Science.gov

Sample records for resin-treated polyester fabric

  1. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  2. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  3. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  4. Bacterial contamination of nurses' white coats made from polyester and polyester cotton blend fabrics.

    PubMed

    Gupta, P; Bairagi, N; Priyadarshini, R; Singh, A; Chauhan, D; Gupta, D

    2016-09-01

    In India, nurses wear white coats over their uniform. In this small study, patches of polyester and polyester cotton blend fabrics were attached to the white coats of nurses and sampled for contamination after one shift. Results showed that microbial adhesion is influenced by fabric type, with the microbial load on the polyester cotton blend fabric being 60% higher than that on the polyester fabric. Further studies need to be conducted to establish the correlation between fabric properties and microbial contamination.

  5. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.

    PubMed

    Fiorini, Gina S; Yim, Moonbin; Jeffries, Gavin D M; Schiro, Perry G; Mutch, Sarah A; Lorenz, Robert M; Chiu, Daniel T

    2007-07-01

    Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation. We also describe plasma-bonding of TPE to glass to create hybrid TPE-glass devices. We further present a simple master-pretreatment method to replace our original technique that required the use of specialized equipment.

  6. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol

    NASA Astrophysics Data System (ADS)

    Leroux, F.; Campagne, C.; Perwuelz, A.; Gengembre, L.

    2008-04-01

    A fluorocarbon coating was deposited on polyester (PET) woven fabric using pulse discharge plasma treatment by injecting a fluoropolymer directly into the plasma dielectric barrier discharge. The objective of the treatment was to improve the hydrophobic properties as well as the repellent behaviour of the polyester fabric. Plasma treatment conditions were optimised to obtain optimal hydrophobic properties which were evaluated using water contact angle measurement as well as spray-test method at the polyester fabric surface. The study showed that adhesion of the fluoropolymer to the woven PET was greatly enhanced by the air plasma treatment. X-ray photoemission spectroscopy (XPS) analyses revealed chemical surface modifications occurring after the plasma treatments.

  7. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong

    2015-04-01

    The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.

  8. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  9. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.

    PubMed

    Fiorini, Gina S; Jeffries, Gavin D M; Lim, David S W; Kuyper, Christopher L; Chiu, Daniel T

    2003-08-01

    Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.

  10. Sonochemical coating of cotton and polyester fabrics with "antibacterial" BSA and casein spheres.

    PubMed

    Shimanovich, Ulyana; Cavaco-Paulo, Artur; Nitzan, Yeshayahu; Gedanken, Aharon

    2012-01-02

    A novel antibacterial coating for cotton and polyester fabrics has been developed by using drug-loaded proteinaceous microspheres made of bovine serum albumin and casein proteins. The microbubbles were created and anchored onto the fabrics (see figure) in a one-step reaction that lasts 3 min. The sonochemically produced "antibacterial fabrics" have been characterized. The efficiency of the sonochemical process in converting the native proteins into microspheres, encapsulating the drug, and coating the fabric has also been studied.

  11. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.

  12. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  13. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner

    PubMed Central

    Coltro, Wendell Karlos Tomazelli; Lunte, Susan M.; Carrilho, Emanuel

    2008-01-01

    This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 μm/12 μm). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall. PMID:19025869

  14. Study of the indoor decontamination using nanocoated woven polyester fabric

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Kumari, Naveeta; Jatoi, Abdul Wahab; Khoso, Nazakat Ali

    2016-11-01

    This research primarily deals with the photocatalytic degradation of methanol in indoor air using nanocoated indoor textiles used for curtains as household textiles. The woven polyester was coated by titanium dioxide by sol gel method, using silicon-based binder. The characterization of the coating has been done using scanning electron microscopy (SEM) image analysis, energy dispersive analysis using X-ray (EDAX) and Fourier transform infrared spectroscopy (FTIR). The DIY instrument providing the similar environment as of indoor was designed to assess the performance of the degradation of formaldehyde under UV light. The photocatalytic degradation rate was measured using the absorption value of the solutions obtained in the result of liquid chromatography of test solution and reagent solution. Different amount of dosages (1-3 %) and different time period of coatings (half hour to 3 h) have been evaluated for optimization.

  15. Physical Properties of Polyester Fabrics Treated with Nano, Micro and Macro Emulsion Silicones

    NASA Astrophysics Data System (ADS)

    Parvinzadeh, M.; Hajiraissi, R.

    2007-08-01

    The processing of textile to achieve a particular handle is one of the most important aspects of finishing technology. Fabrics softeners are liquid composition added to washing machines during the rinse cycle to make clothes feel better to the touch. The first fabric softeners were developed by the textile industry during the early twentieth century. In this research polyester fabrics were treated with nano, micro and macro emulsion silicone softeners. Some of the physical properties of the treated fabric samples are discussed. The drapeability of treated samples was improved after treatment with nano silicone softeners. The colorimetric measurement of softener-treated fabrics is evaluated with a reflectance spectrophotometer. Moisture regain of treated samples is increased due to coating of silicone softeners. There is some increase in the weight of softener-treated samples. Samples treated with nano emulsion silicones gave better results compared to micro- and macro-emulsion treated ones.

  16. Synthesis of PVDF ultrafiltration membranes supported on polyester fabrics for separation of organic matter from water

    NASA Astrophysics Data System (ADS)

    Mhlanga, Sabelo D.; Tshabalala, Tumelo G.; Nxumalo, Edward N.; Mamba, Bhekie B.

    2014-08-01

    Polyvinylidene flouride (PVDF) membranes supported on non-woven fabrics (NWF) of polyester are reported. The PVDF membranes were fabricated using the phase inversion method followed by modification of the active top layer of the PVDF thin film by adding polyvinylpyrolidone (PVP) into the cast solution. A PVDF resin was used with N- methyl-2-pyrrolidone (NMP) as a solvent. Sessile drop contact angle measurements and scanning electron microscopy (SEM) were used to study the physical properties of the membranes. Membrane rejection of humic acid was studied using a cross-flow membrane testing unit. The contact angle results revealed that the hydrophilicity of PVDF membranes increased as the PVP concentration was increased from 3 to 10 wt%. SEM analysis of the membranes revealed that the membrane pore sizes increased when PVP was added. AFM analysis also showed that membrane roughness changed when PVP was added. Total organic carbon (TOC) analysis of water samples spiked with humic acid was performed to test the rejection capacity of the membranes. Rejections of up to 97% were achieved for PVDF membranes supported on polyester NWF1, which had smaller thickness and higher permeability compared to polyester NWF2. The NWFs provided the high strength required for the membranes despite the modifications done on the PDVF surface and microstructure.

  17. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    NASA Astrophysics Data System (ADS)

    Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M.

    2015-12-01

    This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O2 plasma treated and SWCNT coated PET fabric was better and worse than that of N2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated and SWCNT coated PET fabrics also increased with the increasing SWCNT concentration, curing time and curing temperature in the range studied. Plasma conditions and SWCNT coating parameters had signally influence on the antistatic property of plasma treated and SWCNT coated PET fabrics. Therefore, adequate parameters should be carefully selected for the optimum antistatic property of the plasma treated and SWCNT coated PET fabrics.

  18. Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor

    NASA Astrophysics Data System (ADS)

    Wang, Qiu-Shi; Sun, Run-Jun; Tian, Xiao; Yao, Mu; Feng, Yan

    A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation.

  19. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells.

    PubMed

    Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Lee, Tae Hee; Kim, Jeongsuk; Cho, Young-Ho; Han, Sae-Won

    2017-05-01

    The metastasis of cancer is strongly associated with the spread of circulating tumor cells (CTCs). Based on the microfluidic devices, which offer rapid recovery of CTCs, a number of studies have demonstrated the potential of CTCs as a diagnostic tool. However, not only the insufficient specificity and sensitivity derived from the rarity and heterogeneity of CTCs, but also the high-cost fabrication processes limit the use of CTC-based medical devices in commercial. Here, we present a low-cost fabric sheet layers for CTC isolation, which are composed of polyester monofilament yarns. Fabric sheet layers are easily functionalized with graphene oxide (GO), which is beneficial for improving both sensitivity and specificity. The GO modification to the low-cost fabrics enhances the binding of anti-EpCAM antibodies, resulting in 10-25% increase of capture efficiency compared to the surface without GO (anti-EpCAM antibodies directly onto the fabric sheets), while achieving high purity by isolating only 50-300 leukocytes in 1 mL of human blood. We investigated CTCs in ten human blood samples and successfully isolated 4-42 CTCs/mL from cancer patients, while none of cancerous cells were found among healthy donors. This remarkable results show the feasibility of GO-functionalized fabric sheet layers to be used in various CTC-based clinical applications, with high sensitivity and selectivity.

  20. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric.

    PubMed

    Leistner, Marcus; Abu-Odeh, Anas A; Rohmer, Sarah C; Grunlan, Jaime C

    2015-10-05

    Polyester-cotton (PECO) blends are widely used in the textile industry because they combine the softness of cotton and the strength and durability of polyester. Unfortunately, both fiber types share the disadvantage of being flammable. The layer-by-layer coating technique was used to deposit a highly effective flame retardant (melamine polyphosphate) from water onto polyester-cotton fabric. Soluble melamine and sodium hexametaphosphate form this water-insoluble flame retardant during the coating procedure. This unique nanocoating imparts self-extinguishing properties to PECO with only 12% relative coating weight. Vertical flame testing, pyrolysis combustion flow calorimetry (PCFC), thermogravimetric analysis (TGA), and scanning electron microscopy were used to evaluate the quality of the coating as well as its flame retardant performance. A combination of both condensed and gas-phase activity appears to be the reason for this effective flame retardancy. Degradation pathways of both cotton and polyester are affected by the applied coating, as shown by PCFC and TGA. Use of environmentally benign and non-toxic chemicals, and the ease of layer-by-layer deposition, making this coating an industrially feasible alternative to render polyester-cotton fabric self-extinguishing.

  1. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  2. Characterization of E-glass/polyester woven fabric composite laminates and tubes

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Stavig, M.E.

    1995-12-01

    This report describes an experimental study that supported the LDRD program ``A General Approach for Analyzing Composite Structures``. The LDRD was a tightly coupled analytical / experimental effort to develop models for predicting post-yield progressive failure in E-glass fabric/polyester composites subjected to a variety of loading conditions. Elastic properties, fracture toughness parameters, and failure responses were measured on flat laminates, rings and tubes to support the development and validation of material and structural models. Test procedures and results are presented for laminates tested in tension, compression, flexure, short beam shear, double cantilever beam Mode I fracture toughness, and end notched flexure Mode II fracture toughness. Structural responses, including failure, of rings loaded in diametral compression and tubes tested in axial compression, are also documented.

  3. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane doped polyester (CUPE) tissue engineered nerve guides

    PubMed Central

    Tran, Richard. T.; Choy, Wai Man; Cao, Hung; Qattan, Ibrahim; Chiao, Jung-Chih; Ip, Wing Yuk; Yeung, Kelvin Wai Kwok; Yang, Jian

    2013-01-01

    Biomimetic scaffolds that replicate the native architecture and mechanical properties of target tissues have been recently shown to be a very promising strategy to guide cellular growth and facilitate tissue regeneration. In this study, porous, soft, and elastic crosslinked urethane-doped polyester (CUPE) tissue engineered nerve guides were fabricated with multiple longitudinally oriented channels and an external non-porous sheath to mimic the native endoneurial microtubular and epineurium structure, respectively. The fabrication technique described herein is highly adaptable and allows for fine control over the resulting nerve guide architecture in terms of channel number, channel diameter, porosity, and mechanical properties. Biomimetic multichanneled CUPE guides were fabricated with various channel numbers and displayed an ultimate peak stress of 1.38 ± 0.22 MPa with a corresponding elongation at break of 122.76 ± 42.17 %, which were comparable to that of native nerve tissue. The CUPE nerve guides were also evaluated in vivo for the repair of a 1 cm rat sciatic nerve defect. Although histological evaluations revealed collapse of the inner structure from CUPE TENGs, the CUPE nerve guides displayed fiber populations and densities comparable with nerve autograft controls after 8 weeks of implantation. These studies are the first report of a CUPE-based biomimetic multichanneled nerve guide and warrant future studies towards optimization of the channel geometry for use in neural tissue engineering. PMID:24115502

  4. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides.

    PubMed

    Tran, Richard T; Choy, Wai Man; Cao, Hung; Qattan, Ibrahim; Chiao, Jung-Chih; Ip, Wing Yuk; Yeung, Kelvin Wai Kwok; Yang, Jian

    2014-08-01

    Biomimetic scaffolds that replicate the native architecture and mechanical properties of target tissues have been recently shown to be a very promising strategy to guide cellular growth and facilitate tissue regeneration. In this study, porous, soft, and elastic crosslinked urethane-doped polyester (CUPE) tissue engineered nerve guides were fabricated with multiple longitudinally oriented channels and an external non-porous sheath to mimic the native endoneurial microtubular and epineurium structure, respectively. The fabrication technique described herein is highly adaptable and allows for fine control over the resulting nerve guide architecture in terms of channel number, channel diameter, porosity, and mechanical properties. Biomimetic multichanneled CUPE guides were fabricated with various channel numbers and displayed an ultimate peak stress of 1.38 ± 0.22 MPa with a corresponding elongation at break of 122.76 ± 42.17%, which were comparable to that of native nerve tissue. The CUPE nerve guides were also evaluated in vivo for the repair of a 1 cm rat sciatic nerve defect. Although histological evaluations revealed collapse of the inner structure from CUPE TENGs, the CUPE nerve guides displayed fiber populations and densities comparable with nerve autograft controls after 8 weeks of implantation. These studies are the first report of a CUPE-based biomimetic multichanneled nerve guide and warrant future studies towards optimization of the channel geometry for use in neural tissue engineering.

  5. Different plasma-based strategies to improve the interaction of anionic dyes with polyester fabrics surface

    NASA Astrophysics Data System (ADS)

    Salem, Tarek; Pleul, Dieter; Nitschke, Mirko; Müller, Martin; Simon, Frank

    2013-01-01

    Low-pressure plasma treatments with subsequent immobilization of functional macromolecules from aqueous solution have gained an increasing popularity for its applications in new industrial processes. In this work, two different strategies to endow polyester fabrics (PET) with accessible primary amino groups are compared. (a) NH2 groups were produced directly using low-pressure ammonia plasma. (b) Negatively charged groups were introduced by low-pressure oxygen plasma to hydrophilize the fabric surfaces and used as anchor groups for the immobilization of water-borne polyelectrolyte copolymers poly(vinyl amine-co-vinyl amide) (PVAm). To study the effects of these surface modifications, a combination of various surface-sensitive characterization techniques such as X-ray photoelectron spectroscopy (XPS), streaming potential measurements and time-dependent contact angle measurements were used. Furthermore, the influence of the pre-treatments on the interaction of PET fabrics with water-soluble dyes was evaluated. For that purpose, color strength and fastness tests were carried out to prove the effectiveness of pre-treatments.

  6. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  7. The establishment and external validation of NIR qualitative analysis model for waste polyester-cotton blend fabrics.

    PubMed

    Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei

    2014-10-01

    A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.

  8. Synthesis of Some Novel 2-Amino-5-arylazothiazole Disperse Dyes for Dyeing Polyester Fabrics and Their Antimicrobial Activity.

    PubMed

    Gaffer, Hatem E; Fouda, Moustafa M G; Khalifa, Mohamed E

    2016-01-21

    The present work describes the synthesis of a series of four novel biologically active 2-amino-5-arylazothiazole disperse dyes containing the sulfa drug nucleus. The structures of the synthesized thiazole derivatives are confirmed using UV-spectrophotometry, infrared and nuclear magnetic resonance techniques and elemental analysis. The synthesized dyes are applied to polyester fabrics as disperse dyes and their fastness properties to washing, perspiration, rubbing, sublimation, and light are evaluated. The synthesized compounds exhibit promising biological efficiency against selected Gram-positive and Gram-negative pathogenic bacteria as well as fungi.

  9. Ultra-violet protection and water repellency of polyester fabrics treated by surface deposition of nickel under the effect of low temperature plasma

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Yuen, C. W. M.

    2007-12-01

    This paper is aimed at understanding the textile properties of nickel-deposited polyester fabric after treating with low temperature plasma treatment. Low temperature plasma treatment with oxygen gas was employed in this paper to activate a hydrophilic surface for the polyester fabrics and hence facilitate the nickel deposition through an electroless plating process. The textile properties of plasma-induced electroless nickel-plated polyester fabrics were evaluated by different standard testing methods in terms of both physical and chemical performances. The electroless nickel plating with plasma treatment improved significantly the performance of nickel-plated polyester fabrics as reflected by the scanning electron microscopy, tensile strength, ultraviolet protection as well as fabric weight. On the contrary, it also enhanced the fabric thickness and colour fastness to crocking. In addition, there was no influence on the performance of colour fastness to light and colourfastness to laundering. Moreover, the application of plasma treatment adversely affected slightly the performance of contact angle and wrinkle recovery property.

  10. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  11. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  12. Application of Nanometal Oxides In Situ in Nonwoven Polyester Fabric for the Removal of Bacterial Indicators of Pollution from Wastewater

    PubMed Central

    Abou-Elela, Sohair I.; Ibrahim, Hanan S.; Kamel, Mohamed M.; Gouda, Mohamed

    2014-01-01

    The objective of this study is to investigate and assess the use of in situ deposit nanosilver (nAg2O) or nanocopper oxides (nCuO) into nonwoven polyester fabric (NWPF) as a safe and effective antibacterial filter of pollution from domestic wastewater. The bactericidal effect of both nAg2O and nCuO was examined against Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus) using agar diffusion disk method. In addition, the capability of nAg2O and nCuO as disinfectants for secondary treated domestic wastewater was investigated as a case study. Transmission electron microscope (TEM) confirmed the formation of nAg2O and nCuO particles with average particle sizes of 15 and 41 nm, respectively. Disk diffusion results showed that nAg2O had a higher bactericidal effect than nCuO. Moreover, the disinfection of secondary treated wastewater using 1.27 mg/cm3 of nAg2O in the nonwoven fabric was capable of hindering 99.6% and 91.7% of total and fecal coliforms within 10 minutes with a residual value of 18 and 15 MPN-index/100 mL, respectively. The residual total and fecal coliform concentrations were far less than that stated in the national and international limits for wastewater reuse in agriculture purpose. PMID:24672400

  13. Experimental Investigation of the Interface Behavior of Balanced and Unbalanced E-Glass/Polyester Woven Fabric Composite Laminates

    NASA Astrophysics Data System (ADS)

    Triki, E.; Zouari, B.; Jarraya, A.; Dammak, F.

    2013-12-01

    The aim of this work is to study the influence of weave structure on the crack growth behavior of thick E-glass/polyester woven fabric composites laminates. Two different types of laminates were fabricated: (i) balanced: plain weave (taffetas T)/chopped strand mat weave (M) [T/M]6 and (ii) unbalanced: 4-hardness satin weave (S)/chopped strand mat weave [S/M]7. In order to accurately predict damage criticality in such structures, mixed mode fracture toughness data is required. So, the experiments were conducted using standards delamination tests under mixed mode loading and pure mode loading. These tests were carried out in mode II using End Load Split (ELS) tests and in mixed-mode I+II by Mixed Mode Flexure (MMF) tests under static conditions. The test methodology used for the experiments will be presented. The experimental results have been expressed in terms of total strain energy release rate and R-curves. The fracture toughness results show that the T/M interface is more resistant to delamination than the S/M interface.

  14. Effect of Yarn Twist Direction and Woven Design on Certain Novelty Fabrics from Cotton/Polyester Trilobal Filament 3-ply Yarn

    NASA Astrophysics Data System (ADS)

    Kanungo, Ratindra Nath; Shukla, Shashikant Kantilal

    2015-04-01

    Recent advances in fibre and yarn technology, coupled with the ever changing lifestyles of the present day consumers, has a considerable bearing on the `Product development' of `Novel fabrics.' Moreover, today's consumers are becoming more and more conscious, in terms of fabric quality, design, performance and aesthetic attributes in a product and are on the constant look out for `Newer' fabrics of their choice. In the present work, the use of cotton in blends with the polyester trilobal filament yarn in conjunction with plain and sateen weave designs on certain engineered commercially used poplin, cambric and crepe constructions have resulted in the development of a set of `Novel fabrics' for the consumer. The effect of the direction of `S' and `Z' twist yarns and their various arrangement and groupings of warp and weft threads in fabrics have brought out interesting results in the formation of special `Warp ribbed', `Shadow' and `Crepe' like fabric structures. Only, polyester component dyeing in these cotton-rich (67-33, C:P) blend samples has provided the option of producing lighter shaded shirtings and suitings economically as per the consumers' requirement and cross dyeing of cotton part results in the samples has further opened up numerous possibilities of introducing `Novel' effects in such trilobal blend fabrics.

  15. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

    PubMed Central

    2017-01-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for

  16. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang

    2016-07-26

    The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.

  17. Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile.

    PubMed

    Rastgoo, Madine; Montazer, Majid; Malek, Reza M A; Harifi, Tina; Mahmoudi Rad, Mahnaz

    2016-07-01

    A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe(2+) to Fe(3+) via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.

  18. Polyester non-woven fabric finger cover as a TRUCT Braille reading assistance tool for Braille learners.

    PubMed

    Doi, Kouki; Fujimoto, Hiroshi

    2007-11-01

    Transparent resinous ultraviolet-curing type (TRUCT) Braille signs are becoming more and more popular in Japan, especially when they are printed together with visual characters. These signs are made by screen printing, a technique that can be applied to various base materials, such as paper, metal, and plastic. TRUCT Braille signs have begun to be used in public facilities, such as on tactile maps and on handrails. Naturally, it is expected that Braille beginners will utilize these signs. However, it has been pointed out that the friction between the forefinger and the base material may affect reading accuracy and speed. In this study, we developed a finger cover made of soft, thin polyester non-woven fabric to reduce friction during Braille reading. We also carried out a study to investigate the effect of its use. The subjects were 12 Braille learners with acquired visual impairment, who were asked to read randomly selected characters with and without the finger cover. The results showed that most participants could read TRUCT Braille significantly faster and more accurately with a finger cover than without it, regardless of the base material and dot height. This result suggests that wearing the finger cover enables Braille learners to read TRUCT Braille more efficiently. The finger cover can be used as a Braille reading assistance tool for Braille learners. An additional, health-related advantage of the finger cover is that the forefinger remains clean. We expect that the finger cover will be in practical use in Japan within 1 or 2 years.

  19. A robust super-paramagnetic TiO2:Fe3O4:Ag nanocomposite with enhanced photo and bio activities on polyester fabric via one step sonosynthesis.

    PubMed

    Harifi, Tina; Montazer, Majid

    2015-11-01

    High intensity ultrasound was used for the synthesis and simultaneous deposition of TiO2:Fe3O4:Ag nanocomposites on polyester surface providing a feasible route for imparting magnetic and enhanced antibacterial and self-cleaning activities with controllable hydrophilicity/hydrophobicity at low temperature. Synergistic impact of sonochemistry and physical effects of ultrasound originating from implosive collapse of bubbles were responsible for the formation and adsorption of nanomaterials on the fabric surface during ultrasound irradiation. The increase in photocatalytic activity of TiO2 was obtained attributing to the co-operation of iron oxide and silver nanoparticles nucleated on TiO2 surface boosting the electron-hole pair separation and prolonging their recombination rate. The process was further optimized in terms of reagents concentrations including Fe(2+)/TiO2 and Ag/TiO2 molar ratios using central composite design in order to achieve the best self-cleaning property of the treated fabric. The magnetic measurements indicated the super-paramagnetic behavior of the treated fabric with saturation magnetization of 4.5 (emu/g). Findings suggest the potential of the proposed facial method in producing an intelligent fabric with durable multi-functional activities that can be suitable for various applications including medical, military, bio-separation, bio-sensors, magneto graphic printing, magnetic screens and magnetic filters.

  20. Synthesis and characterization of oleophobic fluorinated polyester films

    NASA Astrophysics Data System (ADS)

    Demir, Tugba

    The study presented in this dissertation is dedicated to the synthesis and characterization of oleophobic fluorinated polyester films. Specifically, the blending of oleophilic polyethylene terephthalate (PET) with low surface energy materials such as fluorinated polyesters has been used in order to fabricate oleophobic PET films. First, fluorinated polyesters (P(PF-oate-R)) possessing different end-groups (-COOH, -OH and -CF3) are synthesized via polycondensation reaction of isophthaloyl chloride with perfluoro ether alcohols. Then, they are solvent-blended with PET at various concentrations to obtain oleophobic polyester films of different compositions. In addition, the films are annealed to investigate the effect of annealing on surface properties of the films. The results show that the obtained PET/P(PF-oate-R) polyester films demonstrate low wettability that depended on the polyester end-groups, film compositions, and annealing. It is found that PET blended with fluorinated polyesters terminated with CF3 groups exhibit higher contact angle (CA) with water and oils than other polyesters. In addition, CA increases with increasing P(PF-oate-R) polyester content in blends. To facilitate the oleophobicity of PET films, the fluorinated polyesters terminated with -CF3 groups with two different Mw were synthesized and blended with PET. The results reveal that at low concentrations, low molecular weight polyesters migrate to the surface easily, resulting in higher surface coverage. Thus, it leads to higher water and oil repellency. On the other hand, when they are used at high concentrations, higher molecular weight polyesters in blends reduce the wettability of the surface to the higher level. It is found that the wettability of the PET film surface depends on not only the Mw of polyesters, but also on annealing protocol. To this end, the effects of the annealing temperature on surface wettability are also examined.

  1. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  2. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  3. The effect of solar irradiation on the fading of nylon and polyester fabrics dyed with selected disperse dyestuffs on radiant energy basis.

    PubMed

    Imaizumi, A; Yoshizumi, K; Fujita, T

    2004-04-01

    Solar total, UVA and UVB irradiances were measured separately using three kinds of wavelength band detectors in Tokyo, Japan in November 1999. Characteristics of diurnal variations were examined: Total irradiance reached a maximum value of about 600 W m(-2) at around noon. The variation pattern of UVA irradiance was observed to be similar to the total irradiance. The energy level was about 4.65% of total irradiance. Diurnal variation of UVB was in the form of a steeper bell curve due to the absorption in the air mass. UVB energy to solar total irradiance was about 0.07%. Photodegradation characteristics of two disperse dyestuffs were investigated on the basis of solar radiant energy. A UVA fluorescent lamp was applied to examine the fading characteristics to find the wavelength dependency. As a result, nylon dyeings were less lightfast by a factor of about 6 and 13 for C I Disperse Blue 27 and C I Disperse Blue 165, respectively, compared with polyester on the radiant energy basis. Visible light, as well as UVA, radiation contribute to fading of C I Disperse Blue 165 whereas UVA mostly cause the fading of C I Disperse Blue 27.

  4. Polyesters by Photochemical Cyclopolymerization

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor)

    2002-01-01

    The polyesters of this invention are derived from a Diels-Alder cyclopolymerization of a photochemically generated bisdiene with dienophiles, such as di(acrylates), tri (acrylates), di(methacrylates), tri(methacrylates) and mixtures thereof with mono(methacrylates) or mono(acrylate) end-caps. Irradiation of one or more diketones produces two distinct hydroxy o-quinodimethane (photoenol) intermediates. These intermediates are trapped via a Diels-Alder cycloaddition with appropriate dienophiles, e.g., di(acrylates) to give the corresponding in polyesters quantitative yields. When di(acrylates), tri(acrylates) and di and tri(methacrylates) or mixtures thereof with monoacrylate end-caps are used as the dienophile, the resulting polyesters have glass transition temperatures (Tg) as high as 200 C. Polyesters films can be prepared by ultraviolet irradiation of high solids content varnishes of the monomers in a small amount of solvent, e.g., cyclohexanone, dimethyl formamide, N-methylpyrollidone and the like. These polyesters, i.e. polyesters are characterized as having high glass transition temperatures, good mechanical properties and improved processing in the manufacture of composites, adhesives, electronic materials and films.

  5. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    NASA Astrophysics Data System (ADS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-02-01

    A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO-PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO-PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  6. Resisting protein adsorption on biodegradable polyester brushes.

    PubMed

    Hu, Xinfang; Gorman, Christopher B

    2014-08-01

    The protein adsorption and degradation behaviors of poly(lactic acid), poly(glycolic acid) (PGA) and poly(ε-caprolactone) (PCL) brushes and their co-polymer brushes with oligo(ethylene glycol) (OEG) were studied. Both brush structure and relative amount of OEG and polyester were found to be important to the protein resistance of the brushes. A protein-resisting surface can be fabricated either by using OEG as the top layer of a copolymer brush or by increasing the amount of OEG relative to polyester when using a hydroxyl terminated OEG (OEG-OH) and a methoxy terminated OEG (OEG-OMe) mixture as the substrate layer. The degradation of single polyester brushes and their co-polymer brushes using OEG-OH as a substrate layer or using OEG as a top layer was hindered. This phenomenon was rationalized by the inhibition of the proposed back-biting process as the hydroxy end groups of polyester were blocked by OEG molecules. Among these brushes tested, PGA co-polymer brushes using the methoxy/hydroxyl OEG mixture as the substrate layer proved to be both protein-resistant and degradable due to the relatively large amount of OEG moieties and the good biodegradability of PGA.

  7. Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups.

    PubMed

    Chen, Dayong; Chang, Chia-Chih; Cooper, Beth; Silvers, Angela; Emrick, Todd; Hayward, Ryan C

    2015-10-12

    Highly efficient photo-cross-linking reactions enable numerous applications in biomaterials. Here, a photopatternable biodegradable aliphatic polyester with benzophenone pendent groups was synthesized by copper-catalyzed alkyne-azide cycloaddition, affording polyesters that undergo UV-induced cross-linking to yield photopatterned films. Using this material, a self-folding multilayer structure containing polyester/hydrogel bilayer hinges was fabricated. Upon swelling of the hydrogel layer, the construct folds into a triangular tube, which subsequently unfolds due to lipase-catalyzed degradation of the polyester layer. The ability to precisely design such degradation-induced structural changes offers potential for biomaterials and medical applications, such as evolving and responsive 2D and 3D tissue engineering scaffolds.

  8. Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric.

    PubMed

    Cai, Shao-Bo; Huang, Zheng-Hua; Zhang, Xing-Qun; Cao, Zhang-Jun; Zhou, Mei-Hua; Hong, Feng

    2011-01-01

    A wool-degrading bacterium was isolated from decomposition wool fabrics in China. The strain, named 3096-4, showed excellent capability of removing cuticle layer of wool fibers, as demonstrated by removing cuticle layer completely within 48 h. According to the phenotypic characteristics and 16S rRNA profile, the isolate was classified as Pseudomonas. Bacteria growth and keratinase activity of the isolate were determined during cultivation on raw wool at different temperatures, initial pH, and rotation speed using orthogonal matrix method. Maximum growth and keratinase activity of the bacterium were observed under the condition including 30 °C, initial pH 7.6, and rotational speeds 160 rpm. The keratinase-containing crude enzyme prepared from 3096-4 was evaluated in the treatment of wool fabrics. The optimal condition of our enzymatic improvement of shrink resistance was the combination of 30 °C, initial pH 7.6, and rotation speeds 160 rpm. After the optimized treatment, the wool fabrics felting shrink was 4.1% at 6 h, and textile strength was not lost.

  9. Antimicrobial hydantoin-containing polyesters.

    PubMed

    Tan, Licheng; Maji, Samarendra; Mattheis, Claudia; Zheng, Mengyao; Chen, Yiwang; Caballero-Díaz, E; Gil, Pilar Rivera; Parak, Wolfgang J; Greiner, Andreas; Agarwal, Seema

    2012-08-01

    A new N-hydantoin-containing biocompatible and enzymatically degradable polyester with antibacterial properties is presented. Different polyesters of dimethyl succinate, 1,4-butanediol, and 3-[N,N-di(β-hydroxyethyl)aminoethyl]-5,5-dimethylhydantoin in varying molar ratios are prepared via two-step melt polycondensation. The antibacterially active N-halamine form is obtained by subsequent chlorination of the polyesters with sodium hypochlorite. Chemical structures, thermal properties, and spherulitic morphologies of the copolymers are studied adopting FT-IR, NMR, TGA, DSC, WAXD, and POM. The polyesters exhibit antibacterial activity against Escherichia coli. The adopted synthetic approach can be transferred to other polyesters in a straightforward manner.

  10. Microfabricated polyester conical microwells for cell culture applications.

    PubMed

    Selimović, Seila; Piraino, Francesco; Bae, Hojae; Rasponi, Marco; Redaelli, Alberto; Khademhosseini, Ali

    2011-07-21

    Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required.

  11. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  12. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  13. Pressure polymerization of polyester

    DOEpatents

    Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.

    2000-08-29

    A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.

  14. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  15. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  16. Polyester based hybrid organic coatings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  17. Analysis of the failure of a polyester peripheral drive belt on the Mariner Mars 1971 flight tape recorder

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1972-01-01

    A peripheral drive belt on the Mariner Mars 1971 tape recorder failed when a thin longitudinal strip separated off one edge. Analysis showed that the most probable cause of failure occurred from flexural fatigue initiating in mechanically weak locations which are introduced into the belt during fabrication. Methyl ethyl ketone, which is employed as a cleaning solvent during fabrication, was found to cause permanent reduction in engineering properties of polyester and could have contributed to the reduction of the fatigue resistance. Fatigue properties of the polyester drive belt are reviewed for the operating condition, as well as the sensitivity of polyester to cleaning solvents and the origin of mechanically weak locations.

  18. Effect of Charge and Hydrophobicity on Adsorption of Modified Starches on Polyester.

    PubMed

    Samu; Moulee; Kumar

    1999-12-15

    Polyester fabric (poly(ethylene terephthalate)) is a hydrophobic polymer. Its hydrophobic nature can be a disadvantage for certain applications like dyeing, finishing, detergency, etc. Physical or chemical modification of the polyester to make it more hydrophilic is therefore desirable for certain performance characteristics. Surface modification of polyester to make it hydrophilic can be achieved by adsorbing polymers on the polyester surface. Starch is a commonly available, hydrophilic polymer used in many textile applications that can be used to modify polyester. However, it needs to be chemically modified so that it can adsorb on the polyester fabric and physically modify the fabric characteristics. The polymers used in this study are two different modified starches-cationic and anionic starches and mixtures of the two. The adsorption kinetics on a polyester substrate was studied. The effect of charge and hydrophobicity on adsorption was investigated. Cationic starches were shown to readily adsorb on polyester and this was attributed to electrostatic interactions. Hydrophobic substituents on the cationic moiety resulted in increased adsorption. This was attributed to the weak hydrophobic interaction between the polymer chains which could result in a more coiled polymer conformation. It is hypothesized that more starch molecules are required for surface coverage of the polyester, resulting in an increase in adsorption. Anionic starch was adsorbed on the substrate but at a slower rate than the cationic starches. It is likely that there is a H bonding between acid groups on the starch and the ester groups of the polyester. However, the anionic starch is desorbed when the polyester is placed in an aqueous medium. When a blend of cationic starch and anionic starch was used, a low concentration of anionic starch was seen to increase adsorption, indicating that the polyelectrolyte complex itself may be adsorbing on the substrate. Further increases cause a decrease in

  19. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for...

  20. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for...

