Science.gov

Sample records for resistance ktp crystal

  1. Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP.

    PubMed

    Huang, H-T; Qiu, G; Zhang, B-T; He, J-L; Yang, J-F; Xu, J-L

    2009-11-10

    A comparative study of a frequency-doubling 532 nm laser based on gray-tracking-resistant KTP (GTR-KTP) and conventional KTP is presented. The intracavity GTR-KTP was proved to have better temperature characteristics than that of conventional KTP. Within the normalized output power variation range of 0.8-1.0, GTR-KTP has a temperature tolerance of 35 degrees C, broader than the 21 degrees C obtained with conventional KTP. Under the laser diode (LD) pump power of 180 W, the maximum average output power at 532 nm was 40.6 W for GTR-KTP at a repetition frequency of 10 kHz. In the case of conventional KTP, the maximum available LD pump power was limited to 150 W, with the corresponding maximum green average output power of 27.2 W. PMID:19904338

  2. Assessment of diffusion-bonded KTP crystals for efficient, low pulse energy conversion from 1 to 2 microm.

    PubMed

    Perrett, Brian J; Mason, Paul D; Orchard, David A

    2006-06-20

    Diffusion bonded (DB) walk-off compensated KTP crystals offer an alternative nonlinear medium for efficient 1 to 2 microm conversion within optical parametric oscillators (OPOs) at low pulse energies. Spatial variations in optical absorption and transmission values measured at 2 mum are reported for two DB-KTP crystals. Finally, a comparison is made between the conversion efficiency obtained from a degenerate 1 microm pumped OPO using a single 20 mm KTP crystal and an equivalent length DB-KTP crystal consisting of two bonded 10 mm crystals. PMID:16778951

  3. Nonlinear optical frequency conversion with KTP and BiBO crystals for lasers in space

    NASA Astrophysics Data System (ADS)

    Potreck, Arne; Schröder, Helmut; Lammers, Melanie; Tzeremes, Georgios; Riede, Wolfgang

    2014-09-01

    Within ESA's ADM-Aeolus and EarthCARE missions Doppler-wind Lidar systems will be operated in the Earth's orbit to measure global wind profiles. The active instrument will be based on a Nd:YAG laser, frequency tripled by nonlinear optical crystals. Different crystals are therefore to compare and qualify in regard of their space acceptability. A dedicated set-up to measure the maximum conversion efficiencies and its stability during longterm operation for KTP crystals (SHG) and BiBO crystals (SHG and THG) is presented in this work. In order to detect gray-tracking and its influence on thermal lensing in situ, measurements with a Shack-Hartmann sensor and a co-aligned HeNe laser were performed. Conversion efficiencies were 76+/-3 % at SHG for KTP and BiBO crystals and 48+/-2 % at THG with a combination of two BiBO crystals. During longterm experiments of 60 million laser pulses, conversion efficiencies were demonstrated to be stable over time (+/-1 % at SHG with KTP and +/-2 % at THG with BiBO). The occurrence of gray-tracking was detected in the KTP crystal and the resulting thermal lensing with an exponential saturation over time was observed in situ.

  4. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    PubMed

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  5. Walk-off corrected KTP crystal for low pulse energy pumped optical parametric oscillation

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Lee, Huai-Chuan; Meissner, Helmuth

    2009-02-01

    A quasi-noncritical phase-matching (QNCPM) technology has been developed employing adhesive-free bonding (AFB) for high efficiency and high beam quality frequency conversion. A 16-layer KTP composite with total length of 32 mm was fabricated for a low pulse energy pumped 2-μm optical parametric oscillator (OPO). Our calculations indicate that the KTP composite has a 16 times lower walk-off effect and 16 times higher angle acceptance compared with the OPO in the same length single KTP crystal. Even only considering the walk-off correction, the threshold pump pulse energy in such a QNCPM OPO can be expected to be reduced by 256 times. In addition, the AFB technique was demonstrated to have uniform bonding quality and immeasurably small interface loss. Therefore, it can be expected to allow engineering of other critical phase-matched nonlinear optical devices into QNCPM devices.

  6. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines. PMID:26192515

  7. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines.

  8. Efficient frequency doubling of a pulsed laser diode by use of a periodically poled KTP waveguide crystal with Bragg gratings

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Birkin, D. J. L.; Sibbett, W.; Battle, P.; Fry, T.; Mohatt, D.

    2001-12-01

    Blue light with an average power of as much as 7.5 mW in picosecond pulses has been generated at 486, 488, and 491 nm from a frequency-doubled, nonresonant injection seeded, gain-switched InGaAs/GaAs diode laser by use of a periodically poled KTP waveguide crystal that incorporates a Bragg grating section.

  9. Efficient frequency doubling of a pulsed laser diode by use of a periodically poled KTP waveguide crystal with Bragg gratings.

    PubMed

    Rafailov, E U; Birkin, D J; Sibbett, W; Battle, P; Fry, T; Mohatt, D

    2001-12-15

    Blue light with an average power of as much as 7.5 mW in picosecond pulses has been generated at 486, 488, and 491 nm from a frequency-doubled, nonresonant injection seeded, gain-switched InGaAs/GaAs diode laser by use of a periodically poled KTP waveguide crystal that incorporates a Bragg grating section. PMID:18059745

  10. Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Huang, H.-T.; He, J.-L.; Wang, Y.

    2011-03-01

    A gray-trace resistance KTP (GTR-KTP) second Stokes Raman laser intracavity driven by a diode-pumped acousto-optic Q-switched Nd:YVO4 laser was first demonstrated in this paper. With an incident pump power of 9.5 W, the intracavity GTR-KTP Raman laser, operating at the repetition rate of 20 kHz, produced the maximum average output power of 860 mW at 1129 nm. The minimum pulse width obtained in this GTR-KTP Raman laser was 10.8 ns. When the GTR-KTP was substituted with a common KTP, a lower average output power of 720 mW and longer pulse width of 15.9 ns were obtained in the common KTP Raman laser under the same pump condition and cavity setup as the GTR-KTP Raman laser. Experimental results indicated that the decreased absorption at the fundamental and Stokes wave in GTR-KTP was beneficial to improve the stimulated Raman scattering performance.

  11. Complete anisotropic time-dependent heat equation in KTP crystal under repetitively pulsed Gaussian beams: a numerical approach.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Khaldi-Nasab, Ali

    2015-02-20

    In this work, a thorough and detailed solution for the time-dependent heat equation for a cylindrical nonlinear potassium titanyl phosphate (KTP) crystal under a repetitively pulsed pumping source is developed. The convection and radiation boundary conditions, which are usually ignored in the literature, have been taken into account, and their importance on the temperature distribution has been discussed in detail. Moreover, the temperature dependence of thermal conductivity of KTP was considered in the calculations, and its impact is discussed. It is shown that the radiation term has a negligible effect and can be dropped safely, while the temperature dependence of thermal conductivity is more influential, such that ignorance of it brings some errors into the modeling. The time evolution of the temperature while the crystal is pumping with a train of successive Gaussian pulses until reaching equilibrium is shown. To accomplish numerical calculations, we developed a homemade code written with the finite difference time domain method in Intel Fortran (ifort) and ran it with the Linux operating system. PMID:25968183

  12. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    PubMed

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses. PMID:26193514

  13. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    PubMed

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  14. Novel Optical Parametric Amplifier at 1572 nm Wavelength Using KTP Crystal

    NASA Astrophysics Data System (ADS)

    Li, Huan-Huan; Li, Shi-Guang; Ma, Xiu-Hua; Wang, Jun-Tao; Zhu, Xiao-Lei

    2012-11-01

    A novel master oscillator/power amplifier architecture for optical parametric conversion of high pulse energy from 1.064 μm to 1.572 μm in KTiOPO4 crystal is presented. A high gain of more than 80 at 1.572 μm pumped by a high energy Q-switched pulse laser is realized. With a seeding signal energy of 1 mJ, and 400 mJ pump pulse at 100 Hz, an amplified signal pulse energy of over 80 mJ is obtained. The total optical-optical conversion efficiency reaches 21%.

  15. Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes

    SciTech Connect

    Akulov, V A; Kablukov, S I; Babin, Sergei A

    2012-02-28

    This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. The tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.

  16. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  17. The GTR-KTP intracavity optical parametric oscillator driven by a diode-end-pumped acousto-optical Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Huang, H. T.; Zhang, B. T.; He, J. L.

    2013-03-01

    An efficient eye-safe gray-trace resistance-KTP (GTR-KTP) intracavity optical parametric oscillator (IOPO) excited by a diode-end-pumped Q-switched Nd:YAG laser was demonstrated. Under a laser diode power of 11.4 W, a maximum average output power of 1.2 W at 1572 nm was obtained at a repetition rate of 15 kHz, corresponding to a diode-to-signal conversion efficiency of 10.5%. As for the common KTP IOPO under the same pump conditions and cavity design, a lower average output power of 0.96 W was obtained. Consequently, the corresponding GTR-KTP OPO conversion efficiency was increased by 25% compared with that obtained in common KTP IOPO.

  18. Vibration resistant quartz crystal resonators

    NASA Astrophysics Data System (ADS)

    Goldfrank, B.; Warner, A.

    1982-11-01

    The principal objectives of this investigation were to provide doubly rotated quartz crystal resonators that exhibit low "g' sensitivity on the order of 1 superscript 10 per "g', and fast warm-up on the order of 1 superscript 9 in three minutes. Effects of changes in the mounting orientation have been investigated with respect to the magnitude of the acceleration sensitivity vector, for 0 angles of 21.95, 23.75 and 25.00, using 5 MHz/5th overtone plano-convex and bi-convex quartz crystal blanks. The mounting technique was three-point thermo-compression bonding; the mounts were 90 degrees apart. A new thermo-compression bonding ribbon was evaluated and instituted. 5 MHz and 10 MHz, third overtone crystals and 20 MHz fifth overtone crystals were measured for the magnitude of the acceleration sensitivity vector. Improved methods of X-ray orientation were also investigated.

  19. High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength

    NASA Astrophysics Data System (ADS)

    Su, Fufang; Zhang, Xingyu; Wang, Weitao; Cong, Zhenhua; Shi, Men; Yang, Xiuqin; Kong, Weijin; Ma, Lili; Wu, Wendi

    2013-09-01

    With Nd:YAG as the gain medium and KTP crystal as the Raman medium, the characteristics of an LD pumped intracavity actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength were studied. The output characteristics of 1096 nm were investigated. At a pulse repetition rate of 30 kHz an average power up to 1.97 W was obtained with the incident pump power of 11.75 W, corresponding to a diode-to-Stokes conversion efficiency of 16.8%.

