MPa, respectively. Surface treatment with CO2 laser significantly increased SBS between resin cement and zirconia ceramic (p value = 0.001). Conclusion: Under the limitations of this study, surface treatment with CO2 laser increased the SBS between resin cement and the zirconia ceramic. PMID:25653809

  12. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    PubMed Central

    Kasraei, Shahin; Heidari, Bijan; Vafaee, Fariborz

    2014-01-01

    Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples. PMID:25383349

  13. Effect of artificial saliva and pH on shear bond strength of resin cements to zirconia-based ceramic.

    PubMed

    Geramipanah, F; Majidpour, M; Sadighpour, L; Fard, M J Kharazi

    2013-03-01

    The aim of the present study was to evaluate the effect of media with different pH on shear and strength of resin cements to zirconia-based ceramics. Sixty rectangularly shaped specimens made of a zirconia based ceramic (Cercon, Dentsply) were prepared, air-blasted with 110 microm aluminum oxide particles (Al203) and randomly assigned into three groups (n = 30). A universal resin composite (Filtek Z250, 3M/ESPE) was bonded to each specimen using one of the following three cements: Calibra (Dentsply), Panavia F2 (kurary) and Unicem (3M/ESPE). Specimens were thermal cycled and stored in one of the following three media for two weeks: water at pH = 7, saliva at pH = 7 and saliva at pH = 3.5. The mean shear bond strength of each group was analyzed using the Kruskal-Wallis test (alpha = 0.05). The modes of failure were recorded using a streomicroscope. All specimens in the Calibra groups showed premature debonding. No significant difference was found between the two other cements or different media. The failure modes in the two latter cements were predominantly adhesive. Despite the adverse effect of acidic media on the properties of restorative materials, the media did not significantly influence the bond strength of MDP-containing resin cement and a self-adhesive cement to a zirconia- based ceramic.

  14. Comparative study of the radiopacity of resin cements used in aesthetic dentistry

    PubMed Central

    Monterde-Hernández, Manuel; Cabanillas-Casabella, Cristina; Pallares-Sabater, Antonio

    2016-01-01

    PURPOSE The aim of this study was to compare the radiopacity of 6 modern resin cements with that of human enamel and dentine using the Digora digital radiography system, to verify whether they meet the requirements of ANSI/ADA specification no. 27/1993 and the ISO 4049/2000 standard and assess whether their radiopacity is influenced by the thickness of the cement employed. MATERIALS AND METHODS Three 3-thickness samples (0.5, 1 and 1.5 mm) were fabricated for each material. The individual cement samples were radiographed on the CCD sensor next to the aluminium wedge and the tooth samples. Five radiographs were made of each sample and therefore five readings of radiographic density were taken for each thickness of the materials. The radiopacity was measured in pixels using Digora 2.6 software. The calibration curve obtained from the mean values of each step of the wedge made it possible to obtain the equivalent in mm of aluminium for each mm of the luting material. RESULTS With the exception of Variolink Veneer Medium Value 0, all the cements studied were more radiopaque than enamel and dentin (P<.05) and complied with the ISO and ANSI/ADA requirements (P<.001). The radiopacity of all the cements examined depended on their thickness: the thicker the material, the greater its radiopacity. CONCLUSION All materials except Variolink Veneer Medium Value 0 yielded radiopacity values that complied with the recommendations of the ISO and ANSI/ADA. Variolink Veneer Medium Value 0 showed less radiopacity than enamel and dentin. PMID:27350854

  15. Color changes in resin cement polymerized with different curing lights under indirect restorations

    PubMed Central

    Bayindir, Funda; Ilday, Nurcan Ozakar; Bayindir, Yusuf Ziya; Karataş, Ozcan; Gurpinar, Aysel

    2016-01-01

    Aim: The aim of the study was to investigate the effects of different interface materials and curing units on color changes in a resin cement material. Materials and Methods: Three interface materials and different curing systems, quartz-tungsten-halogen and polywave and monowave light-emitting diode (LED) light curing units, were studied at two-time intervals. Polystyrene strip was used as a control group. All measurements were made on a white background for standard color measurement. According to the CIE L*a*b* color space, the baseline color values of each specimen were measured. Differences between the measurements were calculated as ΔE, ΔL, Δa, and Δb. Data were analyzed using analysis of variance (ANOVA) and Duncan's tests (α = 0.05) with SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). ANOVA revealed significance for interface materials and curing units and time for ΔE (P < 0.05). Results: Interaction between polymerizing units, material and time was not significant (P > 0.05). Monowave LED exhibited significantly higher color changes than the other units ([P < 0.05] [ΔE 2.94 ± 0.44]). QTH promoted composite specimens significantly less color change ([P < 0.05] [ΔE 0.87 ± 0.41]). Conclusion: This study concluded that color of resin cement used in the adhesion of indirect restorations was affected by curing device light and indirect restoration material type. PMID:26957793

  16. Push-out bond strength of a self-adhesive resin cement used as endodontic sealer

    PubMed Central

    Gurgel-Filho, Eduardo Diogo; Lima, Felipe Coelho; Saboia, Vicente de Paula Aragão; Coutinho-Filho, Tauby de Souza; Neves, Aline de Almeida

    2014-01-01

    Objectives The aim of the present study was to investigate the bond strength of RelyX Unicem (3M) to root canal dentin when used as an endodontic sealer. Materials and Methods Samples of 24 single-rooted teeth were prepared with Gates Glidden drills and K3 files. After that, the roots were randomly assigned to three experimental groups (n = 8) according to the filling material, (1) AH Plus (Dentsply De Trey GmbH)/Gutta-Percha cone; (2) Epiphany SE (Pentron)/Resilon cone; (3) RelyX Unicem/Gutta-Percha cone. All roots were filled using a single cone technique associated to vertical condensation. After the filling procedures, each tooth was prepared for a push-out bond strenght test by cutting 1 mm-thick root slices. Loading was performed on a universal testing machine at a speed of 0.5 mm/min. One-way analysis of variance and Tukey test for multiple comparisons were used to compare the results among the experimental groups. Results Epiphany SE/Resilon showed significantly lower push-out bond strength than both AH Plus/Gutta-Percha and RelyX Unicem/Gutta-Percha (p < 0.05). There was no significant difference in bond strength between AH Plus/Gutta-Percha and RelyX Unicem/Gutta-Percha (p > 0.05). Conclusions Under the present in vitro conditions, bond strength to root dentin promoted by RelyX Unicem was similar to AH Plus. Epiphany SE/Resilon resulted in lower bond strength values when compared to both materials. PMID:25383347

  17. Effect of root canal rinsing protocol on dentin bond strength of two resin cements using three different method of test

    PubMed Central

    Khoroushi, Maryam; Sheikhi, Mohammadreza; Soleimani, Bahram

    2016-01-01

    Background Different studies have used different tests to evaluate bond strength of resin cements to root dentin. In this in vitrostudy, three different tests were used to evaluate the bond strength of two resin cements to root dentin using two root dentin irrigation protocols. Material and Methods Ninety-six intact single-rooted teeth were selected for this study. Forty-eight teeth, with a root length of 15mm, were randomly divided into two groups and irrigated with normal saline or 2.5% sodium hypochlorite solutions during root canal preparation, respectively. For each 12 specimens from each group, fiber post #1 was bonded using an etch-and-rinse (Duo-Link) and a self-adhesive (BisCem) resin cement, respectively. After incubation, two specimens were prepared for the push-out test from the middle thirds of the roots. In another 24 teeth, after two 1.5-mm sections were prepared from the middle thirds of the prepared roots, sections of the post were bonded in two subgroups with each of the cements mentioned above and the samples were prepared for the pull-out test. For shear test, the crowns of 48 teeth were cut away, the dentin surfaces were prepared, the two irrigation solutions were used, and the resin cements were bonded. Data collected from the three tests were evaluated by ANOVA, post-hoc Tukey and Weibull tests (α=0.05). Results There were significant differences in the mean bond strength values between the three bond strength tests (P<0.001). Rinsing protocol and cement type resulted in similar variations in the mean bond strength in all tests (P>0.05). Conclusions Under the limitations of the present study, the method of the test used had an effect on the recorded bond strength between the resin cement and root dentin. Cement type and irrigation protocol resulted in similar variations with all the tests. Push-out and shear tests exhibited more coherent results. Key words:Bond strength, endodontically treated tooth, fiber post, resin cement, sodium

  18. In-depth polymerization of a self-adhesive dual-cured resin cement.

    PubMed

    Puppin-Rontani, R M; Dinelli, R G; de Paula, A B; Fucio, S B P; Ambrosano, G M B; Pascon, F M

    2012-01-01

    The aim of this study was to assess Knoop hardness at different depths of a dual-cured self-adhesive resin cement through different thicknesses of Empress Esthetic® ceramic.Flattened bovine dentin was embedded in resin. The cement was inserted into a rubber mold (0.8 x 5 mm) that was placed between two polyvinyl chloride plastic films and placed over the flat dentin and light cured by Elipar Trilight-QTH (800 mW/cm2) or Ultra-Lumelight-emitting diode (LED 5; 1585 mW/cm2) over ceramic disks 1.4 or 2 mm thick. The specimens(n=6) were stored for 24 hours before Knoop hardness (KHN) was measured. The data were submitted to analysis of variance in a factorial split-plot design and Tukey's test (a=0.05).There was significant interaction among the study factors. In the groups cured by the QTHunit, an increase in ceramic thickness resulted in reduced cement hardness values at all depths, with the highest values always being found in the center (1.4 mm, 58.1; 2 mm, 50.1)and the lowest values at the bottom (1.4 mm,23.8; 2 mm, 20.2). When using the LED unit, the hardness values diminished with increased ceramic thickness only on the top (1.4 mm,51.5; 2 mm, 42.3). In the group with the 1.4-mm-thick disk, the LED curing unit resulted in similar values on the top (51.5) and center(51.9) and lower values on the bottom (24.2).However, when the cement was light cured through the 2-mm disk, the highest hardness value was obtained in the center (51.8), followed by the top (42.3) and bottom (19.9),results similar to those obtained with the QTH curing unit (center > top > bottom). The hardness values of the studied cement at different depths were dependent on the ceramic thickness but not on the light curing units used.

  19. The effects of different shades of resin luting cement on the color of ceramic veneers.

    PubMed

    Alqahtani, Mohammed Q; Aljurais, Rana M; Alshaafi, Maan M

    2012-01-01

    The purpose of this study was to quantitatively evaluate the effects of different shades of light-polymerized resin cement on the color of two different thicknesses (0.5 mm and 0.7 mm) of three different ceramic materials (Esthetic, e.max, and ZirPress). A spectrophotometer (Color Eye 7000A - CIE (L*a*b*) was used to measure the color of specimens on the control substrate without cement, and then on (Translucent, White Opaque, B0.5, A1, and A3 of RelyX™ Veneer cement). The mean values of color difference (ΔE) were higher for Esthetic, followed by ZirPress, with the lowest values for e.max. The mean values of ΔE decreased when the thickness of ceramic increased from 0.5 mm to 0.7 mm. It was observed that the White Opaque had significantly increased ΔE values when compared with (TR, B0.5, A1, and A3), whereas no significant difference between B0.5 and TR, and between B0.5 and A3.

  20. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    PubMed Central

    Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (α=.05). RESULTS Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period. PMID:24049562

  1. Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite.

    PubMed

    Koch, Tamara; Peutzfeldt, Anne; Malinovskii, Vladimir; Flury, Simon; Häner, Robert; Lussi, Adrian

    2013-08-01

    Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide-eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H₃PO₄) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg⁻¹ of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H₃PO₄ or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

  2. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    PubMed Central

    Alaghemand, Homayoun; Abolghasemzadeh, Faezeh; Pakdel, Farzaneh; Judi Chelan, Reza

    2014-01-01

    Background and aims. Microleakage is still one of the major problems of composite-based restorations.This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep). Laboratory-made inlays (LMI) were used for buccal cavities, and CAD/CAM inlays (CMI) were used for lingual cavities. All the cavities were divided into six groups (n=10): 1) LMI at -5°C; 2) LMI at 50°C; 3) LMI at room temperature (25°C); 4) CMI at -5°C; 5) CMI at 50°C; 6) CMI at room temperature (25°C). Inlays were bonded to cavities in a pulp pressure- and temperature-simulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05). Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05). The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19) was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16). No correlation was found be-tween cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024839

  3. Effect of Resin Bonded Luting Agents Influencing Marginal Discrepancy in All Ceramic Complete Veneer Crowns

    PubMed Central

    Sathyamoorthy, Anusha; Ranganathan, Hemalatha; Murthykumar, Karthikeyan

    2016-01-01

    Introduction Marginal discrepancy severely affects the long term success of All ceramic complete veneer crowns. The precise role of resin luting agents influencing this phenomenon needs to be explored further. Aim To estimate and compare the marginal discrepancy in CAD/CAM processed All ceramic complete veneer crowns prior and following luting with resin bonded luting agents. Materials and Methods Extracted human maxillary first premolars were randomly allocated into four groups of 27 samples each Viz., Group I-Resin Modified Glass Ionomer Cement (GIC) (RelyX), Group II-Bis-GMA based dual cure resin cement (Variolink II), Group III-PMMA based resin cement (Superbond), Group IV- Urethane Dimethacrylate resin cement (Calibra). Following tooth preparation, CAD/CAM All ceramic complete veneer crowns were fabricated and sectioned and marginal discrepancy was evaluated using a scanning electron microscope (TESCAN, Magnification power-1,00,000x) prior and after luting with the experimental resin cements. Results The vertical and horizontal discrepancy before and after cementation with Group I [270.08±103.10μm, 165.3±53.00μm and 270.86±102.70μm, 166.62±54.96μm respectively]; Group II [254.21±79.20μm, 117.75±24.29μm and 234.81±79μm, 116.89±18.22μm respectively]; Group III [272.47±86.25μm, 142.08±50.83μm and 251.82±62.69μm, 136.07±44.95μm respectively]; Group IV were [260.28±64.81μm, 116.98±17.71μm and 233.08±69.44μm, 116.58±21.13μm respectively]. ANOVA inferred a statistically significant difference between the four test specimen with regards to vertical and horizontal marginal discrepancy after cementation (F=9.092, p<0.001), (F=10.97, p<0.001). Tukey HSD Post-hoc test observed significant differences in vertical and horizontal marginal discrepancies between the resin modified glass ionomer and resin cements (p<0.05). Conclusion Resin cements exhibited a greater reduction in the marginal discrepancy than the resin modified glass ionomer

  4. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  5. Lack of correlation between tubular dentine cement penetration, adhesiveness and leakage in roots filled with gutta percha and an endodontic cement based on epoxy amine resin

    PubMed Central

    MACHADO, Ricardo; da SILVA NETO, Ulisses Xavier; CARNEIRO, Everdan; FARINIUK, Luiz Fernando; WESTPHALEN, Vânia Portela Ditzel; CUNHA, Rodrigo Sanches

    2014-01-01

    Objective To analyze possible correlations among tubular dentine cement penetration, adhesiveness and apical leakage in fillings performed with gutta percha and an endodontic cement based on epoxy amine resin. Material and Methods Sixty similar, extracted human mandibular central incisors were irrigated, instrumented and filled following the same protocol. First, apical leakage was quantified by fluid filtration tests. Then, these same specimens were sectioned for analysis of tubular dentine cement penetration and the middle thirds were submitted to push-out tests to analyze the adhesiveness of the fillings. Results In brief, the means and standard deviations with a confidence interval of 95% were as follows: tubular dentine cement penetration (8.875±4.540), adhesiveness (4.441±2.683) and apical leakage (0.318±0.215). The data were confronted using the Pearson's test (P>0.05), and it was possible to prove that there was no correlation between (1) tubular dentine cement penetration and apical leakage (r2: 0.08276), (2) tubular dentine cement penetration and adhesiveness (r2: -0.2412) and (3) adhesiveness and apical leakage (r2: 0.1340). Conclusion After analysis of these data, it could be observed that there exists no correlation among the variables analyzed in this study. PMID:24626245

  6. Effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement.

    PubMed

    Moezzizadeh, Maryam; Nojedehian, Hanieh; Valizadeh Haghi, Haleh

    2017-01-31

    This study aimed to assess the effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement. A total of 120 specimens were used in this in-vitro, experimental study. Zirconia discs measuring 10×7×2 mm were cut from Y-TZP zirconia blocks, sintered, cleaned and received different surface treatments of sandblasting, bioglass powder coating+etching, bioglass powder coating+etching+silanization, bioglass slurry coating+etching, bioglass slurry coating+etching+silanization, silica coating+silanization, silica coating+etching+silanization and no treatment group (control). Then the microshear bond strength testing and scanning electron microscope (SEM) analysis were done. Data were analyzed using the Mann Whitney U and the Kruskal Wallis tests. Significant differences existed in bond strength of different groups (p<0.001). The sandblasted and bioglass coated groups showed higher and the colloidal silica-coated groups showed lower bond strength compared to the control group.

  7. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements.

    PubMed

    Pereira, Tatiana Bahia Junqueira; Jansen, Wellington Corrêa; Pithon, Matheus Melo; Souki, Bernardo Quiroga; Tanaka, Orlando Motohiro; Oliveira, Dauro Douglas

    2013-08-01

    The objective of this study was to test the effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cement (RMGIC). One hundred premolars, extracted for orthodontic reasons, were divided into five groups (n = 20). Group 1 (control): enamel was etched with 35 per cent phosphoric acid, a thin layer of adhesive was applied, and the brackets were bonded with Transbond XT. Group 2: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with conventional glass ionomer cement (GIC). Group 3: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with conventional GIC. Group 4: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with RMGIC. Group 5: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with RMGIC. The teeth were stored in distilled water for 24 hours before they were submitted to shear testing. The results demonstrated that bond strength values of group 1 (17.08 ± 6.39 MPa) were significantly higher in comparison with the other groups. Groups 2 (3.43 ± 1.94 MPa) and 3 (3.92 ± 1.57 MPa) presented values below the average recommended in the literature. With regard to adhesive remnant index, the groups in which the enamel was treated with NaOCl showed a behaviour similar to that of the resin composite. It is conclude with enamel treatment with NaOCl increased bonding strength of brackets bonded with GIC and RMGIC, but increased bond strength was not statistically significant when compared to the untreated groups.

  8. Microleakage evaluation of class V restorations with conventional and resin-modified glass ionomer cements.

    PubMed

    Pontes, Danielson Guedes; Guedes-Neto, Manoel Valcacio; Cabral, Maria Fernanda Costa; Cohen-Carneiro, Flávia

    2014-09-01

    The aim of this study was to evaluate in vitro the marginal microleakage of conventional Glass Ionomer Cements (GIC) and Resin Modified Glass Ionomer Cements (RMGIC). The tested materials were grouped as follows: GIC category - G1 (Vidrion R - SSWhite); G2 (Vitro Fill - DFL); G3 (Vitro Molar - DFL); G4 (Bioglass R - Biodinâmica); and G5 (Ketac Fill - 3M/ESPE); and RMGIC category - G6 (Vitremer - 3M/ESPE); G7 (Vitro Fill LC - DFL); and G8 (Resiglass - Biodinâmica). Therefore, 80 class V cavities (2.0X2.0 mm) were prepared in bovine incisors, either in the buccal face. The samples were randomly divided into 8 groups and restored using each material tested according to the manufacturer. The root apices were then sealed with acrylic resin. The teeth were stored for 24 h in 100% humidity at 37°C. After storage, the specimens were polished with extra-slim burs and silicon disc (Soft-lex - 3M/ESPE), then were isolated with cosmetic nail polish up to 1 mm around the restoration. Then, the samples were immersed in 50% AgNO3 solution for 12 h and in a developing solution for 30 min. They were rinsed and buccal-lingual sectioned. The evaluation of the microleakage followed scores from 0 to 3. The Kruskal-Wallis test and Dunn method test were applied (a=0.05). The results showed that there was no difference between the enamel and dentin margins. However, GIC materials presented more microleakage than RMGIC.

  9. Resin-modified glass ionomer cements: fluoride release and influence on Streptococcus mutans growth.

    PubMed

    Friedl, K H; Schmalz, G; Hiller, K A; Shams, M

    1997-02-01

    The aims of the present study were to measure the fluoride release of 1 glass ionomer cement, 1 cermet, 3 resin-modified glass ionomer cements and 1 compomer, and to determine the influence of each material on bacterial growth. Test specimens were eluted in saline for 180 days. Every 2 days, the specimens were transferred into fresh saline and the fluoride content of the solution was measured. Furthermore, 48-h, 14-d, 90-d, and 180-d eluates were inoculated with Streptococcus mutans and bacterial growth was recorded nephelometrically. Fluoride release dropped significantly over time for each material with values between 6.2 (Ketac-Silver) and 29.3 (Photac-Fil) ppm after 48 h to values between 0.6 (Ketac-Silver) and 1.7 (Ketac-Fil, Vitremer) ppm after 180 days. Each material reduced bacterial growth at each time of examination, but the effect decreased significantly over time with a maximum growth of 71.7% (Ketac-Fil) to 85.6% (Ketac-Silver) after 48 h and 94.7 (Vitremer) to 99.0% (Ketac-Silver) after 180 days (growth control = 100%). Both Ketac-Silver and Dyract showed a significantly lower inhibiting effect on bacterial growth than the other materials. The tested materials showed a good correlation between fluoride release and influence on bacterial growth. However, both effects dropped dramatically over the 180-days period.

  10. The effect of simplified adhesives on the bond strength to dentin of dual-cure resin cements.

    PubMed

    Shade, A M; Wajdowicz, M N; Bailey, C W; Vandewalle, K S

    2014-01-01

    The purpose of this study was to compare the shear bond strengths to dentin of two dual-cure resin cements, one with a unique initiator, NX3 (Kerr Corp), and the other with a traditional redox-initiator system, Calibra (Dentsply), when used in combination with simplified or nonsimplified adhesive agents. The two dual-cure resin cements, in either self- or dual-cure activation modes, were bonded to human dentin with four dental adhesives to create 16 subgroups of 10 specimens each. After 24 hours of storage in distilled water at 37°C, the specimens were tested in shear in a universal testing machine. With both NX3 and Calibra, bond strengths significantly increased when the specimens were dual cured. In addition, with either cement in either mode, the nonsimplified adhesives performed significantly better than did the simplified adhesive bonding agents. When used specifically with simplified adhesives in either cure mode, NX3 did not produce significantly higher bond strengths than did Calibra. In general, lower dentin bond strengths were found with simplified adhesives or self-cure activation with either resin cement.

  11. Influence of different light sources on microtensile bond strength and gap formation of resin cement under porcelain inlay restorations.

    PubMed

    Ozturk, A N; Usumez, A

    2004-09-01

    Clinical success with ceramic inlays/onlays has been assisted by the ability to develop a reliable bond of composite resin to dental tissues. The purpose of this study was to test the efficiency of two different light sources on microtensile bond strength and the gap formation of resin cement under class II porcelain inlay restorations. Standardized mesio-occlusal cavities were prepared in 30 freshly extracted, intact human premolar teeth. Then impressions were made and ceramic inlays were fabricated. In the cementation process, the resin cement/inlay combinations were exposed to two different photopolymerization units. The polymerizations through 15 specimens were performed with a conventional halogen light source for 60 s, and the other specimens were cured by a plasma arc light for 9 s. After the cementation process, two 1.2 x 1.2 mm wide 'I' shape sections per tooth were produced with a sectioning machine and sections were subjected to microtensile testing after 24 h or 1 week. Gap formation of specimens cured by different photopolymerization units were evaluated with scanning electron microscopy (SEM). Statistically significant differences were found between the microtensile bond strength of inlays exposed to conventional light and plasma arc curing unit (P < 0.001). Plasma arc curing units make it possible to polymerize composite in much shorter times than conventional curing unit. However, the samples polymerized with conventional halogen light produced better microtensile bond strength than the plasma arc unit.

