Science.gov

Sample records for resin-based calcium phosphate

  1. Calcium and phosphate release from resin-based materials containing different calcium orthophosphate nanoparticles.

    PubMed

    Rodrigues, Marcela C; Natale, Livia C; Arana-Chaves, Victor E; Braga, Roberto R

    2015-11-01

    The study compared ion release from resin-based materials containing calcium orthophosphates. Amorphous calcium phosphate (ACP), dicalcium phosphate anhydrous (DCPA), dicalcium phosphate dihydrate (DCPD), and tricalcium phosphate (β-TCP) nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and surface area (nitrogen adsorption isotherms, BET method). Nanoparticles were added to a dimethacrylate-based resin and materials were tested for degree of conversion (DC) and calcium/phosphate release up to 28 days under pH 5.5 and 7.0. Data were analyzed by ANOVA/Tukey test (alpha: 0.05).The crystallinity of DCPA, DCPD, and β-TCP were confirmed, as well as the ACP amorphous nature. DCPD and β-TCP presented larger agglomerates than DCPA and ACP. The surface area of ACP was 5-11 times higher than those of the other nanoparticles. Materials showed similar DC. The material containing ACP released significantly more ions than the others, which released similar amounts of calcium and, in most cases, phosphate. Ion release was not affected by pH. Calcium release decreased between 7 and 21 days, while phosphate levels remained constant after 14 days. In conclusion, ACP higher ion release can be ascribed to its high surface area. DCPA, DCPD, and β-TCP had similar performances as ion-releasing fillers. © 2015 Wiley Periodicals, Inc.

  2. Calcium Phosphates and Human Beings

    NASA Astrophysics Data System (ADS)

    Dorozhkin, Sergey V.

    2006-05-01

    This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized. Basic facts on the natural occurrence and the industrial use of natural calcium phosphates are discussed. Fundamental details on the presence of calcium phosphates in major calcified tissues (bones and teeth) of humans and mammals, as well as on biomaterials made of calcium phosphates are discussed. The article will be of value for chemistry teachers for expansion of their general background and point the students' attention to the rapidly growing topic of bone-substituting biomaterials.

  3. Thiosulfate Reduces Calcium Phosphate Nephrolithiasis

    PubMed Central

    Asplin, John R.; Donahue, Susan E.; Lindeman, Christina; Michalenka, Anne; Strutz, Kelly Laplante; Bushinsky, David A.

    2009-01-01

    An uncontrolled trial reported that sodium thiosulfate reduces formation of calcium kidney stones in humans, but this has not been established in a controlled human study or animal model. Using the genetic hypercalciuric rat, an animal model of calcium phosphate stone formation, we studied the effect of sodium thiosulfate on urine chemistries and stone formation. We fed genetic hypercalciuric rats normal food with or without sodium thiosulfate for 18 wk and measured urine chemistries, supersaturation, and the upper limit of metastability of urine. Eleven of 12 untreated rats formed stones compared with only three of 12 thiosulfate-treated rats (P < 0.002). Urine calcium and phosphorus were higher and urine citrate and volume were lower in the thiosulfate-treated rats, changes that would increase calcium phosphate supersaturation. Thiosulfate treatment lowered urine pH, which would lower calcium phosphate supersaturation. Overall, there were no statistically significant differences in calcium phosphate supersaturation or upper limit of metastability between thiosulfate-treated and control rats. In vitro, thiosulfate only minimally affected ionized calcium, suggesting a mechanism of action other than calcium chelation. In summary, sodium thiosulfate reduces calcium phosphate stone formation in the genetic hypercalciuric rat. Controlled trials testing the efficacy and safety of sodium thiosulfate for recurrent kidney stones in humans are needed. PMID:19369406

  4. Calcium Phosphate Nanoparticle Adjuvant

    PubMed Central

    He, Qing; Mitchell, Alaina R.; Johnson, Stacy L.; Wagner-Bartak, Claus; Morcol, Tulin; Bell, Steve J. D.

    2000-01-01

    Vaccination to protect against human infectious diseases may be enhanced by using adjuvants that can selectively stimulate immunoregulatory responses. In a murine model, a novel nanoparticulate adjuvant composed of calcium phosphate (CAP) was compared with the commonly used aluminum (alum) adjuvants for its ability to induce immunity to herpes simplex virus type 2 (HSV-2) and Epstein-Barr virus (EBV) infections. Results indicated that CAP was more potent as an adjuvant than alum, elicited little or no inflammation at the site of administration, induced high titers of immunoglobulin G2a (IgG2a) antibody and neutralizing antibody, and facilitated a high percentage of protection against HSV-2 infection. Additional benefits of CAP include (i) an insignificant IgE response, which is an important advantage over injection of alum compounds, and (ii) the fact that CAP is a natural constituent of the human body. Thus, CAP is very well tolerated and absorbed. These studies were performed with animal models. By virtue of the potency of this CAP adjuvant and the relative absence of side effects, we believe that this new CAP formulation has great potential for use as an adjuvant in humans. PMID:11063495

  5. Sodium phosphate-derived calcium phosphate cements

    SciTech Connect

    Sugama, T.; Carciello, N.R. )

    1995-01-01

    Calcium phosphate cements (CPC) were synthesized by the acid-base reaction between sodium phosphate, NaH[sub 2]PO[sub 4] or -(-NaPO[sub 3]-)-[sub n], as the acid solution, and calcium aluminate cements (CAC) as the base reactant at 25 C. The extent of reactivity of -(-NaPO[sub 3]-)-[sub n] with CAC was much higher than that of NaH[sub 2]PO[sub 4], thereby resulting in a compressive strength of > 20 MPa. Sodium calcium orthophosphate (SCOP) salts as amorphous reaction products were responsible for the development of this strength. When this CPC specimen as exposed in an autoclave, in-situ amorphous [r arrow] crystal conversions, such as SCOP [r arrow] hydroxyapatite (HOAp), and Al[sub 2]O[sub 3] [center dot] xH[sub 2]O [r arrow] [gamma]-AlOOH, occurred at [approx] 100 C, while the rate of reaction of the residual CAC with the phosphate reactant was increasingly accelerated by hydrothermal catalysis. Based upon this information, the authors prepared lightweight CPC specimens by hydrothermally treating a low-density cement slurry (1.28 g/cc) consisting of CAC powder, -(-NaPO[sub 3]-)-[sub n] solution, and mullite-hollow microspheres. The characteristics of the autoclaved lightweight specimens were a compressive strength of > 9.0 MPa, water permeability of [approx] 5.0 [times] 10[sup [minus]3] milli darcy, and a low rate of alkali carbonation. The reasons for such a low carbonation rate reflected the presence of a minimum amount of residual CAC, in conjunction with the presence of HOAp and [gamma]-AlOOH phases that are unsusceptible to wet carbonation.

  6. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  7. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  15. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  19. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  2. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful.

  3. Resorbable calcium phosphate bone substitute.

    PubMed

    Knaack, D; Goad, M E; Aiolova, M; Rey, C; Tofighi, A; Chakravarthy, P; Lee, D D

    1998-01-01

    The in vitro and in vivo properties of a novel, fully resorbable, apatitic calcium phosphate bone substitute (ABS) are described. The ABS was prepared from calcium phosphate precursors that were hydrated to form an injectable paste that hardens endothermically at 37 degrees C to form a poorly crystalline apatitic calcium phosphate (PCA). The PCA reaction product is stable in vivo as determined by FTIR and XRD analysis of rabbit intramuscular implants of ABS retrieved 4, 7, and 14 days postimplantation. Bone formation and resorption characteristics of the ABS material were characterized in a canine femoral slot defect model. Femoral slot defects in dogs were filled with either autologous bone implants or the ABS material. Sections of femoral bone defect site from animals sacrificed at 3, 4, 12, 26, and 52 weeks demonstrated that new bone formation proceeded similarly in both autograft and ABS filled slots. Defects receiving either material were filled with trabecular bone in the first 3 to 4 weeks after implantation; lamellar or cortical bone formation was well established by week 12. New bone formation in ABS filled defects followed a time course comparable to autologous bone graft filled defects. Histomorphometric evaluation of ABS resorption and new bone formation indicated that the ABS material was greater than 99% resorbed within 26 weeks; residual ABS occupied 0.36+/-0.36% (SEM, n = 4) of the original defect area at 26 weeks. Quantitatively and qualitatively, the autograft and ABS were associated with similar new bone growth and defect filling characteristics.

  4. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  5. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  6. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  7. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  8. Next generation calcium phosphate-based biomaterials.

    PubMed

    Chow, L C

    2009-01-01

    It has been close to a century since calcium phosphate materials were first used as bone graft substitutes. Numerous studies conducted in the last two decades have produced a wealth of information on the chemistry, in vitro properties, and biological characteristics of granular calcium phosphates and calcium phosphate cement biomaterials. An in depth analysis of several key areas of calcium phosphate cement properties is presented with the aim of developing strategies that could lead to break-through improvements in the functional efficacies of these materials.

  9. Inherited disorders of calcium and phosphate metabolism.

    PubMed

    Gattineni, Jyothsna

    2014-04-01

    Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. An understanding of the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. Identification of genetic mutations in humans and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of calcium-sensing receptor has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified to cause disorders of phosphate metabolism. Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow-up of these patients.

  10. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  11. Calcium phosphates: what is the evidence?

    PubMed

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  12. Calcium Phosphate Transfection of Primary Hippocampal Neurons

    PubMed Central

    DiBona, Victoria L.; Wu, Qian; Zhang, Huaye

    2013-01-01

    Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells. PMID:24300106

  13. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers.

    PubMed

    Reszka, Przemysław; Nowicka, Alicja; Lipski, Mariusz; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof

    2016-01-01

    Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated.

  14. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers

    PubMed Central

    Reszka, Przemysław; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof

    2016-01-01

    Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated. PMID:28097154

  15. Amorphous calcium (ortho)phosphates.

    PubMed

    Dorozhkin, Sergey V

    2010-12-01

    Amorphous calcium phosphates (ACPs) represent a unique class of biomedically relevant calcium orthophosphate salts, having variable chemical but essentially identical glass-like physical properties, in which there is neither translational nor orientational long-range ordering of the atomic positions. Normally, ACPs are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing ions of Ca(2+) and PO₄³⁻; however, other production techniques are known. Interestingly, ACPs prepared by wet-chemical techniques were found to have a relatively constant chemical composition over a relatively wide range of preparation conditions, which suggests the presence of a well-defined local structural unit, presumably with the structure of Ca₉(PO₄)₆ - so-called Posner cluster. However, the presence of similar clusters in ACPs produced by other techniques remains uncertain. All ACPs are thermodynamically unstable compounds and, unless stored in dry conditions or doped by stabilizers, spontaneously tend to transform to crystalline calcium orthophosphates, mainly to calcium apatites. This solution instability of ACPs and their easy transformation to crystalline phases are of a great biological relevance. Specifically, the initiating role ACPs play in matrix vesicle biomineralization raises the importance of ACPs from a mere laboratory curiosity to that of a key intermediate in skeletal calcification. In addition, due to significant chemical and structural similarities with calcified mammalian tissues, as well as excellent biocompatibility and bioresorbability, all types of ACPs are very promising candidates for the manufacture of artificial bone grafts. This review summarizes the current knowledge on the occurrence, preparation, composition, structure, major properties and biomedical applications of ACPs. To assist readers in looking for the specific details on ACPs, a great number of references have been collected and systematized. Copyright

  16. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  17. Calcium phosphate: a substitute for aluminum adjuvants?

    PubMed

    Masson, Jean-Daniel; Thibaudon, Michel; Bélec, Laurent; Crépeaux, Guillemette

    2017-03-01

    Calcium phosphate was used as an adjuvant in France in diphtheria, tetanus, pertussis and poliomyelitis vaccines. It was later completely substituted by alum salts in the late 80's, but it still remains as an approved adjuvant for the World Health Organization for human vaccination. Area covered: Thus, calcium phosphate is now considered as one of the substances that could replace alum salts in vaccines. The aim of this paper is to draw a review of existing data on calcium phosphate as an adjuvant in order to bring out the strengths and weaknesses for its use on a large scale. Expert commentary: Calcium phosphate is a compound naturally present in the organism, safe and already used in human vaccination. Beyond comparisons with the other adjuvants, calcium phosphate represents a good candidate to replace or to complete alum salts as a vaccine adjuvant.

  18. Inherited Disorders of Calcium and Phosphate Metabolism

    PubMed Central

    Gattineni, Jyothsna

    2014-01-01

    Purpose of Review Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. Understanding the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. Recent Findings Identification of genetic mutations in human subjects and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of CaSR also has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified as causes for disorders of phosphate metabolism. Summary Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow up of these patients. PMID:24553630

  19. Substitution of calcium by strontium within selected calcium phosphates

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Hermes, C.; Nolting, H.-F.; Ryczek, J.

    1993-06-01

    Sr incorporation in the molecules of amorphous calcium phosphate, apatitic tricalcium phosphate, hydroxyapatite, octacalcium phosphate and dicalcium phosphate dihydrate was investigated. The concentration of Sr ranged from 225 to 1010 μ g / g, i.e. it overlapped with the physiological range of Sr concentrations in human bone. The leading experimental technique was extended X-ray absorption fine structure (EXAFS) at the Sr K edge. Results of these studies demonstrated the following: (1) Sr incorporation in the calcium phosphates is compound-dependent, (2) the coordination of incorporated Sr atoms in the Ca-P molecules is similar to that of Ca atoms, but interatomic distances are ≈0.015 nm larger, (3) in apatitic tricalcium phosphate, hydroxyapatite and octacalcium phosphate lattices Sr atoms may occupy selected Ca sites, which was not the case for dicalcium phosphate dihydrate, (4) in the apatite lattice Sr atoms are coordinated by 6 PO 4 tetrahedrals and (5) EXAFS spectra at the K edge of the incorporated Sr may be used to distinguish the structures of amorphous calcium phosphate, dicalcium phosphate dihydrate as well as apatite and its derivatives (apatitic tricalcium phosphate, octacalcium phosphate).

  20. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and characterization of silver phosphate/calcium phosphate mixed particles capable of silver nanoparticle formation by photoreduction.

    PubMed

    Natale, Livia C; Alania, Yvette; Rodrigues, Marcela C; Simões, Alyne; de Souza, Douglas N; de Lima, Erick; Arana-Chavez, Victor E; Hewer, Thiago L R; Hiers, Rochelle; Esteban-Florez, Fernando L; Brito, Giancarlo E S; Khajotia, Sharukh; Braga, Roberto R

    2017-07-01

    Silver phosphate is a semi-conductor sensitive to UV-Vis radiation (<530nm). Exposure to radiation removes electrons from the oxygen valence shell, which are scavenged by silver cations (Ag(+)), forming metallic silver (Ag(0)) nanoparticles. The possibility of silver nanoparticle formation in situ by a photoreduction process was the basis for the application of mixed calcium phosphate/silver phosphate particles as remineralizing and antibacterial fillers in resin-based dental materials. Mixed phosphate particles were synthesized, characterized and added to a dimethacrylate resin in 20% or 30% mass fractions to investigate their efficacy as ion-releasing fillers for dental remineralization and antibacterial activity. The formation of metallic silver nanoparticles after exposure to visible radiation from a dental curing unit (peak emission: 470nm) was demonstrated by particle X-ray diffraction and scanning electron microscopy analysis of the composite fractured surface. Calcium and phosphate release from materials containing the mixed particles were similar to those containing pure CaP particles, whereas Streptococcus mutans colonies were reduced by three orders of magnitude in relation to the control, which can be attributed to silver release. As expected, the optical properties of the materials containing mixed phosphate particles were compromised by the presence of silver. Nevertheless, materials containing mixed phosphate particles presented higher fracture strength and elastic modulus than those with pure CaP particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sonochemical synthesis of calcium phosphate powders.

    PubMed

    de Campos, M; Müller, F A; Bressiani, A H A; Bressiani, J C; Greil, P

    2007-05-01

    beta-tricalcium phosphate (beta-TCP) and biphasic calcium phosphate powders (BCP), consisting of hydroxyapatite (HA) and beta-TCP, were synthesized by thermal decomposition of precursor powders obtained from neutralization method. The precursor powders with a Ca/P molar ratio of 1.5 were prepared by adding an orthophosphoric acid (H(3)PO(4)) solution to an aqueous suspension containing calcium hydroxide (Ca(OH)(2)). Mixing was carried out by vigorous stirring and under sonochemical irradiation at 50 kHz, respectively. Glycerol and D-glucose were added to evaluate their influence on the precipitation of the resulting calcium phosphate powders. After calcination at 1000 degrees C for 3 h BCP nanopowders of various HA/beta-TCP ratio were obtained.

  3. Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.

    ERIC Educational Resources Information Center

    Knox, Franklyn G., Ed.

    1980-01-01

    This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)

  4. Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.

    ERIC Educational Resources Information Center

    Knox, Franklyn G., Ed.

    1980-01-01

    This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)

  5. Synthesized mesoporous silica and calcium aluminate cement fillers increased the fluoride recharge and lactic acid neutralizing ability of a resin-based pit and fissure sealant.

    PubMed

    Surintanasarn, Atikom; Siralertmukul, Krisana; Thamrongananskul, Niyom

    2017-07-12

    This study evaluated the effect of different types of filler in a resin-based pit and fissure sealant on fluoride release, recharge, and lactic acid neutralization. Resin-based sealant was incorporated with 5% w/w of the following fillers: calcium aluminate cement (CAC), synthesized mesoporous silica (SI), a CAC and SI mixture (CAC+SI), glass-ionomer powder (GIC), and acetic acid-treated GIC (GICA). Sealant without filler served as control. The samples were immersed in deionized water or a lactic acid solution and the concentration of fluoride in the water, before and after fluoride recharge, and the lactic acid pH change, respectively, were determined. The CAC+SI group demonstrated the highest fluoride release after being recharged with fluoride gel. The CAC+SI group also demonstrated increased lactic acid pH. These findings suggest that a resin-based sealant containing synthesized mesoporous silica and calcium aluminate cement may enhance remineralization due to fluoride release and higher pH.

  6. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  7. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  8. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  9. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  10. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monobasic calcium phosphate. 182.6215 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  11. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  12. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  13. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  14. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  15. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This...

  16. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  17. Cytotoxicity of a calcium aluminate cement in comparison with other dental cements and resin-based materials.

    PubMed

    Franz, Alexander; Konradsson, Katarina; König, Franz; Van Dijken, Jan W V; Schedle, Andreas

    2006-02-01

    The objective of this study was to compare the cytotoxic effects of a calcium aluminate cement with several currently used direct restorative materials. Specimens of three composites (QuiXfil, Tetric Ceram, Filtek Supreme), one zinc phosphate cement (Harvard Cement), one glass ionomer cement (Ketac Molar), and one calcium aluminate cement (DoxaDent), were used fresh or after 7-days' preincubation in cell culture medium at 37 degrees C, pH 7.2. PVC strips for ISO 10993-5 cytotoxicity test were used as positive control and glass specimens as negative control. L-929 fibroblasts (5-ml aliquots, containing 3 x 10(4) cells/ml), cultivated in DMEM with 10% FCS, 1% glutamine, and 1% penicillin/streptomycin at 37 degrees C/5% CO2 and trypsinized, were exposed to the specimens for 72 h. The cells were harvested, centrifuged, and resuspended in 500 microl DMEM and then counted in 500 microl DMEM for 30 s with a flow cytometer at 488 nm. The analysis of variance comparing the six materials showed different influences on L-929 fibroblast cytotoxicity (p <0.0001). The cytotoxicity of all specimens diminished with increasing preincubation time (p <0.0001). Fresh DoxaDent exhibited the lowest cytotoxicity, followed by QuiXfil. Ketac Molar showed the highest cytotoxicity. After 7 days of preincubation, Harvard Cement and Filtek Supreme demonstrated more cytotoxicity than the other materials (p <0.005).

  18. Calcium-Activated Phosphate Uptake in Contracting Corn Mitochondria 1

    PubMed Central

    Truelove, B.; Hanson, J. B.

    1966-01-01

    The phosphate inhibition of succinate-powered contraction in corn mitochondria can be reversed with calcium. Associated with this reversal is an accumulation of phosphate and calcium. Both ions are essential for accumulation, although strontium will partially substitute for calcium. Arsenate does not substitute for phosphate except in producing the inhibition of contraction. The antibiotics oligomycin and aurovertin do not block the phosphate inhibition of contraction or the calcium-activated phosphate uptake associated with the release of the inhibition. Dinitrophenol uncouples the phosphate uptake but permits full contraction. Calcium promotes inorganic phosphate accumulation in root tissue as well as in mitochondria. The results are discussed from the viewpoint of theories of calcium reaction with high energy intermediates of oxidative phosphorylation. It is concluded that calcium probably reacts with X∼P in corn mitochondria, rather than with X∼I as with animal mitochondria. PMID:16656343

  19. [Effect of phosphate upon calcium intestinal absorption (author's transl)].

    PubMed

    Fournier, P; Dupuis, Y; Digaud, A; Fournier, A

    1976-11-01

    Adult rats receive 5 to 50 mM CaCl2 solutions in which glycerophosphate or sodium diacid phosphate may be added in variable quantity. These solutions are administered by gavage or in situ ligatured jejunal loop. The inhibition of calcium absorption dependent on simultaneously administered phosphate doses is well characterized: high for the lowest concentration, the inhibiting effect of phosphate doses decreases more and more reaching a limit from which phosphate supplementation has no effect. These observations discarding an intervention of phosphate by calcium insolubilization seem to demonstrate that the control supplied by phosphates on calcium absorption is of enzymatic character. Facts related to the respective effects of calcium and phosphates on the action of alkaline phosphatases lead to discuss a possible intervention of these enzymes upon calcium transfer.

  20. Effect of calcium hydroxide and double and triple antibiotic pastes on the bond strength of epoxy resin-based sealer to root canal dentin.

    PubMed

    Akcay, Merve; Arslan, Hakan; Topcuoglu, Hüseyin Sinan; Tuncay, Oznur

    2014-10-01

    The aim of this study was to evaluate the effects of calcium hydroxide (CH) and triple (TAP) and double (DAP) antibiotic pastes on the bond strength of an epoxy resin-based sealer (AH Plus Jet; Dentsply DeTrey, Konstanz, Germany) to the root canal dentin. Sixty-four single-rooted human mandibular premolars were decoronated and prepared using the rotary system to size 40. The specimens were randomly divided into a control group (without intracanal dressing) and 3 experimental groups that received an intracanal dressing with either CH, DAP, or TAP (n = 16). The intracanal dressing was removed by rinsing with 10 mL 17% EDTA followed by 10 mL 2.5% sodium hypochlorite. The root canals were then obturated with gutta-percha and AH Plus Jet sealer. A push-out test was used to measure the bond strength between the root canal dentin and the sealer. The data were analyzed using 2-way analysis of variance and Tukey post hoc tests to detect the effect of the independent variables (intracanal medicaments and root canal thirds) and their interactions on the push-out bond strength of the root canal filling material to the root dentin (P = .05). The push-out bond strength values were significantly affected by the intracanal medicaments (P < .001) but not by the root canal thirds (P > .05). In the middle and apical third, the bond strength of the TAP group was higher than those of the CH and DAP groups (P < .05). The DAP and CH did not affect the bond strength of the epoxy resin-based sealer. Additionally, the TAP improved the bond strength of the epoxy resin-based sealer in the middle and apical thirds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Crystal growth of calcium phosphates - epitaxial considerations

    NASA Astrophysics Data System (ADS)

    Koutsoukos, P. G.; Nancollas, G. H.

    1981-05-01

    The growth of one crystalline phase on the surface of another that offers a good crystal lattice match, may be important in environmental, physiological and pathological mineralization processes. The epitaxial relationships and kinetics of growth of hydroxyapatite on crystals of dicalcium phosphate dihydrate, calcium fluoride and calcite have been studied at sustained low supersaturation with respect to hydroxyapatite. At the very low supersaturations, the crystallization of hydroxyapatite takes place without the formation of precursor phases. The experimental results are in agreement with theoretical predictions for epitaxial growth, while the kinetics of hydroxyapatite crystallization on the foreign substrates is the same as that for the growth of hydroxyapatite on synthetic hydroxyapatite crystals.

  2. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  3. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    PubMed

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  4. [Bone and tooth in calcium and phosphate metabolism].

    PubMed

    Tamamura, Yoshihiro; Yamaguchi, Akira

    2012-01-01

    Tight regulation of serum concentrations of calcium and phosphate is indispensable for maintaining normal physiological condition. Imbalance of this regulation leads to pathophysiological disorders including heart disease, chronic kidney disease, and ectopic calcification. Formation and mineralization of bone and tooth are greatly influenced by calcium and phosphate metabolism since both organs are mainly consist of calcium-phosphate. Calcium and phosphate homeostasis is under hormonal control on its target organs such as kidney, bone and intestine. Calcium and phosphate are absorbed in intestine and reabsorbed and excreted in kidney. Bone store and release them in response to changing physiological demand by osteoblastic bone formation and osteoclastic bone resorption. Bone is also important as an endocrine organ that releases FGF23 from osteocytes, a novel hormone that targets the kidney to inhibit phosphate reabsorption and 1α, 25 (OH) (2)D(3) production.

  5. [Synthetic calcium phosphate ceramics in secondary alveoloplasty].

    PubMed

    Corre, P; Khonsari, R-H; Laure, B; Elamrani, K; Weiss, P; Mercier, J-M

    2012-04-01

    Bone substitutes are rarely used in the reconstruction of cleft lip and palate. The graft material of choice is cancellous bone, harvested in the hip or tibia. Tibial harvesting may lead to postoperative morbidity, or even complications. This has lead surgeons to develop alternative solution. We present a secondary alveolar bone grafting technique using synthetic calcium phosphate ceramics. A patient presenting with a complete unilateral cleft lip and palate was treated by alveolar bone grafting at the age of nine years, using a mixture of autologous bone, harvested on the operative field, and particles of biphasic calcium phosphate (BCP); the graft was included in a platelet rich plasma (PRP) gel. The patient was followed up for eight years after the procedure. No sign of early or late infection was observed. At the end of facial growth, the cuspid had erupted correctly in a safe periodontal environment. Sequential X-rays showed complete filling of the initial bone defect, progressive resorption of ceramics, and spontaneous eruption of the cuspid. In this long-term follow-up report, the use of BCP mixed with autologous bone did not interfere with dental eruption or maxilla growth. A second bone-harvesting site was thus avoided. BCP could be a suitable alternative to autologous bone graft for secondary alveoloplasty. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    PubMed

    Leeuwenburgh, S; Layrolle, P; Barrère, F; de Bruijn, J; Schoonman, J; van Blitterswijk, C A; de Groot, K

    2001-08-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesium, and carbonate. The ACP-coated disks then were processed further by incubation in calcium phosphate solutions to produce either crystalline carbonated apatite (CA) or octacalcium phosphate (OCP). The resorption behavior of these three biomimetic coatings was studied using osteoclast-enriched mouse bone-marrow cell cultures for 7 days. Cell-mediated degradation was observed for both carbonated apatite and octacalcium phosphate coatings. Numerous resorption lacunae characteristic of osteoclastic resorption were found on carbonated apatite after cell culture. The results showed that carbonated apatite coatings are resorbed by osteoclasts in a manner consistent with normal osteoclastic resorption. Osteoclasts also degraded the octacalcium phosphate coatings but not by classical pit formation.

  7. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Phase transformation of calcium phenyl phosphate in calcium hydroxyapatite

    SciTech Connect

    Tanaka, Hidekazu . E-mail: hidekazu@riko.shimane-u.ac.jp; Ibaraki, Koshiro; Uemura, Masao; Hino, Ryozi; Kandori, Kazuhiko; Ishikawa, Tatsuo

    2007-07-03

    Calcium phenyl phosphate (CaPP) was synthesized from a mixture of Ca(OH){sub 2} and phenyl phosphate (C{sub 6}H{sub 5}PO{sub 4}H{sub 2}) in an aqueous media. XRD pattern of CaPP exhibited five diffraction peaks at 2{theta} = 6.6, 13.3, 20.0, 26.8 and 33.7{sup o}. The d-spacing ratio of these peaks was ca. 1:1/2:1/3:1/4:1/5. The molar ratios of Ca/P and phenyl/P of CaPP were 1.0 and 0.92, respectively, and the chemical formula of the material was expressed as (C{sub 6}H{sub 5}PO{sub 4}){sub 0.92}(HPO{sub 4}){sub 0.08}Ca.1.3H{sub 2}O, similar to that of dicalcium phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O: DCPD). These results allowed us to infer that CaPP is composed of a multilayer alternating bilayer of phenyl groups of the phosphates and DCPD-like phase. The structure of the material was essentially not altered after aging at pH 9.0-11.0 and 85 deg. C in an aqueous media. While, after aging at pH {<=}8.0, the diffraction peaks of CaPP were suddenly weakened and disappeared at pH 7.0. Besides, new peaks due to calcium hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}: Hap) appeared and their intensity was strengthened with decreasing the solution pH. TEM observation revealed that the Hap particles formed at pH 6.0 are fibrous with ca. 1.5 {mu}m in length and ca. 0.2 {mu}m in width. From these results, it is presumed that the layered CaPP was dissolved, hydrolyzed and reprecipitated to fibrous Hap particles at pH {<=}8.0 and 85 deg. C in aqueous media. This phase transformation of CaPP in Hap resembled to the formation mechanism of Hap in animal organism.

  9. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement.

    PubMed

    Burguera, Elena F; Guitian, Francisco; Chow, Laurence C

    2008-06-01

    Six different tetracalcium phosphate (TTCP) products were synthesized by solid state reaction at high temperature by varying the overall calcium to phosphate ratio of the synthesis mixture. The objective was to evaluate the effect of the calcium to phosphate ratio on a TTCP-dicalcium phosphate dihydrate (DCPD) cement. The resulting six TTCP-DCPD cement mixtures were characterized using X-ray diffraction analysis, scanning electron microscopy, and pH measurements. Setting times and compressive strength (CS) were also measured. Using the TTCP product with a Ca/P ratio of 2.0 resulted in low strength values (25.61 MPa) when distilled water was used as the setting liquid, even though conversion to hydroxyapatite was not prevented, as confirmed by X-ray diffraction. The suspected CaO presence in this TTCP may have affected the cohesiveness of the cement mixture but not the cement setting reaction, however no direct evidence of CaO presence was found. Lower Ca/P ratio products yielded cements with CS values ranging from 46.7 MPa for Ca/P ratio of 1.90 to 38.32 MPa for Ca/P ratio of 1.85. When a dilute sodium phosphate solution was used as the setting liquid, CS values were 15.3% lower than those obtained with water as the setting liquid. Setting times ranged from 18 to 22 min when water was the cement liquid and from 7 to 8 min when sodium phosphate solution was used, and the calcium to phosphate ratio did not have a marked effect on this property.

  10. Solubility of Calcium Phosphate in Concentrated Dairy Effluent Brines.

    PubMed

    Kezia, K; Lee, J; Zisu, B; Chen, G Q; Gras, S L; Kentish, S E

    2017-05-24

    The solubility of calcium phosphate in concentrated dairy brine streams is important in understanding mineral scaling on equipment, such as membrane modules, evaporators, and heat exchangers, and in brine pond operation. In this study, the solubility of calcium phosphate has been assessed in the presence of up to 300 g/L sodium chloride as well as lactose, organic acids, and anions at 10, 30, and 50 °C. As a neutral molecule, lactose has a marginal but still detectable effect upon calcium solubility. However, additions of sodium chloride up to 100 g/L result in a much greater increase in calcium solubility. Beyond this point, the concentrations of ions in the solution decrease significantly. These changes in calcium solubility can readily be explained through changes in the activity coefficients. There is little difference in calcium phosphate speciation between 10 and 30 °C. However, at 50 °C, the ratio of calcium to phosphate in the solution is lower than at the other temperatures and varies less with ionic strength. While the addition of sodium lactate has less effect upon calcium solubility than sodium citrate, it still has a greater effect than sodium chloride at an equivalent ionic strength. Conversely, when these organic anions are present in the solution in the acid form, the effect of pH dominates and results in much higher solubility and a calcium/phosphate ratio close to one, indicative of dicalcium phosphate dihydrate as the dominant solid phase.

  11. Novel rechargeable calcium phosphate dental nanocomposite

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Antonucci, Joseph M.; Chen, Jihua; Xu, Hockin H. K.

    2016-01-01

    Objectives Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re-release of composites with nanoparticles of amorphous calcium phosphate (NACP) to achieve long-term inhibition of caries. Methods Three NACP nanocomposites were fabricated with resin matrix of: (1) bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) at 1:1 mass ratio (referred to as BT group); (2) pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at 1:1 ratio (PE group); (3) BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP) at 2:1:1 ratio (BTM group). Each resin was filled with 20% NACP and 50% glass particles, and the composite was photo-cured. Specimens were tested for flexural strength and elastic modulus, Ca and P ion release, and Ca and P ion recharge and re-release. Results NACP nanocomposites had strengths 3-fold of, and elastic moduli similar to, commercial resin-modified glass ionomer controls. CaP ion recharge capability was the greatest for PE group, followed by BTM group, with BT group being the lowest (p < 0.05). For each recharge cycle, CaP re-release reached similarly high levels, showing that CaP re-release did not decrease with more recharge cycles. After six recharge/re-release cycles, NACP nanocomposites without further recharge had continuous CaP ion release for 42 d. Significance Novel rechargeable CaP composites achieved long-term and sustained Ca and P ion release. Rechargeable NACP nanocomposite is promising for caries-inhibiting restorations, and the Ca and P ion recharge and re-release method has wide applicability to dental composites, adhesives, cements and sealants to achieve long-term caries-inhibition. PMID:26743970

  12. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.

    PubMed

    Wu, Fan; Su, Jiacan; Wei, Jie; Guo, Han; Liu, Changsheng

    2008-12-01

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 degrees C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  13. Chemistry misconceptions associated with understanding calcium and phosphate homeostasis.

    PubMed

    Cliff, William H

    2009-12-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration when calcium ions were added to a saturated calcium phosphate solution. Fifty-two percent of the students correctly predicted that the phosphate concentration would decrease in accord with the common ion effect. Forty-two percent of the students predicted that the phosphate concentration would not change. Written explanations showed that most students failed to evoke the idea of competing chemical equilibria. A second question assessed the predicted change in calcium concentration after solid calcium phosphate was added to a saturated solution. Only 11% of the students correctly predicted no change in calcium concentration; 86% of the students predicted an increase, and many based their prediction on a mistaken application of Le Chatelier's principle to heterogeneous equilibria. These results indicate that many students possess misconceptions about chemical equilibrium that may hamper understanding of the processes of calcium and phosphate homeostasis. Instructors can help students gain greater understanding of these physiochemical phenomena by adopting strategies that enable students achieve more accurate conceptions of chemical equilibria.

  14. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    PubMed

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Production of Calcium Phosphate Nanoparticles by Laser Ablation in Liquid

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    Calcium phosphate nanoparticles represent an important object of investigation in the field of biomaterials due to the new properties obtainable at nanoscale. In this work calcium phosphate nanoparticles are obtained by laser ablation of hydroxyapatite (HA) targets in water and in ambient conditions; on the other hand particles of HA are reduced to nanoscale by laser-induced fracture. The results show that nanometric particles of calcium phosphate can be obtained. The morphology and the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and conventional and high resolution transmission electron microscopy (TEM, HRTEM).

  16. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Fermani, Simona; Arjun Tekalur, Srinivasan; Vanderberg, Abigail; Falini, Giuseppe

    2011-12-01

    Calcium phosphate biogenic materials are biocompatible and promote bioactivity and osteoconductivity, which implies their natural affinity and tendency to bond directly to bones subsequently replacing the host bone after implantation owing to its biodegradability. Calcium hydrogen phosphate dihydrate, CaHPO 4·2H 2O, is known to be a nucleation precursor, in aqueous solutions, for apatitic calcium phosphates and, hence, a potential starting material for bone substitutes. Numerous approaches, via hydrothermal and ambient synthetic routes, have been used to produce calcium phosphate from biogenic calcium carbonate, taking advantage of the peculiar architecture and composition of the latter. In this article, the lamellar region of the cuttlefish bone ( Sepia officinalis) was used as a framework for the organized deposition of calcium phosphate crystals, at ambient conditions via a fast procedure involving an amorphous calcium carbonate intermediate, and ending with a conversion to calcium phosphate and a fixation procedure, thereby resulting in direct conversion of biogenic calcium carbonate into calcium phosphates at ambient conditions from the scale of months to hours.

  17. Calcium phosphate mineralization is widely applied in crustacean mandibles.

    PubMed

    Bentov, Shmuel; Aflalo, Eliahu D; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-02-24

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous "jaw". From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait.

  18. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  19. Calcium phosphate mineralization is widely applied in crustacean mandibles

    PubMed Central

    Bentov, Shmuel; Aflalo, Eliahu D.; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous “jaw”. From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait. PMID:26906263

  20. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  1. Multimodal pore formation in calcium phosphate cements.

    PubMed

    Lodoso-Torrecilla, Irene; van Gestel, Nicole A P; Diaz-Gomez, Luis; Grosfeld, Eline-Claire; Laperre, Kjell; Wolke, Joop G C; Smith, Brandon T; Arts, Jacobus J; Mikos, AntoniosG; Jansen, John A; Hofmann, Sandra; van den Beucken, Jeroen J J P

    2017-09-23

    Calcium phosphate cements (CPCs) are commonly used as bone substitute materials. However, their slow degradation rate and lack of macroporosity hinders new bone formation. Poly(DL-lactic-co-glycolic acid) (PLGA) incorporation is of great interest as, upon degradation, produces acidic by-products that enhance CPC degradation. Yet, new bone formation is delayed until PLGA degradation occurs a few weeks after implantation. Therefore, the aim of this study was to accelerate the early stage pore formation within CPCs in vitro. With that purpose, we incorporated the water-soluble porogen sucrose at different weight percentages (10 or 20 wt.%) to CPC and CPC/PLGA composites. The results revealed that incorporation of sucrose porogens increased mass loss within the first week of in vitro degradation in groups containing sucrose compared to control groups. After week 1, a further mass loss was observed related to PLGA and CPC degradation. Macroporosity analysis confirmed that macroporosity formation is influenced by the dissolution of sucrose at an early stage and by the degradation of PLGA and CPC at a later stage. We concluded that the combination of sucrose and PLGA porogens in CPC is a promising approach to promote early stage bone tissue ingrowth and complete replacement of CPC via multimodal pore formation. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  2. Evaluation of the remineralization potential of amorphous calcium phosphate and fluoride containing pit and fissure sealants using scanning electron microscopy.

    PubMed

    Choudhary, Prashant; Tandon, Shobha; Ganesh, M; Mehra, Anshul

    2012-01-01

    To evaluate the remineralization potential of Amorphous Calcium Phosphate (ACP) and Fluoride containing pit and Fissure Sealants using Scanning Electron Microscopy. Thirty maxillary first premolars were divided into three groups of ten each and were randomly selected for ACP containing (Aegis- Opaque White, Bosworth Co. Ltd.), Fluoride containing (Teethmate F1 Natural Clear, Kuraray Co. Ltd.), resin based (Concise- Opaque White, 3M ESPE Co. Ltd.) pit and fissure sealant applications. The Concise group served as a control. The teeth weresubjected to the pH-cycling regimen for a period of two weeks. After two weeks, the teeth were sectioned bucco-lingually into 4mm sections and were observed under Scanning Electron Microscope at 50X, 250X, 500X, 1000X and 1500X magnifications. The qualitative changes at the tooth surface and sealant interface were examined and presence of white zone at the interface was considered positive for remineralization. Both ACP containing (Aegis) and Fluoride containing (Teethmate F1) group showed white zone at the tooth surface-sealant interface. The resin based group (Concise) showed regular interface between the sealant and the tooth structure, but no clear cut white zone was observed. Both, Aegis and Teethmate F1 have the potential to remineralize. Release of Amorphous Calcium Phosphate molecules in Aegis group and formation of Fluoroapetite in Teethmate F1 group, were probably responsible for the remineralization.

  3. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    ERIC Educational Resources Information Center

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  4. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    ERIC Educational Resources Information Center

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  5. Properties of Calcium Phosphate Cements With Different Tetracalcium Phosphate and Dicalcium Phosphate Anhydrous Molar Ratios.

    PubMed

    Hirayama, Satoshi; Takagi, Shozo; Markovic, Milenko; Chow, Laurence C

    2008-01-01

    Calcium phosphate cements (CPCs) were prepared using mixtures of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA), with TTCP/DCPA molar ratios of 1/1, 1/2, or 1/3, with the powder and water as the liquid. Diametral tensile strength (DTS), porosity, and phase composition (powder x-ray diffraction) were determined after the set specimens have been immersed in a physiological-like solution (PLS) for 1 d, 5 d, and 10 d. Cement dissolution rates in an acidified PLS were measured using a dual constant composition method. Setting times ((30 ± 1) min) were the same for all cements. DTS decreased with decreasing TTCP/DCPA ratio and, in some cases, also decreased with PLS immersion time. Porosity and hydroxyapatite (HA) formation increased with PLS immersion time. Cements with TTCP/DCPA ratios of 1/2 and 1/3, which formed calcium-deficient HA, dissolved more rapidly than the cement with a ratio of 1/1. In conclusion, cements may be prepared with a range of TTCP/DCPA ratios, and those with lower ratio had lower strengths but dissolved more rapidly in acidified PLS.

  6. Calcium, phosphate and calcium phosphate product are markers of outcome in patients with chronic heart failure.

    PubMed

    Cubbon, Richard M; Thomas, Ceri Haf; Drozd, Michael; Gierula, John; Jamil, Haqeel A; Byrom, Rowenna; Barth, Julian H; Kearney, Mark T; Witte, Klaus K A

    2015-04-01

    Serum calcium (Ca) and inorganic phosphate (Pi) concentrations and calcium-phosphate product (CPP) levels are positively associated with worse outcomes in patients with chronic kidney disease, but there are few data for Pi or Ca and none for CPP in patients with chronic heart failure (CHF). Unselected, consecutive patients with CHF (left ventricular ejection fraction, LVEF ≤45%) were enrolled in a prospective observational study for the occurrence of hospitalisation and mortality. Blood samples were collected at the time of recruitment and analysed immediately. Patients (n = 713) were on contemporary optimal treatment and mean (standard error, SE) follow-up was 765 (18.9) days. Mean (SE) Ca was 2.29 (0.004) mmol/l. Median (interquartile range, IQR) Pi was 1.11 (0.98-1.23) mmol/l and median CPP 2.53 (2.21-2.88) mmol(2)/l(2). LVEF correlated inversely with Ca, natural log-transformed (Ln)Pi, and LnCPP. There was no difference in CPP between classes of symptom severity or diabetes status. Ca and LnCPP (but not LnPi) were associated with total mortality. Ca was significantly associated with progressive HF and non-cardiovascular death but not with sudden death. Binary logistic regression analyses showed that LnPi and LnCPP were associated with risk of hospitalisation. Ca, Pi and CPP could be useful additional variables in determining risk in CHF patients. Further work is required to elucidate the mechanisms underlying the adverse influence and determine whether lowering phosphate levels per se in CHF patients is of benefit.

  7. Osteoinductivity of Calcium Phosphate Mediated by Connexin 43

    PubMed Central

    Syed-Picard, Fatima N.; Jayaraman, Thottala; Lam, Raymond S.K.; Beniash, Elia; Sfeir, Charles

    2013-01-01

    Recent reports have alluded to the osteoinductive properties of calcium phosphate, yet the cellular processes behind this are not well understood. To gain insight into the molecular mechanisms of this phenomenon, we have conducted a series of in vitro and in vivo experiments using a scaffoldless three dimensional (3D) dental pulp cell (DPC) construct as a physiologically relevant model. We demonstrate that amorphous calcium phosphate (ACP) alters cellular functions and 3D spatial tissue differentiation patterns by increasing local calcium concentration, which modulates connexin 43 (Cx43)-mediated gap junctions. These observations indicate a chemical mechanism for osteoinductivity of calcium phosphates. These results provide new insights for possible roles of mineral phases in bone formation and remodeling. This study also emphasizes the strong effect of scaffold materials on cellular functions and is expected to advance the design of future tissue engineering materials. PMID:23465492

  8. ESR spectra of VO2+ ions adsorbed on calcium phosphates.

    PubMed

    Oniki, T; Doi, Y

    1983-07-01

    The ESR spectra of oxovanadium(IV) ions, (VO2+), adsorbed on hydroxyapatite(OHAp), fluorhydroxyapatite(FHAp), Mg-containing tricalcium phosphate(Mg-TCP), .octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), and amorphous calcium phosphate(ACP) were measured at room temperature. The ESR parameters of VO2+ adsorbed on these compounds were slightly different from one another and accordingly, the ESR technique by use of VO2+ was useful for an analysis of the calcium phosphates precipitated from supersaturated solutions. The ESR parameters of VO2+ adsorbed on ACP and Mg-TCP were found to be very similar to each other, suggesting that ACP and TCP resemble each other in the structure of their crystal surfaces.

  9. Calcium carbonate suppresses haem toxicity markers without calcium phosphate side effects on colon carcinogenesis

    PubMed Central

    Allam, Ossama; Bahuaud, Diane; Taché, Sylviane; Naud, Nathalie; Corpet, Denis E; Pierre, Fabrice H F

    2011-01-01

    Red meat intake is associated with increased risk of colorectal cancer. We have previously shown that haemin, haemoglobin and red meat promote carcinogen-induced preneoplastic lesions, aberrant crypt foci, in the colon of rats. We have also shown that dietary calcium phosphate inhibits haemin-induced promotion, and normalizes faecal lipoperoxides and cytotoxicity. Unexpectedly, high-calcium phosphate control diet-fed rats had more preneoplastic lesions in the colon than low-calcium control diet-fed rats. The present study was designed to find a calcium supplementation with no adverse effect, by testing several doses and types of calcium salts. One in vitro study and two short-term studies in rats identified calcium carbonate as the most effective calcium salt to bind haem in vitro and to decrease faecal biomarkers previously associated with increased carcinogenesis: faecal water cytotoxicity, thiobarbituric acid reactive substances. A long term carcinogenesis study in dimethylhydrazine-injected rats demonstrated that a diet containing 100 μmol/g calcium carbonate did not promote aberrant crypt foci, in contrast with previously tested calcium phosphate diet. The results suggest that calcium carbonate, and not calcium phosphate, should be used to reduce haem-associated colorectal cancer risk in meat-eaters. They support the concept that the nature of the associated anion to a protective metal ion is important for chemoprevention. PMID:21134327

  10. Serum calcium and phosphate concentrations and intracranial atherosclerosis.

    PubMed

    Kang, K

    2014-01-01

    Serum calcium and phosphate concentrations are independent risk factors for stroke and positively associated with extracranial carotid atherosclerosis. We evaluated whether higher serum calcium and phosphate concentrations would be associated with intracranial atherosclerosis in a stroke-free Korean population. We retrospectively analyzed the records of 361 stroke-free subjects who consecutively visited a general health promotion center. Included subjects had serum calcium, phosphate, and albumin drawn and underwent brain magnetic resonance angiography. The basilar, middle cerebral, intracranial internal carotid, and intracranial vertebral arteries were evaluated. Serum calcium concentration was corrected for serum albumin concentration. Mean ± SD values were 52 ± 10 years for age, 2.35 ± 0.09 mmol/l for uncorrected serum calcium concentration, 2.24 ± 0.08 mmol/l for corrected serum calcium concentration, and 1.19 ± 0.18 mmol/l for serum phosphate concentration. Seventy-four subjects (21%) had intracranial atherosclerosis. Subjects in the upper three quartiles of corrected serum calcium concentration had a significantly greater risk for intracranial atherosclerosis compared with the lowest quartile with the odds ratios of 3.50 (95% confidence interval 1.50-8.15), 3.11 (95% confidence interval 1.26-7.69), and 3.77 (95% confidence interval 1.58-9.03), respectively. However, serum phosphate and uncorrected serum calcium concentrations were not associated with intracranial atherosclerosis. Corrected serum calcium concentrations are positively associated with the presence of intracranial atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Physiology of Calcium, Phosphate, Magnesium and Vitamin D.