  1. PEGylated polyester-based nanoncologicals.

    PubMed

    Conte, Claudia; d'Angelo, Ivana; Miro, Agnese; Ungaro, Francesca; Quaglia, Fabiana

    2014-01-01

    Several PEGylated polyester-based nanoncologicals have been proposed in the literature, some of them nowadays being under preclinical/clinical trials or marketed. In this review, we describe the main features of PEGylated polyesters and their correspondent nanocarriers. A first part is devoted to intravenously injectable PEGylated nanocarriers, which represent the systems most investigated so far. After describing fundamental design rules dictated by the administration route, PEGylated nanocarriers currently under preclinical/clinical investigation or in the market will be described from a technological point of view and related therapeutic implications discussed. Finally, new perspective of use of PEGylated nanocarriers for oral and pulmonary delivery of anticancer drugs will be considered.

  2. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  3. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  4. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  5. Evaluation of Fluorene Polyester Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    AFRL-RZ-WP-TP-2010-2098 EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) Jeffery Stricker, James Scofield, Navjot Brar, and...February 2010 4. TITLE AND SUBTITLE EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER...to include cycling from ambient to 200 °C. 15. SUBJECT TERMS Fluorene polyester , Capacitor , Packaging, High Temperature, DC/DC converter 16

  6. Synthesis of Improved Polyester Resins.

    DTIC Science & Technology

    1979-07-05

    peroxides as initiator. The peroxides used were benzoyl peroxide , cumene hydroperoxide, t-butyl peroxybenzoate and 2,5... benzoyl peroxide , while allyl type polyester resins require a higher temperature cure and use a peroxide such as dicumyl peroxide . Numerous other peroxides ...using MEKP (methylethylketone peroxide ) or BZP ( benzoyl peroxide ) catalysts. 47 01 "I 4 C C~ >~> .0 00 Q) . x> x (. C. a, 0 + 0) 0. 0 0 a,. E S- >0>

  7. Which polyesters can mimic polyethylene?

    PubMed

    Stempfle, Florian; Ortmann, Patrick; Mecking, Stefan

    2013-01-11

    Self-metathesis of erucic acid by [(PCy(3))(η-C-C(3)H(4)N(2)Mes(2))Cl(2)Ru = CHPh] (Grubbs second- generation catalyst) followed by catalytic hydrogenation and purification via the ester yields 1,26-hexacosanedioate (>99% purity). Polyesterification with 1,26-hexacosanediol, generated from the diester, affords polyester-26,26, which features a T(m) of 114 °C (T(c) = 92 °C, ΔH(m) = 160 J g(-1)). Ultralong-chain model polyesters-38,23 (T(m) = 109 °C) and -44,23 (T(m) = 111 °C), generated via multistep procedures including acyclic diene metathesis polymerization, underline that melting points of such aliphatic polyesters do not gradually increase with methylene sequence chain length. Available data suggest that to mimic linear polyethylenes thermal properties, even longer sequences, amounting to at least four times a fatty acid chain, fully incorporated in a linear fashion are required.

  8. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    EPA Science Inventory

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  9. Study of Multifunctional Nanocoated Cold Plasma Treated Polyester Cotton Blended Curtains

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Kumari, Naveeta

    2016-04-01

    Over the past decade, considerable progress has been made in the applications of TiO2nanoparticles to get the multifunctional textiles. This paper presents the consequences of pretreatment of polyester fabric using cold plasma in the presence of oxygen — which might be beneficial for bonding nanoparticles over the polyester cotton blended curtains. Moreover, this paper presents the primary technique for suspending titanium dioxide (TiO2) nanoparticles into nanosilica sol for nanocoating of polyester cotton blended curtains. In addition, the detailed characterization of nanocoating has been made using Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD); and the consequences of nanocoating with and without plasma treatment for enhancing the different properties i.e. antistatic, anti UV and antibacterial property are discussed. Furthermore, the consequences of nanocoating with and without plasma treatment on the mechanical properties have also been discussed.

  10. Bio-Based Bisfuran: Synthesis, Crystal Structure and Low Molecular Weight Amorphous Polyester.

    PubMed

    Gaitonde, Vishwanath; Lee, Kyunghee; Kirschbaum, Kristin; Sucheck, Steven J

    2014-07-23

    Discovery of renewable monomer feedstocks for fabrication of polymeric demand is critical in achieving sustainable materials. In the present work we have synthesized bisfuran diol (BFD) monomer from furfural, over four steps. BFD was examined via X-ray crystallography to understand the molecular arrangement in space, hydrogen bonding and packing of the molecules. This data was further used to compare BFD with structurally related Bisphenol A (BPA), and its known derivatives to predict the potential estrogenic or anti-estrogenic activities in BFD. Further, BFD was reacted with succinic acid to generate polyester material, bisfuran polyester (BFPE-1). MALDI characterization of BFPE-1 indicates low molecular weight polyester and thermal analysis reveals amorphous nature of the material.

  11. Biocatalytic synthesis of silicone polyesters.

    PubMed

    Frampton, Mark B; Subczynska, Izabela; Zelisko, Paul M

    2010-07-12

    The immobilized lipase B from Candida antarctica (CALB) was used to synthesize silicone polyesters. CALB routinely generated between 74-95% polytransesterification depending on the monomers that were used. Low molecular weight diols resulted in the highest rates of esterification. Rate constants were determined for the CALB catalyzed polytransesterifications at various reaction temperatures. The temperature dependence of the CALB-mediated polytransesterifications was examined. A lipase from C. rugosa was only successful in performing esterifications using carboxy-modified silicones that possessed alkyl chains greater than three methylene units between the carbonyl and the dimethylsiloxy groups. The proteases alpha-chymotrypsin and papain were not suitable enzymes for catalyzing any polytransesterification reactions.

  12. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  13. Castor Oil-Based Biodegradable Polyesters.

    PubMed

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  14. Fabrication and Characterization of Wound Capacitors using Amorphous Silicon Dioxide as the Dielectric Material (PREPRINT)

    DTIC Science & Technology

    2008-05-01

    the custom built web coating system. Figure 5. Picture of pre-packaged capacitor cores after winding the SiO2 coated metalized polyester ...1800 hours of testing at 100 VDC. As noted earlier, the initial test capacitors used metalized polyester for the internal electrodes. This choice...of polymer proved to be the biggest issue in fabricating a high performance, high temperature capacitor . The polyester shrinks considerably (>1

  15. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip.

    PubMed

    Duarte, Gabriela R M; Price, Carol W; Augustine, Brian H; Carrilho, Emanuel; Landers, James P

    2011-07-01

    A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with ~270 μm, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 μL of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/μL (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of λ-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

  16. Lipase catalyzed synthesis of silicone polyesters.

    PubMed

    Poojari, Yadagiri; Clarson, Stephen J

    2009-11-28

    Immobilized Candida antarctica lipase B (CALB) was successfully employed as a catalyst to synthesize silicone aromatic polyesters by the transesterification of dimethyl terephthalate with alpha,omega-bis(hydroxyalkyl)-terminated poly(dimethylsiloxane) in toluene under mild reaction conditions.

  17. Biodegradable Polyester/Layered Silicate Nanocomposites

    DTIC Science & Technology

    2003-01-01

    compatible with the polymer [5-9]. In this paper we report the synthesis and properties of both PLA and PHB nanocomposites with different nanoclays...hydroxy polyester, polylactide (PLA) and fl-hydroxy polyester, polyhydroxybutyrate ( PHB ) with layered silicates have been successfully prepared by melt...extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved

  18. Micropatterned coumarin polyester thin films direct neurite orientation.

    PubMed

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (p<0.0001) in cell process distribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, BWF AMERICA, INC., GRADE 700 MPS POLYESTER FELT FILTER SAMPLE

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory, through its Environmental Technology Verification Program, evaluated the performance of a bag house filtration product for use controlling PM2.5. The product was BWF America, Inc., filter fabric Grade 700 Polyester Felt. All tes...

  20. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  1. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.

    PubMed

    Wang, Jane; Bettinger, Christopher J; Langer, Robert S; Borenstein, Jeffrey T

    2010-01-01

    Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric poly(ester amide). Microfluidic scaffolds constructed from APS exhibit a much lower Young's Modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible, and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds.

  2. Influence of surface treatment on the electroless nickel plating of textile fabric

    NASA Astrophysics Data System (ADS)

    Yuen, C. W. M.; Jiang, S. Q.; Kan, C. W.; Tung, W. S.

    2007-04-01

    The present study is performed with an objective to acquire a deeper understanding of the properties of nickel-plated polyester fabric after conducing low temperature plasma treatment. Low temperature plasma treatment with oxygen and argon gases was employed to render a hydrophilic property of woven polyester fabrics and facilitate the absorption of a palladium catalyst in order to provide a catalytic surface for electroless nickel plating. The properties of plasma-induced electroless nickel-plated polyester fabrics were evaluated by various standard testing methods in terms of both physical and chemical performances.

  3. Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1984-01-01

    Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.

  4. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session

    PubMed Central

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom

    2014-01-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. PMID:25128346

  5. Microbial odor profile of polyester and cotton clothes after a fitness session.

    PubMed

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom; Boon, Nico

    2014-11-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.

  6. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester.

    PubMed

    Ali, Wazed; Sultana, Parveen; Joshi, Mangala; Rajendran, Subbiyan

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out.

  7. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  8. Microbial production of lactate-containing polyesters

    PubMed Central

    Yang, Jung Eun; Choi, So Young; Shin, Jae Ho; Park, Si Jae; Lee, Sang Yup

    2013-01-01

    Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. PMID:23718266

  9. 77 FR 60720 - Certain Polyester Staple Fiber From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... COMMISSION Certain Polyester Staple Fiber From China Determination On the basis of the record \\1\\ developed... antidumping duty order on certain polyester staple fiber from China would be likely to lead to continuation or... USITC Publication 4351 (September 2012), entitled Certain Polyester Staple Fiber from...

  10. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  11. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  12. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles.

    PubMed

    Gao, Yuan; Truong, Yen Bach; Cacioli, Paul; Butler, Phil; Kyratzis, Ilias Louis

    2014-01-10

    Bioremediation using enzymes has become an attractive approach for removing hazardous chemicals such as organophosphate pesticides from the environment. Enzymes immobilized on solid carriers are particularly suited for such applications. In this study, the organophosphate degrading enzyme A (OpdA) was covalently immobilized on highly porous nonwoven polyester fabrics for organophosphate pesticide degradation. The fabrics were first activated with ethylenediamine to introduce free amine groups, and the enzyme was then attached using the bifunctional crosslinker glutaraldehyde. The immobilization only slightly increased the Km (for methyl parathion, MP), broadened the pH profile such that the enzyme had significant activity at acidic pH, and enhanced the stability of the enzyme. The OpdA-functionalized fabrics could be stored in a phosphate buffer or in the dry state at 4°C for at least 4 weeks without a large loss of activity. When used in batch mode, the functionalized textiles could degrade 20 μM MP in un-buffered water at liquor to fabric ratios as high as 5000:1 within 2h, and could be used repeatedly. The fabrics could also be made into columns for continuous pesticide degradation. The columns were able to degrade 50 μM MP at high flow rates, and could be used repeatedly over 2 months. These results demonstrate that OpdA immobilized on nonwoven polyester fabrics is useful in environmental remediation of organophosphate compounds.

  13. Development and Application of New Psychophysical Methods for the Characterization of the Handfeel and Comfort Properties of Military Clothing Fabrics

    DTIC Science & Technology

    2002-08-01

    test sessions for poly/wool serge (a), Tencel ripstop poplin (b), and a jersey knit fabric (c).Panel d shows the ratings for each fabric averaged...training. Three fabrics were selected for evaluation: a jersey knit fabric, a polyester/wool serge fabric (MDDL-C-823), and a Tencel ® ripstop...by a two-week interval. In addition, two of the test fabrics ( Tencel ® ripstop poplin and polyester/wool surge fabric) were tested again, six months

  14. Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix.

    PubMed

    Klemenčič, Danijela; Tomšič, Brigita; Kovač, Franci; Žerjav, Metka; Simončič, Andrej; Simončič, Barbara

    2013-11-01

    A two-step antimicrobial finishing procedure was applied to wool (WO) and polyester (PES) fabrics and a WO/PES fabric blend, in which the pad-dry-cure method was performed to create a functional silica matrix through the application of an inorganic-organic hybrid sol-gel precursor (RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres using 0.10 and 0.50mM AgNO3 and NaCl. The bulk concentration of Ag on the cotton fibres was determined by inductively coupled plasma mass spectroscopy. The antimicrobial activity was determined for the bacteria Escherichia coli and Staphylococcus aureus, and the fungus Aspergillus niger. The results showed that the highest concentration of the adsorbed Ag compound particles was on the WO samples followed by the WO/PES and PES samples. The antimicrobial activity of the finished fabric samples strongly depended not only on the amount of adsorbed Ag but also on the properties of the fabric samples. Whereas Ag biocidal activity was generated for the finished PES samples at Ag particle concentrations of less than 10mg/kg, the 34-times higher Ag particle concentration on the WO samples was insufficient to impart satisfactory antimicrobial activity because Ag chemically binds to the thiol groups on wool. The presence of wool fibres in WO/PES samples decreased the antimicrobial protection of the fabric blend compared with that of the PES fabric. A lethal concentration of adsorbed Ag compound particles for bacteria and fungi was produced only through the treatment of the WO and WO/PES samples with 0.5mM AgNO3.

  15. Effects of zinc oxide nanoparticles on the performance characteristics of cotton, polyester and their blends

    NASA Astrophysics Data System (ADS)

    Shady, K. E.; Michael, M. N.; Shimaa, H. A.

    2012-07-01

    Nanotechnology is defined as utilization of structure with at least one dimension of nanometer size. These nano structures are capable of enhancing the physical and performance properties of conventional textiles. On this basis, this research work study and compare the effect of nano zinc oxide particles having particle size less than 100nm with different concentrations (0.25%, 0.5%, 1%, and 2%) on the properties of three different fabrics namely cotton, polyester and blend cotton/polyester (65/35).The effectiveness of the treatment was assessed through the following standard tests; X-ray diffraction (XRD), tensile strength and percentage elongation, crease recovery angle, air permeability, whiteness index and ultra violet protection factor (UPF). Generally, the improvement greatly depends on the size and concentration of nanoparticles.

  16. Rheological Behavior of Bentonite-Polyester Dispersions

    NASA Astrophysics Data System (ADS)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  17. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  18. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  19. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  20. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  1. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  2. Thermal and physical characterization of glycerol polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol polyesters were prepared by the condensation of glycerol and adipic acid, azelaic acid, sebacic acid, or suberic acids. After 48 hours at 125 deg C the polymers were clear and flexible. Samples of the reaction mixtures were analyzed by modulated differential scanning calorimetry to identi...

  3. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  4. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  5. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles.

    PubMed

    Leung, Mandy H M; Harada, Takaaki; Dai, Sheng; Kee, Tak W

    2015-10-27

    Curcumin-encapsulated polyester nanoparticles (Cur-polyester NPs) of approximately 100 nm diameter with a negatively charged surface were prepared using a one-step nanoprecipitation method. The Cur-polyester NPs were prepared using polylactic acid, poly(D,L-lactic-co-glycolic acid) and poly(ϵ-caprolactone) without any emulsifier or surfactant. The encapsulation of curcumin in these polyester NPs greatly suppresses curcumin degradation in the aqueous environment due to its segregation from water. In addition, the fluorescence of curcumin in polyester NPs has a quantum yield of 4 to 5%, which is higher than that of curcumin in micellar systems and comparable to those in organic solvents, further supporting the idea that the polyester NPs are capable of excluding water from curcumin. Furthermore, the results from femtosecond fluorescence upconversion spectroscopy reveal that there is a decrease in the signal amplitude corresponding to solvent reorganization of excited state curcumin in the polyester NPs compared with curcumin in micellar systems. The Cur-polyester NPs also show a lack of deuterium isotope effect in the fluorescence lifetime. These results indicate that the interaction between curcumin and water in the polyester NPs is significantly weaker than that in micelles. Therefore, the aqueous stability of curcumin is greatly improved due to highly effective segregation from water. The overall outcome suggests that the polyester NPs prepared using the method reported herein are an attractive system for encapsulating and stabilizing curcumin in the aqueous environment.

  6. High performance polyester concrete using recycled PET

    SciTech Connect

    Rebeiz, K.S.

    1995-10-01

    Recycled polyethylene terephthalate (PET) plastic wastes could be used in production of unsaturated polyester resins. In turn, these resins could be mixed with inorganic aggregates to produce polymer concrete (PC). Unsaturated polyesters based on recycled PET might be a potentially lower source cost of resins for producing useful PC based-products. The advantage of recycling PET in PC is that the PET materials do not have to be purified, including removal of colors, to the same extent as other PET recycling applications, which should facilitate the recycling operation and minimize its cost. The recycling of PET in PC could also help save energy and allow the long term disposal of the PET waste, an important advantage in recycling applications.

  7. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  8. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  9. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  10. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated...

  11. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated...

  12. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  13. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  14. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  15. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  16. 75 FR 23300 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... COMMISSION Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission.../cotton printcloth from China. SUMMARY: The Commission hereby gives notice that it has instituted a review... revocation of the antidumping duty order on greige polyester/cotton printcloth from China would be likely...

  17. Development of molded, coated fabric joints: Fabric construction criteria for a spacesuit elbow joint

    NASA Technical Reports Server (NTRS)

    Olson, L. H.

    1981-01-01

    The design and fabrication of a molded, coated fabric elbow joint capable of operating reliably at 8 psi internal pressure for extended periods of flexure is considered. The overall design of the joint includes: (1) selection of heatsettable fiber of sufficient strengths; (2) choosing an optimum fabric construction; (3) a fatigue resistant; flexible coating; and (4) a molding technique. A polyester yarn of type 56 Dacron and a urethane coating system were selected. The relationships between yarn and weave parameters which lead to an optimum fabric construction for the 8 psi elbow joint are defined.

  18. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2017-02-14

    Biodegradable polyesters have the potential to replace nondegradable, persistent polymers in numerous applications and thereby alleviate plastic accumulation in the environment. Herein, we present an analytical approach to study enzymatic hydrolysis of polyesters, the key step in their overall biodegradation process. The approach is based on embedding fluorescein dilaurate (FDL), a fluorogenic ester substrate, into the polyester matrix and on monitoring the enzymatic cohydrolysis of FDL to fluorescein during enzymatic hydrolysis of the polyester. We validated the approach against established techniques using FDL-containing poly(butylene adipate) films and Fusarium solani cutinase (FsC). Implemented on a microplate reader platform, the FDL-based approach enabled sensitive and high-throughput analysis of the enzymatic hydrolysis of eight aliphatic polyesters by two fungal esterases (FsC and Rhizopus oryzae lipase) at different temperatures. While hydrolysis rates for both enzymes increased with decreasing differences between the polyester melting temperatures and the experimental temperatures, this trend was more pronounced for the lipase than the cutinase. These trends in rates could be ascribed to a combination of temperature-dependent polyester chain flexibility and accessibility of the enzyme active site. The work highlights the capability of the FDL-based approach to be utilized in both screening and mechanistic studies of enzymatic polyester hydrolysis.

  19. 76 FR 57955 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. The period of... certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber From Taiwan:...

  20. 78 FR 51707 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea: Rescission of... administrative review of the antidumping duty order on certain polyester staple fiber (polyester staple fiber... antidumping duty order on polyester staple fiber from Korea for the period May 1, 2012, through April 30,...

  1. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    PubMed

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-07

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  2. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  3. Hydrolytic kinetics of biodegradable polyester monolayers

    SciTech Connect

    Lee, W.K.; Gardella, J.A. Jr.

    2000-04-04

    The rate of hydrolysis of Langmuir monolayer films of a series of biodegradable polyesters was investigated at the air/water interface. The present study investigated parameters such as degradation medium, pH, and time. The hydrolysis of polyester monolayers strongly depended on both the degradation medium used to control subphase pH and the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster hydrolysis when they were exposed to a basic subphase rather than that of acidic or neutral subphase. The basic (pH = 10) hydrolysis of [poly(l-lactide)/polycaprolactone](l-PLA/PCL 1/1 by mole) blend was faster than that of each homopolymer at the initial stage. This result is explained by increasing numbers of base attack sites per unit area owing to the very slow hydrolysis of PCL, a dilution effect on the concentration of l-PLA monolayers. Conversely the hydrolytic behavior of l-lactide-co-caprolactone (1/1 by mole) was similar to that of PCL even though the chemical compositions of the blend and the copolymer are very similar to each other. The resistance of the copolymer to hydrolysis might be attributed to the hydrophobicity and the steric hindrance of caprolactone unit in the copolymer.

  4. Polyester Based On Biodiesel Industry Residues

    NASA Astrophysics Data System (ADS)

    Carvalho, Ricardo F.; Jose, Nadia M.; Carvalho, Adriana L. S.; Miranda, Cleidiene S.; Thomas, Natasha I. R.

    2011-12-01

    Biodiesel production is growing exponentially offering the energy network an alternative fuel from renewable sources. However, large quantities of crude glycerol are generated as a bi-product (10-30%) wt during the transesterification process of biodiesel. Although glycerol in its purified form has a number of uses, crude glycerol obtained from the biodiesel industry contains many impurities and requires expensive purification processes resulting in vast amounts of glycerol without adequate destination which are causing rise to many environmental concerns. Large scale applications of glycerol are necessary to accompany its production. Polyesters obtained via the polycondensation of glycerol with aromatic acids were prepared in different ratios. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate thermal stability. The composite structure was characterized by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (DRX). These aromatic polyesters could offer a low cost environmentally compatible material for the production of components such as tiles, boards, sanitary vases and sinks for the construction industry.

  5. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Wang, Aiqin

    2014-01-01

    The low stability and complicated fabrication procedures seriously hindered practical applications of superhydrophobic materials. Here we present a facile approach for preparing durable superhydrophobic polyester materials by dip-coating in a nanocomposite solution of polymerized tetraethoxysilane and n-hexadecyltriethoxysilane. The coated samples exhibit excellent superhydrophobicity, superoleophilicity, mechanical and chemical stabilities. This is attributed to the tight binding of the nanocomposite on the polyester fibers and the inherent stability of silicone. The coated samples can quickly absorb petrol, diesel and crude oil, and show very high selectivity in oil/water separation. In addition, the coated samples could maintain their superhydrophobicity, oil absorption capacity and oil/water selectivity after harsh mechanical damage, 90 days of immersion in oils and ten cycles of absorption-desorption. Moreover, this approach is simple and can be easily scaled up for producing samples on a large size, which makes it very promising for practical oil absorption.

  6. Micro-mesh fabric pollination bags for switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  7. Phase separation during radiation crosslinking of unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Pucić, Irina; Ranogajec, Franjo

    2003-06-01

    Phase separation during radiation-initiated crosslinking of unsaturated polyester resin was studied. Residual reactivity of liquid phases and gels of partially cured samples was determined by DSC. Uncured resin and liquid phases showed double reaction exotherm, gels had a single maximum that corresponded to higher-temperature maximum of liquid parts. The lower-temperature process was attributed to styrene-polyester copolymerization. At higher temperatures, polyester unsaturations that remained unreacted due to microgel formation homopolymerized. FTIR revealed different composition of phases. In thicker samples, reaction heat influenced microgel formation causing delayed appearance of gel and faster increase in conversion.

  8. Synthesis of polyester by means of genetic code reprogramming.

    PubMed

    Ohta, Atsushi; Murakami, Hiroshi; Higashimura, Eri; Suga, Hiroaki

    2007-12-01

    Here we report the ribosomal polymerization of alpha-hydroxy acids by means of genetic code reprogramming. The flexizyme system, a ribozyme-based tRNA acylation tool, was used to re-assign individual codons to seven types of alpha-hydroxy acids, and then polyesters were synthesized under controls of the reprogrammed genetic code using a reconstituted cell-free translation system. The sequence and length of the polyester segments were specified by the mRNA template, indicating that high-fidelity ribosome expression of polyesters was possible. This work opens a door for the mRNA-directed synthesis of backbone-altered biopolymers.

  9. Zonal wavefront sensing using a grating array printed on a polyester film

    SciTech Connect

    Pathak, Biswajit; Boruah, Bosanta R.; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  10. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers

    PubMed Central

    Wang, Jane; Bettinger, Christopher J; Langer, Robert S

    2010-01-01

    Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half-life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric polymer. Microfluidic scaffolds constructed from APS exhibit a much lower Young's modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds. PMID:21220957

  11. Aerosol Penetration Through Protective Fabrics

    DTIC Science & Technology

    2009-09-01

    SYS 520). SMPS and APS were calibrated prior to measurements using monodisperse PSL ( latex ) spheres of known size. The mass concentration of aerosol...polyester; Inner: carbon impregnated foam Construction Dual fabric system: Outer - Twill weave; Inner - Non woven cloth bonded to a scrim coated...impregnated foam bonded to a next-to- skin liner Mass per unit area3) (g/m²) AS 2001.2.13 389.9 ± 9.4 467.7± 4.8 451.9± 4.8 Thickness3) at 70 N/m² (mm) AS

  12. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    PubMed

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented.

  13. Hydrolyzable polyester resins, varnishes and coating compositions containing the same

    DOEpatents

    Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi

    1984-01-01

    Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.

  14. Renewable unsaturated polyesters from muconic acid

    DOE PAGES

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  15. Renewable unsaturated polyesters from muconic acid

    SciTech Connect

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; Martinez, Chelsea R.; Yang, Yuan; Beckham, Gregg T.

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated into poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as

  16. A Molecular Framework for Tunable Functional Response of Programmable Polyesters

    NASA Astrophysics Data System (ADS)

    Jha, Kshitij C.; Joy, Abraham; Tsige, Mesfin

    All-atom molecular dynamics (MD) simulations, using the OPLS force field, were carried out on a library of multifunctional polyesters with peptide-like functional pendant groups. The polyesters are structural peptidomimetics and can be utilized for applications in sensing, and separation, and as biomedical scaffolds. The modular design of the polyesters affords a range of hydrophilic and hydrophobic behavior. We used MD to quantify the hydrogen bond dynamics, end-to-end distance, and radii of gyration with changes in side group functionality, concentration, and temperature. We discerned trends for the physical behavior of polyesters with change in nature and ratio of the side groups. We also observed functional assembly for dissimilar polyesters, and correlated the assembly to the affinity of side groups. The trends in physical behavior and dissimilar assembly can be mined for iterative design towards programmatic assembly of the modular multifunctional polyesters under study. This work was made possible by funding from the ACS Petroleum Research Fund (ACS PRF 54801- ND5).

  17. Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites.

    PubMed

    Chirayil, Cintil Jose; Mathew, Lovely; Hassan, P A; Mozetic, Miran; Thomas, Sabu

    2014-08-01

    Nanocellulose (NC) reinforced unsaturated polyester (UPR) composites were prepared by mechanical mixing process. Effect of isora nanocellulose on the properties of polyester composites has been studied in detail. Rheological properties of unsaturated polyester resin suspensions containing various amounts (0.5, 1 and 3wt%) of nanocellulose were investigated by oscillatory rheometer with parallel plate geometry. Analysis of curing revealed that the time required for gelation in NC filled UPR is lower than neat resin, which describe the catalytic action of NC on cure reaction. NC reinforced polyester suspensions showed shear thinning behaviour initially and at higher shear rates they showed Newtonian behaviour. Tensile and impact properties showed superior behaviour revealing improved interfacial bonding between nanofiller and the polymer matrix. With respect to the neat polyester the percentage increase in tensile strength of 0.5wt% NC reinforced composite is 57%. Optical and atomic force microscopic studies confirmed that the dispersion state of NC within the polyester matrix was adequate. Maximum glass transition temperature is obtained for 0.5wt% NC reinforced composite, which showed an increase of 10°C than neat resin.

  18. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

    PubMed

    Karthika, Prasannan; Rajalakshmi, Natarajan; Dhathathreyan, Kaveripatnam S

    2013-11-11

    A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g(-1) and an energy density value of 37 W h kg(-1) are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g(-1) and energy density of 37 W h kg(-1) . This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors.

  19. Polysilicon TFT fabrication on plastic substrates

    SciTech Connect

    Carey, P.G.; Smith, P.M.; Wickboldt, P.W.; Thompson, M.O.; Sigmon, T.W.

    1997-08-06

    Processing techniques utilizing low temperature depositions and pulsed lasers allow the fabrication of polysilicon thin film transistors (TFT`s) on plastic substrates. By limiting the silicon, SiO2, and aluminum deposition temperatures to 100(degrees)C, and by using pulsed laser crystallization and doping of the silicon, we have demonstrated functioning polysilicon TFT`s fabricated on polyester substrates with channel mobilities of up to 7.5 cm2/V-sec and Ion/Ioff current ratios of up to 1x10(to the 6th power).

  20. A study of cleansing property of detergents on cotton, polyester and their blend

    NASA Astrophysics Data System (ADS)

    Patel, Vaishali P.

    Proper cleaning of clothes is one of the important aspects to be considered for increasing their life. Soil gets accumulated on textiles which needs to be cleaned for reusability. There are a variety of textile materials available and a variety brands of detergents for laundry purpose, to select the right brand is of much importance as it is based on detergent performance and money spent. The present study is an effort to determine which are the various popular brands of detergents, and to study the ability of cleaning property of a few of them. Eight brand of detergents namely: Ariel Microshine, Surf Excel, Surf, Super Nirma, Super Wheel with lemon, Hipolin, Rin were studied by artificially soiling of cotton, polyester and cotton/polyester blend fabrics, at four different concentration of soiling of washing with four different concentration of detergents. Both hand washing and machine washing technique was followed. All the detergent showed batter cleaning in hand washing technique in comparison with machine washing amongst all the various brands of detergents studied, Ariel Microshine show the best cleaning property, the poorest were Wheel and Rin. Ariel Microshine was the costliest of all. The best bargain in terms of cleansing property and price was Hipolin.

  1. Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone.

    PubMed

    Chamsaz, Elaheh A; Sun, Shuangyi; Maddipatla, Murthy V S N; Joy, Abraham

    2014-02-01

    The synthesis and photochemical characterization of two classes of photoresponsive polyesters are described. These polyesters contain either alkoxyphenacyl or coumarin chromophores embedded along the polymer chain. The alkoxyphenacyl polyesters undergo efficient photoinduced chain scission upon irradiation at 300 nm in solution or as a nanoparticle suspension. At 254 nm the coumarin polyesters undergo polymer chain scission. Irradiation of the coumarin polyesters in solution at 350 nm results in both chain crosslinking and chain scission behavior, while irradiation of the coumarin polyesters as nanoparticles results in chain crosslinking. The properties of the alkoxyphenacyl and coumarin polyesters are influenced by the choice of diacid as seen from their thermal behavior. The use of glutamic acid enabled surface or bulk functionalization of the photoresponsive polymers. In addition, controlled release of Nile Red from coumarin polyester nanoparticles is demonstrated by modulation of the wavelength and intensity of irradiation.

  2. 77 FR 54562 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...] Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty Administrative...'') initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...

  3. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    EPA Science Inventory

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  4. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization.

    PubMed

    Glampedaki, Pelagia; Calvimontes, Alfredo; Dutschk, Victoria; Warmoeskerken, Marijn M C G

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide-co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.

  5. An Undergraduate Experiment in Polyester (PET) Synthesis

    NASA Astrophysics Data System (ADS)

    Cammidge, Andrew N.

    1999-02-01

    The most important polyester manufactured industrially is PET (polyethyleneterephthalate). We describe an experiment that conveniently mimics the industrial synthesis in the undergraduate laboratory. The first step of the reaction is a base-catalyzed transesterification between ethane diol and dimethylterephthalate. Methanol is distilled off to drive the reaction to completion. Excess ethane diol is employed to suppress formation of higher oligomers. The intermediate (bis-(2-hydroxyethyl)terephthalate) is isolated by crystallization and filtration and characterized by 1H NMR spectroscopy. In the second step the monomer is heated (with and without acid catalyst) to form polymer. Samples are removed at intervals and their physical properties are recorded as they cool. These properties are used to qualitatively monitor polymerization. This experiment reinforces some fundamental chemical concepts and introduces the students to new laboratory procedures. The students perform a distillation and apply their knowledge of the reaction equilibrium to calculate the volume of distillate (methanol) expected. The reversible nature of esterification reactions is emphasized during the polymerization step (acid-catalyzed), where the process is driven towards polymer formation by the removal (evaporation) of ethane diol.

  6. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  7. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  8. Synthesis and hydrolysis behaviour of poly(ester anhydrides) from polylactone precursors containing alkenyl moieties.

    PubMed

    Korhonen, Harri; Hakala, Risto A; Helminen, Antti O; Seppälä, Jukka V

    2006-07-14

    Hydroxyl-group functional polylactones were prepared and converted to acid- terminated polyesters in a reaction with a series of alkenylsuccinic anhydrides containing 8, 12, or 18 carbons in their alkenyl chains. These polyester precursors were then linked into higher molecular weight poly(ester anhydrides) containing alkenyl moieties in their polyester blocks. The hydrolysis behaviour of the poly(ester anhydrides) was found to depend on the thermal properties of the polyester precursors. For poly(ester anhydrides) prepared from low molecular weight prepolymers with thermal transitions below 37 degrees C, the presence of hydrophobic alkenyl chains in the polyester precursors slowed the rate of weight loss. Poly(ester anhydrides) prepared from higher molecular weight prepolymers showed the opposite weight-loss behaviour; i.e., the crystallinity and thermal transitions of the alkenyl chain-containing poly(ester anhydrides) were low, and the weight loss was faster than for poly(ester anhydrides) without the alkenyl chains. The differences in length of the alkenyl chain, as such, had little effect on the hydrolysis behaviour and thermal properties of the poly(ester anhydrides).

  9. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  10. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  11. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  12. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  13. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins... Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section and applied on aluminum may be safely used as...

  14. 75 FR 30373 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... polyester staple fiber from the PRC. See Initiation of Antidumping and Countervailing Duty...

  15. 77 FR 19619 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... International Trade Administration Certain Polyester Staple Fiber from the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC.\\1\\...

  16. 75 FR 51442 - Polyester Staple Fiber from Taiwan: Rescission of Antidumping Duty Administrative Review in Part

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... International Trade Administration Polyester Staple Fiber from Taiwan: Rescission of Antidumping Duty... Commerce initiated an administrative review of the antidumping duty order on polyester staple fiber from...) initiated an ] administrative review of the antidumping duty order on polyester staple fiber from...

  17. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty... the antidumping duty order on polyester staple fiber (PSF) from Taiwan. The period of review (POR) is... Antidumping Duty Administrative Review: Polyester Staple Fiber from Taiwan'' dated concurrently with...

  18. 75 FR 43921 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. The period of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. See...

  19. 75 FR 6352 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... International Trade Administration Certain Polyester Staple Fiber from the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  20. 76 FR 22366 - Certain Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Preliminary Results of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. The period of... 30, 2010). We have rescinded the review in part with respect to Nan Ya. See Polyester Staple...

  1. 76 FR 7532 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  2. 78 FR 14512 - Certain Polyester Staple Fiber From the People's Republic of China: Preliminary Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China... order on certain polyester staple fiber from the People's Republic of China (``PRC''). The period of... Sichuan Chemical Fiber Corp. and Huvis Sichuan Polyester Fiber Ltd. (``Huvis Sichuan'') are part of...