  12. An Investigation on Load Bearing Capacities of Cement and Resin Grouted Rock Bolts Installed in Weak Rocks

    NASA Astrophysics Data System (ADS)

    Kalyoncu Erguler, Guzide; Abiddin Erguler, Zeynal

    2015-04-01

    Rock bolts have been considered one of indispensable support method to improve load bearing capacity of many underground engineering projects, and thus, various types of them have been developed until now for different purposes. Although mechanically anchored rock bolts can be successfully installed to prevent structurally controlled instabilities in hard rocks, in comparison with cement and resin grouted rock bolts, these types of anchors are not so effective in weak rocks characterized by relatively low mechanical properties. In order to investigate the applicability and to measure relative performance of cement and resin grouted rock bolts into weak and heavily jointed rock mass, a research program mainly consisting of pull-out tests was performed in a metal mine in Turkey. The rock materials excavated in this underground mining were described as basalt, tuff, ore dominated volcanic rocks and dacite. To achieve more representative results for rock materials found in this mining and openings excavated in varied dimensions, the pull-out tests were conducted on rock bolts used in many different locations where more convergences were measured and deformation dependent instability was expected to cause greater engineering problems. It is well known that the capacity of rock bolts depends on the length, diameter and density of the bolt pattern, and so considering the thickness of plastic zone in the studied openings, the length and diameter of rock bolts were taken as 2.4 m. and 25 mm., respectively. The spacing between rows changed between 70 and 180 cm. In this study, totally twenty five pull-out tests were performed to have a general understanding about axial load bearing capacity and support reaction curves of cement and resin grouted rock bolts. When pull load-displacement curves belongs to cement and resin grouted rock bolts were compared with each other, it was determined that cement grouted rock bolts carry more load ranging between 115.6 kN and 127.5 kN with

  13. Effectiveness of surface protection of resin modified glass ionomer cements evaluated spectrophotometrically.

    PubMed

    Cefaly, D F; Seabra, B G; Tapety, C M; Taga, E M; Valera, F; Navarro, M F

    2001-01-01

    The effectiveness of four surface protectors for resin-modified glass ionomer cements was evaluated by spectrophotometrically determining dye uptake. Ninety specimens, 3.0 mm in diameter and 1.0 mm in height, were made with Photac-Fil, Fuji II LC and Vitremer and divided into six groups for each material. Positive and negative controls were not protected while experimental specimens were protected with proprietary glaze, nail varnish, flowable resin and glaze. The discs were immersed in 0.1% methylene blue solution for 10 minutes after mixing, except for those negative control specimens that were immersed in deionized-water. After 24 hours, the specimens were washed and the protectors trimmed with Sof-Lex discs. The specimens were then removed from the matrixes and individually placed in 1.5 mL of 65% nitric acid for five hours. The absorbance was determined spectrophotometrically at 590 nm. Dye uptake was expressed in microgram dye/specimen. The data were analyzed by two-way ANOVA and Tukey-Kramer tests. All surface protectors tested were effective. For Fuji II LC and Vitremer no differences were observed among tested protections. For Photac-Fil, nail varnish showed better performance than the proprietary glaze.

  14. Influence of Photoinitiator and Light-Curing Source on Bond Strength of Experimental Resin Cements to Dentin.

    PubMed

    Segreto, Dario Raimundo; Naufel, Fabiana Scarparo; Brandt, William Cunha; Guiraldo, Ricardo Danil; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2016-01-01

    This study evaluated the bond strength (BS) of experimental resin cements formulated with different photoinitiators when activated by two kinds of light-curing units (LCUs) through a ceramic material. Seven resin blends with different camphorquinone (CQ) and/or phenylpropanedione (PPD) concentrations (weight) were prepared: C5: 0.5% CQ; C8: 0.8% CQ; P5: 0.5% PPD; P8: 0.8% PPD; C1P4: 0.1% CQ and 0.4% PPD; C4P1: 0.4% CQ and 0.1% PPD; C4P4: 0.4% CQ and 0.4% PPD. Two LCUs were used: one quartz-tungsten-halogen (QTH - 850 mW/cm²) and one light-emitting diode (LED - 1300 mW/cm²). The microtensile bond strength of each blend was assessed. Data were submitted to two-way ANOVA and Tukey's test (α=0.05). The BS values did not exhibit significant differences for LCUs, regardless of the photoinitiator type. Three cements showed significant differences: P5 and C5 had higher BS with QTH, and C4P1 with LED. For QTH, P5 showed the highest and C1P4 the lowest BS. For the LED, C4P1 showed the highest BS of all the cements. The results indicated that PPD was a viable alternative in the formulation of photocured resin cements, reducing or eliminating CQ that is yellowish without impairing the bond strength. Furthermore, both LED and QTH were effective in curing resin cements that contain PPD or CQ.

  15. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins.

    PubMed

    Wu, Shiyu; Gu, Lisha; Huang, Zihua; Sun, Qiurong; Chen, Huimin; Ling, Junqi; Mai, Sui

    2017-02-01

    The biomimetic remineralization of apatite-depleted dentin is a potential method for enhancing the durability of resin-dentin bonding. To advance this strategy from its initial proof-of-concept design, we sought to investigate the characteristics of polyacrylic acid (PAA) adsorption to desorption from type I collagen and to test the mineralization ability of PAA-bound collagen. Portland cement and β-tricalcium phosphate (β-TCP) were homogenized with a hydrophilic resin blend to produce experimental resins. The collagen fibrils reconstituted on nickel (Ni) grids were mineralized using different methods: (i) group I consisted of collagen treated with Portland cement-based resin in simulated body fluid (SBF); (ii) group II consisted of PAA-bound collagen treated with Portland cement-based resin in SBF; and (iii) group III consisted of PAA-bound collagen treated with β-TCP-doped Portland cement-based resin in deionized water. Intrafibrillar mineralization was evaluated using transmission electron microscopy. We found that a carbonyl-associated peak at pH 3.0 increased as adsorption time increased, whereas a hydrogen bond-associated peak increased as desorption time increased. The experimental resins maintained an alkaline pH and the continuous release of calcium ions. Apatite was detected within PAA-bound collagen in groups II and III. Our results suggest that PAA-bound type I collagen fibrils can be mineralized using Portland cement-based resins.

  16. Effect of thickness of indirect restoration and distance from the light-curing unit tip on the hardness of a dual-cured resin cement.

    PubMed

    de Paula, Andréia Bolzan; Tango, Rubens Nisie; Sinhoreti, Mário Alexandre Coelho; Alves, Marcelo Corrêa; Puppin-Rontani, Regina M

    2010-01-01

    This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (alpha=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light-curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.

  17. Development of a ceramic primer with higher bond durability for resin cement.

    PubMed

    Li, Rui

    2010-07-01

    To increase the bond durability of resin to the CAD/CAM ceramic surface, two types of two-bottle type ceramic primers, consisting of Primer A1 or A2 and Primer B, were designed. Primer A1 was prepared by dissolving 25, 50, or 100 mg of gamma-methacryloxypropyltrimethoxysilane in 1 mL of ethanol. Primer A2 was prepared by dissolving 50 mg of mixed silanes, consisting of 1,2-bis(trimethoxysilyl)ethane to gamma-methacryloxypropyltrimethoxysilane, in 1 mL of ethanol. Mole fractions of 1,2-bis(trimethoxysilyl)ethane to gamma-methacryloxypropyltrimethoxysilane were 0, 10, 20, 30, 40 and 50 mol%. Primer B was prepared after dissolving 0.01, 0.05 or 0.1 mol L(-1) hydrochloric acid in ethanol by 50 vol%. Ceramic surface was silanated with a mixture of Primers A1 and B or Primers A2 and B for 1 min, and then air-dried. Commercial GC ceramic primer and Porcelain Liner M were utilized. Thereafter, dual-curing type resin cement was bonded to silanated ceramic surface through visible-light irradiation. Shear bond strength of resin to the ceramic surface was measured, before and after thermo-cycling. Addition of 0.01 or 0.05 mol L(-1) hydrochloric acid to the gamma-methacryloxypropyltrimethoxysilane allowed for significant increases in the bond strength. However, thermo-cycling resulted in significant decreases of approximately 5 MPa in the bond strength. Conversely, when the mixed silane, where 30 mol% of 1,2-bis(trimethoxysilyl)ethane dissolved in gamma-methacryloxypropyltrimethoxysilane, was utilized with 0.05 mol L(-1) hydrochloric acid, the reduction in the bond strength decreased to approximately 2 MPa. The designed ceramic primers exhibited higher ceramic bond durability than commercial ceramic primers.

  18. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    PubMed

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p<0.05). For all the LCUs, a thickness of 0.7 mm produced the highest temperatures (1.4 and 2.0mm, p<0.05). There was no difference in temperature values between the latter two thicknesses (p>0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  19. Comparison of Endodontic Medicaments on Bond Strength of Fiber Post to Root Dentin Using Resin Cement

    PubMed Central

    Zare Jahromi, Maryam; Barekatain, Mehrdad; Ravanbod, Shirin; Ranjbarian, Parisa; Kousehlar, Sara

    2017-01-01

    Statement of the Problem: Endodontic irrigants and medicaments may affect the bond strength of intracanal posts to root dentin. Purpose: The aim of this study was to compare the effect of calcium hydroxide (Ca(OH)2) and 2% chlorhexidine gel (CHX) on bond strength of fiber post cemented with resin cement to root dentin. Materials and Method: This in vitro experimental study was conducted on 36 mandibular premolars. Canals were prepared using the step back technique. After root canal irrigation, the teeth were divided into three groups of 12. Ca(OH)2 paste and CHX gel were used as intracanal medicaments in the first and second groups respectively. No intracanal medicament was used in the third group (control group). Access cavities were then sealed and the teeth were incubated for one week. The root canals were then filled using gutta percha and AH26 sealer and the teeth were incubated for 72 hours. Tooth crowns were then cut at the level of the cementoenamel junction and intracanal posts were placed. The teeth were mounted in auto-polymerizing acrylic resin, and incubated for one week .They were then sectioned into 1.5mm thick slices from their coronal surface using a fully automated cutting machine, and subjected to push-out test until failure. The load at debonding was recorded and data were analyzed using one-way ANOVA, post-hoc test and t-test. The coronal margin of the root was at the level of the surface of acrylic resin in the mold. Results: The mean bond strength was 4.45 MPa in the Ca(OH)2, 2.45 MPa in the CHX and 2.48 MPa in the control group. The difference in this regard was statistically significant among groups (p= 0.04). The Ca(OH)2 group had significant differences with the CHX and control groups (p= 0.03 and p= 0.02, respectively). The difference between the CHX and control groups was not significant (p= 0.974). Conclusion: Based on the results, Ca(OH)2 increased the bond strength of fiber post to root dentin but 2% CHX had no effect on bond

  20. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    PubMed Central

    Kim, Jong-Eun; Kim, Jee-Hwan; Shim, June-Sung; Roh, Byoung-Duck

    2016-01-01

    Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3) specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3. PMID:27382569

  1. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements

    PubMed Central

    Shin, Hyeongsoon; Ko, Hyunjung

    2016-01-01

    Objectives Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement. PMID:27508157

  2. Evaluation of the Effect of Porcelain Laminate Thickness on Degree of Conversion of Light Cure and Dual Cure Resin Cements Using FTIR

    PubMed Central

    Hoorizad Ganjkar, Maryam; Heshmat, Haleh; Hassan Ahangari, Reza

    2017-01-01

    Statement of the Problem: Increasing the thickness of the veneering porcelain may affect the polymerization of resin cements. Incomplete polymerization of resin cements can lead to compromised quality of restoration and decrease the longevity of indirect restorations. Purpose: This study sought to assess the effect of IPS Empress porcelain thickness on the degree of conversion of light-cure and dual-cure resin cements using Fourier transform infrared spectroscopy. Materials and Method: In this experimental study, IPS Empress porcelain discs (A2 shade) with 10mm diameter and 0.5, 1 and 1.5 mm thicknesses were fabricated. Choice2 (Bisco, USA) and Nexus3 (Kerr, USA) resin cements were light cured through the three porcelain thicknesses in two groups of 3 samples using a LED light-curing unit (LEDemetron II; Kerr, USA). The control group samples were cured individually with no porcelain disc. The degree of conversion of resin cements was determined using FTIR (Bruker; Equinox55, Germany). The data were analyzed using Dunn’s test. Results: The degree of conversion (in percent) beneath the 0.5, 1.5 and 2 mm thicknesses of IPS Empress was 68.67±0.88, 71.06±0.94 and 72.51±0.41 for Choice2 resin cement and 69.60±2.12, 69.64±1.63 and 69.24±2.12 for Nexus3, respectively. Porcelain thickness and type of resin cement had no significant effect on degree of conversion (p≥ 0.05). Conclusion: It seems that increasing the porcelain thickness by up to 1.5 mm has no adverse effect on degree of conversion of both dual cure and light cure resin cements evaluated in this study. PMID:28280757

  3. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  4. The effect of ceramic thickness and resin cement shades on the color matching of ceramic veneers in discolored teeth.

    PubMed

    Xing, Wenzhong; Chen, Xiaodong; Ren, Dafei; Zhan, Kangru; Wang, Yining

    2017-01-10

    The objective of this study was to analyze the effects of ceramic material thickness and resin cement shade on the color matching of ceramic veneers at the gray tooth structures. Seventy-two artificial maxillary right central incisor teeth (C2 shade) were prepared according to veneer tooth preparation in practice. Ceramic materials (LT, A2 shade, IPS e.max Press) were selected to fabricate the 0.50- and 0.75-mm thick veneers at the body region. The ceramic veneer specimens were bonded to the artificial teeth by the 6 shades of resin cements (Variolink Veneer: shades of HV+3, LV-2, LV-3; and RelyX(TM) Veneer: shades of WO, TR, A3). A clinical spectrophotometer (Crystaleye, Olympus) was used to measure the color parameters. The color differences (ΔE values) of ceramic veneers and A2 shade tab (Vitapan Classical, Vita) and C* ab values were calculated. The results of three-way ANOVA indicated that the ΔE values of ceramic veneer and A2 shade tab were significantly different in the thickness of ceramic materials, shades of resin cements, and measuring regions (p < 0.001). There were significant differences in 0.50-mm-thick ceramic veneers that exhibited higher ΔE values compared with veneers that were 0.75-mm thick. Tukey's HSD test showed that the average ΔE values in body region were significantly smaller than that in cervical and incisal regions. The color matching of ceramic veneers was significantly influenced not only by the ceramic thickness and the resin cement shades but also the tooth regions.

  5. Effect of metal type and surface treatment on shear bond strength of resin cement (in vitro study)

    PubMed Central

    Al-Helou, Hiba; Swed, Eyad

    2016-01-01

    Background: Resin-bonded fixed partial dentures appeared to prevent the excessive preparation of dental tissue. Investigation of surface treatments to improve the bond of resin cements to metals may contribute to the longevity of these restorations. Due to the potential lack of ideal preparation form, the type of alloy and its surface pretreatment may have clinically relevant correlations with the retentive strength of castings to minimally retentive preparations. Aim: The aim of this search is to study the bonding resin cement strength to different types of the metal alloy due to the surface treatment. Purpose: Evaluate the effects of two different surface treatments on shear bond strength (SBS) between a palladium-silver alloy (Pb-Ag) and commercially pure titanium (CP Ti) cast alloy with resin luting cements. Materials and Methods: A total of 120 cylinders having 5 mm in diameter and 4 mm in height were divided into two different main groups of metal type: 60 cylinders cast from CP Ti Grade I (Tritan - Reintitan - Germany-Dentaurum) as a base metal and 60 cylinders cast from Pb-Ag (Status-Yamakin, Japan) as a noble metal. 30 cylinders from each type were embedded in acrylic resin, and the rest were left without embedded in acrylic resin. All of the cylinders were smoothed with silicon carbide papers and sandblasting with 50-μm aluminum oxide. Specimens of each metal type were divided into two subgroups, which received one of the following luting techniques: (1) Multilink (Ivoclar Vivadent), (2) Multilink (Ivoclar Vivadent) plus metal zirconia primer (MZP). Every two cylinders from the same metal type and surface treatment were bonded to each other. All specimens were stored in distilled water at 37°C for 24 h and then thermal cycled (500 cycles, 5–55°C). After thermal cycling, the specimens were stored in 37°C distilled water for an additional 24 h before being tested in shear strength. Data (MPa) were analyzed using T-s tests to study the significance of

  6. Effect of eugenol-based root canal sealers on retention of prefabricated metal posts luted with resin cement

    PubMed Central

    Al-Ali, Khalil

    2009-01-01

    Objective This study evaluated the effect of two different eugenol-based root canal sealers on the retention of prefabricated metal posts luted with adhesive resin cement. Materials and methods Thirty prefabricated ParaPosts randomly divided among three groups of 10 each were luted into extracted single-rooted teeth with adhesive resin cement. Two of the groups had been obturated with Gutta–Percha and one of two eugenol-based root canal sealers (Endofil and Tubli-Seal), respectively. The third group was not obturated and served as the control. The forces required for dislodgment of posts from their prepared post spaces were recorded using a universal testing machine. Data were statistically analyzed using one-way ANOVA and Tukey’s multiple range test was used to determine the mean differences. Results Endofil and Tubli-Seal groups demonstrated significantly reduced retention compared to the unobturated (control) group (P < 0.05). Conclusion Eugenol-based sealers significantly reduced the retention of prefabricated posts luted with adhesive resin cement. PMID:23960462

  7. Effect of ceramic type, thickness, and time of irradiation on degree of polymerization of dual – cure resin cement

    PubMed Central

    Bansal, Rashi; Taneja, Sonali; Kumari, Manju

    2016-01-01

    Aim: The aim of the study is to evaluate the effect of ceramic type, thickness, and time of irradiation on degree of polymerization of dual-cure resin cement. Materials and Methods: Dual-cure resin cement (SoloCem) was used to prepare disk-shaped samples (0.5 mm thick × 5 mm diameter). Study group samples (n = 5) were light-cured for 40, 60, and 80 s through all ceramic leucite-reinforced (Cergo Kiss), lithium disilicate-reinforced (IPS e.max), and monolithic zirconia-reinforced (Ziecon) of three thicknesses (2, 3, and 4 mm). Negative control group samples were cured through metal disks and positive control samples were cured without the presence of ceramic. The degree of conversion (DC) was evaluated by Fourier transform infrared spectrometer. The recorded data were subjected to one-way analysis of variance, followed by post hoc analysis (Tukey HSD). Results and Conclusion: Greatest light transmission and DC were seen through Cergo Kiss, followed by IPS e.max Press and Ziecon, with insignificant difference between the latter two. The attenuation of light irradiance increased with increasing thickness of ceramic disks, with statistically significant values between 3 and 4 mm. Increasing time of irradiation to cure dual-cure resin cement did not always result in greater degree of polymerization. PMID:27656058

  8. Influence of energy density of different light sources on Knoop hardness of a dual-cured resin cement.

    PubMed

    Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael

    2008-01-01

    The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  9. Fracture Resistance of Endodontically Treated Roots Restored with Fiber Posts Using Different Resin Cements- An In-vitro Study

    PubMed Central

    Irodi, Sujatha; Mehta, Deepak; Subramanya, Shankar; Govindaraju, Vinay Kumar

    2017-01-01

    Introduction The influence of the remaining coronal tooth structure along with intra-radicular esthetic posts increases fracture resistance of fractured teeth especially in the anterior region. The advent of resin based luting cements improves the adhesion of fiber posts. Aim To evaluate the fracture resistance of endodontically treated roots restored with fiber posts using different resin cements – Calibra (etch and rinse), PermaFlo® DC (self-etch primer) and SmartCem2 (self-adhesive). Materials and Methods Extracted human maxillary central incisors having similar dimensions were decoronated at the Cemento-Enamel Junction (CEJ) to create 16mm long specimens and endodontically treated. A total of 45 teeth were divided into three groups with 15 teeth each for cementation of easy fiber posts (size1, 0.8mm diameter). Post spaces were prepared to a depth of 10mm. Group 1 – Caulk 34% phosphoric acid gel, dual cure adhesive Prime and Bond NT followed by luting of post with Calibra cement. Group 2 – Ultra – etch then Primer A and Primer B, and PermaFlo® DC was used to cement the post. Group 3 – SmartCem2 [1:1 ratio] was used to cement the post. The excess lengths of posts were seared and teeth were mounted on acrylic blocks and loaded under compressive force to the long axis of the tooth which increased in periodic pattern of 1mm/min. The value of the force at which each root section gets fractured was noted. The data were statistically analysed using ANOVA and Tukey’s Test. Results The mean fracture load (and SD) were as follows Group 1 – 762.400 (251.490); Group 2 – 662.933 (206.709); Group 3 – 657.800 (57.372). No statistically significant differences were seen among all three Groups, p-value (0.228). Conclusion Posts cemented using self -adhesive resin cement SmartCem2 have highest fracture resistance and bonding efficacy of self-adhesive technique showed reliably better results but was comparable to total–etch and self–etch techniques. PMID

  10. Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

    PubMed Central

    Khoroushi, Maryam; Mazaheri, Hamid; Tarighi, Pardis; Samimi, Pouran

    2014-01-01

    Objectives Hydrogen peroxide (H2O2) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% H2O2 pre-treatment; G3, G4 and G5. After H2O2 application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (α = 0.05). Results There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). H2O2 treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest (15.96 ± 5.07MPa) and lowest bond strengths (6.79 ± 3.94) respectively. Conclusions It was concluded that H2O2 surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure. PMID:25383350

  11. In vitro study of 24-hour and 30-day shear bond strengths of three resin-glass ionomer cements used to bond orthodontic brackets.

    PubMed

    Lippitz, S J; Staley, R N; Jakobsen, J R

    1998-06-01

    Interest in using composite resin-glass ionomer hybrid cements as orthodontic bracket adhesives has grown because of their potential for fluoride release. The purpose of this pilot study was to compare shear bond strengths of three resin-glass ionomer cements (Advance, Fuji Duet, Fuji Ortho LC) used as bracket adhesives with a composite resin 24 hours and 30 days after bonding. The amount of adhesive remaining on the debonded enamel surface was scored for each adhesive. Mesh-backed stainless-steel brackets were bonded to 100 extracted human premolars, which were stored in artificial saliva at 37 degrees C until being tested to failure in a testing machine. The hybrid cements, with one exception, had bond strengths similar to those of the composite resin at 24 hours and 30 days. Fuji Ortho LC had significantly lower bond strengths (ANOVA p < or = 0.05) than the other adhesives at 24 hours and 30 days when it was bonded to unetched, water-moistened enamel. Adhesive-remnant scores were similar for all cements, except for cement Fuji Ortho LC when it was bonded to unetched enamel. The resin-glass ionomer cements we tested appear to have bond strengths suitable for routine use as orthodontic bracket-bonding adhesives.

  12. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    PubMed Central

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. Statistical Analysis: One-way analysis of variance and Tukey's tests were used for measuring significance between means where P ≤ 0.05. Results: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. Conclusion: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility. PMID:27095901

  13. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    PubMed

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  14. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    PubMed

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  15. Cytotoxicity of a calcium aluminate cement in comparison with other dental cements and resin-based materials.