    PubMed

    Allgrove, Jeremy

    2015-01-01

    The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.

  12. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection.

    PubMed

    Neumann, Sebastian; Kovtun, Anna; Dietzel, Irmgard D; Epple, Matthias; Heumann, Rolf

    2009-12-01

    Calcium phosphate-based transfection methods are frequently used to transfer DNA into living cells. However, it has so far not been studied in detail to what extend the different transfection methods lead to a net calcium uptake. Upon subsequent resolution of the calcium phosphate, intracellular free ionic calcium-surges could result, inducing as side effect various physiological responses that may finally result in cell death. Here we investigated the overall calcium uptake by the human bladder carcinoma cell line T24 during the standard calcium phosphate transfection method and also during transfection with custom-made calcium phosphate/DNA nanoparticles by isotope labelling with (45)calcium. (45)Calcium uptake was strongly increased after 7h of standard calcium phosphate transfection but not if the transfection was performed with calcium phosphate nanoparticles. Time lapse imaging microscopy using the calcium-sensitive dye Fura-2 revealed large transient increases of the intracellular free calcium level during the standard calcium phosphate transfection but not if calcium phosphate nanoparticles were used. Consistently, the viability of cells transfected by calcium phosphate/DNA nanoparticles was not changed, in remarkable contrast to the standard method where considerable cell death occurred.

  13. The stability mechanisms of an injectable calcium phosphate ceramic suspension

    PubMed Central

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A. V.; Weiss, Pierre

    2010-01-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of “ready to use” injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185

  14. A Review Paper on Biomimetic Calcium Phosphate Coatings

    PubMed Central

    Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future. PMID:25893016

  15. Differences in gastrointestinal calcium absorption after the ingestion of calcium-free phosphate binders.

    PubMed

    Behets, Geert J; Dams, Geert; Damment, Stephen J; Martin, Patrick; De Broe, Marc E; D'Haese, Patrick C

    2014-01-01

    Both calcium-containing and noncalcium-containing phosphate binders can increase gastrointestinal calcium absorption. Previously, we observed that lanthanum carbonate administration to rats with renal failure is not associated with increased calciuria. Additionally, lanthanum carbonate treatment in dialysis patients has been associated with a less pronounced initial decrease in serum parathyroid hormone compared with other phosphate binders. For 8 days, male Wistar rats received a diet supplemented with 2% lanthanum carbonate, 2% sevelamer, 2% calcium carbonate, or 2% cellulose. Calciuria was found to be increased in animals with normal renal function treated with sevelamer or calcium carbonate but not with lanthanum carbonate. In animals with renal failure, cumulative calcium excretion showed similar results. In rats with normal renal function, serum ionized calcium levels were increased after 2 days of treatment with sevelamer, while calcium carbonate showed a smaller increase. Lanthanum carbonate did not induce differences. In animals with renal failure, no differences were found between sevelamer-treated, calcium carbonate-treated, and control groups. Lanthanum carbonate, however, induced lower ionized calcium levels within 2 days of treatment. These results were confirmed in normal human volunteers, who showed lower net calcium absorption after a single dose of lanthanum carbonate compared with sevelamer carbonate. In conclusion, these two noncalcium-containing phosphate-binding agents showed a differential effect on gastrointestinal calcium absorption. These findings may help to improve the management of calcium balance in patients with renal failure, including concomitant use of vitamin D.

  16. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  17. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  18. Polymer-based material containing calcium phosphate particles functionalized with a dimethacrylate monomer for use in restorative dentistry.

    PubMed

    Rodrigues, Marcela C; Xavier, Tathy A; Arana-Chavez, Victor E; Braga, Roberto R

    2016-11-23

    Dicalcium phosphate dihydrate particles functionalized with triethyleneglycol dimethacrylate were synthesized and added to a photocurable mixture of bisphenol-A glycidyl dimethacrylate and triethyleneglycol dimethacrylate with the purpose of developing a resin composite capable of releasing calcium and phosphate ions to foster dental remineralization. Particle functionalization would minimize the deleterious effect of adding low cohesive strength nano-structured particles with no chemical interaction with the organic matrix on the material's mechanical properties. The results showed that calcium release over 28 days was not impaired by particle functionalization. A statistically significant 32% increase in strength was recorded with the use of functionalized dicalcium phosphate dihydrate in comparison to the material containing non-functionalized particles. However, the strength of the unfilled resin was not matched by the composite with functionalized particles. Elastic modulus increased with particle incorporation, regardless of functionalization. Degree of conversion and optical properties (total transmittance and color change/ΔE) of the resin-based materials were not affected by the addition of dicalcium phosphate dihydrate particles (functionalized or not).

  19. The Ca/P range of nanoapatitic calcium phosphate cements.

    PubMed

    Driessens, F C M; Boltong, M G; de Maeyer, E A P; Wenz, R; Nies, B; Planell, J A

    2002-10-01

    Nanoapatites are apatites consisting of nanometer size crystals. The commercial calcium phosphate cements set by the precipitation of nanoapatitic calcium phosphates in the range 1.5 < or = Ca/P < 1.8. In this study it is shown that a continuum of nanoapatites can precipitate in the range 0.8 < Ca/P< or = 1.5. In order to be formed these nanoapatites need to incorporate K+ ions. In addition they can incorporate some Na+ ions. Upon immersion in aqueous solutions these nanoapatites loose phosphate, K+ and Na+ so that in an open system they are transformed into calcium deficient hydroxyapatite Ca9(HPO4)(PO4)5OH within about 2 months.

  20. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  1. Formation of silver incorporated calcium phosphate film for medical applications

    NASA Astrophysics Data System (ADS)

    Lee, In-Seop; Whang, Chung-Nam; Oh, Kyung-Sik; Park, Jong-Chul; Lee, Kwon-Yong; Lee, Gun-Hwan; Chung, Sung-Min; Sun, Xiao-Dan

    2006-01-01

    Calcium phosphate coating layers were formed by electron beam evaporation of hydroxyapatite as an evaporant with and without simultaneous Ar ion bombardments. The Ca/P ratio of film, which determined the biological properties, was controlled by ion beam current. Without ion beam bombardments, the film had the low Ca/P ratio of 1.30, however, the ratio increased to 2.02 by bombarding of Ar ion beam extracted from the end-hall type ion gun set to 0.6 A. Silver incorporated calcium phosphate films were formed by immersing calcium phosphate coated samples in 0.4 M AgNO3 for 30 min, and the Ag doped surface was almost 100% effective in reducing bacteria on contact with respect to controls.

  2. Alternative technique for calcium phosphate coating on titanium alloy implants

    PubMed Central

    Le, Van Quang; Pourroy, Geneviève; Cochis, Andrea; Rimondini, Lia; Abdel-Fattah, Wafa I; Mohammed, Hadeer I; Carradò, Adele

    2014-01-01

    As an alternative technique for calcium phosphate coating on titanium alloys, we propose to functionalize the metal surface with anionic bath containing chlorides of palladium or silver as activators. This new deposition route has several advantages such as controlled conditions, applicability to complex shapes, no adverse effect of heating, and cost effectiveness. A mixture of hydroxyapatite and calcium phosphate hydrate is deposited on the surface of Ti–6Al–4V. Calcium phosphate coating is built faster compared with the one by Simulated Body Fluid. Cell morphology and density are comparable to the control one; and the results prove no toxic compound is released into the medium during the previous seven days of immersion. Moreover, the cell viability is comparable with cells cultivated with the virgin medium. These experimental treatments allowed producing cytocompatible materials potentially applicable to manufacture implantable devices for orthopedic and oral surgeries. PMID:24646569

  3. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  4. The NEXAFS of biological calcium phosphates

    SciTech Connect

    Buckley, C.J.; Bellamy, S.J. ); Zhang, X. ); Dermody, G. ); Hulbert, S. )

    1995-02-01

    The absorption cross section of a number of calcium salts has been assessed at the calcium [ital L] edge by measuring the total electron yield (TEY) at the NSLS U13UA beamline. TEY was used because of distortions introduced by instrumentation when using a transmission signal. The effect of these distortions has been evaluated and is presented. The TEY signal was normalized to the incident beam using the signal from a new beam monitor which is detailed here. Comparative spectra are presented for some calcium salts associated with osteoarthritis.

  5. Optimization of calcium phosphate fine ceramic powders preparation

    NASA Astrophysics Data System (ADS)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  6. Calcium phosphate forming ability of thermally oxidized titanium implant

    NASA Astrophysics Data System (ADS)

    Hwang, Kyu-Seog; Yun, Yeon-Hum; Min, Seon-Suk; Lee, Yong-Ryeol; Park, Yeong-Joon

    2002-07-01

    Commercially pure titanium disks as-received and heat treated at 600°C in air for 10 min were used to investigate differences in calcium phosphate forming ability. Crystallinity and surface morphology were analyzed by X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray spectrometry and Fourier transform infrared reflection spectroscopy were used to collect information on chemical composition and chemical surface structure. TiO2 layers with a heterogeneous structure produced by heat treatment showed high in vitro calcium phosphate forming ability in contact with Eagle's minimum essential medium.

  7. High resolution electron microscopy study of amorphous calcium phosphate

    NASA Astrophysics Data System (ADS)

    Brès, E. F.; Moebus, G.; Kleebe, H.-J.; Pourroy, G.; Werkmann, J.; Ehret, G.

    1993-03-01

    "Amorphous" calcium phosphate (ACP) from human tooth enamel and different synthetic materials has been analysed by high resolution electron microscopy (HREM). All the materials studied showed, in addition to a "truly" amorphous phase, other calcium phosphate phases such as poorly crystalline hydroxyapatite (OHAP), well crystallized OHAP and poorly crystalline CaO type phase. Such structural heterogeneities have not been observed before in ACP, and are only possible to be detected by HREM as this is the only technique able to analyse nanometre size materials in the real space.

  8. Gelatin powders accelerate the resorption of calcium phosphate cement and improve healing in the alveolar ridge.

    PubMed

    Matsumoto, Goichi; Sugita, Yoshihiko; Kubo, Katsutoshi; Yoshida, Waka; Ikada, Yoshito; Sobajima, Satoshi; Neo, Masashi; Maeda, Hatsuhiko; Kinoshita, Yukihiko

    2014-05-01

    The aim of this study was to show the effectiveness of combining calcium phosphate cement and gelatin powders to promote bone regeneration in the canine mandible. We mixed gelatin powders with calcium phosphate cement to create a macroporous composite. In four beagle dogs, two saddle-type bone defects were created on each side of the mandible, and calcium phosphate cement alone or calcium phosphate cement containing composite gelatin powders was implanted in each of the defects. After a healing period of six months, mandibles were removed for µCT and histological analyses. The µCT and histological analyses showed that at experimental sites at which calcium phosphate cement alone had been placed new bone had formed only around the periphery of the residual calcium phosphate cement and that there had been little or no ingrowth into the calcium phosphate cement. On the other hand, at experimental sites at which calcium phosphate cement containing composite gelatin powders had been placed, we observed regenerated new bone in the interior of the residual calcium phosphate cement as well as around its periphery. The amount of resorption of calcium phosphate cement and bone regeneration depended on the mixing ratio of gelatin powders to calcium phosphate cement. New bone replacement was significantly better in the sites treated with calcium phosphate cement containing composite gelatin powders than in those treated with calcium phosphate cement alone.

  9. Molecular mechanisms of crystallization impacting calcium phosphate cements

    PubMed Central

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  10. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.

    PubMed

    Niu, Xufeng; Chen, Siqian; Tian, Feng; Wang, Lizhen; Feng, Qingling; Fan, Yubo

    2017-01-01

    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9h, whereas the calcium and orthophosphate ions releases last for over 7d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Atomic structure of intracellular amorphous calcium phosphate deposits.

    PubMed Central

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-01-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed. PMID:1056015

  12. Atomic structure of intracellular amorphous calcium phosphate deposits.

    PubMed

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  13. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  14. Amorphous calcium phosphate and its application in dentistry

    PubMed Central

    2011-01-01

    Amorphous Calcium Phosphate (ACP) is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry. PMID:21740535

  15. Amorphous calcium phosphate and its application in dentistry.

    PubMed

    Zhao, Jie; Liu, Yu; Sun, Wei-Bin; Zhang, Hai

    2011-07-08

    Amorphous Calcium Phosphate (ACP) is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  16. Polymeric calcium phosphate cements: analysis of reaction products and properties.

    PubMed

    Miyazaki, K; Horibe, T; Antonucci, J M; Takagi, S; Chow, L C

    1993-01-01

    Chemical and mechanical properties of water-based polymeric calcium phosphate cements (PCPC) were investigated. These cements were derived from mixing several types of water-soluble polymers, e.g., gelatin, poly(vinyl alcohol) (PVA), and poly(alkenoic acids) such as poly(acrylic acid), with a calcium phosphate cement (CPC) mixture consisting of equimolar amounts of tetracalcium phosphate (TTCP) and anhydrous dicalcium phosphate (DCPA) as well as several other TTCP-containing mixtures. Cement formation was observed with all of the PCPCs. With the gelatin and PVA cements, significant amounts of hydroxyapatite (HA) formation were observed within 24 h. Their setting times and mechanical properties were similar to those of the purely inorganic CPC that is derived from the reaction of TTCP and DCPA in water. Although the mechanical properties of a gelatin-CPC cement were only slightly improved, its handling characteristics were superior to that of CPC. Significantly faster setting and stronger cements were obtained using polycarboxylic acid polymers with CPC. However, only small amounts of HA were observed in these types of polymeric cements even after 1 mon storage in distilled water at 37 degrees C. This research demonstrates the feasibility of preparing several new types of dental cements based on the interaction of water-soluble polymers with a self-setting calcium phosphate powder mixture.

  17. Dissolution behaviour of calcium phosphate coatings obtained by laser ablation.

    PubMed

    Clèries, L; Fernández-Pradas, J M; Sardin, G; Morenza, J L

    1998-08-01

    Pulsed laser deposited calcium phosphate coatings on titanium alloy have been tested under simulated physiological conditions in order to evaluate the changes in morphology, composition and structure. The coatings were deposited under different conditions to obtain different crystalline structures, ranging from amorphous and mixed crystalline phases to pure crystalline hydroxyapatite (HA). The coated samples were immersed in a Ca-free Hank's balanced salt solution for up to 5 days. Characterization of the coatings was performed by X-ray diffraction, scanning electron microscopy and Fourier-transform Raman spectroscopy before and after immersion. Their dissolution behaviour was also monitored through their mass loss and calcium release. Coatings of pure HA preserve their morphology and structure during the exposure time in solution. In multiphasic coatings, consisting of HA with tetracalcium phosphate (TetraCP) or beta-tricalcium phosphate (beta-TCP) with a-tricalcium phosphate (alpha-TCP), microporosity is induced by the complete dissolution of TetraCP or gamma-TCP. Amorphous calcium phosphate coatings totally dissolve.

  18. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.

    PubMed

    Miranda, Pedro; Pajares, Antonia; Saiz, Eduardo; Tomsia, Antoni P; Guiberteau, Fernando

    2008-04-01

    The mechanical behavior under compressive stresses of beta-tricalcium phosphate (beta-TCP) and hydroxyapatite (HA) scaffolds fabricated by direct-write assembly (robocasting) technique is analyzed. Concentrated colloidal inks prepared from beta-TCP and HA commercial powders were used to fabricate porous structures consisting of a 3-D tetragonal mesh of interpenetrating ceramic rods. The compressive strength and elastic modulus of these model scaffolds were determined by uniaxial testing to compare the relative performance of the selected materials. The effect of a 3-week immersion in simulated body fluid (SBF) on the strength of the scaffolds was also analyzed. The results are compared with those reported in the literature for calcium phosphate scaffolds and human bone. The robocast calcium phosphate scaffolds were found to exhibit excellent mechanical performances in terms of strength, especially the HA structures after SBF immersion, indicating a great potential of this type of scaffolds for use in load-bearing bone tissue engineering applications.

  19. Fibre-reinforced calcium phosphate cements: a review.

    PubMed

    Canal, C; Ginebra, M P

    2011-11-01

    Calcium phosphate cements (CPC) consist of one or more calcium orthophosphate powders, which upon mixing with water or an aqueous solution, form a paste that is able to set and harden after being implanted within the body. Different issues remain still to be improved in CPC, such as their mechanical properties to more closely mimic those of natural bone, or their macroporosity to favour osteointegration of the artificial grafts. To this end, blends of CPC with polymer and ceramic fibres in different forms have been investigated. The present work aims at providing an overview of the different approaches taken and identifying the most significant achievements in the field of fibre-reinforced calcium phosphate cements for clinical applications, with special focus on their mechanical properties.

  20. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    PubMed

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  1. Hybrid Calcium Phosphate Coatings for Titanium Implants

    NASA Astrophysics Data System (ADS)

    Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.

    2017-01-01

    Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.

  2. Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Menguy, Nicolas; Guyot, François; Skouri, Feriel; de Luca, Gilles; Barakat, Mohamed; Heulin, Thierry

    2004-12-01

    Ramlibacter tataouinensis, a β-proteobacterium strain isolated from an arid environment, was cultured on a solid culture medium supplemented with calcium. Optical and transmission electron microscopies (TEM) showed that the precipitation of nanometer-sized calcium phosphate particles was mainly restricted to the cysts at the center of the colonies and occurred first in the periplasm of the bacteria then inside the cells. Poorly crystallized calcium phosphates, with low Ca/P ratios and located in the periplasm, were nanometer-sized phases elongated tangentially to the cell surface, whereas precipitates inside the cells were crystallized nanocrystalline hydroxyapatites (HAP) with a preferential orientation of their c axes perpendicular to the cell surface. These observations suggest a biologically controlled matrix-mediated calcification. As noticed by previous authors, well-defined fossilized bacteria can thus be preserved in natural phosphate deposits. Moreover, this study shows that, at least for some species, well-defined orientations of phosphates in cell interiors and cell walls could be used, in conjunction with others, as supplementary biogenicity criteria in fossilized materials.

  3. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    PubMed Central

    Rabiee, Seyed Mahmud; Baseri, Hamid

    2012-01-01

    Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs) for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties. PMID:22919372

  4. Effect of double antibiotic and calcium hydroxide pastes on dislodgement resistance of an epoxy resin-based and two calcium silicate-based root canal sealers.

    PubMed

    Gokturk, Hakan; Bayram, Emre; Bayram, Huda Melike; Aslan, Tugrul; Ustun, Yakup

    2017-05-01

    The purpose of the present study was to determine the dislodgement resistance of AH Plus, MTA Fillapex, and Total Fill BC sealer to root canal dentin walls following placement of calcium hydroxide (CH) or double antibiotic paste (DAP) medicaments. Root canals of 90 single-rooted human mandibular premolar teeth were instrumented with Reciproc rotary instruments to a size R50. The teeth were randomly divided into two experimental groups: those receiving an intracanal medicament with either CH or DAP and a control group (n = 30). After 3 weeks, the medicaments were removed by irrigation with 5 mL of 2.5 % NaOCl, 5 mL 17 % EDTA, and 5 mL distilled water under sonic agitation. Each group was then subdivided into three subgroups (n = 10), and the canals were filled with either AH Plus, MTA Fillapex, or Total Fill BC sealer. After 1 week, a push-out test was applied to the specimens and the results were analyzed using one-way analysis of variance (ANOVA) and post hoc Tamhane's tests. Regardless of the type of intracanal medicament used, Total Fill BC Sealer and MTA Fillapex showed the highest and lowest bond strength, respectively (P < 0.05). The use or absence of medicaments did not significantly affect the dislodgment resistance of root canal fillings (P > 0.05). Prior CH placement improved dislodgement resistance of all sealers without statistical difference (P > 0.05). Adhesive failure between core and sealer was the most frequent failure mode. Prior application of CH or DAP did not significantly affect the adhesion of the AH Plus, MTA Fillapex, and Total Fill BC Sealers. There is a little information about the influence of antibiotic medicaments on the bond strength of root canal sealer. These findings suggest that the use of DAP does not affect the adhesion strength of AH Plus, MTA Fillapex, and Total Fill BC Sealers.

  5. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    PubMed

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes.

  6. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    PubMed

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed.

  7. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement.

    PubMed

    Chen, Wen-Cheng; Lin, Jiin-Huey Chern; Ju, Chien-Ping

    2003-03-15

    This work studied transmission electron microscopy on the setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-based calcium phosphate cement. The results suggest the process for early-stage apatite formation as the follows: when TTCP and DCPA powders are mixed in the phosphate-containing solution, the TTCP powder is quickly dissolved because of its higher solubility in the acidic solution. The dissolved calcium and phosphate ions, along with those ions readily in the solution, are then precipitated predominantly on the surface of DCPA particles. Few apatite crystals were observed on the surface of TTCP powder. During the later stages of reaction, the extensive growth of apatite crystals/whiskers, with a calcium/phosphorous ratio very close to that of hydroxyapatite, effectively linked DCPA particles together and also bridged the larger TTCP particles. It is suggested that, when the large TTCP particles are locked in place by the bridging apatite crystals/whiskers, the CPC is set and would not dissolve when immersed in Hanks' solution after 20-40 min of reaction.

  8. The influence of Sr content in calcium phosphate coatings.

    PubMed

    Lindahl, Carl; Pujari-Palmer, Shiuli; Hoess, Andreas; Ott, Marjam; Engqvist, Håkan; Xia, Wei

    2015-08-01

    In this study calcium phosphate coatings with different amounts of strontium (Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 2.37 μg/mL) from the HA, 0.06Sr, 0.6Sr, and 1.2Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium.

  9. Critical review: Injectability of calcium phosphate pastes and cements.

    PubMed

    O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N

    2017-03-01

    Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed.

  10. Short-fibre reinforcement of calcium phosphate bone cement.

    PubMed

    Buchanan, F; Gallagher, L; Jack, V; Dunne, N

    2007-02-01

    Calcium phosphate cement (CPC) sets to form hydroxyapatite, a major component of mineral bone, and is gaining increasing interest in bone repair applications. However, concerns regarding its brittleness and tendency to fragment have limited its widespread use. In the present study, short-fibre reinforcement of an apatitic calcium phosphate has been investigated to improve the fracture behaviour. The fibres used were polypropylene (PP) fibres, 50 microm in diameter and reduced in length by cryogenic grinding. The compressive strength and fracture behaviour were examined. Fibre addition of up to 10 wt % had a significant effect on composite properties, with the energy absorbed during failure being significantly increased, although this tended to be accompanied with a slight drop in compressive strength. The fibre reinforcement mechanisms appeared to be crack bridging and fibre pull-out. The setting time of the CPC with fibre reinforcement was also investigated and was found to increase with fibre volume fraction.

  11. Compositional dependence of calcium phosphate layer formation in fluoride Bioglasses.

    PubMed

    Kim, C Y; Clark, A E; Hench, L L

    1992-09-01

    Bioglasses form a double layer composed of apatite and a silica-rich layer when placed in a simulated physiological solution as well as in living tissue [A.E. Clark, C.G. Pantano, and L. L. Hench, "Auger spectroscopic analysis of bioglass corrosion films," J. Am. Ceram. Soc., 59(1-2), 37-39 (1976).]. In the present work, the mechanisms of the calcium phosphate layer and the silica-rich layer formation of fluoride Bioglasses in Tris-buffer solution are studied as a function of the SiO2 content. Fourier Transform Infrared Reflection Spectroscopy (FTIRS) is used to investigate the mechanism of formation of calcium phosphate and silica-rich layers on the glass surface. Ion concentration in reacted solution and elemental depth profiles are obtained by Induced Coupled Plasma Atomic Emission Spectrometry (ICP) and Auger Electron Spectroscopy (AES), respectively. Si--O bonds with one nonbridging oxygen and Si--O--Si bonds form at the early stage of reaction. Strong phosphorus ion uptake occurs when an amorphous calcium phosphate layer crystallizes. Glasses with high silica content (conventional glass) form the silica-rich layer first followed by a calcium phosphate layer on top. However, glasses with low silica content (invert glass) form both layers simultaneously. The rate of apatite formation decreases with increasing SiO2 content, especially in the region of conventional glass compositions. Ion release rates decreases as SiO2 content increases, with a significant change occurring at the compositional boundary between invert and conventional glasses.

  12. [Recent developments of researches on calcium phosphate cements].

    PubMed

    Guo, Fuqiang; Li, Bogang

    2009-02-01

    The research of calcium phosphate cement (CPC) has been developing for more than 20 years. In this review, we present a brief introduction to recent advances in researches on apatite CPC, brushite CPC, composite CPC materials; on factors affecting CPC capability and application; and on new application of CPC. The view that emphasizes the significance of studies on CPC with quicker degradation and osteoblast activity is put forward, particularly.

  13. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics

    PubMed Central

    Barrère, Florence; van Blitterswijk, Clemens A; de Groot, Klaas

    2006-01-01

    Calcium phosphate bioceramics are widely used in orthopedic and dental applications and porous scaffolds made of them are serious candidates in the field of bone tissue engineering. They have superior properties for the stimulation of bone formation and bone bonding, both related to the specific interactions of their surface with the extracellular fluids and cells, ie, ionic exchanges, superficial molecular rearrangement and cellular activity. PMID:17717972

  14. Development of magnesium calcium phosphate biocement for bone regeneration.

    PubMed

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-08-06

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H(2)PO(4))(2).H(2)O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid-base reaction of MCPB containing MgO and Ca(H(2)PO(4))(2).H(2)O in a molar ratio of 2 : 1, the final hydrated products were Mg(3)(PO(4))(2) and Ca(3)(PO(4))(2). The MCPB was degradable in Tris-HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG(63) cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG(63) cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG(63) cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.

  15. Single Step Sintered Calcium Phosphate Fibers from Avian EGG Shell

    NASA Astrophysics Data System (ADS)

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2013-11-01

    Different forms of calcium-phosphate (Hydoxyapatite, α-TCP, β-TCP, CDHA) minerals are found to be major component of bone tissue. Development of calcium-phosphate (CaP) based fibrous microstructures is of significant research interest worldwide owing to its improved mechanical properties and higher interconnectivity. Here we represent a method for single step sintered wet-spun Fibers of calcium phosphate from avian egg shells for biomedical applications. Raw egg shell powder was mixed with chitosan solution and Phosphoric acid. The mixture is milled in a ball mill overnight and then filtered. The slurry was de-aired using 100 microliter 1-octanol per 100 ml of slurry as antifoaming and wet spun in coagulation bath. Fiber was dried overnight and sintered at different temperatures for microstructure and phase analysis. Both green and sintered Fibers were physico-chemical characterized by SEM, EDX, XRD, TGA, DSC, FTIR, and stereo-zoom microscopy. The fibers obtained in this procedure are found to have highly porous interconnected structures which can provide good cell adhesion and therefore can be used for bioactive scaffold making.

  16. A biomimetic gelatin-calcium phosphate bone cement.

    PubMed

    Bigi, A; Torricelli, P; Fini, M; Bracci, B; Panzavolta, S; Sturba, L; Giardino, R

    2004-08-01

    The interest in new bone substitutes is rapidly increasing in the field of orthopedic surgery. A variety of calcium phosphate bone cement has been developed and different additives have been used to improve their biocompatibility and bioactivity. Following a biomimetic strategy aimed at reproducing bone characteristics, this study investigates the biological properties of a new gelatin enriched calcium phosphate cement (GEL-CP) that exhibits improved mechanical properties with respect to cement prepared without gelatin (C-CP). Human osteoblast MG63 were cultured on the surfaces of GEL-CP and were compared to cells cultured on C-CP samples, and on polystyrene of plate culture as control (C). Cell attachment, proliferation and differentiation were evaluated up to 21 days. SEM revealed that osteoblasts grown on GEL-CP showed a normal morphology and biological tests demonstrated very good rate of proliferation and viability in every experimental time. The presence of gelatin stimulated alkaline phosphatase activity, collagen and transforming growth factor 31 production. The data indicate that the new cement GEL-CP favors osteoblast proliferation, activation of their metabolism and differentiation. The remarkable improvement of the setting properties of the calcium phosphate cement due to the presence of gelatin suggest that the biomimetic composite material could be successfully applied as bone substitute.

  17. Osteoinduction of calcium phosphate biomaterials in small animals.

    PubMed

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca3(PO4)2, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  18. Cell growth and function on calcium phosphate reinforced chitosan scaffolds.

    PubMed

    Zhang, Yong; Zhang, Miqin

    2004-03-01

    Macroporous chitosan scaffolds reinforced by calcium phosphate powders such as hydroxyapatite (HA) or calcium phosphate invert glass were fabricated using a thermally induced phase separation technique. Human osteoblast-like MG63 cells were cultured on the composite scaffolds for up to 11 days, and the cell growth and function were analyzed. The cell growth is much faster on the chitosan/HA scaffolds incorporated with the glass (CHG) than on the chitosan/HA scaffold without the glass (CH). The total protein content of cells were quantified and increased over time on both composites (CH, CHG) but was significantly higher on CHG after 7 days of culture. The cells on CHG also expressed significantly higher amount of alkaline phosphatase at days 7 and 11 and osteocalcin at day 7 than those on CH. The results suggested that the addition of glass in chitosan/hydroxyapatite composite scaffolds might enhance the proliferation and osteoblastic phenotype expression of MG63 cells. However, the chitosan-matrix scaffolds did not show higher phenotype expression of MG63 cells, in comparison with the TCPS plate, probably due to the degradation of chitosan and release of acidic byproducts. Larger amount of soluble calcium phosphate invert glasses should be added into the scaffolds to prevent chitosan from fast degradation that may affect the differentiation of osteoblast cells.

  19. Development of magnesium calcium phosphate biocement for bone regeneration

    PubMed Central

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-01-01

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H2PO4)2·H2O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid–base reaction of MCPB containing MgO and Ca(H2PO4)2·H2O in a molar ratio of 2 : 1, the final hydrated products were Mg3(PO4)2 and Ca3(PO4)2. The MCPB was degradable in Tris–HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG63 cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG63 cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG63 cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility. PMID:20181560

  20. Vibrational spectroscopic characterization of new calcium phosphate bioactive coatings.

    PubMed

    Taddei, P; Tinti, A; Bottura, G; Bertoluzza, A

    2000-01-01

    In this work calcium phosphate (CaP) compounds with different PO(3-)(4)/HPO(2-)(4) R molar ratios in the 0.65-149 range were synthesized. In fact, all these CaPs contain different amounts of HPO(2-)(4) and PO(3-)(4) ions as well as the amorphous precursors (tricalcium phosphate and octacalcium phosphate) of hydroxyapatite deposition, which was shown by in vitro and in vivo measurements. Spectroscopical IR and Raman results showed the presence of bands whose intensity ratio can be related to the molar ratio R; in particular, the Raman I(962)/I(987) and the IR I(1035)/I(1125) intensity ratios were characterized as markers of the molar ratio. For these CaP compounds a nucleation model, which was based on the ability of HPO(2-)(4) ions to form strong H bonds with PO(3-)(4) ions, was proposed.

  1. Metastable states in calcium phosphate - aqueous phase equilibrations

    NASA Astrophysics Data System (ADS)

    Driessens, F. C. M.; Verbeeck, R. M. H.

    1981-05-01

    A critical evaluation of the literature reveals that during equilibration of well crystallized hydroxyapatite in aqueous solutions metastable states can occur. They are characterized by a persistent supersaturation with respect to hydroxyapatite and a systematical dependence of the ion activity product of this compound on the solution composition. For products synthesized by thermal treatment it is known that they are transformed into oxyhydroxyapatite so that the theoretical solubility behaviour could be predicted from the extrapolated value of the free energy of oxyapatite at room temperature: the negative logarithm of the ionic product for hydroxyapatite should become close to that of oxyapatite during equilibration. The discrepancy with experimental data is probably due to the formation of thin layers seeming dicalcium phosphate dihydrate, octocalcium phosphate or defective hydroxyapatite as coatings on the apatite crystals. This is derived from the apparent Ca/P ratio of the solubility controlling phase. According to chemical potential plots this apparent Ca/P ratio can have values close to 1, 1.33, 1.50 or 1.67. The aqueous solutions are clearly undersaturated with respect to the more acidic calcium phosphates so that the coatings must deviate from the compositions of these compounds in their pure state. The formation of these metastable states during equilibration of oxyhydroxyapatites is compared with others occuring during precipitation and crystal growth of calcium phosphates. A model is proposed which explains the observations qualitatively.

  2. Calcium-phosphate metabolism in patients with multiple sclerosis.

    PubMed

    Kubicka-Baczyk, K; Labuz-Roszak, B; Pierzchala, K; Adamczyk-Sowa, M; Machowska-Majchrzak, A

    2015-06-01

    The purpose of this study was to evaluate the concentration of 25-hydroxycholecalciferol and parameters of calcium-phosphate metabolism at different periods of relapsing-remitting multiple sclerosis (RRMS). Forty-five patients, residents of Poland (49°-50°, N), were enrolled in the study, i.e. 15 immediately after the diagnosis of RRMS, 15 at the early stage and 15 at the advanced stage of RRMS. The results were compared to values obtained in 20 age- and sex-matched controls. Lower serum concentrations of 25-hydroxycholecalciferol and ionised calcium were found in patients compared to the control group. In patients with the disease duration of 5-6 years, concentrations of 25-hydroxycholecalciferol and ionised calcium were lower than in patients in the earlier period of RRMS. The inverse and clearer direction of changes was found in parathormone serum concentration in patients compared to the controls. In patients with a longer disease duration, a significantly lower 25-hydroxycholecalciferol concentration was found in female patients compared to male patients. In patients, more frequent 25-hydroxycholecalciferol and unsaturated fatty acids' supplementation was observed compared to the controls. In RRMS patients, calcium-phosphate metabolism is disturbed which increases during disease progression.

  3. Method of coating a substrate with a calcium phosphate compound

    DOEpatents

    Gao, Yufei; Campbell, Allison A.

    2000-01-01

    The present invention is a method of coating a substrate with a calcium phosphate compound using plasma enhanced MOCVD. The substrate is a solid material that may be porous or non-porous, including but not limited to metal, ceramic, glass and combinations thereof. The coated substrate is preferably used as an implant, including but not limited to orthopaedic, dental and combinations thereof. Calcium phosphate compound includes but is not limited to tricalcium phosphate (TCP), hydroxyapatite (HA) and combinations thereof. TCP is preferred on a titanium implant when implant resorbability is desired. HA is preferred when the bone bonding of new bone tissue into the structure of the implant is desired. Either or both of TCP and/or HA coated implants may be placed into a solution with an agent selected from the group of protein, antibiotic, antimicrobial, growth factor and combinations thereof that can be adsorbed into the coating before implantation. Once implanted, the release of TCP will also release the agent to improve growth of new bone tissues and/or to prevent infection.

  4. Calcium phosphate bioceramics induce mineralization modulated by proteins.

    PubMed

    Wang, Kefeng; Leng, Yang; Lu, Xiong; Ren, Fuzeng

    2013-08-01

    Proteins play an important role in the process of biomineralization, which is considered the critical process of new bone formation. The calcium phosphate (Ca-P) mineralization happened on hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and biphasic calcium phosphate (BCP) when proteins presented were investigated systematically. The results reveal that the presence of protein in the revised simulated body fluid (RSBF) did not alter the shape and crystal structure of the precipitated micro-crystals in the Ca-P layer formed on the three types of bioceramics. However, the morphology of the Ca-P precipitates was regulated but the structure of Ca-P crystal was unchanged in vivo. The presence of proteins always inhibits Ca-P mineralization in RSBF and the degree of inhibitory effect is concentration dependent. Furthermore, Protein presence can increase the possibility of HA precipitation in vitro and in vivo. The results obtained in this study can be helpful for better understanding the mechanism of biomineralization induced by the Ca-P bioceramics.

  5. Phase Transformation of Calcium Phosphates by Electrodeposition and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Jen; Wang, Moo-Chin; Chang, Kuo-Ming; Wang, Cheng-Li; Wang, Szu-Hao; Li, Wang-Long; Huang, Hong-Hsin

    2010-12-01

    The effect of heat treatment on the calcium phosphate deposited on Ti-6Al-4V substrate using an electrolytic process is investigated. The calcium phosphate was deposited in a 0.04 M Ca(H2PO4)2·H2O (MCPM) solution on a Ti-6Al-4V substrate at 333 K (60 °C), 10 V, and 80 Torr for 1 hour, and calcined at various temperatures for 4 hours. The X-ray diffraction (XRD) results demonstrate that the phases are dicalcium phosphate (CaHPO4, DCPD) and hydroxyapatile [Ca(PO4)6 (OH)2, HAP] for the as-deposited samples. When the deposited sample was calcined at 873 K (600 °C) for 4 hours, the XRD results show that the transformation of DCPD to HAP occurs. Moreover, HAP converts to β-TCP, CPP, and CaO. For the sample calcined at 1073 K (800 °C) for 4 hours, the scanning electron microscopy (SEM) micrograph reveals that the crack of the calcined sample propagates with a width of about 3 μm. This result is due to HAP becoming decomposed and converting to β-TCP, CPP, CaO, and H2O. The vaporization of H2O within the calcined sample promotes the crack propagation and growth.

  6. Calcium phosphates in Ca(2+)-fortified milk: phase identification and quantification by Raman spectroscopy.

    PubMed

    Arifin, Martha; Swedlund, Peter J; Hemar, Yacine; McKinnon, Ian R

    2014-12-17

    Calcium phosphate nanoclusters (CPNs) are important for the structure, function, and nutrient density of many dairy products. Phosphorylated amino acids in caseins stabilize calcium phosphate as nanoclusters which are amorphous to X-ray diffraction and exist within casein micelles, and these CPNs play a key role in micelle stability. Addition of calcium to milk results in further calcium phosphate removal from the serum, and there is uncertainty about the nature of the material formed and its stability. In this work we investigate both the solution and colloidal phases in CaCl2 enriched bovine milk to identify, quantify, and determine the solubility of the calcium phosphate material formed in response to calcium addition to milk. The P-O stretching bands are quite distinct in the Raman spectra of the main synthetic calcium phosphate mineral phases, including the amorphous calcium phosphate phase. In response to adding between 5 and 40 mM CaCl2 to milk, the serum phosphate concentration decreased asymptotically from 7.5 ± 0.2 to 0.54 ± 0.05 mM. Using Raman spectroscopy with a combination of internal and external standards, it was possible to show that the calcium phosphate material formed after Ca(2+) addition to milk was the same as amorphous calcium phosphate nanoclusters present in the absence of added calcium. The use of an internal standard allowed a quantitative analysis of the spectra which demonstrated that the amorphous calcium phosphate formed accounted for all of the calcium and phosphate that was removed from solution in response to calcium addition.

  7. Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases.

    PubMed

    Lopez-Heredia, Marco A; Bongio, Matilde; Bohner, Marc; Cuijpers, Vincent; Winnubst, Louis A J A; van Dijk, Natasja; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A

    2012-09-01

    Calcium phosphate cements (CPCs) use the simultaneous presence of several calcium phosphates phases. This is done to generate specific bulk and in vivo properties. This work has processed and evaluated novel multiphasic CPCs containing dual tricalcium phosphate (TCPs) phases. Dual TCPs containing α- and β-TCP phases were obtained by thermal treatment. Standard CPC (S-CPC) was composed of α-TCP, anhydrous dicalcium phosphate and precipitated hydroxyapatite, while modified CPC (DT-CPC) included both α- and β-TCP. Physicochemical characterization of these CPCs was based on scanning electron microscopy, X-ray diffraction, specific surface area (SSA) and particle size (PS) analysis and mechanical properties. This characterization allowed the selection of one DT-CPC for setting time, cohesion and biological assessment compared with S-CPC. Biological assessment was carried out using a tibial intramedullary cavity model and subcutaneous pouches in guinea pigs. Differences in the surface morphology and crystalline phases of the treated TCPs were detected, although PS analysis of the milled CPC powders produced similar results. SSA analysis was significantly higher for DT-CPC with α-TCP treated at 1100°C for 5h. Poorer mechanical properties were found for DT-CPC with α-TCP treated at 1000°C. Setting time and cohesion, as well as the in vivo performance, were similar in the selected DT-CPC and the S-CPC. Both CPCs created the desired host reactions in vivo.

  8. Selective laser sintering of calcium phosphate materials for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  9. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept.

    PubMed

    Baroth, Serge; Bourges, Xavier; Goyenvalle, Eric; Aguado, Eric; Daculsi, Guy

    2009-01-01

    A new biphasic calcium phosphate ceramic material has been developed in our laboratory. It is composed of 60% of hydroxyapatite and 40% of beta-tricalcium phosphate, based on three granulometries (submicron, round microporous 80-200 mum and macro microporous 0.5-1 mm particles) and hydrated with water leading the formation of a putty filler for bone repair. Biocompatibility and osteogenicity were tested by filling femoral epiphyses critical size bone defect and lumbar muscles in rabbit. After 3, 6 and 12 weeks of implantation, explants were treated for histology. Results revealed the biocompatibility of the material and intensive resorption of the submicron particle fraction followed by important bone ingrowth whereas osteoconduction was provided by the larger particles.

  10. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  11. Biomimetic calcium phosphate coatings on Polyactive 1000/70/30.

    PubMed

    Du, C; Klasens, P; Haan, R E; Bezemer, J; Cui, F Z; de Groot, K; Layrolle, P

    2002-03-05

    Precalcification of Polyactive 1000/70/30 with a biomimetic calcium phosphate coating is expected to enhance the bioactivity of this biodegradable polymer for the application as bone filler or scaffold of bone tissue engineering. This study presents a 1-day one-step incubation method to obtain either amorphous or bone-like apatitic calcium phosphate coating on Polyactive 1000/70/30. Either dense plates or three-dimensional porous blocks of the polymer were incubated in a simplified but concentrated simulated body fluid-derived solution at 37 degrees C. By bubbling CO2 gas, a solution was prepared with calcium and phosphate ion concentrations five times of that of regular simulated body fluid. With controlled stirring, the CO2 was released out of the solution and exchanged by air. The pH of the solution increased to induce coating formation. Adjusting stirring rate and CO2/air exchange rate controlled the process kinetics. The reaction kinetics had little influence on the crystallographic structure of the final coating mineral for a given solution composition as shown by Fourier transform infrared spectroscopy and X-ray diffraction. However, the interface structure between the coating and substrate was kinetics-dependent. A fast precipitation condition resulted in a uniform but superficial calcification pattern at the surface of polymer. A slow process by selecting either a slow stirring or a slow CO2/air exchange, on the contrary, induced a localized but deep inside calcification pattern. A tensile test showed no statistically significant difference in the mechanical properties among uncoated and coated polymers. The cracking behavior of coatings from different kinetics, however, exhibited different manners, as can be attributed to different interface structures and interfacial strengths.

  12. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis

    PubMed Central

    Fenton, Tanis R; Lyon, Andrew W; Eliasziw, Michael; Tough, Suzanne C; Hanley, David A

    2009-01-01

    Background The acid-ash hypothesis posits that increased excretion of "acidic" ions derived from the diet, such as phosphate, contributes to net acidic ion excretion, urine calcium excretion, demineralization of bone, and osteoporosis. The public is advised by various media to follow an alkaline diet to lower their acidic ion intakes. The objectives of this meta-analysis were to quantify the contribution of phosphate to bone loss in healthy adult subjects; specifically, a) to assess the effect of supplemental dietary phosphate on urine calcium, calcium balance, and markers of bone metabolism; and to assess whether these affects are altered by the b) level of calcium intake, c) the degree of protonation of the phosphate. Methods Literature was identified through computerized searches regarding phosphate with surrogate and/or direct markers of bone health, and was assessed for methodological quality. Multiple linear regression analyses, weighted for sample size, were used to combine the study results. Tests of interaction included stratification by calcium intake and degree of protonation of the phosphate supplement. Results Twelve studies including 30 intervention arms manipulated 269 subjects' phosphate intakes. Three studies reported net acid excretion. All of the meta-analyses demonstrated significant decreases in urine calcium excretion in response to phosphate supplements whether the calcium intake was high or low, regardless of the degree of protonation of the phosphate supplement. None of the meta-analyses revealed lower calcium balance in response to increased phosphate intakes, whether the calcium intake was high or low, or the composition of the phosphate supplement. Conclusion All of the findings from this meta-analysis were contrary to the acid ash hypothesis. Higher phosphate intakes were associated with decreased urine calcium and increased calcium retention. This meta-analysis did not find evidence that phosphate intake contributes to demineralization

  13. Phosphate decreases urine calcium and increases calcium balance: a meta-analysis of the osteoporosis acid-ash diet hypothesis.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W; Eliasziw, Michael; Tough, Suzanne C; Hanley, David A

    2009-09-15

    The acid-ash hypothesis posits that increased excretion of "acidic" ions derived from the diet, such as phosphate, contributes to net acidic ion excretion, urine calcium excretion, demineralization of bone, and osteoporosis. The public is advised by various media to follow an alkaline diet to lower their acidic ion intakes. The objectives of this meta-analysis were to quantify the contribution of phosphate to bone loss in healthy adult subjects; specifically, a) to assess the effect of supplemental dietary phosphate on urine calcium, calcium balance, and markers of bone metabolism; and to assess whether these affects are altered by the b) level of calcium intake, c) the degree of protonation of the phosphate. Literature was identified through computerized searches regarding phosphate with surrogate and/or direct markers of bone health, and was assessed for methodological quality. Multiple linear regression analyses, weighted for sample size, were used to combine the study results. Tests of interaction included stratification by calcium intake and degree of protonation of the phosphate supplement. Twelve studies including 30 intervention arms manipulated 269 subjects' phosphate intakes. Three studies reported net acid excretion. All of the meta-analyses demonstrated significant decreases in urine calcium excretion in response to phosphate supplements whether the calcium intake was high or low, regardless of the degree of protonation of the phosphate supplement. None of the meta-analyses revealed lower calcium balance in response to increased phosphate intakes, whether the calcium intake was high or low, or the composition of the phosphate supplement. All of the findings from this meta-analysis were contrary to the acid ash hypothesis. Higher phosphate intakes were associated with decreased urine calcium and increased calcium retention. This meta-analysis did not find evidence that phosphate intake contributes to demineralization of bone or to bone calcium excretion

  14. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Previous studies have developed calcium phosphate and fluoride releasing composites. Other studies have incorporated chlorhexidine (CHX) particles into dental composites. However, CHX has not been incorporated in calcium phosphate and fluoride composites. The objectives of this study were to develop nanocomposites containing amorphous calcium phosphate (ACP) or calcium fluoride (CaF2) nanoparticles and CHX particles, and investigate S. mutans biofilm formation and lactic acid production for the first time. Methods Chlorhexidine was frozen via liquid nitrogen and ground to obtain a particle size of 0.62 µm. Four nanocomposites were fabricated with fillers of: Nano ACP; nano ACP+10% CHX; nano CaF2; nano CaF2+10% CHX. Three commercial materials were tested as controls: A resin-modified glass ionomer, and two composites. S. mutans live/dead assay, colony-forming unit (CFU) counts, biofilm metabolic activity, and lactic acid were measured. Results Adding CHX fillers to ACP and CaF2 nanocomposites greatly increased their antimicrobial capability. ACP and CaF2 nanocomposites with CHX that were inoculated with S. mutans had a growth medium pH > 6.5 after 3 d, while the control commercial composites had a cariogenic pH of 4.2. Nanocomposites with CHX reduced the biofilm metabolic activity by 10–20 folds and reduced the acid production, compared to the controls. CFU on nanocomposites with CHX were three orders of magnitude less than that on commercial composite. Mechanical properties of nanocomposites with CHX matched a commercial composite without fluoride. Significance The novel calcium phosphate and fluoride nanocomposites could be rendered antibacterial with CHX to greatly reduce biofilm formation, acid production, CFU and metabolic activity. The antimicrobial and remineralizing nanocomposites with good mechanical properties may be promising for a wide range of tooth restorations with anti-caries capabilities. PMID:22317794

  15. Calcium phosphate formation in aqueous suspensions of multilamellar liposomes.

    PubMed

    Eanes, E D; Hailer, A W; Costa, J L

    1984-07-01

    The present study examined calcium phosphate precipitation in aqueous suspensions of multilamellar liposomes as a possible in vitro model for matrix vesicle mineralization. Liposomes were prepared by dispersing CHCl3-evaporated thin films of 7:2:1 and 7:1:1 molar mixtures of phosphatidylcholine, dicetyl phosphate, and cholesterol in aqueous solutions containing 0, 25, or 50 mM PO4 and 0 or 0.8 mM Mg. After removal of unencapsulated PO4 by gel filtration, the liposomes were suspended in 1.33 mM Ca/0.8 mM Mg solutions and made permeable to these cations by the addition of the ionophore X-537A. All experiments were carried out at pH 7.4, 22 degrees C, and 240 mOsm. In the absence of entrapped PO4, Ca2+ taken up by the liposomes was largely bound to inner membrane surfaces. With PO4 present, Ca2+ uptake increased as much as sixfold with maximum accumulations well above values sufficient for solid formation. Precipitated solids appeared to be located predominantly in the aqueous intermembranous spaces of the liposomes. Amorphous calcium phosphate (ACP) precipitated initially in the presence of entrapped Mg2+, then subsequently converted to apatite intermixed with some octacalcium phosphate. The stability of the liposomal ACP was somewhat greater than that observed in bulk solutions under comparable conditions of pH, temperature, and electrolyte makeup. In time, the mineral deposits caused entrapped PO4 to leak from the liposomes. These findings suggest that the precipitation within liposomes is similar to that which occurs in macro-volume synthetic systems but that the precipitated solid eventually impairs the integrity of the surrounding intermembranous space.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates.