  3. 77 FR 54561 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...] Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review AGENCY... antidumping duty order on certain polyester staple fiber from Taiwan. The period of review is May 1, 2010... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. See...

  4. 77 FR 6783 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC....

  5. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to...), entitled Certain Polyester Staple Fiber From Korea and Taiwan: Investigation Nos. 731-TA-825 and...

  6. 75 FR 39208 - Polyester Staple Fiber from Taiwan: Final Results of Changed-Circumstances Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... International Trade Administration Polyester Staple Fiber from Taiwan: Final Results of Changed- Circumstances... antidumping duty order on polyester staple fiber from Taiwan. DATES: Effective Date: July 8, 2010. FOR FURTHER... changed-circumstances review of the antidumping duty order on polyester staple fiber from Taiwan...

  7. 77 FR 62217 - Certain Polyester Staple Fiber From the People's Republic of China: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Polyester Staple Fiber From the People's Republic of China: Continuation of Antidumping Duty Order AGENCY... certain polyester staple fiber from the People's Republic of China (``PRC'') would likely lead to a... the sunset review of the antidumping duty order on certain polyester staple fiber from the...

  8. 78 FR 38938 - Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review; 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... results of the administrative review of the antidumping duty order on polyester staple fiber (PSF) from... Preliminary Results. None were received. \\1\\ See Polyester Staple Fiber From Taiwan: Preliminary Results...

  9. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.

    PubMed

    de Castro, Therese C; Taylor, Michael C; Kieser, Jules A; Carr, Debra J; Duncan, W

    2015-05-01

    Bloodstain pattern analysis is the investigation of blood deposited at crime scenes and the interpretation of that pattern. The surface that the blood gets deposited onto could distort the appearance of the bloodstain. The interaction of blood and apparel fabrics is in its infancy, but the interaction of liquids and apparel fabrics has been well documented and investigated in the field of textile science (e.g. the processes of wetting and wicking of fluids on fibres, yarns and fabrics). A systematic study on the final appearance of drip stains on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated in the paper. The relationship between drop velocity (1.66±0.50m/s, 4.07±0.03m/s, 5.34±0.18m/s) and the stain characteristics (parent stain area, axes 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The experimental design and effect of storing blood were investigated on a reference sample, which indicated that the day (up to five days) at which the drops were generated did not affect the bloodstain. The effect of prior-laundering (six, 26 and 52 laundering cycles), fibre content (cotton vs. polyester vs. blend) and fabric structure (plain woven vs. single jersey knit) on the final appearance of the bloodstain were investigated. Distortion in the bloodstains produced on non-laundered fabrics indicated the importance of laundering fabrics to remove finishing treatments before conducting bloodstain experiments. For laundered fabrics, both the cotton fabrics and the blend had a circular to oval stain appearance, while the polyester fabric had a circular appearance with evidence of spread along the warp and weft yarns, which resulted in square-like stains at the lowest drop velocity. A significant (p<0.001) increase in the stain size on

  10. Influence of Carbon Nano Tubes on the Thermo-Mechanical Properties of Unsaturated Polyester Nanocomposite

    NASA Astrophysics Data System (ADS)

    Moshiul Alam, A. K. M.; Beg, M. D. H.; Mohd Yunus, Rosli

    2015-04-01

    To date nano fillers are renowned reinforcing agent for polymer materials. In this work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. The influence of MWCNT content was investigated by thermo-mechanical properties. Dispersion of nanotubes was observed by fracture morphology. The strength of nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of nanocomposites represent noticeable improvement of glass transition temperature (Tg), melting temperature (Tm) and enthalpy (ΔHm). Micro-crystallinity of nanocomposites increased with increasing the CNT content. Moreover, the stiffness increased with increasing the CNT content.

  11. On the frequency of occurrence of a peculiar polyester fibre type found in blue denim textiles.

    PubMed

    De Wael, Kris; Baes, Christiaan; Lepot, Laurent; Gason, Fabrice

    2011-12-01

    In a double murder investigation, the victims were found after a prolonged stay in a drainage canal. In spite of the expectations, fibre examination established a multitude of primary and secondary transferred fibres. One of these fibre types was a colourless polyester fibre possessing a blue coloured molten fibre end. These matched one of the types present in the suspect's blue denim trousers. The aim of this study was to verify the rarity of this peculiar fibre type and more precisely its presence in blue denim textiles. Over five hundred different blue jeans textiles were examined and only one of these presented exactly the same type. The comparison involved microscopy, microspectrophotometry in the visible range and Raman spectroscopy. The results indicate this fibre type is extremely rare in a blue jeans fabrics and that "standard" blue denim should not be disregarded in case work.

  12. Probing the potential of polyester for CO₂ capture.

    PubMed

    Zulfiqar, Sonia; Sarwar, Muhammad Ilyas

    2014-07-01

    Global warming, the major environmental issue confronted by humanity today, is caused by rising level of green house gases. Carbon capture and storage technologies offer potential for tapering CO₂ emission in the atmosphere. Adsorption is believed to be a promising technology for CO₂ capture. For this purpose, a polyester was synthesized by polycondensation of 1,3,5-benzenetricarbonyl trichloride and cyanuric acid in pyridine and dichloromethane mixture. The polymer was then characterized using FT-IR, TGA, BET surface area and pore size analysis, FESEM and CO₂ adsorption measurements. The CO₂ adsorption capacities of the polyester were evaluated at a pressure of 1bar and two different temperatures (273 and 298K). The performance of these materials to adsorb CO₂ at atmospheric pressure was measured by optimum CO₂ uptake of 0.244 mmol/g at 273K. The synthesized polyester, therefore, has the potential to be exploited as CO₂ adsorbent in pre-combustion capture process.

  13. Tandem synthesis of alternating polyesters from renewable resources.

    PubMed

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M

    2011-12-13

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters.

  14. Biodegradation of polyester polyurethane by Aspergillus tubingensis.

    PubMed

    Khan, Sehroon; Nadir, Sadia; Shah, Zia Ullah; Shah, Aamer Ali; Karunarathna, Samantha C; Xu, Jianchu; Khan, Afsar; Munir, Shahzad; Hasan, Fariha

    2017-03-15

    The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.

  15. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  16. Laparoscopic-assisted Ventral Hernia Repair: Primary Fascial Repair with Polyester Mesh versus Polyester Mesh Alone.

    PubMed

    Karipineni, Farah; Joshi, Priya; Parsikia, Afshin; Dhir, Teena; Joshi, Amit R T

    2016-03-01

    Laparoscopic-assisted ventral hernia repair (LAVHR) with mesh is well established as the preferred technique for hernia repair. We sought to determine whether primary fascial closure and/or overlap of the mesh reduced recurrence and/or complications. We conducted a retrospective review on 57 LAVHR patients using polyester composite mesh between August 2010 and July 2013. They were divided into mesh-only (nonclosure) and primary fascial closure with mesh (closure) groups. Patient demographics, prior surgical history, mesh overlap, complications, and recurrence rates were compared. Thirty-nine (68%) of 57 patients were in the closure group and 18 (32%) in the nonclosure group. Mean defect sizes were 15.5 and 22.5 cm(2), respectively. Participants were followed for a mean of 1.3 years [standard deviation (SD) = 0.7]. Recurrence rates were 2/39 (5.1%) in the closure group and 1/18 (5.6%) in the nonclosure group (P = 0.947). There were no major postoperative complications in the nonclosure group. The closure group experienced four (10.3%) complications. This was not a statistically significant difference (P = 0.159). The median mesh-to-hernia ratio for all repairs was 15.2 (surface area) and 3.9 (diameter). Median length of stay was 14.5 hours (1.7-99.3) for patients with nonclosure and 11.9 hours (6.9-90.3 hours) for patients with closure (P = 0.625). In conclusion, this is one of the largest series of LAVHR exclusively using polyester dual-sided mesh. Our recurrence rate was about 5 per cent. Significant mesh overlap is needed to achieve such low recurrence rates. Primary closure of hernias seems less important than adequate mesh overlap in preventing recurrence after LAVHR.

  17. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  18. 75 FR 42784 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission... from China would be likely to lead to continuation or recurrence of material injury. On July 2,...

  19. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  20. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  1. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  2. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  3. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Limitations (limits of addition expressed as percent by weight of finished resin) 1. Inhibitors: Total not to... hydroperoxide Dibutyltin oxide (CAS Reg. No. 818-08-6) For use in the polycondensation reaction at levels not to...) For use in the polycondensation reaction at levels not to exceed 0.2 percent of the polyester...

  4. Degradation of natural and synthetic polyesters under anaerobic conditions.

    PubMed

    Abou-Zeid, D M; Müller, R J; Deckwer, W D

    2001-03-30

    Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).

  5. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    PubMed

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  6. Multilevel fluidic flow control in a rotationally-driven polyester film microdevice created using laser print, cut and laminate.

    PubMed

    Ouyang, Yiwen; Li, Jingyi; Phaneuf, Christopher; Riehl, Paul S; Forest, Craig; Begley, Matthew; Haverstick, Doris M; Landers, James P

    2016-01-21

    This paper presents a simple and cost-effective polyester toner microchip fabricated with laser print and cut lithography (PCL) to use with a battery-powered centrifugal platform for fluid handling. The combination of the PCL microfluidic disc and centrifugal platform: (1) allows parallel aliquoting of two different reagents of four different volumes ranging from nL to μL with an accuracy comparable to a piston-driven air pipette; (2) incorporates a reciprocating mixing unit driven by a surface-tension pump for further dilution of reagents, and (3) is amenable to larger scale integration of assay multiplexing (including all valves and mixers) without substantially increasing fabrication cost and time. For a proof of principle, a 10 min colorimetric assay for the quantitation of the protein level in the human blood plasma samples is demonstrated on chip with a limit of detection of ∼5 mg mL(-1) and coefficient of variance of ∼7%.

  7. Contraceptive efficacy of polyester-induced azoospermia in normal men.

    PubMed

    Shafik, A

    1992-05-01

    The contraceptive effect of a polyester sling applied to the scrotum was studied in 14 men. The suspensor was worn for 12 months. Follow-up investigations comprised periodic check of semen character, testicular size, rectal-testicular temperature difference, serum reproductive hormones and testicular biopsy. The electrostatic potentials generated by friction between the polyester suspensor and the scrotal skin were determined. Female partners used contraceptives until the men became azoospermic. After 12 months, the suspensor was abandoned and the aforementioned investigations were performed again. In the suspensor-wearing period, all men became azoospermic after a mean of 139.6 +/- 20.8 sd days, with decrease in both testicular volume (P less than 0.05) and rectal-testicular temperature difference (P less than 0.001). Serum reproductive hormones showed no significant change (P greater than 0.05). Seminiferous tubules revealed degenerative changes. No pregnancy occurred during this period. The polyester suspensor generated electrostatic potentials (mean 366.4 +/- 30.5 sd volt/cm2 by day and 158.3 +/- 13.6 sd volt/cm2 by night). In the suspensor-release period, the sperm concentration returned to the pre-test level in a mean period of 156.6 +/- 14.8 sd days. Likewise, the testicular volume and rectal-testicular temperature difference were normalized. The 5 couples, who had planned to become pregnant, conceived. The azoospermic effect of the polyester sling seems to be due to two mechanisms: 1) the creation of an electrostatic field across the intrascrotal structures, and 2) disordered thermoregulation. To conclude, fertile men can be rendered azoospermic by wearing the polyester sling. It is a safe, reversible, acceptable and inexpensive method of contraception in men.

  8. FINISHING FABRICATED METAL PRODUCTS WITH POWDER COATING. Project Summary (EPA/600/SR-96/152)

    EPA Science Inventory

    This report provides a technical and economic evaluation of a polyester powder coating system applied to the exterior and interior surfaces of metal boxes fabricated for the telephone and cable industries. This evaluation summarized many of the requirements and benefits of a clea...

  9. Antibacterial property of fabrics coated by magnesium-based brucites

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sha, Lin; Zhao, Jiao; Li, Qian; Zhu, Yimin; Wang, Ninghui

    2017-04-01

    A kind of environmental-friendly magnesium-based antibacterial agent was reported for the first time, which was composited by brucites with different particle sizes. The antibacterial fabrics were produced by coating the magnesium-based antibacterial agents on the 260T polyester pongee fabrics with waterborne polyurethane. The coating process was simple, low-cost, and harmless to human health and environment. Characteristics of the antibacterial agents and fabrics were studied by particulate size distribution analyzer (PSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated that the coating layer was covered tightly on the fabrics and compositing of different particles by a certain proportion made full filling of the coating layer. Meanwhile, compositing did not change the structure of brucites. The antibacterial fabrics presented strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with the reduction percentage of 96.6% and 100%, respectively, and the antibacterial fabrics attained excellent washing durability.

  10. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors.

    PubMed

    Olson, David A; Gratton, Stephanie E A; DeSimone, Joseph M; Sheares, Valerie V

    2006-10-18

    A versatile method for preparing amorphous degradable elastomers with tunable properties that can be easily fabricated into a wide variety of shape-specific devices was investigated. Completely amorphous, liquid poly(ester ether) prepolymers with number-average molecular weights between 4 and 6 x 10(3) g/mol were prepared via condensation polymerization. These liquid prepolymers were then thermally cross-linked to form degradable elastomeric structures. The ability to vary the composition of these liquid prepolymers allows for easy control of the mechanical and degradation properties of the resulting elastomeric structures. Materials can be designed to completely degrade in vitro over a range of 30 days to 6 months, while the Young's modulus can be varied over 3 orders of magnitude (G = 0.02-20 MPa). Also, the liquid nature of these prepolymers makes them amenable to a wide variety of fabrication techniques. Using traditional and modified imprint lithography techniques, we have fabricated devices that demonstrate a wide variety of biologically applicable topologies, which could easily be extended to fabricate devices with more complex geometries. Until now, no method has combined this ease and speed of fabrication with the ability to control the mechanical and degradation properties of the resulting elastomers over such a broad range.

  11. Mechanical Behaviour of Aluminium Dispersed Unsaturated Polyester/Jute Composites for Structural Applications

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-07-01

    The fibrous filler Jute along with Al particle reinforced unsaturated polyester composites having different filler (both Jute and Al were in equal wt%) were fabricated by compression molding technique. The variation of loading was taken as 2, 5, 10 and 15 wt% in the fabricated composites. In present investigation, it was observed that with fillers (Jute and Al) incorporation the microhardness increases and become optimum at 10 wt% of fillers content followed by slight deterioration at 15 wt%. Structural investigation through scanning electron microscopy and X-ray diffraction confirm the dispersion of the fillers within the composites. An improvement of crystallinity % of the matrix with filler addition was observed as predicted from X-ray diffraction technique. The results of tensile testing shows that the strength and modulus increase monotonically up to 10 wt% of filler addition followed by slight decreases at 15 wt% of the same. The scratch result shows the optimization of strength and toughness of the composites with filler content of 10 wt%.

  12. Self-assembly of amido-ended hyperbranched polyester films with a highly ordered dendritic structure.

    PubMed

    Zhang, Daohong; Xu, Zhicai; Li, Junna; Chen, Sufang; Cheng, Juan; Zhang, Aiqing; Chen, Shenghui; Miao, Menghe

    2014-09-24

    Self-assemblies fabricated from dendrimers and amphiphilic polymers have demonstrated remarkable performances and a wide range of applications. Direct self-assembly of hyperbranched polymers into highly ordered macrostructures with heat-resistance remains a big challenge due to the weak amphiphilicity of the polymers. Here, we report the self-assembly of amphiphilic amido-ended hyperbranched polyester (HTDA-2) into millimeter-size dendritic films using combined hydrogen bond interaction and solvent induction. The self-assembly process and mechanism have been studied. Hydrogen bond interaction between amido-ended groups assists the aggregation of inner and outer chains of the HTDA-2, resulting in phase separation and micelle formation. Some micelles attach to and grow on the glass substrate like seedlings. Other micelles move to the seedlings and connect with their branches via solvent induction and hydrogen bond interaction, leading to the fabrication of highly ordered crystalline dendritic films that show high heat-resistance. HTDA-2 can further self-assemble into sheet crystals on the dendritic films.

  13. Assessment of a Polyester-Covered Nitinol Stent in the Canine Aorta and Iliac Arteries

    SciTech Connect

    Castaneda, Flavio; Ball-Kell, Susan M.; Young, Kate; Li Ruizong

    2000-09-15

    Purpose: To evaluate the patency and healing characteristics of a woven polyester fabric-covered stent in the canine model.Methods: Twenty-four self-expanding covered stents were placed in the infrarenal aorta and bilateral common iliac arteries of eight dogs and evaluated at 1 (n = 2), 3 (n = 2), and 6 (n = 4) months. Stent assessment was done using angiography prior to euthanasia, and light and scanning electron microscopy.Results: Angiographically, just prior to euthanasia, 8 of 8 aortic and 14 of 16 iliac endovascular covered stents were patent. Histologically, the stented regions showed complete endothelialization 6 months after graft implantation. A neointima had formed inside the stented vessel regions resulting in complete encasement of the fabric-covered stent by 3 months after graft implantation. Medial compression with smooth muscle cell atrophy was present in all stented regions. Explanted stent wires, examined by scanning electron microscopy, showed pitting but no cracks or breakage.Conclusion: The covered stent demonstrated predictable healing and is effective in preventing stenosis in vessels 10.0 mm or greater in diameter but does not completely preclude stenosis in vessels 6.0 mm or less in diameter.

  14. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  15. Experimental Evaluation of Woven Polylactic Acid, Polyester Tubes as Trachael Prostheses.

    DTIC Science & Technology

    Woven tubes of either polyester fibers or mixed polyester, polylactic acid fibers of appropriate sizes were prepared for substitution of the rabbit...woven tube prostheses was studied histologically after subcutaneous implantation in rabbits. Polylactic acid fibers were observed to increase in size...containing polylactic acid fibers as compared with those containing polyester fibers. It is concluded from these experiments that a mechanically suitable

  16. The mechanism of pesticide transmission through apparel fabrics: a comparison of drop and spray exposure methodologies.

    PubMed

    Leonas, K K

    1991-04-01

    The effect of exposure methods on pesticide solution transmission and mechanism was examined for three fabrics. Drop and spray methods of exposure were used. The drop method of exposure resulted in significantly higher amounts of pesticide transmission than did the spray method. Using the drop method, a lower proportion of the particles remained in the top of the test fabric indicating much had transmitted into or through the fabric. The large droplet mass and increased volume per unit area produced during drop exposure resulted in a combination of increased force and saturation, enhancing the movement of the particle through the fabric. Fabric characteristics of construction and fiber content also influenced the transmission mechanism and quantity. The twill fabric was a better barrier to transmission than the plain fabrics. The cotton fabrics prevented transmission better than the cotton/polyester fabric.

  17. Transcaval access for TAVR across a polyester aortic graft.

    PubMed

    Lederman, Robert J; O'Neill, William W; Greenbaum, Adam B

    2015-06-01

    Transcaval access to the aorta allows transcatheter aortic valve replacement in patients without other good access options. The resulting aorto-caval fistula is closed with a nitinol cardiac occluder device. There is no experience traversing a synthetic aortic graft to perform transcaval access and closure. We describe a patient who underwent successful traversal of a polyester aortic graft using radiofrequency energy applied from the tip of a guidewire, to allow retrograde transcatheter aortic valve replacement from a femoral vein, along with details of our technique. The patient did well and was discharged home after 3 days. There was residual aorto-caval fistulous flow immediately after implantation of a polyester-seeded nitinol muscular ventricular septal defect occluder device, but this fistula spontaneously occluded within one month.

  18. Amino alcohol-based degradable poly(ester amide) elastomers

    PubMed Central

    Bettinger, Christopher J.; Bruggeman, Joost P.; Borenstein, Jeffrey T.; Langer, Robert S.

    2009-01-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young’s modulus on the order of 1 MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo. PMID:18295329

  19. Thermo-mechanical properties of polyester mortar using recycled PET

    SciTech Connect

    Rebeiz, K.S.; Craft, A.P.

    1997-07-01

    The thermo-mechanical properties of polyester mortar (PM) using unsaturated polyester resins based on recycled PET are investigated in this paper (the recycled PET waste is mainly obtained from used plastic beverage bottles). The use of recycled PET in PM formulation is important because it helps produce good quality PM at a relatively low cost, save energy and alleviate an environmental problem posed by plastic wastes. PM construction applications include the repair of dams, piers, runways, bridges and other structures. Test results show that the effective use of PM overlays on portland cement concrete slabs is best achieved by utilizing flexible resins with low modulus and high elongation capacity at failure. The use of flexible resins in PM production is especially important in situations involving large thermal movements.

  20. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    NASA Astrophysics Data System (ADS)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  1. Tandem synthesis of alternating polyesters from renewable resources

    PubMed Central

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M.

    2011-01-01

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters. PMID:22158441

  2. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  3. Thermally-responsive poly(ester urethane)s

    NASA Astrophysics Data System (ADS)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  4. Corrosion inhibition property of polyester-groundnut shell biodegradable composite.

    PubMed

    Sounthari, P; Kiruthika, A; Saranya, J; Parameswari, K; Chitra, S

    2016-12-01

    The use of natural fibers as reinforcing materials in thermoplastics and thermoset matrix composites provide optimistic environmental profits with regard to ultimate disposability and better use of raw materials. The present work is focused on the corrosion inhibition property of a polymer matrix composite produced by the use of groundnut shell (GNS) waste. Polyester (PE) was synthesized by condensation polymerization of symmetrical 1,3,4-oxadiazole and pimelic acid using sodium lauryl sulfate as surfactant. The polyester-groundnut shell composite (PEGNS) was prepared by ultrasonication method. The synthesized polyester-groundnut shell composite was characterized by FT-IR, TGA and XRD analysis. The corrosion inhibitory effect of PEGNS on mild steel in 1M H2SO4 was investigated using gravimetric method, electrochemical impedance spectroscopy, potentiodynamic polarization, atomic absorption spectroscopy and scanning electron microscopy. The results showed that PEGNS inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration and decrease with increasing temperature. The composite inhibited the corrosion of mild steel through adsorption following the Langmuir adsorption isotherm. Changes in the impedance parameters Rt, Cdl, Icorr, Ecorr, ba and bc suggested the adsorption of PEGNS onto the mild steel surface, leading to the formation of protective film.

  5. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers

    PubMed Central

    Jenkin, Seamus; Molina, Isabel

    2015-01-01

    Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function. PMID:26650846

  6. The biostability of silicone rubbers, a polyamide, and a polyester.

    PubMed

    Roggendorf, E

    1976-01-01

    A biostability test program was designed after evaluation of the relevant literature on in vivo aging phenomena in plastics and elastomers. The program comprised macroscopic, microscopic, mechanical, and physicochemical investigations. Five silicone rubbers, one polyester, and one polyamid were tested as to their aging behavior and their suitability for long-term implantation in the human body was assessed. In order to be able to state the applicability of materials used for endotheses, the various aging phenomena had to be divided into three groups, viz. unspecific, relative, and absolute indications of aging or unserviceability. Changes due to aging were found in all types of implanted plastics and elastomers. Thus, the formation of layers on inlay surfaces occurred regularly and the same would apply to changes in mechanical characteristics during the tensile test. Aging processes resulting in total unserviceability were fragmentation and crazing in the polyester and polyamide sheetings. Other aging phenomena which will easily fit into the classification given above are changes in electrical test values, protein, and lipid depositions without stronger absorptive adhesion, crystallizations on the surface of silicone vulcanizates, and chemical changes in the polyester and polyamide sheetings. Following the assessment of the materials used for endotheses, the test methods used have been evaluated with regard to their suitability for the testing of biostability.

  7. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  8. Cyclic swelling as a phenomenon inherent to biodegradable polyesters.

    PubMed

    Dittrich, Milan; Snejdrova, Eva

    2014-11-01

    The aim of this study is to evaluate and describe the phenomenon and mechanism of the spontaneous cyclic swelling and deswelling of linear and branched aliphatic polyesters in the aqueous medium. The fluctuation of gel volume in one or several cycles as an inherent property of biodegradable and bioerodible materials has not yet been described. We have observed the process at linear and branched polyesters of aliphatic α-hydroxy acids. The period of duration of cycles was in order of hours to days, as influenced by the size of the bodies ranging from 25 to 1000 mg, the temperature in the range of 7°C-42°C, ionic strength, and pH value. The results demonstrated that swelling is accompanied by hydrolysis of ester bonds with the development of small water-soluble osmotically active molecules. After reaching a higher degree of swelling, the obstruction effect of the gel decreases and the diffusion of soluble degradation products from the body to the environment prevails. A decrease in osmotic pressure inside the body and a decrease in the hydrophilic character of the gel matrix result in deswelling by a collapse of the structure, probably due to hydrophobic interactions of nonpolar polyester chains.

  9. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers.

    PubMed

    Jenkin, Seamus; Molina, Isabel

    2015-11-22

    Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function.

  10. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior.

    PubMed

    Karavelidis, Vassilios; Giliopoulos, Dimitrios; Karavas, Evangelos; Bikiaris, Dimitrios

    2010-12-23

    Five polyesters based on 1,3-propanediol or ethylene glycol and an aliphatic dicarboxylic acid were used for the preparation of Ropinirole HCl-loaded nanoparticles. The advantage of the present study is that the used polyesters - as well as poly(lactic acid) (PLA) - have similar degree of crystallinity but different melting points, varying from 46.7 to 166.4°C. Based on polymer toxicity on HUVEC, the biocompatibility of these aliphatic polyesters was found comparable to that of PLA and thus the studied polyesters could be used as drug carriers. Drug encapsulation in polyesters was performed via emulsification/solvent evaporation method. Particle size of drug-loaded nanoparticles was between 140 and 190 nm, as measured by light scattering. Drug loading content for all the polyesters varies between 10 and 16% and their entrapment efficiency is relatively high (32-48%). WAXD patterns of nanoparticles show that Ropinirole HCl lies in amorphous state within polymer matrices. Drug release diagrams reveal that the higher percentage of Ropinirole HCl is released during the first 6h after its insertion in the dissolution medium. Fast release rates of the drug are attributed to high hydrophilicity of Ropinirole HCl. Melting point (T(m)) and glass transition temperature (T(g)) of the host polymer matrices seem to be important parameters, since higher drug release rates are observed in polyesters with low T(m) and T(g).

  11. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions.

    PubMed

    Napper, Imogen E; Thompson, Richard C

    2016-11-15

    Washing clothes made from synthetic materials has been identified as a potentially important source of microscopic fibres to the environment. This study examined the release of fibres from polyester, polyester-cotton blend and acrylic fabrics. These fabrics were laundered under various conditions of temperature, detergent and conditioner. Fibres from waste effluent were examined and the mass, abundance and fibre size compared between treatments. Average fibre size ranged between 11.9 and 17.7μm in diameter, and 5.0 and 7.8mm in length. Polyester-cotton fabric consistently shed significantly fewer fibres than either polyester or acrylic. However, fibre release varied according to wash treatment with various complex interactions. We estimate over 700,000 fibres could be released from an average 6kg wash load of acrylic fabric. As fibres have been reported in effluent from sewage treatment plants, our data indicates fibres released by washing of clothing could be an important source of microplastics to aquatic habitats.

  12. The persistence of human scalp hair on clothing fabrics.

    PubMed

    Dachs, J; McNaught, I J; Robertson, J

    2003-12-17

    This study reports the persistence behaviour of human scalp hairs under a number of different circumstances. The effects of artificial dyeing of hairs, the presence or absence of roots and different types of fabrics on the persistence of hair on a variety of garments were investigated. The garments were made from cotton, polycotton, cotton/acrylic, polyester and wool. The results indicated that neither artificial dyes nor the presence or absence of roots had statistically significant effects on the persistence of hair. In contrast, the type of fabric had a major impact and it was found that, generally, hairs persist longer on rougher fabrics. The rate of loss of hairs from non-woollen fabrics during normal wear was found to follow an exponential decay curve. In contrast, the rate of loss from the woollen garments was quite linear, indicating a constant, even loss, and thus suggests that a different process is involved in the persistence of hairs on woollen garments from that on non-woollen garments. The speed at which hair was lost from fabrics decreased in the order polyester, cotton/acrylic, polycotton, cotton, smooth wool, rough wool, so that wool gives the best chance of recovering samples of hair. Due to the uniqueness of each case, it is advised that caution be used when making any interpretations and before drawing any conclusions.

  13. Preparation of rich handles soft cellulosic fabric using amino silicone based softener, part II: colorfastness properties.

    PubMed

    Zuber, Mohammad; Zia, Khalid Mahmood; Tabassum, Shazia; Jamil, Tahir; Barkaat-Ul-Hasin, Syed; Khosa, Muhammad Kaleem

    2011-07-01

    The preparation of amino silicone based softeners with different emulsifiers was carried out and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. The softened fabrics have high surface area, so poorly performance in washing and rubbing fastness. It is obvious from the results of colorfastness to rubbing and washing that some of the samples of the dyed fabric treated with prepared softeners have shown some poor rating as compared to the untreated fabrics. However the other two samples have shown acceptable rubbing fastness results without losing softness and permanent handle. It can be observed that washing of the printed treated fabric remains unaffected almost in all the studied samples. Moreover, the application of the prepared softeners has imparted anti pilling property to the fabric. It can be seen that there is a remarkable increase in weights of treated fabrics as compared to the untreated fabrics.

  14. 77 FR 50530 - Polyester Staple Fiber From China; Scheduling of an Expedited Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... COMMISSION Polyester Staple Fiber From China; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Polyester Staple Fiber From China AGENCY: United States International Trade... determine ] whether revocation of the antidumping duty order on polyester staple fiber from China would...

  15. 76 FR 28420 - Certain Polyester Staple Fiber From the People's Republic of China: Full Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Full... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  16. 78 FR 38939 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final... antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC... below. \\1\\ See Certain Polyester Staple Fiber From the People's Republic of China: Preliminary...

  17. 75 FR 1336 - First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... International Trade Administration First Administrative Review of Certain Polyester Staple Fiber From the People... first administrative review of the antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber from the...

  18. 76 FR 2886 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final... second administrative review of the antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber From the...

  19. 75 FR 64252 - Certain Polyester Staple Fiber From the Republic of Korea: Final Results of the 2008-2009...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea: Final Results of... certain polyester staple fiber from the Republic of Korea and invited interested parties to comment. The... 15, 2010, the Department of Commerce (``the Department'') published Certain Polyester Staple...

  20. 75 FR 76954 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Time Limit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... Register the Preliminary Results of the second administrative review of certain polyester staple fiber.... See Certain Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary...

  1. 76 FR 60802 - Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea and Taiwan... certain polyester staple fiber from the Republic of Korea (Korea) and Taiwan would likely lead to a... orders on polyester staple fiber from Korea and Taiwan \\1\\ pursuant to section 751(c) of the Tariff...

  2. 77 FR 71579 - Polyester Staple Fiber From Taiwan: Notice of Court Decision Not in Harmony With Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Notice of Court Decision Not in Harmony... order on polyester staple fiber from Taiwan covering the period of review (``POR'') May 1, 2009, through... Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review, 76...

  3. 76 FR 37830 - Polyester Staple Fiber From Korea and Taiwan; Scheduling of Expedited Five-Year Reviews...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... COMMISSION Polyester Staple Fiber From Korea and Taiwan; Scheduling of Expedited Five-Year Reviews Concerning the Antidumping Duty Orders on Polyester Staple Fiber From Korea and Taiwan AGENCY: United States...) to determine whether revocation of the antidumping duty orders on polyester staple fiber from...

  4. 75 FR 34097 - Certain Polyester Staple Fiber From Taiwan: Extension of the Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of the Final Results of... certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber from Taiwan:...

  5. Adhesive for polyester films cures at room temperature, has high initial tack

    NASA Technical Reports Server (NTRS)

    Christian, C. M.; Fust, G. W.; Welchel, C. J.

    1966-01-01

    Quick room-temperature-cure adhesive bonds polyester-insulated flat electrical cables to metal surfaces and various other substrates. The bond strength of the adhesive may be considerably increased by first applying a commercially available polyamide primer to the polyester film.

  6. 77 FR 25744 - Certain Polyester Staple Fiber From China; Institution of a Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Certain Polyester Staple Fiber From China; Institution of a Five- Year Review AGENCY: United... fiber from China would be likely to lead to continuation or recurrence of material injury. Pursuant to... order on imports of certain polyester staple fiber from China (72 FR 30545). The Commission...

  7. 76 FR 52935 - Certain Polyester Staple Fiber From Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... International Trade Administration Certain Polyester Staple Fiber From Korea: Rescission of Antidumping Duty... to request an administrative review of the antidumping order on polyester staple fiber from Korea... staple fiber covered by the scope of the order is defined as synthetic staple fibers, not carded,...

  8. 75 FR 5964 - Certain Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Preliminary Results of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. The period of... fiber from one producer/exporter. We have preliminarily found that sales of the subject merchandise...

  9. 75 FR 64694 - Second Antidumping Duty Administrative Review of Certain Polyester Staple Fiber From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Fiber From the People's Republic of China: Extension of Time Limit for the Final Results Agency: Import... the Preliminary Results of the second administrative review of certain polyester staple fiber (``PSF... Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary Results and...

  10. 75 FR 47795 - Certain Polyester Staple Fiber from Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... International Trade Administration Certain Polyester Staple Fiber from Korea: Rescission of Antidumping Duty... (June 30, 2010). Scope of the Order Polyester staple fiber (``PSF'') covered by the scope of the order is defined as synthetic staple fibers, not carded, combed or otherwise processed for spinning,...

  11. 76 FR 11268 - Certain Polyester Staple Fiber From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade... staple fiber from Korea and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted... whether revocation of the antidumping duty orders on certain polyester staple fiber from Korea and...

  12. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  13. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  14. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  15. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2017-04-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  16. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-02-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  17. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.

    PubMed

    Shen, Fei; Xiao, Wenxiong; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2013-02-01

    In order to recycle the cotton-based waste textiles, a novel process was designed for pretreating waste textiles with phosphoric acid to recover polyester and fermentable sugar. The effects of pretreatment conditions including, phosphoric acid concentration, pretreatment temperature, time, and ratio of textiles and phosphoric acid were thoroughly investigated. Results indicated the mentioned four factors had significant influences on sugar and polyester recovery. Almost complete polyester recovery was achieved by enhancing phosphoric acid concentration, temperature and pretreatment time or reducing the ratio of textiles and phosphoric acid. However, these behaviors decreased the sugar recovery seriously. 100% polyester recovery with a maximum sugar recovery of 79.2% was achieved at the optimized conditions (85% phosphoric acid, 50°C, 7h, and the ratio of 1:15). According to the technical and cost-benefit analysis, it was technically feasible and potentially profitable to recover polyester and sugar from waste textiles by phosphoric acid pretreatment.

  18. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering.

    PubMed

    Zhang, Yi; Tran, Richard T; Gyawali, Dipendra; Yang, Jian

    2011-01-01

    Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.

  19. Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites

    NASA Technical Reports Server (NTRS)

    Lark, R. L.; Chamis, C. C.