    PubMed

    Franz, Alexander; Konradsson, Katarina; König, Franz; Van Dijken, Jan W V; Schedle, Andreas

    2006-02-01

    The objective of this study was to compare the cytotoxic effects of a calcium aluminate cement with several currently used direct restorative materials. Specimens of three composites (QuiXfil, Tetric Ceram, Filtek Supreme), one zinc phosphate cement (Harvard Cement), one glass ionomer cement (Ketac Molar), and one calcium aluminate cement (DoxaDent), were used fresh or after 7-days' preincubation in cell culture medium at 37 degrees C, pH 7.2. PVC strips for ISO 10993-5 cytotoxicity test were used as positive control and glass specimens as negative control. L-929 fibroblasts (5-ml aliquots, containing 3 x 10(4) cells/ml), cultivated in DMEM with 10% FCS, 1% glutamine, and 1% penicillin/streptomycin at 37 degrees C/5% CO2 and trypsinized, were exposed to the specimens for 72 h. The cells were harvested, centrifuged, and resuspended in 500 microl DMEM and then counted in 500 microl DMEM for 30 s with a flow cytometer at 488 nm. The analysis of variance comparing the six materials showed different influences on L-929 fibroblast cytotoxicity (p <0.0001). The cytotoxicity of all specimens diminished with increasing preincubation time (p <0.0001). Fresh DoxaDent exhibited the lowest cytotoxicity, followed by QuiXfil. Ketac Molar showed the highest cytotoxicity. After 7 days of preincubation, Harvard Cement and Filtek Supreme demonstrated more cytotoxicity than the other materials (p <0.005).

  16. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    PubMed

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  17. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    PubMed Central

    KİLİC, Kerem; ARSLAN, Soley; DEMETOGLU, Goknil Alkan; ZARARSIZ, Gokmen; KESİM, Bulent

    2013-01-01

    Objective: The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS) and hydrogen peroxide (H2O2) on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods: Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results: There were significant differences in microtensile bond strengths (µTBS) between the control and blood-contaminated groups (p<0.05), whereas there were no significant differences found between the control and the other groups (p>0.05). Conclusions: Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination. PMID:23559118

  18. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    PubMed

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.

  19. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.

    PubMed

    Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B

    2002-01-01

    This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS

  20. Effects of instrumentation time on microleakage of resin-modified glass ionomer cements.

    PubMed

    Yap, Adrian U J; Yeo, Egwin J C; Yap, W Y; Ong, Debbie S B; Tan, Jane W S

    2003-01-01

    This study investigated the effect of instrumentation time on the microleakage of resin-modified glass ionomer cements (RMGICs). Class V cavities were prepared on buccal and lingual/ palatal surfaces of 64 freshly extracted non-carious premolars. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]). The restored teeth were randomly divided into two groups of 32 teeth. Finishing/polishing was done immediately after light-polymerization in one group and was delayed for one week in the other group. The following finishing/polishing systems were evaluated: (a) Robot Carbides (RC); (b) SuperSnap (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each instrumentation time, material and finishing/polishing system combination was 8. Storage medium for both immediate and delayed instrumentation groups was distilled water at 37 degrees C during the hiatus period. The teeth were subsequently subjected to dye penetration testing (0.5% basic fushcin), sectioned and scored. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests at significance level 0.05. For PF, significant difference in enamel leakage was observed between immediate and delayed instrumentation with SS and CS. Significant differences in dentin leakage were also observed between the two instrumentation times for SS. For FT, significant differences in leakage between instrumentation times were observed only in dentin and with RC. Where significant differences in dye penetration scores existed, delayed finishing/polishing resulted in less microleakage.

  1. Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks

    PubMed Central

    Kim, Min-Jeong; Kim, Kyo-Han; Kim, Young-Kyung

    2013-01-01

    PURPOSE The aim of this Fourier transform infrared (FTIR) spectroscopic study was to measure the degree of conversion (DC) of dual-cured resin cements light-irradiated through zirconia ceramic disks with different thicknesses using various light-curing methods. MATERIALS AND METHODS Zirconia ceramic disks (KT12) with three different thicknesses (1.0, 2.0, and 4.0 mm) were prepared. The light transmittance of the disks was measured using ultraviolet visible near-infrared spectroscopy. Four different light-curing protocols were used by combining two curing light modes (Elipar TriLight (standard mode) and bluephase G2 (high power mode)) with light-exposure times of 40 and 120 seconds. The DCs of the two dual-cured resin cements (Duo-Link and Panavia F2.0) light-irradiated through the disks was analyzed at three time intervals (3, 7, and 10 minutes) by FTIR spectroscopy. The data was analyzed using repeated measures ANOVA (α=.05).Two-way ANOVA and Tukey post hoc test were used to analyze the 10 minute DC results. RESULTS The 1.0 mm thick disk exhibited low light transmittance (<25%), and the transmittance decreased considerably with increasing disk thickness. All groups exhibited significantly higher 10 minute DC values than the 3 or 7 minute values (P<.05), but some exceptions were observed in Duo-Link. Two-way ANOVA revealed that the influence of the zirconia disk thickness on the 10 minute DC was dependent on the light-curing methods (P<.001). This finding was still valid even at 4.0 mm thickness, where substantial light attenuation took place. CONCLUSION The curing of the dual-cured resin cements was affected significantly by the light-curing technique, even though the additional chemical polymerization mechanism worked effectively. PMID:24353887

  2. An effect of immediate dentin sealing on the shear bond strength of resin cement to porcelain restoration

    PubMed Central

    Cho, In-Ho

    2010-01-01

    PURPOSE The aim of this study was to determine differences in shear bond strength to human dentin using immediate dentin sealing (IDS) technique compared to delayed dentin sealing (DDS). MATERIALS AND METHODS Forty extracted human molars were divided into 4 groups with 10 teeth each. The control group was light-cured after application of dentin bonding agent (Excite® DSC) and cemented with Variolink® II resin cement. IDS/SE (immediate dentin sealing, Clearfil™ SE Bond) and IDS/SB (immediate dentin sealing, AdapterTM Single Bond 2) were light-cured after application of dentin bonding agent (Clearfil™ SE Bond and Adapter™ Sing Bond 2, respectively), whereas DDS specimens were not treated with any dentin bonding agent. Specimens were cemented with Variolink® II resin cement. Dentin bonding agent (Excite® DSC) was left unpolymerized until the application of porcelain restoration. Shear strength was measured using a universal testing machine at a speed of 5 mm/min and evaluated of fracture using an optical microscope. RESULTS The mean shear bond strengths of control group and IDS/SE group were not statistically different from another at 14.86 and 11.18 MPa. Bond strength of IDS/SE group had a significantly higher mean than DDS group (3.14 MPa) (P < .05). There were no significance in the mean shear bond strength between IDS/SB (4.11 MPa) and DDS group. Evaluation of failure patterns indicates that most failures in the control group and IDS/SE groups were mixed, whereas failures in the DDS were interfacial. CONCLUSION When preparing teeth for indirect ceramic restoration, IDS with Clearfil™ SE Bond results in improved shear bond strength compared with DDS. PMID:21165186

  3. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect.

  4. The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention

    PubMed Central

    Kim, Seung-Mi; Yoon, Ji-Young; Lee, Myung-Hyun

    2013-01-01

    PURPOSE The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. MATERIALS AND METHODS Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water (37℃) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. RESULTS The means and standard deviations of retentive force in Newton for each group were 265.15 ± 35.04 N (P), 318.21 ± 22.24 N (PZ), 445.13 ± 78.54 N (S) and 508.21 ± 79.48 N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. CONCLUSION This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force. PMID:23755347

  5. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement.

    PubMed

    Soares, Carlos José; Giannini, Marcelo; Oliveira, Marcelo Tavares de; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes

    2004-03-01

    The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

  6. Evaluation of the Bond Strength of Resin Cements Used to Lute Ceramics on Laser-Etched Dentin

    PubMed Central

    Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Background data: Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Materials and methods: Two adhesive cements, one “etch-and-rinse” [Variolink II (V)] and one “self-etch” [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann–Whitney U test. Results: No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Conclusions: Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used. PMID:24992276

  7. Shear Bond Strength of a Resin Cement to Different Alloys Subjected to Various Surface Treatments

    PubMed Central

    Tabari, Kasra; Jaberi Ansari, Zahra; Torabzadeh, Hassan; Kharrazi fard, Mohammad Javad

    2016-01-01

    Objectives: Micromechanical retention of resin cements to alloys is an important factor affecting the longevity of metal base restorations. This study aimed to compare the bond strength and etching pattern of a newly introduced experimental etchant gel namely Nano Met Etch with those of conventional surface treatment techniques for nickel-chrome (Ni-Cr) and high noble alloys. Materials and Methods: A total of 120 discs (8×10×15 mm) were cast with Ni-Cr (n=20), high noble BegoStar (n=50) and gold coin alloys (n=50). Their Surfaces were ground with abrasive papers. Ni-Cr specimens received sandblasting and etching. High noble alloy specimens (BegoStar and gold coin) received sandblasting, sandblasting-alloy primer, etching, etch-alloy primer and alloy primer alone. Cylindrical specimens of Panavia were bonded to surfaces using Tygon tubes. Specimens were subjected to micro-shear bond strength testing after storing at 37°C for 24 hours. Results: In gold coin group, the highest bond strength was achieved after sandblasting (25.82±1.37MPa, P<0.001) and etching+alloy primer (26.60 ± 5.47 MPa, P<0.01). The lowest bond strength belonged to sandblasting+alloy primer (17.79±2.96MPa, P<0.01). In BegoStar group, the highest bond strength was obtained in the sandblasted group (38.40±3.29MPa, P<0.001) while the lowest bond strength was detected in the sandblast+ alloy primer group (15.38±2.92MPa, P<0.001). For the Ni-Cr alloy, bond strength in the etched group (20.79±2.01MPa) was higher than that in the sandblasted group (18.25±1.82MPa) (P<0.01). Conclusions: For the Ni-Cr alloy, etching was more efficient than sandblasting but for the high noble alloys, higher Au content increased the efficacy of etching. PMID:27536326

  8. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  9. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  10. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

  11. Surface treatment with a fractional CO2 laser enhances shear bond strength of resin cement to zirconia

    PubMed Central

    Alirezaei, Mehrnoosh

    2016-01-01

    Aims: The present study investigated the effect of different surface treatments on shear bond strength (SBS) of resin cement to zirconia. Materials and methods: Ninety zirconia blocks were prepared and divided into 6 groups of 15 by treatment. Group 1 served as the control group, whereas groups 2 and 3 were treated with air abrasion and a universal primer (Monobond plus), respectively. The remaining zirconia copings were treated with a fractional CO2 laser for 10 seconds using 10 W/10 mJ (group 4), 10 w/14 mJ (group 5) or 20 W/10 mJ (group 6). A luting cement (Clearfil SA) was bonded to the treated zirconia surfaces and cured for 40 seconds. SBS was measured with a universal testing machine and the type of bond failure was determined. Results: There was a statistically significant difference in SBS among the study groups (p<0.001). The highest SBS values were observed in the groups treated with the fractional CO2 laser at settings of 20 W/10 mJ (28.1 MPa) or 10 W/14 mJ (27.4 MPa), followed by the specimens treated with the universal primer (22.8 MPa). The control specimens exhibited the lowest SBS (9.4 MPa) among the study groups (p<0.05). There was no significant difference in the distribution of failure modes among the groups (p=0.871). Conclusions: The application of fractional CO2 laser can improve bond strength of resin cement to zirconia ceramic, and thus it could be considered as an appropriate alternative to conventional methods of zirconia surface treatment. PMID:27141151

  12. Analysis of marginal adaptation and sealing to enamel and dentin of four self-adhesive resin cements.

    PubMed

    Aschenbrenner, Carina Maria; Lang, Reinhold; Handel, Gerhard; Behr, Michael

    2012-02-01

    This in vitro study compared the marginal adaptation of all-ceramic MOD-inlays luted to human molars with four self-adhesive resin cements. Thirty-two human third molars were randomly assigned to four test groups (n = 8 per group). MOD cavities were prepared with approximal finishing lines in dentin and enamel. All-ceramic Empress 2 inlays were luted with four self-adhesive cements (Clearfil SA, iCEM, Bifix SE, seT). Oral stress was simulated by 90 day storage in water as well as by thermal and mechanical loading (TCML, 1.2 × 10(6) × 50 N, 6,000 × 5°/55°, 1.6 Hz). The marginal fit was evaluated by scanning electron microscopy (SEM) and dye penetration. Data were analyzed with the ANOVA/Tukey's test (α = 0.05). The SEM investigation of the gingival cement margins (cement-tooth interface) showed values of perfect margin [percent] (means ± SD) after simulated aging between 84 ± 9% and 95 ± 5% for enamel and 80 ± 9% and 92 ± 3% for dentin. In enamel, seT showed significantly higher marginal integrity than iCEM after water storage and TCML (post hoc; p = 0.011). Furthermore, the marginal adaptation of iCEM in enamel deteriorated by simulated aging (p = 0.014, ANOVA). Mean values of dye penetration (percentage of dye entry into dentin) at the investigated restorations margins ranged between 3% and 8% for enamel and 12% and 22% for dentin. Clearfil SA, iCEM, and seT showed lower dye penetration in enamel than in dentin (Clearfil SA: p = 0.013, iCEM: p = 0.044, seT: p = 0.003). The results suggest that the four self-adhesive luting agents investigated seem to successfully bond to dentin-restricted as well as to enamel-restricted cavities, predicting good clinical performance.

  13. Extraction of heavy metal ions from leachate of cement-based stabilized waste using purpurin functionalized resin.

    PubMed

    Wongkaew, Marisa; Imyim, Apichat; Eamchan, Ponwason

    2008-06-15

    A new chelating resin was synthesized by functionalization of a polymer support, Amberlite XAD-2 with purpurin through an azo linkage (NN). The products were characterized by scanning electron microscopy, elemental analysis, Fourier transform infrared spectroscopy and thermogravimetric analysis. The optimum conditions for the extraction of Cd(II), Cr(III) and Pb(II) in two matrices; leachate from cement-based material and de-ionized water, were studied by batch and column methods. The determination of the metal ions was carried out by flame atomic absorption spectrometry. The optimum pH for the extraction of all metal ions in both matrices were at 4.0. Their sorption equilibrium was reached within 1h. The sorbed Cd(II) and Pb(II) were eluted by 1% HNO3 within 10 min with the desorption recovery of >90%. The elution of Cr(III) by 3% H2O2 in 0.1 M NaOH was achieved within 30 min with the desorption recovery of >80%. The sorption capacity of Cd(II), Cr(III) and Pb(II) onto the resin was 75.0, 68.2, 82.7 micromol g(-1) resin in DI water and 54.1, 46.5 and 55.7 micromol g(-1) resin in leachate, respectively. The extraction efficiency in the column method can be improved using the recirculation system. This new method gave a good accuracy in batch system with the recovery of 86.5 and 89.9% for Cd(II) and Pb(II) and R.S.D. less than 2.3% (n=14).

  14. Effect of time on the diametral tensile strength of resin-modified restorative glass ionomer cements and compomer.

    PubMed

    Cefaly, D F; Valarelli, F P; Seabra, B G; Mondelli, R F; Navarro, M F

    2001-01-01

    The aim of this study was to analyze the diametral tensile strengths of three resin-modified restorative glass ionomer cements--Vitremer, Fuji II LC and Photac Fil and one compomer--Dyract. They were tested at 1 hour, 1 day and 1 week. Kratos testing machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey's test that showed statistically significant differences among the materials. The tested materials presented an increase in strength from 1 hour to 1 week and were as follows for each material respectively: Vitremer (19.22-27.29), Fuji II LC (23.91-28.67), Photac Fil (19.35-22.86), Dyract (28.83-46.95). Dyract presented the highest strengths.

  15. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    NASA Astrophysics Data System (ADS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-12-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data.

  16. The effect of short polyethylene fiber with different weight percentages on diametral tensile strength of conventional and resin modified glass ionomer cements

    PubMed Central

    Sharafeddin, Farahnaz; Ghaboos, Seyed-Ali

    2017-01-01

    Background The aim of this study was to investigate the effect of polyethylene fiber on diametral tensile strength of conventional and resin modified glass ionomer cements. Material and Methods 60 specimens in 6 groups (n=10) were prepared. In group 1 conventional glass ionomer (Fuji GC) and in group 2 resin modified glass ionomer (Fuji LC) were as control groups. In group 3 and 4 conventional glass ionomers mixed with short polyethylene fibers in proportion of 1 wt% and 3 wt%, respectively. In fifth and sixth groups, resin modified glass ionomer and short polyethylene fibers were mixed in 1 and 3% wt, respectively. Samples were prepared in a round brass mold (6.5×2.5 mm). After thermo-cycling, the diametral tensile strength of the specimens were tested and data were analyzed with ANOVA and post-hoc tests (p<0.05). Results Diametral tensile strength of both conventional and resin modified glass ionomer cements increased after mixing with polyethylene fiber (p<0.001). Also, reinforcement occurred as the mixing percentage increased from 1% wt to 3% wt in either conventional and resin modified glass ionomer (p<0.001). Conclusions The polyethylene fiber was shown to have a significant positive influence on diametral tensile strength of two types of glass ionomers. Key words:Conventional glass ionomer, diametral tensile strength, polyethylene fiber, resin modified glass ionomer. PMID:28298993

  17. Placing Anterior Lithium-Disilicate Restorations Using a Dual-Cure Resin Cement.

    PubMed

    Poss, Stephen D

    2016-10-01

    Depending on the case, predictably seating today's esthetic indirect restorations can be challenging. Ultimately, the cementation and adhesive materials selected, combined with the techniques used for their placement, can greatly affect the quality and efficient delivery of laboratory-fabricated restorations. New adhesive bonding and cementation materials have the potential to simplify the delivery of indirect restorations and simultaneously reduce and/or eliminate many of the challenges clinicians face during the placement process. This article reviews the requisite characteristics of these materials and presents a case demonstrating their use when seating anterior lithium-disilicate restorations.

  18. Effect of root canal sealers and irrigation agents on retention of preformed posts luted with a resin cement.

    PubMed

    Mayhew, J T; Windchy, A M; Goldsmith, L J; Gettleman, L

    2000-06-01

    This study examined the effect of three sealers and four irrigants on retention of Dentatus preformed posts luted with Panavia 21 resin cement. Gutta-percha with one of the following sealers--EWT, AH26, Nogenol, or no sealer (control)--was used to fill the root canals of 160 autoclaved incisor and premolar tooth roots. After 72 hr 8 mm post spaces were created with Dentatus Probos Pathfinders and Dentatus reamers. After irrigating the post spaces with saline, 5.25% NaOCl, 50% citric acid followed by NaOCl, or 40% H3PO4, followed by NaOCl, Panavia 21 TC cement was introduced into the canal on the Dentatus #4 stainless steel post's threads. An up-and-down and counterclockwise motion and then a forward twist seated the posts without engaging dentin. Mesiodistal and faciolingual radiographs visualized the chambers. After 72 hr posts were removed axially with an Instron at 5 mm/min. Surprisingly, using Nogenol sealer reduced post retention whereas EWT and AH26 increased retention compared with no sealer. Post retention improved after acid etchants, especially for AH26.

  19. The effect of polishing systems on microleakage of tooth coloured restoratives: Part 1. Conventional and resin-modified glass-ionomer cements.

    PubMed

    Yap, A U; Tan, S; Teh, T Y

    2000-02-01

    The purpose of this in vitro study was to investigate the effect of polishing systems on the microleakage of conventional and resin-modified glass-ionomer cements. Class V cavities were prepared at the cemento-enamel junction of 80 freshly extracted posterior teeth. The prepared teeth were randomly divided into two groups and restored with conventional or resin-modified glass-ionomer cements. The restored teeth were stored in distilled water at 37 degrees C for 1 week after removal of excess restorative with diamond finishing burs. The restored teeth were then divided into four groups of 10 and finished and polished using the following systems: Two Striper MFS; Sof-Lex XT; Enhance Composite Finishing and Polishing System; Shofu Composite Finishing Kit. The finished restorations were subjected to dye penetration testing. Results showed that the microleakage at dentin margins of conventional glass-ionomer cements and enamel margins of resin-modified glass-ionomer cements are significantly affected by the different polishing systems.

  20. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    PubMed

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  1. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    PubMed Central

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  2. Effect of Resin Cement Pre-heating on the Push-out Bond Strength of Fiber Post to Root Canal Dentin

    PubMed Central

    Alizadeh Oskoee, Parnian; Nooroloyouni, Ahmad; Pornaghi Azar, Fatemeh; Sajjadi Oskoee, Jafar; Pirzadeh Ashraf, Ahmad

    2015-01-01

    Background and aims. Various factors influence the interfacial bond between the fiber posts and root canal dentin. The aim of the present study was to evaluate the effect of pre-warming of resin cement on the push-out bond strength of fiber posts to various segments of root canal dentin. Materials and methods. In this in vitro study, 40 single-rooted human premolars were decoronated and underwent root canal treatment along with post space preparation. The samples were randomly divided into two groups: In group 1, Panavia F 2.0 cement was used at room temperature; in group 2, the same cement was warmed to 55‒60°C before mixing. After fiber posts were placed and cemented in the root canals, 3 dentin/post sections (coronal, middle and apical) with a thickness of 3 mm were prepared. A universal testing machine was used to measure push-out bond strength in MPa. Data was analyzed using two-factor ANOVA and a post hoc Tukey test at α=0.05. Results. The mean value of push-out bond strength was high at room temperature, and the differences in the means of push-out bond strength values between the resin cement temperatures and between different root segments in each temperature were significant (P<0.05). Conclusion. Pre-warming of Panavia F 2.0 resin cement up to 55-60°C reduced push-out bond strength to root canal dentin. In addition, in each temperature group bond strengths decreased from coronal to apical segments. PMID:26889360

  3. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  4. Bonding strength of resin cement to silicate glass ceramics for dental CAD/CAM systems is enhanced by combination treatment of the bonding surface.

    PubMed

    Shimakura, Yusuke; Hotta, Yasuhiro; Fujishima, Akihiro; Kunii, Jun; Miyazaki, Takashi; Kawawa, Tadaharu

    2007-09-01

    To increase the bond strength of CAD/CAM-fabricated, leucite-reinforced glass ceramics with a resin cement, the effects of the following were investigated: surface modification by tribochemical (TBC) treatment, followed by combined application of a silane coupling agent and a functional monomer as a primer. Bond strength was evaluated by a shear bond test. It was found that a silane coupling agent was useful for all the surfaces, particularly for the TBC-treated surface. This was because of the presence of a silica layer on the modified surface. The combination of a silane coupling agent and a functional monomer on the TBC surface allowed marked improvement in bonding, whereby the bonding endured 20,000 cycles of thermal cycling. Therefore, TBC treatment in combination with a silane coupling agent and a functional monomer as a primer substantially increased the bond strength of CAD/CAM-fabricated glass ceramics with resin cement, if the treatment conditions were appropriate.

  5. Resins and Non-Portland Cements for Construction in the Cold.

    DTIC Science & Technology

    1980-09-01

    that this urethane and urethane composite (resin sand mixture) is an elastic-plastic material. After 24-hour curing at -30%C and subsequent to unconfined...climatic conditions results in concrete curing problems for construction engineers, concrete design engineers, and manufacturers of concrete...expanding and freezing water. For foundations below grade, the hydra- tion heat evolved by the curing concrete must not melt the permafrost. These conditions

  6. The effect of glass ionomer cement or composite resin bases on restoration of cuspal stiffness of endodontically treated premolars in vitro.