  20. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  1. Continuous wave Yb:YCOB cyan lasers with KTP as the sum-frequency converter

    NASA Astrophysics Data System (ADS)

    Lan, Ruijun; Cheng, Hao; Yang, Guang

    2015-12-01

    All-solid-state cyan laser at 500 nm range are reported based on a Yb:YCa4O(BO3)3 (Yb:YCOB) crystal and a type-II phase matched KTiOPO4 (KTP) crystal. The 503 nm cyan laser is obtained by the sum-frequency mixing (SFM) of 974 nm pump wave and 1042 nm fundamental wave. To the best of our knowledge, this is the first cyan laser demonstrated with Yb-doped YCOB crystal. A dual-wavelength laser at 505 and 525 nm is also obtained, which origins from the simultaneous SFM and self-frequency doubling.

  2. Room-temperature near IR fluorescence of high optical quality KTP

    NASA Astrophysics Data System (ADS)

    Hegde, S. M.; Schepler, K. L.; Peterson, R. D.; Zelmon, D. E.

    2007-04-01

    We have investigated room temperature fluorescence in the 500-900nm spectral region from high optical quality, polished and uncoated KTP crystals from three different commercial vendors. The crystals were all cut into 5mm x 5mm x 5mm cubes with their dielectric axes along the cube edges. The pump source was a tripled Nd:YAG laser operating at 355nm and 7mJ energy having 3ns pulse width and 100Hz pulse repetition rate. Samples from two vendors showed low fluorescence of similar magnitude while samples from the third vendor showed nearly two orders of magnitude higher value in the peak fluorescence near 800nm. In addition, all samples showed a weaker secondary fluorescence band peaking near 600nm. A low fluorescence sample from one of the vendors also showed typical "gray tracking" at these pump radiation conditions. We have also measured lifetimes of 2.9+/-0.7 µs and 4.9+/-0.1 µs for the centers responsible for fluorescence near 845nm and 595nm respectively in the KTP sample showing highest fluorescence and "gray tracking" in this group of samples. The manufacturing processes used to produce high optical quality and low fluorescence KTP materials are proprietary to the commercial vendors and were not provided. Possible origin and sources of fluorescence in these materials are discussed consistent with those published in the literature.

  3. KTP-532 laser ablation of urethral strictures

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    In 1988, the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision, as in urethrotomy, strictures were treated with a 360$DEG contact photoradiation. Thirty-one males, average age 53.2 years, received 37 treatments. Six patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and post-gonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of a circumferential ablation followed by foley catheter placement (mean 10 days). Follow-up on 29 of 31 patients ranged from 1 to 16 months (mean 9.7) Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptoms but no stricture recurrence. Six patients (20.5%) failed therapy requiring additional surgery or regular dilatations. No complications were encountered. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious.

  4. Periorbital aesthetic surgery with the KTP laser.

    PubMed

    Ginsbach, G

    1995-01-01

    The eyes are regarded as the windows to the soul. Many expressions of mood may be derived from the appearance of the eyes--mad, sad, bad, criminal, sweet, friendly, mystic. In addition, love and flirtatiousness, self-consciousness, pride, modesty, anger, youth, and age are shown in the expression of our eyes. The eyes and the periorbital region therefore challenge our surgical skill to improve the patient's overall well-being to be looked at each day in the mirror. The potassium titanyl phosphate (KTP) laser in many indications helps us to fulfill the patient's expectations concerning pain, oozing, bruising, swelling, outpatient surgery, and early return to work and normal social activities. With the cutting fiber device, an accurate removal of skin and fat or even tumors is possible in this region with practically no side effects. The frontal lift, eyebrow lift, direct or through coronal incision, as well as temporal lifting are easily accessible and carried out by this device. Glabellar frowns may also be removed endoscopically. Further, the KTP laser may be used for transconjunctival blepharoplasty.

  5. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  6. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  7. Treatment of urethral strictures with the KTP 532 laser

    NASA Astrophysics Data System (ADS)

    Schmidlin, Franz R.; Oswald, Michael; Iselin, Christoph E.; Jichlinski, Patrice; Delacretaz, Guy P.; Leisinger, Hans-Juerg; Graber, Peter

    1997-05-01

    The objective of this study was to evaluate and compare the safety and efficacy of the KTP 532 laser to direct vision internal urethrotomy (DVIU) in the management of urethral strictures. A total of 32 patients were randomized prospectively in this study, 14 DVIU and 18 KTP 532 laser. Patients were evaluated postoperatively with flowmetry and in the case of recurrence with cystourethrography at 3, 12, 24 weeks. With the KTP 532 laser complete symptomatic and urodynamic success was achieved in 15 (83%) patients at 12 and 24 weeks. Success rate was lower in the DVIU group with 9 (64%) patients at 12 weeks and 8 (57%) patients at 24 weeks. With the KTP mean preoperative peak-flow was improved from 6 cc/s to 20 cc/s at 3, 12 and 24 weeks. With DVIU mean preoperative peak-flow was improved from 5.5 cc/s to 20 cc/s at 3 weeks followed by a steady decrease to 13 cc/s at 12 weeks and to 12 cc/s 24 weeks. No complications were observed in either group of patients. Our results confirm that stricture vaporization with the KTP 532 laser is a safe and efficient procedure. It thus represents a valuable alternative in the endoscopic treatment of urethral strictures.

  8. Quality evaluation of resistivity-controlled silicon crystals

    NASA Astrophysics Data System (ADS)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  9. Anisotropic domain structure of KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Urenski, P.; Lesnykh, M.; Rosenwaks, Y.; Rosenman, G.; Molotskii, M.

    2001-08-01

    Highly anisotropic ferroelectric domain structure is observed in KTiOPO4 (KTP) crystals reversed by low electric field. The applied Miller-Weinreich model for sidewise motion of domain walls indicates that this anisotropy results from the peculiarities of KTP crystal lattice. The domain nuclei of dozen nanometer size, imaged by atomic force microscopy method, demonstrate regular hexagonal forms. The orientation of domain walls of the elementary nuclei coincides with the orientation of the facets of macroscopic KTP crystals. The observed strong domain elongation along one principal crystal axis allows us to improve tailoring of ferroelectric domain engineered structures for nonlinear optical converters.

  10. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  11. Theoretical analysis of terahertz parametric oscillator using KTiOPO4 crystal

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Bing, Pibin; Yuan, Sheng

    2016-08-01

    Terahertz parametric oscillator (TPO) using KTiOPO4 (KTP) crystal with a noncollinear phase-matching scheme is investigated. Frequency tuning characteristics of terahertz wave (THz-wave) by varying the phase-matching angle and pump wavelength are analyzed. The expression of the effective parametric gain length under the noncollinear phase matching condition is deduced. Parametric gain and absorption characteristics of THz-wave in KTP are theoretically simulated for the first time. The characteristics of KTP for TPO are compared with MgO:LiNbO3. The analyses indicate that KTP is more suitable than MgO:LiNbO3 for TPO.

  12. Contacts for high-resistivity (Cd,Mn)Te crystals

    SciTech Connect

    Witkowska-Baran, M.; James, R.; Mycielski, A.; Kochanowska, D.; Szadkowski, A.J.; Jakiela, R.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.; Cui, Y.; and James, R.B.

    2010-09-09

    Semi-insulating (Cd,Mn)Te crystals offer a material that may compete well with the commonly used (Cd,Zn)Te crystals for manufacturing large-area X- and gamma-ray detectors. The Bridgman growth method yields good quality, high-resistivity (10{sup 9} - 10{sup 10} {Omega} {center_dot} cm) crystals of (Cd,Mn)Te:V. Doping the as-grown crystals with the compensating agent vanadium ({approx} 10{sup 16} cm{sup -3}) ensures their high resistivity; thereafter, annealing them in cadmium vapors reduces the number of cadmium vacancies. Applying the crystals as detectors necessitates having satisfactory electrical contacts. Accordingly, we explored various techniques of ensuring good electrical contacts to these semi-insulating (Cd,Mn)Te crystals, assessing metallic layers, monocrystalline semiconductor layers, and amorphous (or nanocrystalline) semiconductor layers. We found that ZnTe heavily doped ({approx} 10{sup 18} cm{sup -3}) with Sb, and CdTe heavily doped ({approx} 10{sup 17} cm{sup -3}) with In, proved satisfactory semiconductor contact layers. They subsequently enabled us to establish good contacts (with only narrow tunneling barriers) to the Au layer that usually constitutes the most external contact layer. We outline our technology of applying electrical contacts to semi-insulating (Cd,Mn)Te, and describe some important properties.

  13. Dispersion of the temperature-noncritical frequency conversion and birefringence in biaxial optical crystals

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2004-05-31

    Dispersion of the temperature-noncritical frequency conversion (phase matching) and birefringence in biaxial crystals is considered. The possibility of simultaneous realisation of these processes during SHG in a KTP crystal is discussed. (nonlinear optical phenomena)

  14. Optical and thermo-optical characterization of KTP and its isomorphs for 1.06 {micro}m pumped OPO`s

    SciTech Connect

    Ebbers, C.A.; Velsko, S.P.

    1996-02-17

    The need to protect personnel from inadvertent eye trauma from fielded laser sources dictates that the highest externally accessible fluences produced by these systems be kept below the maximum permissible exposure (MPE) for intra-beam viewing. The large MPE value for a typical Q-switched (10 ns pulsewidth) source is 1 J/cm{sup 2} for wavelengths in the range of 1.5--1.8 microns, while the MPE for a similar pulsewidth Nd:YAG source is 5 {micro}J/cm{sup 2}. This 5 order of magnitude difference in the MPE is one reason for the trend towards shifting the output of near infrared sources used for remote sensing or ranging to the eyesafe wavelength region, even at the expense of overall system efficiency. There are 5 nonlinear optical crystals available with apertures of at least 10 x 10 mm{sup 2} which are also highly transparent in the 1.5 micron region; LiNbO{sub 3}, KNbO{sub 3}, KTP, KTA, and RTA. All 5 crystals are capable of 1,555 nm generation in an orientation with a favorable nonlinear optical coupling. However, KTP, KTA, or RTA are preferred materials, given that the generated signal of the OPO should remain at a fixed wavelength, insensitive to angular or thermal variations. The authors have characterized the phasematching angle, linewidth, thermal conductivity, and d{lambda}/dT for KTP, KTA, and RTA optical parametric oscillators.

  15. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  16. Sub ablation effects of the KTP laser on wound healing.