    1983-01-01

    The static and cyclic load behavior of transverse filament tape (TFT) fiberglass/epoxy and TFY fiberglass/polyester composites, intended for use in the design of low-cost wind turbine blades, are presented. The data behavior is also evaluated with respect to predicted properties based on an integrated hygrothermomechanical response theory. Experimental TFT composite data were developed by the testing of laminates made by using composite layups typical of those used for the fabrication of TFT fiberglass wind turbine blades. Static properties include tension, compression, and interlaminar shear strengths at ambient conditions and at high humidity/elevated temperature conditions after a 500 hour exposure. Cyclic fatigue data were obtained using similar environmental conditions and a range of cyclic stresses. The environmental (temperature and moisture) and cyclic load effects on composite strength degradation are subsequently compared with the predictions obtained by using the composite life/durability theory. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties including fatigue at different cyclic stresses.

  20. Thermoset polyester-based superhydrophobic microchannels for nanofluid heat transfer applications

    NASA Astrophysics Data System (ADS)

    Chung, Chia-Yang; Warkiani, Majid E.; Mesgari, Sara; Rosengarten, Gary; Taylor, Robert

    2015-12-01

    Both microchannels and nanofluids have shown promise to enhance convective heat transfer. However, the major drawback of these two technologies is their significant increase of pumping pressure due to increased frictional drag (for high surface area microchannels) or increased viscoelastic frictional drag (for nanofluids). It is possible to decrease frictional drag, and overcome this drawback, by implementing superhydrophobic surfaces to create slip with the channel wall. In this work, surface microstructures fabricated from the thermoset polyester (TPE) were used to create superhydrophobic surfaces which are capable of reducing the frictional drag in channel flow and thus, reduce the pumping pressure. Preliminary experimental results of superhydrophobic microchannels with rib-and-cavity microstructures aligned transversely and longitudinally to the flow direction were studied with both distilled water and water-based multi-walled carbon nanotube (MWCNT) nanofluid as the working fluids. While pressure drop reduction of superhydrophobic surfaces and heat transfer enhancement of nanofluids were shown, it was observed that heat transfer degradation occurred at higher flow rates with MWCNT nanofluid as the working fluid due to the precipitation of nanoparticles.

  1. Polyester-toner electrophoresis microchips with improved analytical performance and extended lifetime.

    PubMed

    Gabriel, Ellen Flávia Moreira; Duarte Junior, Gerson F; Garcia, Paulo de Tarso; de Jesus, Dosil P; Coltro, Wendell K T

    2012-09-01

    This paper reports the fabrication of polyester-toner (PT) electrophoresis microchips with improved analytical performance and extended lifetime. This has been achieved with a better understanding about the EOF generation and the influence of some parameters including the channel dimensions (width and depth), the injection mode, and the addition of organic solvent to the running buffer. The analytical performance of the PT devices was investigated using a capacitively coupled contactless conductivity detector and inorganic cations as model analytes. The proposed devices have exhibited EOF values of (3.4 ± 0.2) × 10(-4) cm(2) V(-1) s(-1) with good stability over 25 consecutive runs. It has been found that the EOF magnitude depends on the channel dimension, i.e. the wider the channel, the higher the EOF value. The separation efficiency for inorganic cations ranged from 13 000 to 50 000 plates/m. The LOD found for K(+) , Na(+) , and Li(+) were 4.2, 7.3, and 23 μM, respectively. In addition, the same PT device has been used by three consecutive days. Lately, due to improved analytical performance, it was carried out by the first time the detection of inorganic cations in real samples such as energetic drinks and pharmaceutical formulations.

  2. Engineered Hypopharynx from Coculture of Epithelial Cells and Fibroblasts Using Poly(ester urethane) as Substratum

    PubMed Central

    Shen, Zhisen; Chen, Jingjing; Kang, Cheng; Gong, Changfeng

    2013-01-01

    Porous polymeric scaffolds have been much investigated and applied in the field of tissue engineering research. Poly(ester urethane) (PEU) scaffolds, comprising pores of 1–20 μm in diameter on one surface and ≥200 μm on the opposite surface and in bulk, were fabricated using phase separation method for hypopharyngeal tissue engineering. The scaffolds were grafted with silk fibroin (SF) generated from natural silkworm cocoon to enhance the scaffold's hydrophilicity and further improve cytocompatibility to both primary epithelial cells (ECs) and fibroblasts of human hypopharynx tissue. Coculture of ECs and fibroblasts was conducted on the SF-grafted PEU scaffold (PEU-SF) to evaluate its in vitro cytocompatibility. After co-culture for 14 days, ECs were lined on the scaffold surface while fibroblasts were distributed in scaffold bulk. The results of in vivo investigation showed that PEU porous scaffold possessed good biocompatibility after it was grafted by silk fibroin. SF grafting improved the cell/tissue infiltration into scaffold bulk. Thus, PEU-SF porous scaffold is expected to be a good candidate to support the hypopharynx regeneration. PMID:24455669

  3. Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications.

    PubMed

    Jaymand, Mehdi; Sarvari, Raana; Abbaszadeh, Parisa; Massoumi, Bakhshali; Eskandani, Morteza; Beygi-Khosrowshahi, Younes

    2016-11-01

    A novel electrically conductive scaffold containing hyperbranched aliphatic polyester (HAP), polythiophene (PTh), and poly(ε-caprolactone) (PCL) for regenerative medicine application was succesfully fabricated via electrospinning technique. For this purpose, the HAP (G4; fourth generation) was synthesized via melt polycondensation reaction from tris(methylol)propane and 2,2-bis(methylol)propionic acid (bis-MPA). Afterward, the synthesized HAP was functionalized with 2-thiopheneacetic acid in the presence of N,N-dicyclohexyl carbodiimide, and N-hydroxysuccinimide as coupling agent and catalyst, respectively, to afford a thiophene-functionalized G4 macromonomer. This macromonomer was subsequently used in chemical oxidation copolymerization with thiophene monomer to produce a star-shaped PTh with G4 core (G4-PTh). The solution of the G4-PTh, and PCL was electrospun to produce uniform, conductive, and biocompatible nanofibers. The conductivity, hydrophilicity, and mechanical properties of these nanofibers were investigated. The biocompatibility of the electrospun nanofibers were evaluated by assessing the adhesion and proliferation of mouse osteoblast MC3T3-E1 cell line and in vitro degradability to demonstrate their potential uses as a tissue engineering scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2673-2684, 2016.

  4. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-06-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation.

  5. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    PubMed Central

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-01-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation. PMID:27340110

  6. Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Beg, M. D. H.; Moshiul Alam, A. K. M.; Yunus, R. M.; Mina, M. F.

    2015-01-01

    Efforts are being given to the development of well-dispersed nanoparticle-reinforced polymer nanocomposites in order to tailor the material properties. In this perspective, well dispersion of multi-walled carbon nanotubes (MWCNTs) in unsaturated polyester resin (UPR) was prepared using pre-dispersed MWCNTs in tetrahydrofuran solvent with ultrasonication method. Then the well-dispersed MWCNTs reinforced UPR nanocomposites were fabricated through solvent evaporation. Fourier-transform infrared spectroscopy indicates a good interaction between matrix and MWCNTs. This along with homogeneous dispersion of nanotubes in matrix has been confirmed by the field emission scanning electron microscopy. At low shear rate, the value of viscosity of UPR is 8,593 mPa s and that of pre-dispersed MWCNT-UPR suspension is 43,491 mPa s, showing implicitly a good dispersion of nanotubes. A notable improvement in the crystallinity of UPR from 14 to 21 % after MWCNTs inclusion was observed by X-ray diffractometry. The mechanical properties, such as tensile strength, tensile modulus, impact strength, and elongation-at-break, of nanocomposite were found to be increased to 22, 20, 28, and 87 %, respectively. The estimated melting enthalpy per gram for composites as analyzed by differential scanning calorimetry is higher than that of UPR. The onset temperature of thermal decomposition in the nanocomposites as monitored by thermogravimetric analysis is found higher than that of UPR. Correlations among MWCNTs dispersion, nucleation, fracture morphology, and various properties were measured and reported.

  7. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Jurkin, Tanja; Pucić, Irina

    2006-09-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  8. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  9. Fabric fastenings

    NASA Technical Reports Server (NTRS)

    Walen, E D; Fisher, R T

    1920-01-01

    The study of aeronautical fabrics has led to a consideration of the best methods of attaching and fastening together such materials. This report presents the results of an investigation upon the proper methods of attaching fabrics to airplane wings. The methods recommended in this report have been adopted by the military services.

  10. Quantification of perchloroethylene residues in dry-cleaned fabrics.

    PubMed

    Sherlach, Katy S; Gorka, Alexander P; Dantzler, Alexa; Roepe, Paul D

    2011-11-01

    We have used a novel gas chromatography/mass spectrometry (GC/MS)-based approach to quantify perchloroethylene (PCE) residues in dry-cleaned fabrics. Residual PCE was extracted from fabric samples with methanol and concentration was calculated by the gas chromatographic peak area, standardized using PCE calibration data. Extracts examined were from samples of 100% wool, polyester, cotton, or silk, which were dry cleaned from one to six times in seven different Northern Virginia dry-cleaning establishments. Additional experiments were conducted to investigate the kinetics of PCE release in the extraction solvent and to the open air. We found that polyester, cotton, and wool retained ≥ µM levels of PCE, that these levels increased in successive dry-cleaning cycles, and that PCE is slowly volatilized from these fabrics under ambient room air conditions. We found that silk does not retain appreciable PCE. Measured differences across dry-cleaning establishments and fabric type suggest more vigorous monitoring of PCE residues may be warranted. Environ. Toxicol. Chem. 2011;30:2481-2487. © 2011 SETAC.

  11. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  12. Development of biodegradable crosslinked urethane-doped polyester elastomers

    PubMed Central

    Dey, Jagannath; Xu, Hao; Shen, Jinhui; Thevenot, Paul; Gondi, Sudershan R.; Nguyen, Kytai T.; Sumerlin, Brent S.; Tang, Liping; Yang, Jian

    2009-01-01

    Traditional crosslinked polyester elastomers are inherently weak, and the strategy of increasing crosslink density to improve their mechanical properties makes them brittle materials. Biodegradable polyurethanes, although strong and elastic, do not fare well in dynamic environments due to the onset of permanent deformation. The design and development of a soft, strong and completely elastic (100% recovery from deformation) material for tissue engineering still remains a challenge. Herein, we report the synthesis and evaluation of a new class of biodegradable elastomers, crosslinked urethane-doped polyesters (CUPEs), which is able to satisfy the need for soft, strong, and elastic biomaterials. Tensile strength of CUPE was as high as 41.07 ± 6.85 MPa with corresponding elongation at break of 222.66 ± 27.84%. The initial modulus ranged from 4.14 ± 1.71 MPa to 38.35 ± 4.5 MPa. Mechanical properties and degradation rates of CUPE could be controlled by varying the choice of diol used for synthesis, the polymerization conditions, as well as the concentration of urethane bonds in the polymer. The polymers demonstrated good in vitro and in vivo biocompatibilities. Preliminary hemocompatibility evaluation indicated that CUPE adhered and activated lesser number of platelets compared to PLLA. Good mechanical properties and easy processability make these materials well suited for soft tissue engineering applications. The introduction of CUPEs provides new avenues to meet the versatile requirements of tissue engineering and other biomedical applications. PMID:18801566

  13. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  14. Functional finishing of aminated polyester using biopolymer-based polyelectrolyte microgels.

    PubMed

    Glampedaki, Pelagia; Dutschk, Victoria; Jocic, Dragan; Warmoeskerken, Marijn M C G

    2011-10-01

    This study focuses on a microgel-based functionalization method applicable to polyester textiles for improving their hydrophilicity and/or moisture-management properties, eventually enhancing wear comfort. The method proposed aims at achieving pH-/temperature-controlled wettability of polyester within a physiological pH/temperature range. First, primary amine groups are created on polyester surfaces using ethylenediamine; second, biopolymer-based polyelectrolyte microgels are incorporated using the natural cross-linker genipin. The microgels consist of the pH-responsive natural polysaccharide chitosan and pH/thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) microparticles. Scanning electron microscopy confirmed the microgel presence on polyester surfaces. X-ray photoelectron spectroscopy revealed nitrogen concentration, supporting increased microscopy results. Electrokinetic analysis showed that functionalized polyester surfaces have a zero-charge point at pH 6.5, close to the microgel isoelectric point. Dynamic wetting measurements revealed that functionalized polyester has shorter total water absorption time than the reference. This absorption time is also pH dependent, based on dynamic contact angle and micro-roughness measurements, which indicated microgel swelling at different pH values. Furthermore, at 40 °C functionalized polyester has higher vapor transmission rates than the reference, even at high relative humidity. This was attributed to the microgel thermoresponsiveness, which was confirmed through the almost 50% decrease in microparticle size between 20 and 40 °C, as determined by dynamic light scattering measurements.

  15. Adsorption of active ingredients of surface disinfectants depends on the type of fabric used for surface treatment.

    PubMed

    Bloss, R; Meyer, S; Kampf, G

    2010-05-01

    The disinfection of surfaces in the immediate surrounding of a hospitalised patient is considered to be an important element for prevention of nosocomial infection. The type of fabric in a mop, however, has to our knowledge never been regarded as relevant for an effective disinfection of surfaces. We have therefore studied the adsorption of benzalkonium chloride (BAC), glutardialdehyde and propan-1-ol from working solutions of three surface disinfectants to four different types of fabric (A: white pulp and polyester; B: viscose rayon; C: polyester; D: mixture of viscose, cellulose and polyester). The working solutions of each disinfectant were exposed to each fabric for up to 24h. Before and after exposure, tissues were removed and squeezed in a standardised way. The eluate was used for determination of the concentration of the active ingredient in quadruplicate. The analysis of glutardialdehyde and BAC was performed using high performance liquid chromatography; the analysis of propan-1-ol was done using gas chromatography. BAC was strongly adsorbed to the tissues based on white pulp (up to 61% after 30 min), followed by the viscose rayon tissues (up to 70% after 30 min) and the mixed tissues (up to 54% after 7h). The polyester fibre tissue adsorbed the smallest amounts of BAC with up to 17% after 15 min. Only with the polyester fibre tissue were BAC concentrations found in the range of the calculated BAC concentrations. Glutardialdehyde and propan-1-ol did not adsorb to any of the fibres. Effective surface disinfection also includes selection of an appropriate fabric.

  16. Comportement mecanique des joints boulonnes en composites verre-polyester

    NASA Astrophysics Data System (ADS)

    Vangrimde, Bart

    Glass fibre-reinforced polyester composite materials are being extensively used for general-purpose applications. For highly loaded structures, bolted joints are generally the preferred assembly method. However, bolted joints are usually the weakest link in a structure and they must therefore be designed with care. Specifically, the joint geometry, reinforcement type and lay-up should be chosen on a rational basis, otherwise the assembly may fail prematurely. The present study is concerned with the study of these material parameters. The mechanical response of bolted assemblies is studied for a range of six glass fibre-reinforced polyester laminates with reinforcements and lay-ups that are typical for general-purpose applications. In order to assess how changes in joint width or in joint end distance affect the behaviour of the joint, tests were carried out on three coupon geometries. In accordance with the standard test method ASTM D5961, a single-bolt double lap bolted joint configuration was used for the experimental characterisation. We investigated how the displacement measurement could best be made because currently there is a whole range of approaches in use and it is clear that the measured displacement quantity directly affects the stiffness values. A 3-D finite element model indicated that bolt deformation and fixture deformations affected the measured coupon displacement. The bearing stiffness was reduced by 26% on average when the width was reduced from six to two times the hole diameter. For the assemblies with a width of two times the hole diameter (w/D = 2) the bearing stiffness increased clearly with the tensile modulus of the tested materials. Both the experimental and numerical bearing stiffness values were much lower than those predicted by joint flexibility formulas. Hence, our results indicate that these joint flexibility formulas should be adapted if they are intended to be used for design of general-purpose glass fibre-reinforced polyester

  17. Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: Surface smoothness and softness properties.

    PubMed

    Zia, Khalid Mahmood; Tabassum, Shazia; Barkaat-ul-Hasin, Syed; Zuber, Mohammad; Jamil, Tahir; Jamal, Muhammad Asghar

    2011-04-01

    A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener.

  18. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight and composition on mechanical properties

    PubMed Central

    Ma, Zuwei; Hong, Yi; Nelson, Devin M.; Pichamuthu, Joseph E.; Leeson, Cory E.; Wagner, William R.

    2011-01-01

    Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%), but showed poor resilience under large strains due to stress-induced crystallization of the PCL segments, with a permanent set of 677±30% after tensile failure. To obtain softer and more resilient PUUs, noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights were used as SSs that were reacted with 1, 4-diisocyanatobutane and chain extended with 1, 4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with non-crystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 Mn and PVLCL 6000 Mn), of which the permanent deformation after tensile failure was only 12±7% and 39±4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU, and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending upon the application target of interest, these materials may provide options or guidance for

  19. Antiwetting Fabric Produced by a Combination of Layer-by-Layer Assembly and Electrophoretic Deposition of Hydrophobic Nanoparticles.

    PubMed

    Joung, Young Soo; Buie, Cullen R

    2015-09-16

    This work describes a nanoparticle coating method to produce durable antiwetting polyester fabric. Electrophoretic deposition is used for fast modification of polyester fabric with silica nanoparticles embedded in polymeric networks for high durability coatings. Typically, electrophoretic deposition (EPD) is utilized on electrically conductive substrates due to its dependence on an applied electrical field. EPD on nonconductive materials has been attempted but are limited by weak adhesion, cracks, and other irregularities. To resolve these issues, we coat polyester fabric with thin polymer layers using electrostatic self-assembly (layer-by-layer self-assembly). Next, silica nanoparticles are uniformly dispersed on the polymer layers. Finally, polymerically stabilized silica nanoparticles are deposited by EPD on the fabric, followed by heat treatment. The modified fabric shows high static contact angle and low contact angle hysteresis, while keeping its original color, flexibility, and air permeability. During a skin fiction resistance test, the hydrophobicity of the coating layer was maintained over 500 h. Furthermore, we also show that this approach facilitates patterned regions of wettability by modifying the electric field in EPD.

  20. Morphological and biodegradability studies of Euphorbia latex modified polyester - Banana fiber composites

    NASA Astrophysics Data System (ADS)

    Rai, Bhuvneshwar; Kumar, Gulshan; Diwan, R. K.

    2016-05-01

    The composites of Banana fiber were prepared using polyester resin blended Euphorbia coagulum, morphology and the degree of rate of aerobic biodegradation of the prepared composites were studied. Polyester resin blended Euphorbia coagulum containing Banana fiber, Euphorbia coagulum and polyester resin taken in the ratio 40: 24: 36 was used for the study, which was the optimum composition of the composite reported in a previous study by the authors. In the biodegradability study cellulose has been used as positive reference material. Result shows that Euphorbia coagulum modified polyester - Banana fiber composites exhibited biodegradation to the extent of around 40%. The use of developed green composites may help in reducing the generation of non-biodegradable polymeric wastes.

  1. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  2. Analytical assessment of woven fabrics under vertical stabbing - The role of protective clothing.

    PubMed

    Hejazi, Sayyed Mahdi; Kadivar, Nastaran; Sajjadi, Ali

    2016-02-01

    Knives are being used more commonly in street fights and muggings. Therefore, this work presents an analytical model for woven fabrics under vertical stabbing loads. The model is based on energy method and the fabric is assumed to be unidirectional comprised of N layers. Thus, the ultimate stab resistance of fabric was determined based on structural parameters of fabric and geometrical characteristics of blade. Moreover, protective clothing is nowadays considered as a strategic branch in technical textile industry. The main idea of the present work is improving the stab resistance of woven textiles by using metal coating method. In the final, a series of vertical stabbing tests were conducted on cotton, polyester and polyamide fabrics. Consequently, it was found that the model predicts with a good accuracy the ultimate stab resistance of the sample fabrics.

  3. Tensile properties of bacterial cellulose nanofibers - polyester composites

    NASA Astrophysics Data System (ADS)

    Abral, H.; Mahardika, M.

    2016-07-01

    The paper shows tensile properties of bacterial cellulose (BC) nanofibers and polyester (PO) matrix composites. Tensile properties including tensile strength (TS), modulus elasticity (ME), and elongation (EL) were observed respectively. BC nanofibers exist in the form of a sheet that was then varied in matrix PO. The BC sheet was mounted by one, three, five and seven pieces respectively in the matrix PO. The tensile strength of the composites was conducted by using the tensile equipment. The results showed that the tensile strength of the composite with a single sheet of BC was lower than that of pure PO. The ST value achieved maximum level in the number of layers of BC three pieces, but then it decreased for the composites reinforced five and seven pieces of BC nanofiber, respectively. Scanning Electron Microscope (SEM) observation exhibits bad interface bonding between BC nanofibers and PO matrix.

  4. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  5. The research of far infrared flame retardant polyester staple fiber

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  6. Validation of the Target Protein of Insecticidal Dihydroagarofuran Sesquiterpene Polyesters

    PubMed Central

    Lu, Lina; Qi, Zhijun; Li, Qiuli; Wu, Wenjun

    2016-01-01

    A series of insecticidal dihydroagarofuran sesquiterpene polyesters were isolated from the root bark of Chinese bittersweet (Celastrus angulatus Max). A previous study indicated that these compounds affect the digestive system of insects, and aminopeptidase N3 and V-ATPase have been identified as the most putative target proteins by affinity chromatography. In this study, the correlation between the affinity of the compounds to subunit H and the insecticidal activity or inhibitory effect on the activity of V-ATPase was analyzed to validate the target protein. Results indicated that the subunit H of V-ATPase was the target protein of the insecticidal compounds. In addition, the possible mechanism of action of the compounds was discussed. The results provide new ideas for developing pesticides acting on V-ATPase of insects. PMID:26999207

  7. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups

    PubMed Central

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E.

    2013-01-01

    Controlled release of non-steroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin (II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic towards mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved. PMID:23957612

  8. The water absorption effect on the hardness of composites polyester

    NASA Astrophysics Data System (ADS)

    Mohammed, A. A.; Issa, T. T.

    2016-04-01

    Unsaturated polyester resin (UPE) was used as the matrix .The iron woven wire and E-glass fiber type (0 - 9°), were used as a reinforcements additives of weight percentage (5, 10, 15) respectively. Samples were prepared by the hand lay-up method for (UPE), (UPE -Fe) and (UPE- Glass). Chemical analysis was used to identify the composition of Fe wire. Water immersing at room temperature for all samples were done at (2, 5, 7, 9, 12) days. Hardness test (Brinell) showed decreasing with increasing in immersion time for (UPE) from (67) HB to (95) HP after adding the reinforcement Fe fibers, with increasing in the water absorbed content especially in the days (2, 5). The water content of absorption was found to be either decreasing or increasing depending on the number of reinforcing layers added.

  9. Synthesis of functionalized CNTs/hyperbranched polyester nanocomposites

    NASA Astrophysics Data System (ADS)

    Pan, Yufeng; Cui, Xiaokun; Zhang, Yue

    2017-01-01

    Carbon nanotubes (CNTs) were unzipped using the modified Hummer method to prepare the CNTs-GO microstructure (see Fig. 1). A new type of CNTs-GO-H20 nanocomposite has been synthesized by grafting hyperbranched (HB) polyester (Boltorn H20) brushes on the CNTs-GO by coupling agent (KH560). The morphology of CNTs-GO-H20 was characterized by FTIR, TEM, XPS and TGA. The FT-IR data and XPS data evidenced that CNTs-GO-H20 nanocomposites were synthesized successfully. The addition of CNTs improved the thermal stability of the nanocomposites. The TEM data showed that the CNTs-GO microstructure was also prepared. These electrochemical measurements results indicated that coatings provided greater protection against corrosion behavior. Moreover, the nanocomposite material improved corrosion resistance of the coating.

  10. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups.

    PubMed

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E

    2013-10-14

    Controlled release of nonsteroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin(II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic toward mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved.

  11. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles.

    PubMed

    Fich, Eric A; Segerson, Nicholas A; Rose, Jocelyn K C

    2016-04-29

    Cutin, a polyester composed mostly of oxygenated fatty acids, serves as the framework of the plant cuticle. The same types of cutin monomers occur across most plant lineages, although some evolutionary trends are evident. Additionally, cutins from some species have monomer profiles that are characteristic of the related polymer suberin. Compositional differences likely have profound structural consequences, but little is known about cutin's molecular organization and architectural heterogeneity. Its biological importance is suggested by the wide variety of associated mutants and gene-silencing lines that show a disruption of cuticular integrity, giving rise to numerous physiological and developmental abnormalities. Mapping and characterization of these mutants, along with suppression of gene paralogs through RNA interference, have revealed much of the biosynthetic pathway and several regulatory factors; however, the mechanisms of cutin polymerization and its interactions with other cuticle and cell wall components are only now beginning to be resolved.

  12. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.

    PubMed

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-12-29

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  13. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters.

    PubMed

    Haernvall, Karolina; Zitzenbacher, Sabine; Yamamoto, Motonori; Schick, Michael Bernhard; Ribitsch, Doris; Guebitz, Georg M

    2017-02-22

    Extracellular enzymes are assumed to be responsible for the initial and rate limiting step in biodegradation of polymers. Mainly enzymes with aliphatic esters as their natural substrates (e.g. lipase, cutinases) have until now been evaluated for polyester hydrolysis studies. However, the potential of enzymes with aromatic esters as their natural substrates (e.g. arylesterases) have been neglected although many types of polyester today contain aromatic moieties. Consequently, in order to elucidate biodegradation of phthalic polyesters in aquatic systems, a novel arylesterase (PpEst) was investigated related to hydrolysis of ionic phthalic polyesters. The hydrolysis of various ionic phthalic polyesters by PpEst was mechanistically studied. The polyester building blocks (terephthalic acid (TA), 5-sulfoisophthalic acid (NaSIP) and alkyl or ether diols) were systematically varied to investigate the impact on hydrolysis. PpEst effectively hydrolyzed all 14 synthetized ionic phthalic polyesters as indicated by released TA. However, no NaSIP was detected indicating that PpEst has a limited capacity to cleave bonds in close vicinity to the ionic monomer NaSIP. The systematic study indicated that increasing water solubility and hydrophilicity significantly enhanced hydrolysis. A higher release of TA was seen with increasing NaSIP ratio while up to 20 times more TA was released when alkyl diols were replaced by ether diol analogues. In contrast, cyclic and branched diols had a negative effect on hydrolysis when compared to linear diols. PpEst also revealed a linear release of TA over seven days for ether containing polyesters, indicating a very stable enzyme.

  14. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    PubMed Central

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  15. The identification of cutin synthase: formation of the plant polyester cutin.

    PubMed

    Yeats, Trevor H; Martin, Laetitia B B; Viart, Hélène M-F; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J; Buda, Gregory J; Domozych, David S; Clausen, Mads H; Rose, Jocelyn K C

    2012-07-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

  16. Toxicity and biodegradation of products from polyester hydrolysis.

    PubMed

    Kim, M N; Lee, B Y; Lee, I M; Lee, H S; Yoon, J S

    2001-01-01

    Toxicity of products from polyester hydrolysis such as succinic acid (SA), adipic acid (AA), mandelic acid (MA), terephthalic acid (TA), 1,4-butanediol (1,4-B), ethylene glycol (EG), styrene glycol (SG) and 1,4-cyclohexane dimethanol (1,4-C) was evaluated by phytotoxicity test on germination of young radish seeds and by cytotoxicity test on HeLa cells. The phytotoxicity test revealed SG > MA > 1,4-C > AA approximately SA > TA approximately EG > 1,4-B in order of decreasing toxicity taking into consideration the growth behavior after germination as well as the percentage of germination. Toxicity on HeLa cells decreased in slightly different order compared to that on young radish seeds, i.e. SG > 1,4-C > MA > TA > SA > AA > EG > 1,4-B. Tests for the phytotoxicity and for cytotoxicity indicated that the aromatic compounds were more harmful than the aliphatic ones. Each group of 4 strains which grew most rapidly on each agar plate containing SA, AA, MA, TA, 1,4-B, EG, SG and 1,4-C respectively as a sole carbon source was identified by the fatty acid methyl esters analysis. The modified Sturm test was carried out using the single isolated strain, an activated sludge or a mixed soil to measure the rate of mineralization of the compounds into carbon dioxide. The aliphatic compounds were mineralized more easily than the aromatic compounds. 1,4-C showed the most exceptionally slow degradation. A scrutiny of residual 1,4-C after degradation is required before polyesters containing 1,4-C could be classified into compostable because 1,4-C has detrimental effects on young radish seeds and HeLa cells and has a tendency to accumulate in the environment due to its slow degradability.

  17. Polyester-based thin films with high photosensitivity

    SciTech Connect

    POTTER,KELLY SIMMONS; POTTER JR.,BARRETT G.; WHEELER,DAVID R.; JAMISON,GREGORY M.

    2000-02-29

    A great deal of research has been done to understand the photosensitive optical response of inorganic glasses, which exhibit a permanent, photo-induced refractive index change due to the presence of optically active point defects in the glass structure. In the present work, the authors have performed a preliminary study of the intrinsic photosensitivity of a polyester containing a cinnamylindene malonate group (CPE, a photo- and thermal-crosslinkable group) for use in photonic waveguide devices. Thin films of CPE (approximately 0.5 microns thick) were spun onto fused silica substrates. Optical absorption in the thin films was evaluated both before and after exposure to UV radiation sources. It was found that the polyester exhibits two dominant UV absorption bands centered about 240 nm and 330 nm. Under exposure to 337 nm radiation (nitrogen laser) a marked bleaching of the 330 nm band was observed. This band bleaching is a direct result of the photo-induced crosslinking in the cinnamylindene malonate group. Exposure to 248 nm radiation (excimer laser), conversely, resulted in similar bleaching of the 330 nm band but was accompanied by nearly complete bleaching of the higher energy 240 nm band. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of {minus}10{sup {minus}2} are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates a refractive index change at 632 nm of {minus}0.061 {+-} 0.002. Thus, the results of this investigation confirm the photosensitive potential of this type of material.

  18. Ultraviolet curing for surface modification of textile fabrics.

    PubMed

    Ferrero, Franco; Periolatto, Monica

    2011-10-01

    In this study, cotton, polyester and polyamide fabrics were treated by radical or cationic ultraviolet curing of different commercial products conferring water and oil repellency. Moreover, radical ultraviolet curing of chitosan was applied to confer antimicrobial properties. The advantages of this technology are well known making it very interesting for industrial applications: energy savings, low environmental impact, simple, cheap and small equipment, high treatment speed. The polymerization was controlled through weight gain and gel content measurements, while the properties of hydro and oil repellency were determined in terms of contact angle, moisture adsorption and water vapor permeability. The polymer distribution on fabric surfaces was investigated by scanning electron microscopy and atomic force microscopy. However the fabrics treated with chitosan were subjected to the standard test for determining the antimicrobial activity. Finally the finished cotton samples were subjected to washing fastness tests.

  19. Fabrication of compound nonwoven materials for soft body armor.

    PubMed

    Lin, Chia-Chang; Lin, Jia-Horng; Chang, Chun-Cheng

    2011-09-01

    The primary objective of body armor research is the development of low-cost, lightweight, wearable garments that effectively resist ballistic impact. This study introduces a material intended to reduce nonpenetration trauma by absorbing energy from ballistic impacts. Layers of web were made by low-melting point polyester (LMPET) on unaligned fibers of high-strength polyamide 6 (HSPA6). A compound nonwoven fabric was made by laying high-strength Vectran filaments between two layers of HSPA6-LMPET web. The new fabric underwent needle punching and thermal bonding to form a composite sandwich structure. The new fabric was subjected to a falling weight impact test and a ballistic impact test. The results indicated that the material with the new design reduced maximum indentation depth by 8%. Furthermore, soft body armor made from the material with the new design would cost less to produce and would weigh 22.5% less than conventional soft body armor.

  20. The Effect of Low Temperatures on Coated and Uncoated Fabrics,

    DTIC Science & Technology

    1982-03-01

    pourcentage d’allongement et le travail a la rupture de treize tissus enduits et non enduits a fif 6tudig. Ii ressort qua les raglanges coton -matiires...C being a polyester and cotton blend, and N/C-G and N/C-F a nylon and cotton blend, N/C-F being the finished and dyed version of N/C-G. Fabrics N-R...and N-R-PU are similar ripatop nylons, N-R with water-repellent finish and N-R-PU with one side coated with polyurethan. For this study, N-R is

  1. Innovative Self-Cleaning and Biocompatible Polyester Textiles Nano-Decorated with Fe–N-Doped Titanium Dioxide

    PubMed Central

    Nica, Ionela Cristina; Stan, Miruna Silvia; Dinischiotu, Anca; Popa, Marcela; Chifiriuc, Mariana Carmen; Lazar, Veronica; Pircalabioru, Gratiela G.; Bezirtzoglou, Eugenia; Iordache, Ovidiu G.; Varzaru, Elena; Dumitrescu, Iuliana; Feder, Marcel; Vasiliu, Florin; Mercioniu, Ionel; Diamandescu, Lucian

    2016-01-01

    The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO2 nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts. Microscopic examination and quantitative assays have been used to evaluate the cellular morphology and viability, cell membrane integrity, and inflammatory response. All treated PES materials specifically inhibited the growth of Gram-negative bacilli strains after 15 min of contact, being particularly active against Pseudomonas aeruginosa. PES fabrics treated with photocatalysts did not affect cell membrane integrity nor induce inflammatory processes, proving good biocompatibility. These results demonstrate that the treatment of PES materials with TiO2-1% Fe–N particles could provide novel biocompatible fabrics with short term protection against microbial colonization, demonstrating their potential for the development of innovative textiles that could be used in biomedical applications for preventing patients’ accidental contamination with microorganisms from the hospital environment. PMID:28335342

  2. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites.

    PubMed

    Pramanik, Sujata; Bharali, Pranjal; Konwar, B K; Karak, Niranjan

    2014-02-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry.

  3. Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block.

    PubMed

    Jiang, Yi; Woortman, Albert J J; Alberda van Ekenstein, Gert O R; Petrović, Dejan M; Loos, Katja

    2014-07-14

    2,5-Bis(hydroxymethyl)furan is a highly valuable biobased rigid diol resembling aromatic monomers in polyester synthesis. In this work, it was enzymatically polymerized with various diacid ethyl esters by Candida antarctica Lipase B (CALB) via a three-stage method. A series of novel biobased furan polyesters with number-average molecular weights (M(n)) around 2000 g/mol were successfully obtained. The chemical structures and physical properties of 2,5-bis(hydroxymethyl)furan-based polyesters were fully characterized. Furthermore, we discussed the effects of the number of the methylene units in the dicarboxylic segments on the physical properties of the furan polyesters.

  4. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  5. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  6. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  7. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.