    PubMed

    Li, Yanbao; Kong, Fanzhi; Weng, Wenjian

    2009-05-01

    Novel biphasic calcium phosphate (BCP) powders composed of alpha-tricalcium phosphate (alpha-TCP) and hydroxyapatite (HA) were prepared by thermal decomposition of carbonated amorphous calcium phosphates (CACP). At first, the CACP precipitates were synthesized by adding ammonium carbonate in the presence of poly(ethylene glycol) at pH 10 with an initial Ca/P molar ratio of 1.60 at 5 degrees C. The Ca/P molar ratios of the CACP precursors are between 1.50 and 1.67 investigated by ICP. Then BCP (alpha-TCP/HA) powders were obtained after heating the CACP precursors at relatively low temperature (800 degrees C) for 3 h. alpha-TCP/HA powders were characterized by X-ray diffractometry, Fourier transform infrared spectra, transmission electron microscopy/scanning electron microscopy, and sedimentation experiment. The results show that alpha-TCP and HA phases form in one powder, alpha-TCP/HA powders are sphere with the diameter of 300 nm to less than 100 nm varied with their chemical compositions and the ratio of alpha-TCP and HA in the powders can be adjusted by the adding amount of carbonates. The possible formation process of biphasic alpha-TCP/HA powders was proposed.

  17. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  18. Suitability of calcium phosphate cement for injection laryngoplasty in rabbits.

    PubMed

    Ikeda, Asako; Shiotani, Akihiro; Mori, Yuko; Fujimine, Takekatsu; Tomifuji, Masayuki; Takaoka, Takuji; Kameyama, Kaori; Ogawa, Kaoru

    2006-01-01

    Calcium phosphate cement (CPC) consists of powder and liquid, which become an injectable paste after mixing, self-hardening and recrystallizing to calcium hydroxylapatite (CaHA) after injection into a living body. In this study, we investigated the suitability of CPC as an injectable material for injection laryngoplasty using rabbits. All rabbits underwent left recurrent laryngeal nerve section and injection laryngoplasty with CPC. At 7 days, scanning electron microscopic findings revealed that complete recrystallization from CPC to CaHA was achieved in the larynx. At 1, 3, and 6 months, injected CPC stayed in the paraglottic space and did not migrate, and the average remaining CPC volume percentage was 91.7%. Focal foreign body reaction to injected CPC was almost the same as that of autologous fat for all time periods observed. These results indicated that CPC appears to be biocompatible, nonabsorbable, nonmigratory, and suitable for injection laryngoplasty. Copyright 2006 S. Karger AG, Basel.

  19. Interactions of casein micelles with calcium phosphate particles.

    PubMed

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  20. Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry.

    PubMed

    Itagaki, Kiyoshi; Hauser, Carl J

    2003-07-25

    Store-operated calcium entry (SOCE) is a fundamental mechanism of calcium signaling. The mechanisms linking store depletion to SOCE remain controversial, hypothetically involving both diffusible messengers and conformational coupling of stores to channels. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that can signal via cell surface G-protein-coupled receptors, but S1P can also act as a second messenger, mobilizing calcium directly via unknown mechanisms. We show here that S1P opens calcium entry channels in human neutrophils (PMNs) and HL60 cells without prior store depletion, independent of G-proteins and of phospholipase C. S1P-mediated entry has the typical divalent cation permeability profile and inhibitor profile of SOCE in PMNs, is fully inhibited by 1 microm Gd3+, and is independent of [Ca2+]i. Depletion of PMN calcium stores by thapsigargin induces S1P synthesis. Inhibition of S1P synthesis by dimethylsphingosine blocks thapsigargin-, ionomycin-, and platelet-activating factor-mediated SOCE despite normal store depletion. We propose that S1P is a "calcium influx factor," linking calcium store depletion to downstream SOCE.

  1. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria.

    PubMed

    Krieger, Nancy S; Asplin, John R; Frick, Kevin K; Granja, Ignacio; Culbertson, Christopher D; Ng, Adeline; Grynpas, Marc D; Bushinsky, David A

    2015-12-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. Copyright © 2015 by the American Society of Nephrology.

  2. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria

    PubMed Central

    Asplin, John R.; Frick, Kevin K.; Granja, Ignacio; Culbertson, Christopher D.; Ng, Adeline; Grynpas, Marc D.; Bushinsky, David A.

    2015-01-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  3. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system.

    PubMed

    Hammad, Shaza M; El Banna, Mai S; Elsaka, Shaymaa E

    2013-10-01

    The aim of the study was to compare the survival rate of orthodontic brackets over a 12-month period using amorphous calcium phosphate (ACP) bonding system with a conventional adhesive (CA). In 30 patients with a mean age of 15 years 7 months, one operator bonded 138 brackets with a split-mouth design, using a resin-based CA and ACP-containing adhesive. The survival rate of the brackets was estimated by Kaplan-Meier analysis. Bracket survival distributions with respect to bonding procedure, dental arch, type of tooth (incisor, canine, and premolar), and patients' gender were compared using the log-rank test. The bond failure interface was determined using the Adhesive Remnant Index (ARI). The bond failure rates of the CA and ACP-containing adhesive were 2.67 and 3.8 per cent, respectively. There was no significant difference between the failure rates of ACP and CA-bonded systems (P > 0.05). Survival rates did not show significant differences between the upper and lower dental arches (P > 0.05). Lower survival rates were found for canine and premolar teeth than incisors (P < 0.05). Bond failure rates were higher for males than females (P < 0.05). There was a significant difference for ARI scores between the adhesive materials (P = 0.028); more of the ACP-based adhesive was left on the tooth at debond. ACP-containing adhesive can be effectively used to bond orthodontic brackets and can serve as a practicable alternative to the conventional bonding adhesives.

  4. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture.

    PubMed

    Zhang, Jingwei; Barbieri, Davide; ten Hoopen, Hetty; de Bruijn, Joost D; van Blitterswijk, Clemens A; Yuan, Huipin

    2015-03-01

    The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture.

  5. Nucleation, growth and evolution of calcium phosphate films on calcite.

    PubMed

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence.

  6. Decreased stone-free rates after percutaneous nephrolithotomy for high calcium phosphate composition kidney stones.

    PubMed

    Kacker, Ravi; Meeks, Joshua J; Zhao, Lee; Nadler, Robert B

    2008-09-01

    To our knowledge the most effective treatment in patients with renal stones containing calcium phosphate remains unknown. An inverse correlation exists between calcium phosphate stone composition and the stone-free rate of shock wave lithotripsy. It is unknown whether this is due to treatment type (shock wave lithotripsy) or to a feature unique to calcium phosphate stones. We determined whether calcium phosphate stone composition affects the stone-free rate of percutaneous nephrolithotomy. Percutaneous nephrolithotomy was performed in 111 patients between 2001 and 2006 and stone fragments were analyzed for calcium phosphate composition. Patients were categorized into groups based on calcium phosphate content. All patients underwent preoperative computerized tomography. Patients were considered stone-free after percutaneous nephrolithotomy when fragments were 2 mm or less on noncontrast computerized tomography. A total of 213 percutaneous nephrolithotomies were performed. An increased percent of calcium phosphate was related to a decreased percutaneous nephrolithotomy success rate (p = 0.005), independent of preoperative stone burden (p = 0.8). Patients with greater than 60% calcium phosphate stones were significantly less likely to be stone-free after percutaneous nephrolithotomy than those with less calcium phosphate (60%, OR 2.45, 95% CI 1.103-5.4401 vs 80%, OR 3.72, 95% CI 1.33-10.44). High calcium phosphate renal stone content leads to a decreased stone-free rate. Further study is required to determine the mechanism of stone resilience as well as the most appropriate treatment modality in patients with high calcium phosphate composition kidney stones.

  7. A Review of Enamel Remineralisation Potential of Calcium- and Phosphate-based Remineralisation Systems.

    PubMed

    Ekambaram, Manikandan; Mohd Said, Siti N B; Yiu, Cynthia K Y

    2017-08-07

    Along with calcium and phosphate ions, fluoride ions promote remineralisation of noncavitated carious lesions to form fluorapatite. However, the supply of calcium and phosphate ions from saliva may not be adequate for effective remineralisation in patients with high caries risk. Therefore, an additional supply of calcium and phosphate ions is mandatory to enhance effective remineralisation with fluoride ions. Several calcium- and phosphate-based remineralisation agents are available for clinical use. However, the nature of the incorporated calcium and phosphate ions and the method of their stabilisation are not similar. Therefore, this review summarises research findings on the enamel remineralisation potential of calcium- and phosphate-based remineralisation agents. Appropriate key words were used and the Pubmed electronic database was searched to retrieve articles. Screening through titles and abstracts identified relevant articles. Full text review of the identified relevant articles was performed and the significant findings were summarised and presented in this review. Several studies including laboratory-based studies, in situ and randomised controlled clinical trials showed casein phosphopeptide amorphous calcium phosphate (CPP-ACP)-containing remineralisation agents to have superior remineralisation potential compared to other forms of calcium- and phosphate-based remineralisation agents, such as functionalised tri-calcium phosphate (fTCP) and amorphous calcium phosphate (ACP). More long-term clinical studies are necessary to compare the enamel remineralisation potential of calcium- and phosphate-based agents that contain fTCP and ACP with those containing CPP-ACP. Additional well-designed randomised controlled clinical trials are also necessary to justify long-term clinical supplemental use of products containing CPP-ACP.

  8. Dual-setting calcium phosphate cement modified with ammonium polyacrylate.

    PubMed

    dos Santos, Luís Alberto; Carrodeguas, Raúl García; Boschi, Anselmo Ortega; de Arruda, Antônio Celso

    2003-05-01

    alpha-Tricalcium phosphate bone cement, as formerly designed and developed by Driessens et al., consists of a powder composed by alpha-tricalcium phosphate (alpha-TCP) and hydroxyapatite (HA) seeds, and an aqueous solution of Na2HPO4 as mixing liquid. After mixing powder and liquid, alpha-TCP dissolves into the liquid and calcium deficient hydroxyapatite (CDHA), more insoluble than the former, precipitates as an entanglement of crystals, which causes the setting and hardening of the cement. alpha-TCP bone cement offers several advantages in comparison to calcium phosphate bioceramics and acrylic bone cements as bone graft and repairing material, like perfect adaptability to the defect size and shape, osteotransductibility, and absence of thermal effect during setting. The main handicap is its low mechanical strength. Therefore, approaching its mechanical strength to that of human bone could considerably extend its applications. In the present work, an in situ polymerization system based on acrylamide (AA) and ammonium polyacrylate (PA) as liquid reducer was added to alpha-TCP cement to increase its mechanical strength. The results showed that the addition of 20 wt% of acrylamide and 1 wt% AP to the liquid increased the compressive and tensile strength of alpha-TCP bone cement by 149 and 69% (55 and 21 MPa), respectively. The improvement in mechanical strength seems to be caused by a decrease of porosity and the reinforcing effect of a polyacrylamide network coexisting with the entanglement of CDHA crystals. The studied additives do not affect the nature of the final product of the setting reaction, CDHA, but promote the reduction of its crystal size.

  9. Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate.

    PubMed

    Schiller, Carsten; Rasche, Christian; Wehmöller, Michael; Beckmann, Felix; Eufinger, Harald; Epple, Matthias; Weihe, Stephan

    2004-01-01

    The aim of this study was the development of a processing pathway for manufacturing of biodegradable skull implants with individual geometry. The implants on the basis of polylactide and calcium phosphate/calcium carbonate were prepared by a combination of hot pressing and gas foaming. On the inside, the implant consists of a macroporous and faster degradable material (poly(D,L-lactide)+CaCO3) to allow the ingrowth of bone cells. The pore size is in the range of 200-400 microm. On the outside, the implant consists of a compact and slower biodegradable material (poly(L-lactide) and calcium phosphate) to ensure mechanical stability and protection. To overcome problems like inflammatory reactions caused by acidic degradation products of polylactide, the polyester was combined with basic filling materials (calcium salts). The filler neutralises the lactic acid produced during polymer degradation and increases the bioactivity of the material. The stabilised pH was demonstrated by long-term in vitro pH studies. Over a time period of 250 d in demineralised water, the pH was in the physiological range. The in vitro biocompatibility was shown by cell cultures with human osteoblasts. A good proliferation of the cells was observed over the whole test period of 4 weeks.

  10. Development of artificial seed crystal for crystallization of calcium phosphate.

    PubMed

    Moriyama, K; Kojima, T; Minawa, Y; Matsumoto, S; Nakamachi, K

    2001-11-01

    An artifical seed crystal material consisting of calcium silicate hydrate (5CaO x 6SiO2 x 5H2O : tobermorite crystals) applicable for phosphorus removal by crystallization was developed. Card-house shaped tobermorite crystals were developed on the seed material where orthophosphate crystallized as a calcium phosphate. The seed material can be manufactured by mixing siliceous and calcareous raw materials, pelletizing and subsequent autoclaving. Laboratory experiments were conducted to apply the new developed seed crystal material in the phosphorus recovery from sludge sidestreams of a wastewater treatment plant. In this crystallization process, the performance the carbon dioxide degassingprocess usually carried out when applying crystallization was not necessary, the hydroxyapatite was able to crystallize at a pH of 8.0 to 8.5 without precipitation of calcium carbonates. In the treatment of a sidestream with orthophosphate concentrations of 50 mgl(-1) and COD concentrations between 200 to 400 mgl(-1), phosphorus removal efficiencies ranging from 75 to 85% were observed. The seed crystal material was collected after the laboratory experiments and the chemical estimation and the germination test for agricultural reuse were performed. As a result, it was shown that the hydroxyapatite precipitated on the seed material had a 100% fusibility to soil and had characteristics to be a good nutrient source as a fertilizer for plants.

  11. Calcium phosphate and fluorinated calcium phosphate coatings on titanium deposited by Nd:YAG laser at a high fluence.

    PubMed

    Ferro, Daniela; Barinov, Sergey M; Rau, Jiulietta V; Teghil, Roberto; Latini, Alessandro

    2005-03-01

    Calcium phosphate coatings are known to enhance long-term fixation, reliability and promote osteointegration of cementless titanium-based implant devices. This study was aimed at the pulsed laser deposition of calcium phosphate coatings onto titanium using hydroxyapatite and hydroxyapatite-fluorapatite targets. The deposition was carried out at the high laser beam fluence conditions, about 12 J/cm(2). The coatings were characterized with respect to their morphology, phase composition and hardness. X-ray energy dispersive analysis revealed the coatings retain their elemental composition, and fluoride content within the film is the same as in the initial target. However, unlike sintered targets, the deposited films contain no apatite-like phases. The hardness of the films, about 18 GPa, is surprisingly high compared to that of hydroxyapatite and hydroxyapatite-fluorapatite ceramic targets. The deposited coatings of 2.7-2.9 microm thickness have uniform and dense microstructure, containing the solidified droplets of the expulsed from the target phase. The uncommon structure and hardness of the films can be attributed to the melting and phase decomposition of the initial material in the laser plasma.

  12. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  13. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.

    PubMed

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser; Clarke, Susan A

    2016-12-01

    This work establishes the in vivo performance of modified calcium phosphate bone cements for vertebroplasty of spinal fractures using a lapine model. A non-modified calcium phosphate bone cement and collagen-calcium phosphate bone cements composites with enhanced mechanical properties, utilising either bovine collagen or collagen from a marine sponge, were compared to a commercial poly(methyl methacrylate) cement. Conical cement samples (8 mm height × 4 mm base diameter) were press-fit into distal femoral condyle defects in New Zealand White rabbits and assessed after 5 and 10 weeks. Bone apposition and tartrate-resistant acid phosphatase activity around cements were assessed. All implants were well tolerated, but bone apposition was higher on calcium phosphate bone cements than on poly(methyl methacrylate) cement. Incorporation of collagen showed no evidence of inflammatory or immune reactions. Presence of positive tartrate-resistant acid phosphatase staining within cracks formed in calcium phosphate bone cements suggested active osteoclasts were present within the implants and were actively remodelling within the cements. Bone growth was also observed within these cracks. These findings confirm the biological advantages of calcium phosphate bone cements over poly(methyl methacrylate) and, coupled with previous work on enhancement of mechanical properties through collagen incorporation, suggest collagen-calcium phosphate bone cement composite may offer an alternative to calcium phosphate bone cements in applications where low setting times and higher mechanical stability are important.

  14. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.

    2011-01-01

    Objectives The main challenges facing composite restorations are secondary caries and bulk fracture. The objectives of this study were to synthesize novel nanoparticles of amorphous calcium phosphate (NACP), develop NACP nanocomposite with calcium (Ca) and phosphate (PO4) ion release to combat caries, and investigate the effects of NACP filler level and glass co-filler reinforcement on composite properties. Methods NACP (diameter = 116 nm) were synthesized via a spray-drying technique for the first time. Since the local plaque pH in the oral cavity can decrease to 5 or 4, photo-activated composites were tested with immersion in solutions of pH 7, 5.5, and 4. Composite mechanical properties as well as Ca and PO4 ion release were measured vs. pH and filler level. Results Increasing the NACP filler level increased the ion release. At 28 d and pH 4, the Ca release was (4.66 ± 0.05) mmol/L at 20% NACP, much higher than (0.33 ± 0.08) at 10% NACP (p < 0.05). Decreasing the pH increased the ion release. At 20% NACP, the PO4 release at 28 d was (1.84 ± 0.12) mmol/L at pH 4, higher than (0.59 ± 0.08) at pH 5.5, and (0.12 ± 0.01) at pH 7 (p < 0.05). However, pH had little effect on composite mechanical properties. Flexural strength at 15% NACP was (96 ± 13) MPa at pH 4, similar to (89 ± 13) MPa at pH 5.5, and (89 ± 19) MPa at pH 7 (p > 0.1). The new NACP nanocomposites had strengths that were 2-fold those of previous calcium phosphate composites and resin-modified glass ionomer control. Significance NACP composites were developed for the first time. Their strengths matched or exceeded a commercial composite with little ion release, and were 2-fold those of previous Ca-PO4 composites. The nanocomposite was “smart” as it greatly increased the ion release at a cariogenic pH 4, when these ions would be most needed to inhibit caries. Hence, the new NACP composite may be promising for stress-bearing and caries-inhibiting restorations. PMID:21514655

  15. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition.

    PubMed

    Xu, Hockin H K; Moreau, Jennifer L; Sun, Limin; Chow, Laurence C

    2011-08-01

    The main challenges facing composite restorations are secondary caries and bulk fracture. The objectives of this study were to synthesize novel nanoparticles of amorphous calcium phosphate (NACP), develop NACP nanocomposite with calcium (Ca) and phosphate (PO(4)) ion release to combat caries, and investigate the effects of NACP filler level and glass co-filler reinforcement on composite properties. NACP (diameter=116 nm) were synthesized via a spray-drying technique for the first time. Since the local plaque pH in the oral cavity can decrease to 5 or 4, photo-activated composites were tested with immersion in solutions of pH 7, 5.5, and 4. Composite mechanical properties as well as Ca and PO(4) ion release were measured vs. pH and filler level. Increasing the NACP filler level increased the ion release. At 28 d and pH 4, the Ca release was (4.66±0.05)mmol/L at 20% NACP, much higher than (0.33±0.08) at 10% NACP (p<0.05). Decreasing the pH increased the ion release. At 20% NACP, the PO(4) release at 28 d was (1.84±0.12)mmol/L at pH 4, higher than (0.59±0.08) at pH 5.5, and (0.12±0.01) at pH 7 (p<0.05). However, pH had little effect on composite mechanical properties. Flexural strength at 15% NACP was (96±13)MPa at pH 4, similar to (89±13)MPa at pH 5.5, and (89±19)MPa at pH 7 (p>0.1). The new NACP nanocomposites had strengths that were 2-fold those of previous calcium phosphate composites and resin-modified glass ionomer control. NACP composites were developed for the first time. Their strengths matched or exceeded a commercial composite with little ion release, and were 2-fold those of previous Ca-PO(4) composites. The nanocomposite was "smart" as it greatly increased the ion release at a cariogenic pH 4, when these ions would be most needed to inhibit caries. Hence, the new NACP composite may be promising for stress-bearing and caries-inhibiting restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A Hybrid Laser/Aerosol Method for the Synthesis of Porous Nanostructured Calcium Phosphate Materials for Bone Tissue Engineering Applications

    DTIC Science & Technology

    2005-01-01

    carbon-based materials [4]. Nanostructured calcium phosphate bioceramics comprising mixtures of resorbable and nonresorbable calcium phosphate phases are...over the phase composition and microstructure of coatings of these mixtures, establishing them as suitable bioceramic substrates for bone tissue

  17. Surgical results of lumbar interbody fusion using calcium phosphate cement.

    PubMed

    Hirasawa, Motohiro; Mure, Hideo; Toi, Hiroyuki; Nagahiro, Shinji

    2014-01-01

    Clinical and radiological outcomes of lumbar interbody fusion using artificial fusion cages filled with calcium phosphate cements (CPCs) were retrospectively reviewed. Between 2002 and 2011, 25 patients underwent lumbar interbody fusion at Tokushima University Hospital, and 22 patients were enrolled in this study. Of these, 5 patients received autologous local bone grafts and 17 received CPC. Japan Orthopedic Association (JOA) score was used for clinical outcome assessments. Lumbar radiography and computed tomography (CT) were performed at 12, 24 months and last follow-up period to assess bony fusion. The mean JOA score of all patients improved from 9.3 before surgery to 21.0 at 24 months after surgery. Fusion had occurred in 5 of 5 patients in the local bone graft group and in 16 of 17 patients in CPC group at 24 months postoperatively. No surgically related complication was occurred in both groups. CPC is a useful and safe graft material for lumbar interbody fusion.

  18. Surface modification of biphasic calcium phosphate bioceramic powders

    NASA Astrophysics Data System (ADS)

    Yang, W. Z.; Zhou, D. L.; Yin, G. F.; Li, G. D.

    2008-11-01

    Biphasic calcium phosphate (BCP)/poly L-lactide (PLLA) biocomposite is proven to be a promising bone graft material or scaffold for bone tissue engineering. To improve the interfacial compatibility of BCP bioceramic with biopolymer-PLLA, BCP powders were surface-modified in different condition to graft polymer groups onto the surface of the BCP powders. L-lactide and L-lactic acid (LA) oligomer were used to modify the BCP surface with stannous octanoate (Sn(Oct) 2) and stannous chloride (SnCl 2) as catalyst, respectively. Results show that the surface modification effect is obvious and the amount of grafted organic group is above 6.5 wt.%. Sn(Oct) 2 and SnCl 2 are the optimal catalysts for the surface grafting reaction of L-lactide and L-LA oligomer, respectively. The surface grafting slightly increase the particle size of BCP powders and reduce the tendency for their agglomeration.

  19. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.

    PubMed

    Li, Jianhua; Baker, Bryan A; Mou, Xiaoning; Ren, Na; Qiu, Jichuan; Boughton, Robert I; Liu, Hong

    2014-04-01

    With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial.

    PubMed

    Gauthier, O; Khairoun, I; Bosco, J; Obadia, L; Bourges, X; Rau, C; Magne, D; Bouler, J M; Aguado, E; Daculsi, G; Weiss, P

    2003-07-01

    The use of injectable calcium phosphate (CaP) biomaterials in noninvasive surgery should provide efficient bone colonization and implantation. Two different kinds of injectable biomaterials are presently under development: ionic hydraulic bone cements that harden in vivo after injection, and an association of biphasic calcium phosphate (BCP) ceramic granules and a water-soluble polymer vehicle (a technique particularly investigated by our group), providing an injectable CaP bone substitute (IBS). In our study, we compared these two approaches, using physicochemical characterizations and in vivo evaluations in light microscopy, scanning electron microscopy, and three-dimensional microtomography with synchrotron technology. Three weeks after implantation in rabbit bone, both biomaterials showed perfect biocompatibility and bioactivity, but new bone formation and degradation of the biomaterial were significantly greater for BCP granules than for ionic cement. Newly formed bone developed, binding the BCP granules together, whereas new bone grew only on the surface of the cement, which remained dense, with no obvious degradation 3 weeks after implantation. This study confirms that BCP granules carried by a cellulosic polymer conserve bioactivity and are conducive to earlier and more extensive bone substitution than a carbonated-hydroxyapatite bone cement. The presence of intergranular spaces in the BCP preparation, as shown on microtomography imaging, seems particularly favorable, allowing body fluids to reach each BCP granule immediately after implantation. Thus, the IBS functions as a completely interconnected ceramic with total open macroporosity. This new bone replacement approach should facilitate microinvasive bone surgery and local delivery of bone therapy agents. Copyright 2003 Wiley Periodicals, Inc.

  1. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles.

    PubMed

    Melo, Mary Anne S; Cheng, Lei; Weir, Michael D; Hsia, Ru-Ching; Rodrigues, Lidiany K A; Xu, Hockin H K

    2013-05-01

    Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50%-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1 wt %. The adhesive contained 0.1% NAg and 10% QADM, and 0%-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p > 0.1). Scanning electron microscopy showed numerous resin tags, and transmission electron microscopy revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p < 0.05). In conclusion, novel dental bonding agents containing NAg, QADM, and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition.

  2. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Hsia, Ru-ching; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2013-01-01

    Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1wt%. The adhesive contained 0.1% NAg and 10% QADM, and 0-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p>0.1). SEM showed numerous resin tags, and TEM revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p<0.05). In conclusion, novel dental bonding agents containing NAg, QADM and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition. PMID:23281264

  3. Deposition of calcium phosphate coatings using condensed phosphates (P2O7(4-) and P3O10(5-)) as phosphate source through induction heating.

    PubMed

    Zhou, Huan; Hou, Saisai; Zhang, Mingjie; Yang, Mengmeng; Deng, Linhong; Xiong, Xinbo; Ni, Xinye

    2016-12-01

    In present work condensed phosphates (P2O7(4-) and P3O10(5-)) were used as phosphate source in induction heating to deposit calcium phosphate coatings. The phase, morphology, and composition of different phosphate-related coatings were characterized and compared using XRD, FTIR, and SEM analyses. Results showed that P2O7(4-)formed calcium pyrophosphate hydrate coatings with interconnected cuboid-like particles. The as-deposited calcium tripolyphosphate hydrate coating with P3O10(5-) was mainly composed of flower-like particles assembled by plate-like crystals. The bioactivity and cytocompatibility of the coatings were also studied. Moreover, the feasibility of using hybrid phosphate sources for preparing and depositing coatings onto magnesium alloy was investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bone formation in algae-derived and synthetic calcium phosphates with or without poloxamer.

    PubMed

    Zhou, Aileen Jing-Jing; Clokie, Cameron Malcolm Lang; Peel, Sean Alexander Fitzgerald

    2013-03-01

    Calcium phosphate ceramics such as hydroxyapatite (HA) and biphasic calcium phosphates are used clinically to repair bone defects. These calcium phosphate ceramics can differ by composition, structure, and rate of degradation. This study compared 3 calcium phosphate ceramics, 2 of which have similar structure but different composition: 100% HA (algae derived) and HA/β-tricalcium phosphate (β-TCP) 20/80 (algae derived), and 2 with different structure but similar composition: HA/β-TCP 20/80 (algae derived) and HA/β-TCP 15/85 (synthetic). Calcium phosphate ceramics can be difficult to handle and contour during the surgeries. To improve handling, Poloxamer 407 (P407) was added to the 3 ceramics, and its effect on bone healing was also assessed. Bilateral calvarial defects created in the parietal bones of New Zealand white rabbits were left unfilled or were filled with autograft or one of the ceramics, with and without P407. Six weeks after operation, healing was evaluated qualitatively by histology and quantitatively by micro-computed tomography analysis and histomorphometry. All 3 calcium phosphate ceramics demonstrated osteoconductivity and performed similarly in supporting new bone formation, suggesting that the differences in their composition, structure, or degradation did not significantly affect their ability to promote bone healing in this application. Incorporating P407 did not impede osteoconductivity as HA and biphasic calcium phosphate combined with P407 performed similarly as when used alone for craniofacial defect repair.

  5. Human osteoblast response to pulsed laser deposited calcium phosphate coatings.

    PubMed

    Bigi, A; Bracci, B; Cuisinier, F; Elkaim, R; Fini, M; Mayer, I; Mihailescu, I N; Socol, G; Sturba, L; Torricelli, P

    2005-05-01

    Octacalcium phosphate (OCP) and Mn(2+)-doped carbonate hydroxyapatite (Mn-CHA) thin films were deposited on pure, highly polished and chemically etched Ti substrates with pulsed laser deposition. The coatings exhibit different composition, crystallinity and morphology that might affect their osteoconductivity. Human osteoblasts were cultured on the surfaces of OCP and Mn-CHA thin films, and the cell attachment, proliferation and differentiation were evaluated up to 21 days. The cells showed a normal morphology and a very good rate of proliferation and viability in every experimental time. Alkaline phosphatase activity was always higher than the control and Ti groups. From days 7 to 21 collagen type I production was higher in comparison with control and Ti groups. The level of transforming growth factor beta 1 (TGF-beta1) was lower at 3 and 7 days, but reached the highest values during following experimental times (14 and 21 days). Our data demonstrate that both calcium phosphate coatings favour osteoblasts proliferation, activation of their metabolism and differentiation.

  6. Calcium phosphate nanoparticles functionalized with a dimethacrylate monomer.

    PubMed

    Rodrigues, Marcela Charantola; Hewer, Thiago Lewis Reis; Brito, Giancarlo Espósito de Souza; Arana-Chavez, Victor Elias; Braga, Roberto Ruggiero

    2014-12-01

    The synthesis of calcium phosphate nanoparticles may include modifying agents to tailor particle size, reduce agglomeration and add specific functionalities. This study describes the synthesis of dicalcium phosphate dihydrate (DCPD) nanoparticles functionalized with triethylene glycol dimethacrylate (TEGDMA), added to one of the reacting solutions, with the purpose of reducing agglomeration and improving the compatibility with vinyl-based resin matrices. The nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), transmission electronic microscopy (TEM), dynamic light scattering (DLS), and surface area (BET). As controls, proprietary DCPD nanoparticles and nanoparticles synthesized without the addition of TEGDMA ("bare") were subjected to the same analytical methods. XRD revealed a similar crystalline structure of the synthesized materials in comparison to the proprietary nanoparticles. The presence of a TEGDMA layer was confirmed by elemental analysis and TGA, corresponding to a mass fraction of 8.5%. FTIR analysis of the functionalized nanoparticles revealed the suppression of some absorbance bands found in the neat TEGDMA. A chemisorption mechanism between TEGDMA and the surface of primary particles by ion-dipole interaction involving TEGDMA oxyethylene, and also an interaction mechanism between the particle surface and terminal-CH3 groups are proposed. Functionalized nanoparticles showed 3 to 11 times higher surface area than the controls, in agreement with DLS data, indicating lower agglomeration.

  7. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    PubMed Central

    Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.

    2016-01-01

    Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874

  8. On the effect of the injection of potassium phosphate in vivo inducing the precipitation of serum calcium with inorganic phosphate

    PubMed Central

    Soares, Alcimar B; Ticianeli, José G; Soares, Letícia B M; Amaro, George

    2013-01-01

    High concentrations of inorganic phosphate (Pi) resulted from the hydrolysis of ATP is strongly associated to the weakness of the contractile mechanism of muscles due to its attractiveness to calcium. The majority of the experiments to study such effect are conducted in vitro. This work investigates the effects of different concentrations of Pi, induced by the injection of potassium phosphate in live animals, in the precipitation with serum calcium and the generation of calcium phosphate composites. The experiments were also designed to find out the ideal amount of potassium phosphate to induce an effective reaction. Potassium phosphate was injected in Wistar rats, randomly separated and distributed into seven groups. Group I was injected with 0.5 ml of saline solution (control) and groups II through VII were injected with 0.5, 1.5, 2.5, 5.0, 7.5 and 10.0 mg/kg of potassium phosphate, respectively. Blood collected from the inferior vena cava was submitted to biochemical analyses to measure the concentrations of calcium, Pi, urea and creatinine. The results showed that Pi, induced by the injection of potassium phosphate in live animals, causes precipitation with serum calcium, with statistically significant differences between the control and the treatment groups for doses up to 5.0 mg/kg. No statistically significant differences were found between the different doses and the concentration of urea and creatinine in the plasma. We conclude that potassium phosphate can be used to induce serum calcium precipitation in-vivo, with minor effects on other physiological variables, and the ideal dose to do so is 5.0 mg/kg. PMID:24379908

  9. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  10. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement.

    PubMed

    Ko, Chia-Ling; Chen, Jian-Chih; Tien, Yin-Chun; Hung, Chun-Cheng; Wang, Jen-Chyan; Chen, Wen-Cheng

    2015-01-01

    Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC. DCP-rich CPC exhibited a twofold, surface-modified DCP anhydrous (DCPA)-to-tetracalcium phosphate (TTCP) molar ratio, whereas conventional CPC (c-CPC) showed a onefold, surface unmodified DCPA-to-TTCP molar ratio. Cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity in the two CPCs were examined with bone cell progenitor D1 cultured in vitro. Microcomputed tomography and histological observation were conducted after CPC implantation in vivo to analyze the residual implant ratio and new bone formation rate. D1 cells cultured on DCP-rich CPC surfaces exhibited higher cell viability, ALP activity, and ALP quantity than c-CPC. Histological evaluation indicated that DCP-rich CPC showed lesser residual implant and higher new bone formation rate than c-CPC. Therefore, DCP-rich CPC can improve bioresorption. The newly developed DCP-rich CPC exhibited potential therapeutic applications for bone reconstruction.

  11. Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response.

    PubMed

    Gandolfi, M G; Spagnuolo, G; Siboni, F; Procino, A; Rivieccio, V; Pelliccioni, G A; Prati, C; Rengo, S

    2015-11-01

    The aim was to test the properties of experimental calcium silicate/calcium phosphate biphasic cements with hydraulic properties designed for vital pulp therapy as direct pulp cap and pulpotomy. CaSi-αTCP and CaSi-DCDP were tested for ion-releasing ability, solubility, water sorption, porosity, ability to nucleate calcium phosphates, and odontoblastic differentiation—alkaline phosphatase (ALP) and osteocalcin (OCN) upregulation—of primary human dental pulp cells (HDPCs). The materials showed high Ca and OH release, high open pore volume and apparent porosity, and a pronounced ability to nucleate calcium phosphates on their surface. HDPCs treated with CaSi-αTCP showed a strong upregulation of ALP and OCN genes, namely a tenfold increase for OCN and a threefold increase for ALP compared to the control cells. Conversely, CaSi-DCDP induced a pronounced OCN gene upregulation but had no effect on ALP gene regulation. Both cements showed high biointeractivity (release of Ca and OH ions) correlated with their marked ability to nucleate calcium phosphates. CaSi-αTCP cement proved to be a potent inducer of ALP and OCN genes as characteristic markers of mineralization processes normally poorly expressed by HDPCs. Calcium silicate/calcium phosphate cements appear to be attractive new materials for vital pulp therapy as they may provide odontogenic/dentinogenic chemical signals for pulp regeneration and healing, and dentin formation in regenerative endodontics.

  12. Investigating calcium polyphosphate addition to a conventional calcium phosphate cement for bone-interfacing applications

    NASA Astrophysics Data System (ADS)

    Krausher, Jennifer Lynn

    Calcium phosphate cements (CPCs) are of great interest in bone regeneration applications because of their biocompatibility and osteoconductivity, and as delivery vehicles for therapeutics; however, delivery applications have been limited by adverse interactions between therapeutics and the cement setting reaction. Amorphous calcium polyphosphate (CPP) yields a biodegradable material with a demonstrated drug delivery capacity following appropriate processing. The incorporation of drug-loaded CPP into a CPC is under consideration as a method of minimizing adverse interactions and extending drug release. This thesis represents the first investigation into the effects of CPP addition on the properties, setting and antibiotic release profile of a conventional apatitic calcium phosphate cement. As-made, gelled and vancomycin-loaded CPP particulate were added to the powder component of a conventional dicalcium phosphate/tetracalcium phosphate CPC. The setting behaviour, set properties and microstructure of the resulting CPP-CPCs were evaluated with setting time testing (Gilmore needle method), pH testing, mechanical testing, SEM imaging, XRD and FTIR analysis. In vitro degradation and elution behaviour were evaluated by monitoring calcium release (atomic absorbance spectroscopy), mechanical strength and vancomycin release (UV-visual spectrophotometry). CPP addition was found to increase the setting time, reduce the mechanical strength and inhibit the conversion of the CPC starting powders to the set apatitic phase. The most likely mechanism for the observed effect of CPP addition was the adsorption of polyphosphate chains on the particle surfaces, which would inhibit the dissolution of the starting powders and the conversion of apatite precursor phases to apatite, leading to reduced mechanical properties. The detrimental effects of CPP were reduced by limiting the CPP fraction to less than a few weight per cent and increasing the size of the CPP particulate. CPP

  13. Calcium and phosphate concentrations and future development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study.

    PubMed

    Lorenzo, Carlos; Hanley, Anthony J; Rewers, Marian J; Haffner, Steven M

    2014-07-01

    Low phosphate and high calcium concentrations have been linked to altered glucose tolerance and reduced insulin sensitivity in non-diabetic individuals. The aim of this study was to examine the relationships of calcium and phosphate levels and the calcium-phosphate product with the development of type 2 diabetes. Participants were 863 African-Americans, Hispanics and non-Hispanic whites in the Insulin Resistance Atherosclerosis Study who were free of diabetes at baseline. The mean follow-up period was 5.2 years. The insulin sensitivity index (SI) and acute insulin response (AIR) were directly measured using the frequently sampled IVGTT. Calcium concentration (OR per 1 SD unit increase, 1.26 [95% CI 1.04, 1.53]) and calcium-phosphate product (OR 1.29 [95% CI 1.04, 1.59]) were associated with incident diabetes after adjustment for demographic variables, family history of diabetes, and 2 h glucose. The relationship between phosphate concentration and progression to diabetes was close to statistical significance (OR 1.21 [95% CI 0.98, 1.49]). Calcium concentration (OR 1.37 [95% CI 1.09, 1.72]) and calcium-phosphate product (OR 1.39 [95% CI 1.09, 1.77]) remained associated with incident diabetes after additional adjustment for BMI, plasma glucose, SI, AIR, C-reactive protein, estimated GFR, diuretic drugs and total calcium intake. Elevated serum calcium and calcium-phosphate product are associated with increased risk of developing type 2 diabetes independently of measured glucose, insulin secretion and insulin resistance. Future studies need to analyse the role of calcium-phosphate homeostasis in the pathophysiology of diabetes.

  14. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    SciTech Connect

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  15. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction.

    PubMed

    Guo, H; Wei, J; Liu, C S

    2006-12-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement.

  16. The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations

    NASA Astrophysics Data System (ADS)

    Abbona, F.; Madsen, H. E. Lundager; Boistelle, R.

    1986-04-01

    The precipitation of calcium and magnesium phosphates is performed at 25°C by mixing solutions of ammonium phosphate and solutions of calcium and magnesium chlorides under the condition [ P] = [ Ca] + [ Mg] in large pH intervals. Before any nucleation the phosphate concentration ranges from 0.50M to 0.01M. The phases first precipitated are CaHPO 4·2H 2O (brushite), CaHPO 4 (monetite), Ca 3(PO 4) 2· xH 2O (amorphous calcium phosphate), MgNH 4PO 4·6H 2O (struvite), and MgHPO 4·3H 2O (newberyite). The precipitation fields of each phase are determined and discussed as a function of pH, composition and supersaturation. The solutions are even supersaturated with respect to several other calcium phosphates but they never occur first even if their supersaturation is the highest.

  17. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate.

    PubMed

    Burguera, Elena F; Xu, Hockin H K; Weir, Michael D

    2006-04-01

    Calcium phosphate cement (CPC) sets in situ with intimate adaptation to the contours of defect surfaces, and forms an implant having a structure and composition similar to hydroxyapatite, the putative mineral in teeth and bones. The objective of the present study was to develop an injectable CPC using dicalcium phosphate dihydrate (DCPD) with a high solubility for rapid setting. Two agents were incorporated to impart injectability and fast-hardening to the cement: a hardening accelerator (sodium phosphate) and a gelling agent (hydroxypropyl methylcellulose, HPMC). The cement with DCPD was designated as CPC(D), and the conventional cement was referred to as CPC(A). Using water without sodium phosphate, CPC(A) had a setting time of 82 +/- 6 min. In contrast, CPC(D) exhibited rapid setting with a time of 17 +/- 1 min. At 0.2 mol/L sodium phosphate, setting time for CPC(D) was 15 +/- 1 min, significantly faster than 40 +/- 2 min for CPC(A) (Tukey's at 0.95). Sodium phosphate decreased the paste injectability (measured as the paste mass extruded from the syringe divided by the original paste mass inside the syringe). However, the addition of HPMC dramatically increased the paste injectability. For CPC(D), the injectability was increased from 65% +/- 12% without HPMC to 98% +/- 1% with 1% HPMC. Injectability of CPC(A) was also doubled to 99% +/- 1%. The injectable and rapid-setting CPC(D) possessed flexural strength and elastic modulus values overlapping the reported values for sintered porous hydroxyapatite implants and cancellous bone. In summary, the rapid setting and relatively high strength and elastic modulus of CPC(D) should help the graft to quickly attain strength and geometrical integrity within a short period of time postoperatively. Furthermore, the injectability of CPC(D) may have potential for procedures involving defects with limited accessibility or narrow cavities, when there is a need for precise placement of the paste, and when using minimally invasive

  18. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery.

    PubMed

    Tervahauta, Taina; van der Weijden, Renata D; Flemming, Roberta L; Hernández Leal, Lucía; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1-2 mm, organic content of 33 wt%, and phosphorus content of 11-13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product.

  19. Inhibition of the formation of oral calcium phosphate precipitates: the possible effects of certain honeybee products.

    PubMed

    Hidaka, S; Okamoto, Y; Ishiyama, K; Hashimoto, K

    2008-08-01

    We studied the effects of honeybee products on the in vitro formation of calcium phosphate precipitates. Screening tests of the in vitro formation of calcium phosphate precipitates using 20 types of honey and four types of propolis were carried out using the pH drop method. The inhibitory effect on the rate of amorphous calcium phosphate transformation to hydroxyapatite and on the induction time varied greatly among the 20 types of honey and four types of propolis. We classified them according to their effects on decreasing the rate of amorphous calcium phosphate transformation to hydroxyapatite and/or increasing the induction time. Two of the 20 honeys showed little or no inhibition, either on the rate of amorphous calcium phosphate transformation to hydroxyapatite or on the induction time. Six of the honeys reduced the rate of amorphous calcium phosphate transformation to hydroxyapatite by 12-35% and with a 2.5- to 4.4-fold increase in the induction time. The remaining 12 honeys showed even greater activity. Because four of these 12 honeys had an inhibitory effect on the rate of amorphous calcium phosphate formation, they were excluded as candidates for anticalculus agents. Furthermore, three of the four types of propolis showed an inhibitory effect that was the same as or greater than 1-hydroxyethylidene- 1,1-bisphosphonate. These results suggest that eight honeys and three types of propolis may have potential as anticalculus agents in toothpastes and mouthwashes.

  20. Polymeric additives to enhance the functional properties of calcium phosphate cements

    PubMed Central

    Perez, Roman A; Kim, Hae-Won

    2012-01-01

    The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties. PMID:22511991

  1. Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters.

    PubMed

    Schiller, Carsten; Epple, Matthias

    2003-05-01

    Carbonated amorphous calcium phosphates were prepared with different carbonate content. Their ability to neutralise acidity was probed by time-resolved titration experiments with lactic acid, the monomer that results from degradation of polylactide. The results show that although calcium phosphate as such can reduce acidity, their buffering range lies at a pH of about 4, i.e. outside the physiological range. This is not related to the rate of dissolution. Carbonated calcium phosphates as well as calcium carbonate (calcite) alone are able to keep the pH around 7.4. Consequently, carbonated calcium phosphates are suitable basic filler materials as they are able to compensate acidity, and to buffer within the physiological pH-range.

  2. Quantifying exposure to calcium and phosphate in ESRD; predictive of atherosclerosis on top of arteriosclerosis?

    PubMed

    van Jaarsveld, B C; van der Graaf, Y; Vos, P F; Soedamah-Muthu, S S

    2010-12-01

    Long-term exposure to hypercalcaemia and hyperphosphataemia leads to media calcification and predicts mortality in patients with end-stage renal disease (ESRD). It is debatable whether this exposure is only a risk factor for arteriosclerosis, or also for superimposed atherosclerosis. Calcium-phosphate exposure is difficult to quantify, because it is variable in time and exerts its deleterious effects only after prolonged presence. In 90 dialysis patients, calcium and phosphate values from the complete dialysis period were collected. From three-month averages, measures for calcium-phosphate exposure were derived after exclusion of transplant periods. Calcium-phosphate exposure was then related to intima-media thickness (IMT) and to ankle-brachial index (ABI) as markers of early atherosclerosis. Calcium-phosphate exposure was quantified in three ways using 1670 patient-quarters (i.e. three-months periods) covering 93% of the time on dialysis: averaged calcium-phosphate exposure, percentage of time with above-reference values, and burden of hypercalcaemia/hyperphosphataemia represented by this percentage multiplied by months on dialysis. No association was found with IMT. Patients with increased, not decreased, ABI had higher calcium-phosphate exposure throughout dialysis treatment: hyperphosphataemia burden was 31 (19 to 43) months for patients with ABI between 0.90 and 1.40 and 79 (58 to 100) months for patients with ABI >1.40 or incompressible ankle arteries (p<0.001). These findings do not support the hypothesis that calcium-phosphate exposure leads to atherosclerotic changes on top of arteriosclerosis in ESRD, and confirm its role in causing arteriosclerotic damage leading to increased arterial stiffness and incompressible ankle arteries. The used tool for quantifying calcium-phosphate exposure is easy to apply and can properly weigh the complete exposure during ESRD.