    PubMed

    Kyzer, M D; Aly, A S; Davidson, J M; Reinisch, L; Ossoff, R H

    1993-01-01

    The KTP laser (wavelength 532 nm) was used in a sub ablative format to determine the effect of low energy density irradiation on the normal healing by primary intention of scalpel skin incisions in rats. Two longitudinal lased strips were created by a 1 cm diameter defocused beam on the shaved, cleaned dorsal epidermis of 32 Sprague-Dawley rates; one strip was produced with a 2.0 W beam (54 J, or 18 J/cm2 total dose), and the other with a 3.5 W beam (94.5 J or 31.5 J/cm2, total dose). Scalpel incisions were made longitudinally within the irradiated zones, using contra lateral scalpel incisions on unirradiated skin as controls. Tensiometric analysis of wound strength was performed at 3, 7, 14, and 23 days following surgery. The data from fresh tissue tensiometry indicate that KTP laser irradiation of skin incisions results in a lower tensile strength for the wound at 7 and 14 days. The decrease in tensile strength is proportional to the total energy density of the exposure. At day 3 and 23, the tensile strength of the wound was independent of the sub ablative laser exposure. The results are in general agreement with studies of the healing process of laser incisions and may help us to understand the details of the healing process from laser incisions. PMID:8426529

  17. Measurements of the operating characteristics of a 1064 nm pumped KTP RISTRA OPO.

    SciTech Connect

    Gimmestad, Gary; Armstrong, Darrell Jewell; Wood, Jack; Roberts, David

    2009-07-01

    Measurements of the operating characteristics of a 1064 nm pumped potassium titanyl phosphte (KTP) optical parametric oscillator (OPO) were carried out at the Electro Optics Systems Laboratory of Georgia Tech Research Institute (GTRI). The OPO was developed by Sandia National Laboratories and employs a nonplanar image-rotating geometry that is known by the acronym RISTRA, denoting Rotated Image Singly-Resonant Twisted RectAngle. The OPO was configured for pumping by the 1064 nm fundamental wavelength of a Q-switched Nd:YAG laser to generate a signal wavelength at 1627 nm and idler wavelength at 3074.8 nm. GTRI will be incorporate the OPO into a multi-wavelength lidar platform called the Integrated Atmospheric Characterization System (IACS). Prior to completion of the system design for the IACS platform, personnel at GTRI carried out a series of risk reduction experiments to measure the operating characteristics of the OPO. Sandia's role in this effort included technical assistance with numerical modeling of OPO performance, selection of nonlinear optical crystals, specification of cavity-mirror dielectric coatings, selection of vendors for optical components, and advice concerning integration of the RISTRA OPO into the IACS platform. This report describes results of the risk reduction measurements and it also provides some background information on the operating characteristics of RISTRA OPO's but is not intended to be a tutorial. A working knowledge of pulsed solid-state lasers, laser cavity modes, laser beam quality and beam propagation, and three-wave mixing in nonlinear crystals, is useful.

  18. Effective thermal resistance of a photonic crystal microcavity.

    PubMed

    Haret, L-D; Ghrib, A; Checoury, X; Cazier, N; Han, Z; El Kurdi, M; Sauvage, S; Boucaud, P

    2014-02-01

    We present a simple method to accurately measure the effective thermal resistance of a photonic crystal microcavity. The cavity is embedded between two Schottky contacts forming a metal-semiconductor-metal device. The photocarriers circulating in the device provide a local temperature rise that can be dominated by Joule effect under certain conditions. We show that the effective thermal resistance (R(th)) can be experimentally deduced from the spectral shift of the cavity resonance wavelength measured at different applied bias. We deduce a value of R(th)1.6×10(4) KW(-1) for a microcavity on silicon-on-insulator, which is in good agreement with 3D thermal modeling by finite elements. PMID:24487839

  19. Vital Bleaching of Tetracycline-Stained Teeth by Using KTP Laser: A Case Report

    PubMed Central

    Kinoshita, Jun-Ichiro; Jafarzadeh, Hamid; Forghani, Maryam

    2009-01-01

    Bleaching of discolored teeth is one of the most important topics in aesthetic dentistry. A great challenge in this area is obtaining good results in tetracycline-stained teeth. The wavelength and features of KTP laser, which is a type of Nd:YAG laser, seem to be appropriate for bleaching of these teeth. This case report underlines the importance of knowledge about the photochemical bleaching by using the KTP laser and its side effects on soft tissues. PMID:19756199

  20. Endoscopic repair of unilateral choanal atresia with the KTP laser: a one stage procedure.

    PubMed

    Tzifa, K T; Skinner, D W

    2001-04-01

    This paper, describes the endoscopic repair of unilateral choanal atresia with the KTP laser, a one-stage procedure, with no requirement for stenting. Three patients are presented with unilateral choanal atresia, aged six, nine and 38-years-old. The procedure combines the excellent endoscopic visualization, with the good haemostatic and penetrating properties of the KTP laser. Follow up was between 12 months and four years with all choanae remaining patent, no dilatation was required. No surgical complications were noted.

  1. Myringoplasty for anterior and subtotal perforations using KTP-532 laser.

    PubMed

    Gerlinger, Imre; Ráth, Gábor; Szanyi, István; Pytel, József

    2006-09-01

    A retrospective study was performed on patients who underwent myringoplasty for either anterior or subtotal perforations over an 8-year period (from 1994 till 2004). We used the KTP-laser assisted anterior anchoring technique combining with anterior "pull-back" method. Patients' ages ranged from 6-62 years (median 36.5). The mean follow-up period was 2.8 years (minimum 6 months). The audiological results were analysed with the "Pytel software", which was developed in our department. As for the procedure, the drum remnant was freed from the malleus handle with the use of the laser and elevated out of it's sulcus anterior-superiorly. Large fascia graft was fashioned with a split of 4-5 mm in the middle of one edge. The graft was placed using the underlay technique medial to the handle of the malleus. A pull-back tunnel was created at the border of the anterior quadrants to further facilitate the survival of the graft. In this series the graft taking rate was 100%. Reperforation due to an undersized fascia was observed in one case. Post-operative audiological results indicated no bone conduction threshold elevation in any frequencies. Using the laser, cochlear trauma can be prevented, double fixation of the drum prevents lateralisation and blunting. Wide canalplasty makes both the approach and the follow-up very easy. Thorough soft tissue and bone work is advantageous from the fascia taking rate point of view.

  2. Low energy KTP laser in oral soft tissues surgery: A 52 patients clinical study

    PubMed Central

    Rocca, Jean P.; Merigo, Elisabetta; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir; Vescovi, Paolo

    2012-01-01

    Objectives: Since 1962 laser appliances have been used for soft tissues surgery of oral cavity with significant advantages compared to the traditional instruments: excellent bleeding control, possibility to avoid the use of suture, good patient compliance thanks to a decrease of intra- and post-operative discomfort and biostimulating effect. Unfortunately, the wavelengths so far used have been seen to cause, in association with an excellent ablation capacity, heat damage of the tissues that can decrease healing process and cause a greater discomfort to patients. The aim of this study was to evaluate the laser-assisted KTP laser surgery at low power in terms of characteristics of intervention and patients compliance. Study design: In this study, we describe the application of a new and recently introduced in dentistry wavelength, the KTP laser (532 nm), used with low power (1 Watt - CW), evaluating the time of interventions and, by a Numerical Rating Scale, the intra and postoperative pain. Results: KTP laser used at low power permits to obtain good pain control during operations that were carried out with only a topic anaesthetic (EMLA, Astratech), as shown in VAS tests. Good healing with limited or absent burning areas in treated portion of tissue. Conclusions: These preliminary study allows us to affirm that KTP laser with low parameters permits to perform oral surgery with good pain control and good wound healing. A greater number of clinical cases are however necessary to confirm the result obtained. Key words: Laser, KTP, oral surgery, thermal increase. PMID:22143694

  3. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    SciTech Connect

    Wagner, Frank R. Natoli, Jean-Yves; Akhouayri, Hassan; Commandré, Mireille; Duchateau, Guillaume

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched laser and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.

  4. Heat generation on root surfaces after KTP:NdYAG use in endodontic treatment

    NASA Astrophysics Data System (ADS)

    Nammour, S.; Kowalyk, Kenneth; Valici, Ch.; Guillaume, Patrick

    1997-05-01

    The canals of 30 recently extracted human teeth were filled with a photosensitizer. A series of 5 shots, separated by a resting time of 1 second also, was delivered by means of the KTP:YAG fiber tip. The temperature increases were measured on the topical point of the root surfaces by the use of a thermocouple. For laser settings, the rises were always below the safety threshold of 7 C. We conclude that the KTP:NdYAG laser can be harmless for periodontal tissues under some conditions.

  5. Thermal resistance at an interface between a crystal and its melt

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Evans, William J.; Keblinski, Pawel

    2014-07-01

    Non-equilibrium molecular dynamics simulations are used to determine interfacial thermal resistance (Kapitza resistance) between a crystal and its melt for three materials including Ar, H2O, and C8H18 (octane). The simulation results show that the Kapitza resistance at a crystal-melt interface is very small and thus has a negligible effect on thermal transport across the crystal-melt interface. The underlying origins of this behavior are the very good vibrational property match between the two materials forming the interface and good interfacial bonding. The result also indicates that the commonly-used assumption that temperature profile is continuous at the crystal-melt interface is valid even in the case of very rapid crystal melting or growth.

  6. Diode-end-pumped solid-state ultraviolet laser based on intracavity third-harmonic generation of 1.06 μm in YCa 4O(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Du, Chenlin; Wang, Zhengping; Xu, Guibao; Liu, Junhai; Xu, Xinguang; Fu, Kun; Wang, Jiyang; Shao, Zongshu

    2002-11-01

    Intracavity type-I sum-frequency mixing of 1.06 μm and 532 nm with a ( θ, ϕ)=(106°,77.2°)-cut YCOB crystal was performed in a compact laser-diode-pumped solid-state laser. Three type-II phase-matching KTP crystals with different length were used to generate 532 nm light by frequency-doubling of 1.06 μm. The 355 nm output power was measured with the three KTP crystals for Q-switched and continuous-wave (CW) operation, respectively. The maximum ultraviolet output power of 1305 μW was obtained with a 15 mm KTP crystal for CW operation, while the maximum ultraviolet average output power of 124 mW was obtained with a 10 mm KTP crystal for Q-switched operation.

  7. Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled KTP waveguide

    NASA Astrophysics Data System (ADS)

    Bashkansky, Mark; Pruessner, Marcel W.; Vurgaftman, Igor; Kim, Mijin; Reintjes, J.

    2016-05-01

    Spontaneous parametric downconversion (SPDC) using periodically poled nonlinear optical crystals under the quasiphase- matching condition has found wide use in quantum optics. High efficiencies and good coupling to single-mode fibers resulted from using channel waveguides in crystals. It is often desirable to have a very narrow bandwidth for the signal and idler photons, but under the typical operating conditions, phase matching dictates the bandwidth of the SPDC to be of the order of <1 nm. This occurs because the co-propagating signal and idler photons are entangled, and an increase of the signal wave-vector is compensated by a decrease of the idler wave-vector. One way to reduce the bandwidth is by forming either external or internal cavities. Additionally, bandwidth reduction is possible without cavities when the signal and idler are counter-propagating, and the changes in the wave-vector with frequency are additive. To accomplish this a domain inversion on the wavelength scale is required. In this work, we experimentally demonstrate SPDC in one-dimensional KTP-based waveguides with sub-micron poling for forward and backward interactions. Some of the spectral features of the generated light are accounted for by mode coupling theory in periodically poled waveguides but other features are as yet not explained.