    PubMed

    Hofmann, N; Just, N; Haller, B; Hugo, B; Klaiber, B

    1998-06-01

    The purpose of the present study was to decide whether composite resin or conventional glass ionomer cement should be preferred as a base material in endodontically treated premolars. Twelve extracted human maxillary premolars were mounted in a universal testing machine at a 35 degrees angle. Cuspal stiffness was determined by applying a load of 75 N to the buccal cusp and recording the displacement of the cusp using inductive displacement transducers. In the same teeth, different cavity preparations and restorations were performed sequentially. Standard MOD cavities were enlarged to allow endodontic access. In addition, the cusps were undermined. Half of the teeth were restored to the level of the previous shallow cavities using conventional glass ionomer cement (Ketac Fil), in the rest of the teeth dentine bonding agent (Syntac) and composite resin (Tetric) were used instead. Finally, composite resin fillings (Tetric) were placed. All restorations were removed and the experiments were repeated twice. For each replication, the assignment of the base materials to the experimental groups was reversed, and ceramic inlays (Empress) were used as final restorations for the last replication. Improvement of cuspal stiffness achieved by conventional glass ionomer bases was very small, whereas composite resin bases increased cuspal stability by more than a factor of two. After placement of the final restorations, however, there was no longer a difference between teeth with different base materials. Nevertheless, composite resin bases might be preferred for two reasons. Firstly, deterioration of adhesive restorations will probably start at the cavosurface margins. The incidence of margin gaps, however, will not only compromise marginal seal but also the stabilizing effect of the restoration. In this situation, the resin base may still stabilize the tooth. Moreover, resin bases may reduce the risk of cusp fracture during the time between cavity preparation and the insertion

  7. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  8. A comparison study on the flexural strength and compressive strength of four resin-modified luting glass ionomer cements.

    PubMed

    Li, Yuan; Lin, Hong; Zheng, Gang; Zhang, Xuehui; Xu, Yongxiang

    2015-01-01

    The purpose of this study is to compare the differences in flexural strength and compressive strength between four resin-modified luting glass ionomer cements that are commonly used in clinics. Furthermore, this study investigates the influence of curing mode on the flexural strength and compressive strength of dual-cured resin-modified glass ionomer cements. Initially, flexural strength and compressive strength test specimens were prepared for RL, NR, GCP, and GCC. The RL group and NR group were cured by the light-curing mode and chemical-curing mode. Five specimens were prepared for each test group, and the flexural strength and compressive strength of each were measured. Data were analyzed by one-way ANOVA with SPSS 13.0. Furthermore, the fracture morphology of the flexural specimens was observed by SEM. The result of the mean flexural strength of each group is as follows: the NR light-cured group > NR chemically-cured group > GCP > RL light-cured group > GCC > RL chemically-cured group. More specifically, the flexural strength of the NR light-cured group ((42.903±4.242) MPa) is significantly higher (P<0.05) than those of the other groups, and in addition, the flexural strength of the light-curing mode is significantly higher (P<0. 05) than that of both the NR and RL chemically-cured groups. The result of the mean compressive strength of each group is as follows: GCP > NR chemically-cured group > NR light-cured group > GCC > RL light-cured group > RL chemically-cured group. Although the compressive strengths of the NR and GCP groups are higher than those of the GCC and RL groups, there are no significant differences (P>0.05) between NR and GCP, and no significant differences between GCC and RL. Furthermore, there are no significant differences (P>0.05) between the two curing modes on NR and RL. From the present study, it can be concluded that NR has superior flexural strength and compressive strength compared to the other three materials. Additionally, the

  9. Shear bond strength of resin-modified glass ionomer cements to Er:YAG laser-treated tooth structure.

    PubMed

    de Souza-Gabriel, Aline Evangelista; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2006-01-01

    This study evaluated the effect of Er:YAG laser irradiation of enamel and dentin on the shear bond strength of resin-modified glass ionomer cements (RMGIC). Twenty molars were selected and the roots removed. The crowns were bisected, embedded in polyester resin and ground to plane the enamel or expose the dentin. The bonding site was delimited, and samples were randomly assigned according to the cavity preparation device: I--Er.YAG laser (350mJ/2Hz); II--Carbide bur (control group). They were subdivided according to the restorative material employed: A) Fuji II LC (GC); B) Vitremer (3M). Samples were then fixed to a metallic device where ionomer cylinders were prepared. Sequentially, the molars were stored for 24 hours and subjected to a shear bond strength test (50Kgf at 0.5 mm/minute). Means in MPa were: Enamel--IA) 4.77 (+/- 1.12); IB) 4.36 (+/- 1.50); IIA) 7.70 (+/- 1.53); IIB) 7.34 (+/- 1.52) and Dentin--IA) 3.13 (+/- 1.15); IB) 2.67 (+/- 0.74); IIA) 6.38 (+/- 1.44); IIB) 5.58 (+/-2.09). Data were submitted to statistical analysis by ANOVA. Adhesion for enamel was more efficient than for dentin (p < 0.01). The cavities prepared with a conventional bur (control group) presented higher bond strength values than those recorded for Er:YAG laser (p < 0.01). No significant differences were observed between the restorative materials. Based on these results, it was concluded that Er:YAG laser adversely affected the shear bond strength of RMGIC for both enamel and dentin.

  10. Influence of immediate dentin sealing on the shear bond strength of pressed ceramic luted to dentin with self-etch resin cement.

    PubMed

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A-D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control.

  11. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  12. Effects of metal primers on bonding of adhesive resin cement to noble alloys for porcelain fusing.

    PubMed

    Okuya, Nobuhiro; Minami, Hiroyuki; Kurashige, Hisanori; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo

    2010-03-01

    This study evaluated the effects of metal primers on the bonding of adhesive resin to four pure metals (Au, Pd, Ag, Cu) and two noble alloys for porcelain fusing (high-gold and high-palladium content alloys). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of the three metal primers (V-Primer, Metaltite, and M.L. Primer). Bonded specimens were fabricated by applying adhesive resin (Super-Bond C&B) on the primed surface. Shear bond strength (SBS) was determined both before and after thermocycling (4-60 degrees C for 2,000 cycles). The highest SBS values to each pure metal after thermocycling were 33.5 MPa for Au by M.L. Primer, 35.0 MPa for Ag by V-Primer, and 34.4 MPa for Cu by Metaltite. SBS to high-gold content alloy after thermocycling was 33.3 MPa by M.L. Primer. None of the primers was effective for pure Pd and high-palladium content alloy after thermocycling.

  13. Comparative Evaluation of Push Out Bond Strength of a Fiber Post System using Four Different Resin Cements: An In-Vitro Study

    PubMed Central

    Das, Anshuraj Kopal Ashok Kumar; Muddugangadhar, B C; Amarnath, G S; Garg, Ashu; Kumar, Ullash; Rao, T R Poonam

    2015-01-01

    Background: Debonding is one of the frequent causes of failure experienced in fiber-reinforced composite posts, and establish along post space-dentin adhesive interface. The purpose of this study was to assess push-out bond strength of a fiber-reinforced post system using four different resin cements. Materials and Methods: In this in-vitro study 40 mandibular premolars were decoronated, and roots were treated endodontically. Following the post space preparation, the roots were grouped into four groups of 10 specimens each. Fiber-reinforced composite posts were cemented with four resin cement systems: (a) Multilink Speed, (b) Rely X Unicem, (c) Calibra, and (d) Permaflo DC. Three sections of each root, with a thickness of 3 mm, were prepared. The push-out test was with a universal testing machine at a crosshead speed of 1 mm/min, and bond strength values were evaluated. The data were analyzed with using multivariate analysis of variance (MANOVA) and post-hoc Scheffe test. Result: The mean push-out bond strength was highest for Rely X Unicem (18.0 ± 1.81), followed by Multilink Speed (13.1 ± 0.75) and Permaflo DC (12.8 ± 0.95). The lowest mean push-out bond strength was seen with Calibra (11.8 ± 0.69). There were statistically significant differences seen in the push-out bond strength of resin cement in different root canal regions using MANOVA and post-hoc Scheffe test. Conclusion: Mean push-out bond strength was highest for Rely X Unicem, followed by Multilink Speed and Permaflo DC. Lowest mean push-out bond strength was seen with respect to Calibra. PMID:26225108

  14. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    PubMed Central

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group. PMID:25713488

  15. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  16. Evaluation and comparison of the effect of different surface treatment modifications on the shear bond strength of a resin cement to titanium: An in vitro study

    PubMed Central

    Veljee, Tahsin Mansur; Shruthi, C. S.; Poojya, R.

    2015-01-01

    The purpose of this study was to evaluate and compare the effect of grit blasting, chemical treatment, and application of alloy primer combinations on the shear bond strength (SBS) of a self-cure resin cement to titanium surface. Materials and Methods: Fifty cast commercially pure titanium discs (9 mm × 2 mm) were divided into five groups (n = 10), which received the following surface treatments: Control group (no surface treatment), group 1 (grit blasting using 110 µm Al2O3 particles and application of alloy primer), group 2 (grit blasting using 110 µm Al2O3 particles and chemical treatment using 1N HCl), group 3 (chemical treatment using 1N HCl and application of alloy primer), and group 4 (Grit blasting using 110 µm Al2O3 particles, chemical treatment using 1N HCl and application of alloy primer). Superbond C and B resin cement was applied to the treated titanium surfaces including controls. SBSs were determined after thermocycling for 5000 cycles. Data (megapascal) were analyzed by ANOVA and Bonferroni test. Results: Group 4 (grit blasting using 110 µm Al2O3 particles, chemical treatment using 1N hydrochloric acid, and application of alloy primer) produced the highest bond strength followed by group 1, group 3, group 2, and the control group which showed the least bond strength. Conclusion: (1) Air-abrasion with alumina particles increases the micromechanical retention of the resin to titanium. (2) The alloy primer promotes wettability, which increases the adhesive bonding of resin cement to titanium. (3) Chemical treatment using hydrochloric acid effectively pretreats the titanium surface thereby increasing the SBS values. PMID:26929532

  17. Evaluation of push-out bond strength of two fiber-reinforced composite posts systems using two luting cements in vitro

    PubMed Central

    Kadam, Ajay; Pujar, Madhu; Patil, Chetan

    2013-01-01

    Introduction: The concept of using a “post” for the restoration of teeth has been practiced to restore the endodontically treated tooth. Metallic posts have been commonly used, but their delirious effects have led to the development of fiber-reinforced materials that have overcome the limitations of metallic posts. The use of glass and quartz fibers was proposed as an alternative to the dark color of carbon fiber posts as far as esthetics was concerned. “Debonding” is the most common failure in fiber-reinforced composite type of posts. This study was aimed to compare the push-out bond strength of a self-adhesive dual-cured luting agent (RelyX U100) with a total etch resin luting agent (Variolink II) used to cement two different FRC posts. Materials and Methods: Eighty human maxillary anterior single-rooted teeth were decoronated, endodontically treated, post space prepared and divided into four groups (n = 20); Group I: D.T. light post (RTD) and Variolink II (Ivoclare vivadent), Group II: D.T. light post (RTD) and RelyX U100 (3M ESPE), Group III: Glassix post (Nordin) and Variolink II (Ivoclare vivadent) and Group IV: Glassix post (Nordin) and RelyX U100 (3M ESPE). Each root was sectioned to get slices of 2 ± 0.05-mm thickness. Push-out tests were performed using a triaxial loading frame. To express bond strength in megapascals (Mpa), load value recorded in Newton (N) was divided by the area of the bonded interface. After testing the push-out strengths, the samples were analyzed under a stereomicroscope. Results: The mean values of the push-out bond strength show that Group I and Group III had significantly higher values than Group II and Group IV. The most common mode of failure observed was adhesive between dentin and luting material and between post and luting material. Conclusions: The mean push-out bond strengths were higher for Groups I and III where Variolink II resin cement was used for luting the fiber post, which is based on the total etch

  18. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water.

    PubMed

    McKenzie, M A; Linden, R W A; Nicholson, J W

    2003-10-01

    Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects.

  19. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  20. The effect of moisture on the shear bond strength of gold alloy rods bonded to enamel with a self-adhesive and a hydrophobic resin cement.

    PubMed

    Dursun, Elisabeth; Wiechmann, Dirk; Attal, Jean-Pierre

    2010-06-01

    The aim of this in vitro study was to investigate the influence of enamel moisture on the shear bond strength (SBS) of a hydrophobic resin cement, Maximum Cure (MC), and a self-adhesive resin cement, Multilink Sprint (MLS), after etching of the enamel. Forty cylindrical gold alloy rods were used to simulate the Incognito lingual bracket system. They were bonded to the enamel of 40 human teeth embedded in self-cured acrylic resin. Twenty were bonded with MC (10 on dry and 10 on wet enamel) and 20 with MLS (10 on dry and 10 on wet enamel). The SBS of MC and MLS was determined in a universal testing machine and the site of bond failure was defined by the adhesive remnant index (ARI). A Kruskal-Wallis test was performed followed by Games-Howell post hoc pairwise comparison tests on the SBS results (P < 0.05) and a chi-square test was used for the analysis of ARI scores (P < 0.05). On dry enamel, no significant differences between MC (58 +/- 5 MPa) and MLS (64 +/- 13 MPa) were noted. On wet enamel, the adherence of MC (6 +/- 8 MPa) and MLS (37 +/- 13 MPa) significantly decreased but to a lesser extent for MLS. The ARI scores corroborated these results. In conclusion, MC did not tolerate moisture. MLS was also affected but maintained sufficient adherence.

  1. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  2. Effects of finishing/polishing techniques on microleakage of resin-modified glass ilonomer cement restorations.

    PubMed

    Yap, Adrian U J; Yap, W Y; Yeo, Egwin J C; Tan, Jane W S; Ong, Debbie S B

    2003-01-01

    This study investigated the effect of finishing/polishing techniques on the microleakage of resin-modified glass ionomer restorations. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with eight-fluted tungsten carbide burs. The teeth were then randomly divided into four groups and finishing/polishing was done with one of the following systems: (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each material-finishing/polishing system combination was eight. After finishing/polishing, the teeth were stored in distilled water at 37 degrees C for one week. The root apices were then sealed with acrylic and two coats of varnish was applied 1 mm beyond the restoration margins. The teeth were subsequently subjected to dye penetration testing (0.5% basic fuchsin), sectioned and scored. Data was analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of 0.05. Results of statistical analysis were as follows: Enamel margins: PF-OG

  3. Bond strength of resin-reinforced glass ionomer cements after enamel etching.

    PubMed

    Cortes, O; Garcia-Godoy, F; Boj, J R

    1993-12-01

    This study evaluated the shear bond strength of resin-reinforced glass ionomers to enamel etched or unetched. Human, non-carious extracted permanent molars stored in distilled water were used. Flat buccal and lingual enamel surfaces were ground wet on 600-grit silicon carbide paper. The teeth were then distributed at random into six groups of 5 teeth (10 surfaces) each: Group 1: Fuji II LC, no enamel etching; Group 2: Fuji II LC, enamel etched with 10% phosphoric acid for 10 seconds; Group 3: Dyract, no enamel etching; Group 4: Dyract, enamel etched with 10% phosphoric acid for 10 seconds; Group 5: Photac-Fil, no enamel etching; Group 6: Photac-Fil, enamel etched with 10% phosphoric acid for 10 seconds. Cylindrical samples of the glass ionomers were prepared in plastic molds and bonded to the enamel surface according to the manufacturers' instructions. All samples were placed in distilled water for 24 hours, and sheared with an Instron at a crosshead speed of 0.5 mm/minute. The results (in MPa) were: Group 1: 11.29 +/- 4.84; Group 2: 19.64 +/- 5.43; Group 3: 8.26 +/- 3.61; Group 4: 22.04 +/- 5.40; Group 5: 2.05 +/- 3.05; Group 6: 9.12 +/- 6.61. ANOVA and Student-Newman-Keuls procedure revealed that on etched enamel, Fuji II LC and Dyract had a significantly higher bond strength than all the other groups tested (P < 0.0001), but not significantly different between each other. With these two groups, cohesive failure within the material was recorded in all samples while in the unetched samples, all specimens displayed an adhesive failure (glass ionomer-enamel interface). All samples with Photac-Fil, with or without enamel etching had adhesive failures.

  4. Characterization of the Mineral Trioxide Aggregate–Resin Modified Glass Ionomer Cement Interface in Different Setting Conditions

    PubMed Central

    Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya

    2012-01-01

    Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220

  5. Comparison of Apical Microleakage of Dual-Curing Resin Cements with Fluid-Filtration and Dye Extraction Techniques

    PubMed Central

    Kaya, Sadullah; Özer, Senem Yiğit; Adigüzel, Özkan; Oruçoğlu, Hasan; Değer, Yalçın; Tümen, Emin Caner; Uysal, İbrahim

    2015-01-01

    Background Endodontically treated teeth with excessive loss of tooth structure are frequently restored using fiber posts. In this in vitro study, the apical leakage of self- and dual-activated curing modes for dual-curing resins cementing a translucent fiber post was evaluated using computerized fluid filtration meter and dye extraction method. Material/Methods One hundred and four extracted human maxillary incisors with single root and canal were used. Experimental samples embedded in a closed system were divided into 4 groups (n=20) according to 2 dual-curing luting systems, with 2 different curing modes (either with self- or light-activation): (1) Panavia F 2.0 with self-cure, (2) Panavia F 2.0 with light-activation, (3) Clearfill SA with self-cure, and (4) Clearfill SA with light activation. Twenty-four teeth served as negative and positive controls. Translucent fiber posts were luted in the roots except in the control groups. Results Statistical analysis indicated no significant difference in leakage among groups (p>0.05) with 4.12×10−4 (Panavia self-cure), 4.55×10−4 (Clearfill SA self-cure), 5.17×10−4 (Panavia dual-cure), and 5.59×10−4 (Clearfill SA dual-cure) in fluid-filtration method. Absorbance values for dye-extraction method were 266 nanometer (nm) (Panavia self-cure), 268 nm (Clearfill SA self-cure), 270 nm (Panavia dual-cure), and 271 nm (Clearfill SA dual-cure), in which difference among the groups were not statistically significant (p>0.05). When comparing the leakage, assessment methods results showed no statistically significant difference between the tested evaluation techniques (p>0.05). Conclusions Light- and self-activation curing modes of Panavia F 2.0 and Clearfill SA perform similar to each other in a closed system. PMID:25824712

  6. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  7. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  8. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up.

    PubMed

    van Dijken, Jan W V; Pallesen, Ulla

    2010-04-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43: Pekafil), PMRC (24: Dyract (D), Hytac (H)), and RMGIC (18: Fuji II LC (F), Photac Fil (P)) restorations were placed in ongoing longitudinal follow-ups in 45 patients (mean age 54.5 years). The restorations were evaluated during 14 years by slightly modified USPHS criteria at yearly recalls especially for their fracture behavior. For all restorations, 36.5% were fractured, with a Kaplan-Meier (KM) estimate of 8.8 years (standard error (SE) 0.5, confidence interval (CI) 7.9-9.8). The number of fractures per material was 11 RC (25.6%; KM 9.9 years, CI 8.7-11.0), 13 PMRC (54.2%; D 66.6%; H 50.0%; KM 7.5 years, CI 5.8-9.2), and seven RMGIC (36.5%; F 22.2%, P 71.4%; KM 6.9 years, CI 7.9-9.8). Significant differences were seen between RC and PMRC (p = 0.043). A significant higher fracture rate was observed in teeth 12 + 22 compared to teeth 11 + 21. No significant differences were observed between male and female patients. Restorations in bruxing patients (45) showed 22 fractures (KM 8 years; CI 6.9-9.3) and in non-bruxing patients (39) nine fractures (KM 9.9 years, CI 8.7-11.1; p = 0.017). With regard to the longevity of the replaced failed restorations, for RC, the mean age was 4.5 years; for PMRC, 4.3 years; and for RMGIC, 3.3 years. It can be concluded that fracture was the main reason for failure of class IV restorations. An improved longevity was observed for class IV restorations compared to those presented in earlier studies. RC restorations showed the lowest failure frequency and the highest longevity.

  9. Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

    PubMed Central

    Kachuei, Marzieh

    2014-01-01

    Objectives This study evaluated the effect of three antioxidizing agents on pull-out bond strengths of dentin treated with sodium hypochlorite. Materials and Methods Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/37℃), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (α = 0.05). Results There were significant differences between study groups (p = 0.016). The highest pull-out strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin. PMID:24790921

  10. Effect of GLUMA desensitizer on the retention of full metal crowns cemented with Rely X U200 self-adhesive cement

    PubMed Central

    Lawaf, Shirin; Jalalian, Ezatallah; Roshan, Roshanak

    2016-01-01

    PURPOSE Considering the importance of retention in the success and long-term clinical service of fixed partial dentures (FPDs) as well as the existing controversy regarding the effect of GLUMA desensitizer on the retention of full metal crowns cemented with RelyX U200 self-adhesive cement, this study aimed to assess the effect of GLUMA desensitizer on the retention of full metal crowns cemented using RelyX U200. MATERIALS AND METHODS In this experimental study, 20 sound human premolars were prepared; a 0.5 mm chamfer finish line was prepared above the cementoenamel junction. The teeth were randomly assigned to two groups: a desensitizer group (n = 10, treated with GLUMA desensitizer) and a control (n = 10, no surface treatment). Full metal crowns were fabricated of base metal alloy and had a ring. All crowns were cemented with RelyX U200 and subjected to retention test by using a universal testing machine. The data were analyzed using SPSS version 20 and independent t-test. RESULTS The mean tensile bond strength was significantly higher in the GLUMA desensitizer group (230.63 ± 63.8 N) compared to the control group (164.45 ± 39.3 N) (P≤.012). CONCLUSION GLUMA desensitizer increases the tensile bond strength of RelyX U200 self-adhesive cement to dentin. PMID:27826391

  11. Bond Strength of Two Resin Cements to Dentin After Disinfection Pretreatment: Effects of Er,Cr:YSGG Laser Compared with Chemical Antibacterial Agent

    PubMed Central

    Shafiei, Fereshteh; Fekrazad, Reza; Shafiei, Ehsan

    2013-01-01

    Abstract Objective: This study compared the effects of two disinfection procedures (2% chlorhexidine [CHX] solution versus Er,Cr:YSGG laser irradiation) on the shear bond strength of ED primer II/Panavia F2.0 (ED/P) and Excite DSC/Variolink N (Ex/V). Background data: Different methods are used for cavity disinfection prior to adhesive cementation, which may influence the bonding ability of resin cements. Methods: Flat dentin surfaces were prepared on 100 extracted premolars and randomly divided into 10 groups. In the eight experimental groups, indirect composite samples were cemented with either ED/P or Ex/V under three disinfecting conditions on the dentin surface as follows: (1) CHX application before ED primer II/ after etching, (2) wet laser irradiation (Er,Cr:YSGG laser, 20 Hz, 0.75 W, 15% water +15% air), (3) dry laser irradiation with no water and air cooling. The control groups had no disinfectant application. After 24 h water storage, bond strength test was performed. The data (MPa) were analyzed using two way ANOVA and Tukey tests. Results: The lowest and highest bond strengths were obtained by dry laser and wet laser (10.18±2.67 and 17.36±2.94 for ED/P, 9.64±2.66 and 20.07±3.36 for Ex/V, respectively). For each cement, two-by-two comparisons of four groups revealed significant differences only for dry laser with others (p<0.001). Conclusions: The use of CHX and Er,Cr:YSGG laser at the low fluences with water/air cooling as the antibacterial agents does not adversely influence the bonding ability of the etch-and-rinse and the self-etch cements. PMID:23600378

  12. Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface

    PubMed Central

    Kilicarslan, Mehmet Ali; Deniz, Sule Tugba; Mumcu, Emre; Ozkan, Pelin

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effects of atmospheric plasma (APL) versus conventional surface treatments on the adhesion of self-adhesive resin cement to Ti-6Al-4V alloy. MATERIALS AND METHODS Sixty plates of machined titanium (Ti) discs were divided into five groups (n=12): 1) Untreated (CNT); 2) Sandblasted (SAB); 3) Tribochemically treated (ROC); 4) Tungsten CarbideBur (TCB); 5) APL treated (APL). SEM analysis and surface roughness (Ra) measurements were performed. Self-adhesive resin cement was bonded to the Ti surfaces and shear bond strength (SBS) tests, Ra and failure mode examinations were carried out. Data were analyzed by one-way analysis of variance and chi-squared test. RESULTS The lowest SBS value was obtained with CNT and was significantly different from all other groups except for APL. The ROC showed the highest SBS and Ra values of all the groups. CONCLUSION It was concluded that the effect of APL on SBS and Ra was not sufficient and it may not be a potential for promoting adhesion to titanium. PMID:26140177

  13. Influence of eugenol on the push-out bond strengths of fiber posts cemented with different types of resin luting agents.