  3. Inorganic-organic hybrid nanoparticles with biocompatible calcium phosphate thin shells for fluorescence enhancement.

    PubMed

    Bastakoti, Bishnu Prasad; Hsu, Yin-Chu; Liao, Shih-Hsiang; Wu, Kevin C-W; Inoue, Masamichi; Yusa, Shin-ichi; Nakashima, Kenichi; Yamauchi, Yusuke

    2013-06-01

    Polymeric micelles consisting of asymmetric triblock copolymers were successfully used for fabrication of robust hybrid nanoparticles with highly biocompatible calcium phosphate shells. The hydrophobic polystyrene core encapsulates hydrophobic fluorescent dyes such as Nile red. The anionic polyacrylic acid provides the site for the mineralization reaction of calcium phosphate. The polyethylene glycol corona stabilizes the hybrid nanoparticles. Fluorescent dyes can be used as imaging agents for determining the location of the nanoparticles and to give an observable indication of drug delivery, while the calcium phosphate shell can enhance the fluorescence of the encapsulated dye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Low temperature solution deposition of calcium phosphate coatings for orthopedic implants

    SciTech Connect

    Campbell, A.A.; Graff, G.L.

    1994-04-01

    Calcium phosphate coatings were grown from aqueous solution onto a derivatized self-assmebled monolayer (SAM) which was covalently bound to a titanium metal substrate. The SAM molecules provided an idea connection between the metal surface and the calcium phosphate coating. The trichlorosilane terminus of the SAM molecule insured covalent attachment to the surface, while the functionalized ``tail`` induced heterogeneous nucleation of the calcium phosphate coating from supersaturated solutions. This low temperature process allowed for uniform coatings to be produced onto complex-shaped and/or microporous surfaces and provided better control of phase purity.

  5. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement.

    PubMed

    Chen, Wei-Luen; Chen, Chang-Keng; Lee, Jing-Wei; Lee, Yu-Ling; Ju, Chien-Ping; Lin, Jiin-Huey Chern

    2014-04-01

    In-vitro and in-vivo studies have been conducted on an in-house-developed tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA)/calcium sulfate hemihydrate (CSH)-derived composite cement. Unlike most commercial calcium-based cement pastes, the investigated cement paste can be directly injected into water and harden without dispersion. The viability value of cells incubated with a conditioned medium of cement extraction is >90% that of Al2O3 control and >80% that of blank medium. Histological examination reveals excellent bonding between host bone and cement without interposition of fibrous tissues. At 12 weeks-post implantation, significant remodeling activities are found and a new bone network is developed within the femoral defect. The 26-week samples show that the newly formed bone becomes more mature, while the interface between residual cement and the new bone appears less identifiable. Image analysis indicates that the resorption rate of the present cement is much higher than that of TTCP or TTCP/DCPA-derived cement under similar implantation conditions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Reinforcement of injectable calcium phosphate cement by gelatinized starches.

    PubMed

    Liu, Huiling; Guan, Ying; Wei, Donglei; Gao, Chunxia; Yang, Huilin; Yang, Lei

    2016-04-01

    Current injectable calcium phosphate bone cements (CPC) encounter the problems of low strength, high brittleness, and low cohesion in aqueous environment, which greatly hinder their clinical applications for loading-bearing bone substitution and minimally invasive orthopedic surgeries. Here, a strategy of using gelatinized starches to reinforce injectable CPC was investigated. Four types of starches, namely corn starch, crosslinked starch, cationic starch, and Ca-modified starch, were studied for their influence on CPC mechanical properties, injectability, setting times, anticollapsibility, and cytocompatibility. Gelatinized starch significantly improved compressive strength and modulus as well as strain energy density of CPC to different extents. Specifically, both corn starch and Ca-modified starch revealed sixfold and more than twofold increases in the compressive strength and modulus of CPC, respectively. The addition of gelatinized starches with proper contents increased the injectability and anticollapsibility of CPC. In addition, osteoblast proliferation tests on leaching solution of modified cements showed that gelatinized starches had no adverse effect on cell proliferation, and all cement samples resulted in better osteoblast proliferation compared to phosphate-buffered solution control. The mechanisms behind the reinforcing effect of different starches were preliminarily studied. Two possible mechanisms, reinforcement by the second phase of gelatinized starch and strong interlocking of apatite crystals, were proposed based on the results of starch zeta potential and viscosity, cement microstructure, and resultant mechanical properties. In conclusion, incorporating gelatinized starches could be an effective, facile, and bio-friendly strategy to reinforce injectable CPC and improve its mechanical stability, and thus, should be further studied and developed. © 2015 Wiley Periodicals, Inc.

  7. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement.

    PubMed

    Xie, Xian-Ju; Xing, Dan; Wang, Lin; Zhou, Han; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin Hk

    2016-11-04

    White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.International Journal of Oral Science advance online publication,4 November 2016; doi:10.1038/ijos.2016.40.

  8. Mechanical and fracture behavior of calcium phosphate cements

    NASA Astrophysics Data System (ADS)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  9. Pressure effects on the interactions of the sarcoplasmic reticulum calcium transport enzyme with calcium and dinitrophenyl phosphate.

    PubMed

    Hasselbach, W

    1988-01-01

    The effect of hydrostatic pressure on the calcium-dependent hydrolysis of dinitrophenyl phosphate by the sarcoplasmic calcium transport enzyme has been studied. The magnesium dinitrophenyl phosphate complex is the true substrate of the enzyme (K = 7000 M-1) by which it is hydrolyzed at 20 degrees C with a turnover rate of 4 s-1. Activation by calcium ions occurs between 0.1 and 1 microM as observed for ATP hydrolysis. The activation volume of the enzyme saturated with both ligands exhibits pronounced pressure-dependence, rising from 25 ml/mol at atmospheric pressure to 80 ml/mol at 100 MPa. The apparent binding volumes for magnesium dinitrophenyl phosphate and calcium are likewise pressure-dependent. The volume changes connected with the binding of magnesium dinitrophenyl phosphate is quite small approaching zero at 100 MPa. The apparent binding volume for calcium greatly increases with pressure from 35 ml/mol at atmospheric pressure to 150 ml/mol at 70 MPa. A nearly constant binding volume of approximately 40 ml/mol results if the effect of pressure on the respective rate constants that contribute to the apparent binding constant, is taken into account. The pressure-dependence of enzyme activity at subsaturating calcium concentrations yields an activation volume of 250 ml/mol related to the rate of calcium binding indicating the occurrence of a transient large volume expansion of the enzyme complex. The volume changes observed for the calcium-dependent interaction of the enzyme with magnesium dinitrophenyl phosphate well agree with that found for magnesium p-nitrophenyl phosphate (W. Hasselbach and L. Stephan,Z. Naturforsch. 42 c, 641-652 (1987)) indicating that the found volume changes are intrinsic properties of the transport enzyme, independent of the respective energy donor.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Osteointegration and Resorption of Intravertebral and Extravertebral Calcium Phosphate Cement.

    PubMed

    Klein, Roman; Tetzlaff, Ralf; Weiss, Christel; Schäfer, Meike-Kristina; Tanner, Michael; Wiedenhöfer, Bernd; Grafe, Ingo; Meeder, Peter-Jürgen; Noeldge, Gerd; Nawroth, Peter P; Kasperk, Christian

    2017-04-01

    Eleven patients with painful osteoporotic vertebral fractures who underwent kyphoplasty using calcium phosphate (CaP) cement were followed up for 1 week, 1, 2, and 3 years in a monocentric, nonrandomized, noncontrolled retrospective trial. This study investigates long-term radiomorphologic features of intraosseous CaP cement implants and of extraosseous CaP cement leakages for up to 3 years after implantation by kyphoplasty. Kyphoplasty is frequently used for the treatment of painful osteoporotic fractures. Of the materials available, CaP is frequently used as a filling material. Resorption of this material is frequently observed, although clinical outcome is comparable with other cements. Kyphoplasty utilizing CaP cement was performed in 11 patients with painful osteoporotic vertebral fractures. All patients received a pharmacological antiosteoporosis treatment consisting of calcium, vitamin D, and a standard dose of oral bisphosphonates. Radiomorphologic measurements, pain, and mobility were assessed. Intraosseous and extraosseous CaP cement volumes decreased significantly over 3 years. However, vertebral stability as determined by a constant vertebral body height and the sagittal index was not impaired. Pain improved significantly 2 years after implantation and the mobility scores 1 year after kyphoplasty at least until the third year. Intravertebral CaP cement implants are resorbed slowly over time without jeopardizing stability and clinical outcomes most likely because of a slowly progressing osseous replacement. Extraosseous CaP cement material because of leakages during the kyphoplasty procedure is almost completely resorbed as early as 2 years after the leakage occurred. Therefore, CaP cement is an important alternative to PMMA-based cement materials utilized for kyphoplasty of osteoporotic vertebral fractures.

  11. Polyelectrolyte multilayer-calcium phosphate composite coatings for metal implants.

    PubMed

    Elyada, Alon; Garti, Nissim; Füredi-Milhofer, Helga

    2014-10-13

    The preparation of organic-inorganic composite coatings with the purpose to increase the bioactivity of bioinert metal implants was investigated. As substrates, glass plates and rough titanium surfaces (Ti-SLA) were employed. The method comprises the deposition of polyelectrolyte multilayers (PEMLs) followed by immersion of the coated substrate into a calcifying solution of low supersaturation (MCS). Single or mixed PEMLs were constructed from poly-L-lysine (PLL) alternating with poly-L-glutamate, (PGA), poly-L-aspartate (PAA), and/or chondroitin sulfate (CS). ATR-FTIR spectra reveal that (PLL/PGA)10 multilayers and mixed multilayers with a (PLL/PGA)5 base contain intermolecular β-sheet structures, which are absent in pure (PLL/PAA)10 and (PLL/CS)10 assemblies. All PEML coatings had a grainy topography with aggregate sizes and size distributions increasing in the order: (PLL/PGA)n < (PLL/PAA)n < (PLL/CS)n. In mixed multilayers with a (PLL/PGA)n base and a (PLL/PAA)n or (PLL/CS)n top, the aggregate sizes were greatly reduced. The PEMLs promoted calcium phosphate nucleation and early crystal growth, the intensity of the effect depending on the composition of the terminal layer(s) of the polymer. In contrast, crystal morphology and structure depended on the supersaturation, pH, and ionic strength of the MCS, rather than on the composition of the organic matrix. Crystals grown on both uncoated and coated substrates were mostly platelets of calcium deficient carbonate apatite, with the Ca/P ratio depending on the precipitation conditions.

  12. Efficacy of Erbium, Chromium-doped:Yttrium, Scandium, Gallium, and Garnet Laser Irradiation Combined with Resin-based Tricalcium Silicate and Calcium Hydroxide on Direct Pulp Capping: A Randomized Clinical Trial.

    PubMed

    Cengiz, Esra; Yilmaz, Hasan Guney

    2016-03-01

    The purpose of this randomized clinical study was to evaluate the efficiency of erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser irradiation combined with a resin-based tricalcium silicate material and calcium hydroxide in direct pulp capping for a 6-month follow-up period. A total of 60 teeth of 60 patients between the ages of 18 and 41 years were recruited for this study. Sixty permanent vital teeth without symptoms and radiographic changes were randomly assigned to the following 4 groups (n = 15): Gr CH, the exposed area was sealed with calcium hydroxide (CH) paste; Gr laser CH, the treated area was sealed with CH paste after Er,Cr:YSGG laser irradiation at an energy level of 0.5 W without water and with 45% air; Gr TheraCal, TheraCal LC (Bisco, Schaumburg, IL) was applied directly to the exposed pulp; and Gr Laser TheraCal, TheraCal LC was applied after irradiation with an Er,Cr:YSGG laser. At the 1-week and 1-, 3-, and 6-month recall examinations, the loss of vitality, spontaneous pain, reactions to thermal stimuli and percussion, and radiographic changes were considered as failure. The success rates in the CH and TheraCal groups were 73.3% and 66.6%, respectively. These rates did not reveal any significant difference. In both laser groups, success rates were 100%. The Er,Cr:YSGG laser-irradiated TheraCal and Er,Cr:YSGG laser-irradiated CH groups showed statistically higher success rates than the TheraCal and CH groups, respectively. Er,Cr:YSGG laser irradiation at 0.5 W without water combined with pulp capping agents can be recommended for direct pulp therapy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. TEM studies of calcium phosphates for the understanding of biomineralization

    NASA Astrophysics Data System (ADS)

    Xin, Renlong

    Calcium phosphate (Ca-P) formation and bone minerals have been the focus of research for several decades because achievements in these areas could provide valuable insights into the understanding of biomineralization. In this thesis work, Ca-P formation, octacalcium phosphate (OCP) to hydroxyapatite (HA) transformation and bone minerals were systematically studied by transmission electron microscopy (TEM) techniques. Ca-P formations on various bioceramics in simulated body fluid and in rabbit muscle sites were investigated. The bioceramics included sintered bioglass RTM, A-W glass-ceramics, HA, alpha-tricalcium phosphate (TCP), beta-TCP and HA-TCP. The comparative studies showed that OCP formation occurred on all types of bioceramic surfaces in vitro and in vivo, except on beta-TCP; however HA formation did not occur on every type of bioceramics; it less likely occurred on the surfaces of HA and alpha-TCP. These findings were contradicted to the common statements in literatures. OCP to HA transformations in vitro and in vivo were observed by high-resolution TEM (HRTEM). The in vitro transformation was induced by electron beam irradiations of in situ TEM on synthetic OCP crystals. The in vivo transformation was revealed on rod-like HA precipitates formed in dog muscle sites. Based on HRTEM examinations and image simulations, OCP/HA crystallographic orientations were determined to be OCP (010) // HA (01¯0) and OCP (001) // HA (001¯), which differed from a well known model proposed by Brown et al. The minerals of cortical bone were extracted from human tibiae and rat femurs using 10% neutral ethylenediamine tetraacetic acid (EDTA) solution. TEM examinations showed that the dominance of bone minerals was plate-like and a few were needle-like. The length of most plate-like minerals ranged from 50 to 150 nm but could be up to 200 nm. To the author's knowledge, OCP structure was for the first time, identified in a number of plate-like bone minerals by selected area

  14. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.

    PubMed

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C; Kim, Hae-Won

    2014-03-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8-1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement-alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate-hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement-alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone.

  15. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    PubMed Central

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  16. Novel Injectable Calcium Phosphate Bone Cement from Wet Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    Calcium phosphate cement has been prepared via chemical precipitation method for injectable bone filling materials. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as calcium and phosphorus precursors respectively. The synthesized powder was mixed with water at different powder-to-liquid (P/L) ratios, which was adjusted at 0.8, 0.9, 1.0, 1.1 and 1.2. The influence of P/L ratio on the injectability, setting time and mechanical strength of calcium phosphate cement paste has been evaluated. The synthesized powder appeared as purely hydroxyapatite with nanosized and agglomerated spherical particles. All cement pastes show excellent injectability except for the paste with P/L ratio 1.2. Calcium phosphate cement with P/L ratio 1.1 shows the ideal cement for bone filler application with good injectability, the initial and final setting times of 30 min and 160 min, and the compression strength of 2.47 MPa. The result indicated that the newly developed calcium phosphate cement is physically suitable for bone filler application. This paper presents our investigation on the effect of P/L ratio on the handling and mechanical properties of calcium phosphate cement prepared via wet chemical precipitation method.

  17. Requests of laboratory tests for the diagnosis and management of calcium-phosphate disorders in Spain.

    PubMed

    Salinas, María; López-Garrigós, Maite; Flores, Emilio; Uris, Joaquín; Leiva-Salinas, Carlos

    2016-08-01

    Knowledge about the variability in the request of calcium-phosphate metabolism laboratory tests in primary care is important to design strategies to improve health system efficiency. To compare the inter-practice variability in calcium-phosphate metabolism laboratory tests requested by general practitioners from diverse regions across Spain. One hundred and forty one clinical laboratories were invited to participate in an observational cross-sectional study. They informed the number of serum calcium, phosphate, parathyroid hormone and 25-hydroxyvitamin D requested by general practitioners. Appropriateness indicators were calculated as number of test requests per 1,000 inhabitants and ratio of related tests requests. The differences according to hospital setting, region and type of management were analyzed. We recruited 76 laboratories (17,679,195 inhabitants). General practitioners requested 3,260,894 calcium-phosphate metabolism tests. The rate of request ranged from 2.97 per 1,000 inhabitants for 25-hydroxyvitamin D to 98.89 per 1,000 inhabitants for calcium. The rates of request for calcium, phosphate, parathyroid hormone in some areas were 30, 100 and 340 times higher than in other areas. Parathyroid hormone and 25-hydroxyvitamin D were highly requested in private management areas. There were also differences in phosphate, parathyroid hormone and 25-hydroxyvitamin D requesting between regions across Spain. The high variability observed is difficult to explain by differences in patient case mix between regions. Depending on the area, calcium could be under requested to detect primary hyperparathyroidism.

  18. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications

    PubMed Central

    Bohner, Marc; Tadier, Solène; van Garderen, Noémie; de Gasparo, Alex; Döbelin, Nicola; Baroud, Gamal

    2013-01-01

    Calcium phosphate materials have been used increasingly in the past 40 years as bone graft substitutes in the dental and orthopedic fields. Accordingly, numerous fabrication methods have been proposed and used. However, the controlled production of spherical calcium phosphate particles remains a challenge. Since such particles are essential for the synthesis of pastes and cements delivered into the host bone by minimally-invasive approaches, the aim of the present document is to review their synthesis and applications. For that purpose, production methods were classified according to the used reagents (solutions, slurries, pastes, powders), dispersion media (gas, liquid, solid), dispersion tools (nozzle, propeller, sieve, mold), particle diameters of the end product (from 10 nm to 10 mm), and calcium phosphate phases. Low-temperature calcium phosphates such as monetite, brushite or octacalcium phosphate, as well as high-temperature calcium phosphates, such as hydroxyapatite, β-tricalcium phosphate or tetracalcium phosphate, were considered. More than a dozen production methods and over hundred scientific publications were discussed. PMID:23719177

  19. Genetic responses to nanostructured calcium-phosphate-coated implants.

    PubMed

    Jimbo, R; Xue, Y; Hayashi, M; Schwartz-Filho, H O; Andersson, M; Mustafa, K; Wennerberg, A

    2011-12-01

    Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.

  20. Remineralization of Demineralized Enamel via Calcium Phosphate Nanocomposite

    PubMed Central

    Weir, M.D.; Chow, L.C.; Xu, H.H.K.

    2012-01-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of −26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures. PMID:22933607

  1. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  2. Natural rubber latex coated with calcium phosphate for biomedical application.

    PubMed

    Borges, Felipe Azevedo; Filho, Edson de Almeida; Miranda, Matheus Carlos Romeiro; Dos Santos, Márcio Luiz; Herculano, Rondinelli Donizetti; Guastaldi, Antônio Carlos

    2015-01-01

    Natural rubber latex (NRL) is a flexible biomembrane that possesses angiogenic properties and has recently been used for guided bone regeneration, enhancing healing without fibrous tissue, allergies or rejection. Calcium phosphate (Ca/P) ceramics have chemical, biological, and mechanical properties similar to mineral phase of bone, and ability to bond to the host tissue, although it can disperse from where it is applied. Therefore, to create a composite that could enhance the properties of both materials, NRL biomembranes were coated with Ca/P. NRL biomembranes were soaked in 1.5 times concentrated SBF solution for seven days, avoiding the use of high temperatures. SEM showed that Ca/P has been coated in NRL biomembrane, XRD showed low crystallinity and FTIR showed that is the carbonated type B. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Ca/P, NRL, and NRL + Ca/P) showed no hemolytic effects up to 0.125 mg/mL (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. The results show that the biomimetic is an appropriate method to coat NRL with Ca/P without using high temperatures, aiming a new biomembrane to improve guided bone regeneration.

  3. Endoscopic delivery of calcium phosphate cement for secondary craniofacial reconstruction.

    PubMed

    Francis, Cameron S; Wong, Ryan K; Cohen, Steven R

    2012-11-01

    Contour defects are common following primary craniofacial procedures including cranial vault remodeling, fronto-orbital and midface advancements, and complex posttraumatic reconstructions. When onlayed as fast-setting pastes, calcium phosphate cements (CPCs) have been used to effectively correct contour defects in open secondary reconstruction procedures. Here, we describe an endoscopic procedure using an injectable CPC and compare surgical outcomes with the open technique. A retrospective review was conducted for 36 consecutive patients aged 3.0-28.9 years (mean, 10.1 years) who underwent secondary craniofacial reconstruction over a 3-year period. Patients were stratified into endoscopic or open groups depending on the surgical approach utilized. Mean operative time was significantly shorter (P < 0.001) for the endoscopic group (64 minutes) than for the open group (131 minutes). Similarly, hospital stay was significantly shorter (P = 0.005) in the endoscopic group than in the open group. There was also a significant difference with respect to cost (P < 0.001), with the endoscopic approach resulting in a per-patient cost savings of $2208.05. In conclusion, endoscopic delivery of CPC appears to be a safe, efficacious, and cost-effective method of performing secondary craniofacial reconstruction, with the additional benefits of decreased operative time and shorter postoperative hospital stay when compared with an open procedure.

  4. Antibacterial Property Expressed by a Novel Calcium Phosphate Glass

    PubMed Central

    Liu, Lela; Pushalkar, Smruti; Saxena, Deepak; LeGeros, Racquel Z.; Zhang, Yu

    2014-01-01

    We have developed a calcium phosphate glass (CPG) doped with Zn2+ or F− or combined Zn2+ and F− ions, which are naturally found in the human body and play a dual role in bone formation and antibacterial activity. Previously, we have demonstrated that this family of CPGs has superior osteoconductive and resorbable properties in vivo. This study aimed to investigate the antibacterial property of CPGs incorporating Zn2+ and/or F−. We used Streptococcus mutans as a model organism because it is one of the major human oral pathogens and an early colonizer, and it has been associated with several oral infections, such as dental caries, periodontitis, and peri-implantitis. 0.01g and 0.05g of CPGs were incubated with Streptococcus mutans for 0, 2, 4, and 6 h. Serial dilutions were plated in triplicate and colony forming units were determined. The antimicrobial effect of CPG incorporating Zn2+ or F− was greater than CPG incorporating both these ions. CPG without doping produced a moderate antimicrobial effect. This family of CPGs, previously shown to promote new bone formation in vivo, is demonstrated to have superior bactericidal properties. PMID:24039127

  5. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry.

    PubMed

    Choi, A H; Ben-Nissan, B; Matinlinna, J P; Conway, R C

    2013-10-01

    The purpose of coatings on implants is to achieve some or all of the improvements in biocompatibility, bioactivity, and increased protection from the release of harmful or unnecessary metal ions. During the last decade, there has been substantially increased interest in nanomaterials in biomedical science and dentistry. Nanocomposites can be described as a combination of two or more nanomaterials. By this approach, it is possible to manipulate mechanical properties, such as strength and modulus of the composites, to become closer to those of natural bone. This is feasible with the help of secondary substitution phases. Currently, the most common composite materials used for clinical applications are those selected from a handful of available and well-characterized biocompatible ceramics and natural and synthetic polymers. This approach is currently being explored in the development of a new generation of nanocomposite coatings with a wider range of oral and dental applications to promote osseointegration. The aim of this review is to give a brief introduction into the new advances in calcium phosphate nanocoatings and their composites, with a range of materials such as bioglass, carbon nanotubes, silica, ceramic oxide, and other nanoparticles being investigated or used in dentistry.

  6. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.

  7. Degree of vinyl conversion in experimental amorphous calcium phosphate composites

    NASA Astrophysics Data System (ADS)

    Tarle, Z.; Knežević, A.; Matošević, D.; Škrtić, D.; Ristić, M.; Prskalo, K.; Musić, S.

    2009-04-01

    An experimental dental composite, based on amorphous calcium phosphate (ACP) with the potential to arrest caries development and regenerate mineral-deficient tooth structures has recently been developed. The aim of this study was to assess the degree of vinyl conversion (DVC) attained in experimental composites based on zirconia-modified ACP. Photo-activated resins were based on ethoxylated bisphenol A dimethacrylate (EBPADMA) [ETHM series with varying EBPADMA/triethylene glycol dimethacrylate (TEGDMA) molar ratios assigned 0.5-ETHM I, 0.85-ETHM II and 1.35-ETHM III], or 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]-propane (Bis-GMA) [BTHZ series]. To asses a possible effect of filler particle size on DVC, composites containing 60 mass % resin and 40 mass % of either milled ACP (mACP; median diameter d m = 0.9 μm) or coarse ACP (cACP; d m = 6.0 μm) were prepared, and irradiated with LED curing unit for 40 s. The DVC was calculated as the % change in the ratio of the integrated peak areas between the aliphatic and aromatic absorption bands determined by Fourier transform infrared spectroscopy (FTIR). The highest DVCs values were attained in mACP-BTHZ, cACP-BTHZ and mACP-ETHM III formulations. DVC of tested ACP composites (on average (76.76 ± 4.43)%) compares well with or exceeds DVCs values reported for the majority of commercial materials.

  8. How Protective Mechanisms Interact to Prevent Overnight Calcium Phosphate Precipitation - An Observational Study to Determine Factors Against Calcium Phosphate Lithogenesis in a Healthy Cohort.

    PubMed

    Shafiee, Mohammad A; Logan, Alexander G; Halperin, Mitchell L

    2016-01-01

    As restful, non-interrupted sleep is essential for normal mental and physical functioning, the urine flow rate (UFR) overnight remains low. Due to this reduced UFR, the kidneys produce a lower urine volume, which may lead to supersaturation of lithogens in the renal collecting system. The protective mechanisms that prevent the rise in the concentration of the lithogenic substances in urine, such as calcium phosphate, are explored. Urine samples were collected from 26 subjects every 2-3 h during daylight with one nocturnal collection; the UFR was calculated in the median time for each collection period. Urinary constituents for calcium phosphate precipitation including electrolytes, calcium, phosphate, citrate, and pH were measured. Comparisons within individuals were done by paired t test. The calcium excretion rate fell significantly overnight (from 2.4 ± 0.2 µmol/min during the daytime to 1.5 ± 0.3 µmol/min, p < 0.05), in parallel with sodium excretion (54 ± 16 µmol/min from its daytime 127 ± 12 µmol/min, p < 0.05), preventing nocturnal calcium concentration from increasing (3.0 ± 0.3 mmol/l daytime to 2.5 ± 0.5 mmol/l overnight), while citrate concentration did not change significantly. The total urine phosphate concentration rose significantly overnight (daytime 18.7 ± 1.4 µmol/min vs. nocturnal 20.9 ± 1.7 µmol/min), but the concentration of divalent phosphate did not increase in the overnight period. Although the UFR was lower overnight, there was no evidence that the risk of calcium phosphate precipitate formation in healthy subjects was increased. © 2016 S. Karger AG, Basel.

  9. A randomised study to compare salivary pH, calcium, phosphate and calculus formation after using anticavity dentifrices containing Recaldent(®) and functionalized tri-calcium phosphate.

    PubMed

    Sharma, Ena; Vishwanathamurthy, Ramesh Alampalli; Nadella, Manjari; Savitha, A N; Gundannavar, Gayatri; Hussain, M Ahad

    2012-10-01

    The aim of this study was to estimate the pH of saliva, concentration of calcium and inorganic phosphate, and calculus formation before and after usage of Recaldent(®) (GC Tooth Mousse Plus™), Functionalized Tricalcium Phosphate (3M ESPE ClinPro™ Tooth Crème) and standard dentifrice (Colgate dental cream). Randomized double-blind study. A total of 50 subjects were recruited, the subjects were assessed at their first visit, on the 21(st) day and on the 42(nd) day. At the first visit, scaling was carried out and oral hygiene instructions were given. After 21 days, the subjects were given coded dentifrices where the operator and the subjects both were unaware of the type of dentifrice. Clinical parameters assessed were Plaque index, Gingival index, and Calculus index. Salivary samples were obtained to measure calcium, phosphate levels, and pH at 21(st) day and 42(nd) day. ANOVA test, t-test, Mann-Whitney test, Kruskal-Wallis test. The mean salivary calcium level and mean salivary phosphate level were higher in Group III (functionalized tricalcium phosphate (3M ESPE ClinPro™ Tooth Creme) as compared to Group II (Recaldent(®) GC Tooth Mousse Plus™) and Group I (Colgate dental cream) on the 42(nd) day after using dentifrices, which was statistically significant. This showed that the usage of remineralizing dentifrices led to an increase in the salivary calcium, phosphate, and pH but it did not reach the level of super saturation of the ions caused by elevated pH which could lead to calculus formation. Thought here was a statistically significant increase in salivary calcium and phosphate level in all three groups from baseline to 42(nd) day, there was no calculus formation.

  10. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Han, I.-H.; Lee, I.-S.; Song, J.-H.; Lee, M.-H.; Park, J.-C.; Lee, G.-H.; Sun, X.-D.; Chung, S.-M.

    2007-09-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  11. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    NASA Astrophysics Data System (ADS)

    Liu, G. Y.; Hu, J.; Ding, Z. K.; Wang, C.

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  12. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    SciTech Connect

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming; Catalano, Jeffrey G.; Giammar, Daniel E.

    2016-03-15

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption was the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.

  13. Citrate, calcium, phosphate and magnesium in sows' milk at initiation of lactation.

    PubMed

    Kent, J C; Arthur, P G; Hartmann, P E

    1998-02-01

    Colostrum and milk were collected from ten sows at frequent intervals from before farrowing until 9 d after farrowing. Ionized calcium, pH, and total concentrations of citrate, calcium, phosphate and magnesium were measured in whole milk. The diffusible fraction of the mammary secretion was separated by ultrafiltration and was used for the measurement of diffusible citrate, calcium, phosphate and magnesium. The pH before farrowing was 5.7, and increased to 6.5 on day 4 as total calcium and phosphate also increased. Before farrowing, total and diffusible citrate were 7.8 and 7.3 mM respectively, while diffusible phosphate was 11.9 mM, and these concentrations all decreased during the study period. Total magnesium ranged between 3.3 and 4.1 mM, while diffusible magnesium ranged between 2.0 and 3.1 mM. While these concentrations and patterns of change of diffusible calcium and citrate are quite different from those of women's milk during the first week after birth, theoretical physicochemical relationships between diffusible calcium and citrate, and ionized calcium and HPO4(2-) were corroborated by these results. We conclude that diffusible citrate plays an important role in the determination of the concentration of diffusible calcium. However, while citrate may be the major determinant of the total concentration of calcium in women's milk, this is not the case in sows' milk.

  14. Association of calcium, phosphate and parathyroid hormone with renal allograft function: a retrospective cohort study.

    PubMed

    Hiemstra, Thomas F; Brown, Adam J D; Chaudhry, Afzal N; Walsh, Michael

    2013-01-01

    Significant variations in postoperative levels of parathyroid hormone (PTH), calcium and phosphate exist after renal transplantation, but whether they affect allograft function is unknown. We investigated the association between early post-transplant levels of PTH, calcium and phosphate and graft function. We performed a single-centre cohort study of renal transplant recipients from Addenbrooke's Hospital, Cambridge, between April 1997 and March 2007, evaluating the association between plasma calcium, phosphate and PTH 1 month after transplantation and change in epidermal growth factor receptor (eGFR) in the first 12 months after transplantation (estimated using the Modification of Diet in Renal Disease Study equation). Differences in eGFR between 26 and 52 weeks after transplantation were computed using mixed effects linear regression models for repeated measures of eGFR, while adjusting for sociodemographic and biochemical variables. Three hundred and forty-three patients were eligible for study. The mean age (standard deviation) at transplant was 43 years (13 years). Between 30 and 90 days after transplantation, the median (25th-75th percentile) eGFR was 33 (26-50) ml/min/1.73 m(2), the mean calcium level was 2.4 (0.17) mmol/l and the mean phosphate level was 0.78 (0.23) mmol/l. There was a significant interaction between calcium and phosphate levels (p = 0.006). In patients with low levels of phosphate, higher levels of calcium were associated with declining eGFR over time. However, in patients with a high phosphate level, higher calcium was associated with improved eGFR. Higher serum calcium in patients with low serum phosphate after transplantation is associated with a decline in graft function during the first year after transplantation. Disorders of mineral metabolism after transplant may represent an important therapeutic target to preserve allograft function. Copyright © 2013 S. Karger AG, Basel.

  15. Clinical management of disturbances of calcium and phosphate metabolism in dialysis patients.

    PubMed

    Eddington, Helen; Heaf, James G

    2009-08-01

    Management of chronic kidney disease-mineral bone disorder can be difficult in renal patients. This review aims to explain why the control of disturbed calcium, phosphate, parathyroid hormone and vitamin D metabolism is important in dialysis patients. The methods available to regulate these parameters include diet, phosphate binders, dialysate calcium, native vitamin D, active vitamin D derivatives and calcimimetics. An overview of current treatment guidelines will be discussed.

  16. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers.

    PubMed

    Burguera, Elena F; Xu, Hockin H K; Takagi, Shozo; Chow, Laurence C

    2005-12-15

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent

  17. Effect of Calcium Hydroxide Based Intracanal Medicaments on the Apical Sealing Ability of Resin Based Sealer and Guttapercha Obturated Root Canals

    PubMed Central

    Sumanthini, MV; Shenoy, Vanitha U; Bodhwani, Mohit A

    2017-01-01

    Introduction Calcium Hydroxide (CH) is one of the most commonly used intracanal medicaments which can be used with various vehicles. Aim The aim of this in vitro study was to evaluate the effect of three CH based intracanal medicaments on the apical sealing ability of AH Plus – guttapercha obturation. Materials and Methods Crowns of 100 extracted single rooted human teeth were sectioned at the Cemento-Enamel Junction (CEJ) to a standardized length. The root canals were instrumented upto ISO size 40 using step back technique and the specimens were randomly divided into two control and four experimental groups. The control groups were not medicated. Specimens in positive control group (Group I) were obturated with guttapercha without placing sealer and in negative control group (Group II) were obturated with guttapercha and AH Plus sealer. Among the experimental groups, specimens of Group III were not medicated while groups IV, V and VI were medicated with CH-saline, CH-2% Chlorhexidine (CHX) and Vitapex respectively for a period of 14 days. The medicaments were removed from the specimens and the teeth were obturated with AH Plus sealer and guttapercha using lateral compaction technique. The specimens were immersed in India ink dye, demineralized and diphanized. The extent of dye penetration was assessed using a 10X stereomicroscope. Data obtained was statistically analyzed by one-way ANOVA (p<0.05) followed by Post-hoc Tukey test. Results Amongst the three CH medicaments, CH-2% CHX when used as an intracanal medicament showed a significantly higher microleakage as compared to the other groups with p<0.001. The microleakage values between the remaining groups were not statistically significant. Conclusion Under the conditions of this study it was concluded that all groups with or without intracanal medicament showed apical leakage. The vehicle used to carry CH may significantly influence the apical sealing ability of guttapercha – AH Plus obturated canals. PMID

  18. RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Yamaguchi, Tetsuro; Tanaka, Yoshikazu

    2005-12-01

    The calcium phosphate coatings on metallic implants are widely used for biomedical applications. The calcium phosphate coatings require mechanical strength, strong adhesion to the metallic implants, chemical stability and low dissolution into the human body fluid for stable functioning in the corrosive environment of the human body. In this study, a novel approach for improving the calcium phosphate coatings is utilized by adding trace metallic element into the coatings. We focused on teeth enamel, which is the hardest calcium phosphate tissue in the human body. Zn concentration increases exponentially from the interior to the surface of the enamel. As the Zn concentration increases, so the local hardness increases. Our previous studies suggest that Zn has influence on the hardness and other properties of enamel, calcium phosphate tissue. Calcium phosphate coatings doped with Zn was fabricated and characterized. The atomic composition and chemical state were investigated by using Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectrometer (XPS), respectively. Scratch test was also carried out for measuring the adhesion of the coatings.

  19. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    PubMed

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  20. Calcium phosphate metabolism and bone mineral density with nocturnal hemodialysis.

    PubMed

    Toussaint, Nigel; Boddington, Janeane; Simmonds, Rosemary; Waldron, Claire; Somerville, Christine; Agar, John

    2006-07-01

    An elevated calcium x phosphate product (Ca x P) is an independent risk factor for vascular calcification and cardiovascular death in dialysis patients. More physiological dialysis in patients undergoing nocturnal hemodialysis (NHD) has been shown to produce biochemical advantages compared with conventional hemodialysis (CHD) including superior phosphate (P) control. Benefits of dialysate with greater calcium (Ca) concentration are also reported in NHD to prevent Ca depletion and subsequent hyperparathyroidism, but there are concerns that a higher dialysate Ca concentration may contribute to raised serum Ca levels and greater Ca x P and vascular disease. The NHD program at our unit has been established for 4 years, and we retrospectively analyzed Ca and P metabolism in patients undergoing NHD (8-9 h/night, 6 nights/week). Our cohort consists of 11 patients, mean age 49.3 years, who had been on NHD for a minimum of 12 months, mean 34.3 months. Commencement was with low-flux (LF) NHD and 1.5 mmol/L Ca dialysate concentration, with conversion to high-flux (HF) dialyzers after a period (mean duration 18.7 months). We compared predialysis serum albumin, intact parathyroid hormone, P, total corrected Ca, and Ca x P at baseline on CHD, after conversion to LF NHD and during HF NHD. We also prospectively measured bone mineral density (BMD) on all patients entering the NHD program. Bone densitometry (DEXA) scans were performed at baseline (on CHD) and yearly after commencement of NHD. With the introduction of HF dialyzers, the Ca dialysate concentration was concurrently raised to 1.75 mmol/L after demonstration on DEXA scans of worsening osteopenia. Analysis of BMD, for all parameters, revealed a decrease over the first 12 to 24 months (N = 11). When the dialysate Ca bath was increased, the median T and Z scores subsequently increased (data at 3 years, N = 6). The mean predialysis P levels were significantly lower on LF NHD vs. CHD (1.51 vs. 1.77 mmol/L, p = 0.014), while on

  1. Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation

    USDA-ARS?s Scientific Manuscript database

    A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...

  2. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry.

    PubMed

    Liu, Changsheng; Shao, Huifang; Chen, Feiyue; Zheng, Haiyan

    2006-10-01

    In this paper, the steady and dynamic rheological properties of concentrated aqueous injectable calcium phosphate cement (CPC) slurry were investigated. The results indicate that the concentrated aqueous injectable CPC showed both plastic and thixotropic behavior. As the setting process progressed, the yield stress of CPC slurry was raised, the area of the thixotropic hysteresis loop was enlarged, indicating that the strength of the net structure of the slurry had increased. The results of dynamic rheological behavior indicate that the slurry presented the structure similar to viscoelastic body and the property of shear thinning at the beginning. During the setting process, the slurry was transformed from a flocculent structure to a net structure, and the strength increased. Different factors had diverse effects on the rheological properties of the CPC slurry in the setting process, a reflection of the flowing properties (or injection), and the microstructure development of this concentrated suspension. Raising the powder-to-liquid ratio decreased the distance among the particles, increased the initial strength, and shortened the setting time. In addition, raising the temperature improved the initial strength, increased the order of reaction, and shortened the setting time, which was favorable to the setting process. The particle size of the raw material had much to do with the strength of original structure and setting time. The storage module G' of CPC slurry during the setting process followed the rule of power law function G'=A exp(Bt), which could be applied to forecast the setting time, and the calculated results thereafter are in agreement with the experimental data.

  3. Low temperature method for the production of calcium phosphate fillers

    PubMed Central

    Calafiori, Anna Rita; Marotta, Marcello; Nastro, Alfonso; Martino, Guglielmo

    2004-01-01

    Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues. PMID:15035671

  4. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies.

    PubMed

    Ea, Hang-Korng; Chobaz, Véronique; Nguyen, Christelle; Nasi, Sonia; van Lent, Peter; Daudon, Michel; Dessombz, Arnaud; Bazin, Dominique; McCarthy, Geraldine; Jolles-Haeberli, Brigitte; Ives, Annette; Van Linthoudt, Daniel; So, Alexander; Lioté, Frédéric; Busso, Nathalie

    2013-01-01

    basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic

  5. Light transmittance and polymerization kinetics of amorphous calcium phosphate composites.

    PubMed

    Par, Matej; Marovic, Danijela; Skenderovic, Hrvoje; Gamulin, Ozren; Klaric, Eva; Tarle, Zrinka

    2017-05-01

    This study investigated light transmittance and polymerization kinetics of experimental remineralizing composite materials based on amorphous calcium phosphate (ACP), reinforced with inert fillers. Light-curable composites were composed of Bis-EMA-TEGDMA-HEMA resin and ACP, barium glass, and silica fillers. Additionally, a commercial composite Tetric EvoCeram was used as a reference. Light transmittance was recorded in real-time during curing, and transmittance curves were used to assess polymerization kinetics. To obtain additional information on polymerization kinetics, temperature rise was monitored in real-time during curing and degree of conversion was measured immediately and 24 h post-cure. Light transmittance values of 2-mm thick samples of uncured ACP composites (2.3-2.9 %) were significantly lower than those of the commercial composite (3.8 %). The ACP composites presented a considerable transmittance rise during curing, resulting in post-cure transmittance values similar to or higher than those of the commercial composite (5.5-7.9 vs. 5.4 %). The initial part of light transmittance curves of experimental composites showed a linear rise that lasted for 7-20 s. Linear fitting was performed to obtain a function whose slope was assessed as a measure of polymerization rate. Comparison of transmittance and temperature curves showed that the linear transmittance rise lasted throughout the most part of the pre-vitrification period. The linear rise of light transmittance during curing has not been reported in previous studies and may indicate a unique kinetic behavior, characterized by a long period of nearly constant polymerization rate. The observed kinetic behavior may result in slower development of polymerization shrinkage stress but also inferior mechanical properties.

  6. Impedance changes during setting of amorphous calcium phosphate composites.

    PubMed

    Par, Matej; Šantić, Ana; Gamulin, Ozren; Marovic, Danijela; Moguš-Milanković, Andrea; Tarle, Zrinka

    2016-11-01

    To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Calcium phosphate cements with strontium halides as radiopacifiers.

    PubMed

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed.

  8. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes.

    PubMed

    Damien, C J; Ricci, J L; Christel, P; Alexander, H; Patat, J L

    1994-08-01

    The use of natural coral as a bone graft substitute is common in Europe. However, the bone-coral bonding mechanism remains elusive. A rat subcutaneous model was used to demonstrate changes at the surface of resorbable calcium carbonate in the form of natural coral. Histological results indicated in vivo formation of a calcium phosphate (CaP)-rich layer on the surface of the coral confirmed by backscattered electron imaging and X-ray microanalysis. There appears to be a combination solution-mediated dissolution/cell-mediated degradation of the natural coral with subsequent surface conversion or precipitation. The end result is a CaP-rich layer on the coral. Though this layer has been observed previously, it was originally thought to be a histological artifact. This result is similar, however, to what is seen with Bioglass and glass ceramics and may also explain the good bonding of bone to hydroxyapatite. The fact that this layer is also present on natural coral after implantation in soft tissue sites may explain the intimate bone apposition observed when natural coral is placed in bony sites.

  9. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors.

    PubMed

    Evaniew, Nathan; Tan, Victoria; Parasu, Naveen; Jurriaans, Erik; Finlay, Karen; Deheshi, Benjamin; Ghert, Michelle

    2013-02-01

    Benign primary bone tumors are commonly treated with intralesional curettage with or without the use of surgical adjuvants. The reconstructive approach to the resulting contained bone defects is controversial, and clinical practice is varied. Synthetic bone substitutes may provide early mechanical support while minimizing the risks of disease transmission, nonunion, infection, and donor-site morbidity. Limited data exists regarding the use of calcium sulfate-calcium phosphate composite bone substitute for this purpose. The authors retrospectively reviewed the clinical outcomes of 24 patients with benign primary bone tumors who underwent intralesional curettage followed by reconstruction with a calcium sulfate-calcium phosphate composite bone substitute. Mean follow-up was 23 months. The most common diagnosis was giant cell tumor of bone. Six patients had upper-extremity tumors and 18 had lower-extremity tumors. Mean preoperative radiographic tumor volume was 41.0 cm(3). Mean volume of PRO-DENSE (Wright Medical Technology, Arlington, Tennessee) used in each patient was 15.6 cm(3). Mean time to full weight bearing for all patients was 7.3 weeks. Two patients sustained local tumor recurrences. No postoperative fractures occurred, and no complications occurred related to the use of the calcium sulfate-calcium phosphate composite. One case of deep infection occurred secondary to wound breakdown. The use of a calcium sulfate-calcium phosphate composite was associated with rapid biological integration and an early return to activities of daily living, with no composite-related complications. This technique is a viable option in the reconstruction of cavitary bone defects following intralesional curettage of primary benign bone tumors. Copyright 2013, SLACK Incorporated.

  10. Phosphate and carbonate salts of calcium support robust bone building in osteoporosis123

    PubMed Central

    Recker, Robert R; Watson, Patrice; Lappe, Joan M

    2010-01-01

    Background: Calcium is an essential cotherapy in osteoporosis treatment. The relative effectiveness of various calcium salts for this purpose is uncertain. Many older women with osteoporosis have phosphorus intakes of <70% of the Recommended Dietary Allowance. Objective: Our objective was to test the hypothesis that calcium phosphate would better support anabolic bone building than would calcium carbonate. Design: This study was a 12-mo, randomized, positive-comparator, 2-arm, single-blind clinical trial in 211 patients treated with teriparatide who consumed <1000 mg phosphorus/d. Participants were randomly assigned to receive, in addition to teriparatide and 1000 IU cholecalciferol, 1800 mg calcium/d as either tricalcium phosphate or calcium carbonate. The primary endpoints were changes in lumbar spine and total hip bone mineral densities (BMDs); secondary endpoints were changes in bone resorption biomarkers and serum and urine calcium and phosphorus concentrations. Results: In the combined group, the lumbar spine BMD increased by 7.2%, and total hip BMD increased by 2.1% (P < 0.01 for both). However, there was no significant difference between calcium-treatment groups, and there were no significant between-group differences in serum calcium and phosphorus concentrations or in urine calcium concentrations. Bone resorption biomarkers increased in both groups, as expected with teriparatide, but the increases in the 2 calcium groups did not differ significantly. Conclusions: Tricalcium phosphate and calcium carbonate appear to be approximately equally effective in supporting bone building with a potent anabolic agent; phosphate salt may be preferable in patients with restricted phosphorus intakes. This trial was registered at clinicaltrials.gov as NCT00074711. PMID:20484446

  11. Phosphate and carbonate salts of calcium support robust bone building in osteoporosis.

    PubMed

    Heaney, Robert P; Recker, Robert R; Watson, Patrice; Lappe, Joan M

    2010-07-01

    Calcium is an essential cotherapy in osteoporosis treatment. The relative effectiveness of various calcium salts for this purpose is uncertain. Many older women with osteoporosis have phosphorus intakes of <70% of the Recommended Dietary Allowance. Our objective was to test the hypothesis that calcium phosphate would better support anabolic bone building than would calcium carbonate. This study was a 12-mo, randomized, positive-comparator, 2-arm, single-blind clinical trial in 211 patients treated with teriparatide who consumed <1000 mg phosphorus/d. Participants were randomly assigned to receive, in addition to teriparatide and 1000 IU cholecalciferol, 1800 mg calcium/d as either tricalcium phosphate or calcium carbonate. The primary endpoints were changes in lumbar spine and total hip bone mineral densities (BMDs); secondary endpoints were changes in bone resorption biomarkers and serum and urine calcium and phosphorus concentrations. In the combined group, the lumbar spine BMD increased by 7.2%, and total hip BMD increased by 2.1% (P < 0.01 for both). However, there was no significant difference between calcium-treatment groups, and there were no significant between-group differences in serum calcium and phosphorus concentrations or in urine calcium concentrations. Bone resorption biomarkers increased in both groups, as expected with teriparatide, but the increases in the 2 calcium groups did not differ significantly. Tricalcium phosphate and calcium carbonate appear to be approximately equally effective in supporting bone building with a potent anabolic agent; phosphate salt may be preferable in patients with restricted phosphorus intakes. This trial was registered at clinicaltrials.gov as NCT00074711.