    PubMed

    Korley, Julius N; Yazdi, Sara; McHugh, Kevin; Kirk, James; Anderson, James; Putnam, David

    2016-08-01

    The one-step synthesis of a polyester family containing dihydroxyacetone is described along with a quantitative analysis of in vitro/in vivo degradation kinetics and initial biocompatibility. Polyesters were synthesized by combining dihydroxyacetone, which is a diol found in the eukaryotic glucose metabolic pathway, with even-carbon aliphatic diacids (adipic, suberic, sebacic) represented in the long-chain alpha carboxylic acid metabolic pathway, by Schӧtten-Baumann acylation. We show that by using a crystalline monomeric form of dihydroxyacetone, well-defined polyesters can be formed in one step without protection and deprotection strategies. Both diacid length and polyester molecular weight were varied to influence polymer physical and thermal properties. Polyesters were generated with number-averaged (Mn) molecular weights ranging from 2200-11,500. Polydispersities were consistent with step-growth polymerization and ranged from 2 to 2.6. The melting (Tm) and recrystallization (Tc) temperatures were impacted in an unpredictable manner. Thermal transitions for the polyesters were highest for the adipic acid followed by suberic acid and sebacic acid, respectively. It was shown that the thermal response of the DHA-based polyesters was influenced by both the diacid length and molecular weight. In vitro degradation studies revealed first-order weight loss kinetics, the molecular weight loss followed first order kinetics with 25%-40% of the original mass remaining after 8 weeks. In vivo testing over 16 weeks highlighted that mass loss ranged from ∼70% to ∼6% depending upon initial molecular weight and diacid length. Histological analysis revealed rapid resolution of both acute and chronic inflammatory responses, normal foreign body responses were observed and no inflammation was present after week 4. This one-step synthesis proved robust with unique copolymers warranting further study as potential biomaterials.

  8. Dielectric investigation of some woven fabrics

    NASA Astrophysics Data System (ADS)

    Cerovic, Dragana D.; Dojcilovic, Jablan R.; Asanovic, Koviljka A.; Mihajlidi, Tatjana A.

    2009-10-01

    In this paper, we have investigated the temperature dependence of dielectric properties (relative dielectric permeabilities and dielectric tangents of losses) for woven fabrics of hemp, jute, flax, cotton, polyester (PES), cotton-PES mixture, and wool. The measurements have been carried out at a temperature range from -50 to 50 °C in the electric periodic field at a frequency 1 MHz in vacuum. For the same specimens, the values of the dielectric properties have also been measured at an air temperature of 21 °C and at relative humidities of 40%, 60%, and 80%. At different frequencies from 80 kHz to 5 MHz, the dielectric properties have been measured at a relative humidity of 40% and at a temperature of 21 °C. An investigation of the dielectric properties of woven fabrics can provide a better understanding of the relation between the dielectric properties of woven fabrics and the different raw material compositions, temperatures, relative air humidities, and frequencies for specimens. Hence, this investigation helps to improve textile material properties.

  9. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  10. The use of bicomponent fabrics for bonding polypropylene sockets in prostheses.

    PubMed

    Coombes, A G; Lawrence, R B; Davies, R M

    1985-12-01

    A technique has been established for bonding polypropylene sockets to the structural components of prostheses based on the use of bicomponent knitted fabrics which adhere to the surface of polypropylene sockets during thermoforming. The strength of adhesion of fabric bonded polypropylene with polyester resin based microballoon for instance is increased by more than 10 times relative to uncoated polypropylene. This procedure has been approved by the United Kingdom Department of Health for incorporating polypropylene sockets in conventional, laminated plastic patellar tendon bearing (PTB) prostheses. The bonding technique described should find general application for bonding polypropylene during the manufacture of both prosthetic and orthotic devices.

  11. Dielectric Properties of Polymer Matrix Composites Prepared from Conductive Polymer Treated Fabrics

    DTIC Science & Technology

    1992-02-01

    JPS 09827 finish. The doping agent used was anthraquinone-2 sulfonic acid. (3) A 5 x 5 S2-glass 24 oz. woven roving with an Owens Corning 463 finish...x- I S2-glass 27 oz. woven roving with an Owens Corning 933 finish, nominally equiv- alent to the JPS 09827 finish. The doping agent used was...were fabricated by laminating the layers of Fabric with wet polyester resin ( Owens Corning E-780) and subsequently processing the com- posites using the

  12. Polyester scaffolds with bimodal pore size distribution for tissue engineering.

    PubMed

    Sosnowski, Stanislaw; Woźniak, Piotr; Lewandowska-Szumieł, Małgorzata

    2006-06-16

    This paper presents a method for the preparation of porous poly(L-lactide)/poly[(L-lactide)-co-glycolide] scaffolds for tissue engineering. Scaffolds were prepared by a mold pressing-salt leaching technique from structured microparticles. The total porosity was in the range 70-85%. The pore size distribution was bimodal. Large pores, susceptible for osteoblasts growth and proliferation had the dimensions 50-400 microm. Small pores, dedicated to the diffusion of nutrients or/and metabolites of bone forming cells, as well as the products of hydrolysis of polyesters from the walls of the scaffold, had sizes in the range 2 nm-5 microm. The scaffolds had good mechanical strength (compressive modulus equal to 41 MPa and a strength of 1.64 MPa for 74% porosity). Scaffolds were tested in vitro with human osteoblast-like cells (MG-63). It was found that the viability of cells seeded within the scaffolds obtained using the mold pressing-salt leaching technique from structured microparticles was better when compared to cells cultured in scaffolds obtained by traditional methods. After 34 d of culture, cells within the tested scaffolds were organized in a tissue-like structure. Photos of section of macro- and mesoporous PLLA/PLGA scaffold containing 50 wt.-% of PLGA microspheres after 34 d of culture. Dark spots mark MG-63 cells, white areas belong to the scaffold. The specimen was stained with haematoxylin/eosin. Bar = 100 microm.

  13. Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters.

    PubMed

    Zhu, Congcong; Kustra, Stephen R; Bettinger, Christopher J

    2013-07-01

    Synthetic biodegradable elastomers are an emerging class of materials that play a critical role in supporting innovations in bioabsorbable medical implants. This paper describes the synthesis and characterization of poly(glycerol-co-sebacate)-cinnamate (PGS-CinA), a biodegradable elastomer based on hyperbranched polyesters derivatized with pendant cinnamate groups. PGS-CinA can be prepared via photodimerization in the absence of photoinitiators using monomers that are found in common foods. The resulting network exhibits a Young's modulus of 50.5-152.1kPa and a projected in vitro degradation half-life time between 90 and 140days. PGS-CinA elastomers are intrinsically cell-adherent and support rapid proliferation of fibroblasts. Spreading and proliferation of fibroblasts are loosely governed by the substrate stiffness within the range of Young's moduli in PGS-CinA networks that were prepared. The thermo-mechanical properties, biodegradability and intrinsic support of cell attachment and proliferation suggest that PGS-CinA networks are broadly applicable for use in next generation bioabsorable materials including temporary medical devices and scaffolds for soft tissue engineering.

  14. Viscoelastic properties of kenaf reinforced unsaturated polyester composites

    NASA Astrophysics Data System (ADS)

    Osman, Ekhlas A.; Mutasher, Saad A.

    2014-03-01

    In order to quantify the effect of temperature on the mechanical and dynamic properties of kenaf fiber unsaturated polyester composites, formulations containing 10 wt.% to 40 wt.% kenaf fiber were produced and tested at two representative temperatures of 30°C and 50°C. Dynamic mechanical analysis was performed, to obtain the strain and creep compliance for kenaf composites at various styrene concentrations. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve known as a master curve. This technique is known as the time-temperature superposition principle. Shift factors conformed to a William-Landel-Ferry (WLF) equation. However, more long term creep data was needed in order to further validate the applicability of time-temperature superposition principle (TTSP) to this material. The primary creep strain model was fitted to 60 min creep data. The resulting equation was then extrapolated to 5.5 days; the creep strain model of power-law was successfully used to predict the long-term creep behavior of natural fiber/thermoset composites.

  15. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases.

    PubMed

    Perz, Veronika; Baumschlager, Armin; Bleymaier, Klaus; Zitzenbacher, Sabine; Hromic, Altijana; Steinkellner, Georg; Pairitsch, Andris; Łyskowski, Andrzej; Gruber, Karl; Sinkel, Carsten; Küper, Ulf; Ribitsch, Doris; Guebitz, Georg M

    2016-05-01

    Two novel esterases from the anaerobe Clostridium botulinum ATCC 3502 (Cbotu_EstA and Cbotu_EstB) were expressed in Escherichia coli BL21-Gold(DE3) and were found to hydrolyze the polyester poly(butylene adipate-co-butylene terephthalate) (PBAT). The active site residues (triad Ser, Asp, His) are present in both enzymes at the same location only with some amino acid variations near the active site at the surrounding of aspartate. Yet, Cbotu_EstA showed higher kcat values on para-nitrophenyl butyrate and para-nitrophenyl acetate and was considerably more active (sixfold) on PBAT. The entrance to the active site of the modeled Cbotu_EstB appears more narrowed compared to the crystal structure of Cbotu_EstA and the N-terminus is shorter which could explain its lower activity on PBAT. The Cbotu_EstA crystal structure consists of two regions that may act as movable cap domains and a zinc metal binding site.

  16. Adsorption of proteins from plasma at polyester non-wovens.

    PubMed

    Klomp, A J; Engbers, G H; Mol, J; Terlingen, J G; Feijen, J

    1999-07-01

    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma-non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency glow discharge (RFGD) treated poly(ethylene terephthalate) non-woven (NW-PET) and two commercial surface-modified non-wovens were contacted with human plasma. Protein desorption by sodium dodecyl sulphate (SDS) was evaluated by X-ray photoelectron spectroscopy (XPS). The desorbed proteins were characterized by gel electrophoresis and immunoblotting. Compared to the commercial surface-modified non-wovens, unmodified and RFGD-treated NW-PETs adsorbed a relatively high amount of protein. Significantly more protein was removed from the hydrophobic NW-PET by SDS than from the hydrophilic RFGD-treated non-wovens. RFGD treatment of NW-PET reduces the reversibility of protein adsorption. Less albumin and fibrinogen were removed from the RFGD-treated non-wovens than from NW-PET. In addition, a large amount of histidine-rich glycoprotein was removed from RFGD-treated non-wovens, but not from NW-PET. The different behaviour of RFGFD-treated non-wovens towards protein adsorption is probably caused by differences in the chemical reactivity of the non-woven surfaces.

  17. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior.

    PubMed

    Karavelidis, Vassilios; Karavas, Evangelos; Giliopoulos, Dimitrios; Papadimitriou, Sofia; Bikiaris, Dimitrios

    2011-01-01

    Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164-228 nm, and the drug loading content was 16%-23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity.

  18. An experimental study of shock wave propagation through a polyester film

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Jeon, Hongjoo

    2016-11-01

    A polyester film is available in a variety of uses such as packaging, protective overlay, barrier protection, and other industrial applications. In the current study, shock tube experiments are performed to study the influence of a polyester film on the propagation of a planar shock wave. A conventional shock tube is used to create incident shock Mach numbers of Ms = 1.34 and 1.46. A test section of the shock tube is designed to hold a 0.009 mm, 0.127 mm, 0.254 mm, or 0.508 mm thick polyester film (Dura-Lar). High-temporal resolution schlieren photography is used to visualize the shock wave mitigation caused by the polyester film. In addition, four pressure transducers are used to measure the elapsed time of arrival and overpressure of the shock wave both upstream and downstream of the test section. Results show that the transmitted shock wave in the polyester film is clearly observed and the transmitted shock Mach number is decreased by increasing film thickness. This study is supported by the National Science Foundation under Grant No. CBET-1437412.

  19. Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles.

    PubMed

    Nelson, Ashley M; Pekkanen, Allison M; Forsythe, Neil L; Herlihy, John H; Zhang, Musan; Long, Timothy E

    2017-01-09

    The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites. Varying ionic content influenced thermal properties and offered a wide-range, -41 to 40 °C, of composition-dependent glass transition temperatures (Tgs). In addition to desirable melt and thermal stability, polyesters with ionic concentrations ≥15 mol % readily dispersed in water, suggesting potential as nonviral gene delivery vectors. An electrophoretic gel shift assay confirmed the novel cationic copolyesters successfully bound DNA at an N/P ratio of 4 for 50 mol % and 75 mol % charged copolyesters (P(NA50-co-ImA50) and P(NA25-co-ImA75)), and an N/P ratio of 5 for 100 mol % Im (PImA). Polyplexes exhibited insignificant cytotoxicity even at high concentrations (200 μg/mL), and a Luciferase transfection assay revealed the ionic (co)polyesters transfected DNA significantly better than the untreated controls. The successful transfection of these novel (co)polyesters inspires future imidazolium-containing polyester design.

  20. Liquefaction of corn stover and preparation of polyester from the liquefied polyol.

    PubMed

    Yu, Fei; Liu, Yuhuan; Pan, Xuejun; Lin, Xiangyang; Liu, Chengmei; Chen, Paul; Ruan, Roger

    2006-01-01

    This research investigated a novel process to prepare polyester from corn stover through liquefaction and crosslinking processes. First, corn stover was liquefied in organic solvents (90 wt% ethylene glycol and 10 wt% ethylene carbonate) with catalysts at moderate temperature under atmospheric pressure. The effect of liquefaction temperature, biomass content, and type of catalyst, such as H2SO4, HCl, H3PO4, and ZnCl2, was evaluated. Higher liquefaction yield was achieved in 2 wt% sulfuric acid, 1/4 (w/w) stover to liquefying reagent ratio; 160 degrees C temperature, in 2 h. The liquefied corn stover was rich in polyols, which can be directly used as feedstock for making polymers without further separation or purification. Second, polyester was made from the liquefied corn stover by crosslinking with multifunctional carboxylic acids and/or cyclic acid anhydrides. The tensile strength of polyester is about 5 MPa and the elongation is around 35%. The polyester is stable in cold water and organic solvents and readily biodegradable as indicated by 82% weight loss when buried in damp soil for 10 mo. The results indicate that this novel polyester could be used for the biodegradable garden mulch film production.

  1. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior

    PubMed Central

    Karavelidis, Vassilios; Karavas, Evangelos; Giliopoulos, Dimitrios; Papadimitriou, Sofia; Bikiaris, Dimitrios

    2011-01-01

    Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164–228 nm, and the drug loading content was 16%–23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity. PMID:22162659

  2. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration.

  3. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    NASA Astrophysics Data System (ADS)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  4. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.

    PubMed

    Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi

    2011-07-11

    Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.

  5. 75 FR 5763 - Notice of Correction to the First Administrative Review of Certain Polyester Staple Fiber From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Staple Fiber From the People's Republic of China: Final Results of Antidumping Duty Administrative Review... antidumping duty order on certain polyester staple fiber from the People's Republic of China (``PRC''). See First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China:...

  6. 75 FR 70906 - Certain Polyester Staple Fiber From the People's Republic of China: Partial Rescission of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Partial... certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC'') for the period of... from Ningbo Dafa Chemical Fiber Co., Ltd. (``Ningbo Dafa'') and Cixi Santai Chemical Fiber Co.,...

  7. 77 FR 4543 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for... antidumping duty order on certain polyester staple fiber from Taiwan for the period May 1, 2010, through...

  8. 76 FR 69702 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final...- 2010 administrative review of the antidumping duty order on certain polyester staple fiber from the... Results. We find that the mandatory respondents in this review, Ningbo Dafa Chemical Fiber Co.,...

  9. A preliminary identification and determination of characteristic volatile organic compounds from cotton, polyester and terry-towel by headspace solid phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Stapleton, Katherine; Dean, John R

    2013-06-21

    Analysis of fifteen volatile organic compounds previously associated with laundry malodour has been investigated using headspace solid phase microextraction gas chromatography-mass spectrometry. Limits of detection (all determined on a 25 cm(2) area of fabric) ranged from a low of 0.4 ng (for guaiacol) through to a high of 28 ng (for 3-methylindole) on cotton; values on polyester ranged from a low of 0.7 ng (for dimethyl trisulfide) through to a high of 37 ng (for 3-methylindole); and, values on terry-towel ranged from a low of 1.7 ng (for guaiacol) through to a high of 157 ng (for ethyl benzene). There was a lack of correlation between the level of malodour and the occurrence of any of the VOCs detected; it could be that other compounds not evaluated in this study are responsible for malodour or it could be a collaborative effect of the various compounds studied.

  10. Triaxial Fabrics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Gentax Corporation's triaxal fabrics are woven from three separate yarn sets whose intersections form equilateral triangles. This type of weave, derived from space shuttle pressure suits, assures practically equal strength in every direction; has essentially no bias, or weak dimension offering greater resistance to tear and shear along with significant weight reduction. Applications of the Triax line include inflatable equipment, life vests, aircraft evacuation slides, helicopter flotation devices, tension structures, safety clothing and sailcloth for boats. Ability to accept compound curvatures with no distortion of the weave configuration makes it useful in manufacturing molded composites.

  11. Fabric-based alkaline direct formate microfluidic fuel cells.

    PubMed

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  12. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery.

  13. Toner and paper-based fabrication techniques for microfluidic applications.

    PubMed

    Coltro, Wendell Karlos Tomazelli; de Jesus, Dosil Pereira; da Silva, José Alberto Fracassi; do Lago, Claudimir Lucio; Carrilho, Emanuel

    2010-08-01

    The interest in low-cost microfluidic platforms as well as emerging microfabrication techniques has increased considerably over the last years. Toner- and paper-based techniques have appeared as two of the most promising platforms for the production of disposable devices for on-chip applications. This review focuses on recent advances in the fabrication techniques and in the analytical/bioanalytical applications of toner and paper-based devices. The discussion is divided in two parts dealing with (i) toner and (ii) paper devices. Examples of miniaturized devices fabricated by using direct-printing or toner transfer masking in polyester-toner, glass, PDMS as well as conductive platforms as recordable compact disks and printed circuit board are presented. The construction and the use of paper-based devices for off-site diagnosis and bioassays are also described to cover this emerging platform for low-cost diagnostics.

  14. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology.

    PubMed

    Cameron, Donald J A; Shaver, Michael P

    2011-03-01

    A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).

  15. Ammonium Y zeolite applied as a thermochemolysis reagent for identification of polyethers and polyesters.

    PubMed

    Blazsó, Marianne; Bozi, János

    2013-01-04

    A potential thermochemolysis reagent has been tested for the pyrolysis gas chromatographic identification of polyether, polyester and polyether- or polyester-based thermoplastic polyurethane. The main advantage of ammonium Y zeolite over liquid reagents is that it does not react prior to pyrolysis, and its reactions have no incomplete products. The procedure of the thermochemolysis is as simple as running a pyrolysis-GC/MS analysis sampling a powder mixture of roughly equal mass of polymer and ammonium Y zeolite. The GC/MS chromatograms obtained show that the products of thermochemolysis are specific to the diol and dicarboxylic units of the polymer. It was observed that ethanal or 1,4-dioxane forms from ethylene oxide components of polyethers and polyesters, tetrahydrofuran from butylene oxide units, hexanedinitrile from adipate groups, and benzodinitrile from terephthalate groups.

  16. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering.

    PubMed

    Thomas, Lynda V; Nair, Prabha D

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.

  17. Moisture Management Behaviour of Knitted Fabric from Structurally Modified Ring and Vortex Spun Yarn

    NASA Astrophysics Data System (ADS)

    Sharma, Navendu; Kumar, Pawan; Bhatia, Dinesh; Sinha, Sujit Kumar

    2016-10-01

    The acceptability of a new product is decided by its performance, level of improvement in quality and economy of production. The basic aim of generating micro pores in a textile structure is to provide better thermo-physiological comfort by enhancing the breathability and hence improving moisture management behaviour. In the present study, an attempt has been made to create a relatively more open structure through removal of a component. A comparative assessment with a homogeneous and parent yarn was also made. Yarns of two linear densities, each from ring and vortex spinning systems were produced using 100 % polyester and 80:20 polyester/cotton blend. The modified yarn was produced by removing a component, viz; cotton, by treatment with sulphuric acid from the blended yarn. The knitted fabric from modified yarn was found to show significant improvement in air permeability, water vapour permeability and total absorbency while the wicking characteristic was found to decline.

  18. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.

  19. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  20. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles.

    PubMed

    Tiwari, Ashutosh; Aryal, Santosh; Pilla, Srikanth; Gong, Shaoqin

    2009-06-15

    An amperometric biosensor was fabricated for the quantitative determination of urea in aqueous medium using hematein, a pH-sensitive natural dye. The urease (Urs) was covalently immobilized onto an electrode made of gold nanoparticles functionalized with hyperbranched polyester-Boltron H40 (H40-Au) coated onto an indium-tin oxide (ITO) covered glass substrate. The covalent linkage between the Urs enzyme and H40-Au nanoparticles provided the resulting enzyme electrode (Urs/H40-Au/ITO) with a high level of enzyme immobilization and excellent lifetime stability. The response studies were carried out as a function of urea concentration with amperometric and photometric measurements. The biosensor based on Urs/H40-Au/ITO as the working electrode showed a linear current response to the urea concentration ranging from 0.01 to 35 mM. The urea biosensor exhibited a sensitivity of 7.48 nA/mM with a response time of 3s. The Michaelis-Menten constant for the Urs/H40-Au/ITO biosensor was calculated to be 0.96 mM, indicating the Urs enzyme immobilized on the electrode surface had a high affinity to urea.

  1. Influence of additional coupling agent on the mechanical properties of polyester-agave cantala roxb based composites

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Raharjo, Wijang W.; Wibowo, A.; Harjana, Mazlan, S. A.

    2016-03-01

    The mechanical and morphological properties of the unsaturated polyester resins (UPRs)-agave cantala roxb based composite are investigated in this paper. The cantala fiber woven in 3D angle interlock was utilized as the composite reinforcement. Surface grafting of the cantala fiber through chemical treatment was performed by introducing silane coupling agent to improving the compatibility with the polymer matrix. The fabrication of the composite specimens was conducted using vacuum bagging technique. The effect of additional coupling agent to the morphological appearance of surface fracture was observed using scanning electron microscopy. Meanwhile, the influence of additional silane to the mechanical properties was examined using tensile, bending and impact test. The photograph of surface fracture on the treated specimens showed the residual matrix left on the fibers in which the phenomenon was not found in the untreated specimens. Based on mechanical tests, the treated specimens were successfully increased their mechanical properties by 55%, 9.67%, and 92.4% for tensile strength, flexural strength, and impact strength, respectively, at 1.5% silane coupling agent.

  2. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2013-10-18

    More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.

  3. Dichroism measurements in forensic fibre examination Part 1--Dyed polyester fibres.

    PubMed

    De Wael, K; Vanden Driessche, T

    2011-06-01

    One hundred and twenty dyed polyester samples were examined with plane polarized light on their dichroic behaviour by optical light microscopy (OLM) and microspectrophotometry in the visible range (MSP Vis). It was found that most of these disperse dyed polyester fibres possess a strong dichroism, which fall into two broad categories. Either a decrease of intensity (hypochromic effect) or a change of hue (hypsochromic or bathochromic shift of absorption bands) is noted. These dichroic effects are related to the orientation of the dye structure with respect to the polymer chains.

  4. Effect of different types of textile fabric on spermatogenesis: an experimental study.

    PubMed

    Shafik, A

    1993-01-01

    The effect of different types of textile fabric on spermatogenesis was studied. Twenty-four dogs were divided into two equal groups, one of which wore cotton underpants and the other polyester ones. Seven dogs wearing nothing were used as controls. The underwear was fashioned to fit loosely in the scrotal area so as to avoid its insulating effect. It was worn continuously for 24 months during which the semen character, testicular temperature, hormones (serum testosterone, follicle stimulating hormone, luteinizing hormone, prolactin) and testicular biopsy were examined. The garment was then removed, and the same investigations repeated through another 12 months. The results were analysed statistically. In the polyester group the testicular temperature showed insignificant changes during the period when the pants were worn (P > 0.05). By the end of the 24 months there was a significant decrease in sperm count and motile sperms, with an increase in abnormal forms (P < 0.001); the testicular biopsy showed degenerative changes. After garment removal the semen character improved gradually to normal in 10 dogs; two remained oligozoospermic. There were insignificant changes (P > 0.05) in hormones during the study. In contrast, the cotton and control groups showed insignificant changes (P > 0.05) in all the aforementioned parameters during the 36 months of the study. The polyester pants thus had a deleterious effect on spermatogenesis in the dogs which was, however, reversible in the majority of cases. The cause of this effect is unknown, but it may be assumed that the electrostatic potentials generated by the polyester fabric play a role in it.

  5. Multiplex lateral-flow test strips fabricated by two-dimensional shaping.

    PubMed

    Fenton, Erin M; Mascarenas, Monica R; López, Gabriel P; Sibbett, Scott S

    2009-01-01

    We have fabricated paper- and nitrocellulose-based lateral-flow devices that are shaped in two dimensions by a computer-controlled knife. The resulting star, candelabra, and other structures are spotted with multiple bioassay reagents to produce multiplex lateral-flow assays. We have also fabricated laminar composites in which porous nitrocellulose media are sandwiched between vinyl and polyester plastic films. This minimizes evaporation, protects assay surfaces from contamination and dehydration, and eliminates the need for the conventional hard plastic cassette holders that are typically used to package commercial lateral-flow diagnostic strips. The reported fabrication method is novel, low-cost, and well-suited to (i) fabrication and adoption in resource-poor areas, (ii) prototype development, (iii) high-volume manufacturing, and (iii) improving rates of operator error.

  6. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  7. Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics.

    PubMed

    Chhatre, Shreerang S; Tuteja, Anish; Choi, Wonjae; Revaux, Amélie; Smith, Derek; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2009-12-01

    Surfaces that are strongly nonwetting to oil and other low surface tension liquids can be realized by trapping microscopic pockets of air within the asperities of a re-entrant texture and generating a solid-liquid-vapor composite interface. For low surface tension liquids such as hexadecane (gamma(lv) = 27.5 mN/m), this composite interface is metastable as a result of the low value of the equilibrium contact angle. Consequently, pressure perturbations can result in an irreversible transition of the metastable composite interface to the fully wetted interface. In this work, we use a simple dip-coating and thermal annealing procedure to tune the liquid wettability of commercially available polyester fabrics. A mixture of 10% 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) and 90% polyethyl methacrylate (PEMA) is used to uniformly coat the fabric surface topography. Contact angle measurements show that a robust metastable composite interface with high apparent contact angles can be supported for hexadecane (gamma(lv) = 27.5 mN/m) and dodecane (gamma(lv) = 25.3 mN/m). To tune the solid surface energy of the coated surface, we also developed a reversible treatment using thermal annealing of the surface in contact with either dry air or water. The tunability of the solid surface energy along with the inherent re-entrant texture of the polyester fabric result in reversibly switchable oleophobicity between a highly nonwetting state and a fully wetted state for low surface tension liquids such as hexadecane and dodecane. This tunability can be explained within a design parameter framework, which provides a quantitative criterion for the transition between the two states, as well as accurate predictions of the measured values of the apparent contact angle (theta*) for the dip-coated polyester fabrics.

  8. A fast degrading odd-odd aliphatic polyester-5,7 made by condensation polymerization for biomedical applications.

    PubMed

    Chen, Fei; Nölle, Jan Martin; Wietzke, Steffen; Reuter, Marco; Chatterjee, Sangam; Koch, Martin; Agarwal, Seema

    2012-01-01

    A fast enzymatic degradable aliphatic all-odd-polyester-5,7, based on 1,7-heptanedioic acid (pimelic acid) and 1,5-pentanediol, was synthesized by polycondensation. The structural characterization of the polyester was done using 1D- and 2D-NMR spectroscopic techniques. The properties of the resulting polyester-like crystallization behavior, enzymatic degradation, thermal stability, etc., were investigated using differential scanning calorimetry, wide-angle X-ray diffraction, scanning electron microscopy and gel-permeation chromatography. Terahertz time-domain spectroscopy was employed to determine the glass transition temperature, which could not be revealed reliably by conventional thermal analysis. The properties of all-odd-polyester-5,7 were compared with a well-known enzymatic degradable polyester (polycaprolactone). The results indicated that polyester-5,7 has a crystal structure similar to PCL, but a much faster degradation rate. The morphology of polyester-5,7 film during enzymatic degradation showed a fibrillar structure and degradation began by surface erosion.

  9. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.

    PubMed

    Takwa, Mohamad; Xiao, Yan; Simpson, Neil; Malmström, Eva; Hult, Karl; Koning, Cor E; Heise, Andreas; Martinelle, Mats

    2008-02-01

    2-Hydroxyethyl methacrylate (HEMA) was used as initiator for the enzymatic ring-opening polymerization (ROP) of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL). The lipase B from Candida antarctica was found to catalyze the cleavage of the ester bond in the HEMA end group of the formed polyesters, resulting in two major transesterification processes, methacrylate transfer and polyester transfer. This resulted in a number of different polyester methacrylate structures, such as polymers without, with one, and with two methacrylate end groups. Furthermore, the 1,2-ethanediol moiety (from HEMA) was found in the polyester products as an integral part of HEMA, as an end group (with one hydroxyl group) and incorporated within the polyester (polyester chains acylated on both hydroxyl groups). After 72 h, as a result of the methacrylate transfer, 79% (48%) of the initial amount of the methacrylate moiety (from HEMA) was situated (acylated) on the end hydroxyl group of the PPDL (PCL) polyester. In order to prepare materials for polymer networks, fully dimethacrylated polymers were synthesized in a one-pot procedure by combining HEMA-initiated ROP with end-capping using vinyl methacrylate. The novel PPDL dimethacrylate (>95% incorporated methacrylate end groups) is currently in use for polymer network formation. Our results show that initiators with cleavable ester groups are of limited use to obtain well-defined monomethacrylated macromonomers due to the enzyme-based transesterification processes. On the other hand, when combined with end-capping, well-defined dimethacrylated polymers (PPDL, PCL) were prepared.

  10. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  11. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics.

    PubMed

    Wu, Jing; Eduard, Pieter; Thiyagarajan, Shanmugam; Noordover, Bart A J; van Es, Daan S; Koning, Cor E

    2015-01-01

    New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers.

  12. Enhancing the functionality of biobased polyester coating resins through modification with citric acid.

    PubMed

    Noordover, Bart A J; Duchateau, Robbert; van Benthem, Rolf A T M; Ming, Weihua; Koning, Cor E

    2007-12-01

    Citric acid (CA) was evaluated as a functionality-enhancing monomer in biobased polyesters suitable for coating applications. Model reactions of CA with several primary and secondary alcohols and diols, including the 1,4:3,6-dianhydrohexitols, revealed that titanium(IV) n-butoxide catalyzed esterification reactions involving these compounds proceed at relatively low temperatures, often via anhydride intermediates. Interestingly, the facile anhydride formation from CA at temperatures around CA's melting temperature ( T m = 153 degrees C) proved to be crucial in modifying sterically hindered secondary hydroxyl end groups. OH-functional polyesters were reacted with CA in the melt between 150 and 165 degrees C, yielding slightly branched carboxylic acid functional materials with strongly enhanced functionality. The acid/epoxy curing reaction of the acid-functional polymers was simulated with a monofunctional glycidyl ether. Finally, the CA-modified polyesters were applied as coatings, using conventional cross-linking agents. The formulations showed rapid curing, resulting in chemically and mechanically stable coatings. These results demonstrate that citric acid can be applied in a new way, making use of its anhydride formation to functionalize OH-functional polyesters, which is an important new step toward fully biobased coating systems.

  13. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  14. Lipid-derived Thermoplastic Poly(ester urethane)s: Effect of Structure on Physical Properties

    NASA Astrophysics Data System (ADS)

    Shetranjiwalla, Shegufta

    Thermoplastic poly(ester urethane)s (TPEU)s derived from vegetable oils possess inferior physical properties compared to their entirely petroleum-based counterparts due to the structural limitations and lower reactivity of the precursor lipid-derived monomers. The present work shows that high molecular weight of TPEUs with enhanced performance can be obtained from lipid-derived monomers via (i) the synthesis of polyester diols with controlled molecular weights, (ii) the tuning of the functional group stoichiometry of the polyester diols and the diisocyanate during polymerization, (iii) the degree of polymerization (iv) the control of the hard segment hydrogen bond density and distribution via the use of a chain extender and (v) different polymerization protocols. Solvent-resistant TPEUs with high molecular weight displaying polyethylene-like behavior and controlled polyester and urethane segment phase separation were obtained. Structure-property investigations revealed that the thermal transition temperatures and tensile properties increased and eventually plateaued with increasing molecular weight. Novel segmented TPEUs possessed high phase separation and showed elastomeric properties such as low modulus and high elongation analogous to rubber. The response of the structurally optimized TPEUs to environmental degradation was also established by subjecting the TPEUs to hydrothermal ageing. TPEUs exhibited thermal and mechanical properties that were comparable to commercially available entirely petroleum-based counterparts, and that could be tuned in order to achieve enhanced physical properties and controlled degradability.

  15. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  16. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing.

    PubMed

    Lu, Zhenyu; DeJong, Stephanie A; Cassidy, Brianna M; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2016-06-27

    Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).

  17. Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor.

    PubMed

    Firoz Babu, K; Siva Subramanian, S P; Anbu Kulandainathan, M

    2013-04-15

    Conducting polymer (polypyrrole (PPy) doped with anion) film has been coated on different textile substrates from a mild, room temperature wet in situ chemical polymerisation method exploiting pyrrole as a monomer and ferric chloride as an oxidant and compared their electrochemical capacitive behaviour by assembling as an unit cell supercapacitor. PPy composites were prepared with carbohydrate polymers like cotton, linen (Natural cellulosic fibre), modified cellulosic fibre-viscose rayon and synthetic polymer polyester fabrics to investigate the influence on electrochemical capacitance. The surface morphology and chemistry of these materials were analysed by SEM, FT-IR, and XRD. It reveals that the PPy has greater interaction with the cellulosic fabrics, but whereas surface deposition only has taken place with synthetic fibres. The capacitive behaviour of the PPy coated textiles were evaluated using cyclic voltammetry, impedance spectroscopy and charge-discharge analysis. A unit cell was fabricated to investigate the capacitive behaviour by assembling two symmetric textile electrodes separated by a solid polymer (PVA/1M H2SO4 gel) electrolyte membrane. The textile electrodes prepared with PPy-Cotton and PPy-Viscose exhibited the highest specific capacitance value of 268 F g(-1) and 244 F g(-1), respectively at a scan rate of 5 mV s(-1). The charge-discharge analysis also shows higher specific capacitance value for PPy-Viscose and PPy-Cotton. The focus of this research is to highlight a successful, simple and reproducible method for fabrication of the textile based supercapacitor and the chemistry of surface interaction of PPy molecule with natural and synthetic fabrics.

  18. Use of textile dyeing technology to create an infection-resistant functionalized polyester biomaterial.

    PubMed

    Aggarwal, Puja; Sousa, Kerry A; Logerfo, Frank W; Bide, Martin J; Phaneuf, Matthew D

    2010-10-01

    Infection is a major complication when utilizing implantable devices. The purpose of this study was to create a functionalized polyethylene terephthalate (polyester) biomaterial with sustained antimicrobial properties using textile-dyeing technology. Polyester was hydrolyzed via exposure to sodium hydroxide (NaOH) to provide two functional sites within the polymeric backbone. A modified textile dyeing technique known as thermofixation or pad-heating (pad-heat) in conjunction with autoclaving was employed to directly incorporate the fluoroquinolone antibiotic Ciprofloxacin (Cipro) into polyester fibers. Woven polyester segments were placed into various concentrations of boiling NaOH solutions to create carboxylic acid and hydroxyl groups (HYD). The segments were then sprayed (padded) with a 5 mg mL(-1) Cipro solution and dried overnight, followed by exposure to intense heat and autoclaving. Untreated HYD, Cipro-dipped, and pad-heat-treated HYD segments were then washed under stringent conditions. The antimicrobial activity of the each material was determined via zone of inhibition. Untreated HYD controls had no antimicrobial activity at any of the time periods examined. Cipro-dipped HYD segments had no antimicrobial activity after 1 h. In contrast, antimicrobial activity for autoclaved, pad-heat-treated HYD segments persisted for 80 days (length of study). Autoclave usage prior to plating affected antimicrobial activity substantially. Additionally, varying hydrolysis concentrations did not significantly affect overall Cipro release. Thus, Cipro application to HYD polyester via thermofixation resulted in controlled, sustained antibiotic release over an extended period of time. The long-term infection resistance provided by this technique may address major problems of infection from which implantable devices suffer.