    PubMed

    Özcan, Erhan; Çetin, Ali Riza; Capar, İsmail Davut; Tunçdemir, Ali Riza; Aydinbelge, Hale Ari

    2013-07-01

    This study evaluated the influence of eugenol on the push-out bond strengths of fiber posts cemented with different types of resin luting agents. Seventy-two extracted maxillary single-rooted canine teeth were randomly divided into two groups of 36 teeth. Group 1, the control group, was filled with gutta-percha only (i.e., did not receive eugenol), whereas group 2 was filled with a eugenol-containing sealer. All root canals were filled and each group was divided into three subgroups. The posts in each subgroup were cemented with the following materials: subgroup 1 with a 2-step self-etching adhesive system (Clearfil Liner Bond 2V + Panavia F); subgroup 2 with a 1-step self-etching adhesive (Panavia F); and subgroup 3 with a self-adhesive (Clearfil SA Cement). Dislodgement resistance was measured using a universal testing machine. All data were subjected to ANOVA using a factorial design and Tukey test (α = 0.05). The use of the eugenol-containing sealer significantly reduced the push-out bond strength of the fiber post (P < 0.05). The push-out bond strength of Panavia F was significantly higher than those of the other groups filled with the eugenol-containing sealer (P < 0.05). The Panavia F group was less susceptible to the inhibiting effect of eugenol than were the other evaluated groups when the fiber post was cemented in the canals filled with the eugenol-containing sealer.

  14. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    PubMed Central

    AZEVEDO, Larissa Marinho; CASAS-APAYCO, Leslie Carol; VILLAVICENCIO ESPINOZA, Carlos Andres; WANG, Linda; NAVARRO, Maria Fidela de Lima; ATTA, Maria Teresa

    2015-01-01

    Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test. Results There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations. PMID:26221927

  15. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    PubMed

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could

  16. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    PubMed

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.

  17. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  18. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  19. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption.

  20. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  1. Radiographic appearance of commonly used cements in implant dentistry.

    PubMed

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  2. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    PubMed Central

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL) on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel) and NaOCL on the rate of bond failure (with immediate ligation at 30 min) of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1) Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2) Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3) Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4) Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC. PMID:24014999

  3. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.

    PubMed

    Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

    2012-04-01

    The aim of this study was to test the microtensile bond strength (μTBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The μTBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (α = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in μTBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine.

  4. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    PubMed Central

    Daniel, L. C.; Araújo, F. C.; Zancopé, B. R.; Hanashiro, F. S.; Nobre-dos-Santos, M.; Youssef, M. N.; Souza-Zaroni, W. C.

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations. PMID:26347900

  5. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro.

    PubMed

    Prathibha, Rani S

    2011-01-01

    One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I), 30 days (phase II), 90 days (phase III), and 180 days (Phase IV). At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC) (Group II), Flowable Compomer (Group III), and Flowable Composite (Group IV), respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  6. Clinical evaluation of resin-modified glass-ionomer restorative cements in cervical 'abrasion' lesions: one-year results.

    PubMed

    Maneenut, C; Tyas, M J

    1995-10-01

    Sixty non-undercut Class V "abrasion" lesions in 13 patients were restored with light-cured Type IIa glass-ionomer cements in accordance with the manufacturer's instructions, 20 each with Fuji II LC, Photac-Fil, and Vitremer. Patients were recalled for examination and photographs 1 week, 6 months, and 1 year posttreatment. Color, marginal discoloration, and retention of the restorations were assessed at each recall period. At 1 year, no loss of restorations was found. Analysis revealed statistically significant darkening in color of the Vitremer restorations, no significant change in color of the Fuji II LC and Photac-Fil restorations, and statistically significant but clinically negligible development of marginal discoloration of all materials.

  7. Thio-urethanes improve properties of dual-cured composite cements.

    PubMed

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  8. Thio-urethanes Improve Properties of Dual-cured Composite Cements

    PubMed Central

    Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.

    2014-01-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  9. Reconstruction of large cranial defect with alloplastic material (bone cement-cold cure polymethyl-methacrylate resin).

    PubMed

    Hallur, Neelakamal; Goudar, Gayatri; Sikkerimath, Basavaraj; Gudi, Santosh S; Patil, Ravi S

    2010-06-01

    A 40-years-old male patient reported to our department with a chief complaint of persistent palatal fluid discharge and large depressed forehead defect. He gave a history of trauma 20 months back due to head on collision to electric pole and underwent surgery twice for open reduction and fixation of facial skeletal fractures. After 9 months of surgery again a third surgery was performed for the removal of frontal bone due to infection and osteomyelitis at the same site. Extra-oral examination revealed a large fronto-cranial defect extending from superior border of frontal bone to supra-orbital margins bilaterally in length, and from frontal right lateral to frontal left lateral side in width, measuring 8.0 cm in length, 10.5 cm in width and 1.5 to 2.0 cm in depth. Intra-oral sinus fluid discharge was from left posterior palatal region. Preoperative CT was taken and reconstruction of fronto-cranial defect was successfully performed with bone cement. Alloplastic implant reconstruction achieved an excellent esthetic result without any complications.

  10. Bond strength evaluation of three self-adhesive luting systems used for cementing composite and porcelain.

    PubMed

    De Angelis, F; Minnoni, A; Vitalone, L M; Carluccio, F; Vadini, M; Paolantonio, M; D'Arcangelo, C

    2011-01-01

    Self-adhesive resin cements were recently introduced with the purpose of simplifying the cementation technique, as they combine the use of adhesive and cement in a single application, eliminating the need for pretreatment of the tooth. In the present study a microtensile bond strength test (μ-TBS) was used to compare three self-adhesives, an etch-and-rinse and a self-etch luting system, in the cementation of resin-based composite (RBC) and ceramic disks to dentin. Freshly extracted molars were transversally sectioned to expose flat, deep dentin surfaces. Cylindrical specimens (5 mm in diameter and 10 mm in height), consisting of RBC disks and leucite-based glass ceramic disks, were produced. The RBC disks were sandblasted with 50-μm Al2O3. The ceramic disks were conditioned with 9.5% hydrofluoric acid gel and silane application. All of the disks were then bonded to dentin surfaces employing five different luting agents: iCEM Self Adhesive (Heraeus Kulzer), MaxCem (Kerr Corporation), RelyX UniCem (3M ESPE), EnaCem HF (Micerium), and Panavia F2.0 (Kuraray-Dental). The products were applied according to the manufacturers' instructions. The specimens were sectioned perpendicular to the adhesive interface to produce multiple beams measuring approximately 1 mm2 in cross section. For each experimental group 12 beams were tested. The preterm failures were also taken into account. All of the specimen preparations were performed by the same operator. The beams were tested under tension at a crosshead speed of 0.5 mm/min until failure. Mean μ-TBS values were calculated for each group. Data were analyzed by a two-way analysis of variance, and multiple comparisons were performed using a Tukey test (α=0.05). The UniCem group showed the lowest number of preterm failures among the tested self-adhesive systems. When premature debondings were included in the mean value calculation, bond strength values for the UniCem group were statistically equal to or even higher than those

  11. Comparative Evaluation of Microleakage Between Nano-Ionomer, Giomer and Resin Modified Glass Ionomer Cement in Class V Cavities- CLSM Study

    PubMed Central

    Hari, Archana; Thumu, Jayaprakash; Velagula, Lakshmi Deepa; Bolla, Nagesh; Varri, Sujana; Kasaraneni, Srikanth; Nalli, Siva Venkata Malathi

    2016-01-01

    Introduction Marginal integrity of adhesive restorative materials provides better sealing ability for enamel and dentin and plays an important role in success of restoration in Class V cavities. Restorative material with good marginal adaptation improves the longevity of restorations. Aim Aim of this study was to evaluate microleakage in Class V cavities which were restored with Resin Modified Glass Ionomer Cement (RMGIC), Giomer and Nano-Ionomer. Materials and Methods This in-vitro study was performed on 60 human maxillary and mandibular premolars which were extracted for orthodontic reasons. A standard wedge shaped defect was prepared on the buccal surfaces of teeth with the gingival margin placed near Cemento Enamel Junction (CEJ). Teeth were divided into three groups of 20 each and restored with RMGIC, Giomer and Nano-Ionomer and were subjected to thermocycling. Teeth were then immersed in 0.5% Rhodamine B dye for 48 hours. They were sectioned longitudinally from the middle of cavity into mesial and distal parts. The sections were observed under Confocal Laser Scanning Microscope (CLSM) to evaluate microleakage. Depth of dye penetration was measured in millimeters. Statistical Analysis The data was analysed using the Kruskal Wallis test. Pair wise comparison was done with Mann Whitney U Test. A p-value<0.05 is taken as statistically significant. Results Nano-Ionomer showed less microleakage which was statistically significant when compared to Giomer (p=0.0050). Statistically no significant difference was found between Nano Ionomer and RMGIC (p=0.3550). There was statistically significant difference between RMGIC and Giomer (p=0.0450). Conclusion Nano-Ionomer and RMGIC showed significantly less leakage and better adaptation than Giomer and there was no statistically significant difference between Nano-Ionomer and RMGIC. PMID:27437363

  12. Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth

    PubMed Central

    Khosravanifard, Behnam; Rakhshan, Vahid; Araghi, Solmaz; Parhiz, Hadi

    2012-01-01

    Background and aims Bleaching can considerably reduce shear bond strength (SBS) of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on composite-to-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glass-ionomer cement (RMGIC) has not been studied, which was the aim of this study. Materials and methods Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI). Sodium ascorbate 10% was applied to the experimental specimens (n=25). All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent) and bonded using RMGIC (Fuji Ortho LC, GC). The specimens were subjected to incubation (37°C, 24h) and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min). The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magni-fication. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’sexact test (α=0.05). Results The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The dif-ference was statistically significant (P=0.000 by t-test). SBS of both control (P=0.014) and experimental (P=0.000) groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments), which de-serves further studies. PMID:22991638

  13. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    PubMed

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  14. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  15. Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies.

    PubMed

    de Alexandre, R S; Santana, V B; Kasaz, A C; Arrais, C A G; Rodrigues, J A; Reis, A F

    2014-01-01

    This study evaluated the effects of simulated hydrostatic pulpal pressure (SPP) on the microtensile bond strength (μTBS) to dentin and nanoleakage patterns produced by self-adhesive luting agents after 12 months. Three self-adhesive luting agents (RelyX Unicem [UN], RelyX U100 [UC], and Clearfil SA Luting [SA]) and three conventional luting agents (Rely X ARC [RX], Panavia F [PF], and a two-step self-etching adhesive system [Clearfil SE Bond] associated with Panavia F [PS]) were evaluated. One hundred twenty-three human molars were abraded to expose occlusal surfaces. Resin cements were used to lute cylindrical composite blocks to the teeth either subjected or not to SPP. Sixty specimens were subjected to 15 cm H2O of SPP for 24 hours before and 24 hours or 12 months after cementation procedures. Afterward, restored teeth were serially sectioned into beams with a cross-sectional area of 1 mm(2) at the bonded interface and were tested in tension (cross-head speed of 1 mm/min). Failure mode was determined using scanning electron microscopy (SEM). Data were statistically analyzed by three-way analysis of variance and post hoc Tukey test (p=0.05). Two additional teeth in each group were serially sectioned into 0.9-mm-thick slabs, which were submitted to a nanoleakage protocol with AgNO3 and analyzed with scanning and transmission electron microscopes. The μTBS values of the etch-and-rinse group (RX) were negatively influenced by SPP and long-term water storage with SPP. After 12 months, UC and SA presented premature failures in all specimens when submitted to SPP. SPP increased silver deposition in most groups in both evaluation times. The hydrostatic pulpal pressure effect was material dependent. The storage time without SPP did not affect bond strength. However, long-term SPP influenced the performance of the etch-and-rinse and self-adhesive cements regarding μTBS and nanoleakage pattern, except to UN.

  16. In vitro performance of self-adhesive resin cements for post-and-core build-ups: influence of chewing simulation or 1-year storage in 0.5% chloramine solution.

    PubMed

    Naumann, M; Sterzenbach, G; Rosentritt, M; Beuer, F; Frankenberger, R

    2010-11-01

    The aim of this investigation was to test the in vitro performance of a self-adhesive resin composite core build-up in comparison with two typical conventional etch-and-rinse composite core build-up materials, before and after 1year of storage in 0.5% chloramine solution (LTS). Sixty human maxillary central incisors were divided into three groups. Teeth were root filled and decoronated. Specimens were restored using glass fiber posts cemented with a self-adhesive resin cement. Core build-ups were made with a self-adhesive (U) and two core build-up materials (C and L) applied with their corresponding bonding systems. All specimens received adhesively luted lithium disilicate crowns. Ten specimens of each group were exposed to LTS and examined monthly for cracks or other alterations. All specimens were thermocycled, mechanically loaded (TCML) and finally loaded until failure occurred. There was no statistical significant difference in regard to the number of failures during TCML without and with LTS (log rank: p = 0.225 and 0.609, respectively). The median fracture load values after static loading without LTS and with LTS did not differ significantly (Kruskal-Wallis test: p = 0.057 and 0.106, respectively), though the fracture patterns between the groups without (p = 0.024) and with LTS (p = 0.027) did. Self-adhesive cements used for core build-up have no significantly higher risk of failure compared to conventional core build-up materials in both LTS and TCML test scenarios.

  17. Retentive strength, disintegration, and marginal quality of luting cements.

    PubMed

    Gorodovsky, S; Zidan, O

    1992-08-01

    This study evaluated the retention of complete crowns by using five different methods of cementation. Complete crowns were prepared with standardized dimensions on extracted human molars. Metal crowns were cast with a high noble gold ceramic alloy and were cemented with zinc phosphate cement, glass ionomer cement, composite resin cement, composite resin cement with a dentinal bonding agent, and adhesive resin cement. The retention was measured by subjecting the specimens to tensile load until fracture occurred. The disintegration was measured according to American Dental Association Specification No. 8, and the condition of the cements at the margins of crowns was analyzed by use of a scanning electron microscope. Kruskal-Wallis one-way analysis of variance revealed statistically significant differences between the mean retentive strengths. The retention of the zinc phosphate and the glass ionomer groups was significantly different from that of the adhesive resin group. The retention of the adhesive resin cement was 65% greater than the retention of the composite resin and the composite resin/dentinal bonding agent group, but the Mann-Whitney Wilcoxon rank sum test did not depict this difference as significant. The mean +/- SD of the disintegration for the zinc phosphate, the glass ionomer cement, and the composite resin cement was 0.025 +/- 0.013, 0.023 +/- 0.011, and 0.017 +/- 0.001, respectively. The scanning electron microscope analysis of the margins revealed that the composite resin cement was almost intact, the zinc phosphate was subjected to limited disintegration, and the glass ionomer displayed the worst marginal integrity.

  18. The Effect of Simplified Bonding Agents on the Bond Strength to Dentin of Self-Activated Dual-Cure Resin Cements

    DTIC Science & Technology

    2013-04-26

    barbituric acids , aromatic sulphonate amides and tert-butyl peroxymaleic acid in dental adhesive resin. J Polym Sci 1999;72:1655- 1668. Lee Ann...is the aim of this study to verify the accuracy of the claim so that clinicians can take advantage of its properties with the comfort of knowing it...the Incompatibilities between Simplified Dental Adhesives and Self-Cure Resin Cements……………..……30 I. Eliminate the Acid -Base Reaction…………..……………31

  19. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    either burned simultaneously with a portland ce4nt or !r;terground with portland cement clinker ; Type M - a mixture of portland cement, calcium-aluminate... clinker that is interground with portland clinker or blended with portland cement or, alternately, it may be formed simul- taneously vrith the portland ... clinker compounds during the burning process. 3. Expansive cement, Type M is either a mixture of portland cement, calcium aluminate cement, and calcium

  20. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  1. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    PubMed

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  2. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study.

    PubMed

    Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S

    Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known.

  3. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials.

    PubMed

    Stawarczyk, Bogna; Beuer, Florian; Ender, Andreas; Roos, Malgorzata; Edelhoff, Daniel; Wimmer, Timea

    2013-01-01

    To evaluate the influence of cementation on fracture load of anterior crowns made of CAD/CAM-resin-blocks (ART), leucite-reinforced glass-ceramics (LRG), lithium disilicate ceramics (LIT), veneered zirconia (ZRO) and veneered alloy (DEG). Each crown group (n=15/subgroup) was cemented on the metal abutment as follows: i. using glass ionomer, ii. using self-adhesive resin cement, and iii. not cemented. Crowns were tested and analyzed with 2-way and 1-way ANOVA (Scheffé test), and Weibull statistics (p<0.05). Within LRG, self-adhesive cemented subgroup showed higher fracture load compared to other groups (p<0.001). Among DEG, lower results were measured for non-cemented crowns than for cemented (p<0.001). For ART, LIT and ZRO no influence of cementation was observed. For fracture load test methodology, metal ceramic crowns should be generally cemented. Glass-ceramic crowns should be cemented using adhesive cement. Cementation and cement type did not have an influence on the fracture load results for resin, zirconia or lithium disilicate crowns.

  4. Zirconia: cementation of prosthetic restorations. Literature review

    PubMed Central

    GARGARI, M.; GLORIA, F.; NAPOLI, E.; PUJIA, A.M.

    2011-01-01

    SUMMARY Aim of the work Aim of the work was to execute a review of the international literature about the cementation of zirconia restorations, analyzing the properties of the cements most commonly used in clinical activities. Materials and methods It was performed, through PubMed, a bibliographic search on the international literature of the last 10 years using the following limits: studies in English, in vitro studies, randomized clinical trial, reviews, meta-analysis, guide-lines. Were excluded from the search: descriptive studies, case reports, discussion articles, opinion’s leader. Results From studies results that common surface treatments (silanization, acid etching) are ineffective on zirconia because it has an inert surface without glassy component (on which this surface treatments act primarily), instead the sandblasting at 1atm with aluminium oxide (Al2O3) results significantly effective for the resulting roughening that increase the surface energy and the wettability of the material. Furthermore it has been shown that zinc phosphate-based cements, Bis-GMA-based and glass-ionomer cements can’t guarantee a stable long-term adhesion, instead resin cements containing phosphate monomer 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown higher adhesion and stability values than the other cements. In particular, it has seen that bond strength of zirconia copings on dentin, using MDP-based cement, is about 6,9MPa; this value is comparable to that obtained with gold copings cementation. Conclusions Analyzed studies have led to the following conclusions: sandblasting with aluminium oxide (Al2O3) is the best surface treatment to improve adhesion between resin cements and zirconia; resin cements containing phosphate ester monomers 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown in the studies an higher bond strength and stability after ageing treatment; the best procedure for cementing zirconia restorations results the combination of

  5. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  6. Cementation of prosthetic restorations: from conventional cementation to dental bonding concept.

    PubMed

    Haddad, Marcela Filié; Rocha, Eduardo Passos; Assunção, Wirley Gonçalves

    2011-05-01

    The cementation procedure of metal-free fixed partial dentures exhibits special characteristics about the porcelains and cementation agents, which turns the correct association between these materials necessary. Our purpose in this literature review was to point the main groups of cements associated to metal-free restoration and discuss about the advantages, disadvantages, and recommendations of each one. Our search was confined to the electronic databases PubMed and SciELO and to books about this matter. There are essentially 3 types of hard cement: conventional, resin, or a hybrid of the two. The metal-free restorations can be fixed with conventional or resin cements. The right choice of luting material is of vital importance to the longevity of dental restorative materials. Conventional cements are advantageous when good compressive straight, good film thickness, and water dissolution resistance are necessary. However, they need an ideal preparation, and they are not acid dissolution resistant. Conventional cements are indicated to porcelains that cannot be acid etched. Resin cements represent the choice to metal-free restoration cementation because they present better physical properties and aesthetic than conventional agents.

  7. Micromechanical properties of veneer luting resins after curing through ceramics.

    PubMed

    Oztürk, Elif; Hickel, Reinhard; Bolay, Sükran; Ilie, Nicoleta

    2012-02-01

    The aim of this study was to assess the performance of light-cured luting resin after curing under the ceramic restoration in comparison to dual-cured luting resin, by evaluating the micromechanical properties. Two hundred seventy thin luting composite films of ca. 170 μm in thickness were prepared by using two light-cured luting resins (Variolink Veneer, Ivoclar Vivadent; RelyX Veneer, 3M ESPE) and a dual-cured luting resin (Variolink II, Ivoclar Vivadent). The composites were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10, 20, and 30 s) under two ceramics (IPS e.max Press, Ivoclar Vivadent; IPS Empress® CAD, Ivoclar Vivadent) of different thicknesses (0, 0.75, and 2 mm). Forty-five groups were included, each containing six thin films. The samples were stored after curing for 24 h at 37°C by maintaining moisture conditions with distilled water. Micromechanical properties of the composites were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). For each sample, ten indentations were made, thus totalizing 60 measurements per group. Micromechanical properties of the luting resins were statistically analyzed (SPSS 17.0). Significant differences were observed between the micromechanical properties of the luting resins (p < 0.05). Variolink II showed the highest values in modulus of elasticity (E = 11 ± 0.5)* and Vickers hardness (HV = 48.2 ± 3.2)* and the lowest values in creep (Cr = 4.3 ± 0.1)* and elastic-plastic deformation (We/Wtot = 38.6 ± 0.7)* followed by RelyX Veneer (E = 6.9 ± 0.3, HV = 33 ± 2.5, Cr = 4.6 ± 0.2, We/Wtot = 41.8 ± 1.0)* and Variolink Veneer (E = 4.4 ± 0.4, HV = 20.1 ± 2.6, Cr = 5 ± 0.2, We/Wtot = 43.7 ± 1.3)*. Dual-cured luting resin expressed higher values in the micro-mechanical properties compared to the light-cured luting resins. The effect of luting resin type on the micromechanical properties of the luting resins was higher than the effect of

  8. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    PubMed

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  9. Practical clinical considerations of luting cements: A review

    PubMed Central

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  10. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    PubMed Central

    Aleksiejunaite, Monika; Sidlauskas, Antanas

    2017-01-01

    The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC) and resin-modified glass ionomer (RMGI) on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n = 10). Tubes were bonded using LCC (Transbond XT) in group 1 and RMGI (Fuji Ortho LC) in group 2. The tubes in each group were bonded following manufacturers' instructions (experiment I) and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II) and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III). Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p < 0.05). LCC and RMGI (especially RMGI) provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted. PMID:28386279

  11. Cements for use in esthetic dentistry.

    PubMed

    Pegoraro, Thiago A; da Silva, Nelson R F A; Carvalho, Ricardo M

    2007-04-01

    Dental cements are designed to retain restorations, appliances, and post and cores in a stable and, presumably, long-lasting position in the oral environment. Conventional glass ionomer and zinc phosphate cements are among the most popular materials for luting metallic restorations and posts, whereas resin-based cements are preferred for esthetic applications. Successful cementation of esthetic restorations is largely dependent on the appropriate treatment and silane application to the internal surface of the restoration. Clinicians are frequently advised to use three-step total-etch or two-step self-etch adhesive for luting purposes to avoid problems of incompatibility between adhesives and chemical- or dual-cure cements. A reliable cementation procedure can only be achieved if the operator is aware of the mechanisms involved and the material limitations.