  8. Crystallization of DIR1, a LTP2-like resistance signalling protein from Arabidopsis thaliana

    SciTech Connect

    Lascombe, Marie-Bernard; Buhot, Nathalie; Bakan, Bénédicte; Marion, Didier; Blein, Jean Pierre; Lamb, Chris J.; Prangé, Thierry

    2006-07-01

    DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. The crystals diffract to a resolution of 1.6 Å.

  9. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko

    2014-06-01

    High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.

  10. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  11. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  12. Abnormal drop in electrical resistivity with impurity doping of single-crystal Ag

    PubMed Central

    Kim, Ji Young; Oh, Min-Wook; Lee, Seunghun; Cho, Yong Chan; Yoon, Jang-Hee; Lee, Geun Woo; Cho, Chae-Ryong; Park, Chul Hong; Jeong, Se-Young

    2014-01-01

    Resistivity is an intrinsic feature that specifies the electrical properties of a material and depends on electron-phonon scattering near room temperature. Reducing the resistivity of a metal to its potentially lowest value requires eliminating grain boundaries and impurities, but to date few studies have focused on reducing the intrinsic resistivity of a pure metal itself. We could reduce the intrinsic resistivity of single-crystal Ag, which has an almost perfect structure, by impurity doping it with Cu. This paper presents our results: resistivity was reduced to 1.35 μΩ·cm at room temperature after 3 mol% Cu-doping of single-crystal Ag. Various mechanisms were examined in an attempt to explain the abnormal behavior. PMID:24965478

  13. Abnormal drop in electrical resistivity with impurity doping of single-crystal Ag.

    PubMed

    Kim, Ji Young; Oh, Min-Wook; Lee, Seunghun; Cho, Yong Chan; Yoon, Jang-Hee; Lee, Geun Woo; Cho, Chae-Ryong; Park, Chul Hong; Jeong, Se-Young

    2014-06-26

    Resistivity is an intrinsic feature that specifies the electrical properties of a material and depends on electron-phonon scattering near room temperature. Reducing the resistivity of a metal to its potentially lowest value requires eliminating grain boundaries and impurities, but to date few studies have focused on reducing the intrinsic resistivity of a pure metal itself. We could reduce the intrinsic resistivity of single-crystal Ag, which has an almost perfect structure, by impurity doping it with Cu. This paper presents our results: resistivity was reduced to 1.35 μΩ · cm at room temperature after 3 mol% Cu-doping of single-crystal Ag. Various mechanisms were examined in an attempt to explain the abnormal behavior.

  14. Nonlinear temperature dependence of resistivity in Bi2Sr2CuOy crystals

    NASA Astrophysics Data System (ADS)

    Wang, N. L.; Ruan, K. Q.; Yang, L. M.; Wang, C. Y.; Cao, L. Z.; Chen, Z. J.; Wu, W. B.; Zhou, G. E.; Zhang, Y. H.

    1993-11-01

    We have measured the ab-plane resistivity on a number of Bi2Sr2CuOy crystals from 4.2 K to 300 K. The as-grown crystals usually exhibit a minimum in their normal-state resistivity. The low-temperature electronic transport can be described by a hopping conduction. As the crystals were annealed in the ambient flowing oxygen, they could become metallic over the whole temperature range. A nonlinear temperature-dependent resistivity was observed and found to be sample dependent. Some ρ(T) curves can be fitted to a power law with the exponent slightly greater than 1, while others appear with a Bloch-Grüneisen-like shape. A discussion of the experimental results is presented.

  15. Light-Induced Resistance Effect Observed in Nano Au Films Covered Two-Dimensional Colloidal Crystals.

    PubMed

    Liu, Shuai; Huang, Meizhen; Yao, Yanjie; Wang, Hui; Jin, Kui-juan; Zhan, Peng; Wang, Zhenlin

    2015-09-01

    Tailoring resistance response using periodic nanostructures is one of the key issues in the current research. Two-dimensional colloidal crystals (CCs) structure is one of popular periodic nanospheres' structures and most of reports are focused on anomalous transmission of light or biomedical applications. In this work, a light-induced resistance effect is observed on silicon-based Au films covered CCs, featuring a remarkable resistance change as much as 56% and resistance switching characteristic. The diffusion and recombination of photocarriers is the crucial factor for this effect. This finding will expand photoelectricity functionality and be useful for future development of CC-based photoelectric devices.

  16. Light-Induced Resistance Effect Observed in Nano Au Films Covered Two-Dimensional Colloidal Crystals.

    PubMed

    Liu, Shuai; Huang, Meizhen; Yao, Yanjie; Wang, Hui; Jin, Kui-juan; Zhan, Peng; Wang, Zhenlin

    2015-09-01

    Tailoring resistance response using periodic nanostructures is one of the key issues in the current research. Two-dimensional colloidal crystals (CCs) structure is one of popular periodic nanospheres' structures and most of reports are focused on anomalous transmission of light or biomedical applications. In this work, a light-induced resistance effect is observed on silicon-based Au films covered CCs, featuring a remarkable resistance change as much as 56% and resistance switching characteristic. The diffusion and recombination of photocarriers is the crucial factor for this effect. This finding will expand photoelectricity functionality and be useful for future development of CC-based photoelectric devices. PMID:26314930

  17. Endoscopic and KTP laser-assisted surgery for juvenile nasopharyngeal angiofibroma.

    PubMed

    Hazarika, Produl; Nayak, Dipak Ranjan; Balakrishnan, Ramaswamy; Raj, Girish; Pillai, Suresh

    2002-01-01

    Juvenile nasopharyngeal angiofibroma is a highly vascular tumor arising from the area around the sphenopalatine foramen. Various radical and extended radical surgeries have been advocated to surgically excise both extranasopharyngeal and nasopharyngeal juvenile angiofibromas. However angiofibromas involving the nasopharynx, nose, and sphenoid with minimal lateral extension via the sphenopalatine foramen can also be adequately managed endoscopically either alone or with 1 of the traditional approaches. Nine cases of juvenile nasopharyngeal angiofibroma were successfully managed between January, 1999, and March, 2001, by preoperative selective embolization of the internal maxillary artery with or without external carotid artery clamping, followed by endoscopic excision. Two of the 9 cases underwent KTP/532 laser-assisted endoscopic excision, whereas the transpalatal approach was used along with the endoscope in another 2 cases. The patients remained free of disease after a median follow-up period of 17 months. We report our preliminary experience in endoscopic and KTP laser-assisted excision of juvenile nasopharyngeal angiofibroma.

  18. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  19. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  20. The Effect of Hydrogen Annealing on the Oxidation Resistance of Four EPM Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Barrett, Charles A.; Garlick, Ralph G.

    2001-01-01

    Four single crystal EPM (enabling propulsion materials) developmental airfoil superalloys were hydrogen annealed at 1300 C for up to 100 hours to remove sulfur and improve oxidation resistance. Although the 1100 and 1150 C cyclic oxidation resistance was remarkably improved by annealing for 24 or 100 hours, the behavior was still considerably inferior to that of commercially available single crystal superalloys, especially those that are either Y-doped or hydrogen annealed. Excessive degradation in the developmental alloys appeared to be correlated with low Cr contents and, to a lesser extent, high Co and Re contents.

  1. Electronic transport in single crystals and polycrystalline Al3Zr: Effect of disorder upon resistivity

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Chashka, K. B.; Patlagan, L.; Bazalitsky, G.; Reisner, G. M.

    2003-07-01

    We report on electronic transport measurements carried out on Al3Zr single crystals and a polycrystal. The resistivities of the most conductive samples follow the Bloch-Grüneisen temperature dependence with very similar characteristic temperatures θR around 417 K. Excess Zr and some additional impurities/disorder are responsible for a wide spread of residual resistivities (ρ0) in the crystals. In samples with large ρ0, resistivity seems to be dominated over wide ranges of temperature by scattering from vibrating impurities (a mechanism known as electron-phonon-impurity interference). At low temperatures the contribution of the interference term to resistivity is Δρimp=Bρ0T2. The very large value of B (as compared with the few data available for other metals) and large ρ0 in this group of samples enabled detection of this unusual electronic scattering up to relatively high temperatures.

  2. Treatment of superficial vascular lesions with the KTP 532-nm laser: experience with 647 patients.

    PubMed

    Becher, G L; Cameron, H; Moseley, H

    2014-01-01

    Superficial vascular lesions are a common dermatological diagnosis but are often difficult to treat. Numerous lasers (especially the dye laser) and intense pulsed light sources have been used, but there have been very few reports on the effectiveness of the potassium-titanyl phosphate (KTP) laser. We have extensive experience of this modality at our institution, and the purpose of this survey is to report on the safety and efficacy of the KTP laser. Using an in-house database, we retrospectively collected data from patients who had undergone treatment with the KTP laser for superficial vascular lesions. Patients of Fitzpatrick skin type I-IV were included. Exclusion criteria were Fitzpatrick skin type V, patients with obvious suntan and those on potentially phototoxic medications or minocycline therapy. Diagnoses included discrete or matted telangiectasia, strawberry naevus, spider angioma, rosaceal erythema, rosaceal telangiectasia, telangiectatic naevus, angioma, combined rosaceal erythema/telangiectasia, port-wine stain, venous lake haemangioma and hereditary haemorrhagic telangiectasia. Patients underwent an initial test treatment and further treatment at 6-week intervals as required. Clinical photographs were taken pre- and post-treatment, and outcome was graded by patient and physician. Adverse effects were recorded including scarring, hypo- or hyperpigmentation, marked swelling, blistering, scabbing and bruising. Six hundred forty-seven patients with 13 diagnoses on 9 different body sites were recorded. Four hundred eighty-six were female, and the median age was 39.5 years. Of the lesions treated, 33.7 % (n = 218) were discrete telangiectases and 31.8 % (n = 206) were spider angiomas. A 92.7 % of lesions were on the face. Four hundred thirteen (77.6 %) patients who had outcomes recorded at 6 weeks were graded as "clearance" or "marked improvement". Only 38 (5.8 %) patients experienced adverse effects, all of which were minor; the main adverse

  3. Radiation resistance of nonlinear crystals at a wavelength of 9.55 {mu}m

    SciTech Connect

    Andreev, Yu M; Voevodin, V G; Badikov, Valerii V; Geiko, L G; Geiko, P P; Ivashchenko, M V; Karapuzikov, A I; Sherstov, I V

    2001-12-31

    The results of radiation resistance measurements for twelve nonlinear crystals are presented. The crystals include the well-known nonlinear CdGeAs{sub 2}, ZnGeP{sub 2}, AgGaSe{sub 2}, GaSe, AgGaS{sub 2}, and Ag{sub 3}AsS{sub 3} crystals operating in the middle IR range, new mixed AgGaGeS{sub 4} and Cd{sub 0.35}Hg{sub 0.65}Ga{sub 2}S{sub 4} crystals, two-phase (orange and yellow) HgGa{sub 2}S{sub 4} crystal, and the doped GaSe:In crystal. The mixed crystals and the two-phase HgGa{sub 2}S{sub 4} crystal are transparent in the range from 0.4 - 0.5 to 11.5 - 14.5 {mu}m. The measurements were performed using a pulsed single-mode highly stability TEA CO{sub 2} laser with an output pulse duration of {approx}30 ns. The damage thresholds of new nonlinear AgGaGeS{sub 4} and Cd {sub 0.35}Hg{sub 0.65}Ga{sub 2}S{sub 4} crystals and of the HgGa{sub 2}S{sub 4} crystal (the orange and yellow phases) were found to be 1.5 - 2.2 times higher than for the crystals operating in the middle IR range. (interaction of laser radiation with matter. laser plasma)

  4. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  5. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish.