  19. Fabrication of recyclable superhydrophobic cotton fabrics

    NASA Astrophysics Data System (ADS)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  20. Drug Delivery Nanocarriers from a Fully Degradable PEG-Conjugated Polyester with a Reduction-Responsive Backbone.

    PubMed

    Yameen, Basit; Vilos, Cristian; Choi, Won Il; Whyte, Andrew; Huang, Jining; Pollit, Lori; Farokhzad, Omid C

    2015-08-03

    The remarkably high intracellular concentration of reducing agents is an excellent endogenous stimulus for designing nanocarriers programmed for intracellular delivery of therapeutic agents. However, despite their excellent biodegradability profiles, aliphatic polyesters that are fully degradable in response to the intracellular reducing environment are rare. Herein, a reduction-responsive drug delivery nanocarrier derived from a linear polyester bearing disulfide bonds is reported. The reduction-responsive polyester is synthesized via a convenient polycondensation process. After conjugation of terminal carboxylic acid groups of polyester to polyethylene glycol (PEG), the resulting polymer self-assembles into nanoparticles that are capable of encapsulating dye and anticancer drug molecules. The reduction-responsive nanoparticles display a fast payload release rate in response to the intracellular reducing environment, which translates into superior anticancer activity towards PC-3 cells.

  1. [Experimental studies of using polyester-coated materials of Polish production in surgical treatment of retinal detachment].

    PubMed

    Kmera-Muszyńska, M; Kecik, T; Pratnicki, A; Zajkowska, G; Wael, I

    1991-01-01

    The authors evaluated the tolerance of the rabbit eye to a new generation of polyester bands coated by polymethane polyester or by silicone. Investigations consisted on the application of episcleral implants made from polyester coated bands and--for comparison--of already well known polyester non-coated bands The eyes were removed on the 4th, 10th, 30th, 60th and 90th day after operation, macroscopically evaluated and fixed in formaline. The specimen were prepared from the spot of the applied implant together with a margin of surrounding tissues. Clinical observations, macroscopic evaluations as well as histopathological examinations showed a good tolerance of the silicone coated bands; it was discovered instead that the polyurethane coated bands are causing a more pronounced inflammatory reaction in the early postoperative period.

  2. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    PubMed Central

    Hazarika, Ankita; Deka, Biplab K.; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene. PMID:28074877

  3. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    NASA Astrophysics Data System (ADS)

    Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  4. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene.

    PubMed

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-11

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  5. Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers

    PubMed Central

    Carson, Daniel; Jiang, Yonghou; Woodrow, Kim

    2015-01-01

    Objectives Sustained release of small molecule hydrophilic drugs at high doses remains difficult to achieve from electrospun fibers and limits their use in clinical applications. Here we investigate tunable release of several water-soluble anti-HIV drugs from electrospun fibers fabricated with blends of two biodegradable polyesters. Methods Drug-loaded fibers were fabricated by electrospinning using ratios of PCL and PLGA. Fiber morphology was imaged using SEM, and DSC was used to measure thermal properties. HPLC was used to measure drug loading and release from fibers. Cytotoxicity and antiviral activity of drug-loaded fibers were measured in an in vitro cell culture assay. Results We show programmable release of hydrophilic antiretroviral drugs loaded up to 40 wt%. Incremental tuning of highly-loaded drug fibers within 24 hours or >30 days was achieved by controlling the ratio of PCL and PLGA. Fiber compositions containing higher PCL content yielded greater burst release whereas fibers with higher PLGA content resulted in greater sustained release kinetics. We also demonstrated that our drug-loaded fibers are safe and can sustain inhibition of HIV in vitro. Conclusions These data suggest that we were able to overcome current limitations associated with sustained release of small hydrophilic drugs at clinically relevant doses. We expect that our system represents an effective strategy to sustain delivery of water-soluble molecules that will benefit a variety of biomedical applications. PMID:26286184

  6. The study about the improvement of the quality for the fabrics made of chenille yarn

    NASA Astrophysics Data System (ADS)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Leon, A. L.

    2016-08-01

    The work is a study about the decrease of the serious defects from the fabrics such as: the deviations from quality or the high costs, discovered and seized by customers. The analyzed fabrics have in their structures three types of different chenille yarns, such as: the Article A1 (viscose fiber with cotton, Nm 3500 dyed coil), the Article A2 (textured polyester, Nm 8000 dyed coil), the Article A3 (Trevira CS polyester, Nm 3000 the pre-dyed raw materials). The technology of chenille yarn, regardless of composition and properties is the same and is performed on the twisting machines. This study has found that the most of the flaws in the fabric, noticed by customers, are caused by the production technology of the chenille yarns. In any organization which makes goods, there are concerns about the improvement of the quality through the elimination of the nonquality. It is extremely difficult to get to “zero defects” but the first step is a systematic action plan to reduce drastically the nonconformities and the defects. The continuous improvement of the effectiveness of the integrated quality and environmental management is achieved by applying the PDCA methodology: planning, development, control, action.

  7. Multi-Scale Modeling the Mechanical Properties of Biaxial Weft Knitted Fabrics for Composite Applications

    NASA Astrophysics Data System (ADS)

    Abghary, Mohammad Javad; Nedoushan, Reza Jafari; Hasani, Hossein

    2016-11-01

    In this paper a multi-scale numerical model for simulating the mechanical behavior of biaxial weft knitted fabrics produced based on 1×1 rib structure is presented. Fabrics were produced on a modern flat knitting machine using polyester as stitch yarns and nylon as straight yarns. A macro constitutive equation was presented to model the fabric mechanical behavior as a continuum material. User defined material subroutines were provided to implement the constitutive behavior in Abaqus software. The constitutive equation needs remarkable tensile tests on the fabric as the inputs. To solve this drawbacks meso scale modeling of the fabric was used to predict stress-strain curves of the fabric in three different directions (course, wale and 45°). In these simulations only the yarn properties are needed. To evaluate the accuracy of the proposed macro and meso models, fabric tensile behavior in 22.5 and 67.5° directions were simulated by the calibrated macro model and compared with experimental results. Spherical deformation was also simulated by the multi scale model and compared with experimental results. The results showed that the multi-scale modeling can successfully predict the tensile and spherical deformation of the biaxial weft knitted fabric with least required experiments. This model will be useful for composite applications.

  8. Surface functionalization of nanostructured LaB6-coated Poly Trilobal fabric by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Zhang, Lin; Min, Guanghui; Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao

    2016-10-01

    Nanostructured LaB6 films were deposited on flexible Poly Trilobal substrates (PET textiles) through direct current magnetron sputtering in order to broaden its applications and realize surface functionalization of polyester fabrics. Characterizations and performances were investigated by employing a scanning electron microscope (SEM), Fourier transformation infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) spectrophotometer. Ultraviolet Protection Factor (UPF) conducted by the integral conversion was employed to measure the ultraviolet protection ability. As expected, the growth of LaB6 film depending on the pressure variation enhanced UV-blocking ability (UPF rating at 30.17) and absorption intensity of the textiles.

  9. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  10. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene.

    PubMed

    Shan, Dingying; Huang, Zhaohui; Zhao, Yuchen; Cai, Qing; Yang, Xiaoping

    2014-11-26

    Biodegradable polyesters and polyphosphazenes are both promising biomaterials for tissue regeneration. A combination of both materials would provide additional advantages over the individual components in aspects of biocompatibility and osteocompatibility. Applications of polyester/polyphosphazene composites, however, were limited due to the severe phase separation. In this study, cross-linkable poly(glycine ethyl ester-co-hydroxyethyl methacrylate)phosphazene (PGHP) was synthesized. It was blended with poly(L-lactide) (PLLA) or poly(L-lactide-co-glycolide) (PLGA), using chloroform as a mutual solvent, and photo-crosslinked before solvent removal. The resulting PLLA (or PLGA)/PGHP composites demonstrated no significant phase separation due to the restricting function of the crosslinked PGHP polymeric network. In comparison with uncrosslinked blends, the mechanical properties of crosslinked composites were remarkably improved, which indicated their strong potential in bone regeneration applications.

  11. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  12. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  13. Correlation between network mechanical properties and physical properties in polyester-urethane coatings

    SciTech Connect

    Scanlan, J.C.; Webster, D.C.; Crain, A.L.

    1995-12-31

    An experimental design to study the effect of polyester formulation on properties of polyurethane coatings was conducted. The five design variables studied were number average molecular weight, average hydroxyl functionality, and the composition of the acid functional monomers (adipic acid, isophthalic acid, and 1,4-cyclohexanedicarboxylic acid). The polyesters were crosslinked with a multifunctional isocyanate to form polyurethane coating films. Coatings were analyzed by traditional physical methods as well as by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). By comparing the crosslink density (XLD) of the coatings and the glass transition temperature (Tg) of the coatings with the coatings physical properties and the design variables, we can resolve the effect of Tg and XLD on the hardness and flexibility of the coatings.

  14. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    PubMed

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  15. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  16. Optimization on Impact Strength of Woven Kenaf Reinforced Polyester Composites using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Khalid, S. N. A.; Ismail, A. E.; Zainulabidin, M. H.

    2017-01-01

    This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is nine different orientations are used during stacking processes by following Taguchi orthogonal arrays method. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for impact tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, weaving pattern and orientation have distinct potential effects on value of energy absorption. The optimization using Taguchi method reveals preferable orientation of each weaving pattern composites. Based on the fracture observation, the fragmentations after optimization indicating lower distance surface fracture perforated obtained.

  17. Methanogenic Activity and Structural Characteristics of the Microbial Biofilm On a Needle-Punched Polyester Support

    PubMed Central

    Harvey, Martin; Forsberg, Cecil W.; Beveridge, Terry J.; Pos, Jack; Ogilvie, John R.

    1984-01-01

    In a downflow stationary fixed-film anaerobic reactor receiving a swine waste influent, few bacteria were observed to be tightly adherent to the surfaces of the needle-punched polyester support material. However, there was a morphologically complex, dense population of bacteria trapped within the matrix. Frequently large microcolonies of a uniform morphological type of bacteria were observed. These were particularly evident for methanosarcina-like bacteria which grew forming large aggregates of unseparated cells. Leafy deposits of electron-dense, calcium- and phosphorus-enriched material coated the polyester matrix and some cells. As the biofilm matured there was more extensive mineral deposition which completely entrapped cells. The entrapped cells appeared to autolyze, and many were partially degraded. Further impregnation of the matrix with minerals and apparent cell death may eventually have a deleterious effect on the methanogenic activity of the biofilm. Images PMID:16346629

  18. Intrinsically microporous polyesters from betulin - toward renewable materials for gas separation made from birch bark.

    PubMed

    Jeromenok, Jekaterina; Böhlmann, Winfried; Antonietti, Markus; Weber, Jens

    2011-11-15

    Betulin, an abundant triterpene, can be extracted from birch bark and can be used as a renewable monomer in the synthesis of microporous polyesters. Cross-linked networks and hyperbranched polymers are accessible by an A(2) + B(3) reaction, with betulin being the A(2) monomer and B(3) being a trifunctional acid chloride. Reaction of betulin with a diacid dichloride results in linear, soluble polyesters. The present communication proves that the polyreaction follows the classic schemes of polycondensation reactions. The resulting polymers are analyzed with regard to their micro-porosity by gas sorption, NMR spectroscopy, and X-ray scattering methods. The polymers feature intrinsic microporosity, having ultrasmall pores, which makes them candidates for gas separation membranes, e.g., for the separation of CO(2) from N(2) .

  19. Mechanical characteristics of novel polyester/NiTi wires braided composite stent for the medical application

    NASA Astrophysics Data System (ADS)

    Zou, Qiuhua; Xue, Wen; Lin, Jing; Fu, Yijun; Guan, Guoping; Wang, Fujun; Wang, Lu

    Stents have been widely used in percutaneous surgery to treat stenosis diseases. The braided NiTi stent, as a promising prototype, still has limitations of low radial force and loose structure. In the present study, a newly integrated composite stent was designed and braided with NiTi wires and polyester multifilament yarns by textile technology. The mechanical properties of four composite stents and the control bare NiTi stent were evaluated by in vitro compression, bending and anti-torsion tests. The results showed that integrated polyester/NiTi composite stents were superior in radial support. The stents could keep patency even when highly curved and had lower stent straightening force. Composite stents with certain structure stayed stable under twisting. The configuration of NiTi wires in composite stents could significantly impact stent deformation under twisting.

  20. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  1. Graphene/polyester staple composite for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Bai, Yitong; Ming, Zhu; Chen, Lingyun; Yang, Sheng-Tao; Chang, Xue-Ling

    2016-06-01

    Spongy graphene has been widely applied in oil removal. However, spongy graphene is hardly applicable for crude oil removal, because the complexity and high viscosity of crude oil. Herein, we reported that graphene/polyester staple composite (GPSC) could be used for the removal of oils and organic solvents, in particular crude oil. Graphene oxide was in situ reduced in the presence of polyester staple by hydrazine hydrate to form GPSC. GPSC efficiently adsorbed oils and organic solvents with high adsorption capacities. Demonstrations of treating pure oils and those in simulated sea water by GPSC were successfully performed. Due to the loose structure, GPSC adsorbed crude oil quickly with an adsorption capacity of 52 g g-1. During the regeneration, the adsorption capacity of GPSC retained around 78% of the initial capacity up to 9 cycles. The implication to the applications of GPSC in water remediation is discussed.

  2. Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases.

    PubMed

    Hajighasemi, Mahbod; Nocek, Boguslaw P; Tchigvintsev, Anatoli; Brown, Greg; Flick, Robert; Xu, Xiaohui; Cui, Hong; Hai, Tran; Joachimiak, Andrzej; Golyshin, Peter N; Savchenko, Alexei; Edwards, Elizabeth A; Yakunin, Alexander F

    2016-06-13

    Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, which is a leading candidate for the replacement of traditional petroleum-based polymers. Since the global production of PLA is quickly growing, there is an urgent need for the development of efficient recycling technologies, which will produce lactic acid instead of CO2 as the final product. After screening 90 purified microbial α/β-hydrolases, we identified hydrolytic activity against emulsified PLA in two uncharacterized proteins, ABO2449 from Alcanivorax borkumensis and RPA1511 from Rhodopseudomonas palustris. Both enzymes were also active against emulsified polycaprolactone and other polyesters as well as against soluble α-naphthyl and p-nitrophenyl monoesters. In addition, both ABO2449 and RPA1511 catalyzed complete or extensive hydrolysis of solid PLA with the production of lactic acid monomers, dimers, and larger oligomers as products. The crystal structure of RPA1511 was determined at 2.2 Å resolution and revealed a classical α/β-hydrolase fold with a wide-open active site containing a molecule of polyethylene glycol bound near the catalytic triad Ser114-His270-Asp242. Site-directed mutagenesis of both proteins demonstrated that the catalytic triad residues are important for the hydrolysis of both monoester and polyester substrates. We also identified several residues in RPA1511 (Gln172, Leu212, Met215, Trp218, and Leu220) and ABO2449 (Phe38 and Leu152), which were not essential for activity against soluble monoesters but were found to be critical for the hydrolysis of PLA. Our results indicate that microbial carboxyl esterases can efficiently hydrolyze various polyesters making them attractive biocatalysts for plastics depolymerization and recycling.

  3. Evaluation of Polyester Resin, Epoxy, and Cement Grouts for Embedding Reinforcing Steel Bars in Hardened Concrete

    DTIC Science & Technology

    1990-01-01

    Ultg IFILE COPY REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM ofEn in s TECHNICAL REPORT REMR-CS-23 EVALUATION OF POLYESTER...WESSC-85-01/TV-66369A Civil Works Research Work Unit 32303 The following two letters used a5 part of the number designating technical reports of... research publisher? under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Progr-m identify the problem area under which the report

  4. Preparation and characterization of a novel ionizing electromagnetic radiation shielding material: Hematite filled polyester based composites

    NASA Astrophysics Data System (ADS)

    Eren Belgin, E.; Aycik, G. A.; Kalemtas, A.; Pelit, A.; Dilek, D. A.; Kavak, M. T.

    2015-10-01

    Isophthalic polyester (PES) based and natural mineral (hematite) filled composites were prepared and characterized for ionizing electromagnetic radiation shielding applications. Density evaluation and microscopic studies of the composites were carried out. Shielding performances of the composites were investigated for three different IEMR energy regions as low, intermediate and high. The mass attenuation coefficient of the prepared composites reached 98% of the elemental lead. In addition, the studied composites were superior to lead by virtue of their non-toxic nature.

  5. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (ɛ'), dielectric loss (ɛ″) and ac conductivity (σac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  6. Biomimetic polyesters and their role in ion transport across cell membranes.

    PubMed

    Jedliński, Z; Kurcok, P; Adamus, G; Juzwa, M

    2000-01-01

    Syntheses of biomimetic low-molecular weight poly-(R)-3-hydroxybutanoate mediated by three types of supramolecular catalysts are presented. The utility of these synthetic polyesters for preparation of artificial channels in phospholipid bilayers capable of sodium and calcium ion transport across cell membranes, is discussed. Further studies on possible applications of these bio-polymers for manufacturing drugs of prolonged activity are under way.

  7. Conceptual design and comparison of aramid and polyester taut leg spread moorings for deepwater applications

    SciTech Connect

    Wilde, B.; Kelly, P.; Librino, F.; Whitehill, A.S.

    1996-12-31

    As the offshore industry looks beyond water depths of 3,000 ft for future oil and gas production, the industry standard steel catenary spread mooring (CSM) system used on all floating production systems installed to date becomes increasingly inefficient and costly. An alternative to the CSM is the Taut Leg Spread Mooring (TLSM) system with its characteristic short scope legs and vertically loaded anchors. In water depths greater than 3,000 ft, it has been shown that TLSMs comprised of synthetic mooring lines have performance advantages over systems utilizing steel wire rope and demonstrated potential for significant cost reductions. Early studies investigated the use of aramid fiber rope due to its high strength, lower in-water weight and lower axial stiffness as compared to ropes made from steel. Later studies indicated that the material properties of polyester fiber, primarily its lower Young`s modulus, made polyester mooring lines more suitable for use in TLSMs. As the TLSM knowledge base expanded, aramid rope construction evolved. Earlier efforts to match the characteristics of steel wire rope have given way to new generation soft aramid constructions. This paper compares the mooring performance and total installed cost of a soft aramid TLSM to a typical polyester configuration. Both systems were designed for use in the Gulf of Mexico (GOM) with an FPS based on the Aker P45.

  8. An Esterase from Anaerobic Clostridium hathewayi Can Hydrolyze Aliphatic-Aromatic Polyesters.

    PubMed

    Perz, Veronika; Hromic, Altijana; Baumschlager, Armin; Steinkellner, Georg; Pavkov-Keller, Tea; Gruber, Karl; Bleymaier, Klaus; Zitzenbacher, Sabine; Zankel, Armin; Mayrhofer, Claudia; Sinkel, Carsten; Kueper, Ulf; Schlegel, Katharina; Ribitsch, Doris; Guebitz, Georg M

    2016-03-15

    Recently, a variety of biodegradable polymers have been developed as alternatives to recalcitrant materials. Although many studies on polyester biodegradability have focused on aerobic environments, there is much less known on biodegradation of polyesters in natural and artificial anaerobic habitats. Consequently, the potential of anaerobic biogas sludge to hydrolyze the synthetic compostable polyester PBAT (poly(butylene adipate-co-butylene terephthalate) was evaluated in this study. On the basis of reverse-phase high-performance liquid chromatography (RP-HPLC) analysis, accumulation of terephthalic acid (Ta) was observed in all anaerobic batches within the first 14 days. Thereafter, a decline of Ta was observed, which occurred presumably due to consumption by the microbial population. The esterase Chath_Est1 from the anaerobic risk 1 strain Clostridium hathewayi DSM-13479 was found to hydrolyze PBAT. Detailed characterization of this esterase including elucidation of the crystal structure was performed. The crystal structure indicates that Chath_Est1 belongs to the α/β-hydrolases family. This study gives a clear hint that also micro-organisms in anaerobic habitats can degrade manmade PBAT.

  9. Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties.

    PubMed

    Zhang, Hong; Zhao, Tianyu; Duffy, Patrick; Dong, Yixiao; Annaidh, Aisling Ní; O'Cearbhaill, Eoin; Wang, Wenxin

    2015-10-28

    Photocrosslinkable and water soluble hyperbranched PEG-polyester polymers (HPEGDA) have been developed as robust degradable adhesives. The HPEGDA polymers have been synthesized from controlled homopolymerization of poly(ethylene glycol) diacrylate (PEGDA700 ) via in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). By introducing a high initiator-to-monomer ratio, the obtained HPEGDA polymer is composed of extremely short carbon-carbon backbones interconnected together by the long PEG chains as well as pendent photocrosslinkable acrylate moieties. Due to the extremely short C-C backbone, the long PEG chains can therefore be seen as the main chain, thus, HPEGDA polymers behave more like polyester which is a category of polymers that contain the ester functional group in their main chain. Photo-cured HPEGDA can be readily adhered to tissue forming a patch with robust mechanical and adhesive strengths. The degradation profile by hydrolysis of polyester blocks as well as a significantly low swelling ratio of HPEGDA gels in an aqueous environment allow them to have great potential for sealing and repair of internal tissue. Furthermore, HPEGDA gels appear to have minor significant cytotoxicity in vitro. These unique properties indicate that the reported HPEGDA polymers are well poised for the development of adhesive tissue engineering matrixes, wound dressings, and sealants.

  10. Combinatorial approach to develop tailored biodegradable poly(xylitol dicarboxylate) polyesters.

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2014-11-10

    The objective of this work was to develop a versatile strategy for preparing biodegradable polymers with tunable properties for biomedical applications. A family of xylitol-based cross-linked polyesters was synthesized by melt condensation. The effect of systematic variation of chain length of the diacid, stoichiometric ratio, and postpolymerization curing time on the physicochemical properties was characterized. The degradation rate decreased as the chain length of the diacid increased. The polyesters synthesized by this approach possess a diverse spectrum of degradation (ranging from ∼4 to 100% degradation in 7 days), mechanical strength (from 0.5 to ∼15 MPa) and controlled release properties. The degradation was a first-order process and the rate constant of degradation decreased linearly as the hydrophobicity of the polyester increased. In controlled release studies, the order of diffusion increased with chain length and curing time. The polymers were found to be cytocompatible and are thus suitable for possible use as biodegradable polymers. This work demonstrates that this particular combinatorial approach to polymer synthesis can be used to prepare biomaterials with independently tunable properties.

  11. Analytical approaches to identify potential migrants in polyester-polyurethane can coatings.

    PubMed

    Louise Bradley, Emma; Driffield, Malcolm; Guthrie, James; Harmer, Nick; Thomas Oldring, Peter Kenneth; Castle, Laurence

    2009-12-01

    The safety of a polyester-polyurethane can coating has been assessed using a suite of complementary analytical methods to identify and estimate the concentrations of potential chemical migrants. The polyester was based on phthalic acids and aliphatic diols. The polyisocyanate cross-linking agent was 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane homopolymer (IPDI) blocked with methylethylketone oxime (MEKO) to make a one-part formulation. The overall migrate, obtained using solvent extraction of cured films, comprised almost completely of 12 cyclic and one linear polyester oligomer up to molecular weight 800 and containing up to six monomer units. These 13 oligomers covered a total of 28 isomeric forms. Other minor components detected were plasticisers and surfactants as well as impurities present in the starting materials. There was no detectable residue of either the blocked isocyanate (<0.01 microg/dm(2)) used as the starting substance or the unblocked isocyanate (<0.02 microg/dm(2)). The level of extractable IPDI was used as an indicator of the completeness of cure in experimental coatings. These studies revealed that there was an influence of time, temperature and catalyst content. Polymerisation was also influenced by the additives used and by the ageing of the wet coating formulation over several months. These studies allow parameters to be specified to ensure that commercial production coatings receive a full cure giving low migration characteristics.

  12. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

    PubMed Central

    2014-01-01

    Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET. PMID:25405080

  13. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  14. Development and performance optimization of knitted antibacterial materials using polyester-silver nanocomposite fibres.

    PubMed

    Majumdar, Abhijit; Butola, Bhupendra Singh; Thakur, Sandip

    2015-09-01

    The development and performance optimization of knitted antibacterial materials made from polyester-silver nanocomposite fibres have been attempted in this research. Inherently antibacterial polyester-silver nanocomposite fibres were blended with normal polyester fibres in different weight proportions to prepare yarns. Three parameters, namely blend percentage (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied for producing a large number of knitted samples. The knitted materials were tested for antibacterial activity against Gram-positive bacteria Staphylococcus aureus. Statistical analysis revealed that all the three parameters were significant and the blend percentage of nanocomposite fibre was the most dominant factor influencing the antibacterial activity of knitted materials. The antibacterial activity of the developed materials was found to be extremely durable as there was only about 1% loss even after 25 washes. Linear programming approach was used to optimize the parameters, namely antibacterial activity, air permeability and areal density of knitted materials considering cost minimization as the objective. The properties of validation samples were found to be very close to the targeted values.

  15. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  16. Synthesis and modification of defined plurifunctional chiral and racemic polyethers and polyesters

    SciTech Connect

    Le Borgne, A.; Taton, D.; Sepulchre, M.; Spassky, N.

    1993-12-31

    Chiral and racemic polyethers and polyesters with reactive groups in the side-chain were synthesized by ring-opening polymerization and polycondensation. Plurifunctional polyethers are obtained by polymerizing the corresponding oxiranes bearing (-CH{sub 2}-){sub n}X, as side chain group with X = Cl, Br, OH. From these polymers liquid crystal materials are obtained by chemical modification reaction with 4-cyano-4`-hydroxy-biphenyl mesogenic group. The thermal properties are depending on the degree of substitution. Modified crystalline cyclic tetramer of epichlorohydrin developed also liquid crystalline properties close to that of the linear polymer. Cholesteric materials were obtained by polymerization of the chiral oxirane bearing the same mesogenic group in the substituent. Other structural materials can be obtained by copolymerization reactions. Polyesters with chirality in the main chain and bearing hydroxyl functional groups were prepared by polycondensation of potassium salts of (S)-malic and (R,R) tartaric acids with dibromo derivatives. These polyesters are used as carriers of biologically active agents.

  17. Sublaminar devices for the correction of scoliosis: metal wire versus polyester tape.

    PubMed

    Caekebeke, Pieter; Moke, Lieven; Moens, Pierre

    2013-04-01

    The authors conducted a retrospective study comparing the corrective effect of two sublaminar techniques on scoliosis: the classical one, based on metal wire, and a more recent one, based on polyester tape (thoracic Universal Clamp), known to be safer (less risk of neurological damage, less laminar breakthrough) and compatible with MRI. Lumbar screws were used in both groups. The authors composed two groups of 25 scoliosis patients, matched for gender, age, aetiology, anterior release, number of levels fused, number of infections, major curve and flexibility: there was no significant difference. Only the follow-up period was different: 55 months in the metal wire group, versus 17 months in the polyester tape group (p < 0.001), but this was immaterial because the curves were compared one year after surgery. After one year there was no significant difference between both groups, as to correction in the coronal or in the sagittal plane. This means that the polyester tape technique offers an interesting alternative, given that it yields supplementary advantages, as mentioned above.

  18. Application of foams to the processing of fabrics. Phase III. Technical progress report, September 1, 1979-August 31, 1980

    SciTech Connect

    Namboodri, C.G.

    1980-09-01

    Objective is to reduce the energy required to evaporate the water in wet processes by using foams. By the end of August 1980 approximately 400,000,000 yards of fabric had been foam finished. Plant energy data from three UM and M plants have been collected which shows great savings. Considerable work has been done on developing applicators to apply dye and finish uniformly to flat goods. Simultaneously tinting and foam finishing by the use of a tripad show promise. Foam dyeing of nylon carpets is in production and approximately 3 million pounds of carpet have been foam dyed in one US plant. Nylon flock fabric dyeing has been scaled-up in pilot plant and plant trials. Foam dyeing of 100% polyester blankets utilizing pigment foam and disperse dye foam is in production in one textile mill. Foam pigment dyeing of flat goods by horizontal pad application shows promise by the traverse application of foam on both sides of fabric. Wet on wet foam dyeing of prepared wet fabrics is feasible. A polyester/cotton narrow width industrial toweling is now being foam dyed and finished simultaneously commercially. Foam printing using engraved rolls continues in production.

  19. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control.

    PubMed

    Ouyang, Yiwen; Duarte, Gabriela R M; Poe, Brian L; Riehl, Paul S; dos Santos, Fernando M; Martin-Didonet, Claudia C G; Carrilho, Emanuel; Landers, James P

    2015-12-11

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s(-1) with a cooling rate of roughly -12 ± 0.9 °C s(-1) assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification while

  20. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  1. Fabrication of Superhydrophilic Wool Fabrics By Nanotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Dong

    Because of the fatty layer on its surface, wool fiber is hydrophobic, which results in poor water absorption and wicking properties that affect the comfort of wool textiles. The purpose of this research is to improve the wettability and comfort of wool textiles using nanotechnology. To reveal the knowledge gaps and ensure the originality of this study, a critical review of literature was conducted in relevant areas. To achieve the objectives of the research, a simple method for fabricating environmentally stable superhydrophilic wool fabrics was developed. Silica sols with diameters of 27 nm were prepared and then coated on the surface of pristine wool fibers to form an ultrathin layer, increasing both the surface roughness and energy. The morphology and composition of silica-sol-coated wool fabrics were characterized by a combination of SEM, TEM, FTIR, and XPS measurements. After evaluating the wettability and washing durability of the silica-sol-coated wool fabrics, it was found that the durability of these wool fabrics needed to be improved. To achieve superhydrophilic wool fabrics with good washing durability, reactive siloxane was functionalized on wool fiber surface, and an ultrathin silica nanoparticles layer was grafted on the surface by in-situ growth method. To evaluate the wettability change of silica grafted wool fabric, in addition to the contact angle, in-depth characterizations of water absorbing and drying properties of wool fabrics were measured. According to Chinese National Standard (GB/T 21655.1-2008 and GB/T 21655.2-2009), the prepared silica grafted wool fabric has excellent water absorbing and quick drying properties that can be maintained after washing 20 times in a washing machine. The strategy of siloxane bonding and in-situ growth was successfully extended to durable multifunctional wool fabrics combined with superhydrophilic, self-cleaning, and antibacterial properties. To study the relationships between functional properties and nano

  2. Fabrics coated with lubricated nanostructures display robust omniphobicity

    DOE PAGES

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; ...

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and whenmore » exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.« less

  3. Fabrics coated with lubricated nanostructures display robust omniphobicity

    NASA Astrophysics Data System (ADS)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  4. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; Kim, Philseok; Aizenberg, Joanna

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  5. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect

    Shillingford, C; MacCallum, N; Wong, TS; Kim, P; Aizenberg, J

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e. g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  6. Friction between a surrogate skin (Lorica Soft) and nonwoven fabrics used in hygiene products

    NASA Astrophysics Data System (ADS)

    Falloon, Sabrina S.; Cottenden, Alan

    2016-09-01

    Incontinence pad wearers often suffer from sore skin, and a better understanding of friction between pads and skin is needed to inform the development of less damaging materials. This work investigated friction between a skin surrogate (Lorica Soft) and 13 nonwoven fabrics representing those currently used against the skin in commercial pads. All fabrics were found to behave consistently with Amontons’ law: coefficients of friction did not differ systematically when measured under two different loads. Although the 13 fabrics varied considerably in composition and structure, their coefficients of friction (static and dynamic) against Lorica Soft were remarkably similar, especially for the ten fabrics comprising just polypropylene (PP) fibres. The coefficients of friction for one PP fabric never differed by more than 15.7% from those of any other, suggesting that the ranges of fibre decitex (2.0-6.5), fabric area density (13-30 g m-2) and bonding area (11%-25%) they exhibited had only limited impact on their friction properties. It is likely that differences were largely attributable to variability in properties between multiple samples of a given fabric. Of the remaining fabrics, the one comprising polyester fibres had significantly higher coefficients of friction than the highest friction PP fabric (p < 0.005), while the one comprising PP fibres with a polyethylene sheath had significantly lower coefficients of friction than the lowest friction PP fabric (p < 10-8). However, fabrics differed in too many other ways to confidently attribute these differences in friction properties just to the choice of base polymer.

  7. A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Kang, Hailan; Gong, Daolin; Zhang, Liqun

    2013-10-01

    A bio-based polyester elastomer containing many polar groups was combined with high-dielectric-constant titanium dioxide (TiO2) powder to form a dielectric elastomer composite for the first time. The effects of the titanium dioxide filler on the elastic modulus, dielectric properties, and electromechanical responses of the polyester dielectric elastomer were studied. We found that the dielectric constant of composites increased with increasing content of TiO2. Nevertheless, the elastic modulus of the composites did not increase with increasing content of TiO2, and the polyester elastomer filled with 6 vol. % of TiO2 exhibited the lowest elastic modulus, which led to a high prestrain-free actuated strain of 11.8% at a low electric field of just 9.8 kV/mm. The actuated strain is better than other dielectric elastomers reported in the literature. The high electromechanical performance was attributed to the increase in dielectric constant and decrease in elastic modulus of the composite from those of the pure polyester elastomer. The decrease in elastic modulus was explained in detail by the competing effects of crosslink density and filler network. In addition, a dramatic increase in dielectric constant of the composite was observed and discussed through several dielectric mixing rules. Finally, the polyester elastomer and titanium dioxide are both environment-friendly, making possible the composite to be used in biological and medical devices.

  8. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    NASA Astrophysics Data System (ADS)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  9. Space reactor shielding fabrication

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1972-01-01

    The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

  10. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    PubMed

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications.

  11. The Effect of Fibre Blend on Comfort Characteristics of Elastic Knitted Fabrics Used for Pressure Garments

    NASA Astrophysics Data System (ADS)

    Bera, M.; Chattopadhay, R.; Gupta, D.

    2014-04-01

    Comfort characteristics of pressure garments are very important issue as these garments are recommended to wear for 23 h a day to recover from venous problem, scar maturation, orthopedic problems, post surgery, post pregnancy and many other problems. The patients mostly stop using such kind of medical devices because of itching, perspiration and other comfort relate problems. Mostly nylon, polyester and cotton fibres are used in the fabrics. Nylon, polyester are used for strength whereas cotton is used for good comfort related properties. It may be possible to get some certain type of strength and comfort property together by using both types of fibre. Less information is available in this aspect. In this paper, fabric samples were prepared in knit construction by varying the nylon and cotton blend percentage. Comfort properties in terms of air permeability, thermal property, water vapor permeability, surface friction behavior and wicking properties have been studied extensively. The results showed that, the fibre blend percentage did not have any influence on pressure generation. Air permeability and thermal properties were also not affected. However, water vapor permeability and wicking behavior vary significantly. Increase in nylon percentage increases both the water vapor permeability and wicking. It can be thus concluded that, manufacturers can choose fibre blend percentage according to the requirement.