  12. The effect of porcine calcitonin on intestinal calcium and phosphate fluxes in the young piglet.

    PubMed

    McKercher, H G; Radde, I C

    1981-01-01

    The effects of a physiological (3.8 ng.mL-1) and a pharmacological (120 ng.mL-1) concentration of porcine calcitonin (CT) on transmucosal calcium and phosphate flux rates were determined in intestinal mucosa from young piglets (4--40 days) mounted in Ussing flux chambers. The physiological concentration of the hormone inhibited net absorptive calcium flux rates in the proximal jejunum and distal ileum but not in the duodenum. No effect of either concentration of CT on phosphate flux rates was observed. The inhibitory effect of the physiological concentration may indicate a role for CT in the maintenance of calcium homeostasis in the young suckling mammal.

  13. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    PubMed

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. Copyright © 2011 Wiley Periodicals, Inc.

  14. Effect of biomedical organic compounds on the setting reaction of calcium phosphates.

    PubMed

    Yu, Tao; Ye, Jiandong; Gao, Chengying; Yu, Long; Wang, Yingjun

    2010-01-01

    In the present study, the effect of biomedical organic compounds (starch, sodium alginate, chitosan and gelatin) on the hydration of calcium phosphates was studied using X-ray diffraction, infrared spectroscopy, scanning electron microscopy and XPS analysis. Amorphous calcium phosphate (ACP) was prepared by a mechanochemical route and mixed with biomedical organic compounds. A solidification reaction occurred between ACP and dicalcium phosphate dihydrate (DCPD); the hydration product was poorly crystallized hydroxyapatite (HA). During the setting reaction of ACP and DCPD, the presence of biomedical organic compounds had an effect on the hydration product: the bonding energies of the primary elements (Ca, P) in the hydration product (HA) were changed; also different hydration morphologies, self-setting properties, rheological properties and mechanical strength of the cement were obtained. This work will allow advances in the synthesis of bionic composite calcium phosphate cement (CPC).

  15. Formation of phosphate-containing calcium fluoride at the expense of enamel, hydroxyapatite and fluorapatite.

    PubMed

    Christoffersen, J; Christoffersen, M R; Arends, J; Leonardsen, E S

    1995-01-01

    During the caries process complex reactions involving calcium, phosphate, hydrogen and fluoride ions as main species take place. In this study the precipitation and dissolution reactions occurring in suspensions of enamel, hydroxyapatite (HAP) and fluorapatite (FAP) on addition of fluoride were investigated under well-defined conditions. pH and pF were monitored; calcium and phosphate concentrations were measured at selected times; the solid phases were examined by infra-red, X-ray diffraction and transmission electron microscopy. Precipitation of phosphate-containing calcium fluoride crystals, CaF2(P), can cause severe reduction in the calcium ion concentration and release of hydrogen ions from the precipitated phosphate. These reactions result in considerable dissolution of enamel, HAP and even of FAP. More of the added mineral dissolves with 50 mmol/l fluoride than with 10 mmol/l fluoride, mainly due to the greater reduction in calcium ion concentration. This work shows that phosphate-containing calcium fluoride is most likely an important compound to be considered in the caries process.

  16. Dietary and pharmacological control of calcium and phosphate metabolism in predialysis stages of chronic kidney disease.

    PubMed

    Ketteler, Markus; Biggar, Patrick H

    2009-01-01

    Data on calcium and phosphate metabolism in the predialysis stages of chronic kidney disease (CKD) are scarce when compared with the available information on patients on dialysis. Visible derangements of calcium and phosphate levels start to become apparent when GFR falls below 40 ml/min. In some but not all patients, hyperphosphatemia may be a mortality risk predictor in CKD stages 4-5. There are only few treatment studies targeting hyperphosphatemia in these CKD stages. However, the RIND study, evaluating progression of coronary artery calcification in incident hemodialysis patients, demonstrated that vascular calcification processes manifest in predialysis stages in the majority of patients, which may well be linked to deranged calcium and phosphate homeostasis. Novel insights into the pathophysiology of calcium and phosphate handling, especially the discovery of the phosphatonin FGF23, suggest that a more complex assessment of phosphate balance is warranted. This assessment should include measurements of fractional phosphate excretion and phosphatonin levels to objectively judge and effectively correct phosphate overload. Copyright (c) 2009 S. Karger AG, Basel.

  17. Renal regulation of calcium-phosphate metabolism in single- and twin pregnant goats.

    PubMed

    Michałek, Katarzyna; Ozgo, Małgorzata; Skrzypczak, Wiesław Franciszek

    2009-01-01

    The aim of this study was the clearance assessment of renal function in single- and twin-pregnant goats and a comparison of selected parameters associated with calcium-phosphate management in terms of litter size. Clearance studies were carried out on 16 pregnant Polish White Improved goats (8 single pregnancies and 8 twin pregnancies). It was demonstrated that the kidneys of pregnant goats regulate the calcium-phosphate balance to a great extent. In spite of observed differences in parameters of renal functions, plasma calcium and inorganic phosphorus concentrations were comparable with normal reference values in further weeks of pregnancy. Significant differences in renal function between single and twin pregnancies were not observed. Gut absorption and/or bone tissue metabolism seem important for the maintenance of appropriate calcium-phosphate status.

  18. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    NASA Astrophysics Data System (ADS)

    Kleine-Boymann, Matthias; Rohnke, Marcus; Henss, Anja; Peppler, Klaus; Sann, Joachim; Janek, Juergen

    2014-08-01

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  19. Calcium and phosphate concentrations and future development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study

    PubMed Central

    Lorenzo, Carlos; Hanley, Anthony J.; Rewers, Marian J.; Haffner, Steven M.

    2014-01-01

    Aims/hypothesis Low phosphate and high calcium concentrations have been linked to altered glucose tolerance and reduced insulin sensitivity in non-diabetic individuals. The aim of this study was to examine the relationships of calcium and phosphate levels and the calcium–phosphate product with the development of type 2 diabetes. Methods Participants were 863 African-Americans, Hispanics and non-Hispanic whites in the Insulin Resistance Atherosclerosis Study who were free of diabetes at baseline. The mean follow-up period was 5.2 years. The insulin sensitivity index (SI) and acute insulin response (AIR) were directly measured using the frequently sampled IVGTT. Results Calcium concentration (OR per 1 SD unit increase, 1.26 [95% CI 1.04, 1.53]) and calcium–phosphate product (OR 1.29 [95% CI 1.04, 1.59]) were associated with incident diabetes after adjustment for demographic variables, family history of diabetes, and 2 h glucose. The relationship between phosphate concentration and progression to diabetes was close to statistical significance (OR 1.21 [95% CI 0.98, 1.49]). Calcium concentration (OR 1.37 [95% CI 1.09, 1.72]) and calcium–phosphate product (OR 1.39 [95% CI 1.09, 1.77]) remained associated with incident diabetes after additional adjustment for BMI, plasma glucose, SI, AIR, C-reactive protein, estimated GFR, diuretic drugs and total calcium intake. Conclusions/interpretation Elevated serum calcium and calcium–phosphate product are associated with increased risk of developing type 2 diabetes independently of measured glucose, insulin secretion and insulin resistance. Future studies need to analyse the role of calcium–phosphate homeostasis in the pathophysiology of diabetes. PMID:24763850

  20. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants.

    PubMed

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-11-01

    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH2PO4 solution, followed by CaCl2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical transformation of some biologically relevant calcium phosphates in aqueous media during a steam sterilization.

    PubMed

    Dorozhkin, S V; Schmitt, M; Bouler, J M; Daculsi, G

    2000-12-01

    The purpose of this study was to investigate the effect of steam sterilization on some biologically relevant calcium phosphates: CaHPO4 . 2H2O (DCPD), calcium deficient apatite (CDA) and biphasic calcium phosphate (BCP). Suspensions of 0.2 g of each calcium phosphate compound with 5.0 ml of deionized water were prepared and steam sterilized in an autoclave (20 min at 121 degrees C). After sterilization the suspensions were filtered and the dried solids characterized with scanning electron microscopy, IR-spectroscopy and X-ray diffraction. The pH and calcium concentrations of the filtrates were determined with ion selective electrodes. Similar measurements were made with the same samples which were not sterilized. The sterilization procedure was found to result in the dehydration of DCPD and hydration of calcium oxide incorporated into the BCP. Solution pH was observed to change from 7.3 to 5.5 for the solutions in equilibrium with DCPD and from 8.5 to 10.6 for those in equilibrium with BCP. Minor changes both with the solid and liquid phases were found to occur during the steam sterilization of CDA. These results indicate that steam sterilization may have different effects on different calcium phosphate suspensions: it can result in dehydration of DCPD, fast hydration for CaO in BCP, but no significant effect on CDA.

  2. Sensitivity and specificity of 24-hour urine chemistry levels for detecting elevated calcium oxalate and calcium phosphate supersaturation

    PubMed Central

    Rossi, M. Adrian; Singer, Eric A; Golijanin, Dragan J; Monk, Rebeca D; Erturk, Erdal; Bushinsky, David A

    2008-01-01

    Objectives The gold standard for determining likelihood of calcium oxalate (CaOx) and calcium phosphate (CaPhos) stone formation in urine is supersaturation of CaOx and CaPhos. Our objective was to investigate whether traditional measurement of total calcium, oxalate and phosphate in a 24-hour urine collection is sufficiently sensitive and specific for detecting elevated supersaturation to preclude the more expensive supersaturation test. Methods We performed a retrospective review of 150 consecutive patients with nephrolithiasis who underwent measurement of CaOx supersaturation (CaOxSS) and CaPhos supersaturation (CaPhosSS), as well as total calcium, oxalate and phosphate in a 24-hour urine collection. We used various cut-off values to determine sensitivity and specificity of 24-hour urine measurements for detecting elevated CaOxSS and CaPhosSS. Results In men and women, the sensitivity of 24-hour calcium for detecting elevated CaOxSS was 71% and 79%, respectively; for oxalate, sensitivity was 59% and 36%, respectively. In men and women, the sensitivity of 24-hour calcium for detecting elevated CaPhosSS was 74% and 88%, respectively; for phosphate, sensitivity was 57% and 8%, respectively. In men and women, the specificity of 24-hour calcium for detecting elevated CaOxSS was 55% and 48%, respectively; it was 60% for detecting elevated CaPhosSS in both men and women. Conclusion Traditional 24-hour urine analysis is sensitive, but not specific, for detecting elevated CaOxSS and CaPhosSS. Most patients with abnormal 24-hour urine analysis have normal supersaturation, and treatment decisions based on traditional urine analysis would lead to overtreatment in these patients. PMID:18542745

  3. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.

    PubMed

    Tas, A C; Aldinger, F

    2005-02-01

    Poorly crystalline, apatitic calcium phosphate powders have been synthesized by slowly adding a Na- and K-containing reference phosphate solution with a pH value of 7.4 to an aqueous calcium nitrate solution at 37 degrees C. Nano-particulated apatitic powders obtained were shown to contain small amounts of Na and K, which render them more similar in chemical composition to that of the bone mineral. Precipitated and dried powders were found to exhibit self-hardening cement properties when kneaded in a mortar with a sodium citrate- and sodium phosphate-containing starter solution. The same phosphate solution used in powder synthesis was found to be able to partially convert natural, white and translucent marble pieces of calcite (CaCO3) into calcium-deficient hydroxyapatite upon aging the samples in that solution for 3 days at 60 degrees C. Sample characterization was performed by using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, inductively-coupled plasma atomic emission spectroscopy, and simultaneous thermogravimetry and differential thermal analysis.

  4. Premixed calcium phosphate cements: Synthesis, physical properties, and cell cytotoxicity

    PubMed Central

    Xu, Hockin H.K.; Carey, Lisa E.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.

    2009-01-01

    Objectives Calcium phosphate cement (CPC) is a promising material for dental, periodontal, and craniofacial repairs. However, its use requires on-site powder–liquid mixing that increases the surgical placement time and raises concerns of insufficient and inhomogeneous mixing. The objective of this study was to determine a formulation of premixed CPC (PCPC) with rapid setting, high strength, and good in vitro cell viability. Methods PCPCs were formulated from CPC powder + non-aqueous liquid + gelling agent + hardening accelerator. Five PCPCs were thus developed: PCPC-Tartaric, PCPC-Malonic, PCPC-Citric, PCPC-Glycolic, and PCPC-Malic. Formulations and controls were compared for setting time, diametral tensile strength, and osteoblast cell compatibility. Results Setting time (mean ± S.D.; n = 4) for PCPC-Tartaric was 8.2 ± 0.8 min, significantly less than the 61.7 ± 1.5 min for the Premixed Control developed previously (p < 0.001). On 7th day immersion, the diametral tensile strength of PCPC-Tartaric reached 6.5 ± 0.8 MPa, higher than 4.5 ± 0.8 MPa of Premixed Control (p = 0.036). Osteoblast cells displayed a polygonal morphology and attached to the nano-hydroxyapatite crystals in the PCPCs. All cements had similar live cell density values (p = 0.126), indicating that the new PCPCs were as cell compatible as a non-premixed CPC control known to be biocompatible. Each of the new PCPCs had a cell viability that was not significantly different (p > 0.1) from that of the non-premixed CPC control. Significance PCPCs will eliminate the powder–liquid mixing during surgery and may also improve the cement performance. The new PCPCs supported cell attachment and yielded a high cell density and viability. Their mechanical strengths approached the reported strengths of sintered porous hydroxyapatite implants and cancellous bone. These nano-crystalline hydroxyapatite cements may be useful in dental, periodontal, and craniofacial repairs. PMID:16678895

  5. Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies

    PubMed Central

    Ea, Hang-Korng; Chobaz, Véronique; Nguyen, Christelle; Nasi, Sonia; van Lent, Peter; Daudon, Michel; Dessombz, Arnaud; Bazin, Dominique; McCarthy, Geraldine; Jolles-Haeberli, Brigitte; Ives, Annette; Van Linthoudt, Daniel; So, Alexander; Lioté, Frédéric; Busso, Nathalie

    2013-01-01

    Background basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. Methodology/ Principal Findings synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. Conclusions/ Significance intra-articular BCP crystals can elicit synovial inflammation and cartilage

  6. Comparison of Calcium Phosphate and Zinc Oxide Nanoparticles as Dermal Penetration Enhancers for Albumin.

    PubMed

    Shokri, Narges; Javar, H A

    2015-01-01

    Dermal drug delivery is highly preferred by patients due to its several advantages. Protein therapeutics have attracted huge attention recently. Since dermal delivery of proteins encounter problems, in this investigation, zinc oxide nanoparticles and calcium phosphate nanoparticles were compared as enhancers for dermal permeation of albumin. Albumin was applied simultaneously with zinc oxide nanoparticles or calcium phosphate nanoparticles on pieces of mouse skin. Skin permeation of albumin over time was determined using a diffusion cell. Skin distribution of the nanoparticles and albumin over time was determined by optical and fluorescence microscopy. Zinc oxide nanoparticles and calcium phosphate nanoparticles acted as enhancers for skin permeation of albumin. Cumulative permeated albumin in presence of zinc oxide nanoparticles after 0, 0.5, 1, 1.5 and 2 h, were 0±0, 11.7±3.3, 21.1±3.5, 40.2±3.6 and 40.2±3.6 mg, respectively and in presence of calcium phosphate nanoparticles were 0±0, 20.9±7.4, 33.8±5.5, 33.8±3.7 and 33.8±3.7 mg, respectively. After 0.5 h, little amount of albumin was permeated in presence of every kind of the nanoparticles. After 0.5 or 1 h, the permeated albumin in presence of calcium phosphate nanoparticles was more than that in presence of zinc oxide nanoparticles and after 1.5 h the permeated albumin in presence of zinc oxide nanoparticles was more than that in presence of calcium phosphate nanoparticles. Images of skin distribution of the two nanoparticles over time, were somewhat different and distribution of albumin correlated with the distribution of the nanoparticles alone. The profiles of albumin permeation (in presence of each of the nanoparticles) versus time was delayed and linear for both nanoparticles while the slope for calcium phosphate nanoparticles was higher than zinc oxide nanoparticles. The enhancer effect of zinc oxide nanoparticles was stronger while the enhancer effect of calcium phosphate nanoparticles was

  7. Biomimetic synthesis of poly(propylene-fumarate)-calcium phosphate composites for tissue engineering

    NASA Astrophysics Data System (ADS)

    Hakimi Mehr, Dorna

    A novel in-situ co-precipitation process for the synthesis of poly(propylene-fumarate)-calcium phosphate composites was developed. In this process the calcium phosphate phase nucleates and grows in the presence of poly(propylene-fumarate) (PPF), in a novel two-solvent system including tetrahydrofuran (THF) and water. It was found that the presence of the organic solvent (THF) does not affect the phase evolution of the calcium phosphate. Both in the presence and absence of THF crystalline dicalcium phosphate dihydrate (DCPD, brushite) and poorly crystalline hydroxyapatite (HAp) form, and transform to crystalline HAp after 24 hours of synthesis time. Contrary to the organic solvent, PPF has a significant influence on the calcium phosphate phase that forms in its presence. It is found that PPF provides a template for the formation of the calcium phosphate phase through a coordination bond between the calcium ion and the carbonyl group of the polymer. As a result of this templating, hydroxyapatite can form in a significantly shorter period of time (˜1 hr) compared to the system where PPF is not present (24 hrs). The nature of the calcium phosphate phase that forms in the presence of PPF depends on the molecular weight and concentration of PPF. High concentration of PPF in the composite (e.g. 80%) stabilizes an amorphous calcium phosphate (ACP) phase and hinders its transformation to crystalline apatite, while low concentration of PPF (e.g. 5%) promotes the formation of crystalline apatite. Higher molecular weight PPF (Mw = 4500) is found to be more efficient in stabilizing the amorphous phase compared to lower molecular weight PPF (Mw = 1800). While high molecular weight PPF stabilizes ACP, low molecular weight PPF promotes its conversion to crystalline apatite. TEM observations revealed that flake-like hydroxyapatite crystals form in the absence of PPF while spherical ACP particles form in a composite containing 80% PPF. The ACP nano-particles (50-100 nm in diameter

  8. Comparison of Calcium Phosphate and Zinc Oxide Nanoparticles as Dermal Penetration Enhancers for Albumin

    PubMed Central

    Shokri, Narges; Javar, H. A.

    2015-01-01

    Dermal drug delivery is highly preferred by patients due to its several advantages. Protein therapeutics have attracted huge attention recently. Since dermal delivery of proteins encounter problems, in this investigation, zinc oxide nanoparticles and calcium phosphate nanoparticles were compared as enhancers for dermal permeation of albumin. Albumin was applied simultaneously with zinc oxide nanoparticles or calcium phosphate nanoparticles on pieces of mouse skin. Skin permeation of albumin over time was determined using a diffusion cell. Skin distribution of the nanoparticles and albumin over time was determined by optical and fluorescence microscopy. Zinc oxide nanoparticles and calcium phosphate nanoparticles acted as enhancers for skin permeation of albumin. Cumulative permeated albumin in presence of zinc oxide nanoparticles after 0, 0.5, 1, 1.5 and 2 h, were 0±0, 11.7±3.3, 21.1±3.5, 40.2±3.6 and 40.2±3.6 mg, respectively and in presence of calcium phosphate nanoparticles were 0±0, 20.9±7.4, 33.8±5.5, 33.8±3.7 and 33.8±3.7 mg, respectively. After 0.5 h, little amount of albumin was permeated in presence of every kind of the nanoparticles. After 0.5 or 1 h, the permeated albumin in presence of calcium phosphate nanoparticles was more than that in presence of zinc oxide nanoparticles and after 1.5 h the permeated albumin in presence of zinc oxide nanoparticles was more than that in presence of calcium phosphate nanoparticles. Images of skin distribution of the two nanoparticles over time, were somewhat different and distribution of albumin correlated with the distribution of the nanoparticles alone. The profiles of albumin permeation (in presence of each of the nanoparticles) versus time was delayed and linear for both nanoparticles while the slope for calcium phosphate nanoparticles was higher than zinc oxide nanoparticles. The enhancer effect of zinc oxide nanoparticles was stronger while the enhancer effect of calcium phosphate nanoparticles was

  9. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation.

    PubMed

    Nguyen, C; Lieberherr, M; Bordat, C; Velard, F; Côme, D; Lioté, F; Ea, H-K

    2012-11-01

    Basic calcium phosphate (BCP) crystals, including octacalcium phosphate (OCP), carbonated-apatite (CA) and hydroxyapatite (HA) crystals are associated with destructive forms of osteoarthritis. Mechanisms of BCP-induced cartilage breakdown remain incompletely understood. We assessed the ability of BCP to induce changes in intracellular calcium (iCa(2+)) content and oscillations and the role of iCa(2+) in BCP-induced cartilage degradation. Bovine articular chondrocytes (BACs) and bovine cartilage explants (BCEs) were stimulated with BCP or monosodium urate (MSU) crystals. iCa(2+) levels were determined by spectrofluorimetry and oscillations by confocal microscopy. mRNA expression of matrix metalloproteinase 3 (MMP-3), a disintegrin and metalloprotease with thrombospondin-like motifs 4 (ADAMTS-4) and ADAMTS-5 was assessed by quantitative real-time PCR. Glycosaminoglycan (GAG) release was measured in the supernatants of BCE cultures. All three BCP crystals significantly increased iCa(2+) content. OCP also induced iCa(2+) oscillations. Rate of BACs displaying iCa(2+) oscillations increased over time, with a peak after 20 min of stimulation. OCP-induced iCa(2+) oscillations involved both extracellular Ca(2+) (eCa(2+)) influx and iCa(2+) stores. Indeed, OCP-induced iCa(2+) oscillations decreased rapidly in Ca(2+)-free medium. Both voltage- and non-voltage-dependent Ca(2+) channels were involved in eCa(2+) influx. BCP crystal-induced variation in iCa(2+) content was associated with BCP crystal-induced cartilage matrix degradation. However, iCa²(+) was not associated with OCP crystal-induced mRNA expression of MMP-3, ADAMTS-4 or ADAMTS-5. BCP crystals can induce variation in iCa(2+) content and oscillations in articular chondrocytes. Furthermore, BCP crystal-induced changes in iCa(2+) content play a pivotal role in BCP catabolic effects on articular cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite.

    PubMed

    Yin, Hongbin; Yun, Ye; Zhang, Yinlong; Fan, Chengxin

    2011-12-30

    Developing an easily handled and cost-effective phosphate absorbent is crucial for the control of water eutrophication. In this study, a naturally occurring, calcium-rich sepiolite (NOCS) was evaluated for its feasibility as a phosphate absorbent candidate. Batch studies showed that phosphate sorption on NOCS followed a stepwise isotherm for concentrations between 5 and 1000 mg P/l, and the phosphate sorption was fitted well by the Freundlich equation. The estimated maximum phosphorus sorption capacity was 32.0 mg P/g, which was quite high compared with other natural materials and was comparable to some efficient manmade P absorbents. The NOCS sorption kinetics followed a pseudo-first-order model with an R(2) value of 0.999. The adsorption of phosphate was highly pH dependent. Phosphate adsorption decreased moderately with increasing pH values from 3.0 to 6.0, and it decreased sharply in alkaline conditions. Ionic strength, sulfate, nitrate and chloride anions had no effects on the phosphate removal capacity of NOCS, but fluoride and bicarbonate anions exerted large effects. Phosphorus fractionation indicated that phosphate removed from the solution was primarily formed as a calcium-bound phosphorus precipitation, which was further confirmed by SEM-EDS analysis. Moreover, phosphate was barely (<1.5%) desorbed from the phosphorus-adsorbed sepiolite regardless of pH value. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effect of calcium phosphate glass on bone formation in calvarial defects of Sprague-Dawley rats.

    PubMed

    Moon, Hyun-Ju; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Choi, Seong-Ho; Kim, Chong-Kwan; Kim, Kee-Deog; LeGeros, Racquel Z; Lee, Yong-Keun

    2006-09-01

    The purpose of this study was to investigate the bone regenerative effect of calcium phosphate glass in vivo. We prepared two different sizes of calcium phosphate glass powder using the system CaO-CaF2-P2O5-MgO-ZnO; the particle size of the powders were 400 microm and 40 microm. 8 mm calvarial critical-sized defects were created in 60 male Sprague-Dawley rats. The animals were divided into 3 groups of 20 animals each. Each defect was filled with a constant weight of 0.5 g calcium phosphate glass powder mixed with saline. As controls, the defect was left empty. The rats were sacrificed 2 or 8 weeks after postsurgery, and the results were evaluated using radiodensitometric and histological studies; they were also examined histomorphometrically. When the bigger powders with 400 microm particle were grafted, the defects were nearly completely filled with new-formed bone in a clean healing condition after 8 week. When smaller powders with 40 microm particle were transplanted, new bone formation was even lower than the control group due to a lot of inflammatory cell infiltration. It was concluded that the prepared calcium phosphate glass enhanced the new bone formation in the calvarial defect of Sprague-Dawley rats and it is expected to be a good potential materials for hard tissue regeneration. The particle size of the calcium phosphate was crucial; 400 microm particles promoted new bone formation, while 40 microm particles inhibited it because of severe inflammation.

  12. Bone formation in calvarial defects of Sprague-Dawley rats by transplantation of calcium phosphate glass.

    PubMed

    Moon, Hyun-Ju; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Choi, Seong-Ho; Kim, Chong-Kwan; Kim, Kee-Deog; LeGeros, Racquel Z; Lee, Yong-Keun

    2005-09-01

    The purpose of this study was to investigate the bone-regenerative effect of calcium phosphate glass in vivo. We prepared amorphous calcium phosphate glass powder having a mean particle size of 400 microm in the system CaO-CaF2-P2O5-MgO-ZnO. Calvarial critical-sized defects (8 mm) were created in 60 male Sprague-Dawley rats. The animals were divided into an experimental group and control group of 30 animals each. Each defect was filled with a constant weight of 0.5 g calcium phosphate glass powder mixed with saline. As a control, the defect was left empty. The rats were sacrificed 2, 4, or 8 weeks postsurgery, and the results evaluated using radiodensitometric and histological studies; they were also examined histomorphometrically. When the calcium phosphate glass powders with 400-microm particles were grafted, the defects were nearly completely filled with new-formed bone in a clean healing condition after 8 weeks. It was observed that the prepared calcium phosphate glass enhanced new bone formation in the calvarial defect of Sprague-Dawley rats and could be expected to have potential for use as a hard tissue regeneration material.

  13. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.

    PubMed

    Shadanbaz, Shaylin; Dias, George J

    2012-01-01

    Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byung Yeol; Padalhin, Andrew Reyas; Sarker, Avik; Carpena, Nathaniel; Kim, Boram; Paul, Kallyanshish; Choi, Hwan Jun; Bae, Sang-Ho; Lee, Byong Taek

    2016-01-01

    In this work, we report brushite-based calcium phosphate cement (CPC) system to enhance the in vivo biodegradation and tissue in-growth by incorporation of micro-channeled hydroxyapatite (HAp) granule and silicon and sodium addition in calcium phosphate precursor powder. Sodium- and silicon-rich calcium phosphate powder with predominantly tri calcium phosphate (TCP) phase was synthesized by an inexpensive wet chemical route to react with mono calcium phosphate monohydrate (MCPM) for making the CPC. TCP nanopowder also served as a packing filler and moderator of the reaction kinetics of the setting mechanism. Strong sintered cylindrical HAp granules were prepared by fibrous monolithic (FM) process, which is 800 µm in diameter and have seven micro-channels. Acid sodium pyrophosphate and sodium citrate solution was used as the liquid component which acted as a homogenizer and setting time retarder. The granules accelerated the degradation of the brushite cement matrix as well as improved the bone tissue in-growth by permitting an easy access to the interior of the CPC through the micro-channels. The addition of micro-channeled granule in the CPC introduced porosity without sacrificing much of its compressive strength. In vivo investigation by creating a critical size defect in the femur head of a rabbit model for 1 and 2 months showed excellent bone in-growth through the micro-channels. The granules enhanced the implant degradation behavior and bone regeneration in the implanted area was significantly improved after two months of implantation.

  15. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution.

    PubMed

    Bleek, Katrin; Taubert, Andreas

    2013-05-01

    The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.

  16. Antibody-conjugated soybean oil-filled calcium phosphate nanoshells for targetted delivery of hydrophobic molecules.

    PubMed

    Schmidt, H T; Kroczynski, M; Maddox, J; Chen, Y; Josephs, R; Ostafin, A E

    2006-11-01

    Hollow calcium phosphate nanoparticles capable of encapsulating poorly water-soluble molecules were produced by self-assembly. Previously reported were solid calcium phosphate nanoparticles and water-filled calcium phosphate nanocapsules suited for encapsulating mostly hydrophilic, but not hydrophobic compounds. Here, calcium phosphate was deposited around 100 nm diameter, 1,2-dioleoyl-sn-glycero-3-phosphate stabilized soybean oil nanoemulsions using either calcium chloride or NaOH titrations to achieve shell thickness between 20-70 nm. The surface was functionalized with carboxylic acid via the addition of carboxyethylphosphonic acid to attach Molecular Probes AB-594C antibody using sulpho-n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride with an efficiency of approximately 70%, while retaining near complete antibody function. Hydrophobic pyrene was encapsulated with an efficiency of 95%, at concentrations much higher than its water solubility limit, and exhibited spectral features characteristic of a hydrophobic environment. These materials can be used in the targeted delivery of many useful, yet poorly water-soluble pharmaceutical and nutraceutical compounds.

  17. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    PubMed

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of strontium ions substitution on gene delivery related properties of calcium phosphate nanoparticles.

    PubMed

    Hanifi, A; Fathi, M H; Mir Mohammad Sadeghi, H

    2010-09-01

    Gene therapy has been considered a strategy for delivery of therapeutic nucleic acids to a specific site. Calcium phosphates are one gene delivery vector group of interest. However, low transfection efficiency has limited the use of calcium phosphate in gene delivery applications. Present work aims at studying the fabrication of strontium substituted calcium phosphate nanoparticles with improved gene delivery related properties. Strontium substituted calcium phosphate was prepared using a simple sol gel method. X-ray diffraction analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, specific surface area analysis, zeta potential measurement and ion release evaluation were used to characterize the samples. This characterization showed strontium and carbonate co-substituted calcium phosphate which resulted in nano size particles with low crystallinity, high specific surface area, positive surface charge, and a high dissolution rate. These improved properties could increase the DNA concentration on the vector as well as the endosomal escape of the complex that leads to higher transfection efficiency of this novel gene delivery vector.

  19. Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2003-08-01

    {sup 90}Sr contamination is a major problem at several U.S. sites. At some sites, {sup 90}Sr has migrated deep underground making site remediation difficult. In this paper, we describe a novel method for precipitation of hydroxyapatite, a strong sorbent for {sup 90}Sr, in soil. The method is based on mixing a solution of calcium citrate and sodium phosphate in soil. As the indigenous soil microorganisms mineralize the citrate, the calcium is released and forms hydroxyapatite. Soil, taken from the Albuquerque desert, was treated with a sodium phosphate solution or a sodium phosphate/calcium citrate solution. TEM and EDS were used to identify hydroxyapatite with CO{sub 3}{sup 2-} substitutions, with a formula of (Ca{sub 4.8}Na{sub 0.2})[(PO{sub 4}){sub 2.8}(CO{sub 3}){sub 0.2}](OH), in the soil treated with the sodium phosphate/calcium citrate solution. Untreated and treated soils were used in batch sorption experiments for Sr uptake. Average Sr uptake was 19.5, 77.0 and 94.7% for the untreated soil, soil treated with sodium phosphate, and soil with apatite, respectively. In desorption experiments, the untreated soil, phosphate treated soil and apatite treated soil released an average of 34.2, 28.8 and 4.8% respectively. The results indicate the potential of forming apatite in soil using soluble reagents for retardation of radionuclide migration.

  20. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    NASA Astrophysics Data System (ADS)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  1. Setting time and formability of calcium phosphate cements prepared using modified dicalcium phosphate anhydrous powders.

    PubMed

    Sawamura, Takenori; Mizutani, Yoichiro; Okuyama, Masahiko; Kasuga, Toshihiro

    2014-07-01

    Calcium phosphate cements (CPCs) were prepared using Ca4(PO4)2O (TeCP) and modified CaHPO4 (DCPA) to evaluate the effects of the powder properties for DCPA particles on the setting time and formability of the resulting CPCs. Two types of modified DCPA were prepared by milling commercially available DCPA with ethanol (to produce E-DCPA) or distilled water (to produce W-DCPA). The E-DCPA samples consisted of well-dispersed, fine primary particles, while the W-DCPA samples contained agglomerated particles, and had a smaller specific surface area. The mean particle size decreased with increased milling time in both cases. The raw CPC powders prepared using W-DCPA had a higher packing density than those prepared using E-DCPA, regardless of the mean particle size. The setting time of the CPC paste after mixing with distilled water decreased with decreases in the mean particle size and specific surface area, for both types of DCPA. The CPCs prepared using W-DCPA showed larger plasticity values compared with those prepared using E-DCPA, which contributed to the superior formability of the W-DCPA samples. The CPCs prepared using W-DCPA showed a short setting time and large plasticity values, despite the fact that only a small amount of liquid was used for the mixing of the raw CPC powders (a liquid-to-powder ratio of 0.25 g g(-1) was used). It is likely that the higher packing density of the raw CPC powders prepared using W-DCPA was responsible for the higher performance of the resulting CPCs.

  2. The phase evolution, crystallography and thin films of silicon stabilized calcium phosphates

    NASA Astrophysics Data System (ADS)

    Reid, Joel Wellington

    The crystallography and phase evolution of silicon substituted and pure calcium phosphate materials suitable for bone replacement have been studied using x-ray diffraction. Thin films of these materials have been applied to Ti6Al4V implant grade alloys. Calcium hydroxyapatite sintered in the presence of silica over 800°C forms a multiphase mixture with a phase composition which depends on the silica content, sintering temperature and sintering time. The phase evolution is explained in terms of a two step process starting with the silicon mediated dehydration and transformation of hydroxyapatite to a silicon substituted dehydrated apatite and alpha tricalcium phosphate. The alpha tricalcium phosphate subsequently transforms to a saturated silicon stabilized tricalcium phosphate phase with the same space group as alpha tricalcium phosphate in the presence of sufficient silicon, or to beta tricalcium phosphate if there is insufficient silicon. To better understand the observed silicon mediated dehydration of hydroxyapatite, pure calcium hydroxyapatite was sintered under vacuum or high humidity. Three apatite structural models were studied using Rietveld analysis. The dehydrated oxy-hydroxyapatite lost up to half of its hydroxide ion content and underwent a triclinic distortion to the space group P1¯, with characteristic lattice parameters shifted from fully hydrated hydroxyapatite. Biologically effective calcium phosphate thin films on implant grade titanium alloys required deposition of a silica intermediate layer using a custom built chemical vapour deposition system. The silica layer acted as both diffusion barrier layer and a reaction layer to nucleate the silicon stabilized tricalcium phosphate phase. The silicon stabilized tricalcium phosphate films were adherent and capable of cell mediated resorption by osteoclasts.

  3. Molecular mechanism of crystallization impacting calcium phosphate cements

    SciTech Connect

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    changes from 'What types of molecules will inhibit brushite growth' to 'What type of molecule will interact with the [10-1]{sub Cc} step?' Similarly, to increase resorption rate, it would be most efficacious to target the slow moving [-100] step, perhaps by targeting the hydroxyl group which seem to stabilize this step compared to its otherwise similar mirror, [100]. In short, there are a number of opportunities where molecular scale imaging can provide new information that has the prospect to aid in optimizing calcium phosphate cements.

  4. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.

    PubMed

    Xin, Renlong; Leng, Yang; Chen, Jiyong; Zhang, Qiyi

    2005-11-01

    Formation of calcium phosphate (Ca-P) on various bioceramic surfaces in simulated body fluid (SBF) and in rabbit muscle sites was investigated. The bioceramics were sintered porous solids, including bioglass, glass-ceramics, hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate. The ability of inducing Ca-P formation was compared among the bioceramics. The Ca-P crystal structures were identified using single-crystal diffraction patterns in transmission electron microscopy. The examination results show that ability of inducing Ca-P formation in SBF was similar among bioceramics, but considerably varied among bioceramics in vivo. Sintered beta-tricalcium phosphate exhibited a poor ability of inducing Ca-P formation both in vitro and in vivo. Octacalcium phosphate (OCP) formed on the surfaces of bioglass, A-W, hydroxyapatite and alpha-tricalcium phosphate in vitro and in vivo. Apatite formation in physiological environments cannot be confirmed as a common feature of bioceramics.

  5. Computational modelling of local calcium ions release from calcium phosphate-based scaffolds.

    PubMed

    Manhas, Varun; Guyot, Yann; Kerckhofs, Greet; Chai, Yoke Chin; Geris, Liesbet

    2017-04-01

    A variety of natural or synthetic calcium phosphate (CaP)-based scaffolds are currently produced for dental and orthopaedic applications. These scaffolds have been shown to stimulate bone formation due to their biocompatibility, osteoconductivity and osteoinductivity. The release of the [Formula: see text] ions from these scaffolds is of great interest in light of the aforementioned properties. It can depend on a number of biophysicochemical phenomena such as dissolution, diffusion and degradation, which in turn depend on specific scaffold characteristics such as composition and morphology. Achieving an optimal release profile can be challenging when relying on traditional experimental work alone. Mathematical modelling can complement experimentation. In this study, the in vitro dissolution behaviour of four CaP-based scaffold types was investigated experimentally. Subsequently, a mechanistic finite element method model based on biophysicochemical phenomena and specific scaffold characteristics was developed to predict the experimentally observed behaviour. Before the model could be used for local [Formula: see text] ions release predictions, certain parameters such as dissolution constant ([Formula: see text]) and degradation constant ([Formula: see text]) for each type of scaffold were determined by calibrating the model to the in vitro dissolution data. The resulting model showed to yield release characteristics in satisfactory agreement with those observed experimentally. This suggests that the mathematical model can be used to investigate the local [Formula: see text] ions release from CaP-based scaffolds.

  6. [Effect of Zinc Doped Calcium Phosphate Coating on Bone Formation and the Underlying Biological Mechanism].

    PubMed

    Luo, Wenjing; Zhao, Jinghui; Meng, Xing; Ma, Shanshan; Sun, Qianyue; Guo, Tianqi; Wang, Yufeng; Zhou, Yanmin

    2015-12-01

    Implant surface modified coating can improve its osteoinductivity, about which simple calcium phosphate coating has been extensively studied. But it has slow osteointegration speed and poor antibacterial property, while other metal ions added, such as nano zinc ion, can compensate for these deficiencies. This paper describes the incorporation form, the effect on physical and chemical properties of the material and the antibacterial property of nano zinc, and summarizes the material's biological property given by calcium ion, zinc ion and inorganic phosphate (Pi), mainly focusing on the influence of these three inorganic ions on osteoblast proliferation, differentiation, protein synthesis and matrix mineralization in order to present the positive function of zinc doped calcium phosphate in the field of bone formation.

  7. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    PubMed

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  8. Cytotoxicity and mutagenicity of dimethylnitrosamine in mammalian cells (CHO/HGPRT system): enhancement by calcium phosphate

    SciTech Connect

    O'Neill, J.P.; Machanoff, R.; Sebastian, J.R.S.; Hsie, A.W.

    1982-01-01

    The cytotoxicity and mutagenicity of dimethylnitrosamine (DMN) was determined in the CHO/HGPRT system. Metabolic activation of the promutagen was achieved by use of a liver homogenate supernatant (S9) prepared from Aroclor 1254-induced Sprague-Dawley rats. The cytotoxic and mutagenic effects of DMN were enhanced by the inclusion of calcium chloride in the incubation mix, and this enhancement was dependent on the presence of sodium phosphate. Under conditions that yielded maximal activity (10 mM calcium chloride, 10 mM magnesium chloride, 50 mM sodium phosphate), an apparent calcium phosphate precipitate was observed. DMN activity increased with increasing amounts of S9 protein over the range 0.3-3.0 mg/ml in the S9 mix and appeared to plateau at higher concentrations. The mutagencity of DMN can be described as 110 mutants/10/sup 6/ cells per mM DMN per mg/ml S9 protein per hour.

  9. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    PubMed

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help

  10. Dental Composites with Calcium / Strontium Phosphates and Polylysine

    PubMed Central

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    Purpose This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Materials and Methods Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Results Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. Conclusion The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help

  11. Reduced CSF leak in complete calvarial reconstructions of microvascular decompression craniectomies using calcium phosphate cement

    PubMed Central

    Eseonu, Chikezie I.; Goodwin, C. Rory; Zhou, Xin; Theodros, Debebe; Bender, Matthew T.; Mathios, Dimitrios; Bettegowda, Chetan; Lim, Michael

    2016-01-01

    OBJECT Calcium phosphate cement provides a biomaterial that can be used for calvarial reconstruction in a retrosigmoid craniectomy for microvascular decompression (MVD). This study evaluates the outcomes of postoperative CSF leak and wound infection for patients undergoing a complete cranioplasty using calcium phosphate cement versus incomplete cranioplasty using polyethylene titanium mesh following a retrosigmoid craniectomy for MVD. METHODS The authors evaluated 211 cases involving patients who underwent first-time retrosigmoid craniectomies performed by a single attending surgeon for trigeminal neuralgia from October 2008 to June 2014. From this patient population, 111 patients underwent calvarial reconstruction after retrosigmoid craniectomy using polyethylene titanium mesh, and 100 patients had reconstructions using calcium phosphate cement. A Pearson’s chi-square test was used to compare postoperative complications of CSF leak and wound infection in these 2 types of cranioplasties. RESULTS The polyethylene titanium mesh group included 5 patients (4.5%) with postoperative CSF leak or pseudomeningocele and 3 patients (2.7%) with wound infections. In the calcium phosphate cement group, no patients had a CSF leak, and 2 patients (2%) had wound infections. This represented a statistically significant reduction of postoperative CSF leak in patients who underwent calcium phosphate reconstructions of their calvarial defect compared with those who underwent polyethylene titanium mesh reconstructions (p = 0.03). No significant difference was seen between the 2 groups in the number of patients with postoperative wound infections. CONCLUSIONS Calcium phosphate cement provides a viable alternative biomaterial for calvarial reconstruction of retrosigmoid craniectomy defects in patients who have an MVD. The application of this material provides a biocompatible barrier that reduces the incidence of postoperative CSF leaks. http://thejns.org/doi/abs/10.3171/2015.1.JNS142102

  12. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization.

    PubMed

    Fan, Yuwei; Duan, Ke; Wang, Rizhi

    2005-05-01

    A composite coating that is composed of collagen protein and calcium phosphate minerals is considered to be bioactive and may enhance bone growth and fixation of metallic orthopedic implants. In this study, we have successfully developed a uniform collagen fibril/octacalcium phosphate composite coating on silicon substrate by electrolytic deposition (ELD). The coating deposition was done through applying a constant potential to the cathode in a three-electrode electrochemistry cell that contain a mild acidic (pH 4.8-5.3) aqueous solution of collagen molecules, calcium and phosphate ions. The coating process involved self-assembly of collagen fibrils and the deposition of calcium phosphate minerals as a result of cathode reaction and local pH increase. The two steps could be synchronized to form a bone-like composite at nanometer scale through proper adjustment of the solution and deposition parameters. Coating morphology, crystal structure and compositions were analyzed by optical and fluorescence microscopy, scanning and transmission electron microscopy, energy dispersive X-ray analysis, inductively coupled argon plasma optical emission spectrophotometry, and Fourier-transformed infrared spectroscopy. Under typical deposition conditions, the cathode (Si) surface formed a thin (100 nm) layer of calcium phosphate coating, on top of which a thick (approximately 100 microm) composite layer formed. The porous composite layer consists of a collagen fibril network on which clusters of octacalcium phosphate crystals nucleate and grow. By combining photolithography and ELD, we were also able to pattern the composite coating into regular arrays of squares. Preliminary results by nanoindentation tests showed that properly prepared composite coating may have higher elastic modulus and scratch resistance than monolithic porous calcium phosphate coating. The results not only provide a novel bioactive coating for biomedical implants, but also establish a new experimental

  13. Simulations of inositol phosphate metabolism and its interaction with InsP(3)-mediated calcium release.

    PubMed Central

    Mishra, Jyoti; Bhalla, Upinder S

    2002-01-01

    Inositol phosphates function as second messengers for a variety of extracellular signals. Ins(1,4,5)P(3) generated by phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate, triggers numerous cellular processes by regulating calcium release from internal stores. The Ins(1,4,5)P(3) signal is coupled to a complex metabolic cascade involving a series of phosphatases and kinases. These enzymes generate a range of inositol phosphate derivatives, many of which have signaling roles of their own. We have integrated published biochemical data to build a mass action model for InsP(3) metabolism. The model includes most inositol phosphates that are currently known to interact with each other. We have used this model to study the effects of a G-protein coupled receptor stimulus that activates phospholipase C on the inositol phosphates. We have also monitored how the metabolic cascade interacts with Ins(1,4,5)P(3)-mediated calcium release. We find temporal dynamics of most inositol phosphates to be strongly influenced by the elaborate networking. We also show that Ins(1,3,4,5)P(4) plays a key role in InsP(3) dynamics and allows for paired pulse facilitation of calcium release. Calcium oscillations produce oscillatory responses in parts of the metabolic network and are in turn temporally modulated by the metabolism of InsP(3). PMID:12202356

  14. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    SciTech Connect

    Enlow, Drew Lenzen

    2006-01-01

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of ~40 nm, and agglomerates of these particles (on the order of 0.5 μm) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  15. Determination of the active center in calcium-nickel phosphate dehydrogenation catalyst

    SciTech Connect

    Attali, S.; Vigouroux, B.; Lenzi, M.; Pescia, J.

    1980-06-01

    Determination of the active center in calcium-nickel phosphate dehydrogenation catalyst, used industrially in the dehydrogenation of butenes to butadiene, showed that a stable trivalent nickel ion is involved. Apparently, electrons generated in the first (oxidation) step of the reaction are eliminated by reducing the trivalent to divalent nickel which is reoxidized by protons. The results were obtained by propanol dehydration-dehydrogenation on calcium-nickel phosphate (Ca/sub 8/Ni(PO/sub 4//sub )/6) calcined at 400/sup 0/-900/sup 0/C and by ESR spectroscopy.