    PubMed

    Blaise, Mickaël; Alsarraf, Husam M A B; Wong, Jaslyn E M M; Midtgaard, Søren Roi; Laroche, Fabrice; Schack, Lotte; Spaink, Herman; Stougaard, Jens; Thirup, Søren

    2012-06-01

    The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices. The fold shares low structural similarity to known structures. PMID:22434723

  6. Good electrical contacts for high resistivity (Cd,Mn)Te crystals

    SciTech Connect

    Witkowska-Baran,M.; Mycielski, A.; Kochanowska, D.; Szadkowski, A. J.; Jakiela, r.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.; Cui, Y.; James, R. B.

    2008-10-19

    We consider that semi-insulating (Cd,Mn)Te crystals may well successfully replace the commonly used (Cd,Zn)Te crystals as a material for manufacturing large-area X- and gamma-ray detectors. The Bridgman growth method yields good quality and high-resistivity (10{sup 9}-10{sup 10} {Omega}-cm) crystals of (Cd,Mn)Te:V. Doping with vanadium ({approx} 10{sup 16} cm{sup -3}), which acts as a compensating agent, and annealing in cadmium vapors, which reduces the number of cadmium vacancies in the as-grown crystal, ensure this high resistivity. Detector applications of the crystals require satisfactory electrical contacts. Hence, we explored techniques of ensuring good electrical contacts to semi-insulating (Cd,Mn)Te crystals. Our findings are reported here. Before depositing the contact layers, we prepared an 'epi-ready' surface of the crystal platelet by a procedure described earlier for various tellurium-based II-VI compound crystals. A molecular beam epitaxy (MBE) apparatus was used to deposit various types of contact layers: Monocrystalline semiconductor layers, amorphous- and nanocrystalline semiconductor layers, and metal layers were studied. We employed ZnTe heavily doped ({approx} 10{sup 18} cm{sup -3}) with Sb, and CdTe heavily doped ({approx} 10{sup 17} cm{sup -3}) with In as the semiconductors to create contact layers that subsequently enable good contact (with a narrow, tunneling barrier) to the Au layer that usually is applied as the top contact layer. We describe and discuss the technology and some properties of the electrical contacts to semi-insulating (Cd,Mn)Te.

  7. Low-Density, Creep-Resistant Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2006-01-01

    Several recently formulated nickel-base superalloys have been developed with excellent high-temperature creep resistance, at lower densities than those of currently used nickel-base superalloys. These alloys are the latest products of a continuing effort to develop alloys that have even greater strength-to-weight ratios, suitable for use in turbine blades of aircraft engines. Mass densities of turbine blades exert a significant effect on the overall weight of aircraft. For a given aircraft, a reduction in the density of turbine blades enables design reductions in the weight of other parts throughout the turbine rotor, including the disk, hub, and shaft, as well as supporting structures in the engine. The resulting total reduction in weight can be 8 to 10 times that of the reduction in weight of the turbine blades. The approach followed in formulating these alloys involved several strategies for identifying key alloying elements and the range of concentration of each element to study. To minimize the number of alloys needed to be cast, a design-of--experiments methodology was adopted. A statistics-based computer program that models the effects of varying compositions of four elements, including effects of two-way interactions between elements, was used to test all possible alloys within the design space. The starting points for the computational analysis were three alloy compositions mandated by engineering consensus. After likewise identification of key alloying elements to vary and the allowed ranges of concentrations, the computer program then selects a minimum number of alloys within the design space to allow determination of effects for all four elements and their interactions.

  8. Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; BARBOSA, Carolina Silveira; LEITE, Aline de Lima; CHANG, Sywe-Ren; LIU, Jun; CZAJKA-JAKUBOWSKA, Agata; CLARKSON, Brian

    2014-01-01

    Objective This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion Enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis. PMID:25025555

  9. High power and high SFDR frequency conversion using sum frequency generation in KTP waveguides.

    PubMed

    Barbour, Russell J; Brewer, Tyler; Barber, Zeb W

    2016-08-01

    We characterize the intermodulation distortion of high power and efficient frequency conversion of modulated optical signals based on sum frequency generation (SFG) in a periodically poled potassium titanyl phosphate (KTP) waveguide. Unwanted frequency two-tone spurs are generated near the converted signal via a three-step cascaded three-wave mixing process. Computer simulations describing the process are presented along with the experimental measurements. High-conversion efficiencies and large spur-free dynamic range of the converted optical signal are demonstrated. PMID:27472638

  10. Laser effects in nonpigmented versus pigmented tissues using FiberTomeTM, Nd:YAG, and KTP

    NASA Astrophysics Data System (ADS)

    Snyder, Wendy J.; Vari, Sandor G.; Pergadia, Vani R.; Fishbein, Michael C.; Weiss, Andrew B.; Duffy, J. T.; Thomas, Reem; Shi, Wei-Qiang; Fry, Stephen M.; Grundfest, Warren S.

    1994-02-01

    This study evaluated the effects of the FiberTomeTM (10, 20, 30 W), conventional Nd:YAG (10, 20, 30 W), and KTP (5, 10, 15 W) surgical laser systems, with respect to pigmented and nonpigmented tissues. The cutting width, cutting depth, and thermal damages were measured on the skin and liver of farmer pigs. The results show that there was no significant difference in the cutting width and depth, for nonpigmented versus pigmented tissues. KTP showed the most significant thermal damage reduction in pigmented tissue; 318 micrometers in nonpigmented vs 94 micrometers in pigmented tissue.

  11. Crystal Structure of the Carbapenem Intrinsic Resistance Protein CarG

    PubMed Central

    Tichy, E.M.; Luisi, B.F.; Salmond, G.P.C.

    2015-01-01

    In the Gram-negative enterobacterium Erwinia (Pectobacterium) and Serratia sp. ATCC 39006, intrinsic resistance to the carbapenem antibiotic 1-carbapen-2-em-3-carboxylic acid is mediated by the CarF and CarG proteins, by an unknown mechanism. Here, we report a high-resolution crystal structure for the Serratia sp. ATCC 39006 carbapenem resistance protein CarG. This structure of CarG is the first in the carbapenem intrinsic resistance (CIR) family of resistance proteins from carbapenem-producing bacteria. The crystal structure shows the protein to form a homodimer, in agreement with results from analytical gel filtration. The structure of CarG does not show homology with any known antibiotic resistance proteins nor does it belong to any well-characterised protein structural family. However, it is a close structural homologue of the bacterial inhibitor of invertebrate lysozyme, PliI-Ah, with some interesting structural variations, including the absence of the catalytic site responsible for lysozyme inhibition. Both proteins show a unique β-sandwich fold with short terminal α-helices. The core of the protein is formed by stacked anti-parallel sheets that are individually very similar in the two proteins but differ in their packing interface, causing the splaying of the two sheets in CarG. Furthermore, a conserved cation binding site identified in CarG is absent from the homologue. PMID:24583229

  12. Fabrication of multilevel resist patterns by using a liquid crystal mask

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Nikodem, Michał; Chai, Liming; Komorowska, Katarzyna

    2015-11-01

    Photolithographic processes of multilevel features in microfluidics can be complex and expensive. This paper demonstrates a quick method for manufacturing multilevel patterns, which is based on liquid crystal display masking during a standard lithography process for master mold fabrication for the polydimethysiloxane replica process. An active mask, based on a liquid crystal display, can simplify the process due to the ability to quickly modify designs and reduce the overhead for alignment between mask levels. The possibility of multilevel patterning, with the help of active masking, creates new opportunities for optical lithography processes. We have developed the process for a standard, mercury lamp exposure mask aligner system. The patterning characteristics were evaluated with a step pattern fabricated as an example of three-dimensional patterning for multilevel structuring. The application of a liquid crystal mask for resist contrast measurements was demonstrated.

  13. Technique for anisotropic extension of organic crystals: Application to temperature dependence of electrical resistance

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi; Kato, Reizo; Yamamoto, Hiroshi M.; Fukaya, Atsuko; Yamasawa, Kenji; Takahashi, Ichiro; Akutsu, Hiroki; Akutsu-Sato, Akane; Day, Peter

    2007-08-01

    We have developed a technique for the anisotropic extension of fragile molecular crystals. The pressure medium and the instrument, which extends the pressure medium, are both made from epoxy resin. Since the thermal contraction of our instrument is identical to that of the pressure medium, the strain applied to the pressure medium has no temperature dependence down to 2K. Therefore, the degree of extension applied to the single crystal at low temperatures is uniquely determined from the degree of extension in the pressure medium and thermal contractions of the epoxy resin and the single crystal at ambient pressure. Using this novel instrument, we have measured the temperature dependence of the electrical resistance of metallic, superconducting, and insulating materials. The experimental results are discussed from the viewpoint of the extension (compression) of the lattice constants along the parallel (perpendicular) direction.

  14. Relationship between the cathodoluminescence emission and resistivity in In doped CdZnTe crystals

    SciTech Connect

    Rodriguez-Fernandez, J.; Carcelen, V.; Dieguez, E.; Hidalgo, P.; Piqueras, J.; Vijayan, N.; Sochinskii, N. V.; Perez, J. M.