  12. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  13. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    PubMed

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  14. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  15. The polyester rope taut leg mooring concept: A feasible means for reducing deepwater mooring cost and improving stationkeeping performance

    SciTech Connect

    Winkler, M.M.; McKenna, H.A.

    1995-12-01

    The polyester rope taut leg mooring system offers a unique opportunity to reduce deepwater mooring system cost, while simultaneously improving stationkeeping performance. These gains are over catenary or taut leg systems designed using all steel components. This paper builds upon work presented at prior OTC conferences and focuses on concept feasibility and implementation. Feasibility is addressed from a systems basis including fiber and rope selection, definition of mechanical properties, mooring system integration, and effects of long-term usage. Implementation is believed practical based on current technology and in-place manufacturing capability. Available cyclic tension test results for polyester rope suggest a comparable fatigue performance to wire rope. The most significant challenge facing application of the polyester taut leg mooring concept is the lack of in-service experience compared to conventional steel catenary mooring systems.

  16. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  17. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    PubMed

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-05

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area.

  18. Structural and Functional Studies of A. oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    PubMed Central

    Liu, Zhiqiang; Gosser, Yuying; Baker, Peter James; Ravee, Yaniv; Lu, Ziying; Alemu, Girum; Li, Huiguang; Butterfoss, Glenn L.; Kong, Xiang-Peng; Gross, Richard; Montclare, Jin Kim

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability and remarkable reactivity towards the degradation of the synthetic polyester, polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties. PMID:19810726

  19. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    SciTech Connect

    Liu, Z.; Gosser, Y; Baker, P; Ravee, Y; Li, H; Butterfoss, G; Kong, X; Gross, R; Montclare, J; et al.

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.

  20. Comparison of fabric skins for the simulation of sweating on thermal manikins

    NASA Astrophysics Data System (ADS)

    Koelblen, Barbara; Psikuta, Agnes; Bogdan, Anna; Annaheim, Simon; Rossi, René M.

    2017-03-01

    Sweating is an important thermoregulatory process helping to dissipate heat and, thus, to prevent overheating of the human body. Simulations of human thermo-physiological responses in hot conditions or during exercising are helpful for assessing heat stress; however, realistic sweating simulation and evaporative cooling is needed. To this end, thermal manikins dressed with a tight fabric skin can be used, and the properties of this skin should help human-like sweat evaporation simulation. Four fabrics, i.e., cotton with elastane, polyester, polyamide with elastane, and a skin provided by a manikin manufacturer (Thermetrics) were compared in this study. The moisture management properties of the fabrics have been investigated in basic tests with regard to all phases of sweating relevant for simulating human thermo-physiological responses, namely, onset of sweating, fully developed sweating, and drying. The suitability of the fabrics for standard tests, such as clothing evaporative resistance measurements, was evaluated based on tests corresponding to the middle phase of sweating. Simulations with a head manikin coupled to a thermo-physiological model were performed to evaluate the overall performance of the skins. The results of the study showed that three out of four evaluated fabrics have adequate moisture management properties with regard to the simulation of sweating, which was confirmed in the coupled simulation with the head manikin. The presented tests are helpful for comparing the efficiency of different fabrics to simulate sweat-induced evaporative cooling on thermal manikins.

  1. Synthesis and Performance Properties of Cationic Fabric Softeners Derived from Free Fatty Acid of Tallow Fat.

    PubMed

    Mondal, Mithun G; Pratap, Amit Prabhakar

    2016-08-01

    Esterquat cationic softener is basically the class of surface active quaternary ammonium compounds. Esterquat compounds were synthesized and their surface behavior, antibacterial activity and Textile softening properties were investigated. Easily found cheap material was used to synthesize cationic fabric softeners. This fabric softener will be a good for commercially and industrially important because their emulsify activity, rewettability dispersing power and softness. Free fatty acids were derived from tallow oil and were treated with triethanolamine and mono-ethanolamine at 140°C. This diester was quaternaries with dimethyl sulphate and benzyl chloride. The synthesized esterquat compounds were characterized by its cationic content, 1H NMR and FT-IR analysis. In addition to the cationic content, surface tension, CMC (critical micelle concentration), rewettability, fabric softening, emulsification and dispersing power were determined as their surface-active properties. The fabric softening activity of esterquat and esteramide prepared from DMS was better softening activity of fabrics compared to untreated cotton and polyester fabrics cloth. The presented result shows that the esterquat made from BCl exhibit the best dispersing power. The esterquat made from DMS both in TEA and MEA shows good rewettability was determined.

  2. New 'monolithic' templates and improved protocols for soft lithography and microchip fabrication

    NASA Astrophysics Data System (ADS)

    Pallandre, Antoine; Pal, Debjani; de Lambert, Bertrand; Viovy, Jean-Louis; Fütterer, Claus

    2006-05-01

    We report a new method for fast prototyping and fabrication of polydimethylsiloxane (PDMS) and plastic microfluidic chips. These methods share in common the preparation of monolithic masters which includes the fabrication of the planar support, the 'negative pattern' of the microchannels and the fluidic connectors. The monolithic templates are extremely robust compared to conventional ones made of silicon and SU-8, and easier to produce and cheaper than all-silicon or electroplated templates. In contrast to the above-mentioned methods, our process allows one to cast both micrometre- (e.g. the microchannel) and millimetre-sized structures (e.g. the fluidic connection to the outer world) in a single fabrication step. The 'monolithic template' strategy can be used to fabricate both elastomeric (e.g. poly(dimethyl siloxane (PDMS)) polyester thermoset masters and glassy polymeric (e.g. cyclic olefin copolymer (COC)) devices. In this study we also report on one step fabrication of elastomer chips and on surface modifications of the above mentioned monolithically fabricated masters in order to improve separation of the chip from the template.

  3. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    PubMed

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  4. Curing study of orthophtalic polyester resin: Effect on the degradation in saline environment

    NASA Astrophysics Data System (ADS)

    Sanchez Nacher, Lourdes

    Nowadays, composite materials based on a polymeric matrix are widely used in structural applications as engineering materials which offer high performances in advanced industrial sectors such as aerospace, aeronautical, transport, construction, etc. They can provide excellent mechanical and chemical properties, good chemical and weather resistance and low cost. Unsaturated polyester is one of the most used thermoset as a matrix for glass fibre reinforcements because of its good relationship properties/cost/quality, since it allows a more competitive cost. Due to the importance that this type of materials reach in some industrial sectors, it is important the mechanical behaviour evaluation as one of the priorities in practically any of their applications; also, it is important to keep in mind that most of industrial sectors that use this resin are subjected to extreme environmental conditions that can produce degradation in the material and therefore, chemical resistance of composites becomes a critical characteristic in those applications that require a contact with environmental agents that can induce some degradation processes and, consequently, a substantial change on general performance. The present study is focussed in the analysis of the effect of curing reaction of the thermosetting matrix of unsaturated orthophtalic polyester in the long term behaviour of materials made up of this type of matrix and glass fibre reinforcement. This is to determine the optimum processing conditions and its behaviour in an aggressive environment, concretely, marine environment. Considering this, crosslinking level of the resin is a decisive parameter, since we can expect lower saline water absorption for high crosslinking levels. The optimum processing conditions are those that permit to obtain the highest crosslinking level in the unsaturated polyester internal structure. Since the degradation effect is related to the crosslinking level of the internal structure, with the

  5. Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester.

    PubMed

    Graça, José; Cabral, Vanessa; Santos, Sara; Lamosa, Pedro; Serra, Olga; Molinas, Marisa; Schreiber, Lukas; Kauder, Friedrich; Franke, Rochus

    2015-09-01

    Suberin is a biopolyester found in specialized plant tissues, both internal and external, with key frontier physiological functions. The information gathered so far from its monomer and oligomer composition, and in situ studies made by solid state techniques, haven't solved the enigma of how the suberin polyester is assembled as a macromolecule. To investigate how monomers are linked in suberin, we analyzed oligomer fragments solubilized by the partial depolymerization of suberin from potato (Solanum tuberosum) tuber periderms. The structure of the suberin oligomers, namely which monomers they included, and the type and frequency of the inter-monomer ester linkages, was assessed by ESI-MS/MS and high resolution NMR analysis. The analyzed potato periderms included the one from wild type (cv. Desirée) and from plants where suberin-biosynthesis genes were downregulated in chain elongation (StKCS6), ω-hydroxylation (CYP86A33) and feruloylation (FHT). Two building blocks were identified as possible key structures in the macromolecular development of the potato periderm suberin: glycerol - α,ω-diacid - glycerol, as the core of a continuous suberin aliphatic polyester; and glycerol - ω-hydroxyacid - ferulic acid, anchoring this polyaliphatic matrix at its periphery to the vicinal polyaromatics, through linking to ferulic acid. The silencing of the StKCS6 gene led to non-significant alterations in suberin structure, showing the relatively minor role of the very-long chain (>C28) fatty acids in potato suberin composition. The silencing of CYP86A33 gene impaired significantly suberin production and disrupted the biosynthesis of acylglycerol structures, proving the relevance of the latter and thus of the glycerol - α,ω-diacid - glycerol unit for the typical suberin lamellar organization. The silencing of the FHT gene led to a lower frequency of ferulate linkages in suberin polyester but to more polyphenolic guaiacyl units as seen by FTIR analyses in the intact polymer.

  6. Clickable degradable aliphatic polyesters via copolymerization with alkyne epoxy esters: synthesis and postfunctionalization with organic dyes.

    PubMed

    Teske, Nele S; Voigt, Julia; Shastri, V Prasad

    2014-07-23

    Degradable aliphatic polyesters are the cornerstones of nanoparticle (NP)-based therapeutics. In this paradigm, covalent modification of the NP with cell-targeting motifs and dyes can aid in guiding the NP to its destination and gaining visual confirmation. Therefore, strategies to impart chemistries along the polymer backbone that are amenable to easy modification, such as 1,3-dipolar cycloaddition of an azide to an alkyne (the "click reaction"), could be significant. Here we present a simple and efficient way to introduce alkyne groups at high density in aliphatic polyesters without compromising their crystallinity via the copolymerization of cyclic lactones with propargyl 3-methylpentenoate oxide (PMPO). Copolymers of lactic acid and ε-caprolactone with PMPO were synthesized with up to 9 mol % alkyne content, and accessibility of the alkyne groups to the click reaction was demonstrated using several dyes commonly employed in fluorescence microscopy and imaging (Cy3, ATTO-740, and coumarin 343). In order to establish the suitability of these copolymers as nanocarriers, copolymers were formulated into NPs, and cytocompatibility, cellular uptake, and visualization studies undertaken in HeLa cells. Dye-modified NPs exhibited no quenching, remained stable in solution for at least 10 days, showed no cytotoxicity, and were readily taken up by HeLa cells. Furthermore, in addition to enabling the incorporation of multiple fluorophores within the same NP through blending of individual dye-modified copolymers, dye-modified polyesters offer advantages over physical entrapment of dye, including improved signal to noise ratio and localization of the fluorescence signal within cells, and possess the necessary prerequisites for drug delivery and imaging.

  7. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    PubMed Central

    Gopichander, N.; Halini Kumarai, K.V.; Vasanthakumar, M.

    2015-01-01

    Background Different reinforcements currently available for interim fixed partial denture (FPD) materials do not provide the ideal strength for long-term use. Therefore, the aim of this investigation was to develop a more ideal provisional material for long-term use with better mechanical properties. This study evaluated the effectiveness of polyester fiber reinforcement on different interim FPD materials. Methods Thirty resin-bonded FPDs were constructed from three provisional interim FPD materials. Specimens were tested with a universal testing machine (UTM). The modulus of elasticity and flexural strength were recorded in MPa. The compressive strength and degree of deflection were calculated from the obtained values, and a two-way analysis of variance (ANOVA) was used to determine the significance. Results The polyester fiber reinforcement increased the mechanical properties. The modulus of elasticity for heat-polymerized polymethyl methacrylate (PMMA) was 624 MPa, compared to 700.2 MPa for the reinforced heat-cured sample. The flexural strengths of the bis-acrylic and cold-polymerized reinforced samples increased significantly to 2807 MPa and 979.86 MPa, respectively, compared to the nonreinforced samples. The mean compressive strength of the reinforced cold-polymerized PMMA samples was 439.17 MPa; and for the reinforced heat-polymerized PMMA samples, it was 1117.41 MPa. The degree of deflection was significantly greater (P < 0.05) in the reinforced bis-acrylic sample (5.03 MPa), compared with the nonreinforced bis-acrylic sample (2.95 MPa). Conclusion Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials. PMID:26644754

  8. Heart Valves from Polyester Fibers vs. Biological Tissue: Comparative Study In Vitro.

    PubMed

    Yousefi, Atieh; Vaesken, Antoine; Amri, Amna; Dasi, Lakshmi Prasad; Heim, Frederic

    2017-02-01

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 100,000 implantations to date. However, with only 6 years follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. Textile polyester is one such material which provides outstanding folding and strength properties combined with proven biocompatibility, and could therefore be considered as a candidate to replace the biological valve leaflets in TAVI procedures. For that purpose, in addition to the mechanical properties, the hemodynamic properties of the synthetic material should be comparable to the properties of biological tissue. An ideal replacement heart valve would provide low static and dynamic regurgitation, ensure laminar flow across the valve, and limit the turbidity of flow downstream of the valve. The purpose of the present work is to compare in vitro the mechanical and hemodynamic performances of textile woven polyester valves with biological ones. Testing results indicate that textile valves trade elasticity for superior mechanical strength, relative to biological tissue. Despite this, the dynamic flexibility of textile valve leaflets strongly resembled what was seen with biological leaflets. Regurgitation, as well as slightly modified turbulent patterns, in textile valves was higher than biological valves due to the increased porosity, but, rapid tissue ingrowth post-implantation would likely mitigate this effect. Together these findings provide additional evidence favoring the use of textile polyester as a synthetic heart valve leaflet material.

  9. Modification of polyester resins during molding of glass-fiber-reinforced plastics

    NASA Astrophysics Data System (ADS)

    Yakushin, V.; Jansons, J.; Bulmanis, V.; Cabulis, U.; Bulmanis, A.

    2013-11-01

    The effect of addition of two new urethane prepolymers on the mechanical properties of unsaturated polyester resins and glass-fiber-reinforced plastics based on them is investigated. The effect of concentration of these additives on the elastic modulus, elongation at break, and flexural strength of hardened orthophthalic resins is evaluated. A significant increase in the strength of the binders and glass-fiber-reinforced plastics (GFRPs) based on them is observed upon adding urethane prepolymers to the resins. The properties of laminated and randomly reinforced glass-fiber plastics with the modified orthophthalic resins are compared with those of similar GFRPs based on popular brands of industrial resins.

  10. On the suitability of fiberglass reinforced polyester as building material for mesocosms.

    PubMed

    Berghahn, R; Brandsch, J; Piringer, O; Pluta, H J; Winkler, T

    1999-07-01

    Gel- and topcoat surface layers on fiberglass [glass-reinforced plastic (GRP)] made of unsaturated resin based on isophthalic acid polyester and neopentyl glycol (ISO-NPG) were tested for leaching, ecotoxicity of water eluates, and abrasion by river sediments at a current speed of 0.5 m * s-1. Leaching from topcoat tempered at low temperature was significant, whereas it was negligible from highly tempered gelcoat. Water eluates from both gel-and topcoat were nontoxic in routinely employed biotests (bacteria, algae, daphnids). No abrasion by river sediments was detectable. Based on these results, GRP with gelcoat made of ISO-NPG is considered a suitable building material for mesocosms.

  11. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  12. The Effect of Fabric Type of Common Iranian Working Clothes on the Induced Cardiac and Physiological Strain Under Heat Stress.

    PubMed

    Parvari, Roh Allah; Aghaei, Habib Allah; Dehghan, Habibollah; Khademi, Abolfazl; Maracy, Mohammad Reza; Dehghan, Somayeh Farhang

    2015-01-01

    The present study compared the effect of fabric type of working clothes on heat strain responses in different levels of physical workload and under different kinds of weather conditions. Four kinds of working clothing fabric that are greatly popular in Iranian industry were assessed on 18 healthy male at 2 environments: hot and humid (dry temperature [DBt]: 35°C and relative humidity [RH]: 70%) and hot and dry (DBt: 40°C and RH: 40%). The physiological responses such as heart rate and core body temperature were reported. It was found that there were no significant differences between different types of clothing fabric on cardiac and physiological parameters. It can be recommended that 100% cotton clothing ensemble during low-workload activities and 30.2% cotton-69.8% polyester clothing ensemble during moderate-workload activities is used for Iranian workers to maintain the cardiac and physiological strains as low as possible.

  13. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  14. Crimp-Imbalanced Fabrics

    DTIC Science & Technology

    2011-03-30

    invention relates to crimped fabrics which are formed by using various textile architecture such as woven, braided, knitted or other known fabric in which...solution that substantially coats the yarn. The removable coating has a thickness that ensures a proper amount of crimp in the yarn. The tensions in...7 depicts a prior art non-woven cross-ply laminate ; [0037] FIG. 8 depicts a prior art example of balanced crimping in plain-woven fabric; 12

  15. Optical Fabrication Nightmares

    NASA Astrophysics Data System (ADS)

    Voras, Robert P.

    1980-09-01

    Optical fabrication nightmares come in a variety of forms. They are generally caused by "toos": too thin, too thick, too large, too small, too many, too few, etc. In practice I believe many optical fabrication problems could be eliminated - or at least minimized -if there were more communication between the designer and the process engineer, up front. However, since the purpose of this paper is to describe difficult items to fabricate and possible solutions for their fabrication, I will get off my soap-box and proceed to my assigned task.

  16. Evaluation of Long-Term Migration Testing from Can Coatings into Food Simulants: Polyester Coatings.

    PubMed

    Paseiro-Cerrato, Rafael; Noonan, Gregory O; Begley, Timothy H

    2016-03-23

    FDA guidance for food contact substances recommends that for food packaging intended for use at sterilized, high temperature processed, or retorted conditions, a migration test with a retort step at 121 °C for 2 h followed by a 10 day migration test at 40 °C should be performed. These conditions are in intended to simulate processing and long-term storage. However, can coatings may be in contact with food for years, and there are very few data evaluating if this short-term testing accurately simulates migration over extended time periods. A long-term migration test at 40 °C with retorted and non-retorted polyester cans using several food simulants (water, 3% acetic acid, 10% ethanol, 50% ethanol, and isooctane) was conducted to verify whether traditional migration testing protocols accurately predict migration from food contact materials used for extended time periods. Time points were from 1 day to 515 days. HPLC-MS/MS was used to analyze polyester monomers, and oligomer migration was monitored using HPLC-DAD/CAD and HPLC-MS. Concentrations of monomers and oligomers increased during the migration experiments, especially in ethanol food simulants. The data suggest that current FDA migration protocols may need to be modified to address changes in migrants as a result of long-term storage conditions.

  17. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.

    PubMed

    Perz, Veronika; Bleymaier, Klaus; Sinkel, Carsten; Kueper, Ulf; Bonnekessel, Melanie; Ribitsch, Doris; Guebitz, Georg M

    2016-03-25

    The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.

  18. Synthesis, Radiolabeling, and In Vivo Imaging of PEGylated High-Generation Polyester Dendrimers.

    PubMed

    McNelles, Stuart A; Knight, Spencer D; Janzen, Nancy; Valliant, John F; Adronov, Alex

    2015-09-14

    A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.

  19. UV curable polyester polyol acrylate/bentonite nanocomposites: synthesis, characterization, and drug release.

    PubMed

    Thatiparti, Thimma Reddy; Tammishetti, Shekharam; Nivasu, Muram V

    2010-01-01

    Polyesterpolyolacrylate/bentonite nanocomposites, capable of in situ photo polymerization, were synthesized and characterized. The organically modified bentonite clay was prepared by an ion exchange process, in which sodium ions were replaced by alkyl ammonium ions. Organo modification of bentonite was confirmed from X-ray diffraction and fourier transform-infrared data. Microstructures were characterized by XRD data and transmission electron microscopy (TEM). Both XRD data and TEM images of polyester polyol acrylate/organo modified bentonite nanocomposites indicated that most of silicate layers were intercalated into the acrylate matrix. The resulting nanocomposites were characterized by gel content, water equilibrium swell, tensile strength, and in vitro degradation. The results showed that water equilibrium swell and in vitro degradation of these nanocomposites decreased with increase in the clay content. The tensile strength of these nanocomposites also increased with increase in the clay content. Release of two model drugs namely sulfamethoxazole and diclofenac sodium (DS) from these nanocomposites was studied in phosphate buffer saline pH = 7.4 at 37 degrees C. The drug release studies showed that sulfamethoxazole released slower than DS from polyester polyol acrylate nanocomposites. Therefore, these materials may be useful for mucoadhesive drug carriers and other biomedical applications.

  20. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    PubMed

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values.

  1. The storage stability of biogenic volatile organic compounds (BVOCs) in polyester aluminum bags

    NASA Astrophysics Data System (ADS)

    Ahn, Jeong-Hyeon; Deep, Akash; Kim, Ki-Hyun

    2016-09-01

    In this study, the sorptive loss properties of biogenic volatile organic compounds (BVOCs) in polyester aluminum bags were investigated as a function of storage duration. To this end, the relative recovery of gas phase standards of BVOCs, obtained via vaporization of liquid phase standards, was computed by calibrating their standards (response factors: RF) represnting each phase. Accordingly, the results indicated either slight loss (-5.59% (isoprene), -2.39% (camphene), -1.69% ((R)-(+)-limonene), -0.88% (p-cymene)) or gain (1.47% (γ-terpinene), 2.27% (α-terpinene), 2.63% (α-phellandrene), 2.73% ((+)-3-carene), 3.93% ((+)-β-pinene), and 5.98% ((+)-α-pinene)). Through comparison of the calibration results across storage time, the temporal stability of BVOCs was assessed. Longer BVOC storage time in polyester aluminum (PEA) bags lowered the relative recovery of BVOCs. The relative loss of BVOCs, if calculated in terms of mean bag standard RF ratios (relative to liquid standard) across elapsed time, decreased systematically: 0.99 ± 0.05 (0 h), 0.88 ± 0.06 (24 h), 0.66 ± 0.11 (72 h), and 0.62 ± 0.14 (120 h). It is thus recommended to complete the analysis of BVOC in PEA bags within 24 h of sample acquisition. As such, it is important to apply appropriate sampling approaches with a proper storage plan when measuring ambient BVOCs collected by bag sampling methods.

  2. Electron transfer dissociation versus collisionally activated dissociation of cationized biodegradable polyesters.

    PubMed

    Scionti, Vincenzo; Wesdemiotis, Chrys

    2012-11-01

    Biodegradable polyesters were ionized by electrospray ionization and characterized by tandem mass spectrometry using collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) as activation methods. The compounds studied include one homopolymer, polylactide and two copolymers, poly(ethylene adipate) and poly(butylene adipate). CAD of [M+2Na](2+) ions from these polyesters proceeds via charge-remote 1,5-H rearrangements over the ester groups, leading to cleavages at the (CO)O-alkyl bonds. ETD of the same precursor ions creates a radical anion at the site of electron attachment, which fragments by radical-induced cleavage of the (CO)O-alkyl bonds and by intramolecular nucleophilic substitution at the (CO)-O bonds. In contrast to CAD, ETD produces fragments in one charge state only and does not cause consecutive fragmentations, which simplifies spectral interpretation and permits conclusive identification of the correct end groups. The radical-site reactions occurring during ETD are very similar with those reported for ETD of protonated peptides. Unlike multiply protonated species, multiply sodiated precursors form ion pairs (salt bridges) after electron transfer, thereby promoting dissociations via nucleophilic displacement in addition to the radical-site dissociations typical in ETD.

  3. A reduction-sensitive carrier system using mesoporous silica nanospheres with biodegradable polyester as caps.

    PubMed

    He, Hongyan; Kuang, Huihui; Yan, Lesan; Meng, Fanbo; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2013-09-14

    Mesoporous silica nanoparticles (MSN)-polymer hybrid combined with the aliphatic biodegradable polyester caps on the surface were first developed in order to manipulate the smart intracellular release of anticancer drugs. First, poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) was successfully grafted on the surface of MSN via disulfide bonds which could cleave under a reduction environment in tumor cells. The anticancer drug doxorubicin (DOX) was encapsulated into the particle pores. The in vitro drug release profile showed that DOX release was significantly restricted by the polymer caps at pH 7.4, while it was greatly accelerated upon the addition of GSH. Cytotoxicity evaluation showed good biocompatibility with the hybrid particles. Fast endocytosis and intracellular DOX release were observed by confocal laser scanning microscopy (CLSM). The DOX-loaded particles exhibited comparable antitumor activity with free DOX towards HeLa cells and showed in a time-dependent manner. This work developed an extensive method of utilizing aliphatic biodegradable polyesters as polymer caps for MSN to control drug delivery. The paper might offer a potential option for cancer therapy.

  4. Impact Strength of Different Weaving Patterns of Woven Kenaf Reinforced Polyester Composites

    NASA Astrophysics Data System (ADS)

    Khalid, S. N. A.; Ismail, A. E.; Zainulabidin, M. H.

    2017-01-01

    This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is 9 different orientations are used during stacking processes. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for imp act tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, both weaving patterns and orientations have distinct potential effects on the force-displacement diagrams. However, fiber orientations have insignificant effect for plain woven especially in the first stage of deformations. Energy absorption performances for each composite condition are calculated and then plotted against fiber orientations for different weaving patterns. It is found there is no strong relationship between energy absorption and fiber orientations. However for each case of composites, higher energy absorption is found for the composites orientated using [+40°/-15°/+40°/+75°]. Based on the fracture observation, both plain and basket-type woven composites reveal large fragmentations occurred indicating lower energy absorption performances. While for twill condition, no obvious fragmentation is observed where the impact damage around the perforated hole is uniformly distributed leading to higher capability of energy absorptions.

  5. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives

    PubMed Central

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites. PMID:24872802

  6. Fire retardancy enhancement of unsaturated polyester polymer resin filled with nano and micro particulate oxide additives

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. C. S.; Sousa, S. P. B.; Nóvoa, P. R. O.; Pereira, C. M.; Ferreira, A. J. M.

    2014-06-01

    In the last years the traditional construction materials, such as wood, glass and steel, have been increasingly replaced by polymer composite materials due to their superior properties. However, this feature has also raised buildings' combustibility fire hazards. Polymer modification with inorganic nanoparticles can be a potential and efficient solution to control matrix flammability without sacrificing other important properties. In this study a new type of unsaturated polyester based composite materials with enhanced fire retardancy are developed, through polymer modification with nano/micro oxide particles and common flame retardants systems. For this purpose, the design of experiments based on Taguchi methodology and analyses of variance were applied. Samples with different material contents and processing parameters resultant from the L9 Taguchi orthogonal array were produced, and their fire properties assessed and quantified by single-flame source and vertical flammability tests. It was found that material and processing parameters have different effects on different properties. Unsaturated polyester composites modified with nano and micro oxide particles showed better fire performance compared to the neat composite improving at least one fire property whatever the nature of the filler. More thorough studies are required in order to improve mix design formulations towards further fire retardancy enhancement.

  7. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  8. Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection.

    PubMed

    da Silva, Eduardo R; Segato, Thiago P; Coltro, Wendell K T; Lima, Renato S; Carrilho, Emanuel; Mazo, Luiz H

    2013-07-01

    This paper reports a method for rapid, simple, direct, and reproducible determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). The platform described herein uses polyester-toner microchips incorporating capacitively coupled contactless conductivity detection and electrophoresis separation of the analytes. The polyester-toner microchip presented 150 μm-wide and 12 μm-deep microchannels, with injection and separation lengths of 10 and 40 mm long, respectively. The best results were obtained with 320 kHz frequency, 4.5 Vpp excitation voltage, 80 mmol/L CHES/Tris buffer at pH 8.8, injection in -1.0 kV for 7 s, and separation in -1.5 kV. RSD values related to the peak areas for glyphosate and AMPA were 1.5 and 3.3% and 10.1 and 8.6% for intra- and interchip assays, respectively. The detection limits were 45.1 and 70.5 μmol/L, respectively, without any attempt of preconcentration of the analytes. Finally, the method was applied to river water samples in which glyphosate and AMPA (1.0 mmol/L each) were added. The recovery results were 87.4 and 83.7% for glyphosate and AMPA, respectively. The recovery percentages and LOD values obtained here were similar to others reported in the literature.

  9. Antibacterial nitric oxide-releasing polyester for the coating of blood-contacting artificial materials.

    PubMed

    Seabra, Amedea B; Martins, Dorival; Simões, Maíra M S G; da Silva, Regiane; Brocchi, Marcelo; de Oliveira, Marcelo G

    2010-07-01

    The emergence of multidrug-resistant bacteria associated with blood-contacting artificial materials is a growing health problem, which demands new approaches in the field of biomaterials research. In this study, a poly(sulfhydrylated polyester) (PSPE) was synthesized by the polyesterification reaction of mercaptosuccinic acid with 3-mercapto-1,2-propanediol and blended with poly(methyl methacrylate) (PMMA) from solution, leading to solid PSPE/PMMA films, with three different PSPE : PMMMA mass ratios. These films were subsequently S-nitrosated through the immersion in acidified nitrite solution, yielding poly(nitrosated)polyester/PMMA (PNPE/PMMA) films. A polyurethane intravascular catheter coated with PNPE/PMMA was shown to release nitric oxide (NO) in phosphate buffered saline solution (pH 7.4) at 37 degrees C at rates of 4.6 nmol/cm(2)/h in the first 6 h and 0.8 nmol/cm(2)/h in the next 12 h. When used to coat the bottom of culture plates, NO released from these films exerted a potent dose- and time-dependent antimicrobial activity against Staphylococcus aureus and a multidrug-resistant Pseudomonas aeruginosa strains. This antibacterial effect of PSPE/PMMA films opens a new perspective for the coating of blood-contacting artificial materials, for avoiding their colonization with highly resistant bacteria.

  10. Red blood cell transport mechanisms in polyester thread-based blood typing devices.

    PubMed

    Nilghaz, Azadeh; Ballerini, David R; Guan, Liyun; Li, Lizi; Shen, Wei

    2016-02-01

    A recently developed blood typing diagnostic based on a polyester thread substrate has shown great promise for use in medical emergencies and in impoverished regions. The device is easy to use and transport, while also being inexpensive, accurate, and rapid. This study used a fluorescent confocal microscope to delve deeper into how red blood cells were behaving within the polyester thread-based diagnostic at the cellular level, and how plasma separation could be made to visibly occur on the thread, making it possible to identify blood type in a single step. Red blood cells were stained and the plasma phase dyed with fluorescent compounds to enable them to be visualised under the confocal microscope at high magnification. The mechanisms uncovered were in surprising contrast with those found for a similar, paper-based method. Red blood cell aggregates did not flow over each other within the thread substrate as expected, but suffered from a restriction to their flow which resulted in the chromatographic separation of the RBCs from the liquid phase of the blood. It is hoped that these results will lead to the optimisation of the method to enable more accurate and sensitive detection, increasing the range of blood systems that can be detected.

  11. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells

    PubMed Central

    Yan, Yunfeng; Liu, Li; Xiong, Hu; Miller, Jason B.; Zhou, Kejin; Kos, Petra; Huffman, Kenneth E.; Elkassih, Sussana; Norman, John W.; Carstens, Ryan; Kim, James; Minna, John D.; Siegwart, Daniel J.

    2016-01-01

    Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by high-throughput library screening on a unique pair of matched cancer/normal cell lines obtained from a single patient. Selective NPs promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells during the initial transfection period. When injected into tumor xenografts in mice, cancer-selective NPs were retained in tumors for over 1 wk, whereas nonselective NPs were cleared within hours. This translated to improved siRNA-mediated cancer cell apoptosis and significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively. Importantly, this work highlights that different cells respond differentially to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Because no targeting ligands are required, these functional polyester NPs provide an exciting alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies. PMID:27621434

  12. [A novel method based on Y-shaped cotton-polyester thread microfluidic channel].

    PubMed

    Wang, Lu; Shi, Yan-ru; Yan, Hong-tao

    2014-08-01

    A novel method based on Y-shaped microfluidic channel was firstly proposed in this study. The microfluidic channel was made of two cotton-polyester threads based on the capillary effect of cotton-polyester threads for the determination solutions. A special device was developed to fix the Y-shaped microfluidic channel by ourselves, through which the length and the tilt angle of the channel can be adjusted as requested. The spectrophotometry was compared with Scan-Adobe Photoshop software processing method. The former had a lower detection limit while the latter showed advantages in both convenience and fast operations and lower amount of samples. The proposed method was applied to the determination of nitrite. The linear ranges and detection limits are 1.0-70 micromol x L(-1), 0.66 micromol x L(-1) (spectrophotometry) and 50-450 micromol x L(-1), 45.10 micromol x L(-1) (Scan-Adobe Photoshop software processing method) respectively. This method has been successfully used to the determination of nitrite in soil samples and moat water with recoveries between 96.7% and 104%. It was proved that the proposed method was a low-cost, rapid and convenient analytical method with extensive application prospect.

  13. Detection of degradation in polyester implants by analysing mode shapes of structure vibration.

    PubMed

    Samami, Hassan; Pan, Jingzhe

    2016-09-01

    This paper presents a numerical study on using vibration analysis to detect degradation in degrading polyesters. A numerical model of a degrading plate sample is considered. The plate is assumed to degrade following the typical behaviour of amorphous copolymers of polylactide and polyglycolide. Due to the well-known autocatalytic effect in the degradation of these polyesters, the inner core of the plate degrades faster than outer surface region, forming layers of materials with varying Young׳s modulus. Firstly the change in molecular weight and corresponding change in Young׳s modulus at different times are calculated using the mathematical models developed in our previous work. Secondly the first four mode shapes of transverse vibration of the plate are calculated using the finite element method. Finally the curvature of the mode shapes are calculated and related to the spatial distribution of the polymer degradation. It is shown that the curvature of the mode shapes can be used to detect the onset and distribution of polymer degradation. The level of measurement accuracy required in an experiment is presented to guide practical applications of the method. At the end of this paper a demonstration case of coronary stent is presented showing how the method can be used to detect degradation in an implant of sophisticated structure.

  14. Burn properties of fabrics and garments worn in India.

    PubMed

    Bhalla, S B; Kale, S R; Mohan, D

    2000-05-01

    A full-scale human form dummy was designed for studying the burning of common dress assemblies (i.e. combination of garments) worn in India. The dummy was made in eight parts; each made of a steel shell filled with water so as to replicate properties of skin-tissue combination. Four thermocouples were fixed on the dummy for measuring torso, neck and face temperatures. The dummy was clothed separately in three women's dress assemblies (saree, salwar-khameez and nightgown) and men's dress assemblies (kurta-pyjama, shirt-pant and lungi), and ignited at the feet by a flat flame. The tests showed that loose fitting garments burnt easily. Once completely burnt, all dress assemblies result in third degree burns over most of the body. The burning process of synthetics is radically different from cottons or cotton-polyester blends. However, flame duration and temperatures produced on the skin are not radically different, suggesting that on the whole synthetics are no worse than cotton garments. Thick garments, such as, jeans and khadi, do not ignite easily and are inherently safer than similar garments made of light fabric. The studies show that results of standard flammability tests using single fabric strips do not correlate with the burning observed in garments as part of a dress where multilayering is common. Standards/codes for fire safety of garments and garment-dress assembly combinations need to be evolved to adequately address their fire safety.