  12. An Investigation of Dental Luting Cement Solubility as a Function of the Marginal Gap.

    DTIC Science & Technology

    1988-05-01

    be non-irritating to the dental pulp , and have low solubility. A critical property of luting cement is its solubility in oral fluids. If the cement...25 micron and 100 micron cement margins. In another investigation, hollow orthodontic tubing and the acid etch composite resin technique were used to...evaluate cement solubility. (lbbetson 1985) Hollow orthodontic tubing, with a 0.05 mm diameter, was filled with dental cement and attached to the

  13. An assessment of fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in endodontically treated teeth: an in vitro study.

    PubMed

    Kumar, Lalit; Pal, Bhupinder; Pujari, Prashant

    2015-01-01

    Endodontically treated teeth with excessive loss of tooth structure would require to be restored with post and core to enhance the strength and durability of the tooth and to achieve retention for the restoration. The non-metallic posts have a superior aesthetic quality. Various core build-up materials can be used to build-up cores on the posts placed in endodontically treated teeth. These materials would show variation in their bonding with the non-metallic posts thus affecting the strength and resistance to fracture of the remaining tooth structure. Aims. The aim of the study was to assess the fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in extracted endodontically treated teeth. Material and Methods. Forty-five freshly extracted maxillary central incisors of approximately of the same size and shape were selected for the study. They were divided randomly into 3 groups of 15 each, depending on the types of non-metallic posts used. Each group was further divided into 3 groups (A, B and C) of 5 samples each depending on three core build-up material used. Student's unpaired 't' test was also used to analyse and compare each group with the other groups individually, and decide whether their comparisons were statistically significant. Results. Luxacore showed the highest fracture resistance among the three core build-up materials with all the three posts systems. Ti-core had intermediate values of fracture resistance and Lumiglass had the least values of fracture resistance.

  14. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    PubMed

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (p<0.05), but there was no difference between zinc phosphate cement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.

  15. Amino acid containing glass-ionomer cement for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  16. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  17. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    PubMed Central

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    Background or Statement of Problem: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. Aims and Objectives: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Methodology: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann–Whitney U-test, Kruskal–Wallis H-test and the results were statistically significant P < 0.05 the

  18. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  19. Clinical applications of preheated hybrid resin composite.

    PubMed

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  20. Squeeze cementing

    SciTech Connect

    Ewert, D.P.; Kundert, D.P.; Dahl, J.A.; Dalrymple, E.D.; Gerke, R.R.

    1992-06-16

    This patent describes a method for terminating the flow of fluid from a portion of a subterranean formation into a wellbore. It comprises: placing within the wellbore adjacent the portion a volume of a slurry of hydraulic cement, permitting the volume to penetrate into the portion; and maintaining the slurry in the portion for a time sufficient to enable the slurry to form a rigid mass of cement in the portion.

  1. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  2. Cement Burns

    PubMed Central

    Alam, Munir; Moynagh, M.; Lawlor, C.

    2007-01-01

    Objective: Cement burns account for relatively few admissions to a burn unit; however, these burns deserve separate consideration because of special features of diagnosis and management. Cement burns, even though potentially disabling, have rarely been reported in literature. Methods: A retrospective review was performed of all patients admitted with cement burns injuries to the national burns unit at the St James's Hospital in Dublin, Ireland, over a 10-year period for the years 1996–2005. Results: A total of 46 patients with cement burns were admitted. The majority of patients were aged 16–74 years (mean age = 32 years). Eighty-seven percent of injuries occurred in an industrial and 13% in a domestic setting. The upper and lower extremities were involved in all the patients, and the mean total body surface area affected was 6.5%. The mean length of hospital stay was 21 days with a range of 1–40 days. Thirty-eight (82%) were surgically managed involving debridement and split-thickness skin graft (SSG) and four (9%) were conservatively managed. A further four did not have data available. Conclusion: Widespread inexperience in dealing with this group of cement burns patients and delays in referral to burns unit highlights the potential for greater levels of general awareness and knowledge in both prevention and treatment of these burns. As well, early debridement and split-thickness skin grafting at diagnosis constitutes the best means of reducing the high socioeconomic costs and allows for early return to work. PMID:18091981

  3. Effect of eugenol-based endodontic cement on the adhesion of intraradicular posts.

    PubMed

    Alfredo, Edson; de Souza, Emanuel Soares; Marchesan, Melissa Andréia; Paulino, Silvana Maria; Gariba-Silva, Ricardo; Sousa-Neto, Manoel Damião

    2006-01-01

    The present study evaluated, in vitro, the influence of an eugenol-based endodontic sealer (EndoFill) on the adhesion of intra-radicular posts cemented with a resin-based cement (Enforce) ou a zinc phosphate cement. Twenty-four single-rooted maxillary canines were divided into 2 groups (n=12) and obturated with either gutta-percha points plus EndoFill or gutta-percha points alone (no cement). In each group, half of intracanal posts (n=6) were cemented with Enforce resin-based cement and half with zinc phosphate cement. Specimens were submitted to pull-out test in an Instron machine and tensile force was applied at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal was recorded (N) and means were submitted to statistical analysis by Kruskal-Wallis test (p<0.01). Posts cemented with zinc phosphate cement were significantly more retentive (353.4 N) than those cemented with Enforce (134.9 N) (p<0.01). Regarding the influence of the eugenol-based cement (EndoFill) on post retention, there was statistically significant difference (p<0.01) only between the groups cemented with Enforce, i.e., in the canals filled with EndoFill + guta-percha there was lower bond strength than in the canals filled with gutta-percha points alone (101.5 and 168.2 N, respectively). In conclusion, the zinc-phosphate-based cement showed greater post retention than the resin-based cement. The findings of this study suggest that the eugenol-containing sealer interfered with the adhesive properties of the resin-based cement.

  4. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  5. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  6. Cryogenics with cement microscopy redefines cement behavior

    SciTech Connect

    Mehta, S.; Jones, R. ); Caveny, B. )

    1994-10-03

    Cement microscopy (CM), cryogenics, environmental scanning microscopy (ESM), scanning electron microscopy (SEM), and other technologies are leading investigators to change their views on cement gelation, hydration, and retardation. Cement samples frozen in a nitrogen slush and viewed with an SEM present a more accurate picture of the setting process. Observations made through this technique have revolutionized ARCO Exploration and Production Technology's and Halliburton Energy Services' oil field cement procurement and slurry design. Findings from this joint study are expected to lead to: optimized waiting on cement (WOC) times; reduced planning and design time; optimized slurry retarder additions; optimized gel times to fit given situations; especially applicable to squeeze operations; improved cement selection (from vendors) for peak performance; and improved cement manufacture. The paper discusses the measuring methods and the findings on the following: cement voids, cement gelation, and retardation mechanisms. It also briefly discusses the impact these discoveries have on operations.

  7. Fracture mechanics analysis of the dentine-luting cement interface.

    PubMed

    Ryan, A K; Mitchell, C A; Orr, J F

    2002-01-01

    The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.

  8. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  9. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  10. Cementing multilateral wells with latex cement

    SciTech Connect

    1997-08-01

    A multilateral well is a well with one or more branches or lateral sections extending from its main wellbore. The laterals can be openhole or cased hole. When laterals are cased hole, the cement integrity for casing support and zonal isolation is very important. When cementing the lateral sections of multilateral wells, it is important to use a cement with high strength and durability to support the liner throughout the life of the well and to support the lateral section. The cement column is subjected to various stresses when the cemented inner stub is cut. High tensile strength, flexural strength, and crack resistance are required. These properties are necessary to make a clean cut through the cement sheath that does not induce cracks in the cement column. Latex cement is commonly used for its gas-migration-control property.

  11. Leachability of decontamination reagents from cement waste forms

    SciTech Connect

    Piciulo, P.L.; Davis, M.S.; Adams, J.W.

    1984-11-26

    Brookhaven National Laboratory, in order to provide technical information needed by the US Nuclear Regulatory Commission to evaluate the adequacy of near-surface disposal of decontamination wstes, has begun to study the leachability of organic reagents from solidified simulated decontamination wastes. Laboratory-scale cement waste forms containing EDTA, picolinic acid or simulated LOMI decontamination reagent were leach tested. Samples containing an organic reagent on either mixed bed ion-exchange resins or anion exchange resins were tested. A fixed interval leach procedure was used, as well as the standard procedure ANS 16.1. The leachability indices measured for the release of the acid from resin/cement composites are: 10.1 for EDTA on mixed bed resins; 9.1 for picolinic acid on mixed bed resins; 9.2 for picolinic acid on anion exchange resins; 8.8 for picolinic acid in forms containing simulated low oxidation metallic ion (LOMI) reagent on mixed bed resins and 8.7 for picolinic acid in forms containing simulated LOMI reagent on anion exchange resins. The leachability indices measured varied with leach time and the data indicate that the release mechanism may not be simply diffusion controlled. 5 references, 2 tables.

  12. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  13. Bond strengths of lingual orthodontic brackets bonded with light-cured composite resins cured by transillumination.

    PubMed

    King, L; Smith, R T; Wendt, S L; Behrents, R G

    1987-04-01

    A method of curing light-cured composite resins by transillumination to cement acid-etched fixed partial dentures was adapted to bond solid mesh-backed lingual orthodontic brackets. Results of this investigation showed that the bond strengths of the orthodontic brackets bonded with light-cured composite resins were significantly less (P less than 0.05) than the bond strengths of the orthodontic brackets cemented with traditional adhesives and orthodontic composite resins. Notwithstanding, the bond strengths achieved with the transilluminated light-cured composite resins should be adequate to withstand the forces of mastication and orthodontic movements. There was no correlation of bond strengths of the brackets cemented with the transilluminated light-cured composite resins when compared to the faciolingual widths of the teeth.

  14. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  16. Cement design based on cement mechanical response

    SciTech Connect

    Thiercelin, M.J.; Dargaud, B.; Baret, J.F.; Rodriquez, W.J.

    1998-12-01

    The disappearance of cement bond log response as a result of variations of downhole conditions has been observed in numerous wells. This observation has led to concern about the loss of proper zonal isolation. Stresses induced in the cement, through deformation of the cemented casing resulting from the variation of downhole conditions, are the cause of this damage. The authors present an analysis of the mechanical response of set cement in a cased wellbore to quantify this damage and determine the key controlling parameters. The results show that the thermo-elastic properties of the casing, cement, and formation play a significant role. The type of failure, either cement debonding or cement cracking, is a function of the nature of the downhole condition variations. This analysis allows one to propose appropriate cement mechanical properties to avoid cement failure and debonding. The authors show that the use of high compressive strength cement is not always the best solution and, in some cases, flexible cements are preferred.

  17. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    international treaties). Environmental testing is performed in a chemical laboratory setting, with the test compounds being exposed to environmental soil or......when it is no longer needed. Do not return it to the originator. ARL-SR-0323 ● JUNE 2015 US Army Research Laboratory Resin

  18. Optimisation of a two-liquid component pre-filled acrylic bone cement system: a design of experiments approach to optimise cement final properties.

    PubMed

    Clements, James; Walker, Gavin; Pentlavalli, Sreekanth; Dunne, Nicholas

    2014-10-01

    The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery-acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.

  19. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    PubMed Central

    Abo, Tomoko; Uno, Shigeru; Yoshiyama, Masahiro; Yamada, Toshimoto; Hanada, Nobuhiro

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers' instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS) was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, P < 0.05). The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found. PMID:22606202

  20. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    PubMed

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  1. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  2. Use of an adhesive resin for bonding orthodontic brackets.

    PubMed

    Ireland, A J; Sherriff, M

    1994-02-01

    To date, most successful bonding agents used in orthodontics rely on mechanical retention to both the enamel and bracket base. Chemical adhesion to enamel as seen with glass ionomer cements, and to the silanated base of ceramic brackets have been tried. Recent developments in resin formulation have led to the production of adhesive diacrylate resins capable of forming adhesive bonds to certain metals including stainless steel. The aim of this experiment was to compare such a resin, Panavia EX, with a more conventional 'no-mix' orthodontic bonding resin. Two different base retention mechanisms were used, and the effect of rebonding and differing environmental conditions were also investigated. The results indicated that Panavia EX could produce greater bond strengths than the more conventional bonding resin. Of the two base retention systems tested, braised mesh bases gave consistently greater bond strengths than the cast base, although no base/resin specificity could be detected. Re-using the same brackets showed rebound strengths to be significantly lower than initial bond strength although the results indicated the adhesive resin was still able to bond more effectively to these used brackets than the conventional resin. Environment had the greatest effect on bond strength, such that following environmental exposure there was no significant difference between the two resins. This latter factor, and in particular the more complex bonding technique required for the adhesive resin, means that Panavia EX cannot be recommended for orthodontic use in its present form.

  3. A comparison of retentive strength of implant cement depending on various methods of removing provisional cement from implant abutment

    PubMed Central

    Keum, Eun-Cheol

    2013-01-01

    PURPOSE This study evaluated the effectiveness of various methods for removing provisional cement from implant abutments, and what effect these methods have on the retention of prosthesis during the definitive cementation. MATERIALS AND METHODS Forty implant fixture analogues and abutments were embedded in resin blocks. Forty cast crowns were fabricated and divided into 4 groups each containing 10 implants. Group A was cemented directly with the definitive cement (Cem-Implant). The remainder were cemented with provisional cement (Temp-Bond NE), and classified according to the method for cleaning the abutments. Group B used a plastic curette and wet gauze, Group C used a rubber cup and pumice, and Group D used an airborne particle abrasion technique. The abutments were observed using a stereomicroscope after removing the provisional cement. The tensile bond strength was measured after the definitive cementation. Statistical analysis was performed using one-way analysis of variance test (α=.05). RESULTS Group B clearly showed provisional cement remaining, whereas the other groups showed almost no cement. Groups A and B showed a relatively smooth surface. More roughness was observed in Group C, and apparent roughness was noted in Group D. The tensile bond strength tests revealed Group D to have significantly the highest tensile bond strength followed in order by Groups C, A and B. CONCLUSION A plastic curette and wet gauze alone cannot effectively remove the residual provisional cement on the abutment. The definitive retention increased when the abutments were treated with rubber cup/pumice or airborne particle abraded to remove the provisional cement. PMID:24049563

  4. The Biocompatibility of Porous vs Non-Porous Bone Cements: A New Methodological Approach

    PubMed Central

    Dall’Oca, C.; Maluta, T.; Cavani, F.; Morbioli, G.P.; Bernardi, P.; Sbarbati, A.; Degl’Innocenti, D.; Magnan, B.

    2014-01-01

    Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethyl-metacrylate (PMMA) and β-tricalcium-phosphate (p-TCP) was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM). As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements. PMID:24998920

  5. Asphalt cement poisoning

    MedlinePlus

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  7. Ultrastructural evaluation of the hybrid layer after cementation of fiber posts using adhesive systems with different curing modes.

    PubMed

    Abou-Id, Luciana Rigueira; Morgan, Luís Fernando S A; Silva, Gerluza Aparecida Borges; Poletto, Luiz Thadeu de Abreu; Lanza, Lincoln Dias; Albuquerque, Rodrigo de Castro

    2012-01-01

    This in vitro study evaluated the adhesive interface of intraradicular fiber glass posts and root dentin using scanning electron microscopy (SEM). Forty-eight single-rooted premolars were randomly divided into 6 groups consisting of chemical, dual, or light cured adhesive systems combined with either chemical or dual cure resin cements. Scanning electron microscopic analysis showed the best results for continuity, density and morphology of the hybrid layer and resin tags for the combination of a self-cure adhesive with self-cure cement resin, followed by a dual-cure adhesive with self-cure cement resin, and finally a light-cure adhesive with self-cure cement. For the dual-cure resin cement, the same relation may be observed. The apical third was the most critical region for evaluated the criteria for all combinations of materials (Kruskal-Wallis and Friedman tests; p<0.001). Generally, the simplification of steps in the adhesive system and the polymerization reaction of resin adhesives and cements produced a direct effect on the quality of the adhesive post/dentin substrate interface.

  8. Fracture load of implant-supported zirconia all-ceramic crowns luted with various cements.

    PubMed

    Lim, Hyun-Pil; Yoo, Jeong-Min; Park, Sang-Won; Yang, Hong-So

    2010-01-01

    This study compared the fracture load and failure types of implant-supported zirconia all-ceramic crowns cemented with various luting agents. The ceramic frameworks were fabricated from a presintered yttria-stabilized zirconium dioxide block using computer-aided design/computer-assisted manufacturing technology, and were then veneered with feldspathic porcelain. Three luting agents were used. Composite resin cement (1,560.78 +/- 39.43 N) showed the highest mean fracture load, followed by acrylic/urethane cement (1,116.20 +/- 77.32 N) and zinc oxide eugenol cement (741.21 +/- 41.95 N) (P < .05). The types of failure varied between groups.

  9. Solidification of Portland Cement.

    DTIC Science & Technology

    Solidification of materials is introduced, and the constitution and hydration of portland cement is reviewed. Microstructural zones are introduced...100, 171, and 384 days age. Similar micrographs for tricalcium silicate pastes and commercial portland cement pastes are shown and discussed. The...hardening of portland cement is discussed as a solidification process. The potential flaws and stress concentrators within the cement paste are identified and their effect on mechanical properties is discussed. (Author)

  10. Deformation of a dental ceramic following adhesive cementation.

    PubMed

    Isgró, G; Addison, O; Fleming, G J P

    2010-01-01

    Stress-induced changes imparted in a 'dentin-bonded-crown' material during sintering, annealing, pre-cementation surface modification, and resin coating have been visualized by profilometry. The hypothesis tested was that operative techniques modify the stressing pattern throughout the material thickness. We polished the upper surfaces of 10 ceramic discs to remove surface imperfections before using a contact profilometer (40-nm resolution) to measure the 'flatness'. Discs were re-profiled after annealing and after alumina particle air-abrasion and resin-coating of the 'fit' surface. Polished surfaces were convex, with a mean deflection of 8.4 + or - 1.5 microm. Mean deflection was significantly reduced (P = 0.029) following alumina particle air-abrasion and increased (P < 0.001) on resin-coating. Polishing induced a tensile stress state, resulting in surface convexity. Alumina particle air-abrasion reduced the relative tensile stress state of the contralateral polished surface. Resin-polymerization generated compression within the resin-ceramic 'hybrid layer' and tension in the polished surface and is likely to contribute to the strengthening of ceramics by resin-based cements.

  11. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  12. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  16. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    PubMed Central

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-01-01

    Aims: To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Results: Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different. PMID:24347881

  17. Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491

    SciTech Connect

    Fehrmann, Henning; Aign, Joerg

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

  18. Glass ionomer restorative cement systems: an update.

    PubMed

    Berg, Joel H; Croll, Theodore P

    2015-01-01

    Glass ionomer cements have been used in pediatric restorative dentistry for more than two decades. Their usefulness in clinical dentistry is preferential to other materials because of fluoride release from the glass component, biocompatibility, chemical adhesion to dentin and enamel, coefficient of thermal expansion similar to that of tooth structure, and versatility. The purpose of this paper was to review the uses of glass ionomer materials in pediatric dentistry, specifically as pit and fissure sealants, dentin and enamel replacement repair materials, and luting cements, and for use in glass ionomer/resin-based composite stratification tooth restoration (the sandwich technique). This article can also be used as a guide to research and clinical references regarding specific aspects of the glass ionomer systems and how they are used for young patients.

  19. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces

    PubMed Central

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  20. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.

    PubMed

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-04-08

    BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect.

  1. Evaluation of adhesive and compressive strength of glass ionomer cements.

    PubMed

    Ramashanker; Singh, Raghuwar D; Chand, Pooran; Jurel, Sunit Km; Tripathi, Shuchi

    2011-12-01

    The aim of the study was to assess, compare and evaluate the adhesive strength and compressive strength of different brands of glass ionomer cements to a ceramometal alloy. (A) Glass ionomer cements: GC Fuji II (GC Corporation, Tokyo), Chem Flex (Dentsply DeTrey, Germany), Glass ionomer FX (Shofu-11, Japan), MR dental (MR dental suppliers Pvt Ltd, England). (B) Ceramometal alloy (Ni-Cr: Wiron 99; Bego, Bremen, Germany). (C) Cold cure acrylic resin. (E) Temperature cum humidity control chamber. (F) Instron Universal Testing Machine. Four different types of Glass ionomer cements were used in the study. From each type of the Glass ionomer cements, 15 specimens for each were made to evaluate the compressive strength and adhesive strength, respectively. The 15 specimens were further divided into three subgroups of five specimens. For compressive strength, specimens were tested at 2, 4 and 12 h by using Instron Universal Testing Machine. To evaluate the adhesive strength, specimens were surface treated with diamond bur, silicone carbide bur and sandblasting and tested under Instron Universal Testing Machine. It was concluded from the study that the compressive strength as well as the adhesive bond strength of MR dental glass ionomer cement with a ceramometal alloy was found to be maximum compare to other glass ionomer cements. Sandblasting surface treatment of ceramometal alloy was found to be comparatively more effective for adhesive bond strength between alloy and glass ionomer cement.

  2. Curing depth of a resin-modified glass ionomer and two resin-based luting agents.

    PubMed

    Sigemori, Ricardo Massao; Reis, André Figueiredo; Giannini, Marcelo; Paulillo, Luís Alexandre M S

    2005-01-01

    The degree of conversion of resin-based luting agents used for retention of prefabricated posts has been questioned due to the difficulty of light penetration into the resin-filled root canal. This study evaluated the depth of cure of a resin-modified glass ionomer cement (Rely X--3M ESPE) and two resin-based luting agents (Rely X ARC--3M ESPE and Enforce-Dentsply). Twenty-four 14x2x2mm3 specimens were prepared in a Teflon split mold with the three luting agents (n=8). After preparation, the specimens were stored at 37 degrees C in a dark box for 24 hours prior to microhardness testing. Measurements of Knoop hardness were performed at three different depths: superficial, medium and deep thirds. The results (KHN) were statistically analyzed by repeated measures ANOVA and Tukey test (0.05), which showed that resin-based luting agents presented the highest Knoop hardness values within the superficial third. Within the medium third, there were no significant differences among luting materials. However, within the deep third, Rely X presented the highest values. KHN values of resin-based luting agents decreased remarkably as depth increased.