    2009-08-15

    Cadmium zinc telluride, CdZnTe, bulk single crystals doped with 10{sup 19} at./cm{sup 3} of indium in the initial melt were grown by vertical Bridgman technique. The samples were investigated by energy dispersive spectroscopy, cathodoluminiscence (CL), and current-voltage behavior at room temperature. The results shows that Cd and Te vacancy concentration depend on the indium and zinc concentrations. CL measurements indicate a relationship between radiative centers associated to Cd and Te vacancies and resistivity values.

  15. Optical property analysis of high-resistivity CZT:In single crystals before and after annealing

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Jie, Wanqi

    2014-05-01

    In-doped CdZnTe:In (CZT:In) single crystals with high resistivity were annealed by an effective method containing Cd/Zn atmosphere annealing and Te atmosphere annealing. They were mainly measured by IR transmittance and Photoluminescence (PL) spectra. The results indicated Te inclusions were eliminated completely after annealing. Both of the resistivity and IR transmittance decreased notably after Cd/Zn atmosphere annealing, and then increased tremendously after Te atmosphere annealing. For PL measurements, (A0, X) disappeared, the intensity of (D0, X) peak increased, and FWHM was obviously reduced after annealing. These indicated the crystal quality was enhanced. The donor-acceptor pair peak decreased in annealed CZT:In crystal, which might be due to the dissociation of [VCd-InCd] complex and the remove of the impurities. Moreover, Dcomplex peak containing two peaks was caused by Cd vacancy-related (D1) and dislocation-related defects (D2) in as-grown crystal. However, after annealing, the intensities of D1 and D2 peaks decreased because of the compensation of Cd vacancies and the elimination of Te inclusions, respectively.

  16. Measuring anisotropic resistivity of single crystals using the van der Pauw technique

    NASA Astrophysics Data System (ADS)

    Borup, Kasper A.; Fischer, Karl F. F.; Brown, David R.; Snyder, G. Jeffrey; Iversen, Bo B.

    2015-07-01

    Anisotropy in properties of materials is important in materials science and solid-state physics. Measurement of the full resistivity tensor of crystals using the standard four-point method with bar shaped samples requires many measurements and may be inaccurate due to misalignment of the bars along crystallographic directions. Here an approach to extracting the resistivity tensor using van der Pauw measurements is presented. This reduces the number of required measurements. The theory of the van der Pauw method is extended to extract the tensor from parallelogram shaped samples with known geometry. Methods to extract the tensor for both known and unknown principal axis orientation are presented for broad applicability to single crystals. Numerical simulations of errors are presented to quantify error sources. Several benchmark experiments are performed on isotropic graphite samples to verify the internal consistency of the developed theory, test experimental precision, and characterize error sources. The presented methods are applied to a RuS b2 single crystal at room temperature and the results are discussed based on the error source analysis. Temperature resolved resistivities along the a and b directions are finally reported and briefly discussed.

  17. Multi-watt power blue light generation by intracavity sum- frequency-mixing in KTiOPO4 crystal.

    PubMed

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Zhenqiang, Chen

    2008-03-01

    In this paper, a high power blue laser at 447 nm was obtained by intracavity sum-frequency-mixing of a diode-side-pumped Q-switched Nd:YAlO(3)(Nd:YAP) laser operating at 1341.4 nm. A type-I critical phase matching LiB(3)O(5) (LBO) crystal and type-II critical phase matching KTiOPO(4) (KTP) crystal were used for second harmonic generation and third harmonic generation, respectively. The phase matching condition of the KTP crystal was researched. The results show that the KTP has superiority in intracavity sum-frequency-mixing blue light generation. 4.76 W blue light output was achieved at 4.6 kHz with the pulse width of 190ns. The fluctuation of output power was better than 3% at the output power of 4.76 W during half an hour.

  18. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  19. Urethral stricture vaporization with the KTP laser provides evidence for a favorable impact of laser surgery on wound healing

    NASA Astrophysics Data System (ADS)

    Schmidlin, Franz R.; Venzi, Giordano; Jichlinski, Patrice; Oswald, Michael; Delacretaz, Guy P.; Gabbiani, Giulio; Leisinger, Hans-Juerg; Graber, Peter

    1997-12-01

    The objective of this study was to evaluate and compare the safety and efficacy of the KTP 532 laser to direct vision internal urethrotomy (DVIU) in the management of urethral strictures. A total of 32 patients were randomized prospectively in this study, 14 DVIU and 18 KTP 532 laser. Patients were evaluated postoperatively with flowmetry and in the case of recurrence with cystourethrography at 3, 12, 24 weeks. With the KTP 532 laser complete symptomatic and uredynamic success was achieved in 15 (83%) patients at 12 and 24 weeks. Success rate was lower in the DVIU group with 9 (64%) patients at 12 weeks and 8 (57%) patients at 24 weeks. Mean preoperative peak-flow was improved from 6 cc/s to 20 cc/s at 3, 12 and 24 weeks with the KTP laser. With DVIU mean preoperative peak-flow was improved from 5.5 cc/s to 20 cc/s at 3 weeks followed by a steady decrease to 13 cc/s at 12 weeks and to 12 cc/s 24 weeks. No complication was observed in either group of patients. Our results confirm that stricture vaporization with the KTP 532 laser is a safe and efficient procedure. The better results after laser surgery make it also a valuable alternative in the endoscopic treatment of urethral strictures. These findings suggest a favorable influence of laser surgery on wound healing with less wound contraction and scarring. The lack of contraction of laser wounds might be related to the absence and the lack of organization of myofibroblasts in laser induced lesions.

  20. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel

    2016-03-01

    Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  1. Overexpression, purification and crystallization of the response regulator NsrR involved in nisin resistance.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-10-01

    A number of Gram-positive bacteria produce a class of bacteriocins called `lantibiotics'. These lantibiotics are ribosomally synthesized peptides that possess high antimicrobial activity against Gram-positive bacteria, including clinically challenging pathogens, and are therefore potential alternatives to antibiotics. All lantibiotic producer strains and some Gram-positive nonproducer strains express protein systems to circumvent a suicidal effect or to become resistant, respectively. Two-component systems consisting of a response regulator and a histidine kinase upregulate the expression of these proteins. One of the best-characterized lantibiotics is nisin, which is produced by Lactococcus lactis and possesses bactericidal activity against various Gram-positive bacteria, including some human pathogenic strains. Within many human pathogenic bacterial strains inherently resistant to nisin, a response regulator, NsrR, has been identified which regulates the expression of proteins involved in nisin resistance. In the present study, an expression and purification protocol was established for the NsrR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method, resulting in crystals that diffracted X-rays to 1.4 Å resolution. PMID:26457525

  2. Overexpression, purification and crystallization of the response regulator NsrR involved in nisin resistance.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-10-01

    A number of Gram-positive bacteria produce a class of bacteriocins called `lantibiotics'. These lantibiotics are ribosomally synthesized peptides that possess high antimicrobial activity against Gram-positive bacteria, including clinically challenging pathogens, and are therefore potential alternatives to antibiotics. All lantibiotic producer strains and some Gram-positive nonproducer strains express protein systems to circumvent a suicidal effect or to become resistant, respectively. Two-component systems consisting of a response regulator and a histidine kinase upregulate the expression of these proteins. One of the best-characterized lantibiotics is nisin, which is produced by Lactococcus lactis and possesses bactericidal activity against various Gram-positive bacteria, including some human pathogenic strains. Within many human pathogenic bacterial strains inherently resistant to nisin, a response regulator, NsrR, has been identified which regulates the expression of proteins involved in nisin resistance. In the present study, an expression and purification protocol was established for the NsrR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method, resulting in crystals that diffracted X-rays to 1.4 Å resolution.

  3. Nature of inhomogeneities and luminescence centers in low-resistance Al-doped ZnS single crystals

    SciTech Connect

    Morosova, N.K.; Filipova, V.A.; Galstyan, V.G.; Malyshev, A.A.; Muratova, V.I.

    1985-12-01

    The authors study low-resistance Al-doped ZnS single crytals and find that they exhibit a banding nonuniformity, which is explained by the nonuniform distribution of aluminum and oxygen impurities in them. The intense blue emission of the crystals is caused by the high-resistance layer, in which oxygen concentrates, while aluminum is completely bound to the oxygen. The emission is caused by the annihilation of localized excitons. The low-resistance layers with the weak blue luminescence are intercalations of oxygen-depleted Al-doped ZnS. ZnS crystals containing Al and O in equal concentrations are stable.

  4. Application of Matrix Projection Exposure Using a Liquid Crystal Display Panel to Fabricate Thick Resist Molds

    NASA Astrophysics Data System (ADS)

    Fukasawa, Hirotoshi; Horiuchi, Toshiyuki

    2009-08-01

    The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.

  5. Anomalously temperature-independent birefringence in biaxial optical crystals

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-31

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160{sup 0}C. (letters to the editor)

  6. Enhancement of KTP/532 laser disc decompression and arthroscopic microdiscectomy with a vital dye

    NASA Astrophysics Data System (ADS)

    Yeung, Anthony T.

    1993-07-01

    Currently, the clinical indications and results of arthroscopic microdiscectomy and laser disc decompression come close to, but do not exceed, the results of classic discectomy or microdiscectomy for the whole spectrum of surgical disc herniations. However, as minimally invasive techniques continue to evolve, results can be expected to equal or be potentially superior to conventional surgery. This exhibit demonstrates how the use of a vital dye can enhance standard arthroscopic microdiscectomy techniques and, when used in conjunction with KTP/532 laser disc decompression, allows for better arthroscopic visualization, documentation, and extraction of nucleus pulposus, ultimately expanding the current limiting criteria for minimally invasive techniques. When proper patient selection is combined with good clinical indications, the surgical results are rather dramatic, often achieving immediate relief of sciatica in the operating room.

  7. Crystal growth and anisotropic resistivity of Bi2Sr2-xLaxCuOy

    NASA Astrophysics Data System (ADS)

    Wang, N. L.; Buschinger, B.; Geibel, C.; Steglich, F.

    1996-09-01

    A number of Bi2Sr2-xLaxCuOy crystals with different doping levels in the phase diagram have been grown and characterized by x-ray-diffraction measurements. The anisotropic resistivity was measured using a generalization of the Montgomery method and was found to change in a systematic way. Our analysis indicates that for all the samples the in-plane transport is on the metallic side of the Ioffe-Regel criterion, but the out-of-plane transport is deeply on the insulating side of the Mott limit. The temperature dependence of c-axis resistivity ρc(T) can be well understood from the incoherent hopping model proposed by Levin and co-workers. The evolution of ρc(T) with reduction in doping level is related to the reducing of both the impurity- and boson-assisted hopping processes.

  8. An investigation of the chemical and physical properties of pristine, electrochromically damaged, and photochromically damaged KTiOPO{sub 4} (KTP) using surface analytical and optical spectroscopic techniques

    SciTech Connect

    Quagliano, J.R.; Petrin, R.R.; Trujillo, T.C.; Cockroft, N.J.; Paffett, M.T.; Maggiore, C.J.; Jacco, J.C.