  15. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf

    NASA Astrophysics Data System (ADS)

    Ratim, S.; Bonnia, N. N.; Surip, S. N.

    2012-07-01

    The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.

  16. 76 FR 5331 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for... later than January 31, 2011. Extension of Time Limit for Preliminary Results Section 751(a)(3)(A) of the... published in the Federal Register. If it is not practicable to complete the review within these time...

  17. Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2016-01-05

    Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly(butylene succinate) (PBS) and the lipase of Rhizopus oryzae (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly(butylene adipate), poly(lactic acid), and poly(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure.

  18. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2014-06-18

    We report the alternating ring-opening copolymerization of dihydrocoumarin with epoxides catalyzed by chromium(III) salen complexes. This process provides access to a range of perfectly alternating polyesters with high molecular weights and narrow molecular weight distributions. Atactic poly(cyclohexene dihydrocoumarate) and poly(cyclopentene dihydrocoumarate) were found to be semi-crystalline by differential scanning calorimetry.

  19. 76 FR 38612 - Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Final... staple fiber (PSF) from the Republic of Korea (Korea) and Taiwan, pursuant to section 751(c) of the... received a notice of intent to participate from DAK Americas, LLC, Palmetto Synthetics LLC, and U.S....

  20. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    PubMed

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films.

  1. 77 FR 21733 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department...

  2. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-08-23

    Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings.

  3. THE PHASE BEHAVIOR OF FLUORINATED DIOLS, DIVINYL ADIPATE, AND A FLUORINATED POLYESTER IN SUPERCRITICAL CARBON DIOXIDE. (R828131)

    EPA Science Inventory

    The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...

  4. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  5. Modeling multilayer woven fabrics

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Mäkinen, J. P.; Timonen, J.

    2001-07-01

    A numerical algorithm for nonlinear elastic relaxation of a multilayer woven fabric is introduced and tested. The equilibrium solutions are compared with real samples. An excellent result is obtained in spite of two simplifications: Bending stiffness of the fibers and friction between the fibers are both neglected. The numerical simulation is very fast and cost efficient in the search for optimal fabrics.

  6. Fabric Fact & Fiction.

    ERIC Educational Resources Information Center

    Cohen, Andrew

    2001-01-01

    Examines the positive and negative attributes of fabric structures in providing affordable shelter for a variety of multipurpose applications, including temporary or seasonal use. Describes the three basic types of fabric structures: air-supported, frame-supported, and mast-supported. This article focuses on smaller structures of the air- and…

  7. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    PubMed

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-01-04

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  8. Amyloid-like hierarchical helical fibrils and conformational reversibility in functional polyesters based on L-amino acids.

    PubMed

    Anantharaj, Santhanaraj; Jayakannan, Manickam

    2015-03-09

    The present investigation reports one of the first examples of synthetic polymers that capable of undergoing reversible conformation transformation and also self-assembled to hierarchical helical amyloid-like fibrils. A new temperature selective melt polycondensation reaction was developed for amino acid monomers L-aspartic acid and L-glutamic acid to produce high molecular weight linear functional polyesters. These new polyesters have hydrogen bonded urethane (or carbamate) units that are in-built in each repeating unit. The polymer chains have adapted expanded chain conformation through β-sheet hydrogen bonding interactions and produced twisted ribbon-like assemblies. These twisted ribbons have subsequently undergone interchain folding for making double helical structures. The double helical fibrils aligned together to produce amyloid-like fibrils of few micrometer in length. Upon chemical deprotection of the pendent urethane units; the resultant cationic functional polyester adapted coil-like conformation and exhibited spherical charged nanoparticles of 200 ± 20 nm in size. Dynamic light scattering and zeta potential measurements revealed that both the charge and size of the spherical structures could be varied by altering the diol segment length in the polymer backbone. The coil-like chains in the charged spherical particles could be reversibly expanded into amyloid-like fibrils via fluorophore chemical substitution using dansyl chloride. The dansyl-substituted polymer exhibited helical fibrils and strong fluorescence. Thus, the L-amino acid based polyesters exhibited complete reversible conformational changes from hierarchical helical amyloid-like fibrils to charged nanoparticles in a single polymer system. These new nonpeptide polyester analogues, their amyloid fibrils, cationic polymer assemblies and fluorescent fibrils are very new based on l-amino acids, which may be useful for a wide range of biomedical applications.

  9. New polymorphous computing fabric.

    SciTech Connect

    Wolinski, C.; Gokhale, M.; McCabe, K. P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  10. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.

    PubMed

    Sun, Xunwen; Lu, Canhui; Zhang, Wei; Tian, Dong; Zhang, Xinxing

    2013-10-15

    Isolation of cellulose from waste polyester/cotton blended fabrics (WBFs) is a bottleneck for recycling and exploiting waste textiles. The objective of this study was to provide a new environmental-friendly and efficient approach for extracting cellulose derivatives and polyester from WBFs. A Bronsted acidic ionic liquid (IL) N-methyl-imidazolium bisulfate, [Hmim]HSO4, was used as a novel catalyst for acetylation of cellulose rather than a solvent with the aim to overcome low isolation efficiency associated with the very high viscosity and relatively high costs of ILs. The extraction yield of acetone-soluble cellulose acetate (CA) was 49.3%, which corresponded to a conversion of 84.5% of the cellulose in the original WBFs; meanwhile, 96.2% of the original poly(ethylene terephthalate) (PET) was recovered. The extracted CA was characterized by (1)H NMR, FTIR, XRD and TGA analysis, and the results indicated that high purity acetone-soluble CA and carbohydrate-free PET could be isolated in this manner from WBFs.

  11. Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica: surface plasmon resonance and atomic force microscopy study.

    PubMed

    Shinozaki, Yukiko; Kikkawa, Yoshihiro; Sato, Shun; Fukuoka, Tokuma; Watanabe, Takashi; Yoshida, Shigenobu; Nakajima-Kambe, Toshiaki; Kitamoto, Hiroko K

    2013-10-01

    Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica JCM10317 (PaE) was analyzed by surface plasmon resonance (SPR). The adsorption of PaE and the degradation rate for polyester films were quantitatively monitored by a positive and negative SPR signal shifts, respectively. The decrease in SPR signal and the erosion depth of amorphous poly(L-lactide) (a-PLLA) film measured by atomic force microscopy (AFM) had a linear relationship, and the weight loss was estimated from the AFM data combined with a density of a-PLLA film. Furthermore, SPR sensorgrams for various polyester films showed that degradation rate of poly(ε-caprolactone) and poly(butylene succinate-co-adipate) which contain C6 units was higher than that of other polyesters such as poly(butylene succinate) and a-PLLA. These results suggest that C6 is the preferred chain length as substrates for PaE.

  12. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  13. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Architects, engineers and building owners are turning increasingly to fabric structures because of their aesthetic appeal, relatively low initial cost, low maintenance outlays, energy efficiency and good space utilization. Several examples are shown.

  14. Speedo Fabric Testing

    NASA Video Gallery

    Because the physical laws of motion for moving a body through water are the same as moving a vehicle through air, NASA aeronautics experts test the drag effects of different fabrics for Olympic-bou...

  15. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    NASA Astrophysics Data System (ADS)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  16. Identification of Heredity Kernels and Their Influence on the Life Time of Glass/Polyester Composites

    NASA Astrophysics Data System (ADS)

    Olodo, E. T.; Adjovi, E. C.; Adanhounme, V.

    2014-11-01

    One of the major problems encountered in prediction of hereditary viscoelastic behavior of polymeric composites is the determination of heredity kernels. This issue comes down to identification of the model characterizing the viscoelastic properties of these materials. The purpose of this work is to propose a model for prediction of viscoelastic nonlinear behavior of laminate composite with polyester matrix, through the study and analysis of heredity kernels and their influence on the life time of this material. Identification of this model required experimental determination at room temperature, of viscoelastic parameters of heredity kernels by macroscopic approach. These data provide predictive tools for establishment of the life time and long term stress limit under static complex loading for this type of material.

  17. X-ray diffraction study of thermotropic liquid crystalline polyesters and diester model compounds

    NASA Astrophysics Data System (ADS)

    Chin, H. H.; Azaroff, L. V.; Griffin, A. C.

    1987-10-01

    Two nematic liquid crystalline polyesters were examined by X-ray diffraction following quenching from the nematic temperature in a magnetic field of 15 tesla. It was not possible to quench an aligned nematic glass; instead a polycrystalline phase showing some preferred orientation or an unoriented nematic melt yielded monodomain nematic diffraction patterns with one resembling that of a fiber (crystalline) photograph while the other showed good nematic alignment which could be enhanced slightly by annealing. A series of Siamese-twin diester model compounds also examined at their respective nematic temperatures in a magnetic field of compounds also were examined at their crystalline phase at room temperature. All displayed well-aligned nematic monodomains above the crystallization point.

  18. Adhesion analysis of non-woven natural fibres in unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Omri, Med Amin; Triki, A.; Guicha, M.; Ben Hassen, Med; Arous, M.; Ahmed El Hamzaoui, H.; Bulou, A.

    2015-03-01

    The presence of wool fibres in non-woven Alfa fibres sheet was investigated as a mean of improving adhesion of Alfa fibre-reinforced unsaturated polyester composite. FT-IR and Raman spectroscopy results revealed that such improvement could occur by a decrease in the hydrophilic character of the Alfa fibres owing to the presence of wool fibres. Hence, physical and chemical interactions could happen between the reinforcement and the matrix as demonstrated by FT-IR and Raman spectroscopy results. Tensile testing performed on this composite confirmed that such adhesion could occur according to its excellent specific parameters despite of its low tensile strength attributed to a higher fibre to fibre contact of wool fibres.

  19. Hemp-Fiber-Reinforced Unsaturated Polyester Composites: Optimization of Processing and Improvement of Interfacial Adhesion

    SciTech Connect

    Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.; Simmons, Kevin L.; Li, Kaichang

    2011-02-25

    The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated that treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.

  20. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    NASA Astrophysics Data System (ADS)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  1. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds

    PubMed Central

    Migneco, Francesco; Huang, Yen-Chih; Birla, Ravi K.; Hollister, Scott J.

    2015-01-01

    In this paper we describe the mechanical and biological features of a thermosetting polyester synthesized from glycerol and dodecanedioic acid named Poly-Glycerol-Dodecanoate (PGD). This polymer shows a glass transition temperature (Tg) around 32°C, and this accounts for its mechanical properties. At room temperature (21°) PGD behaves like a stiff elastic-plastic material, while at body temperature (37°C), it shows a compliant non-linear elastic behavior. Together with biodegradability and biocompatibility PGD has distinct shape memory features. After the polymer is cured, no matter what the final configuration is, we can recover the original shape by heating PGD to temperatures of 32°C and higher. The mechanical properties together with biocompatibility/biodegradability and shape memory features make PGD an attractive polymer for biomedical applications. PMID:19712970

  2. Chemical and Physical Changes in a Hydrolyzed Poly(ester urethane)

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; LANG,DAVID P.

    1999-11-03

    Hydrolytic degradation has been shown to be a significant problem for poly(ester urethane) elastomers exposed to high humidity environments. The ester group in the soft segment is particularly susceptible to hydrolysis. One of the products of this reaction is a carboxylic acid group that catalyses further hydrolysis. The resulting reduction in molecular weight leads to deterioration of the elastomer's mechanical properties. In this paper we have measured the extent of the hydrolysis reaction by {sup 13}C NMR spectroscopy. In addition we have measured the spin-spin relaxation time of the soft phase and followed the increase in mobility of these segments. Both measurements were performed on the solid polymer. These measurements provide an excellent monitoring tool of the chemical and physical state of polymer during the aging process.

  3. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  4. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  5. The Relationship Between Microstructure and Toughness of Biaxially Oriented Semicrytalline Polyester Films

    SciTech Connect

    Rao,Y.; Greener, J.; Avila-Orta, C.; Hsiao, B.; Blanton, T.

    2008-01-01

    The relationship between microstructure and toughness of biaxially stretched semicrystalline polyester films was investigated. Optically transparent films were prepared by simultaneous biaxial stretching of melt-cast sheets near the glass transition temperature. Copolyesters of polyethylene terephthalate (PET) with different compositions of two diols: ethylene glycol (EG) and cyclohexane dimethanol (CHDM), and stoichiometrically matched terephthalic acid were used to produce films with different degrees of crystallinity. In addition, the PET films with different crystalline morphologies were produced by constrained high temperature annealing of biaxially oriented films. The toughness, degree of crystallinity and crystalline morphology/molecular ordering were studied using mechanical testing, synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD) techniques, and differential scanning calorimetry (DSC). The results indicate that the toughness of a semicrystalline polymeric film is determined by the interconnectivity of the crystalline phase within the amorphous phase and is greatly influenced by the degree of crystallinity and the underlying crystalline morphology.

  6. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.

    PubMed

    Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H

    2003-01-01

    Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.

  7. Cure characterization of thick polyester composite structures using dielectric and finite difference analysis

    SciTech Connect

    Day, D.R.

    1993-12-31

    Disposable and permanently mounted dielectric sensors were used to characterize the cure in polyester sheet molding compound (SMC) at various locations through the thickness of the part in a simulated molding environment. Using established techniques, the dielectric and temperature information were combined to yield local cure state information for each sensor. Parts under five millimeters thick were found to cure rather uniformly while parts greater than this had increasing degrees of nonuniformity in cure behavior through the thickness. These observed cure state data were compared to finite difference model predictions. The model predictions, which were confirmed by the sensor cure data, may be used to optimize part design and production by predicting the curing behavior and molding cycle time required for new structures.

  8. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.

    PubMed

    Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José

    2016-01-20

    Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved.

  9. A Novel Polymer Concrete Made From Fine Silica Sand and Polyester

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Rezvani, S.; Mosalmani, R.

    2015-11-01

    In order to improve the mechanical properties and decrease the manufacturing costs of traditional polymer concrete, a new concrete mix is presented, where fine silica sand is used instead of common large and small aggregates. In addition, to decrease manufacturing costs, a polyester resin is employed instead of epoxy matrix. By performing compression and three-point bending tests, it was found that the new polymer concrete had a higher compression strength than the traditional polymer concrete and a similar bending strength. Also, a two-phase micromechanical model was used to analytically estimate the compressive strength of the new material, and a rather good agreement between experimental data and theoretical calculations was found to exist.

  10. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  11. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  12. Fabricated torque shaft

    SciTech Connect

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  13. Polymer radiation curing: polyester resins. January 1973-December 1988 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-December 1988

    SciTech Connect

    Not Available

    1989-01-01

    This bibliography contains citations concerning the formulations and processes for radiation curing on polyester resins. Effects of radiation curing on polyester resins are also discussed. Electron-beam and ultraviolet radiation are emphasized. Polymer crosslinking by such electromagnetic wave radiation as in the visible wavelength is also examined. Applications in adhesives, coatings, lacquers, and printing inks are included. (Contains 200 citations fully indexed and including a title list.)

  14. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    PubMed Central

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  15. LARS Artificial Ligament Versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Iliadis, Dimitrios Ph.; Bourlos, Dimitrios N.; Mastrokalos, Dimitrios S.; Chronopoulos, Efstathios; Babis, George C.

    2016-01-01

    Background: Graft choice for anterior cruciate ligament (ACL) reconstruction is of critical importance. Various grafts have been used so far, with autografts long considered the optimal solution for the treatment of ACL-deficient knees. Limited data are available on the long-term survivorship of synthetic grafts. Purpose: To compare the functional outcome and survivorship of ACL reconstructions performed using the LARS (ligament augmentation and reconstruction system) ligament and the ABC (active biosynthetic composite) purely polyester ligament. Study Design: Case series; Level of evidence, 4. Methods: The results of 72 patients who underwent primary arthroscopic ACL reconstruction with the LARS ligament and 31 cases with an ABC purely polyester ligament were reviewed. The mean follow-up periods for the LARS and ABC groups were 9.5 and 5.1 years, respectively. A survivorship analysis of the 2 synthetic grafts was performed using the Kaplan-Meier method with a log-rank test (Mantel-Cox, 95% CI). Lysholm, Tegner activity, Knee injury and Osteoarthritis Outcome Score (KOOS), and International Knee Documentation Committee (IKDC) scores as well as laxity measurements obtained using a KT-1000 arthrometer were recorded for all intact grafts, and a Mann-Whitney U test was used for comparison reasons. Results: The rupture rates for LARS and ABC grafts were 31% (95% CI, 20%-42%) and 42% (95% CI, 25%-59%), respectively. For intact grafts, the mean Lysholm score was good for both groups (90 for the LARS group and 89 for the ABC group), with the majority of patients returning to their preinjury level of activities, and the mean IKDC score was 90 for the LARS group and 86 for the ABC group. Conclusion: The rupture rates of both LARS and ABC grafts were both high. However, the LARS ligament provided significantly better survivorship compared with the ABC ligament at short- to midterm follow-up (95% CI). PMID:27453894

  16. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures.

    PubMed

    Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D

    2013-12-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.

  17. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    PubMed

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  18. Fighting cancer with nanomedicine---drug-polyester nanoconjugates for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Yin, Qian

    The aim of my Ph. D. research is to develop drug-polyester nanoconjugates (NCs) as a novel translational polymeric drug delivery system that can successfully evade non-specific uptake by reticuloendothelial system (RES) and facilitate targeted cancer diagnosis and therapy. By uniquely integrating well-established chemical reaction-controlled ring opening polymerization (ROP) with nanoprecipitation technique, I successfully developed a polymeric NC system based on poly(lactic acid) and poly(O-carboxyanhydrides) (OCA) that allows for the quantitative loading and controlled release of a variety of anticancer drugs. The developed NC system could be easily modified with parmidronate, one of bisphosphonates commonly used as the treatment for disease characterized by osteolysis, to selectively deliver doxorubicin (Doxo) to the bone tissues and substantially to improve their therapeutic efficiency in inhibiting the growth of osteosarcoma in both murine and canine models. More importantly, the developed NCs could avidly bind to human serum albumin, a ubiquitous protein in the blood, to bypass the endothelium barrier and penetrate into tumor tissues more deeply and efficiently. When compared with PEGylated NCs, these albumin-bound NCs showed significantly reduced accumulation in RES and enhanced tumor accumulation, which consequently contributed to higher their tumor inhibition capabilities. In addition, the developed NC system allows easy incorporation of X-ray computed tomography (CT) contrast agents to largely facilitate personalized therapy by improving diagnosis accuracy and monitoring therapeutic efficacy. Through the synthetic and formulation strategy I developed, a large quantity (grams or larger-scale) of drug-polyester NCs can be easily obtained, which can be used as a model drug delivery system for fundamental studies as well as a real drug delivery system for disease treatment in clinical settings.

  19. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.

    PubMed

    Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M

    2014-01-01

    The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide

  20. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  1. Respiratory and systemic reaction following exposure to heated electrostatic polyester paint.

    PubMed

    Cartier, A; Vandenplas, O; Grammer, L C; Shaughnessy, M A; Malo, J L

    1994-03-01

    A 39 year old nonatopic man developed episodes of cough, dyspnoea, sweating and shivers within 2-3 weeks of starting a new job in a factory where metallic boards were treated with an electrostatic powder paint, made of an epoxy resin and a carboxylated polyester containing polyethylene terephthalate and polybutylene terephthalate. The subject sprayed the metallic boards which were then heated in 200 degrees C ovens. The subject was first seen in an emergency room after being at work for 4 h. The physical examination revealed bilateral wheezing with fever (39 degrees C), hypoxaemia (arterial oxygen tension (PaO2) 58 torr (7.7 kPa), leucocytosis (white blood count cells.mm-3 17,000 (17 x 10(9) cells.l-1) and severe airway obstruction (forced expiratory volume in one second (FEV1)/forced vital capacity, (FVC) 1.3/2.4 l, improving to 2.2/3.8 l after bronchodilator; predicted values = 3.4/4.1 l). The subjects condition improved after being treated with oral steroids. His spirometry was normal two weeks later, although he showed mild bronchial hyperresponsiveness to methacholine with the (provocative concentration producing a 20% fall in FEV1 (PC20) being 1.7 mg.ml-1). The subject underwent specific inhalation challenges at the workplace 4 months later. After being exposed at work for 4 h, he developed a significant fall in FEV1 (-40%), fever, leucocytosis, and a fall in diffusing capacity. Lung function tests were back to normal two weeks later. Exposing the subject to heated granulated polyester for one hour in a hospital laboratory produced a fall in FEV1 of 41%, fever, leucocytosis and a fall in diffusing capacity.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Crosslinked Polyesters

    DTIC Science & Technology

    2001-03-02

    and/or fumaric acid, with application of microwaves. The resulting imides are converted to the corresponding peptides or homo-polyamino acids upon...and can readily be used in the present invention, other amines, such as di -ethyl and propyl amines, can also be used. Water is the best solvent...such as from azobenzene or stilbenes; cycloaddition reactions such as dibenzo(a,j) perylene -8,16-dione; tautomersim, such as with N-salicylidene-2

  3. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  4. Chemical and electrochemical study of fabrics coated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2013-08-01

    Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (Ω) when GO was reduced to RGO. The phase angle also changed from 90° for PES-GO (capacitative behavior) to 0° for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

  5. Hematocrit analysis through the use of an inexpensive centrifugal polyester-toner device with finger-to-chip blood loading capability.

    PubMed

    Thompson, Brandon L; Gilbert, Rachel J; Mejia, Maximo; Shukla, Nishant; Haverstick, Doris M; Garner, Gavin T; Landers, James P

    2016-06-14

    Hematocrit (HCT) measurements are important clinical diagnostic variables that help physicians diagnose and treat various medical conditions, ailments, and diseases. In this work, we present the HCT Disc, a centrifugal microdevice fabricated by a Print, Cut and Laminate (PCL) method to generate a 12-sample HCT device from materials costing <0.5 USD (polyester and toner or PeT). Following introduction from a drop of blood (finger stick), whole blood metering and cell sedimentation are controlled by centrifugal force, only requiring a CD player motor as external hardware and, ultimately, a cell phone for detection. The sedimented volume from patient blood in the HCT Disc was analyzed using a conventional scanner/custom algorithm for analysis of the image to determine a hematocrit value, and these were compared to values generated in a clinical laboratory, which correlated well. To enhance portability and assure simplicity of the HCT measurement, values from image analysis by a cell phone using a custom application was compared to the scanner. Fifteen samples were analyzed with cell phone image analysis system and were found to be within 4% of the HCT values determined in the clinical lab. We demonstrate the feasibility of the PeT device for HCT measurement, and highlight its uniquely low cost (<0.5 USD), speed (sample-to-answer <8 min), multiplexability (12 samples), low volume whole blood requirement (<3 μL), rotation speeds (<4000 rpm) needed for effective measurement as well as the direct finger-to-chip sample loading capability.

  6. Fabrication of PDMS architecture

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    The study report novel, yet simple and flexible fabrication method for micro channel patterning PDMS thin mold on glass surfaces, the method allows microstructures with critical dimensions to be formed using PDMS. Micro channel production is a two-step process. First, soft photolithography methods are implemented to fabricate a reusable mold. The mold is then used to create the micro channel, which consists of SU8, PDMS and glass. The micro channel design was performed using AutoCAD and the fabrication begins by creating a replicable mold. The mold is created on a glass slide. by spin-coating speed between 500 to 1250rpm with an acceleration of 100 rpm/s for 100 and 15 second ramp up and down speed respectively. Channel flow rate based on concentration were measured by analyzing the recorded flow profiles which was collected from the high powered microscope at. 80µ, 70µm, 50µm for inlet channel 1, 2, 3 respectively the channel flow were compared for flow efficiency at different concentrations and Re. Thus, the simplicity of device structure and fabrication makes it feasible to miniaturize it for the development of point-of-care kits, facilitating its use in both clinical and non-clinical environments. With its simple geometric structure and potential for mass commercial fabrication, the device can be developed to become a portable photo detection sensor that can be use for both environmental and diagnostic application.

  7. Kenaf/recycled Jute Natural Fibers Unsaturated Polyester Composites: Water Absorption/dimensional Stability and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Osman, Ekhlas A.; Vakhguelt, Anatoli; Sbarski, Igor; Mutasher, Saad A.

    2012-03-01

    Effects of water absorption on the flexural properties of kenaf-unsaturated polyester composites and kenaf/recycled jute-unsaturated polyester composites were investigated. In the hybrid composites, the total fiber content was fixed to 20 wt%. In this 20 wt%, the addition of jute fiber varied from 0 to 75%, with increment of 25%. The result demonstrates the water absorption and the thickness swelling increased with increase in immersion time. Effects of water absorption on flexural properties of kenaf fiber composites can be reduced significantly with incorporation of recycled jute in composites formulation. The process of absorption of water was found to approach Fickian diffusion behavior for both kenaf composites and hybrid composites.

  8. Display of Antigens on Polyester Inclusions Lowers the Antigen Concentration Required for a Bovine Tuberculosis Skin Test.

    PubMed

    Parlane, Natalie A; Chen, Shuxiong; Jones, Gareth J; Vordermeier, H Martin; Wedlock, D Neil; Rehm, Bernd H A; Buddle, Bryce M

    2015-10-28

    The tuberculin skin test is the primary screening test for the diagnosis of bovine tuberculosis (TB), and use of this test has been very valuable in the control of this disease in many countries. However, the test lacks specificity when cattle have been exposed to environmental mycobacteria or vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG). Recent studies showed that the use of three or four recombinant mycobacterial proteins, including 6-kDa early secretory antigenic target (ESAT6), 10-kDa culture filtrate protein (CFP10), Rv3615c, and Rv3020c, or a peptide cocktail derived from those proteins, in the skin test greatly enhanced test specificity, with minimal loss of test sensitivity. The proteins are present in members of the pathogenic Mycobacterium tuberculosis complex but are absent in or not expressed by the majority of environmental mycobacteria and the BCG vaccine strain. To produce a low-cost skin test reagent, the proteins were displayed at high density on polyester beads through translational fusion to a polyhydroxyalkanoate synthase that mediates the formation of antigen-displaying inclusions in recombinant Escherichia coli. Display of the proteins on the polyester beads greatly increased their immunogenicity, allowing for the use of very low concentrations of proteins (0.1 to 3 μg of mycobacterial protein/inoculum) in the skin test. Polyester beads simultaneously displaying all four proteins were produced in a single fermentation process. The polyester beads displaying three or four mycobacterial proteins were shown to have high sensitivity for detection of M. bovis-infected cattle and induced minimal responses in animals exposed to environmental mycobacteria or vaccinated with BCG.

  9. A comparative study of the toxicity of the combustion products of Tedlar and a fluorenone-polyester film

    NASA Technical Reports Server (NTRS)

    Farrar, D. G.

    1979-01-01

    The relative toxicity in rats resulting from a 30 minute exposure to the combustion products of two materials, Tedlar and fluorenone-polyester film was assessed. The combustion products were generated into a static exposure system using a laboratory-scale furnace. The toxicity was assessed using the primary measurements employed in a more detailed overall toxicity evaluation. The toxicological events observed during the 30 minute exposure are reported.

  10. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters.

    PubMed

    DiCiccio, Angela M; Coates, Geoffrey W

    2011-07-20

    We report the ring-opening copolymerization of maleic anhydride with a variety of epoxides catalyzed by a chromium(III) salen complex. Quantitative isomerization of the cis-maleate form of all polymers affords the trans-fumarate analogues. Addition of chain transfer reagents yields low M(n), narrow PDI polymer samples. This method provides access to a range of new unsaturated polyesters with versatile functionality, as well as the first synthesis of high molecular weight poly(propylene fumarate).

  11. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  12. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.

    PubMed

    Wu, Wan-Xia; Wang, Na; Liu, Bei-Yu; Deng, Qing-Feng; Yu, Xiao-Qi

    2014-02-28

    A series of novel aliphatic polyesters with azido functional groups were synthesized via the direct lipase-catalyzed polycondensation of dialkyl diester, diol and 2-azido-1,3-propanediol (azido glycerol) using immobilized lipase B from Candida antarctica (CALB). The effects of polymerization conditions including reaction time, temperature, enzyme amount, substrates and monomer feed ratio on the molecular weights of the products were studied. The polyesters with pendant azido groups were characterized by (1)H NMR, (13)C NMR, 2D NMR, FTIR, GPC and DSC. Alkyne end-functionalized poly(ethylene glycol) containing a cleavable acetal group was then grafted onto the polyester backbone by copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry). Using fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), these amphiphilic graft copolymers were found to readily self-assemble into nanosized micelles in aqueous solution with critical micelle concentrations between 0.70 and 1.97 mg L(-1), and micelle sizes from 20-70 nm. The degradation of these polymers under acidic conditions was investigated by GPC and (1)H NMR spectroscopy. Cell cytotoxicity tests indicated that the micelles had no apparent cytotoxicity to Bel-7402 cells, suggesting their potential as carriers for controlled drug delivery.

  13. Scale-up of polyamide and polyester Parsol® MCX nanocapsules by interfacial polycondensation and solvent diffusion method.

    PubMed

    Stumpo, Marianna; Anselmi, Cecilia; Vauthier, Christine; Mitri, Khalil; Hanno, Ibrahim; Huang, Nicolas; Bouchemal, Kawthar

    2013-10-01

    The scale-up of oil-containing polyamide nanocapsules produced by simultaneous interfacial polycondensation and solvent diffusion was successfully achieved. Up to 1,500 mL were produced by using a Y-shaped mixer device. The sizes of nanocapsules containing olive oil were modulated from 646 to 211 nm by changing process parameters without modification of the formulation composition. All the results of nanocapsule diameters (dsc) expressed as a function of the Reynolds number (Re) showed the existence of a typical power-law relationship. It was demonstrated that the high turbulences created upon nanocapsule formation are the most important parameter allowing to nanocapsule size to be controlled without modifying the formulation composition. Finally, the power-law relationship was used to predict the size of nanocapsules composed of polyamide or polyester and loaded with Parsol(®) MCX. The physico-chemical properties of both polyamide and polyester nanocapsules at the laboratory scale were compared to the ones obtained at the pilot scale. The encapsulation efficiency was higher than 98% in both types of nanocapsules at the laboratory and the pilot scales. The in vitro releases of Parsol(®) MCX from polyester nanocapsules were reproducible at both scales. This is the first time such a power-law was described for the preparation of nanocapsules by interfacial polycondensation and solvent diffusion.

  14. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells.

    PubMed

    Li, Qian; Xing, Dongming; Ma, Lie; Gao, Changyou

    2017-04-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between l-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine.

  15. Identification of unknown compounds from polyester cans coatings that may potentially migrate into food or food simulants.

    PubMed

    Paseiro-Cerrato, Rafael; MacMahon, Shaun; Ridge, Clark D; Noonan, Gregory O; Begley, Timothy H

    2016-04-29

    Cross-linked polyester resins are being introduced into the market as alternatives to epoxy resins as coatings for metal food cans. Identification of potential migrants, from these coatings into food, is a significant analytical challenge due to the diversity of substances employed in the manufacture of the coatings. However, such identification is required to assess migration from the can coating into the food and quantify dietary exposure. Polyester can coatings were extracted with acetonitrile at 40°C for 24h and the extracts were analyzed by a variety of analytical techniques, including GC-MS, HPLC-DAD/MS, HPLC-DAD/CAD and UHPL C-HRMS. Twenty nine non-volatile oligomers were tentatively identified using retention times, UV spectra, and accurate mass measurements. Identified oligomers suggest the coating in use for food cans is a polyester coating and is mainly based on the monomers isophthalic acid, terephthalic acid and nadic acid. To give confidence in the identification, one of the tentatively identified oligomer was synthetized and analyzed by (13)C and (1)H NMR and UHPL C-HRMS. The NMR and HRMS results, confirmed the presence of this compound in the can extracts. Finally, to determine if rapid, direct detection of the oligomers was practical, the coatings were analyzed by DART-HRMS. Twenty three out of the 29 oligomers were identified in the coating by direct measurement with DART-HRMS in few minutes.

  16. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    PubMed Central

    2015-01-01

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971

  17. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE PAGES

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  18. Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: Preparation and optimization

    NASA Astrophysics Data System (ADS)

    Dorraji, M. S. Seyed; Rasoulifard, M. H.; Khodabandeloo, M. H.; Rastgouy-Houjaghan, M.; Zarajabad, H. Karimi

    2016-03-01

    New nanocomposites have been successfully prepared based on polyester resin, including various metal oxides (ZnO nanorod bundles, Fe3O4 nanoparticles, and nano Fe3O4/ZnO) and Polyaniline (PANI) synthesized with different dopants. The microwave absorption properties of nanocomposites were investigated in X-band range. The Taguchi experimental design was used to study the effects of the type of metal oxide and that of PANI (doped with various acids) and the weight percent of metal oxide in PANI and that of filler (metal oxide and PANI) in polyester matrix on the microwave absorption properties with the absorber thickness of only 2 mm. The weight percent of metal oxide in PANI was found to be the most significant parameter, accounting for 45.611% of the total contribution of the four selected parameters. Fe3O4/ZnO as inorganic oxide, PTSA as dopant of PANI, 25 wt.% for inorganic oxide in PANI, and filler in the polyester matrix were selected as optimum conditions by Taguchi method. The sample prepared in optimal conditions had reflection loss of less than -10 dB (absorption >90%) and covering a frequency range of 8.4-11.6 GHz.

  19. Damage of polyesters by the atmospheric free radical oxidant NO3 (•): a product study involving model systems.

    PubMed

    Goeschen, Catrin; Wille, Uta

    2013-01-01

    Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 (•) in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed 'hot spots' in polyesters that are particularly vulnerable to attack by NO3 (•) and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions.

  20. Mechanical and thermal studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica

    NASA Astrophysics Data System (ADS)

    Jaya Vinse Ruban, Y.; Ginil Mon, S.; Vetha Roy, D.

    2013-02-01

    The inter-crosslinking networks of unsaturated polyester (UP)-toughened epoxy-nanosilica hybrid nanocomposites have been developed. Epoxy resin was toughened with 5 and 10% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4'-diaminodiphenylmethane (DDM) as a curing agent at appropriate condition, and the resulting product was identified by FT-IR spectra. Unsaturated polyester-toughened epoxy system (10%) was further filled with 1, 3, 5 and 7% (by wt) of amine-functionalized nanosilica particles prepared by sol-gel method. Modified nanosilica-filled hybrid UP-epoxy matrices developed in the form of casting were characterized for their thermal, mechanical properties and water absorption capacity according to ASTM standards. The degree of dispersion of nanosilica in the matrices was investigated by SEM technique. Mechanical testing data indicate that the introduction of UP into epoxy resin has improved the impact strength. Significant improvement in the flexural properties, tensile properties and impact strength were observed in the UP-epoxy blends with increase in the percentage of amine-modified nanosilica particles. The T g value decreases with UP toughening and increases with concentration of modified nanosilica on the UP-epoxy matrix. The water absorption behavior is found to decrease with UP toughening and concentration of modified nanosilica on the UP-epoxy matrix.