  16. Prebiotic Formation of ADP and ATP from AMP, Calcium Phosphates and Cyanate in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Yamagata, Yukio

    1999-10-01

    Adenosine-5'-triphosphate was synthesized by the phosphorylation of adenosine-5'-diphosphate in aqueous solution containing cyanate as a condensing reagent and insoluble calcium phosphate produced from phosphate and calcium chloride. In a similar manner, adenosine-5'-diphosphate was synthesized from adenosine-5'-monophosphate. When the experiment was carried out in the conditions of 4 °C and pH 5.75, the formation of adenosine-5'-diphosphate and adenosine-5'-triphosphate from adenosine-5'-monophosphate was observed in the yields of 19 and 7%, respectively. The other nucleoside-5'-triphosphates were also produced from their respective diphosphates.

  17. Design and evaluation of a nanoenhanced anti-infective calcium phosphate bone cements.

    PubMed

    Tappa, Karthik K; Jammalamadaka, Udayabhanu M; Mills, David K

    2014-01-01

    Post-operative complications due to infections are the most common problems that occur following dental and orthopedic implant surgeries and bone repair procedures. Preventing post-surgical infections is therefore a critical need that current polymethylmethacrylate (PMMA) bone cement fail to address. Calcium phosphate cements (CPCs) are unique in their ability to crystallize calcium and phosphate salts into hydroxyapatite (HA) and hence is naturally osteoconductive. Due to its low mechanical strength its use in implant fixation and bone repair is limited to non-load bearing applications. The present work describes a new and novel antibiotic-doped clay nanotube CPC composite with enhanced mechanical properties as well as sustained release properties.

  18. Elemental bio-imaging of calcium phosphate crystal deposits in knee samples from arthritic patients

    PubMed Central

    Austin, Christine; Hare, Dominic; Rozelle, Andrew L.; Robinson, William H.; Grimm, Rudolf

    2012-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was employed to image deposits of calcium phosphate based crystals in knee cartilage and synovial fluid from arthritic patients. A reaction/collision cell containing hydrogen minimised plasma interferences on calcium and also improved the image quality without significant sensitivity reduction. Areas of high calcium and phosphorus intensities consistent with crystal deposits were observed for both the cartilage and synovial fluid samples. These areas were also characterised by high magnesium and strontium intensities. Distribution patterns of other elements such as copper and sulfur did not correlate with the crystal deposits. Filtered and non-filtered solutions of calcium phosphate crystals grown in synthetic synovial fluid were also imaged as further evidence of crystal deposits. The crystal deposits were detected in the unfiltered solution, and were absent from the filtered solutions. PMID:21305107

  19. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings.

    PubMed

    Nijhuis, Arnold W G; Nejadnik, M Reza; Nudelman, Fabio; Walboomers, X Frank; te Riet, Joost; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Li, Yubao; Bomans, Paul H H; Jansen, John A; Sommerdijk, Nico A J M; Leeuwenburgh, Sander C G

    2014-02-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium concentration and conductivity of the aqueous solutions as a function of time, urease concentration and initial concentrations of calcium and phosphate ions. Cryogenic transmission electron microscopy was used to study the process of homogeneous CaP precipitation in solution, whereas CaP deposition on conventional acid-etched titanium and micropatterned polystyrene (PS) surfaces was studied using scanning electron microscopy. The data presented in this study confirm that the substrate-enzyme combination urea-urease offers strong control over the rate of pH increase by varying the concentrations of precursor salts and urease. Formation of biomimetic CaP coatings was shown to proceed via formation of ionic polymeric assemblies of prenucleation complexes. The process of deposition and corresponding coating morphology was strongly dependent on the concentration of calcium, phosphate and urease. Finally, it was shown that the substrate-enzyme combination urea-urease allowed for spatial distribution of CaP crystals along the grooves of micropatterned PS surfaces at low concentrations of calcium, phosphate and urease, stressing the sensitivity of the presented method. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Correlation between calcium and phosphate levels to calculus accumulation on coronary heart disease patients

    NASA Astrophysics Data System (ADS)

    Cahaya, Cindy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary Artery Disease (CAD) or Coronary Heart Disease (CHD) is a disease that happened because of blood flow being blocked by atherosclerosis. Atherosclerosis is a process of hardening of the arteries which characterized by thickening and loss of elasticity of the intimal layer of vascular wall, by lipid deposit. Periodontitis is a chronic multifactorial inflammatory disease caused by microorganism and characterized by progressive destruction of the tooth supporting apparatus leading to tooth loss. Many studies use saliva as a valuable source for clinically information, as an asset for early diagnosis, prognostic and reviewer for pascatherapy status. Dental calculus had happened as a consequence of saliva supersaturation by calcium and phosphate. Salivary flow rate and its composition influence the formation of calculus. Increasing salivary calcium levels is characteristic of periodontitis patients. An important hipotesis in Cardiology is chronic infections contribute in atherosclerosis. Objective: To analyse the correlation between calcium and phosphate levels in saliva to calculus accumulation on CHD patients. Result: Correlation analysis between salivary calcium levels with calculus accumulation in patients with CHD and non-CHD showed no significant p value, p=0.59 and p=0.518. Correlation analysis between salivary phosphate levels and calculus accumulation showed no significant p value, p=0.836 for CHD patients and p=0.484 for non-CHD patients. Conclusion: There are no correlation between calcium levels and phosphate levels with calculus accumulation in CHD patients. Further research need to be done.

  2. Probability-based compatibility curves for calcium and phosphates in parenteral nutrition formulations.

    PubMed

    Gonyon, Thomas; Carter, Phillip W; Phillips, Gerald; Owen, Heather; Patel, Dipa; Kotha, Priyanka; Green, John-Bruce D

    2014-08-01

    The information content of the calcium phosphate compatibility curves for adult parenteral nutrition (PN) solutions may benefit from a more sophisticated statistical treatment. Binary logistic regression analyses were evaluated as part of an alternate method for generating formulation compatibility curves. A commercial PN solution was challenged with a systematic array of calcium and phosphate concentrations. These formulations were then characterized for particulates by visual inspection, light obscuration, and filtration followed by optical microscopy. Logistic regression analyses of the data were compared with traditional treatments for generating compatibility curves. Assay-dependent differences were observed in the compatibility curves and associated probability contours; the microscopic method of precipitate detection generated the most robust results. Calcium and phosphate compatibility data generated from small-volume glass containers reasonably predicted the observed compatibility of clinically relevant flexible containers. The published methods for creating calcium and phosphate compatibility curves via connecting the highest passing or lowest failing calcium concentrations should be augmented or replaced by probability contours of the entire experimental design to determine zones of formulation incompatibilities. We recommend researchers evaluate their data with logistic regression analysis to help build a more comprehensive probabilistic database of compatibility information. © 2013 American Society for Parenteral and Enteral Nutrition.

  3. Simultaneous recovery of calcium phosphate granules and methane in anaerobic treatment of black water: Effect of bicarbonate and calcium fluctuations.

    PubMed

    Cunha, J R; Tervahauta, T; van der Weijden, R D; Hernández Leal, L; Zeeman, G; Buisman, C J N

    2017-09-09

    Calcium phosphate (CaP) granules were discovered in the anaerobic treatment of vacuum collected black water (BW), using upflow anaerobic sludge blanket (UASB) technology. This allows simultaneous recovery of CaP granules and methane in the UASB reactor. However, the role of BW composition on CaP granulation is not yet understood. Moreover, CaP granulation was not observed in previous research on anaerobic treatment of BW, although similar treatment conditions were applied. Therefore, this study shows specifically the influence of bicarbonate and calcium fluctuations in BW on the phosphorus accumulation in the UASB reactor, which directly affects CaP granulation. Without calcium addition, 5% of the total phosphorus (P) fed was found as CaP granules in the reactor (61 mgP g(-1)dried matter), after 260 days of operation. Simultaneously, 65% of the COD in BW was efficiently converted into methane at 25 °C. Variations of bicarbonate and calcium concentrations in raw BW showed a significant influence on phosphorus accumulation in the UASB reactor. Geochemical modelling showed that the increase of soluble calcium from 39 to 54 mg L(-1) in BW triggers supersaturation for calcium phosphate precursors (Cax(PO4)y). Concurrently, bicarbonate decreased from 2.7 to 1.2 g L(-1), increasing further the ionic activity of calcium. Formation and accumulation of seed particles possibly enhanced CaP granulation. Preliminary results showed that addition of calcium (Ca(2+)/PO4(3-) molar ratio of 3) increased the accumulation of total P in the UASB reactor to more than 85%. This further increases the granulation rate and consequently, the process feasibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs

    PubMed Central

    SUGAWARA, Akiyoshi; FUJIKAWA, Kenji; TAKAGI, Shozo; CHOW, Laurence C.

    2009-01-01

    A calcium phosphate cement (CPC-1), prepared by mixing an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous with water, has been shown to be highly biocompatible and osteoconductive. A new type of calcium phosphate cement (CPC-2), prepared by mixing a mixture of α-tricalcium phosphate and calcium carbonate with pH 7.4 sodium phosphate solution, was also reported to be highly biocompatible. The objective of the present study was to compare the osteoconductivities of CPC-1 and CPC-2 when implanted in surgically created defects in the jaw bones of dogs. At 1 month after surgery, implanted CPC-1 was partially replaced by new bone and converted to bone within 6 months. In comparison, at 1 month after surgery, the defect filled with CPC-2 was mostly replaced by new bone. Therefore, bone formation in CPC-2-filled pocket was more rapid than in CPC-1-filled pocket. These findings supported the hypothesis that CPC-2 converted to bone more rapidly than CPC-1. PMID:19241686

  5. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs.

    PubMed

    Sugawara, Akiyoshi; Fujikawa, Kenji; Takagi, Shozo; Chow, Laurence C

    2008-11-01

    A calcium phosphate cement (CPC-1), prepared by mixing an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous with water, has been shown to be highly biocompatible and osteoconductive. A new type of calcium phosphate cement (CPC-2), prepared by mixing a mixture of alpha-tricalcium phosphate and calcium carbonate with pH 7.4 sodium phosphate solution, was also reported to be highly biocompatible. The objective of the present study was to compare the osteoconductivities of CPC-1 and CPC-2 when implanted in surgically created defects in the jaw bones of dogs. At 1 month after surgery, implanted CPC-1 was partially replaced by new bone and converted to bone within 6 months. In comparison, at 1 month after surgery, the defect filled with CPC-2 was mostly replaced by new bone. Therefore, bone formation in CPC-2-filled pocket was more rapid than in CPC-1-filled pocket. These findings supported the hypothesis that CPC-2 converted to bone more rapidly than CPC-1.

  6. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  7. Vascular calcification and secondary hyperparathyroidism of severe chronic kidney disease and its relation to serum phosphate and calcium levels.

    PubMed

    Terai, K; Nara, H; Takakura, K; Mizukami, K; Sanagi, M; Fukushima, S; Fujimori, A; Itoh, H; Okada, M

    2009-04-01

    Various complications consequent on disordered calcium and phosphate homeostasis occur frequently in chronic kidney disease (CKD) patients. Particularly, vascular calcification has high morbidity and mortality rates. There is a clear need for a better CKD model to examine various aspects of this disordered homeostasis. Oral dosing with adenine induced CKD in rats in only 10 days. Serum calcium, phosphate and parathyroid hormone were measured and calcification in aorta was assessed histologically. The effects of varying phosphorus content of diet or treatment with phosphate binders or active vitamin D(3) on these parameters were examined. After adenine dosing, significant hyperphosphatemia, hypocalcemia and secondary hyperparathyroidism (2HPT) were observed during the experimental period of 15 weeks. Aortic calcification was detected in only some of the animals even at 15 weeks (approximately 40%). Treatment with vitamin D(3) for 18 days, even at a low dose (100 ng x kg(-1), 3-4 times week(-1), p.o), caused aortic calcification in all animals and increases in serum calcium levels up to the normal range. The vitamin D(3)-induced calcification was significantly inhibited by phosphate binders which lowered serum phosphate levels and the calcium x phosphate product, although serum calcium levels were elevated. These data suggest that rats dosed orally with adenine provide a more useful model for analysing calcium/phosphate homeostasis in severe CKD. Controlling serum calcium/phosphate levels with phosphate binders may be better than vitamin D(3) treatment in hyperphosphatemia and 2HPT, to avoid vascular calcification.

  8. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    SciTech Connect

    Sopcak, T.; Medvecky, L.; Giretova, M.; Stulajterova, R.; Durisin, J.; Girman, V.; Faberova, M.

    2016-07-15

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~ 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.

  9. Radiographic and histological analysis of tooth eruption through calcium phosphate ceramics in the cat.

    PubMed

    Feinberg, S E; Weisbrode, S E; Heintschel, G

    1989-01-01

    The effect of implanting calcium phosphate ceramics (CPC) into metabolically active sites within kitten mandibles during permanent premolar tooth eruption was examined. Forty kittens, 3-4 months of age were used: the deciduous second and third mandibular premolars were extracted and their sockets implanted with autologous blood clot, autogenous cancellous marrow, and the calcium phosphate ceramics, non-porous beta-tricalcium phosphate or porous hydroxylapatite. Animals were killed at 1, 2, 3, 4 and 5 months after implantation and undermineralized sagittal sections were evaluated by light microscopy. Eighty percent of hydroxylapatite implanted mandibles showed delay in tooth eruption concurrent with distortion in crown development, and a dense cellular fibro-proliferative response within the follicle of unerupted teeth. This response occurred in only one specimen with tricalcium phosphate, whereas normal eruptive patterns and crown development were routinely noted. Both the tricalcium phosphate and hydroxylapatite were integrated into the surrounding alveolar bone without evidence of an inflammatory response. Thus hydroxylapatite initiated a dense cellular fibrous network within the dental follicle preventing formation of an eruptive pathway, delaying tooth eruption and causing crown deformation. This was rarely seen with tricalcium phosphate, and may be due to the resorbability of tricalcium phosphate when compared to hydroxylapatite. Hydroxylapatite should therefore be used with caution for implanting into areas containing unerupted teeth with a metabolically active dental follicle.

  10. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.

    PubMed

    Eyckmans, Jeroen; Roberts, Scott J; Bolander, Johanna; Schrooten, Jan; Chen, Christopher S; Luyten, Frank P

    2013-06-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 h after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ.

    PubMed

    Joiner, Andrew; Schäfer, Fred; Naeeni, Mojgan M; Gupta, Ashok K; Zero, Domenick T

    2014-06-01

    To test if a novel dual-phase gel system (calcium silicate and phosphate with 1450 ppmF, as NaF/MFP; TG) combined with a toothpaste (calcium silicate and sodium phosphate with 1450 ppmF, as MFP; TG) was able to re-harden previously acid-challenged enamel to a greater extent than other toothpastes. The study consisted of a double-blind, randomised, cross-over design with four 7-day treatment legs. In each leg, subjects wearing a partial denture holding four demineralised enamel specimens (25 min in 0.3% citric acid, pH3.8) used either the test regimen (TG+TP) or one of the three controls. (placebo TG+TP; Positive Control - placebo TG+marketed 1450 ppmF toothpaste; Negative Control - placebo TG+placebo TP). Enamel specimens were removed after 1, 2, 3 and 7 days. The gel systems were applied once per day for the first three days during which subjects also brushed with the corresponding toothpaste; this was followed by four days use of the toothpastes only. Toothpastes were used in the conventional way brushing twice per day throughout the seven days. The outcome variable was %Surface Microhardness Recovery calculated after three and seven days of in situ treatment. The results showed a statistically significant (p<0.001) re-hardening effect for all treatments compared to pre-treatment hardness. After three days and after seven days of in situ treatment significantly greater hardening (p<0.05) was found in the samples treated with calcium silicate/phosphate gel system plus calcium silicate/phosphate toothpaste than in the control groups. It is concluded that the test regimen based on the novel dual-phase gel system combined with toothpaste was able to re-harden acid-challenged tooth enamel to a greater extent than a normal fluoride toothpaste. The novel oral care products containing calcium silicate, sodium phosphate salts and fluoride is a new approach to the repair of demineralised enamel. © 2014 Elsevier Ltd. All rights reserved.

  12. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response.

    PubMed

    Mestres, Gemma; Le Van, Clemence; Ginebra, Maria-Pau

    2012-03-01

    α-Tricalcium phosphate (α-TCP) is widely used as a reactant in calcium phosphate cements. This work aims at doping α-TCP with silicon with a twofold objective. On the one hand, to study the effect of Si addition on the stability and reactivity of this polymorph. On the other, to develop Si-doped cements and to evaluate the effect of Si on their in vitro cell response. For this purpose a calcium-deficient hydroxyapatite was sintered at 1250°C with different amounts of silicon oxide. The high temperature polymorph α-TCP was stabilized by the presence of silicon, which inhibited reversion of the β→α transformation, whereas in the Si-free sample α-TCP completely reverted to the β-polymorph. However, the β-α transformation temperature was not affected by the presence of Si. Si-α-TCP and its Si-free counterpart were used as reactants for a calcium phosphate cement. While Si-α-TCP showed faster hydrolysis to calcium-deficient hydroxyapatite, upon complete reaction the crystalline phases, morphology and mechanical properties of both cements were similar. An in vitro cell culture study, in which osteoblast-like cells were exposed to the ions released by both materials, showed a delay in cell proliferation in both cases and stimulation of cell differentiation, more marked for the Si-containing cement. These results can be attributed to strong modification of the ionic concentrations in the culture medium by both materials. Ca-depletion from the medium was observed for both cements, whereas continuous Si release was detected for the Si-containing cement. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses

    NASA Astrophysics Data System (ADS)

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-06-01

    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with 29Si and 31P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca2+ concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca2+ and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.

  14. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses.

    PubMed

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-06-01

    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with (29)Si and (31)P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca(2+) concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca(2+) and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.

  15. Absorption of calcium from milks enriched with fructo-oligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids.

    PubMed

    López-Huertas, Eduardo; Teucher, Birgit; Boza, Julio J; Martínez-Férez, Antonio; Majsak-Newman, Gosia; Baró, Luis; Carrero, Juan J; González-Santiago, María; Fonollá, Juristo; Fairweather-Tait, Susan

    2006-02-01

    Adequate intakes of calcium are required for optimal bone health and protection against chronic disease. Dairy products are an excellent source of calcium. The absorption of calcium from a range of fortified milks was measured in humans with the use of stable isotopes. Fifteen volunteers participated in a randomized, controlled, double-blind crossover study. Five types of semi-skimmed (1.9% fat) milk drinks were administered with a light breakfast: standard milk (control milk); milk enriched with calcium from milk solids and tricalcium phosphate [(TCP) MSS milk]; milk enriched with calcium from concentrated milk (CON milk); milk with added fructo-oligosaccharides [(FOSs) FOS milk]; and milk with added caseinophosphopeptides [(CPPs) CPP milk]. All the milks were labeled with 42Ca as CaCl2. The MSS milk was also labeled with 44Ca as TCP. The quantity of calcium in each drink was kept the same by varying the volume given. Calcium absorption did not differ significantly between the control milk and the calcium-fortified milks (MSS and CON milk) or the FOS and CPP milks. However, calcium absorption from the TCP added to the MSS milk was significantly higher than that from the control milk (27.5 +/- 7.6% and 24.5 +/- 7.3%, respectively; P = 0.003). Calcium-enriched milks are a valuable source of well-absorbed calcium. Absorption of added calcium as TCP was higher than that of calcium from the control milk, but the addition of FOSs or CPPs did not significantly increase calcium absorption. Further research is needed to ascertain the cost-effectiveness and public health benefits of consuming fortified milks.

  16. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  17. [Preparation and properties of calcium silicate-phosphate composite bone cements].

    PubMed

    Wang, Zhiqiang; Hu, Jilin; Liu, Xiaolei; Chen, Xiaoxu; Lü, Bingling

    2006-02-01

    In this paper, alpha-tricalcium phosphate (alpha-TCP) and tetracalcium phosphate (TTCP) respectively were chosen as basic compositions of phosphate bone cements. Other auxiliary materials such as hydroxyapatite (HAP), dicalcium phosphate dihydrate (DCPD), calcium carbonate (CaCO3), calcium oxide (CaO) and amorphous calcium silicate (CaSiO3) were added in the cements. Six kinds of composite bone cements were decided with 1.50 as their Ca/P ratio. Then the primary properties of them were studied. Ringer's simulated body fluid (SBF) tests were carried out for the samples. The changes of pH value in SBF and the compressive strength of the samples with the immersion time were studied. The results showed: the mixing liquid 0.25 M K2HPO4/KH2PO4 and amorphous CaSiO3 were effective for accelerating the setting of the cements; the initial setting time (It) was about 4-5.5 min and the final setting time (Ft) was about 18-19. 5 min. Amorphous calcium silicate can increase the compressive strength of the bone cements remarkably; the compressive strength of the alpha-TCP bone cement with the addition of suitable amount amorphous CaSiO3 reached 45.3 MPa after immersion in SBF for 14 days.

  18. A study about some phosphate derivatives as inhibitors of calcium oxalate crystal growth

    NASA Astrophysics Data System (ADS)

    Grases, F.; March, P.

    1989-08-01

    The kinetic of crystal growth of calcium oxalate monohydrate seed crystals were investigated potentiometrically in the presence of several phosphate derivatives, D-fructose-1,6-diphosphate, pyrophosphate, methylene diphosphonate and phytate, and it was found that in some cases they strongly inhibited crystal growth. The inhibitory action of the different substances assayed was comparatively evaluated.

  19. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    EPA Science Inventory

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  20. Cost containment using cysteine HCl acidification to increase calcium/phosphate solubility in hyperalimentation solutions.

    PubMed

    Schmidt, G L; Baumgartner, T G; Fischlschweiger, W; Sitren, H S; Thakker, K M; Cerda, J J

    1986-01-01

    The purpose of this study was to determine if (1) the calcium/phosphate insoluble product was inversely related to pH [when cysteine HC1 (CH) was added as neonatal supplementation at 0.5 mM/kg/day to hyperalimentation (HAL) solutions] and (2) the potential cost savings to the hospital. The pH of the HAL solutions was adjusted by adding various amounts of CH to the HAL solution. HAL solutions containing 27 mEq of calcium/liter and 30 mEq (15 mM) of phosphate/liter were compounded. Ten-milliliter aliquots were analyzed at 0, 12, 24, and 48 hr. All samples (n = 56) were filtered (0.22 mu), viewed with 7-10,000 X magnification scanning electron microscopy, and qualitatively analyzed with a Philips Energy Dispersive X-Ray Analysis System equipped with a SW9100 Microprocessor. Calcium/phosphate insoluble product was present in the 0-, 12-, 24-, and 48-hr samples from the CH-free solutions. The solutions containing 759 mg (4.17 mM)/liter of CH however, remained free of precipitant. This investigation demonstrated that addition of CH to HAL can foster significant cost containment (projected $82,000/yr tangible hospital savings) by the elimination of current calcium/phosphate separation procedures for neonates on parenteral nutrition.

  1. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    EPA Science Inventory

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  2. Fabrication of gelatin-strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering.

    PubMed

    Wu, Yu-Chun; Lin, Wei-Yu; Yang, Chyun-Yu; Lee, Tzer-Min

    2015-03-01

    This study fabricated homogeneous gelatin-strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze-drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200-400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin-strontium-substituted calcium phosphate for applications in bone tissue engineering.

  3. Transformation of Amorphous Calcium Phosphate to Crystalline Dahllite in the Radular Teeth of Chitons

    NASA Astrophysics Data System (ADS)

    Lowenstam, H. A.; Weiner, S.

    1985-01-01

    A comparison of infrared spectra from individual teeth along the radula of a chiton (Polyplacophora, Mollusca) shows that the first-formed calcium phosphate mineral is amorphous. Over a period of weeks the mineral transforms to dahllite. The c axes of the dahllite crystals are aligned approximately perpendicular to the tooth surface.

  4. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride.

    PubMed

    Cochrane, N J; Saranathan, S; Cai, F; Cross, K J; Reynolds, E C

    2008-01-01

    Casein phosphopeptide stabilised amorphous calcium phosphate (CPP-ACP) and amorphous calcium fluoride phosphate (CPP-ACFP) solutions have been shown to remineralise enamel subsurface lesions. The aim of this study was to determine the effect of ion composition of CPP-ACP and CPP-ACFP solutions on enamel subsurface lesion remineralisation in vitro. CPP-bound and free calcium, phosphate and fluoride ion concentrations in the solutions were determined after ultrafiltration. The ion activities of the free ion species present were calculated using an iterative computational program. The mineral deposited in the subsurface lesions was analysed using transverse microradiography and electron microprobe. CPP was found to stabilise high concentrations of calcium, phosphate and fluoride ions at all pH values (7.0-4.5). Remineralisation of the subsurface lesions was observed at all pH values tested with a maximum at pH 5.5. The CPP-ACFP solutions produced greater remineralisation than the CPP-ACP solutions at pH 5.5 and below. The mineral formed in the subsurface lesions was consistent with hydroxyapatite and fluorapatite for remineralisation with CPP-ACP and CPP-ACFP, respectively. The activity gradient of the neutral ion pair CaHPO(4)(0) into the lesion was significantly correlated with remineralisation and together with HF(0) were identified as important species for diffusion.

  5. The effect of amorphous calcium phosphate on protein protection against thermal denaturation.

    PubMed

    Yang, Yuling; Wang, Guangchuan; Zhu, Genxing; Xu, Xurong; Pan, Haihua; Tang, Ruikang

    2015-05-21

    The hybrid nanoparticles of amorphous calcium phosphate (ACP)-catalase (CAT) developed by in situ biomineralization can create a stable semi-aqueous nanoscale environment for entrapped proteins against thermal denaturation. This finding indicates the importance of an amorphous mineral phase in the preservation of organic macromolecules.

  6. Does Potassium Citrate Medical Therapy Increase the Risk of Calcium Phosphate Stone Formation?

    NASA Astrophysics Data System (ADS)

    Leitao, Victor; Haleblian, George E.; Robinson, Marnie R.; Pierre, Sean A.; Sur, Roger L.; Preminger, Glenn M.

    2007-04-01

    Potassium citrate has been extensively used in the treatment of recurrent nephrolithiasis. Recent evidence suggests that it may contribute to increasing urinary pH and, as such, increase the risk of calcium phosphate stone formation. We performed a retrospective review of our patients to further investigate this phenomenon.

  7. Adjuvant effects of chitosan and calcium phosphate particles in an inactivated Newcastle disease vaccine

    USDA-ARS?s Scientific Manuscript database

    The adjuvant activity of chitosan and calcium phosphate-particles (CAP) was studied following intranasal coadministration of commercial chickens with inactivated Newcastle disease virus (NDV) vaccine. After three vaccinations with inactivated NDV in combination with chitosan or CAP an increase in an...

  8. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells.

    PubMed

    AbdulQader, Sarah Talib; Kannan, Thirumulu Ponnuraj; Rahman, Ismail Ab; Ismail, Hanafi; Mahmood, Zuliani

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method.

    PubMed

    Kim, Hae-Won; Koh, Young-Hag; Kong, Young-Min; Kang, Jun-Gu; Kim, Hyoun-Ee

    2004-10-01

    Strontium (Sr) substituted calcium phosphate ceramics were fabricated using a powder precipitation method. The Sr ions were added up to 8 mol % to replace the Ca ions during the powder preparation. Composition analysis showed that the added Sr was not fully incorporated within the as-precipitated apatite structure, presumably being washed out during the powder preparation. After calcination, the Sr containing powders were crystallized into apatite and tricalcium phosphate (TCP), that is, biphasic calcium phosphates were formed. The amount of TCP increased with increasing the Sr addition. The lattice parameters of the calcined powders increased gradually with Sr substitution in both the a- and c-axis. However, the obtained values deviated slightly from the calculated ones at higher Sr additions (>4%) due to the partial substitution of Sr ions. The microstructure of the sintered bodies changed with the Sr addition due to the formation of TCP. The Vickers hardness increased slightly from 5.2 to 5.5 MPa with increasing Sr addition, which was driven by the HA+TCP biphasic formation. The osteoblast-like cells cultured on the Sr-substituted biphasic sample spread and grew actively. The proliferation rate of the cells was higher in the samples containing more Sr. The alkaline phosphate activity of the cells was expressed to a higher degree with increasing Sr addition. These observations confirmed the enhanced cell viability and differentiation of the Sr-substituted biphasic calcium phosphate ceramics.

  10. Gas phase laser synthesis and processing of calcium phosphate nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bapat, Parimal V.

    Biochemical processes make pervasive use of calcium and phosphate ions. Calcium phosphate salts that are naturally nontoxic and bioactive have been used for several medical applications in form of coatings and micropowders. Nanoparticle-based calcium phosphates have been shown to be internalized by living cells and be effective in DNA transfection, drug delivery, and transport of fluorophores for imaging of intracellular processes. They are also expected to interact strongly with cell adhesive proteins and are therefore promising elements in approaches to mimic the complex environment of the extra cellular matrix of bone. Harnessing this biomedical potential requires the ability to control the numerous characteristics of nanophase calcium phosphates that affect biological response, including nanoparticle chemical composition, crystal phase, crystallinity, crystallographic orientation of exposed faces, size, shape, surface area, number concentration, and degree of aggregation. This dissertation focuses on the use of laser-induced gas-phase synthesis for creation of calcium phosphate nanoparticles, and corresponding nanoparticle-based substrates that could offer new opportunities for guiding biological responses through well-controlled biochemical and topological cues. Gas-phase synthesis of nanoparticles has several characteristics that could enhance control over particle morphology, crystallinity, and surface area, compared to liquid-phase techniques. Synthesis from gas-phase precursors can be carried out at high temperatures and in high-purity inert or reactive gas backgrounds, enabling good control of chemistry, crystal structure, and purity. Moreover, the particle mean free path and number concentration can be controlled independently. This allows regulation of interparticle collision rates, which can be adjusted to limit aggregation. High-temperature synthesis of well-separated particles is therefore possible. In this work high power lasers are employed to

  11. Dissolution deceleration of calcium phosphate crystals at constant undersaturation

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwu; Nancollas, G. H.

    1992-09-01

    The dissolution of dicalcium phosphate dihydrate (CaHPO 4·2H 2O) and octacalcium phosphate (Ca 8H 2(PO 4) 6·5H 2O) has been followed as a function of time at constant undersaturations. The rate, after correction for changes in crystal surface area, decreases with time in spite of the sustained driving force, suggesting a decrease in the density of active sites on the crystal surface. This deceleration becomes more pronounced as the undersaturation decreases, leading to an increase in the effective dissolution order. The results of experiments in both Ultrapure and Reagent grade electrolyte solutions suggest that gradual contamination of the crystal surface is unlikely to account for the rate deceleration which may be interpreted by a decrease in the dislocation density during dissolution.

  12. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.

    PubMed

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D; McComb, David W; Porter, Alexandra E; Stevens, Molly M

    2012-08-28

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.

  13. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

    PubMed Central

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.

    2012-01-01

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397

  14. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies

    PubMed Central

    Bourges, Xavier; Schmitt, Michel; Amouriq, Yves; Daculsi, Guy; Legeay, Gilbert; Weiss, Pierre

    2001-01-01

    The purpose of this study was to check the chemical stability of an injectable bone substitute (IBS) composed of a 50/50 w/w mixture of a 2.92% hydroxypropyl methylcellulose (HPMC) solution in deionised water containing biphasic calcium phosphate (BCP) granules (60% hydroxyapatite/40% β-tricalcium phosphate w/w). After separation of the organic and mineral phases, capillary gas chromatography (GC) was used to study the possible modification of HPMC due to the contact with BCP granules following steam sterilisation and 32 days of storage at room temperature. HPMC was extracted from IBS in aqueous medium, and a dialytic method was then use to extract calcium phosphate salts from HPMC. The percentage of HPMC extracted from BCP was 98.5% ± 0.5% as measured by a UV method. GC showed no chemical modifications after steam sterilisation and storage. PMID:11556737

  15. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration.

    PubMed

    Livingston, T L; Gordon, S; Archambault, M; Kadiyala, S; McIntosh, K; Smith, A; Peter, S J

    2003-03-01

    The reconstruction and repair of large bone defects, resulting from trauma, cancer or metabolic disorders, is a major clinical challenge in orthopaedics. Clinically available biological and synthetic grafts have clear limitations that necessitate the development of new graft materials and/or strategies. Human mesenchymal stem cells (MSCs), obtained from the adult bone marrow, are multipotent cells capable of differentiating into various mesenchymal tissues. Of particular interest is the ability of these cells to differentiate into osteoblasts, or bone-forming cells. At Osiris, we have extensively characterized MSCs and have demonstrated MSCs can induce bone repair when implanted in vivo in combination with a biphasic calcium phosphate, specifically hydroxyapatite/tricalcium phosphate. This article reviews previous and current studies utilizing mesenchymal stem cells and biphasic calcium phosphates in bone repair.

  16. Use of alkaline calcium salts as phosphate binder in uremic patients.

    PubMed

    Fournier, A; Morinière, P; Ben Hamida, F; el Esjer, N; Shenovda, M; Ghazali, A; Bouzernidj, M; Achard, J M; Westeel, P F

    1992-10-01

    In order to prevent aluminum toxicity induced by the association of aluminum phosphate binder with 1 alpha(OH) vitamin D3 derivatives and the use of deferoxamine with its own hazards to diagnose and treat this toxicity, we have shown in 1982 that it was possible to replace the iatrogenic association of aluminum phosphate binder with 1 alpha OH vitamin D derivatives by oral calcium carbonate taken with the meals in order to bind phosphate and correct the negative calcium balance. This led to the disappearance of the crippling aluminic osteomalacia and adynamic bone diseases in our center. The effectiveness of CaCO3 without 1 alpha(OH)D3 derivatives in the control of hyperparathyroidism in dialysis patients has been proven by the appearance in four patients of our dialysis population of an histological idiopathic adynamic bone disease associated with relative hypoparathyroidism, and by the finding that more than 50% of our dialysis population treated by this sole treatment have plasma concentration of intact PTH below twice the upper limit of normal (that is, the threshold above which only significant histological osteitis fibrosa is observed). Besides the compliance problem, the limit of CaCO3 is the occurrence of hypercalcemia which occurs in about 8% of the measurements. Since calcium acetate binds twice as much phosphate for the same dose of elemental calcium as CaCO3, its use has been recommended. However, clinical experience has shown that in spite of the fact that half the dose of calcium element given as acetate does actually control predialysis plasma phosphate as well as CaCO3, the incidence of hypercalcemia is not decreased, probably because calcium availability at the alkaline pH of the intestine is much greater with Ca acetate. When hypercalcemia is frequent (and not explained by autonomized hyperparathyroidism, adynamic bone disease, overtreatment with vitamin D, granulomatosis or neoplasia) it is necessary either to decrease the dose of calcium and

  17. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements.

    PubMed

    Sariibrahimoglu, Kemal; Leeuwenburgh, Sander C G; Wolke, Joop G C; Yubao, Li; Jansen, John A

    2012-03-01

    The main disadvantage of apatitic calcium phosphate cements (CPCs) is their slow degradation rate, which limits complete bone regeneration. Carbonate (CO₃²⁻) is the common constituent of bone and it can be used to improve the degradability of the apatitic calcium phosphate ceramics. This study aimed to examine the effect of calcite (CaCO₃) incorporation into CPCs. To this end, the CaCO₃ amount (0-4-8-12 wt %) and its particle size (12.0-μm-coarse or 2.5-μm-fine) were systematically investigated. In comparison to calcite-free CPC, the setting time of the bone substitute was delayed with increasing CaCO₃ incorporation. Reduction of the CaCO₃ particle size in the initial powder increased the injectability time of the paste. During hardening of the cements, the increase in calcium release was inversely proportional to the extent of CO₃²⁻ incorporation into apatites. The morphology of the carbonate-free product consisted of large needle-like crystals, whereas small plate-like crystals were observed for carbonated apatites. Compressive strength decreased with increasing CaCO₃ content. In vitro accelerated degradation tests demonstrated that calcium release and dissolution rate from the set cements increased with increasing the incorporation of CO₃²⁻, whereas differences in CaCO₃ particle size did not affect the in vitro degradation rate under accelerated conditions.

  18. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  19. Microbial phytase-induced calcium-phosphate precipitation--a potential soil stabilization method.

    PubMed

    Roeselers, G; Van Loosdrecht, M C M

    2010-11-01

    Two hypotheses were tested: (1) microbial dephosphorylation of phytate in the presence of Ca²+ ions will result in the precipitation of hydroxyapatite-like crystals and (2) precipitation of calcium-phosphate crystals on and between sand-like particles can cause cementation. A growing culture of the dimorphic phytase-active yeast Arxula adeninivorans was introduced into a column filled with quartz particles and subsequently a liquid growth medium amended with calcium phytate was pumped through the column resulting in increased strength and stiffness of the quartz particle matrix. Environmental scanning electron microscope analysis combined with energy-dispersive X-ray measurement revealed cementation of the quartz particles by calcium-phosphate crystals. This microbial mineralization process could provide a novel approach to improving the mechanical properties like strength and stiffness of sandy soils.

  20. Cytotoxicity and mutagenicity of dimethylnitrosamine in mammalian cells (CHO/HGPRT system): enhancement by calcium phosphate

    SciTech Connect

    O'Neill, J.P.; Machanoff, R.; San Sebastian, J.R.; Hsie, A.W.

    1982-01-01

    The cytotoxicity and mutagenicity of dimethylnitrosamine (DMN) was determined in the CHO/HGPRT system. Metabolic activation of the promutagen was achieved by use of a liver homogenate supernatant (S9) prepared from Aroclor 1254-induced Sprague-Dawley rats. The cytotoxic and mutagenic effects of DMN were enhanced by the inclusion of calcium chloride in the incubation mix, and this enhancement was dependent on the presence of sodium phosphate. Under conditions that yielded maximal activity (10 mM calcium chloride, 10 mM magnesium chloride, 50 mM sodium phosphate), an apparent calcium phospate precipitate was observed. DMN activity increased with increasing amounts of S9 protein over the range 0.3-3.0 mg/ml in the S9 mix and appeared to plateau at higher concentrations. The mutagenicity of DMN can be described as 110 mutants/10/sup 6/ cells per mM DMN per mg/ml S9 protein per hour.

  1. Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds

    NASA Astrophysics Data System (ADS)

    Witek, Lukasz

    Small or large bone defects, can occur due to a variety of reasons: congenital disorders, infections, tumors, or traumas which can lead to significant disabilities. There is an assortment of bone grafting procedures, each having their own respective advantages and disadvantages and exhibiting certain essential characteristics. Among the available grafts, autogenous (autograft), allograft, xenograft, and alloplasts, all exhibit a minimum of two-thirds of the essential characteristics and have been proven useful in fully or partially repairing skeletal defects. However, different host-to-grafting material responses have been reported and should be taken into consideration when determining treatment options. A large range of physical and chemical properties can be achieved with calcium phosphate based materials, which possess two of the ideal characteristics for grafting procedures: osteoconduction and osseointegration. Calcium phosphate based scaffolds composed of hydroxyapatite (HA), beta-tri-calcium phosphate (beta-TCP), or a combination of both (HA/beta-TCP) were investigated as materials for three-dimensional printing process to create layer-by-layer structures for use as bone regeneration scaffolds. Different calcium-phosphate phases will result in different degrees of in vivo dissolution and/or cell-mediated resorption. There has been a growing interest in BCP because it has been shown that this material improves the formation of new bone inside the implanted scaffold. The literature indicates that the faster dissolution rate of ?-TCP would be greatly responsible of this enhancement. However, in vitro tests indicate that fast dissolution can decrease the mechanical strength of BCP scaffolds. Furthermore, studies reported that HA has higher mechanical strength and lower degradation rate than beta-TCP. Therefore, the HA/beta-TCP ratio is a key parameter controlling the performance of the scaffold for bone repair applications, since it determines degradation rate

  2. The nucleation and growth of calcium phosphate onto self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Tarasevich, Barbara J.

    The nucleation and growth of calcium phosphate is of great importance to the formation of mammalian hard tissue structures such as bone and teeth and for unwanted, ectopic calcium phosphate deposition on arteries and implants. In spite of its importance, the mechanisms of nucleation and growth of calcium phosphate are not well known, but are believed to involve an organic template. The nucleation and growth of calcium phosphate was studied onto model nucleation templates composed of alkanethiol self-assembled monolayers on gold that were developed and tailored to have various surface functionalities, various surface site densities composed of mixtures of two thiols, and various degrees of conformational disorder composed of mixtures of SAMs of various chain lengths. The quartz crystal microbalance was developed as an in-situ technique to study the nucleation and growth kinetics and ex-situ techniques such as X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy were used to assess adsorbate molecular chemistry in the initial stages of deposition. Significant nucleation and growth of calcium phosphate onto SAMs involved the adsorption of solution-formed critical nuclei. This mechanism is in contrast to heterogeneous nucleation and may have important implications for bone formation. An initial slow growth region occurred which involved the adsorption and assembly of solution-formed nanometer-sized particles. A second fast growth period occurred which involved the adsorption and growth of solution-formed critical nuclei or the assembly of supercritical particles. There was evidence for the heterogeneous nucleation of a very low density of crystals at low solution supersaturation. Heterogeneous nucleation may be limited due to the use of planar surfaces and to limits on phosphate adsorption due to electrostatic double layer anisotropy at the charged interfaces. Surface selective deposition was found in the initial slow growth region with

  3. Manufacturing and mechanical properties of calcium phosphate biomaterials

    NASA Astrophysics Data System (ADS)

    Laasri, S.; Taha, M.; Hlil, E. K.; Laghzizil, A.; Hajjaji, A.

    2012-10-01

    In this study, the influence of powder manufacturing and sintering temperature on densification, microstructure and mechanical properties of dense β-tricalcium phosphate (β-TCP) bioceramic has been studied. Densification results show that the β-TCP can be sintered at 1160 °C for 3 hours to have good density and high performance mechanic properties (Vickers hardness, toughness and Young's modulus). X-ray diffraction and SEM microscopy are used to check the microstructure changes during the sintering temperature. The used processing of β-TCP ceramic improved its densification, microstructure homogeneity and mechanical properties.

  4. [Dynamic changes in calcium and phosphate plasma concentrations in the patients on peritoneal dialysis].

    PubMed

    Jovanović, Natasa; Lausević, Mirjana; Stojimirović, Biljana

    2006-01-01

    The disturbances of active forms of vitamin D synthesis and disturbances in calcium and posphate metabolism develop early in chronic renal failure, when creatinine clearance is about 30 ml/min. Chronic hemodialysis and peritoneal dialysis only partially correct the biochemical enviroment of patients on chronic renal replacement therapy because of end-stage renal disease. These dialysis modalities can't signifficantly affect the endocrine disturbances of chronic renal failure and they have minimal modulatory effect. The management of disturbed calcium (Ca) and phosphate (P) metabolism and the maintainance of Ca x P product below 4.4 mmol/l thanks to the use of dialysate solutions with the appropriate calcium concentration and the careful dosage of phosphate binders, calcium and active vitamin D metabolits, are extremely important for the prevention of renal osteodystrophy, secondary hyperparathyroidism as well as low-bone turnover disease. The aim of the study was to analyze the plasma levels of calcium, phosphate, albumin, alkaline phosphatase and parathormon (PTH) in 58 patients who were treated with continuous ambulatory peritoneal dialysis (CAPD) from March to August 2003. The use of phosphate binders and the substitution with active vitamin D metabolits were also analyzed. We examined 58 patients, 30 males and 28 female, mean-age 52 years (range, 26-78 years), affected by end-stage renal disease of the different leading cause. The average time on peritoneal dialysis program was 20 months (2-66 months). Most of the patients were treated by CAPD, while only few of them performed authomatic, cyclic or intermitent peritoneal dialysis. Most of the patients used a dialysate with 1.75 mmol/l calcium concentration. The study showed that our patients on chronic CAPD program during several months had normal calcemia, phosphatemia and the level of alkaline phosphatase, and that they had Ca x P product in the recommended range. PTH serum level ranged from 16 to 490 pg/l in

  5. Mortality from aortic stenosis: prospective study of serum calcium and phosphate.

    PubMed

    Wald, D S; Bangash, F A; Morris, J K; Wald, N J

    2017-04-01

    To investigate the associations between levels of serum calcium and phosphate and subsequent death from aortic stenosis, and the implications for prevention. A prospective (nested case-control) analysis of serum calcium and phosphate levels was performed in stored samples from the British United Provident Association prospective study of 21 520 men aged 35-64, followed for up to 32 years. There were 49 men without baseline valvular heart disease who subsequently died of aortic stenosis. Each was matched, for age, duration of sample storage and number of freeze-thaw cycles, with four unaffected control subjects. Odds ratios for death from aortic stenosis were estimated by logistic regression. Mean serum calcium concentration was higher in men who died of aortic stenosis than in those who did not (2.44 vs. 2.39 mmol L(-1) ; P = 0.01). The risk of death from aortic stenosis in the highest calcium tertile was 2.87-fold higher than in the lowest tertile (95% confidence interval 1.22-6.76). There was a continuous dose-response relationship; risk of death from aortic stenosis increased by 51% (11-105%) per 0.1 mmol L(-1) increase in serum calcium, equivalent to a 34% (10-52%) lower risk per 0.1 mmol L(-1) decrease. Serum phosphate was not significantly higher in men who died of aortic stenosis than in those who did not (1.0 vs. 0.99 mmol L(-1) ; P = 0.76). The association between serum calcium and subsequent mortality from aortic stenosis is of potential preventive significance. If confirmed quantitatively in other similar cohort studies, the results suggest that a very small reduction in serum calcium (about 5%) could translate into a large (about one-third) reduction in aortic stenosis. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  6. Hereditary deafness with hydrops and anomalous calcium phosphate deposits

    SciTech Connect

    Johnsson, L.G.; Rouse, R.C.; Hawkins, J.E. Jr.; Kingsley, T.C.; Wright, C.G.

    1981-11-01

    The temporal bones from a 58-year-old white woman who had had hereditary congenital deafness were examined with the techniques of microdissection and surface preparations followed by sectioning of the modiolus. There was bilateral, almost total sensorineural degeneration, which also involved the saccule. The degeneration of the distal processes of the cochlear neurons in the osseous spiral lamina was almost complete, whereas numerous ganglion cells and proximal processes remained in the modiolus and the internal auditory canal. Severe cochleo-saccular hydrops was present in the left ear with Reissner's membrane bulging into the horizontal canal. X-ray diffraction and electron probe analysis were used to study the abnormal crystalline deposits in both ears. On the left side the saccular otoconia were composed of calcite, but the utricular macula was covered by a crust of apatite spherulites. More apatite occurred around the maculae and in the scala media. The cupulae were composed of apatite and octacalcium phosphate. On the right side the utricular otoconia were of normal calcite, but there was a deposit of apatite on the macula sacculi. The upper part of the scala media was completely filled by a deposit of apatite and octacalcium phosphate.

  7. Calcium phosphate crystal growth under controlled environment through urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Lu, Xiong; Wang, Ying-bo; Wang, Jian-xin; Qu, Shu-xin; Weng, Jie; Xin, Ren-long; Leng, Yang

    2006-12-01

    In this study, octacalcium phosphate (OCP, Ca 8 (HPO 4) 2(PO 4) 4 5H 2O) micro-fibers were successfully synthesized and isolated purely from the aqueous solution in the environment controlled by urea hydrolysis. During the process, the OCP micro-fibers were suspended in the middle of the reaction solution and weaved a thin film after isolation from the solution. The as-synthesized OCP fibers had the length larger than ˜200 μm, the width equal to ˜2 μm and the aspect ratio as high as 100. Various characterizations proved that the OCP fibers were well crystallized and contained no other impurities that were critical for the materials used in biomedical applications. This study revealed that using urea hydrolysis to control the reaction ambient was an effective way to produce pure OCP without any impurities. This study also demonstrated that dicalcium phosphate anhydrous (DCPA, CaHPO 4) pre-precipitation was the necessary step for OCP fiber growth, yet itself was another useful bioceramics. OCP fibers could be potentially used as the woven porous bioceramics or form fiber-reinforced composite biomaterials.