    1995-03-01

    A variety of experimental techniques were employed to study the properties of electrochromically (EC) damaged, photochromically (PC) damaged, and pristine KTiOP0{sub 4} (KTP). Additionally, nonlinear optical calculations were performed to complement the experimental work in an effort to elucidate the respective mechanisms operative in producing EC and PC damage to KTP. Several independent experiments indicate that there is Ti deficiency in the EC damaged material, which is due to migration of these ions to the electrode surface. The laser experiments indicate that UV radiation can produce reversible PC damage. UV-producing SFG processes accidentally occurring in SHG cut KTP may lead to macroscopic damage. It must be emphasized that a fundamentally different mechanism is responsible for EC damaged versus PC damaged KTP.

  9. Biopsy of Different Oral Soft Tissues Lesions by KTP and Diode Laser: Histological Evaluation

    PubMed Central

    Romeo, Umberto; Russo, Claudia; Lo Giudice, Rossella; Visca, Paolo; Migliau, Guido

    2014-01-01

    Introduction. Oral biopsy aims to obtain clear and safe diagnosis; it can be performed by scalpel or laser. The controversy in this latter application is the thermal alteration due to tissue heating. The aim of this study is the histological evaluation of margins of “in vivo” biopsies collected by diode and KTP lasers. Material and Methods. 17 oral benign lesions biopsies were made by diode 808 nm (SOL, DenMatItalia, Italy) and KTP 532 nm (SmartLite, DEKA, Italy). Samples were observed at OM LEICA DM 2000; margin alterations were evaluated through Leica Application Suite 3.4. Results. Epithelial and connective damages were assessed for each pathology with an average of 0.245 mm and a standard deviation of ±0.162 mm in mucoceles, 0.382 mm ± 0.149 mm in fibromas, 0.336 mm ± 0.106 mm in hyperkeratosis, 0.473 mm ± 0.105 mm in squamous hyperplasia, 0.182 mm in giant cell granuloma, and 0.149 mm in melanotic macula. Discussion. The histologic aspect of lesions influenced the response to laser, whereas the greater inflammation and cellularity were linked with the higher thermal signs. Many artifacts were also associated to histologic procedures. Conclusion. Both tested lasers permitted sure histologic diagnosis. However, it is suggested to enlarge biopsies of about 0.5 mm, to avoid thermal alterations, especially in inflammatory lesions like oral lichen planus. PMID:25405233

  10. Electrical resistivity of single crystals of LaFeAsO under applied pressure

    NASA Astrophysics Data System (ADS)

    McElroy, C. A.; Hamlin, J. J.; White, B. D.; Weir, S. T.; Vohra, Y. K.; Maple, M. B.

    2014-09-01

    Measurements of electrical resistivity under applied pressure were performed on single-crystalline samples of LaFeAsO grown in a molten NaAs flux. We observe a smooth suppression of spin-density wave order under nearly hydrostatic applied pressures up to 2.6 GPa and in quasihydrostatic pressures up to 14.7 GPa. Similar to some of the other reports on single and polycrystalline samples of LaFeAsO, these crystals exhibit a resistivity that increases as temperature is lowered. By fitting an Arrhenius law to the the semiconducting-like temperature dependence of the electrical resistivity, we extract an energy gap that is suppressed with pressure and vanishes near 10 GPa. This is accompanied by the emergence of a metallic temperature dependence of the electrical resistivity. A similar behavior is also observed in diamond anvil cell experiments carried out to ˜37GPa. Complete transitions to a bulk superconducting phase are not observed in any of the experiments.

  11. A research of weak absorption measurements in crystal based on photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Liu, Zongkai; Wang, Shiwu

    2013-07-01

    It is important for testing the process of crystal growing and crystal quality. This paper built a mathematical model based on principle of photothermal common-path interferometry, the index change induced in the crystal by the heating pump beam and the phase distortion of probe beam in the heated area are presented then obtain the intensity distribution of the interference in the near filed. Optical geometry of focusing pump beam and intersecting pump and probe beams at waist position of the pump beam is used. This optical instruction can be adjusted easily and stabilized. Now CRYSTECH have the largest NLO crystals product line in the world, especially KTP crystals. With absorption measurements in nonlinear laser crystal KTP as an example to investigate the experimental parameters affecting the photothermal interference signal and high measuring precision. The analysis of experimental data showed this kind of instruction can reach the measurement accuracy of 0.1ppm.

  12. X-Ray diffraction study of KTiOPO{sub 4} single crystals doped with hafnium

    SciTech Connect

    Novikova, N. E. Verin, I. A.; Sorokina, N. I.; Alekseeva, O. A.; Orlova, E. I.; Voronkova, V. I.

    2011-05-15

    Single crystals of KTi{sub 1-x}Hf{sub x}OPO{sub 4} (x = 0.015(2), 0.035(1), and 0.128(1) are reinvestigated by precision X-ray diffraction at room temperature. It is found that the implantation of hafnium atoms in the crystal structure of KTiOPO{sub 4} does not lead to significant changes in the framework and affects only the positions of the potassium atoms in the channel. Our studies reveal the displacements of the potassium atoms from their main and additional positions in the structure of pure KTP in all three structures studied. The largest displacements from the K1 Prime and K1 Double-Prime additional positions are observed in the structure with x = 0.035. At this hafnium concentration, the occupancy of the main positions of potassium atoms decreases and the occupancy of the additional positions increases in relation to those in KTP. This redistribution of potassium atoms enhances the nonuniformity of distribution of the electron density in the vicinity of their positions, which is probably responsible for the increase in the nonlinear susceptibility of KTP crystals that contain 3.5% hafnium in relation to crystals of pure KTP.

  13. Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation.

    PubMed

    Kiatponglarp, Worawikunya; Tongta, Sunanta; Rolland-Sabaté, Agnès; Buléon, Alain

    2015-05-20

    The effects of chain distribution, concentration, temperature and hydrothermal treatments on the recrystallization behavior and formation of resistant starch (RS) were investigated. Waxy and normal rice starches were debranched at 10 and 21% w/w solid concentrations, incubated at 25 or 50 °C, and further subjected to annealing or heat moisture treatment (HMT) to enhance RS formation. The crystallization at 25 °C favored the formation of the B-type structure, whereas crystallization at 50 °C led to the A-type structure with a higher melting temperature (100-120 °C) and a higher RS content (52%). All incubated samples showed an increase in RS content after subsequent hydrothermal treatments. The sample incubated at a high temperature contained the highest RS content (74.5%) after HMT with larger/perfect crystallites. These results suggested that the RS formation could be manipulated by crystallization conditions and improved by hydrothermal treatments which are dependent on the initial crystalline perfection.

  14. In-plane Resistivity Anisotropy in Mechanically De- twinned Single Crystals FeSe

    NASA Astrophysics Data System (ADS)

    Timmons, Erik; Tanatar, Makariy; Bohmer, Anna; Drachuck, Gil; Taufour, Valentin; Bud'Ko, Sergey; Canfield, Paul; Prozorov, Ruslan; Schuett, Michael; Fernandes, Rafael; Ruslan Prozorov Group Team; Paul Canfield Group Team; Rafael Fernandes Group Team

    The in-plane resistivity anisotropy was studied in stress-detwinned vapor transport grown single crystals of FeSe, which exhibit the tetragonal-orthorhombic structural transition temperature at Ts ~ 90 K in unstrained samples, but no long-range magnetic order. Direct transport and elastoresistivity measurements show a significant in-plane resistivity anisotropy above Ts induced by a very moderate mechanical stress. This anisotropy peaks slightly below Ts and decreases to nearly zero on cooling to base temperature, while the degree of orthorhombic distortion grows monotonically before saturating at low temperatures. We explain the non-monotonic temperature dependence of the resistivity anisotropy as a result of the inelastic scattering of electrons by anisotropic spin fluctuations. Experimental work was supported by the U.S. DOE/OS/MSED and was performed at the Ames Laboratory, Iowa State University under contract DE-AC02-07CH11358. M.S. acknowledges the support from the Humboldt Foundation. R.M.F. is supported by the U.S. DOE, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012336.

  15. Analysis of shade, temperature and hydrogen peroxide concentration during dental bleaching: in vitro study with the KTP and diode lasers.

    PubMed

    Fornaini, C; Lagori, G; Merigo, E; Meleti, M; Manfredi, M; Guidotti, R; Serraj, A; Vescovi, P

    2013-01-01

    Many dental bleaching techniques are now available, several of them using a laser source. However, the literature on the exact role of coherent light in the biochemical reaction of the whitening process is very discordant. The aims of this in vitro study were: (1) to compare two different laser sources, a KTP laser with a wavelength of 532 nm and a diode laser with a wavelength of 808 nm, during dental bleaching, and (2) to investigate the relationships among changes in gel temperature, tooth shade and hydrogen peroxide (HP) concentration during laser irradiation. Altogether, 116 bovine teeth were bleached using a 30% HP gel, some of them with gel only and others with gel plus one of the two lasers (532 or 808 nm) at two different powers (2 and 4 W). The KTP laser produced a significant shade variation with a minimal temperature increase. The diode laser led to a higher temperature increase with a greater reduction in HP concentration, but the change in shade was only statistically significant with a power of 4 W. At a power of 2 W, the KTP laser caused a greater change in shade than the diode laser. No significant correlations were found among temperature, HP concentration and shade variation. The KTP laser appears to provide better results with less dangerous thermal increases than the diode laser. This might call into question most of the literature affirming that the action of laser bleaching is by increasing the gel temperature and, consequently, the speed of the redox reaction. Further study is required to investigate the correlations between the parameters investigated and efficacy of the bleaching process.

  16. Crystal Structure of the Protease-Resistant Core Domain of Yersinia Pestis Virulence Factor Yopr

    SciTech Connect

    Schubot,F.; Cherry, S.; Austin, B.; Tropea, J.; Waugh, D.

    2005-01-01

    Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38--149 out of 165 amino acids. The core domain is composed of five {alpha}-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.

  17. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  18. Gallium hole traps in irradiated KTiOPO4:Ga crystals

    NASA Astrophysics Data System (ADS)

    Grachev, V.; Meyer, M.; Hunt, A. W.; Malovichko, G.