  3. Characterisation of cement pastes by inverse gas chromatography.

    PubMed

    Oliva, Victor; Mrabet, Béchir; Baeta Neves, Maria Inês; Chehimi, Mohamed M; Benzarti, Karim

    2002-09-06

    Two cement pastes, commonly used in concrete formulations, were characterised by IGC at 35-80 degrees C before and after coating with an epoxy resin and a hardener. The cements are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxide Ca(OH)2. Apolar and polar probes were used to determine the dispersive and acid-base characteristics of the cement pastes. These materials have high surface energy as judged from the dispersive contribution to the surface free energy (gamma(s)d) values lying in the 50-70 mJ/m2 range at 60-80 degrees C. Examination of the specific interactions permitted to show that the cement pastes are strongly amphoteric species with a substantial predominant Lewis basicity that is in line with the basic pH of their aqueous suspensions. Following coating with an epoxy resin (DGEBA) and a hardener (triethylene tetramine), the surface energy of the cements decreases substantially with the mass loading of the organic material. The surface thermodynamic properties were also correlated with the surface chemical composition as determined by X-ray photoelectron spectroscopy.

  4. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    PubMed

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.

  5. Improvement of casing cementation of deep and ultradeep wells. Part 2: Oilfield cements and cement additives

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Oilfield cements and cement additives were investigated in order to improve the casing cementation of deep and ultradeep wells. Characterization and evaluation of the main oil field cements commercially available were studied. The testing was carried out according to American Petroleum Institute API standards and nonstandardized test methods (dynamic modulus of elasticity, expansion/shrinkage), especially the rheology, thickening time and the influence of pressure, temperature and water-cement ratio, were considered. The main emphasis in the field of cement additives was on the evaluation of cement retarders for high temperatures, accelerators, and additives for cement expansion. Furthermore oil field cements were tested, and their properties are described.

  6. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  8. The effect of cure conditions on the stability of cement waste forms after immersion in water

    SciTech Connect

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.; McDaniel, K.

    1988-01-01

    We investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. We cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e., compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion.

  9. Nanoleakage of fiber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements.

    PubMed

    Pontes, Danielson Guedes; Araujo, Cintia Tereza Pimenta; Prieto, Lucia Trazzi; de Oliveira, Dayane Carvalho Ramos Salles; Coppini, Erick Kamiya; Dias, Carlos Tadeu Santos; Paulillo, Luis Alexandre Maffei Sartini

    2015-01-01

    The aim of this in vitro study was to evaluate the nanoleakage of fiber posts luted using different adhesive strategies and to investigate the effect of 2% chlorhexidine (CHX) on nanoleakage at the resin-dentin interfaces of self-adhesive cements. The self-adhesive and etch-and-rinse adhesive groups tested demonstrated similar results with regard to nanoleakage. Pretreatment with CHX promoted an adequate seal at the resin-dentin interface for self-adhesive cements.

  10. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and zirconium dioxide posts.

    PubMed

    Nothdurft, F P; Schmitt, T; Motter, P J; Pospiech, P R

    2008-12-01

    The aim of the study was to evaluate the influence of fatigue and cementation mode on the fracture behavior of endodontically treated bovine incisors restored with zirconium dioxide posts and crowns. Forty-eight endodontically treated bovine primary incisors were restored with zirconium dioxide posts (Cerapost, Brasseler), composite build-ups, and crowns cast from a chromium cobalt alloy. In 16 teeth, each of the posts was cemented conventionally with KetacCem (3M ESPE) or adhesively with Panavia F (Kuraray) or RelyX UniCem (3M ESPE). One-half of the specimens in each group were subjected to thermocycling with 10,000 cycles at 5-55 degrees C and mechanical aging, loading the specimens at an angle of 45 degrees in 1,200,000 cycles with 50 N. Fracture resistance was determined by loading the specimens until fracture at an angle of 45 degrees to the long axis of the teeth. The loading test showed that neither cementation mode nor fatigue testing had an influence on the load bearing capability. Most specimens fractured in a favorable way, independent from the type of cementation.

  11. EFFECT OF EUGENOL-BASED ENDODONTIC SEALER ON THE ADHESION OF INTRARADICULAR POSTS CEMENTED AFTER DIFFERENT PERIODS

    PubMed Central

    Dias, Larissa Lustosa Lima; Giovani, Alessandro Rogério; Sousa, Yara Teresinha Corrêa Silva; Vansan, Luiz Pascoal; Alfredo, Edson; Sousa-Neto, Manoel Damião; Paulino, Silvana Maria

    2009-01-01

    Objective: This study evaluated in vitro the influence of an eugenol-based sealer (EndoFill) on the retention of stainless steel prefabricated posts cemented with zinc phosphate and resin-based (Panavia F) cements after different periods of root canal obturation, using the pull-out test. Material and methods: Sixty upper canines were decoronated and the roots were embedded in resin blocks. The specimens were distributed into 3 groups, according to the period elapsed between canal obturation and post cementation: Group I - immediately; Group II - 72 h and Group III - 4 months. The groups were subdivided according to the type of cement used for post cementation: A - zinc phosphate and B - Panavia F. Following the experimental periods, specimens were subjected to pull- out test in an Instron machine with application of tensile force at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal were recorded (kN) and means were subjected to statistical analysis by 2-way ANOVA and Tukey-Kramer test (α=0.001) Results: There were statistically significant differences (p<0.01) between the posts cemented with zinc phosphate cement (0.2112 kN) and Panavia F (0.0501 kN). However, no statistically significant differences (p>0.05) were found between the three post cementation periods, regardless of the cement. Conclusions: It was concluded that the eugenol-based sealer influenced the tensile strength of the posts cemented with the resin cement, but had no influence on the time waited between root canal obturation and post space preparation/post cementation. PMID:20027430

  12. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  13. Influence of endodontic sealer composition and time of fiber post cementation on sealer adhesiveness to bovine root dentin.

    PubMed

    Rosa, Ricardo Abreu da; Barreto, Mirela Sangoi; Moraes, Rafael do Amaral; Broch, Juliana; Bier, Carlos Alexandre Souza; Só, Marcus Vinícius Reis; Kaizer, Osvaldo Bazzan; Valandro, Luiz Felipe

    2013-01-01

    This study aimed to assess the influence of the type of endodontic sealer (salicylate resin-based sealer vs. two endodontic sealers) and the time of fiber post cementation after root filling on the post adhesion to bovine root dentin. Sixty bovine roots were assigned to six groups (n=10), considering an experimental design with two factors (factorial 3x2): endodontic sealer factor in three levels [epoxy resin-based sealer (AH Plus), eugenol-based sealer (Endofill), and salicylate resin-based sealer plus mineral trioxide aggregate - MTA (MTA Fillapex)] and time for post cementation factor in two levels (immediate post cementation or 15 days after root canal filling). After post cementation, 2-mm-thick slices were produced and submitted to push-out test. The failure modes were analyzed under a 40× stereomicroscope and scored as: adhesive at cement/dentin interface; adhesive at cement/post interface; cement cohesive; post cohesive; dentin cohesive; or mixed. Data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α=0.05). When the fiber posts were cemented immediately after the root canal filling, the bond strengths were similar, independent of the endodontic sealer type. However, after 15 days, the epoxy resin-based sealer presented higher bond strength than the other sealers (p<0.05). Comparison between each sealer in different experimental times did not reveal any differences. The main failure type was adhesive at dentin/cement interface (89.4%). The time elapsed between the root canal filling and post cementation has no influence on post/root dentin adhesion. On the contrary, the type of endodontic sealer can influence the adhesion between fiber posts and root dentin.

  14. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  15. Effect of Provisional Cements on Shear Bond Strength of Porcelain Laminate Veneers

    PubMed Central

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey’s HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Results: Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (P<.05). Groups that had received light-cured provisional cement showed the lowest bond strength values. Conclusions: Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable. PMID:21912495

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  17. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  18. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  19. The biological properties of a novel ethyl methacrylate resin.

    PubMed

    Suzuki, T; Jinno, S; Hattori, N; Okeya, H; Ishikawa, A; Deguchi, M; Ohno, Y; Kawai, T; Noguchi, T

    2006-01-01

    A novel ethyl methacrylate (EMA) resin was developed to overcome the tissue, organ and systemic damage associated with the residual monomer of conventional methyl methacrylate (MMA) resin bone cement. EMA resin is a chemical/ photopolymerizable material and is easy to handle during clinical procedures. The biocompatibility of EMA was evaluated in accordance with ISO10993-6. No inflammatory response was observed 1 and 9 weeks after implantation in the dorsal subcutaneous tissue of ddY mice. EMA resin also demonstrated better biocompatibility when compared with conventional bone cements. Poly-L-lactic acid (PLLA) was used as a carrier for bone morphogenetic protein (BMP) and added to the EMA slurry. The EMA-PLLA composite membrane was sticky and BMP readily adhered to its surface. The EMA-PLLA-BMP composite membrane induced new bone formation, the new bone growing in the shape of the EMA in the thigh muscle pouch of ddY mice. This novel EMA resin has many potential clinical applications.

  20. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  1. Use of self-curing composite resins to facilitate amalgam repair.

    PubMed

    Lacy, A M; Rupprecht, R; Watanabe, L

    1992-01-01

    Resin cements, which have been shown to adhere to various metal alloys, were investigated as possible repair adhesives for dental amalgam. Test bars of repaired amalgam, formed by condensing new alloy against previously set alloy with or without the use of "adhesive" resins, were subjected to three-point bending measurements of transverse fracture strength. The results indicated that application of adhesive resin did not improve the breaking strength of the repaired specimens from that of specimens prepared without the use of such resins. The breaking strength of all repaired specimens was approximately 15% of the transverse fracture strength of the original intact amalgam bars. Scanning electron microscopy revealed that there was an intermixing of fresh amalgam and unset interfacial resin, which led to mechanical bonding of these materials, but there was no evidence of adhesion of the resin to the previously set amalgam.

  2. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  3. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  4. Modified sulfur cement solidification of low-level wastes

    SciTech Connect

    Not Available

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  5. Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization.

    PubMed

    Xie, Dong; Zhao, Jun; Weng, Yiming; Park, Jong-Gu; Jiang, Hui; Platt, Jeffrey A

    2008-10-01

    We have developed a novel bioactive resin-modified glass-ionomer cement system with therapeutic function to dentin capping mineralization. In the system, the newly synthesized star-shape poly(acrylic acid) was formulated with water, Fuji II LC filler, and bioactive glass S53P4 to form resin-modified glass-ionomer cement. Compressive strength (CS) was used as a screening tool for evaluation. The commercial glass-ionomer cement Fuji II LC was used as a control. All the specimens were conditioned in simulated body fluid (SBF) at 37 degrees C prior to testing. The effect of aging in SBF on CS and microhardness of the cements was investigated. Scanning electron microscopy was used to examine the in vitro dentin surface changes caused by the incorporation of bioactive glass. The results show that the system not only provided strengths comparable to original commercial Fuji II LC cement but also allowed the cement to help mineralize the dentin in the presence of SBF. It appears that this bioactive glass-ionomer cement system has direct therapeutic impact on dental restorations that require root surface fillings.

  6. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate

    PubMed Central

    Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    ABSTRACT Background: Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. Aim: The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Materials and methods: Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. Results: The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. Conclusion: The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103. PMID:27365927

  7. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  9. Effect of radiant heat on the surface hardness of glass polyalkenoate (ionomer) cement.

    PubMed

    Woolford, M J

    1994-12-01

    The use of heat to improve mechanical properties of materials is a widely accepted phenomenon. It has been studied in dentistry with a view to improving the properties of resin composite. Dental cements may benefit by the application of heat, in particular with regard to their early surface properties. This study was carried out to examine the effect of the application of radiant heat to the surface hardness of one type of glass polyalkenoate cement. It was found that raising the temperature of the surface of the cement to a maximum of 60 degrees C significantly improved the early surface hardness of the material. The application of a high level of heat also improved the surface hardness of the cement after 24 h compared to cement which had not been heat treated. The use of heat would appear to accelerate the matrix-forming reaction of the material and although further work is necessary this technique may have clinical application.

  10. Conditioning of root canals prior to dowel cementation with composite luting cement and two dentine adhesive systems.

    PubMed

    Liberman, R; Ben-Amar, A; Urstein, M; Gontar, G; Fitzig, S

    1989-11-01

    Two hundred and forty root canals of extracted single-rooted teeth were prepared to the same dimension, and Dentatus posts of equal size were cemented without screwing them into the dentine. Five cleansing solutions and two dentine adhesive systems were evaluated prior to post-cementation using chemical-cure composite resin. 'Pull-out' tests were then conducted in order to evaluate the bond strength of these intra-pulpal posts. The use of Conclude (composite luting cement) alone, with or without the cleansing solutions, resulted in significantly lower pull-out forces. Scotchbond Dental Adhesive gave significantly better results, regardless of the cleansing solution used. Gluma Dentine Adhesive significantly increased the pull-out forces only when used with its supplied cleanser or Tubulicid.

  11. Thermal diffusivity of glass ionomer cement systems.

    PubMed

    Brantley, W A; Kerby, R E

    1993-01-01

    The thermal diffusivity has been measured for 10 glass ionomer and resin-based materials: three conventional (water-hardened) glass ionomer cements, two silver-reinforced glass ionomers, an experimental stainless steel-reinforced glass ionomer, three visible light-cured (VLC) glass ionomer-resin hybrid materials, and a VLC resin-based product developed for the same clinical uses as the hybrid materials. Cube-shaped specimens, c. 10 x 10 x 10 mm, initially at room temperature were immersed in mercury surrounded by an ice-water bath. From the experimental cooling curve a semi-log plot of relative temperature decrease vs. time yielded a straight line whose slope is proportional to the thermal diffusivity. The values ranged from 1.74-5.16 x 10(-3) cm2 s-1, and all of the materials tested would have adequate insulating properties provided normal clinical thickness levels for lining materials are maintained. It was found that the thermal diffusivities for the three metal-reinforced glass ionomers, where composition information is available, do not follow a rule of mixtures applied to the individual components.

  12. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  13. Failure load of teeth restored by use of alumina copings: Influence of residual tooth structure and cementation.

    PubMed

    Schmitter, Marc; Posavec, Tomislav; Mueller, Denise; Mussotter, Katrin; Rammelsberg, Peter; Rues, Stefan

    2013-01-01

    To evaluate failure loads of teeth restored by use of alumina-coping, and to assess the effects of different amounts of residual tooth structure and different cements, standardized artificial alumina copings were fabricated on seventy-two molars. 24 of the copings were cemented by use of an adhesive resin cement (P-group), n=24 by use of glass-ionomer cement (K-group), and n=24 by use of a self-adhesive modified composite resin-cement (R-group). After artificial ageing (10,000 thermal-cycles between 6.5 and 60°C; 1,200,000 chewing cycles with Fmax=64 N), the specimens were loaded until failure (cross-head-speed: 0.5 mm/min). In the K-group 83% of the specimens failed during chewing simulation. Statistical analysis included chi-squared-test, unpaired-to-sample-t-test, and ANOVA. For severely damaged teeth, loads to failure in the P-group (384 N) were significantly (p=0.03) higher than in the R-group (295 N). For severely damaged teeth, use of composite resin cement resulted in higher loads to failure than use of other cements.

  14. Management of Spent Organic Ion-Exchange Resins by Photochemical Oxidation

    SciTech Connect

    Srinivas, C.; Sugilal, S.; Wattal, P. K.

    2003-02-26

    Management of spent ion-exchange resin waste arising from nuclear reactor operations by traditional practice of encapsulation in cement is associated with problems such as swelling and disintegration. Complete oxidation (mineralization) is an attractive alternative option. This paper reports the development of photochemical mineralization process for organic ion-exchange resins of poly (styrene-divinyl benzene) type with sulfonic acid and quaternary ammonium functional groups. It is a two-step process consisting of dissolution (conversion of solid resin into water-soluble reaction products) and photo-Fenton mineralization of the dissolved resin. Cation and anion resin dissolution was effected by reaction of the resin with H2O2 at 50-60 C in the presence of ferrous/copper sulphate catalyst. Direct dissolution of mixed resin was not efficient. However, the cation resin portion in the mixed resin could be selectively dissolved without affecting the anion portion. The solid anion resin after separation from the cation resin solution could be dissolved. About 0.5 liters of 50% H2O2 was required for dissolution of one kg of wet resin. The reaction time was 4-5 hours. Dissolution experiments were conducted on up to 8 liters of wet resin. The second step, viz., photo-Fenton mineralization of the dissolved resin was effected at ambient temperature(25-35 C). Kinetic results of laboratory scale experiments in immersion type photo-reactor and pilot scale experiments in tubular flow photo-reactor were presented. These results clearly demonstrated the photo-Fenton mineralization of dissolved resin at ambient temperature with stoichiometric quantity of H2O2 as against 70-200% excess H2O2 requirement in chemical mineralization experiments under Fenton oxidation conditions at 90-95 C. Based on these studies, a treatment scheme was developed and presented in this paper.

  15. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  16. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  17. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems.

    PubMed

    Yüksel, Ece; Zaimoğlu, Ali

    2011-01-01

    The purpose of this study was to evaluate the effects of both marginal fit and cementing with different luting agents on the microleakage of all-ceramic crown systems. Thirty-six extracted upper central incisors were prepared for full-coverage crowns and were divided into three groups. Group 1: CAD/CAM-fabricated ZrO2, Group 2: Heat-pressed lithium-disilicate, and Group 3: Cast Cr-Co copings as the control group. Copings were made following standard techniques, and groups were assigned cementation with either self-adhesive resin cement (A) or glass-ionomer luting cement (B). The specimens were subjected to thermocycling, immersed in basic fuchsin solution, sectioned mesiodistally and buccolingually. The surface of each section was digitally photographed under a stereomicroscope. Microleakage was scored using a five-point scale, and the marginal gap was measured using image analysis software. Data were statistically analyzed using 2-way ANOVA, Kruskal-Wallis, and Mann-Whitney U tests (α: 0.05). The marginal discrepancy of each group was 82.7 ± 7 µm, 92.6 ± 4 µm and 96.5 ± 7 µm respectively. Group 1 showed significantly smaller gaps than Group 3 (P = 0.042). Self-adhesive resin cement (A) showed a lower level of microleakage than glass-ionomer luting cement (B) in all groups (P = 0.029). Microleakage scores of '0' were 83% for 1A, 50% for 1B, 50% for 2A, 16% for 2B, 33% for 3A and none for 3B. Marginal discrepancy and cement type both had significant effects on microleakage. Lower levels of microleakage were recorded with self-adhesive resin cement, while CAD/CAM-fabricated ZrO2 copings showed smaller marginal discrepancy and less microleakage in comparison to cast Cr-Co.

  18. Resin systems for producing polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the many commercial successes that have been achieved, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is called polymer concrete. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. The purpose of this paper is to discuss the types of resins that can be used to form polymer concretes. Resin selection is normally based upon the desired properties for the composite and cost. However, the physical and chemical properties of the resins before and during curing are also important, particularly for field-applied materials. Currently, for normal temperature (0/degree/ to 30/degree/C) applications, epoxy resins, vinyl monomers such as polyester-styrene, methylmethacrylate, furfuryl alcohol, furan derivatives, urethane, and styrene, are being used. Styrene-trimethylolpropane trimethacrylate (TMPTMA) mixtures and styrene-acrylamide-TMPTMA mixtures yield composites with excellent hydrothermal stability at temperatures up to 150/degree/ and 250/degree/C, respectively, and organosiloxane resins have been successfully tested at 300/degree/C. Of equal importance is the selection of the composition of the inorganic phase of the composite, since chemical interactions between the two phases can significantly enhance the final properties. Further work to elucidate the mechanisms of these interactions is needed. 6 refs.

  19. Effect of cement type and water storage time on the push-out bond strength of a glass fiber post.

    PubMed

    Reis, Kátia Rodrigues; Spyrides, George Miguel; Oliveira, Jonas Alves de; Jnoub, Alexandre Abrão; Dias, Kátia Regina Hostilio Cervantes; Bonfantes, Gerson

    2011-01-01

    This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers' instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.

  20. Resin bonding of metal brackets to glazed zirconia with a porcelain primer

    PubMed Central

    Lee, Jung-Hwan; Lee, Milim; Kim, Kyoung-Nam

    2015-01-01

    Objective The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement. PMID:26629476

  1. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of

  2. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  3. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  4. EP-toxicity testing of mercury removal resin grout

    SciTech Connect

    Mersman, K.E.

    1984-07-18

    To determine which category a waste will fit into, the EPA requires a classification test. The test, EP-toxicity, consists of a physical integrity test followed by an extraction. For the case of the mercury removal resin grout, the mercury concentration in the extract cannot exceed 0.2 mg/L if the waste is to be classified as ``solid waste.`` Otherwise, the waste is classified as ``hazardous.`` Simulated process solutions were used to load the mercury removal resin. The resin was solidified with the addition of cement and water using a formulation based on grout formulations typically used to solidify power reactor ion exchange resins. Envirodyne Engineers of St. Louis, Missouri, an EPA sanctioned laboratory, performed the EP-toxicity test for the two samples. One sample was a blank which was made with unloaded resin. For the formulation tested, the EP-toxicity test results showed that the mercury removal resin grout does not fit into the ``hazardous waste`` category.

  5. Indirect aesthetic adhesive restoration with fibre-reinforced composite resin.

    PubMed

    Corona, S A M; Garcia, P P N S; Palma-Dibb, R G; Chimello, D T

    2004-10-01

    This paper describes the restoration of an endodontically treated upper first molar with a fibre-reinforced onlay indirect composite resin restoration. The clinical and radiographic examination confirmed that the tooth had suffered considerable loss of structure. Therefore, an indirect restoration was indicated. First, a core was built with resin-modified glass ionomer cement, followed by onlay preparation, mechanical/chemical gingival retraction and impression with addition-cured silicone. After the laboratory phase, the onlay was tried in, followed by adhesive bonding and occlusal adjustment. It can be concluded that fibre-reinforced aesthetic indirect composite resin restoration represented, in the present clinical case, an aesthetic and conservative treatment option. However, the use of fibres should be more extensively studied to verify the real improvement in physical and mechanical properties.

  6. Evaluation and comparison of the effect of different surface preparations on bond strength of glass ionomer cement with nickel-chrome metal-ceramic alloy: a laboratory study.

    PubMed

    Hasti, Kalpana; Jagadeesh, H G; Patil, Narendra P

    2011-03-01

    Retention of fixed partial dentures is mostly dependent upon the bond between metal and cement as well as cement and tooth structure. However, most of the time clinical failure of bond has been observed at metal and cement interface. The treatment of metal surface, prior to luting, plays a crucial role in bonding cement with the metal. This study is conducted to evaluate and compare the effect of different surface preparations on the bond strength of resin-modified glass ionomer cement with nickel-chromium metal ceramic alloy. Fifty caries-free extracted molar teeth were made flat until the dentin of the occlusal surface was exposed. After fabrication of the wax patterns and subsequent castings, the castings were subjected to porcelain firing cycles. The nickel-chromium metal ceramic alloy discs were also divided into five groups and subjected to various surface treatments: (1) Unsandblasted (U), (2) sandblasted (S), (3) sandblasted and treated with 10% aqueous solution of KMnO4 (SK), (4) unsandblasted and roughened with diamond abrasive points (UD) and (5) unsandblasted and roughened with diamond abrasive points and treated with 10% aqueous solution of KMnO(4) (UDK). After surface treatments, the castings were cemented using Fuji PLUS encapsulated resin-modified glass ionomer cement. The obtained values of all the groups were subjected to statistical analysis for Tensile and Shear bond strength. Different surface treatments of the metal affects the bond strength values of resin-modified glass ionomer cement when used as luting agent.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  9. Design, Construction and Performance of Resin Modified Pavement at Fort Campbell Army Airfield, Kentucky

    DTIC Science & Technology

    1994-03-01

    similar to a PCC pavement that had been treated with muriatic acid . The shot blasting took approximately 3 days and cost $16,000. The unit cost was $2.75...October 1992. 14. SUBJECT TERMS 15. NUMBER OF PAGES Airfield pavement Open-graded asphalt 66 Cement grout Resin-modified pavement 16. PRICE CODE Fuel

  10. Prosthodontic self-treatment with acrylic resin super glue: a case report.

    PubMed

    Winkler, Sheldon; Wood, Robert; Facchiano, Anne M; Boberick, Kenneth G; Patel, Amita R

    2006-01-01

    A case history is presented of a patient who fabricated 3 prostheses from autopolymerizing acrylic resin intended for fingernail augmentation and then cemented them into her mouth with super glue. Patients must be warned not to attempt self-treatment for esthetics with self-fabricated prostheses because severe adverse and irreversible hard and soft tissue reactions may occur.