  8. Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate

    SciTech Connect

    Silva, Camila F.N.; Lazarin, Angélica M.; Sernaglia, Rosana L.; Andreotti, Elza I.S.

    2012-06-15

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to the inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.

  9. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    PubMed

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. FGF23 and Klotho: the new cornerstones of phosphate/calcium metabolism

    PubMed Central

    Bacchetta, Justine; Cochat, Pierre; Salusky, Isidro B

    2014-01-01

    Since its first description as a phosphaturic agent in the early 2000’s, the Fibroblast Growth Factor 23 (FGF23) has rapidly become the third key player of phosphate/calcium metabolism with the two ‘old’ PTH and vitamin D. FGF23 is a protein synthesized by osteocytes that acts mainly as a phosphaturic factor and a suppressor of 1α hydroxylase activity in the kidney. It inhibits the expression of type IIa and IIc sodium-phosphate cotransporters on the apical membrane of proximal tubular cells, thus leading to an inhibition of phosphate reabsorption. Moreover, it also inhibits the 1α hydroxylase activity. These two renal pathways account together for the hypophosphatemic effect of FGF23, but FGF23 has also been recently described as an inhibiting factor for PTH synthesis. Its exact role in bone remains to be defined. A transmembrane protein, Klotho, is an essential cofactor for FGF23 biological activity, but it can also act by itself for calcium and PTH regulation. This paper gives an overview of these recent data of phosphate/calcium physiology, as well as a description of clinical conditions associated with FGF23 deregulation (genetic diseases and chronic kidney disease). As a conclusion, future therapeutic consequences of the FGF23/Klotho axis are discussed. PMID:21497493

  11. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells.

    PubMed

    AbdulQader, Sarah T; Rahman, Ismail A; Thirumulu, Kannan P; Ismail, Hanafi; Mahmood, Zuliani

    2016-04-01

    Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration. © The Author(s) 2016.

  12. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying.

    PubMed

    Aranaz, Inmaculada; Martínez-Campos, Enrique; Moreno-Vicente, Carolina; Civantos, Ana; García-Arguelles, Sara; Del Monte, Francisco

    2017-05-08

    Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80-85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells.

  13. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    PubMed

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen.

  14. Ectopic Osteoid and Bone Formation by Three Calcium-Phosphate Ceramics in Rats, Rabbits and Dogs

    PubMed Central

    Wang, Liao; Zhang, Bi; Bao, Chongyun; Habibovic, Pamela; Hu, Jing; Zhang, Xingdong

    2014-01-01

    Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA) sintered at 1200°C and two biphasic calcium phosphate (BCP) ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate), sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model. PMID:25229501

  15. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying

    PubMed Central

    Aranaz, Inmaculada; Martínez-Campos, Enrique; Moreno-Vicente, Carolina; Civantos, Ana; García-Arguelles, Sara; del Monte, Francisco

    2017-01-01

    Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells. PMID:28772874

  16. High-calcium vs high-phosphate intake and small artery tone in advanced experimental renal insufficiency.

    PubMed

    Kööbi, Peeter; Vehmas, Tuija I; Jolma, Pasi; Kalliovalkama, Jarkko; Fan, Meng; Niemelä, Onni; Saha, Heikki; Kähönen, Mika; Ylitalo, Pauli; Rysä, Jaana; Ruskoaho, Heikki; Pörsti, Ilkka

    2006-10-01

    Disturbed calcium-phosphorus balance significantly contributes to uraemic changes in large arteries. We examined the influences of high-calcium and high-phosphate intake on small artery tone in experimental renal insufficiency. Sixty-five rats were assigned to 5/6 nephrectomy (NTX) or sham operation. After 15 week disease progression, NTX rats were given high-calcium (3%), high-phosphate (1.5%) or control diet (0.3% calcium, 0.5% phosphate) for 12 weeks. Then isolated segments of small mesenteric arteries were studied using wire and pressure myographs. Subtotal nephrectomy reduced creatinine clearance by 60% and increased parathyroid hormone (PTH) and phosphate 12-fold and 2.7-fold, respectively. High-phosphate intake further elevated PTH and phosphate (33-fold and 5.5-fold, respectively), while the calcium diet suppressed them (to 3.5 and 62% vs sham, respectively). Ventricular B-type natriuretic peptide synthesis was increased, and blood pressure was 27 and 18 mmHg higher in NTX rats on control and phosphate diet, respectively, than in calcium-fed rats. Vasorelaxation to acetylcholine was impaired by approximately 50% in uraemic rats, and was further deteriorated by high-phosphate intake, whereas the calcium diet improved endothelium-mediated relaxation via nitric oxide and potassium channels. Small arteries of all NTX groups featured eutrophic inward remodelling: wall-to-lumen ratio was increased 1.3-fold without change in cross-sectional area. High-phosphate intake had a detrimental influence on secondary hyperparathyroidism and vasodilatation, whereas high-calcium intake reduced blood pressure and PTH, alleviated volume overload and improved vasorelaxation in experimental renal insufficiency. Therefore, alterations in the calcium-phosphorus balance can significantly modulate small artery tone during impaired kidney function.

  17. Dissolution behavior of calcium phosphate nanocrystals deposited on titanium alloy surfaces.

    PubMed

    Pezeshki, Padina; Lugowski, Stanley; Davies, John E

    2010-08-01

    We have recently shown that a new implant surface design, achieved by the deposition of discrete nanocrystals of calcium phosphate on microtopographically complex titanium-based substrates, accelerates osteoconduction and also renders the implant surface bone bonding. Thus, we wished to examine the elution behavior of these calcium phosphate nanocrystals and their modulation in vivo. We first compared the total amount of calcium phosphate on these implants with that of plasma-sprayed implants, by measuring the eluted calcium using atomic absorption spectrophotometry. We then plotted their dissolution behavior in vitro as a function of pH relevant to physiological conditions. To assess their structural stability in vivo for periods of up to 1 month, we placed samples in diffusion chambers, implanted them in the abdominal cavity of rats, and examined their surfaces by scanning electron microscopy following retrieval. Our results show that these nanocrystals are stable at normal pH but, as expected, dissolve at acidic pH, and that they remain unchanged when exposed to body fluid in vivo for up to 1 month.

  18. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    NASA Astrophysics Data System (ADS)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  19. Calcium and phosphate solubility in neonatal parenteral nutrient solutions containing TrophAmine.

    PubMed

    Fitzgerald, K A; MacKay, M W

    1986-01-01

    Factors affecting solubilities of calcium and phosphate in neonatal total parenteral nutrient (TPN) solutions containing a new amino acid formulation were examined. Twelve TPN solutions containing various concentrations of TrophAmine, an amino acid formulation specific for infants and young children, were prepared in 10% dextrose injection. Some of the solutions also contained cysteine hydrochloride 40 mg/g of protein and either sodium bicarbonate or hydrochloric acid (lipid emulsion buffer) to buffer the solution pH to simulate that produced by simultaneously administering lipid emulsion through the i.v. line. Calcium gluconate and monobasic and dibasic potassium phosphate were added to 20-mL samples of the TPN solutions to achieve calcium concentrations of 10, 20, 30, 40, or 50 meq/L with phosphate concentrations of either 10, 20, 30, or 40 mmol/L; a total of 20 samples of each TPN solution was prepared. Samples were inspected visually for precipitation or crystallization after 18 hours at 25 degrees C and again after 30 minutes in a water bath at 37 degrees C. Clear samples at this time were also examined microscopically for evidence of microcrystallization. Solubility curves were prepared by plotting graphically the concentrations at which either visual or microscopic precipitation occurred. Temperature, amino acid concentration, and the addition of cysteine hydrochloride and lipid emulsion buffer each influenced the solubilities of calcium and phosphate in the TPN solutions. The use of TrophAmine as the amino acid source allowed slightly greater concentrations of phosphate to be solubilized as compared with older amino acid formulations.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Lead retention in a calcareous soil influenced by calcium and phosphate amendments.

    PubMed

    Li, Liping; Xing, Weiqin; Scheckel, Kirk G; Xiang, Guoqiang; Ji, Haohao; Li, Hao

    2013-11-15

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and aged with 500 mg kg(-1) Pb(2+) and amended with H2PO4(-). In addition, Ca(2+) was added immediately or three days before or after phosphate, after which ryegrass (Lolium perenne) was planted. Diethylene triamine pentaacetic acid (DTPA)-extractable Pb of the soils in which Ca was added immediately after phosphate was lower than those only amended with phosphate or when Ca was added three days before or after phosphate. The addition of Ca immediately after phosphate resulted in the greatest reduction of ammonia acetate-exchangeable Ca concentration, Olsen-P concentration, and carbonate phase Pb. Higher plant biomass yields were observed for the simultaneous P and Ca treatment. The results of the study demonstrate that co-added Ca and P may help reduce Pb availability by forming fresh Ca-P sorbent phases to retain Pb through an adsorption-substitution mechanism, which may play an important role in the sequestration of Pb in calcareous soils with soluble phosphate in addition to the mechanism of the direct precipitation as pyromorphite. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Treatment of cows with parturient paresis using intravenous calcium and oral sodium phosphate.

    PubMed

    Braun, U; Grob, D; Hässig, M

    2016-09-01

    The goal of this study was to investigate whether intravenous infusion of 1000 ml 40% calcium borogluconate combined with the oral adminstration of 500 g sodium phosphate leads to a better cure rate and longer-lasting normocalcaemia and normophosphataemia than standard intravenous treatment with 500 ml calcium borogluconate in cows with parturient paresis. Forty recumbent cows with hypocalcaemia and hypophosphataemia were alternately allocated to group A or B. Cows of both groups were treated intravenously with 500 ml 40% calcium borogluconate, and cows of group B additionally received another 500 ml calcium borogluconate via slow intravenous infusion and 500 g sodium phosphate administered via an orogastric tube. Thirty-two cows stood within 8 hours after the start of treatment and 8 did not; of the 32 cows that stood, 18 belonged to group A and 14 to group B (90% of group A vs. 70% of group B; P = 0.23). Seven cows relapsed; of these and the 8 that did not respond to initial treatment, 10 stood after two standard intravenous treatments. Downer cow syndrome occurred in 5 cows, 3 of which recovered after aggressive therapy. The overall cure rate did not differ significantly between groups A and B. Twelve (60%) cows of group A and 14 (70%) cows of group B were cured after a single treatment and of the remaining 14, 11 were cured after two or more treatments. Two downer cows were euthanized and one other died of heart failure during treatment. Serum calcium concentrations during the first eight hours after the start of treatment were significantly higher in group B than in group A, and oral sodium phosphate caused a significant and lasting increase in inorganic phosphate. More cows of group B than group A were cured after a single treatment (P > 0.05). These findings, although not statistically significant, are promising and should be verified using a larger number of cows.

  2. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells.

    PubMed

    Tămăşan, M; Ozyegin, L S; Oktar, F N; Simon, V

    2013-07-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H3PO4. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin - Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals - β-MgTCP [(Ca, Mg)3 (PO4)2] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ceramide-1-Phosphate in Phagocytosis and Calcium Homeostasis

    PubMed Central

    Hinkovska-Galcheva, Vania; Shayman, James A.

    2013-01-01

    Sphingolipids are well established sources of important signaling molecules. For example, ceramide (Cer) has been described as a potent inhibitor of cell growth and inducer of apoptosis. In contrast, ceramide 1-phosphate (C1P) has been reported to have mitogenic properties and to inhibit apoptosis. Our understanding of the distinct biological roles of C1P in the regulation of DNA synthesis, inflammation, membrane fusion, and intracellular Ca2+ increase has rapidly expanded. C1P is a bioactive sphingolipid formed by the phosphorylation of ceramide catalyzed by ceramide kinase (CERK). This chapter specifically focuses on the role of C1P in phagocytosis and Ca2+ homeostasis. Studies of the metabolism of C1P during phagocytosis, may lead to a better understanding of its role in signaling. Potentially, the inhibition of CERK and C1P formation may be a therapeutic target for inflammation. PMID:20919651

  4. In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy Ti-6Al-4V.

    PubMed

    Gnedenkov, Sergey V; Sinebryukhov, Sergey L; Puz, Artyom V; Egorkin, Vladimir S; Kostiv, Roman E

    2016-01-01

    The method of formation of bioactive calcium-phosphate coating on medical titanium alloy Ti-6Al-4V (3.5-5.3% V; 5.3-6.8% Al; balance -Ti) by plasma electrolytic oxidation (PEO) has been developed. Evaluation of osteogenerating properties of the coating at fractures of the shaft of the femur on Wistar line laboratory rats has been performed. It has been established that the calcium-phosphate PEO coating accelerates osteogenesis and promotes the formation of a pronounced periosteal callus in the fracture area. The presence of calcium phosphates in the PEO coating surface layer significantly accelerates the growth of bone tissue on the titanium surface.

  5. Effect of retrograde aminophylline administration on calcium and phosphate solubility in neonatal total parenteral nutrient solutions.

    PubMed

    Kirkpatrick, A E; Holcombe, B J; Sawyer, W T

    1989-12-01

    The effect of retrograde administration of aminophylline injection on calcium and phosphate solubility in neonatal total parenteral nutrient (TPN) solutions was studied. Neonatal TPN solutions containing two amino acids solutions in three concentrations (Travasol 1% and 2% and TrophAmine 2%) were formulated. Calcium and phosphate salts were added to achieve calcium concentrations of 10, 15, 20, 25, 30, or 40 meq/L and phosphorus concentrations of 10, 15, 20, 25, 30, or 40 mmol/L. Samples were inspected visually after 18-24 hours; solutions free of precipitation were then infused through two parallel syringe-pump systems designed to simulate clinical conditions for TPN solution administration to a 1-kg neonate. To one system, a 7.5-mg aminophylline dose was added as a manual retrograde injection; sterile water for injection was added as a manual retrograde injection to the other system. The solutions were inspected throughout a one-hour infusion period for precipitate formation in the i.v. apparatus, and the pH of the effluents was determined. Concurrent aminophylline administration resulted in visible precipitate in all but a few of the solutions tested. The solution containing Travasol 2%, calcium 10 meq/L, and phosphorus 10 mmol/L remained clear, as did the solutions containing TrophAmine 2% and the following concentrations of calcium and phosphorus: calcium 10 meq/L and phosphorus 10, 15, or 20 mmol/L; calcium 15 meq/L and phosphorus 10 or 15 mmol/L; and calcium 20 meq/L and phosphorus 10 or 15 mmol/L. An average increase in pH of 0.63 unit was noted in all solutions.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Nonenzymatic Transformation of Amorphous CaCO3 into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo Hydroxyapatite Bone Formation.

    PubMed

    Müller, Werner E G; Neufurth, Meik; Huang, Jian; Wang, Kui; Feng, Qingling; Schröder, Heinz C; Diehl-Seifert, Bärbel; Muñoz-Espí, Rafael; Wang, Xiaohong

    2015-06-15

    Studies indicate that mammalian bone formation is initiated at calcium carbonate bioseeds, a process that is driven enzymatically by carbonic anhydrase (CA). We show that amorphous calcium carbonate (ACC) and bicarbonate (HCO3 (-) ) cause induction of expression of the CA in human osteogenic SaOS-2 cells. The mineral deposits formed on the surface of the cells are rich in C, Ca and P. FTIR analysis revealed that ACC, vaterite, and aragonite, after exposure to phosphate, undergo transformation into calcium phosphate. This exchange was not seen for calcite. The changes to ACC, vaterite, and aragonite depended on the concentration of phosphate. The rate of incorporation of phosphate into ACC, vaterite, and aragonite, is significantly accelerated in the presence of a peptide rich in aspartic acid and glutamic acid. We propose that the initial CaCO3 bioseed formation is driven by CA, and that the subsequent conversion to calcium phosphate/calcium hydroxyapatite (exchange of carbonate by phosphate) is a non-enzymatic exchange process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Calcium thorium phosphate (Whitlockite-type mineral). Synthesis and structure refinement

    SciTech Connect

    Orlova, A. I.; Khainakov, S. A.; Loginova, E. E.; Oleneva, T. A.; Garcia Granda, S.; Kurazhkovskaya, V. S.

    2009-07-15

    The crystal structure of a new calcium thorium phosphate has been refined by the full-profile Rietveld method using X-ray powder diffraction data. The sample has been synthesized by the sol-gel technique. The phosphate has been identified by X-ray powder diffraction and IR spectroscopy. The refined composition is represented by the formula Ca{sub 10.26}Th{sub 0.12}(PO{sub 4}){sub 7}. The CaO{sub n} and PO{sub 4} polyhedra are distorted compared to the corresponding polyhedra in the basic compound {beta}-Ca{sub 3}(PO{sub 4}){sub 2}.

  8. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.

    PubMed

    Vecbiskena, Linda; Gross, Karlis Agris; Riekstina, Una; Yang, Thomas Chung-Kuang

    2015-04-17

    New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (α-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800 °C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50 nm sized α-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to β-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure α-TCP. Faster cooling limited the growth of β-TCP. Both the initial contact with water and the cooling rate after crystallization dictated β-TCP formation. Nano-sized α-TCP reacted faster with water to an apatite bone cement than conventionally prepared α-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure α-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure α-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation.

  9. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties.

  10. Calcium chloride and tricalcium phosphate effects on the pink color defect in cooked ground and intact turkey breast.

    PubMed

    Sammel, L M; Claus, J R

    2007-12-01

    Calcium chloride (250, 500ppm) was examined for its ability to reduce the pink color defect induced by sodium nitrite (10ppm) and nicotinamide (1.0%) in cooked ground turkey in the presence and absence of sodium tripolyphosphate (0.25, 0.5%) and sodium citrate (0.5, 1.0%). The ability of tricalcium phosphate (0.1-0.5%) to reduce pink cooked color also was evaluated in ground turkey and both calcium chloride and tricalcium phosphate were tested for their effects on pink cooked color in whole breast muscle. The combination of calcium chloride and sodium tripolyphosphate, not calcium chloride alone, was necessary for a reduction in pink cooked color induced by nicotinamide. Subsequently, in the presence of phosphate, both calcium chloride and sodium citrate reduced pink cooked color and were most effective in combination. Tricalcium phosphate also was capable of reducing pink cooked color in ground turkey, however substituting tricalcium phosphate for sodium tripolyphosphate resulted in lower pH and cooking yields. Neither calcium chloride nor tricalcium phosphate was capable of reducing pink cooked color in whole turkey breast. Currently, a combination of sodium tripolyphosphate, calcium chloride, and sodium citrate represents the most suitable means for reducing or preventing the pink color defect in uncured ground turkey.

  11. A brief review of calcium phosphate conversion coating on magnesium and its alloys

    NASA Astrophysics Data System (ADS)

    Zaludin, Mohd Amin Farhan; Jamal, Zul Azhar Zahid; Jamaludin, Shamsul Baharin; Derman, Mohd Nazree

    2016-07-01

    Recent developments have shown that magnesium is a promising candidate to be used as a biomaterial. Owing to its light weight, biocompatibility and compressive strength comparable with natural bones makes magnesium as an excellent choice for biomaterial. However, high reactivity and low corrosion resistance properties have restricted the application of magnesium as biomaterials. At the moment, several strategies have been developed to solve this problem. Surface modification of magnesium is one of the popular solutions to solve the problem. Among many techniques developed in the surface modification, conversion coating method is one of the simple and effective techniques. From various types of conversion coating, calcium phosphate-based conversion coating is the most suitable for biomedical fields. This paper reviews some studies on calcium phosphate coating on Mg and its alloys via chemical conversion method and discusses some factors determining the coating performance.

  12. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics.

    PubMed

    Li, Bo; Liao, Xiaoling; Zheng, Li; Zhu, Xiangdong; Wang, Zhe; Fan, Hongsong; Zhang, Xingdong

    2012-10-01

    In order to evaluate the effect of the nanostructure of calcium phosphate ceramics on osteoinductive potential, porous biphasic calcium phosphate (BCP) ceramics with a nano- or submicron structure were prepared via microwave sintering and compared to conventional BCP ceramics. The selective protein adsorption of bovine serum albumin and lysozyme (LSZ) and the osteogenic differentiation of human mesenchymal stem cells in vitro was investigated. Porous BCP nanoceramics showed higher ability to adsorb proteins, especially low molecular weight protein of LSZ, than conventional BCP ceramics, and the BCP nanoceramics promoted bone sialoprotein expression more than conventional BCP did. Further in vivo study to investigate ectopic bone formation and bone repair efficiency proved the highly osteoinductive potential of nanostructured BCP ceramics. The results suggest that nanostructured BCP ceramics have the potential to become a new generation of bioceramics for bone tissue engineering grafts. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging.

    PubMed

    Choi, Andy H; Ben-Nissan, Besim

    2015-07-01

    A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials.

  14. The use of calcium phosphate-based biomaterials in implant dentistry.

    PubMed

    Xie, Cheng; Lu, Hong; Li, Wei; Chen, Fa-Ming; Zhao, Yi-Min

    2012-03-01

    Since calcium phosphates (CaPs) were first proposed, a wide variety of formulations have been developed and continuously optimized, some of which (e.g. calcium phosphate cements, CPCs) have been successfully commercialized for clinical applications. These CaP-based biomaterials have been shown to be very attractive bone substitutes and efficient drug delivery vehicles across diverse biomedical applications. In this article, CaP biomaterials, principally CPCs, are addressed as alternatives/complements to autogenous bone for grafting in implant dentistry and as coating materials for enhancing the osteoinductivity of titanium implants, highlighting their performance benefits simultaneously as carriers for growth factors and as scaffolds for cell proliferation, differentiation and penetration. Different strategies for employing CaP biomaterials in dental implantology aim to ultimately reach the same goal, namely to enhance the osseointegration process for dental implants in the context of immediate loading and to augment the formation of surrounding bone to guarantee long-term success.

  15. Methylene blue intercalated into calcium phosphate - Electrochemical properties and an ascorbic acid oxidation study

    NASA Astrophysics Data System (ADS)

    Lazarin, Angélica M.; Airoldi, Claudio

    2008-09-01

    Methylene blue (MB) was intercalated inside the cavity of a layered calcium phosphate host. The dye is strongly retained and not easily leached from the matrix. The intercalated dye material was incorporated into a carbon paste electrode and by means of cyclic voltammetry and amperometry, its electrochemical properties were investigated. In various electrolyte solutions, on changing the pH between 3 and 9, the midpoint potential remained practically constant at -0.15 V. This is not the usual behavior for MB, since it is known that in the solution phase the midpoint potential changes considerably with pH, indicating that, in the present case, methylene blue is a guest molecule intercalated inside the lamellar structure of the calcium phosphate. An electrode made with this material was used to study the electrochemical oxidation of ascorbic acid and then applied to commercial samples, with excellent agreement within the 95% confidence level.

  16. Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds

    NASA Astrophysics Data System (ADS)

    Nonoyama, Takayuki; Kinoshita, Takatoshi; Higuchi, Masahiro; Nagata, Kenji; Tanaka, Masayoshi; Kamada, Mari; Sato, Kimiyasu; Kato, Katsuya

    2012-12-01

    We demonstrate arrangement techniques of proteins and cells using an amorphous calcium phosphate (ACP) nanofiber scaffold. It is well known that protein andosteoblastic cell are preferably adsorbed onto ACP surface. The ACP nanofiber scaffold was prepared by calcium phosphate mineralization on a polypeptide monolayer-coated mica substrate, and ACP nanofibers were oriented unidirectionaly. In a protein system, the ACP nanofiber scaffold was soaked in a fluorescein isothiocyanate conjugated immunoglobulin G (IgG-FITC) aqueous solution. From fluorescence microscopic measurement, the adsorbed IgG-FITC was highly confined and arranged on the ACP nanofiber. In a cell system, a mouse osteoblast-like cell (MC3T3-E1) behavior on the ACP nanofiber scaffold was observed. The cell was elongated unidirectionaly, and its cytoskeletal shape showed high aspect ratio. These results are clearly different from an ACP bulk template or bare mica substrate, and the arrangement technique enable to fabricate a fine-tuned biomaterial template.

  17. Preparation, physical-chemical characterization, and cytocompatibility of polymeric calcium phosphate cements.

    PubMed

    Khashaba, Rania M; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R; Missimer, David M; Rutherford, Ronny L; Chutkan, Norman B; Borke, James L

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5-12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  18. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.

    PubMed

    Khan, Ather Farooq; Saleem, Muhammad; Afzal, Adeel; Ali, Asghar; Khan, Afsar; Khan, Abdur Rahman

    2014-02-01

    Bone graft substitutes are widely used for bone regeneration and repair in defect sites resulting from aging, disease, trauma, or accident. With invariably increasing clinical demands, there is an urgent need to produce artificial materials, which are readily available and are capable of fast and guided skeletal repair. Calcium phosphate based bioactive ceramics are extensively utilized in bone regeneration and repair applications. Silicon is often utilized as a substituent or a dopant in these bioceramics, since it significantly enhances the ultimate properties of conventional biomaterials such as surface chemical structure, mechanical strength, bioactivity, biocompatibility, etc. This article presents an overview of the silicon substituted bioceramics, which have emerged as efficient bone replacement and bone regeneration materials. Thus, the role of silicon in enhancing the biological performance and bone forming capabilities of conventional calcium phosphate based bioceramics is identified and reviewed.

  19. Vertebral body recollapse without trauma after kyphoplasty with calcium phosphate cement.

    PubMed

    Piazzolla, Andrea; De Giorgi, Giuseppe; Solarino, Giuseppe

    2011-08-01

    Traditionally, immobilization and external bracing has been recommended for patients with type A traumatic and non-osteoporotic fractures that do not present neurological deficits or significant instability. Nevertheless, several authors have recently suggested the possibility to treat thoraco-lumbar and lumbar vertebral compression post-traumatic fractures using standalone balloon kyphoplasty with osteoconductive filler materials, such as calcium phosphate (CPC). Maestretti and Huang have demonstrated the advantages of this technique showing an almost immediate return to daily activities without the inconvenience of wearing a brace, pain reduction, minimal operative risks and maintenance of stability, therefore proposing this as a first-choice technique in young patient needing rapid spine stability. The authors present a case of vertebral body recollapse after kyphoplasty with calcium phosphate cement (CPC) in a 47-year-old man with an A1.2 post-traumatic L1 compression fracture.

  20. Biomimetic versus Sintered Calcium Phosphates: The in vitro Behavior of Osteoblasts and Mesenchymal Stem Cells.

    PubMed

    Sadowska, Joanna Maria; Guillem-Marti, Jordi; Montufar, Edgar B; Espanol, Montserrat; Ginebra, Maria-Pau

    2017-01-20

    The fabrication of calcium phosphates using biomimetic routes, namely, precipitation processes at body temperature, results in distinct features compared to conventional sintered calcium phosphate ceramics, such as a high specific surface area and micro or nanometric crystal size. The aim of this paper is to analyze the effects of these parameters on cell response, focusing on two bone cell types: rat mesenchymal stem cells (rMSCs) and human osteoblastic cells (SaOS-2). Biomimetic calcium deficient hydroxyapatite (CDHA) was obtained by a low temperature setting reaction, and α-tricalcium phosphate (α-TCP) and β- tricalcium phosphate (β-TCP) were subsequently obtained by sintering CDHA either at 1400 °C or 1100 °C. Sintered stoichiometric hydroxyapatite (HA) was also prepared using ceramic routes. The materials were characterized in terms of specific surface area, skeletal density, porosity and pore size distribution. SaOS-2 cells and rMSCs were seeded either directly on the surfaces of the materials or on glass coverslips subsequently placed on top of the materials to expose the cells to the CaP-induced ionic changes in the culture medium while avoiding any topography-related effects. CDHA produced higher ionic fluctuations in both cell culture media than sintered ceramics, with a strong decrease of calcium and a release of phosphate. Indirect contact cell cultures revealed that both cell types were sensitive to these ionic modifications, resulting in a decrease in proliferation rate, more marked for CDHA, this effect being more pronounced for rMSCs. In direct contact cultures, good cell adhesion was found on all materials, but whereas cells were able to proliferate on the sintered calcium phosphates, cell number was significantly reduced with time on biomimetic CDHA, which was associated to a higher percentage of apoptotic cells. Direct contact of the cells with biomimetic CDHA resulted also in higher ALP activity for both cell types as compared to sintered

  1. Kinetics of phosphate absorption in lactating dairy cows after enteral administration of sodium phosphate or calcium phosphate salts.

    PubMed

    Grünberg, Walter; Dobbelaar, Paul; Breves, Gerhard

    2013-09-28

    Hypophosphataemia is frequently encountered in dairy cows during early lactation. Although supplementation of P is generally recommended, controversy exists over the suitability of oral P supplementation in animals with decreased or absent rumen motility. Since the effects of transruminal P absorption and the reticular groove reflex on the absorption kinetics of P are not well understood, it is unclear in how far treatment efficacy of oral P supplementation is affected by decreased rumen motility. Phosphate absorption was studied in six phosphate-depleted dairy cows fitted with rumen cannulas and treated with test solutions containing either NaH2PO4 or CaHPO4 with acetaminophen. Each animal was treated orally, intraruminally and intra-abomasally in randomised order. Absorption kinetics of P were studied and compared with the absorption kinetics of acetaminophen, a marker substance only absorbed from the small intestine. Intra-abomasal treatment with NaH2PO4 resulted in the most rapid and highest peaks in plasma inorganic P (Pi) concentration. Oral and intraruminal administration of NaH2PO4 resulted in similar increases in plasma Pi concentration from 4 to 7 h in both groups. Treatment with NaH2PO4 caused more pronounced peaks in plasma Pi concentration compared with CaHPO4. Neither transruminal P absorption nor the reticular groove reflex affected P absorption kinetics as determined by comparing plasma concentration–time curves of P and acetaminophen after administration of 1M-phosphate salt solutions. It is concluded that oral treatment with NaH2PO4 but not CaHPO4 is effective in supplementing P in hypophosphataemic cows with adequate rumen motility. Decreased rumen motility is likely to hamper the efficacy of oral phosphate treatment.

  2. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.

    PubMed

    Shih, Yu-Ru V; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S; Caro, Eduardo J; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A; Gianneschi, Nathan C; Vecchio, Kenneth S; Chien, Shu; Lee, Oscar K; Varghese, Shyni

    2014-01-21

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.

  3. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  4. Chiral Calcium Phosphate Catalyzed Asymmetric Alkenylation Reaction of Arylglyoxals with 3-Vinylindoles.

    PubMed

    Li, Xiao-Yun; Yuan, Wen-Qiang; Tang, Sheng; Huang, Yi-Wei; Xue, Jia-Hui; Fu, Li Na; Guo, Qi-Xiang

    2017-03-03

    A highly efficient alkenylation reaction of arylglyoxals with 3-vinylindoles catalyzed by chiral calcium phosphate is described. Structurally diverse allylic alcohols bearing indole and carbonyl units are prepared in excellent yields, good diastereoselectivities, and high to excellent enantioselectivities. These products are good building blocks for the synthesis of polysubstituted chiral tetrahydrocarbozol-2-ones. The mechanism study indicates that the most likely role of the catalyst is to activate the hydrate of arylglyoxal and control the stereoselectivity via desymmetric coordination.

  5. Rennet-induced gelation of calcium and phosphate supplemented skim milk subjected to CO2 treatment.

    PubMed

    Guillaume, C; Gastaldi, E; Cuq, J-L; Marchesseau, S

    2004-10-01

    A Doehlert design was performed to study the effect of calcium and phosphate supplementation at 0 to 25 mmol/kg and 0 to 16 mmol/kg, respectively, on the rennet gelation of reconstituted skim milk subjected to pH-reversible CO(2) acidification. Supplemented reconstituted skim milk samples were acidified to pH 5.80 by the addition of CO(2) under pressure and depressurized under vacuum to restore the initial pH value. The second-order polynomial models satisfactorily predicted the effect of salt addition on the micellar molar Ca:P ratio and the average diameter of the casein micelles, whereas only trends were used in the analysis of the rennet-clotting behavior of salt-supplemented, CO(2)-treated milk. Whether added Ca was the most determinant factor on the micellar molar Ca:P ratio, added Pi (a mixture of Na(2)HPO(4) and NaH(2)PO(4)) was the most determinant factor on the other responses studied, and its effect was most pronounced when Ca was simultaneously added. By comparison with control samples, changes observed in this study were essentially due to salt supplementation and not to the CO(2) treatment. Therefore, this CO(2) treatment could be considered as an entirely reversible treatment rather than only pH-reversible, and predictions might be applied to untreated milk. In the case of Ca-supplemented milk, the micellar molar Ca:P ratio increased, the average micellar diameter decreased, and the rennet-clotting properties were improved, whereas opposite effects were observed upon Pi supplementation. Since modification of the micellar molar ratio is the result of change in the chemical composition of micellar calcium phosphate, the effect of calcium and phosphate supplementation on the rennet clotting of milk was found to be also dependent on the nature of the interaction between caseins and colloidal calcium phosphate.

  6. How abnormal calcium, phosphate, and parathyroid hormone relate to cardiovascular disease.

    PubMed

    Bro, Susanne

    2003-06-01

    Cardiovascular disease tends to develop prematurely in patients who have chronic kidney disease (CKD). The physiological changes that specifically arise from this disease likely account for the resulting high incidence of cardiovascular mortality. Recent studies indicate that abnormal calcium, phosphate, and parathyroid hormone (PTH) levels are associated with cardiovascular disease in CKD. This new evidence suggests that an intensive approach to the prevention and treatment of these imbalances may contribute to improved survival of patients with CKD.

  7. Polyfunctional bioceramics based on calcium phosphate and M-type hexagonal ferrite for medical applications

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Ol'khovik, L. P.; Kamzin, A. S.; Keshri, S.

    2014-01-01

    Magnetic biologically active ceramics based on calcium phosphate with a content of M-type hexagonal ferrite (HF) particles varying from 10 to 50 wt % has been synthesized and characterized. It has been found that the ceramics synthesized consists of a biocompatible carbonated hydroxyapatite (CHA) with the matrix containing M-type HF particles, leading to the magnetic characteristics of the ceramics synthesized being significantly higher than those of iron-oxide-modified bioglass ceramics used in medicine.

  8. Data on granulometric composition of calcium phosphate obtained by dispersion method

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Malyshev, A. V.; Mylnikova, T. S.

    2015-04-01

    The kinetics of calcium phosphate crystallization from model solutions of saliva and liquid phase of dental plaque has been studied by the dispersion method. It was found that the composition of the saliva model system is favorable for the growth of larger crystals. The size of the particles in crystallization varies nonlinearly. As supersaturation grows, the amount of formed particles increases, however, the average rate of crystallite growth decreases.

  9. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.

    PubMed

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals.

  10. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly

    NASA Astrophysics Data System (ADS)

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals.

  11. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    PubMed

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point.

  12. An in vitro comparison of casein phosphopeptide-amorphous calcium phosphate paste, casein phosphopeptide-amorphous calcium phosphate paste with fluoride and casein phosphopeptide-amorphous calcium phosphate varnish on the inhibition of demineralization and promotion of remineralization of enamel.

    PubMed

    Thakkar, Prachi Jayesh; Badakar, Chandrashekhar M; Hugar, Shivayogi M; Hallikerimath, Seema; Patel, Punit M; Shah, Parin

    2017-01-01

    This study aims to determine and compare the extent of inhibition of demineralization and promotion of remineralization of permanent molar enamel with and without application of three remineralizing agents. Forty extracted permanent molars were randomly divided into two groups 1 and 2, longitudinally sectioned into four and divided into subgroups A, B, C, and D. The sections were coated with nail varnish leaving a window of 3 mm × 3 mm. All sections of Group 1 were treated with their respective subgroup-specific agent: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste for subgroup A, CPP-amorphous calcium phosphate fluoride (ACPF) paste for subgroup B, CPP-ACPF varnish for subgroup C and subgroup D served as a control. The sections were then subjected to demineralization for 12 days following which lesional depth was measured under the stereomicroscope. All the sections of Group 2 were subjected to demineralization for 12 days, examined for lesional depth, then treated with their respective subgroup specific agents and immersed in artificial saliva for 7 days. The sections were then examined again under the stereomicroscope to measure the lesional depth. CPP-ACPF varnish caused significant inhibition of demineralization. All three agents showed significant remineralization of previously demineralized lesions. However, CPP-ACPF varnish showed the greatest remineralization, followed by CPP-ACPF paste and then CPP-ACP paste. This study shows that CPP-ACPF varnish is effective in preventing demineralization as well as promoting remineralization of enamel. Thus, it can be used as an effective preventive measure for pediatric patients where compliance with the use of tooth mousse may be questionable.

  13. Does Salivary Calcium and Phosphate Concentrations Adequately Reflect Bone Mineral Density in Patients with Chronic Periodontitis?

    PubMed

    Moghadam, Somaye Ansari; Zakeri, Zahra; Fakour, Sirous Risbaf; Moghaddam, Alireza Ansari

    2016-10-01

    Periodontitis is the inflammation of the periodontal supporting tissues. The response of periodontal tissues to local bacteria leads to bone resorption and destruction of periodontal junction. Given the possible association between periodontitis and low bone mineral density, the aim of present study was to find if measurement of salivary biomarkers as a less invasive method, can provide an appropriate screening method for assessment of bone mineral density in patients with chronic periodontitis? A case-control study was conducted on 53 people, including 28 patients with severe chronic periodontitis and 25 healthy people between April 2014 to March 2015 in Zahedan (southeast of Iran). Following Periodontal examination, salivary samples were collected, and the concentration of salivary calcium and phosphate were measured and reported as mg/dl. Bone mineral density of participants was measured using dual energy x-ray absorptiometry and reported as gr/cm2. No significant association was found between concentrations of salivary calcium and phosphate levels with bone mineral density in either healthy people or in patients with severe chronic periodontitis, despite a significant bone density reduction (in the femur neck and lumbar spine L2-L4) in the periodontitis group compared to healthy people (P=0.006, and P=0.009 respectively). Concentration of salivary calcium and phosphate do not appear to be good indicators of bone mineral density. Further prospective studies with larger sample size are recommended.

  14. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.

    PubMed

    An, Jie; Wolke, Joop G C; Jansen, John A; Leeuwenburgh, Sander C G

    2016-03-01

    To expand the clinical applicability of calcium phosphate cements (CPCs) to load-bearing anatomical sites, the mechanical and setting properties of CPCs need to be improved. Specifically, organic additives need to be developed that can overcome the disintegration and brittleness of CPCs. Hence, we compared two conventional polymeric additives (i.e. carboxylmethylcellulose (CMC) and hyaluronan (HA)) with a novel organic additive that was designed to bind to calcium phosphate, i.e. hyaluronan-bisphosphonate (HABP). The unmodified cement used in this study consisted of a powder phase of α-tricalcium phosphate (α-TCP) and liquid phase of 4% NaH2PO4·2H2O, while the modified cements were fabricated by adding 0.75 or 1.5 wt% of the polymeric additive to the cement. The cohesion of α-TCP was improved considerably by the addition of CMC and HABP. None of the additives improved the compression and bending strength of the cements, but the addition of 0.75% HABP resulted into a significantly increased cement toughness as compared to the other experimental groups. The stimulatory effects of HABP on the cohesion and toughness of the cements is hypothesized to derive from the strong affinity between the polymer-grafted bisphosphonate ligands and the calcium ions in the cement matrix.

  15. Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects.

    PubMed

    Lim, Hyun-Chang; Sohn, Joo-Yeon; Park, Jung-Chul; Um, Yoo-Jung; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun; Choi, Seong-Ho

    2010-10-01

    Calcium phosphate glass (CPG) is well-documented alloplastic bone graft material. The objective of this study was to evaluate the osteoconductive effect of newly developed calcium phosphate glass cement (CPGC) in rabbit calvarial defects. Three circular defects (8 mm diameter) were created on the rabbit calvarium. One defect was filled with biphasic calcium phosphate (BCP group) and one defect was filled with CPGC (CPGC group). The remaining defect was not filled as the control. Histologic and histometric analysis were performed at four and eight weeks following the implantation of materials. One-way ANOVA method was used to evaluated the significance between three groups (p < 0.05). The CPGC group did not show a statistical difference in new bone area compared with the control at all healing periods, but the bone formation rate of CPGC seemed to increase between four and eight weeks. This suggests the bone formation rate of CPGC is initially slow, but increases at a specific time, showing the possibility of greater bone formation with time. The resorption rate of CPGC was greater than BCP. Within the limits of this study, CPGC demonstrated good space maintaining capacity and had an osteoconductive effect, suggesting it could be successfully used to improve bone formation capacity.

  16. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration

    PubMed Central

    Inzana, Jason A.; Olvera, Diana; Fuller, Seth M.; Kelly, James P.; Graeve, Olivia A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. PMID:24529628

  17. Orbital floor reconstruction using calcium phosphate cement paste: an animal study.

    PubMed

    Tañag, Marvin A; Yano, Kenji; Hosokawa, Ko

    2004-12-01

    Orbital floor defects were created in 10 New Zealand white rabbits and were reconstructed using an injectable calcium phosphate paste. These animals were euthanized at 2, 4, 8, and 12 months after implantation and were examined for biocompatibility and osteoconductivity. Grossly, implants were found to be adherent to the floor and covered with fibrous tissues. There was no sign of infection, extrusion, or migration of implant within the orbit and maxilla. The orbital floor was completely restored. Histological examination showed active new bone formation that encroached within the implant and gradually increased in density with time. Maxillary mucosa and glands were likewise reconstituted. Thin fibrovascular tissues were seen on top of and within the surface of the implant, and few to slight inflammatory cells were seen. Microradiography showed direct apposition between the new bone and the implant. These findings compare favorably with previously published reports on the biocompatibility and osteoconductivity of calcium phosphate cement. The authors believe that, together with ease of use and structural integrity, calcium phosphate paste can be useful in orbital floor reconstruction.

  18. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites.

    PubMed

    Schnieders, Julia; Gbureck, Uwe; Vorndran, Elke; Schossig, Michael; Kissel, Thomas

    2011-11-01

    The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.

  19. Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials

    PubMed Central

    Fan, RangRang; Deng, XiaoHui; Zhou, LiangXue; Gao, Xiang; Fan, Min; Wang, YueLong; Guo, Gang

    2014-01-01

    In this study, L-lactide was used to modify the tricalcium phosphate (β-TCP) and tetracalcium phosphate (TTCP) surface which can form functionalized poly(l-lactic acid) (PLLA)-grafted β-TCP (g-β-TCP) and PLLA-grafted TTCP (g-TTCP) particles. The g-β-TCP and g-TTCP obtained were incorporated into a PEG-PCL-PEG (PECE) matrix to prepare injectable thermosensitive hydrogel composites. The morphology of the hydrogel composites showed that the g-β-TCP and g-TTCP particles dispersed homogeneously into the polymer matrix, and each hydrogel composite had a three-dimensional network structure. Rheologic analysis showed that the composite had good thermosensitivity. Changes in calcium concentration and pH in simulated body fluid solutions confirmed the feasibility of surface-functionalized calcium phosphate for controlled release of calcium. All the results indicate that g-β-TCP/PECE and g-TTCP/PECE hydrogels might be a promising protocol for tissue engineering. PMID:24489468

  20. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics.

    PubMed

    Lecomte, A; Gautier, H; Bouler, J M; Gouyette, A; Pegon, Y; Daculsi, G; Merle, C

    2008-01-01

    Interconnection, one of the main structural features of macroporous calcium-phosphate ceramics, contributes to the biological and physicochemical properties of bone substitutes. As no satisfactory method exists for evaluating this feature, analysis was performed to determine the permeability, tortuosity, and equivalent diameter of interconnecting channels, that is the parameters that appear to be representative of the way pores are linked. The testing of two ceramics with similar porosity levels revealed important differences in all three interconnection parameters. One ceramic showed poor permeability, corresponding to a small equivalent diameter for interconnecting channels in conjunction with a high tortuosity factor, while the other displayed high permeability, a large diameter for interconnecting channels, and a low tortuosity factor. The methodology used, which can be applied to the quantification of interconnection in all calcium-phosphate ceramics, constitutes the first step in a complete study of the role of this feature in cellular colonization of the ceramic, matrix dissolution, and drug release from the calcium-phosphate matrix.

  1. Tri-calcium phosphate (ß-TCP) can be artificially synthesized by recycling dihydrate gypsum hardened.

    PubMed

    Han-Cheol, Cho; Hori, Masaharu; Yoshida, Takakazu; Yamada, Naoko; Komada, Yuko; Tamaki, Yukimichi; Miyazaki, Takashi

    2014-01-01

    Calcium phosphate is known as a major component of biological hard tissues. This study aimed to produce calcium phosphate by recycling kneaded surplus gypsum. β-dihydrate gypsum was derived from commercial dental β-hemihydrate gypsum, which was mechanically powdered and mixed with the liquid component of a commercial zinc phosphate cement. This mixture was fired at 1,200°C and evaluated by XRD analysis, thermal analysis and scanning electron microscopy (SEM). An acceptable ratio of mixing was 4 g of β-dihydrate gypsum powder to 1.5 mL of phosphoric acid liquid. XRD peaks were monotonic below 800°C, but new ß-TCP was formed by firing at 900°C or more, although TG-DTA analysis of synthetic ß-TCP suggested that some residual dihydrate gypsum remained in the sample. SEM images indicated a fused-block bone-like structure covered with phosphorus and calcium. These results suggest that production of synthetic β-TCP is possible through ecological techniques using recycled materials.

  2. Unexpected radiographic lucency following grafting of bone defects with calcium sulfate/tricalcium phosphate bone substitute.

    PubMed

    Auston, Darryl A; Feibert, Matthew; Craig, Tina; Damron, Timothy A

    2015-10-01

    To report the development of unexpected radiographic lucency (URL) corresponding to the use of a commercially available calcium sulfate/tricalcium phosphate composite used to treat benign osseous lesions. This is a retrospective comparative study of patients with and without URL after treatment with curettage and grafting with calcium sulfate/tricalcium phosphate. The charts of 87 patients meeting the inclusion criteria were reviewed for demographic, clinical, and radiographic data. The group with URL was compared to those with more typical patterns of graft incorporation. Thirteen of 87 cases (15%) showed URL. There was no difference with respect to the pathologic subtype, anatomic location, or specific bone for the presence of URL. Of patients with URL, one (7.7%) required reoperation and regrafting, whereas among patients without URL, five (6.7%) had clinical complications, with one requiring reoperation and regrafting, and one requiring radiofrequency ablation. The majority of patients treated with calcium sulfate/tricalcium phosphate cementing after curettage of low-grade bone lesions go on to uneventful healing in our series. In a minority of patients, URL occurs in lieu of the more typical pattern of centripetal incorporation. However, there is no increase in complications associated with URL. Based on these findings, patients should be informed of the possibility of this risk, although there appears to be little risk of clinically relevant adverse consequences. Physicians should be aware of this complication in order to avoid mistaking it for recurrence of the primary lesion.

  3. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    NASA Astrophysics Data System (ADS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-06-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  4. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    PubMed

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.

  5. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery.

    PubMed

    Ramachandran, Rukmani; Paul, Willi; Sharma, Chandra P

    2009-01-01

    The inconvenience of subcutaneous insulin delivery leads to low patient compliance with the dosage regimens. The most desirable form of administration seems to be through the oral route. This work investigates the utility of PEGylated calcium phosphate nanoparticles as oral carriers for insulin. Calcium phosphate nanoparticles (CaP) with an average particle size of 47.9 nm (D50) were synthesized and surface modified by conjugating it with poly(ethylene glycol) (PEG). These modified nanoparticles were having a near zero zeta potential. Protection of insulin from the gastric environment has been achieved by coating the nanoparticles with a pH sensitive polymer that will dissolve in the mildly alkaline pH environment of the intestine. The release profiles of coated nanoparticles exhibited negligible release in acidic (gastric) pH, i.e., only 2% for CaP and 6.5% for PEGylated CaP. However, a sustained release of insulin was observed at neutral (intestinal) pH for over 8 h. The conformation of the released insulin, studied using circular dichroism, was unaltered when compared with native insulin. The released insulin was also stable as it was studied using dynamic light scattering. Radioimmunoassay was performed and the immunoreactivity of the released insulin was found to be intact. These results suggest PEGylated calcium phosphate nanoparticles as an excellent carrier system for insulin toward the development of an oral insulin delivery system.

  6. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic.

    PubMed

    Wang, Liao; Barbieri, Davide; Zhou, Hongyu; de Bruijn, Joost D; Bao, Chongyun; Yuan, Huipin

    2015-06-01

    Material factors such as chemistry, surface microstructure and geometry have shown their influence on osteoinduction of calcium phosphate ceramics. Hereby we report that osteoinduction of a micro-structured biphasic calcium phosphate ceramic (BCP) has a relation with the particle sizes. BCP particles with the size of 212-300 µm, 106-212 µm, 45-106 µm, and smaller than 45 µm were prepared and implanted in paraspinal muscle of dogs for 12 weeks. Histological evaluation of the explants showed abundant bone in all samples with particle size of 212-300 µm, 106-212 µm, and 45-106 µm, while no bone was seen in any sample having particle size smaller than 45 µm. Bone was formed as early as 3 weeks after implantation in implants having BCP particles bigger than 45 µm and the volume of the formed bone was similar among the implants with particles larger than 45 µm after 12 weeks implantation. The results herein show that a size limitation of microstructured calcium phosphate ceramic particles for osteoinduction. It is most likely that the particle size affect inductive bone formation via macroporous structures for body fluid infiltration, cell/tissue ingrowth and angiogenesis. © 2014 Wiley Periodicals, Inc.

  7. Calcium phosphate precipitation in a SBR operated for EBPR: interactions with the biological process.

    PubMed

    Barat, R; Montoya, T; Borras, L; Ferrer, J; Seco, A

    2008-01-01

    The aim of this paper is to study the precipitation process in a sequencing batch reactor (SBR) operated for EBPR (enhanced biological phosphorus removal) and the possible effects of this phosphorus precipitation in the biological process. Four experiments were carried out under different influent calcium concentration. The experimental results and the equilibrium study, based on the Saturation Index calculation, confirm that the process controlling the calcium behaviour in a SBR operated for EBPR is the calcium phosphate precipitation. This precipitation takes place at two stages initially precipitation of the ACP and later crystallization of HAP. Also the accumulation of phosphorus precipitated was observed when the influent Ca concentration was increased. In all the experiments the influent wastewater ratio P/COD was kept constant. It has been observed that at high Ca concentration the amount of poly-P granules decrease, decreasing the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)). Changes on PAO and GAO populations during the experimental period were ruled out by means of methilene blue stains for poly-P detection. These results confirmed the phosphate precipitation as a process that can affect to the PAO metabolism and the EBPR performance.

  8. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy.

    PubMed

    Song, Yingwei; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L(-1) nicotinic acid (NA) solution, named as vitamin B3, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings.

  9. Evaluation of the effect of three calcium phosphate powders on osteoblast cells.

    PubMed

    Midy, V; Dard, M; Hollande, E

    2001-03-01

    The aim of the present study was to assess the effect of three calcium phosphate powders entering in the composition of bone substitute materials on osteoblast-cells activity. These powders were hydroxyapatite (HA) widely used as a biomaterial, nanocrystalline carbonate apatite (C A) very close to bone mineral crystals, and an experimental one: calcium phosphate cement-1 (CPC-1) composed of an amorphous Ca-P phase and brushite. The powders were physico-chemically characterized. The very reactive CPC-1 powder became transformed in cell culture medium: recrystallization of amorphous precursors and hydrolysis of brushite into poorly crystalline apatite occurred. Osteoblast-cells activity was evaluated: for low level of calcium phosphates (>100 microg/ml) CPC-1 enhanced proliferation and, to a lesser degree, differentiation on alkaline phosphatase activity. For 100 microg/ml of powders we observed a great alteration of biological activity of the osteoblasts: evaluation of proliferation indicated an inhibition for all samples, and a decrease of two differentiation markers: alkaline phosphatase activity and osteocalcin release were noticed, suggesting a down regulation due to the presence of large amount of mineral powder.

  10. Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo.

    PubMed

    Coscas, Raphaël; Bensussan, Marie; Jacob, Marie-Paule; Louedec, Liliane; Massy, Ziad; Sadoine, Jeremy; Daudon, Michel; Chaussain, Catherine; Bazin, Dominique; Michel, Jean-Baptiste

    2017-04-01

    The arterial wall calcium score and circulating free DNA levels are now used in clinical practice as biomarkers of cardiovascular risk. Calcium phosphate apatite retention in the arterial wall necessitates precipitation on an anionic platform. Here, we explore the role of tissue-free DNA as such a platform. The first step consisted of histological observation of samples from human and rat calcified arteries. Various stains were used to evaluate colocalization of free DNA with calcified tissue (alizarin red, fluorescent Hoechst, DNA immunostaining and TUNEL assay). Sections were treated by EDTA to reveal calcification background. Secondly, a rat model of vascular calcifications induced by intra-aortic infusions of free DNA and elastase + free DNA was developed. Rat aortas underwent a micro-CT for calcium score calculation at 3 weeks. Rat and human calcifications were qualitatively characterized using μFourier Transform Infrared Spectroscopy (μFTIR) and Field Emission-Scanning Electron Microscopy (FE-SEM). Our histological study shows colocalization of calcified arterial plaques with free DNA. In the intra-aortic infusion model, free DNA was able to penetrate into the arterial wall and induce calcifications whereas no microscopic calcification was seen in control aortas. The calcification score in the elastase + free DNA group was significantly higher than in the control groups. Qualitative evaluation with μFTIR and FE-SEM demonstrated typical calcium phosphate retention in human and rat arterial specimens. This translational study demonstrates that free DNA could be involved in arterial calcification formation by precipitating calcium phosphate apatite crystals in the vessel wall. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of calcium phosphates added to mucin-based saliva substitutes on bovine dentin.

    PubMed

    Meyer-Lückel, H; Kielbassa, A M

    2006-01-01

    Remineralization of dentin by mucin-containing saliva substitutes might be inhibited by sialic acids bound to mucin, which are known to complex calcium. Thus, the aim of this investigation was to evaluate the effects of various mucin-containing solutions, differing in calcium phosphate concentrations, to be used as saliva substitutes on demineralized bovine dentin in vitro. Bovine specimens (153) were embedded in epoxy resin, polished (4,000 grit), and partly covered with nail varnish (control of sound dentin). After demineralization for 14 days (pH 5.5), the specimens (n = 9) were exposed to 14 mucin-based solutions (30 g/L) at 2 different pH values (5.5 or 6.5) and differing in saturation with respect to apatites. Two fluoride-free solutions and the commercially available saliva substitute Saliva Orthana(Orthana, Kastrup) served as controls. Differences in mineral loss (deltadeltaZ) and lesion depth (deltaLD) between the values prior to and after storage in the various solutions were evaluated from microradiographs of thin sections (100 microm). The general linear model revealed an almost significant dependency on calcium for deltadeltaZ (P = .050) and a significant dependency on calcium for deltaLD (P = .037). pH influenced deltadeltaZ significantly (P < .001), whereas deltaLD was not influenced significantly (P = .169). Neither deltadeltaZ (P = .475) nor deltaLD (P = .703) were influenced significantly by phosphate. Even with low concentrations of calcium and phosphates, mucin-based saliva substitutes are capable of inhibiting demineralization of bovine dentin, whereas with solutions supersaturated with respect to apatites, a remineralizing effect could be observed.

  12. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    NASA Astrophysics Data System (ADS)

    Gergulova, R.; Tepavitcharova, S.; Rabadjieva, D.; Sezanova, K.; Ilieva, R.; Alexandrova, R.; Andonova-Lilova, B.

    2013-12-01

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg2+ or Zn2+ yielded monophase β-tricalcium phosphate additionally modified with Mg2+ or Zn2+ (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  13. Parameters influencing ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole retention by natural and converted calcium phosphates.

    PubMed

    Bouyarmane, H; El Hanbali, I; El Karbane, M; Rami, A; Saoiabi, A; Saoiabi, S; Masse, S; Coradin, T; Laghzizil, A

    2015-06-30

    The retention of four antibiotics, ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole by a natural phosphate rock (francolite) was studied and compared with a converted hydroxyapatite powder. The maximum sorption capacities were found to correlate with the molecular weight of the molecules. The mechanisms of sorption depended mostly on the charge of the antibiotic whereas the kinetics of the process was sensitive to their hydrophobic/hydrophilic character. The two materials showed slightly distinct affinities for the various antibiotics but exhibited similar maximum sorption capacities despite different specific surface areas. This was mainly attributed to the more pronounced hydrophobic character of the francolite phase constituting the natural phosphate. These data enlighten that the retention properties of these mineral phases depend on a complex interplay between the inter-molecular and molecule-solid interactions. These findings are relevant to understand better the contribution of calcium phosphates in the fate and retention of antibiotics in soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    SciTech Connect

    Gergulova, R. Tepavitcharova, S. Rabadjieva, D. Sezanova, K. Ilieva, R.; Alexandrova, R.; Andonova-Lilova, B.

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  15. Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers

    NASA Astrophysics Data System (ADS)

    Cui, F. Z.; Zhou, L. F.; Cui, H.; Ma, C. L.; Lu, H. B.; Li, H. D.

    1996-12-01

    The effect of ionic concentration and pH on matrix-regulated crystallization may be important in biomineralization processes and biomimetic synthesis of materials. This effect in the system of calcium phosphate solution under stearic acid monolayers was investigated. In experiments, the solution conditions ranged in concentration of Ca ion of 0.1-20mM and in pH of 5.3-7.0. It was found that at the initial stage of the controlled crystallization, the (0001)-oriented hydroxyapatite (HAp) precipitations under the acidic monolayers always occur. At solution conditions near the solubility isotherms of octacalcium phosphate (OCP) and dicalcium phosphate dihydrate (DCPD) in the solubility phase diagram, precipitations of OCP and DCPD phases can form together with HAp precipitation, respectively. Orientations of DCPD or OCP phase precipitations were irregular.

  16. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro.

    PubMed

    Liu, Zongguang; Qu, Shuxin; Zheng, Xiaotong; Xiong, Xiong; Fu, Rong; Tang, Kuangyun; Zhong, Zhendong; Weng, Jie

    2014-11-01

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA-CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA-CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA-CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of CO of PDA existed in the newly formed CaP on PDA-CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA-CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA-CPC. Thus, this provides the feasible route for surface modification on CPC. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Surface controlled calcium phosphate formation on three-dimensional bacterial cellulose-based nanofibers.

    PubMed

    Luo, Honglin; Xiong, Guangyao; Zhang, Chen; Li, Deying; Zhu, Yong; Guo, Ruisong; Wan, Yizao

    2015-04-01

    Studies on the early calcium phosphate (Ca-P) formation on nanosized substrates may allow us to understand the biomineralization mechanisms at the molecular level. In this work, in situ formation of Ca-P minerals on bacterial cellulose (BC)-based nanofibers was investigated, for the first time, using the X-ray absorption near-edge structure (XANES) spectroscopy. In addition, the influence of the surface coating of nanofibers on the formation of Ca-P minerals was determined. Combined with XRD analysis, XANES results revealed that the nascent precursor was ACP (amorphous calcium phosphate) which was converted to TCP (β-tricalcium phosphate), then OCP (octacalcium phosphate), and finally to HAP (hydroxyapatite) when phosphorylated BC nanofibers were the templates. However, the formation of nascent precursor and its transformation process varied depending on the nature of the coating material on nanofibrous templates. These results provide new insights into basic mechanisms of mineralization and can lead to the development of novel bioinspired nanostructured materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Vascular calcification and secondary hyperparathyroidism of severe chronic kidney disease and its relation to serum phosphate and calcium levels

    PubMed Central

    Terai, K; Nara, H; Takakura, K; Mizukami, K; Sanagi, M; Fukushima, S; Fujimori, A; Itoh, H; Okada, M

    2009-01-01

    Background and purpose: Various complications consequent on disordered calcium and phosphate homeostasis occur frequently in chronic kidney disease (CKD) patients. Particularly, vascular calcification has high morbidity and mortality rates. There is a clear need for a better CKD model to examine various aspects of this disordered homeostasis. Experimental approach: Oral dosing with adenine induced CKD in rats in only 10 days. Serum calcium, phosphate and parathyroid hormone were measured and calcification in aorta was assessed histologically. The effects of varying phosphorus content of diet or treatment with phosphate binders or active vitamin D3 on these parameters were examined. Key results: After adenine dosing, significant hyperphosphatemia, hypocalcemia and secondary hyperparathyroidism (2HPT) were observed during the experimental period of 15 weeks. Aortic calcification was detected in only some of the animals even at 15 weeks (∼40%). Treatment with vitamin D3 for 18 days, even at a low dose (100 ng·kg−1, 3–4 times week−1, p.o), caused aortic calcification in all animals and increases in serum calcium levels up to the normal range. The vitamin D3-induced calcification was significantly inhibited by phosphate binders which lowered serum phosphate levels and the calcium × phosphate product, although serum calcium levels were elevated. Conclusions: These data suggest that rats dosed orally with adenine provide a more useful model for analysing calcium/phosphate homeostasis in severe CKD. Controlling serum calcium/phosphate levels with phosphate binders may be better than vitamin D3 treatment in hyperphosphatemia and 2HPT, to avoid vascular calcification. PMID:19302594

  19. [Production of timolol containing calcium-phosphate nanoparticles and evaluation of their effect on intraocular pressure in experiment].

    PubMed

    Shimanovskaia, E V; Beznos, O V; Kliachko, N L; Kost, O A; Nikol'skaia, I I; Pavlenko, T A; Chesnokova, N B; Kabanov, A V

    2012-01-01

    Methodology for production of calcium-phosphate nanoparticles is developed and its efficacy as a drug carrier system is estimated by example of timolol. Conditions for production of particles with optimal size and resistance are determined, methodology of loading of particles with timolol is developed. Physical parameters of particles (form, size, relief), kinetics of saturation with drug and its release are studied. Packaging of timolol into calcium phosphate nanoparticles was showed to enhance and prolong its hypotensive effect in experiment on healthy rabbits.

  20. Effect of calcium phosphate and vitamin D3 supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron

    PubMed Central

    2014-01-01

    Background The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D3 on bone and mineral metabolism. Methods Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D3). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D3 (additional 10 μg/d) and CaP + vitamin D3. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. Results After four and eight weeks, CaP and CaP + vitamin D3 supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D3 supplementations (vitamin D3, CaP + vitamin D3), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. Conclusions Supplementation with daily 10 μg vitamin D3 significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D3 have no beneficial effect on bone

  1. Collagen immobilization on 316L stainless steel surface with cathodic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Roguska, Agata; Hiromoto, Sachiko; Yamamoto, Akiko; Woźniak, Michał Jerzy; Pisarek, Marcin; Lewandowska, Małgorzata

    2011-03-01

    Collagen fibril/(calcium phosphate and carbonate) composite coatings on 316L stainless steel were developed with a cathodic deposition technique. The response of SaOS-2 osteoblast-like cells to the collagen/calcium salt-coated 316L steel was investigated. The collagen fibrils were self-assembled on the 316L steel surface and immobilized by their partial incorporation into a calcium salt layer electrodeposited cathodically in Hanks' solution. The amount of calcium salt depended on the applied cathodic potential. The mineralization of collagen fibrils was observed. The collagen coverage localized and the composition of calcium salts varied on the same specimen. Such non-uniform surfaces affected the cell response. The observed outlines of cell bodies and nuclei on the thin collagen coating were clearer than those on the thick collagen coating in most cases. The collagen coating did not significantly influence the mean viability of cells on the whole specimen surface. Interestingly, the alkaline phosphatase activity per cell on the collagen/calcium salt-coated specimens was higher than that on the as-received specimen. It was revealed that cathodic deposition is an effective technique to immobilize collagen fibrils on a 316L steel surface.

  2. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    PubMed

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM.

  3. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    SciTech Connect

    Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  4. Enhanced enamel benefits from a novel toothpaste and dual phase gel containing calcium silicate and sodium phosphate salts.

    PubMed

    Hornby, Kate; Ricketts, Stephen R; Philpotts, Carole J; Joiner, Andrew; Schemehorn, Bruce; Willson, Richard

    2014-06-01

    To investigate the enamel health benefits of a novel toothpaste and a dual phase gel containing calcium silicate, sodium phosphate and fluoride. Enamel demineralisation was assessed using two pH cycling protocols with either lactic acid or citric acid as the acid challenge. Remineralisation of lactic acid softened and citric acid softened enamel was assessed using a number of protocols. All demineralisation and remineralisation evaluation was by surface microhardness measurements. The novel calcium silicate/phosphate fluoride toothpaste inhibited enamel demineralisation to a significantly (p<0.05) greater extent than control formulations, including a fluoride control. The novel calcium silicate/phosphate fluoride toothpaste also showed significant (p<0.05) remineralisation of lactic acid and citric acid softened enamel compared to fluoride and non-fluoride controls. The addition of the novel calcium silicate/phosphate fluoride dual phase gel provided enhanced remineralisation of citric acid softened enamel compared to fluoride and non-fluoride controls. These studies show that formulations containing calcium silicate, sodium phosphate salts and fluoride provide enhanced enamel demineralisation and remineralisation in vitro benefits. The novel oral care formulations containing calcium silicate, sodium phosphate salts and fluoride is a new approach to the protection of enamel from acid attacks and the repair of demineralised enamel, leading to increased dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  5. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Effect of poly(aspartic acid) on calcium phosphate removal from stainless steel tubing under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Littlejohn, Felicia

    Calcium phosphate deposition causes cleaning problems in a number of situations including water treatment, dairy processing, and dental applications. This problem is exacerbated by the limited choices of cleaning chemicals that meet environmental regulations. To promote the development of biodegradable, non-toxic alternatives, this research examines the removal of calcium phosphate deposits consisting of brushite (dicalcium phosphate dihydrate; DCPD) and a mixture of hydroxyapatite (HAP) and DCPD from stainless steel in the presence of poly(aspartic acid) and its sodium salt (PASP). The effects of solvent pH, PASP concentration, and flow rate on the calcium phosphate removal rates are measured from stainless steel tubing under turbulent flow conditions using a solid scintillation detection technique. A mechanistic evaluation of the cleaning data in the absence of PASP indicates that DCPD removal is dominated by shear while HAP/DCPD deposit removal is limited by a combination of mass transfer and interfacial processes. Although the removal mechanisms differ, the results conclusively show that PASP promotes calcium phosphate removal under conditions that favor calcium sequestration in both cases. An in-depth study of DCPD removal in the presence of PASP reveals that this additive is most effective under conditions where calcium sequestration and phosphate protonation occur simultaneously.

  7. Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.

    PubMed

    Yomoda, Mitsuhiro; Sobajima, Satoshi; Kasuya, Akihiro; Neo, Masashi

    2015-05-01

    Previous studies have reported the excellent biocompatibility of calcium phosphate cement. However, calcium phosphate cement needs further improvement in order for it to promote bone replacement and eventual bone substitution, as it exhibits slow biodegradability and thus remains in the body over an extended period of time. In this study, we mixed calcium phosphate cement with gelatin powder in order to create a composite containing macropores with interconnectivity, and we then implanted it into canine femurs from the diaphysis to the distal metaphysis. Eight dogs were divided into the sham group, the control (C0) group with 100 wt% calcium phosphate cement, the C10 group with 90 wt% calcium phosphate cement and 10 wt% gelatin powder, and the C15 group with 85 wt% calcium phosphate cement and 15 wt% gelatin powder. Bone replaceability in C10 and C15 at 3 and 6 months was evaluated by radiography, micro-CT, histomorphometry, and mineral apposition rate. New bone formation was seen in C10 and C15 although that was not seen in C0 at six months. The mineral apposition rate was significantly higher in C15 than in C10 in both the diaphysis and metaphysis, and the composite was found to have excellent biodegradability and bone replaceability in canine subjects. As the composite is easily and rapidly prepared, it is likely to become a new bone substitute for use in clinical settings.

  8. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique

    PubMed Central

    Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.

    2010-01-01

    Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558

  9. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.

    PubMed

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C.

  11. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    PubMed

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity

  12. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  13. Biocompatibility of Resin-based Dental Materials

    PubMed Central

    Moharamzadeh, Keyvan; Brook, Ian M.; Van Noort, Richard

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined the biocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental materials.

  14. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.

    PubMed

    Klammert, Uwe; Reuther, Tobias; Blank, Melanie; Reske, Isabelle; Barralet, Jake E; Grover, Liam M; Kübler, Alexander C; Gbureck, Uwe

    2010-04-01

    Brushite (CaHPO(4) x 2H(2)O)-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times and low mechanical strengths limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of magnesium-substituted beta-tricalcium phosphate with the general formula Mg(x)Ca((3-x))((PO(4))(2) with 0 < x < 3 as cement reactants. The incorporation of magnesium ions increased the setting times of cements from 2 min for a magnesium-free matrix to 8-11 min for Mg(2.25)Ca(0.75)(PO(4))(2) as reactant. At the same time, the compressive strength of set cements was doubled from 19 MPa to more than 40 MPa after 24h wet storage. Magnesium ions were not only retarding the setting reaction to brushite but were also forming newberyite (MgHPO(4) x 3H(2)O) as a second setting product. The biocompatibility of the material was investigated in vitro using the osteoblast-like cell line MC3T3-E1. A considerable increase of cell proliferation and expression of alkaline phosphatase, indicating an osteoblastic differentiation, could be noticed. Scanning electron microscopy analysis revealed an obvious cell growth on the surface of the scaffolds. Analysis of the culture medium showed minor alterations of pH value within the physiological range. The concentrations of free calcium, magnesium and phosphate ions were altered markedly due to the chemical solubility of the scaffolds. We conclude that the calcium magnesium phosphate (newberyite) cements have a promising potential for their use as bone replacement material since they provide a suitable biocompatibility, an extended workability and improved mechanical performance compared with brushite cements.

  15. Calcium phosphate flocs and the clarification of sugar cane juice from whole of crop harvesting.

    PubMed

    Thai, Caroline C D; Moghaddam, Lalehvash; Doherty, William O S

    2015-02-11

    Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process, the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na(+) ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na(+) ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%), proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca(2+) (≤136%) and sulfur (≤200%).

  16. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    NASA Astrophysics Data System (ADS)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-10-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  17. Textured and hierarchically structured calcium phosphate ceramic blocks through hydrothermal treatment.

    PubMed

    Galea, Laetitia; Alexeev, Dmitriy; Bohner, Marc; Doebelin, Nicola; Studart, André R; Aneziris, Christos G; Graule, Thomas

    2015-10-01

    Synthetic calcium phosphate bone graft substitutes are widely recognized for their biocompatibility and resorption characteristics in the treatment of large bone defects. However, due to their inherent brittleness, applications in load-bearing situations always require reinforcement by additional metallic implants. Improved mechanical stability would eliminate the need for non-resorbable metallic implants. In this context a new approach to obtain calcium phosphate scaffolds with improved mechanical stability by texturing the material in specific crystal orientations was evaluated. Texture and reduction of crystal size was achieved by recrystallizing α-TCP blocks into calcium deficient hydroxyapatite (CDHA) under hydrothermal conditions. SEM and XRD analysis revealed the formation of fine CDHA needles (diameter ≈ 0.1-0.5 μm), aligned over several hundreds of micrometers. The obtained microstructures were remarkably similar to the microstructures of the prismatic layer of mollusk shells or enamel, also showing organization at 5 hierarchical structure levels. Brazilian disc tests were used to determine the diametral tensile strength, σdts, and the work-of-fracture, WOF, of the textured materials. Hydrothermal incubation significantly increased σdts and WOF of the ceramic blocks as compared to sintered blocks. These improvements were attributed to the fine and entangled crystal structure obtained after incubation, which reduces the size of strength-determining critical defects and also leads to tortuous crack propagation. Rupture surfaces revealed intergranular tortuous crack paths, which dissipate much more energy than transgranular cracks as observed in the sintered samples. Hence, the refined and textured microstructure achieved through the proposed processing route is an effective way to improve the strength and particularly the toughness of calcium phosphate-based ceramics.

  18. The effect of high calcium milk and casein phosphopeptide-amorphous calcium phosphate on enamel erosion caused by cholinated water.

    PubMed

    Vongsawan, Kadkao; Surarit, Rudee; Rirattanapong, Praphasri

    2010-11-01

    The aim of this study was to determine the effectiveness of high calcium milk and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on enamel erosion caused by chlorinated water. Thirty-six bovine enamel samples without wear or caries 3x4 mm in size were placed in acrylic blocks. All specimens were randomly allocated into 3 groups (n=12/group): CPP-ACP in the form of paste, Anlene concentrated milk and a control (no treatment). All specimens were soaked in chlorinated water (pH =5.0) at room temperature for 72 hours following by soaking in artificial saliva for 30 minutes. Then, microhardness was determined using a microhardness tester. Data were analyzed using a one-way ANOVA and paired t-test. The microhardness value change in the control group was significantly higher than the other groups. No significant differences were seen between the 2 study groups. High calcium milk and CPP-ACP enhanced remineralization of enamel erosion caused by chlorinated water.

  19. Injectability of calcium phosphate pastes: Effects of particle size and state of aggregation of β-tricalcium phosphate powders.

    PubMed

    Torres, P M C; Gouveia, S; Olhero, S; Kaushal, A; Ferreira, J M F

    2015-07-01

    The present study discloses a systematic study about the influence of some relevant experimental variables on injectability of calcium phosphate cements. Non-reactive and reactive pastes were prepared, based on tricalcium phosphate doped with 5 mol% (Sr-TCP) that was synthesised by co-precipitation. The varied experimental parameters included: (i) the heat treatment temperature within the range of 800-1100°C; (ii) different milling extents of calcined powders; (iii) the liquid-to-powder ratio (LPR); (iv) the use of powder blends with different particle sizes (PS) and particle size distributions (PSD); (v) the partial replacement of fine powders by large spherical dense granules prepared via freeze granulation method to simulate coarse individual particles. The aim was contributing to better understanding of the effects of PS, PSD, morphology and state of aggregation of the starting powders on injectability of pastes produced thereof. Powders heat treated at 800 and 1000°C with different morphologies but with similar apparent PSD curves obtained by milling/blending originated completely injectable reactive cement pastes at low LPR. This contrasted with non-reactive systems prepared thereof under the same conditions. Hypotheses were put forward to explain why the injectability results collected upon extruding non-reactive pastes cannot be directly transposed to reactive systems. The results obtained underline the interdependent roles of the different powder features and ionic strength in the liquid media on determining the flow and injectability behaviours.

  20. In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated β-tricalcium phosphate.

    PubMed

    Gokcekaya, Ozkan; Ueda, Kyosuke; Ogasawara, Kouetsu; Kanetaka, Hiroyasu; Narushima, Takayuki

    2017-06-01

    Development of bioceramics with antibacterial activity and without cytotoxicity would be beneficial for preventing infection associated with implants. This study aimed to capitalize on the antibacterial properties of silver (Ag) incorporated in or coexisting in metallic form with calcium phosphates (CaPs). The in vitro dissolution behavior, antibacterial activity, and cytotoxicity of Ag-containing CaPs with different phase fractions of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) were evaluated. The antibacterial activity of Ag-containing CaPs depended on the main phase of CaP, the chemical state of Ag, and the amount of incorporated Ag. Superior antibacterial activity was obtained from sustained release of Ag ions through continuous dissolution of Ag-incorporated β-TCP compared to that obtained for HA coexisting with metallic Ag particles. Ag-containing CaPs did not exhibit any toxic effect on V79 fibroblasts. Thus, these results demonstrated the effectiveness of Ag-incorporated β-TCP in preventing infection, with respect to long-term applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    PubMed Central

    Mellau, LSB; Jørgensen, RJ; Enemark, JMD

    2001-01-01

    The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies. PMID:11503370

  2. The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries

    PubMed Central

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Khumsub, Ploychompoo

    2016-01-01

    Objectives: Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Materials and Methods: Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm2 windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups (n = 10); group A – deionized water; group B – casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) paste (Tooth Mousse); group C – 500 ppm F (Colgate Spiderman®); group D – nonfluoridated toothpaste with triple calcium phosphate (Pureen®); and group E – tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro® Plus software were used to evaluate lesions. Results: After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups (P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. Conclusions: All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The

  3. The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries.

    PubMed

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Khumsub, Ploychompoo

    2016-01-01

    Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm(2) windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups (n = 10); group A - deionized water; group B - casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (Tooth Mousse); group C - 500 ppm F (Colgate Spiderman(®)); group D - nonfluoridated toothpaste with triple calcium phosphate (Pureen(®)); and group E - tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro(®) Plus software were used to evaluate lesions. After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups (P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The fluoride 500 ppm and TCP toothpastes were equal in the deceleration of

  4. Calcium and phosphate adsorption as initial steps of apatite nucleation on sol-gel-prepared titania surface.

    PubMed

    Coreño, Juan; Martínez, Antonia; Coreño, Oscar; Bolarín, Ana; Sánchez, Félix

    2003-01-01

    Titania powders have been prepared by the sol-gel route from Ti (IV) ethoxide under acidic conditions. Adsorption experiments of calcium and phosphate ions on gel-derived titania suspensions were performed to suggest a likely initial step of apatite growth on its surface. Experiments were performed as a function of time and pH at 37 degrees C with and without NaCl present in the suspensions. Also, zeta (zeta) potential experiments were performed to determine the kind of calcium adsorption. Results suggest that, apparently, calcium and phosphate adsorption can act as two different initial steps for apatite growth.

  5. Influence of urine pH and citrate concentration on the upper limit of metastability for calcium phosphate.

    PubMed

    Greischar, Amy; Nakagawa, Y; Coe, Frederic L

    2003-03-01

    We determined the effects on the urine upper limit of metastability for calcium phosphate of citrate concentration and pH, and achievement of the upper limit of metastability by adding calcium or phosphate. The citrate concentration in aliquots of 24-hour urine samples from normal males without a history of kidney stones was increased. The upper limit of metastability was determined by the point of visible crystal formation, as confirmed by increased optical density at 620 nm. when calcium or pH was increased. In additional experiments the upper limit of metastability was determined by adding calcium or phosphate at pH 5.9 and 6.4. Regardless of how the upper limit of metastability was achieved increasing the citrate concentration increased the former value by about 0.4 units per mM. citrate per l. The upper limit of metastability achieved in a given urine sample by adding phosphate or calcium did not differ. Increasing urine pH increased the upper limit of metastability. Treatment with alkaline citrate salts may decrease stone formation via an increase in calcium phosphate upper limit of metastability by increasing urine citrate and by directly affecting increased pH.

  6. The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients.

    PubMed

    Soriano, Sagrario; Ojeda, Raquel; Rodríguez, Mencarnación; Almadén, Yolanda; Rodríguez, Mariano; Martín-Malo, Alejandro; Aljama, Pedro

    2013-07-01

    Recent publications show that elevation of FGF23 is independently associated with progression or renal disease, left ventricular hypertrophy and cardiovascular mortality. Dietary restriction of phosphate and phosphate binders are used for control phosphate balance and elevation of serum FGF23 levels. The aim of this study is to compare the effectiveness of calcium carbonate vs. lanthanum carbonate in reducing serum FGF23 levels in Chronic Kidney Disease (CKD) patients. 32 patients from the Nephrology outpatient clinic with CKD 4 - 5 non-dialysis were included. Patients receive a 4-month treatment period of calcium carbonate or lanthanum carbonate. Patients had normal serum calcium concentration, 25 (OH) levels >30 ng/ml and they were not on VDR activators or cinacalcet. As compared with calcium carbonate, patients on lanthanum carbonate had lower serum levels of FGF23 (226 ± 11 vs. 158 ± 9 pg/ml) and less urinary excretion of phosphate. No significant changes in serum calcium and PTH levels were observed in both groups. In conclusion, in CKD 4 - 5 patients lanthanum carbonate is effective in reducing phosphate load and FGF23 levels; this effect was not observed with calcium carbonate.

  7. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control.

    PubMed

    Wagner, Darcy E; Jones, Andrew D; Zhou, Huan; Bhaduri, Sarit B

    2013-04-01

    Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature. Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Optimisation of the mechanical and handling properties of an injectable calcium phosphate cement.

    PubMed

    O'Hara, R M; Dunne, N J; Orr, J F; Buchanan, F J; Wilcox, R K; Barton, D C

    2010-08-01

    Calcium phosphate cements have the potential to be successful in minimally invasive surgical techniques, like that of vertebroplasty, due to their ability to be injected into a specific bone cavity. These bone cements set to produce a material similar to that of the natural mineral component in bone. Due to the ceramic nature of these materials they are highly brittle and it has been found that they are difficult to inject. This study was carried out to determine the factors that have the greatest effect on the mechanical and handling properties of an apatitic calcium phosphate cement with the use of a Design of Experiments (DoE) approach. The properties of the cement were predominantly influenced by the liquid:powder ratio and weight percent of di-sodium hydrogen phosphate within the liquid phase. An optimum cement composition was hypothesised and tested. The mechanical properties of the optimised cement were within the clinical range for vertebroplasty, however, the handling properties still require improvement.

  9. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement

    PubMed Central

    Cantaert, Bram; Beniash, Elia

    2013-01-01

    Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP. PMID:24409343

  10. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement.

    PubMed

    Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C

    2013-12-28

    Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.

  11. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  12. Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation

    PubMed Central

    Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C.

    2015-01-01

    A key feature of biomineralization processes is that they take place within confined volumes, in which the local environment can have significant effects on mineral formation. Herein, we investigate the influence of confinement on the formation mechanism and structure of calcium phosphate (CaP). This is of particular relevance to the formation of dentine and bone, structures of which are based on highly mineralized collagen fibrils. CaP was precipitated within 25–300 nm diameter, cylindrical pores of track etched and anodised alumina membranes under physiological conditions, in which this system enables systematic study of the effects of the pore size in the absence of a structural match between the matrix and the growing crystals. Our results show that the main products were polycrystalline hydroxapatite (HAP) rods, together with some single crystal octacalcium phosphate (OCP) rods. Notably, we demonstrate that these were generated though an intermediate amorphous calcium phosphate (ACP) phase, and that ACP is significantly stabilised in confinement. This effect may have significance to the mineralization of bone, which can occur through a transient ACP phase. We also show that orientation of the HAP comparable, or even superior to that seen in bone can be achieved through confinement effects alone. Although this simple experimental system cannot be considered, a direct mimic of the in vivo formation of ultrathin HAP platelets within collagen fibrils, our results show that the effects of physical confinement should not be neglected when considering the mechanisms of formation of structures, such as bones and teeth. PMID:24115275

  13. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/beta-TCP ratio.

    PubMed

    Bouler, J M; LeGeros, R Z; Daculsi, G

    2000-09-15

    Hydroxyapatite (HA) contents measurements were conducted on eight biphasic calcium phosphate (BCP) samples obtained by sintering calcium-deficient apatite formed previously by hydrolyzing a dicalcium phosphate dihydrate (DCPD) powder. We evaluated the influences and interactions of three synthesis factors: alkalinity, process duration, and concentration of the water suspension in DCPD. Those parameters were varied simultaneously between two limit levels. Experiments used a factorial design method (FDM) allowing optimization of the number of samples as well as statistical analysis of results. FDM showed that HA content, in a defined experimental area, can be described by a first-order polynomial equation in which the initial alcalinity and the DCPD/water ratio are the major influences. Experiment prove that pH measured at the end of the hydrolysis was predictive of the HA content in the final BCP. This study leads up to an isoresponse line diagram which will allow the synthesis of some BCP with fitted HA/beta-tricalcium phosphate ratios.

  14. Efficacy of tooth whitening with different calcium phosphate-based formulations.

    PubMed

    Jin, Jian; Xu, Xiaohui; Lai, Guangyun; Kunzelmann, Karl-Heinz

    2013-08-01

    The aim of this in-vitro study was to evaluate the efficacy of tooth whitening using different calcium phosphate-based formulations. Teeth were treated with three different hydroxyapatite preparations at different concentrations and with two control preparations; each tooth was treated a total of three times. After application of the last material, hydrodynamic shear force was applied to mimic mechanical loading. After each treatment, tooth color was measured using a dental spectrophotometer, and the mean changes in L*a*b* values between different measurements were expressed as ∆E. The results indicated significant differences between the materials, but neither dose- nor time-dependent associations were found. The suspension containing tricalcium phosphate (10 wt%) showed the most obvious color change (∆E = 2.20 ± 0.90), while the suspension containing zinc-carbonate-apatite (20 wt%) showed the least obvious color change (∆E = 0.91 ± 0.50). Calcium phosphate-based formulations that can adhere to the enamel surface and contribute to tooth whitening have promising tooth-whitening potential. © 2013 Eur J Oral Sci.

  15. Preparation of spherical calcium phosphate granulates suitable for the biofunctionalization of active brazed titanium alloy coatings.

    PubMed

    Schickle, Karolina; Gerardo-Nava, Jose L; Puidokas, Sabrina; Anavar, Sharareh Samadian; Bergmann, Christian; Gingter, Philipp; Schickle, Benjamin; Bobzin, Kirsten; Fischer, Horst

    2015-04-01

    Titanium-based alloys can be actively brazed onto bio-inert ceramics and potentially be used as biocompatible coatings. To further improve their bioactivity in vivo, introduction of calcium phosphate (CaP)-based granulates onto their surface layer is possible. For this, mechanically stable CaP-based granulates need to be able to withstand the demand of the brazing process. In this study, spherical granulates, made of a calcium phosphate composite composed primarily of β-tricalcium phosphate and hydroxyapatite, a bioactive glass, and a mixture of the previous two, were manufactured by spray drying. The influence of organic additives (Dolapix CE64, trisodium citrate) and solids content (30-80 wt%) in the slurry on the physical characteristics of granulates was investigated. X-ray diffraction, Brunauer, Emmett, Teller specific surface area standard method, scanning electron microscopy, granulate size analysis, and single granule strength were performed. Our results showed that trisodium citrate permitted the production of granulates with regular morphology, high density, and increased failure stress values. The strong granules also withstood the brazing process. These results show that CaP bioactive agents can be generated and be integrated during the demanding metallurgical processes, allowing for one-step bioactivation of metal brazes.

  16. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement.

    PubMed

    Habraken, Wouter J E M; Zhang, Zheng; Wolke, Joop G C; Grijpma, Dirk W; Mikos, Antonios G; Feijen, Jan; Jansen, John A

    2008-06-01

    Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polyester with rubber-like properties. Introduction of this polymer into an injectable calcium phosphate bone cement can therefore be used to introduce macroporosity into the cement for tissue engineering purposes as well as to improve mechanical properties. Aim of this study was to investigate calcium phosphate cements with incorporated PTMC microspheres (PTMC CPCs) on their physical/mechanical properties and in vitro degradation characteristics. Therefore, composites were tested on setting time and mechanical strength as well as subjected to phosphate buffered saline (PBS) and enzyme containing medium. PTMC CPCs (12.5 and 25 wt%) with molecular weights of 52.7 kg mol(-1) and 176.2 kg mol(-1) were prepared, which showed initial setting times similar to that of original CPC. Though compression strength decreased upon incorporation of PTMC microspheres, elastic properties were improved as strain-at-yield increased with increasing content of microspheres. Sustained degradation of the microspheres inside PTMC CPC occurred when incubated in the enzymatic environment, but not in PBS, which resulted in an interconnected macroporosity for the 25 wt% composites.

  17. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.

    PubMed

    Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong

    2016-01-01

    The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.

  18. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition.

    PubMed

    Clèries, L; Fernández-Pradas, J M; Morenza, J L

    2000-01-01

    Three different calcium phosphate coatings of crystalline hydroxyapatite (HA), alpha- and beta-tricalcium phosphate (alpha+beta-TCP), or amorphous calcium phosphate (ACP) obtained by pulsed laser deposition on Ti-6Al-4V were incubated in a potentially osteogenic primary cell culture (rat bone marrow) in order to evaluate the amount and mode of mineralized bone matrix formation after 2 weeks with special emphasis on the type of interfacial structure that was created. Evaluation techniques included fluorescence labeling and scanning electron microscopy. The resistance to cellular resorption by osteoclasts was also studied. Bone matrix delaminated from the ACP coatings, while it remained on the HA and the alpha+beta-TCP coatings even after fracturing. A cementlike line was seen as the immediate contiguous interface with the nondegrading dense HA surface and with the surface of the remaining porous beta-TCP coating. Highly dense and crystalline HA coatings do not dissolve but are capable of establishing a strong bond with the bone matrix grown on top. Chemical and mechanical bonding were considered in this case. Cellular resorption was practically not observed on the HA coatings, but it was observed on the alpha+beta-TCP coatings. Resorption took place as dissolution that was due to the acidic microenvironment.

  19. FGF23 Is Not Associated With Age-Related Changes in Phosphate, but Enhances Renal Calcium Reabsorption in Girls.

    PubMed

    Mitchell, Deborah M; Jüppner, Harald; Burnett-Bowie, Sherri-Ann M

    2017-04-01

    Fibroblast growth factor (FGF)23 is a critical determinant of phosphate homeostasis. The role of FGF23, however, in regulating physiologic changes in serum phosphate and renal phosphate handling across childhood is not well described. In addition, animal models have suggested a role for FGF23 in regulating renal calcium excretion. To assess changes in FGF23 concentrations across childhood in relation to changes in mineral ions and hormones of mineral ion homeostasis. This was a cross-sectional study. The study was conducted at a Clinical Research Center at a tertiary care hospital. Ninety healthy girls ages 9 to 18 years were recruited from the surrounding community. The associations of intact and C-terminal FGF23 concentrations with measures of mineral ion homeostasis were determined by univariable and multivariable linear regression. Serum phosphate and renal phosphate excretion varied with age, as expected (R = -0.49, P < 0.001 and R = -0.48, P < 0.001, respectively). Neither intact nor C-terminal FGF23 varied with age, and FGF23 was not correlated with serum or urinary phosphate. Intact FGF23 was positively correlated with serum calcium (R = 0.39, P < 0.001) and negatively correlated with urinary calcium/creatinine ratio (R = -0.27, P = 0.011). The changes in serum and urinary phosphate handling across childhood do not appear to be determined by alterations in FGF23 concentrations. These data may point to a role for FGF23 in calcium regulation in human physiology.

  20. Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals.

    PubMed

    Rosenthal, Ann K; Fahey, Mark; Gohr, Claudia; Burner, Todd; Konon, Irina; Daft, Laureen; Mattson, Eric; Hirschmugl, Carol; Ryan, Lawrence M; Simkin, Peter

    2008-10-01

    Basic calcium phosphate (BCP) crystals are common components of osteoarthritis (OA) synovial fluid. Progress in understanding the role of these bioactive particles in clinical OA has been hampered by difficulties in their identification. Tetracyclines stain calcium phosphate mineral in bone. The aim of this study was to investigate whether tetracycline staining might be an additional or alternative method for identifying BCP crystals in synovial fluid. A drop of oxytetracycline was mixed with a drop of fluid containing synthetic or native BCP, calcium pyrophosphate dihydrate (CPPD), or monosodium urate (MSU) crystals and placed on a microscope slide. Stained and unstained crystals were examined by light microscopy, with and without a portable broad-spectrum ultraviolet (UV) pen light. A small set of characterized synovial fluid samples were compared by staining with alizarin red S and oxytetracycline. Synthetic BCP crystals in synovial fluid were quantified fluorimetrically using oxytetracycline. After oxytetracycline staining, synthetic and native BCP crystals appeared as fluorescent amorphous aggregates under UV light. Oxytetracycline did not stain CPPD or MSU crystals or other particulates. Oxytetracycline staining had fewer false-positive test results than did alizarin red S staining and could provide estimates of the quantities of synthetic BCP crystals in synovial fluid. With further validation, oxytetracycline staining may prove to be a useful adjunct or alternative to currently available methods for identifying BCP crystals in synovial fluid.

  1. Osteogenesis-inducing calcium phosphate nanoparticle precursors applied to titanium surfaces.

    PubMed

    He, Wenxiao; Andersson, Martin; de Souza, Pedro Paulo Chaves; de Souza Costa, Carlos Alberto; Muñoz, Eduardo Mariscal; Schwartz-Filho, Humberto Osvaldo; Hayashi, Mariko; Hemdal, Amanda; Fredel, Axel; Wennerberg, Ann; Jimbo, Ryo

    2013-06-01

    This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm × 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials.

  2. Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates.

    PubMed

    Diez-Escudero, Anna; Espanol, Montserrat; Montufar, Edgar B; Di Pompo, Gemma; Ciapetti, Gabriela; Baldini, Nicola; Ginebra, Maria-Pau

    2017-02-01

    This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low- and high-temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.

  3. Effect of intravenous calcium borogluconate and sodium phosphate in cows with parturient paresis.

    PubMed

    Braun, U; Zulliger, P; Liesegang, A; Bleul, U; Hässig, M

    2009-03-07

    Thirty cows with parturient paresis were divided into three groups of 10. All the cows were given 500 ml of a 40 per cent calcium borogluconate solution intravenously over a period of 10 minutes, and 20 were also given 500 ml of a 10 per cent solution of sodium phosphate intravenously; in 10 of the cows this solution was administered over a period of 10 minutes immediately after the calcium borogluconate solution, and in the other 10 cows 200 ml of the solution was administered rapidly and the remaining 300 ml was added to 10 litres of sodium chloride and glucose solution and infused slowly over six hours. There were no significant differences between the groups with respect to the outcome of the treatments; six or seven of the cows in each group stood within eight hours of the treatment. There were no significant differences between the changes in serum calcium concentrations among the groups. The mean concentrations of inorganic phosphorus in the groups given sodium phosphate were increased above the normal range initially, but after eight hours there were no significant differences between the groups in terms of the numbers of cows that were hypophosphataemic. There were no significant differences between the three groups with respect to changes after treatment in the serum concentrations of magnesium or parathyroid hormone.

  4. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials.

    PubMed

    Kozłowska, J; Sionkowska, A

    2015-03-01

    The purpose of this study is the preparation and characterization of porous collagen/calcium phosphates (Col/CaP) composites. Collagen scaffolds with high porosity were prepared by freeze-drying technique. Col/CaP scaffold were created by new method--by deposition of calcium phosphate within collagen matrix in two steps using freeze-drying process before immersing samples in calcium solution. To find the optimal preparative method, we prepared diverse Col/CaP scaffolds using different collagen concentration and various crosslinking method: crosslinking with carbodiimide (EDC/NHS) and dehydrothermal treatment (DHT). This study explores the effect of the different crosslinking method on the properties of scaffolds, such as: microstructure (porosity and density), dissolution, water uptake, mechanical properties and collagenase degradation. The results obtained showed that crosslinking the scaffolds by either EDC/NHS or DHT have good mechanical and morphological properties compatible with their potential application in bone regeneration. The result