  11. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  12. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  13. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  14. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  15. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  16. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  17. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  18. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  19. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  20. Effects of cement-curing mode and light-curing unit on the bond durability of ceramic cemented to dentin.

    PubMed

    Passos, Sheila Pestana; Souza, Rodrigo Othávio Assunção; Michida, Silvia Masae Araújo; Zamboni, Sandra Costa; Oliveira, Simone Helena Gonçalves de

    2013-01-01

    The aim of this study was to evaluate the effects of different light-curing units and resin cement curing types on the bond durability of a feldspathic ceramic bonded to dentin. The crowns of 40 human molars were sectioned, exposing the dentin. Forty ceramic blocks of VITA VM7 were produced according to the manufacturer's recommendations. The ceramic surface was etched with 10% hydrofluoric acid / 60s and silanized. The dentin was treated with 37% phosphoric acid / 15s, and the adhesive was applied. The ceramic blocks were divided and cemented to dentin according to resin cement / RC curing type (dual- and photo-cured), light-curing unit (halogen light / QTH and LED), and storage conditions (dry and storage / 150 days + 12,000 cycles / thermocycling). All blocks were stored in distilled water (37°C / 24h) and sectioned (n = 10): G1 - QTH + RC Photo, G2 - QTH + RC Dual, G3 - LED + RC Photo, G4 - LED + RC Dual. Groups G5, G6, G7, and G8 were obtained exactly as G1 through G4, respectively, and then stored and thermocycled. Microtensile bond strength tests were performed (EMIC), and data were statistically analyzed by ANOVA and Tukey's test (5%). The bond strength values (MPa) were: G1 - 12.95 (6.40)ab; G2 - 12.02 (4.59)ab; G3 - 13.09 (5.62)ab; G4 - 15.96 (6.32)a; G5 - 6.22 (5.90)c; G6 - 9.48 (5.99)bc; G7 - 12.78 (11.30)ab; and G8 - 8.34 (5.98)bc. The same superscript letters indicate no significant differences. Different light-curing units affected the bond strength between ceramic cemented to dentin when the photo-cured cement was used, and only after aging (LED > QTH). There was no difference between the effects of dual- and photo-cured resin-luting agents on the microtensile bond strength of the cement used in this study.

  1. Intracoronal sealing ability of two dental cements.

    PubMed

    Wells, John D; Pashley, David H; Loushine, Robert J; Weller, R Norman; Kimbrough, W Frank; Pereira, Patricia N

    2002-06-01

    The purpose of this study was to compare the efficacy of sealing the coronal 2-mm of the root canals versus covering the entire pulpal floor with one of two dental-resin cements (Principle or C&B Metabond). Sixty-two molars with the occlusal half of the crowns and the apical half of the roots removed were used. Each canal was enlarged by using a #3 Gates Glidden bur and obturated with unsealed gutta-percha cones. The teeth were randomly assigned to four groups, each containing 15 teeth, plus a negative and a positive control. In group 1, 2 mm of Principle were placed over the entire pulpal floor. In group 2, Principle was placed 2 mm into each canal orifice. Groups 3 and 4 were the same as groups 1 and 2, except C&B Metabond cement was used. After the cement set, the gutta-percha was removed and the integrity of the seal was tested by fluid filtration at a pressure of 20 cm H2O at 1 h and at 1, 2, and 4 weeks. The data were analyzed by a three-way ANOVA and the Student-Newman-Keuls tests at alpha = 0.05. The controls behaved as expected. Results showed that there were no statistically significant differences among the materials used or the location (p > 0.05), but there was a significant difference with respect to time. Principle leaked significantly more than C&B Metabond at 1 h (p < 0.05), but the seal became tighter over time. C&B Metabond leaked less early (p < 0.05) but increased in leakage at 4 weeks. Both materials sealed well over the 4-week study. Principle was easier to use, and sealing the entire pulpal floor was easier than sealing only the canal orifice.

  2. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  3. Cement composition and sulfate attack

    SciTech Connect

    Shanahan, Natalya; Zayed, Abla . E-mail: zayed@eng.usf.edu

    2007-04-15

    Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis. The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.

  4. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  5. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  6. Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study.

    PubMed

    Villat, Cyril; Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P < 0.0001). The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material.

  7. A comparative evaluation of dental luting cements by fracture toughness tests and fractography.

    PubMed

    Ryan, A K; Orr, J F; Mitchell, C A

    2001-01-01

    In recent years there has been a shift from traditional methods of investigating dental materials to a fracture mechanics approach. Fracture toughness (KIC) is an intrinsic material property which can be considered to be a measure of a material's resistance to crack propagation. Glass-ionomer cements are biocompatible and bioactive dental restorative materials, but they suffer from poor fracture toughness and are extremely susceptible to dehydration. The main objective of this study was to evaluate the fracture toughness of three types of commercially available dental cements (polyacid-modified composite resin, resin-modified and conventional glass ionomer) using a short-rod chevron-notch test and to investigate and interpret the results by means of fractography using scanning electron microscopy. Ten specimens of each cement were fabricated according to manufacturers' instructions, coated in varnish, and stored at ambient laboratory humidity, 100 per cent relative humidity, or in water at 37 degrees C for 7 days prior to preparation for testing. Results indicated that significant differences existed between each group of materials and that the fracture toughness ranged from 0.27 to 0.72 MN/m3/2. It was concluded that the resin-modified glass-ionomer cement demonstrated the highest resistance to crack propagation. Fractographs clearly showed areas of stable and unstable crack growth along the fractured surfaces for the three materials examined.

  8. Effect of temporary filling materials on repair bond strengths of composite resins.

    PubMed

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema

    2008-08-01

    Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p < 0.05), while the other temporary materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.

  9. New cement formulation helps solve deep cementing problems

    SciTech Connect

    Brothers, L.E.; DeBlanc, F.X.

    1989-06-01

    Invert-emulsion muds are used in most deep, hot wells. The internal aqueous phase of these muds frequently contains high concentrations of salts. It is desirable to complete these wells with a cement slurry containing salt concentrations up to and including saturation to minimize compatibility problems between cement slurry and mud. Above their effective temperature range, however, saturated salt cements - though still considered desirable for their other properties - pose design difficulties regarding thickening time, fluid loss, and rheology. High salt concentrations tend to decrease the effectiveness of most common cement additives - e.g., retarders, fluid-loss additives, and dispersants. At high temperatures, concentrations of these additives can become unacceptably large, while the additives themselves are not as effective under these conditions. Development of and field experience with a new cementing formulation for deep, high-temperature, saturated-salt applications have helped resolve the cement design problems encountered in south Texas and southern and offshore Louisiana. A single synthetic-polymer additive provides cement retardation, fluid-loss control, and dispersant properties with normal design considerations as opposed to the lengthy design requirements of other cement systems. A particular benefit derived from use of the new cement system involves cementing of long liners. Such liners frequently require squeeze cementing at the liner top because the cement is designed for conditions at the bottom of the liner and is thus frequently over-retarded for the cooler temperatures encountered at the top of the liner. This over-retardation tendency is alleviated greatly by use of the new saturated-salt cement additive.

  10. Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts

    PubMed Central

    Oliveira, Ilione Kruschewsky Costa Sousa; Arsati, Ynara Bosco de Oliveira Lima; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2012-01-01

    This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP) cement or resin cement (RC), the specimens were divided into 3 groups (n = 10) according to the waiting time for core preparation: no preparation (control), 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min) until failure. Two-way ANOVA (time versus cement) and the Tukey tests (P < 0.05) showed significantly higher (P < 0.05) tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation. PMID:22291705

  11. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  12. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  13. Influence of eugenol-containing temporary cement on efficacy of dentin-bonding systems.

    PubMed

    Peutzfeldt, A; Asmussen, E

    1999-02-01

    Zinc oxide-eugenol (ZOE) cements are widely used as temporary filling materials. However, eugenol has earlier been shown to have a detrimental effect on both resin composites and dentin-bonding systems. The aim of the present in vitro study was to examine whether ZOE cement would also reduce the efficacy of relatively new dentin-bonding systems. This was done by determination of gap formation around resin composite fillings in dentin cavities and of bond strength of resin composite to enamel and dentin. The tooth surfaces involved were either freshly cut, or had been exposed to a ZOE cement (IRM) or to a non-ZOE cement (Cavit) for 7 d before application of a dentin-bonding system (Gluma CPS or Scotchbond Multi-Purpose Plus) and a resin composite (Z100). Gap formation was assessed in a light microscope on 20-min-old fillings and expressed as wall-to-wall contraction (the width of the maximum marginal gap in % of the cavity diameter). Bond strength was measured in shear on 1-d-old specimens. The mean values of wall-to-wall contraction were 0.06-0.09% with Scotchbond Multi-Purpose Plus and 0.20-0.24% with Gluma CPS. The mean values of bond strength to enamel were 22-25 MPa for Scotchbond Multi-Purpose Plus and 20-23 MPa for Gluma CPS, and to dentin were 20-22 MPa for Scotchbond Multi-Purpose Plus and 13-14 MPa for Gluma CPS. The use of Scotchbond Multi-Purpose Plus resulted in higher bond strength to dentin and less wall-to-wall contraction than did Gluma CPS. No differences were found in either wall-to-wall contraction or in bond strength between the three groups for either dentin-bonding system. Thus, the ZOE cement did not influence the efficacy of two relatively new dentin-bonding systems.

  14. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  15. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  16. Microleakage of Four Dental Cements in Metal Ceramic Restorations With Open Margins

    PubMed Central

    Eftekhar Ashtiani, Reza; Farzaneh, Babak; Azarsina, Mohadese; Aghdashi, Farzad; Dehghani, Nima; Afshari, Aisooda; Mahshid, Minu

    2015-01-01

    Background: Fixed prosthodontics is a routine dental treatment and microleakage is a major cause of its failure. Objectives: The aim of this study was to assess the marginal microleakage of four cements in metal ceramic restorations with adapted and open margins. Materials and Methods: Sixty sound human premolars were selected for this experimental study performed in Tehran, Iran and prepared for full-crown restorations. Wax patterns were formed leaving a 300 µm gap on one of the proximal margins. The crowns were cast and the samples were randomly divided into four groups based on the cement used. Copings were cemented using zinc phosphate cement (Fleck), Fuji Plus resin-modified glass ionomer, Panavia F2.0 resin cement, or G-Cem resin cement, according to the manufacturers’ instructions. Samples were immersed in 2% methylene blue solution. After 24 hours, dye penetration was assessed under a stereomicroscope and analyzed using the respective software. Data were analyzed using ANOVA, paired t-tests, and Kruskal-Wallis, Wilcoxon, and Mann-Whitney tests. Results: The least microleakage occurred in the Panavia F2.0 group (closed margin, 0.18 mm; open margin, 0.64 mm) and the maximum was observed in the Fleck group (closed margin, 1.92 mm; open margin, 3.32 mm). The Fleck group displayed significantly more microleakage compared to the Fuji Plus and Panavia F2.0 groups (P < 0.001) in both closed and open margins. In open margins, differences in microleakage between the Fuji Plus and G-Cem as well as between the G-Cem and Panavia F2.0 groups were significant (P < 0.001). In closed margins, only the G-Cem group displayed significantly more microleakage as compared to the Panavia F2.0 group (P < 0.05). Paired t-test results showed significantly more microleakage in open margins compared to closed margins, except in the Fuji Plus group (P = 0.539). Conclusions: Fuji Plus cement exhibited better sealing ability in closed and open margins compared to G-Cem and Fleck

  17. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    PubMed

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  18. Microleakage of accelerated mineral trioxide aggregate and Portland cement in an in vitro apexification model.

    PubMed

    Hong, Seong-Tae; Bae, Kwang-Shik; Baek, Seung-Ho; Kum, Kee-Yeon; Lee, WooCheol

    2008-01-01

    The purpose of this study was to evaluate the microleakage of accelerated mineral trioxide aggregate (MTA) and Portland cement by flow porometry analysis in an in vitro apexification model. Sixty-four single-rooted, extracted teeth were divided into 4 groups (group 1, MTA; group 2, MTA with accelerator; group 3, Portland cement; and group 4, Portland cement with accelerator). In an in vitro apexification model, MTA or Portland cement mixed with or without 10% CaCl2 was condensed to 2-mm thickness. The negative control group (n = 4) had the apical foramen sealed with epoxy resin. The maximum and mean flow pore diameters of the samples were tested by capillary flow porometry at 90 minutes and 48 hours after obturation. The addition of accelerator significantly reduced the maximum pore diameters of MTA and Portland cement at the initial setting phase. After 48 hours of obturation, the maximum and mean flow pore diameters of the accelerated samples were significantly reduced compared with the normal samples. There was no statistically significant difference in the maximum pore diameter of MTA and Portland cement between the measurements at 90 minutes and 48 hours. The results imply that the addition of accelerator into MTA or Portland cement can be useful in a one-visit apexification by reducing microleakage even in an early setting time.

  19. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  20. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  1. Cement from magnesium substituted hydroxyapatite.

    PubMed

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  2. Comparison of Marginal Gap and Microleakage in Copy-Milled and Cad-Milled Zirconia Copings Bonded Using Light Cure and Chemical Cure Resin Bonding Systems.

    PubMed

    Shetty, Manoj; Rajalakshmi, S; Krishna Prasad, D

    2014-12-01

    This in vitro study assessed the marginal gap and marginal microleakage in zirconia copings fabricated using two computer aided techniques- CAD milling and Copy milling and cemented to respective tooth preparations using two resin bonding systems, light cure and self-cure resin bonding systems. 32 extracted premolars were prepared to receive zirconia copings fabricated using CAD/CAM and Copy milling techniques. Once the copings were fabricated, the samples were evaluated for marginal fit prior to cementation through microscopic observation. Evaluation of marginal gap was done again after cementation, in order to incorporate the influence of the resin bonding system on the marginal microgap. The specimens were evaluated under the stereomicroscope for micro-leakage using commercial software. A comparative statistical analysis was done following data collection using Mann-Whitney U test, Wilcoxon test and chi-square test. The data collected regarding marginal gap was well within 120 µ, which is in accordance with previous studies. However, Copy milled specimens showed statistically lesser marginal gap when compared to CAD milled specimens. While comparing microleakage, it was observed that the microleakage in Copy milled specimens bonded with light cure resin bonded cement was statistically lesser than that of specimens cemented with chemical cure resin cement.(P = 0.003). This in vitro study concluded that Copy milling technique fabricated zirconia restorations with lesser marginal gap and microleakage score in comparison to CAD milled samples. Light cure resin bonding system also proved to be more effective option compared to self cure resin bonding systems. However, the limitations of this study should be taken into concern and further research should be aimed at a larger sample size to validate the results.

  3. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  4. Fatigue resistance of teeth restored with fiber posts and different post cementation strengths.

    PubMed

    Valandro, Luiz Felipe; Zardin, Lucas Wadas; de Villa, Marco Antonio; Amaral, Marina; Galhano, Graziela; Baldissara, Paolo; Bottino, Marco Antonio

    2009-01-01

    This study sought to evaluate how different post cementation strategies affected the fatigue resistance of bovine teeth restored with glass fiber posts. The canals of 63 single-rooted bovine teeth (each 16 mm in length) were prepared to 9 mm using a preparation drill from a double-tapered fiber post system. Each specimen was embedded in a PVC cylinder using acrylic resin up to 3 mm of the most coronal portion of the specimen and was allocated into one of seven groups (n = 9) based on the strategies for cementation. After cementation, a standard core build-up was made with composite resin. The specimens were stored for seven days and submitted to mechanical cycling (50 N, 8 Hz, 37 degrees C). After fatigue testing, a score was given to each specimen, based on the number of fatigue cycles required to fracture the specimens; the scores were submitted to statistic analysis (Kruskal-Wallis, alpha = 0.05). The strategy for post cementation did not affect the resistance to fatigue (P = 0.8669). Based on the results, the resistance to fatigue does not appear to depend on the post cementation strategy.

  5. Foamed well cementing compositions and methods

    SciTech Connect

    Bour, D.L.; Childs, J.D.

    1992-07-28

    This patent describes a method of cementing a well penetrating a salt containing subterranean formation. It comprises: forming a foamed cement composition; placing the foamed cement composition in contact with the salt containing formation; and permitting the foamed cement composition to set in contact with the salt containing formation to form a hardened mass of cement.

  6. Protective effect of resin coating on the microleakage of Class V restorations following treatment with carbamide peroxide in vitro.

    PubMed

    Yu, Hao; Li, Qing; Attin, Thomas; Wang, Yining

    2010-01-01

    This in vitro study evaluated the effects of a resin coating on the microleakage of Class V restorations due to bleaching. One-hundred and sixty Class V cavities were randomly restored with one of four different restorative materials (n = 40): a compomer (Dyract AP), a conventional glass-ionomer cement (Ketac Molar Easymix), a resin modified glass-ionomer cement (Fuji II LC) and a resin composite (Filtek Z350). For each kind of material, 40 restorations were divided into four subgroups: bleached with resin coating (group BC), bleached without resin coating (group B), immersed in artificial saliva with resin coating (group SC), immersed in artificial saliva without resin coating (group S). In groups B and BC, the specimens were bleached with 10% carbamide peroxide gel for eight hours daily, while groups SC and S were stored in artificial saliva instead. After 28-day treatment, all the samples were subjected to a dye penetration test using the multiple-sectioning technique. In addition, one more test was performed to investigate the color difference between the coated and uncoated tooth surface after bleaching. There was a statistically significant increase in cervical microleakage in the group B specimens of Fuji II LC and Ketac Molar Easymix compared to their respective control specimen (group S). These effects on microleakage were not found in the bleached specimens with resin coating (group BC). There was also no visually-detectable color difference between the coated and uncoated tooth surface. In conclusion, resin coating is an effective method for avoiding the bleaching-induced microleakage of glass-ionomer cement.

  7. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  8. Cement evaluation tool: a new approach to cement evaluation

    SciTech Connect

    Froelich, B.; Dumont, A.; Pittman, D.; Seeman, B.

    1982-08-01

    Cement bond logging achieves its greatest utility when it provides the production engineer with precise indications of cement strength and distribution around the casing. Zone isolation is of critical importance in production. Previous logging systems have yielded measures of cement bond that were circumferential averages of cement quality. These were difficult to interpret. Additionally, they were sensitive to the degree of shear coupling between pipe, cement, and formation and thus were affected by microannulus. The cement evaluation tool (CET) described here overcomes these difficulties. It provides a measurement of cement presence and strength, which is largely insensitive to microannulus. Its log output is interpreted easily. Tool design allows examination of the casing circumferentially at each depth. Impedance behind casing is measured. Laboratory calibration measurements allow this to be presented in terms of cement compressive strength. Cement channels are distinguished easily, and a zone isolation indicator can be presented. Additionally, casing internal diameter and distortion are displayed. European and North American field tests have been completed, and performance for a variety of well conditions is discussed. The ability of the tool to identify channels is confirmed. Sequential runs with and without excess pressure demonstrate immunity to microannulus in cases where CBL is affected but where microannulus is small enough to prohibit hydraulic communication. Geometrical measurements have been good indicators of casing deformation and have identified casing corrosion and wear.

  9. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  10. Fluoride release and uptake by aged resin-modified glass ionomers and a polyacid-modified resin composite.

    PubMed

    Ylp, H K; Smales, R J

    1999-08-01

    Little has been reported of the relationship of fluoride release and weight loss, and the effects of use of different fluoride agents on restorations, for the new generation of glass ionomer cements. The objectives of this study were to compare fluoride release of fresh and aged specimens of a polyacid-modified resin composite (Dyract), and of three resin-modified glass ionomer cements (Fuji II LC, Photac-Fil, Vitremer); and to correlate fluoride release and weight loss of aged specimens after recharging with three different fluoride agents. All materials showed high initial fluoride release immediately after uptake when using the agents. However, the levels of fluoride release dropped rapidly soon afterwards. Although initial fluoride release was significantly different between Dyract and the three resin-modified glass ionomers, when different fluoride agents were used on aged specimens after recharging, no significant differences were found after the first few hours. Linear regression analyses also showed no correlation between cumulative fluoride release and weight loss. Possible beneficial oral health effects may only be expected by frequent exposure of these materials to fluoride agents.

  11. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  12. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  13. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  14. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  15. Inspection program improves bulk cement system delivery

    SciTech Connect

    O'Bannion, T. ); Guidroz, B.; Morris, G. )

    1993-12-20

    A recently implemented survey of pneumatically operated bulk cement-handling equipment offshore has improved bulk cement deliverability on several Gulf of Mexico rigs. The 30-point survey helps ensure an adequate rate of bulk cement delivery throughout the cement job. The inspection survey was developed because the source of many cement job failures was a lack of adequate, steady delivery of bulk cement to the cementing unit during the job. The job failures caused by flow interruptions, plugging of tools by chunks of set cement, and erratic flow resulted in poor primary cement jobs, many of which required remedial cementing jobs. A better-controlled flow of cement may help prevent these types of failure, thereby reducing the number of remedial cement operations. The paper describes the inspection procedures.

  16. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  17. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  18. Effect of resin content and substrate on the emission of BTEX and carbonyls from low-VOC water-based wall paint.

    PubMed

    Zhao, Ping; Cheng, Yu-Hsiang; Lin, Chi-Chi; Cheng, Yu-Lin

    2016-02-01

    The primary aim of this work is to explore the effect of resin content and the effect of substrate on the emission of benzene, toluene, ethylbenzene, and xylene (BTEX) and carbonyls from low-VOC water-based wall paint. Four low-volatile organic compound (VOC) paints include paints A (20% acrylic), B (30% acrylic), C (20% polyvinyl acetate), and D (30% polyvinyl acetate) were painted on stainless steel specimen for the study of resin effect. Green calcium silicate, green cement, and stainless steel were painted with paints A and C for the study of substrate effect. Concentrations of the VOCs in the chamber decreased with the elapsed time. Both resin type and resin quantity in paint had effects on VOC emissions. Paints with acrylic resin emitted less BTEX and carbonyls than paints with polyvinyl acetate resin. However, the effects of resin quantity varied with VOCs. Porous substrates were observed to interact more strongly with paints than inert substrates. Both green calcium silicate and green cement substrates have strong power of adsorption of VOCs from wall paints, namely toluene, formaldehyde, acetaldehyde, 2-butanone, methacrolein, butyraldehyde, and benzaldehyde. Some compounds like toluene, formaldehyde, and butyaldehyde were desorbed very slowly from green calcium silicate and green cement substrates.

  19. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  20. Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

    PubMed Central

    Shafiei, Fereshteh; Sarafraz, Zahra

    2016-01-01

    PURPOSE This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duo-link for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (α=.05). RESULTS A significant effect of time, DMSO treatment, and treatment × time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements. PMID:27555893