    2014-12-01

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO4) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO4 creating Ga4+ centers. Two different Ga4+ centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga4+ ions substitute for Ti4+ ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  19. Purification, crystallization and preliminary crystallographic studies of the TLDc domain of oxidation resistance protein 2 from zebrafish

    PubMed Central

    Alsarraf, Husam M. A. B.; Laroche, Fabrice; Spaink, Herman; Thirup, Søren; Blaise, Mickael

    2011-01-01

    Cell metabolic processes are constantly producing reactive oxygen species (ROS), which have deleterious effects by triggering, for example, DNA damage. Numerous enzymes such as catalase, and small compounds such as vitamin C, provide protection against ROS. The TLDc domain of the human oxidation resistance protein has been shown to be able to protect DNA from oxidative stress; however, its mechanism of action is still not understood and no structural information is available on this domain. Structural information on the TLDc domain may therefore help in understanding exactly how it works. Here, the purification, crystallization and preliminary crystallographic studies of the TLDc domain from zebrafish are reported. Crystals belonging to the orthorhombic space group P21212 were obtained and diffracted to 0.97 Å resolution. Selenomethionine-substituted protein could also be crystallized; these crystals diffracted to 1.1 Å resolution and the structure could be solved by SAD/MAD methods. PMID:22102041

  20. Unipolar conductivity of SrTiO3 crystals with light-induced drop in electrical resistance

    NASA Astrophysics Data System (ADS)

    Shablaev, S. I.; Grachev, A. I.

    2016-05-01

    This paper reports on the results of the experimental investigation of unipolar (diode) current-voltage characteristics of local regions in high-resistance SrTiO3 crystals that experienced a light-induced drop in electrical resistance. This behavior has been explained by the influence exerted on the electrical conductivity by the irradiated region in the Schottky barrier of one of the contacts. The ideality factor of the Schottky barrier has been determined and the barrier height for a number of regions has been estimated from measurements of the forward branch of the current-voltage characteristics. An analysis of the specific features in the behavior of the reverse branch of the current-voltage characteristics has revealed that, in the SrTiO3 crystals with p-type conductivity, the resistance switching occurs through a pure electronic mechanism, in contrast to models based on electrochemical processes, in particular, the migration of oxygen vacancies.

  1. Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates.

    PubMed

    Lombardo, Michael N; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2016-02-12

    Multidrug-resistant Enterobacteriaceae, notably Escherichia coli and Klebsiella pneumoniae, have become major health concerns worldwide. Resistance to effective therapeutics is often carried by class I and II integrons that can confer insensitivity to carbapenems, extended spectrum β-lactamases, the antifolate trimethoprim, fluoroquinolones, and aminoglycosides. Specifically of interest to the study here, a prevalent gene (dfrA1) coding for an insensitive dihydrofolate reductase (DHFR) confers 190- or 1000-fold resistance to trimethoprim for K. pneumoniae and E. coli, respectively. Attaining inhibition of both the wild-type and resistant forms of the enzyme is critical for new antifolates. For several years, we have been developing the propargyl-linked antifolates (PLAs) as effective inhibitors against trimethoprim-resistant DHFR enzymes. Here, we show that the PLAs are active against both the wild-type and DfrA1 DHFR proteins. We report two high-resolution crystal structures of DfrA1 bound to potent PLAs. The structure-activity relationships and crystal structures will be critical in driving the design of broadly active inhibitors against wild-type and resistant DHFR. PMID:27624966

  2. Combination of thermocoagulation and vaporization using an Nd:YAG/KTP laser versus TURP in BPH treatment: results of a multicenter prospective study

    NASA Astrophysics Data System (ADS)

    Jichlinski, Patrice; Oswald, Michael; Schmidlin, Franz R.; Graber, Peter; Leisinger, Hans-Juerg

    1998-07-01

    Laser treatment of BPH as minimally invasive therapy has found wide employment in the last few years. The objective here was to study the effects of combined technique of coagulation and vaporization with an Nd:YAG/KTP laser on BPH compared to TURP. Thirty-eight patients presenting symptomatic BPH were randomized and treated either by a laser coagulation/vaporization using an ADD fiber at settings of 40 - 60 W for the Nd:YAG and of 36 W for the KTP alike in 21 cases or by TURP in 17 cases. Symptom score, uroflow and residual urine were assessed preoperatively at 1, 3, 6 and 12 months. No transfusion in any group. Similar postoperative catheterization time. Treatment failure in 2 TURP patients and in 2 laser patients. Comparing AUA score, Qmax and residual urine, both forms of treatment were similar at 1 year. Nd:YAG/KTP laser is equivalent to TURP at 1 year for around 40 g prostates.

  3. Effects of low-molecular weight resist components on dissolution behavior of chemically amplified resists for extreme ultraviolet lithography studied by quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Mitsuyasu, Masaki; Yamamoto, Hiroki; Kozawa, Takahiro

    2015-03-01

    It is challenging to implement extreme ultraviolet (EUV) lithography for mass production because the demands for the EUV resist materials are very strict. Under such circumstances, it is important in EUV resist design to clarify the dissolution behavior of the resist film into alkaline developer. In particular, the dissolution in exposed area of resist films is one of the most critical processes. However, the details in dissolution process of EUV resist have not been investigated thus far. In this study, the dissolution of poly(4-hydroxystyrene) (PHS) polymer and PHS partially-protected with t-butoxycarbonyl group (t-BOC-PHS) with and without additives such as acid generator and amines was studied by using the quartz crystal microbalance (QCM) method. The dissolution behavior of thin films was investigated by varying the exposure dose and the acid generator concentration from the standpoint of a systematic understanding of the effects of each resist component on dissolution kinetics. The dissolution speed became slower with increase of TPS-tf concentration in PHS and t-BOC-PHS. It is important for the EUV resist design to take into account the concentration of undecomposed PAG.

  4. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  5. Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator.

    PubMed

    Boulanger, B; Fève, J P; Guillien, Y

    2000-04-01

    We present experiments that show that gray tracking modifies the parametric gain and the generated wavelengths of a KTP optical parametric oscillator pumped at 532 nm near degeneracy. These perturbations occur over a limited range of pump intensity. We propose a satisfactory model that takes into account photochromic damage, the thermo-optical effect, and the combined processes of creation and saturation of a two-photon absorber at 532 nm. The temperature dependence of Sellmeier equations of KTP is also established at 20-200 degrees C. PMID:18064087

  6. Residual resistivity and oxygen stoichiometry in Pr 2- xCe xCuO 4+δ single crystals

    NASA Astrophysics Data System (ADS)

    Brinkmann, Matthias; Rex, Thomas; Stief, Markus; Bach, Heinrich; Westerholt, Kurt

    1996-02-01

    Using an improved high-temperature annealing procedure we homogeneously vary the oxygen content of Pr 2- xCe xCuO 4+δ single crystals and change the superconducting transition temperature in small steps. Minute changes of the oxygen concentration δ give rise to a strong increase of the residual resistivity but leave the Hall and the Seebeck coefficient nearly unchanged. A strong correlation of the change of the residual resistivity and the change of Tc suggests that the point-defect scattering rate on oxygen interstitials or oxygen vacancies is an important parameter determining Tc in the electron-doped high- Tc systems.

  7. Anisotropic electrical resistivity and oxygen annealing effect on it in La2- xCaxCuO4 single crystals

    NASA Astrophysics Data System (ADS)

    Khan, M. K. R.; Mori, Yoshihiro; Tanaka, Isao; Kojima, Hironao

    1994-12-01

    The oxygen annealing effect on the temperature-dependent electrical resistivity has been studied in La 1.91Ca 0.09CuO 4- y single crystals grown by the TSFZ method. In as-grown crystals, semiconducting-like electrical conduction has been observed, both in the ab-plane and the c-axis at the non-superconducting state. The onset transition temperature Tc-onset was about 17.5 K. After annealing in oxygen, ϱ ab( T) becomes metallic and shows a resistivity minimum at a certain temperature Tmin that separates regions of metallic behavior at T> Tmin from semiconducting behavior at T< Tmin, while ϱ c( T) remains semiconducting. In the low-temperature region, an upward curvature of the resistivity (ϱ ab( T)) has been observed with decreasing temperature below Tmin. This is an indication of the occurence of weak electron localization due to the randomness of the oxygen distribution the crystal lattice caused by oxygen deficiency that might still be present in the annealed samples. The Anderson-Zou fit to the data works well in metallic samples and the variable range hopping law (VRH) in non-metallic samples.

  8. Detection of apoptosis and drug resistance of human breast cancer cells to taxane treatments using quartz crystal microbalance biosensor technology.

    PubMed

    Braunhut, Susan J; McIntosh, Donna; Vorotnikova, Ekaterina; Zhou, Tiean; Marx, Kenneth A

    2005-02-01

    Taxanes are used for the treatment of many human cancers, as first- and second-line chemotherapeutics. In the course of treatment many patients develop resistance or hypersensitivity to one form of taxane and require a different taxane to rescue the therapeutic benefit of the drug. There is currently no method to reliably predict tumor responses to taxanes prior to therapy or when resistance or hypersensitivity develops. We adapted the quartz crystal microbalance (QCM) biosensor technique to study responses of human mammary epithelial tumor cells to taxanes. Studies indicate that stable frequency and resistance levels are reached at 24 h. Cells in the QCM can then be treated with taxanes and responses monitored in real time via frequency and resistance changes reflecting alterations of cell mass distribution and viscoelastic properties. Distinct shifts in frequency and resistance accurately predicted apoptosis or resistance to treatment, as determined in parallel convention assays. QCM analysis accurately predicted docetaxel was more effective than paclitaxel and MCF-7 cells were more resistant to taxanes compared to MDA-MB-231 cells. These studies suggest "signature" patterns for taxane responsivity could be compared to those of patient biopsy samples to predict therapy outcome prior to treatment for initial therapy or to rescue therapy efficacy.

  9. Oxidation Resistance and Critical Sulfur Content of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1997-01-01

    The high-temperature components of a jet turbine engine are made from nickel-base superalloys. These components must be able to withstand high stresses, fatigue, and corrosive reactions with high-temperature gases. Such oxidation resistance is associated with slow-growing Al2O3 scales that remain adherent to superalloy components after many thermal cycles. Historically, good oxidation resistance has been obtained by coating these components with Ni-Cr-Al-Y coatings, where small additions of yttrium (Y) were necessary for scale adhesion. Subsequently, it was found that the Y aids scale adhesion by preventing sulfur from segregating to the scale metal interface and thus preventing the sulfur from weakening the oxide-metal bonds. Y is a difficult element to incorporate in single-crystal superalloy castings, but it was shown in early work at the NASA Lewis Research Center that good adhesion could be obtained for low-sulfur, uncoated, singlecrystal superalloys, without Y additions. Low sulfur contents for these uncoated superalloys were achieved in the laboratory by a high-temperature hydrogen annealing process. This process allows segregation and surface cleaning of sulfur monolayers in a reducing environment. Another approach is to remove sulfur from the alloy in the melting process. The present study was designed to establish a guideline for the minimum level of desulfurization needed to achieve maximum performance. Coupons of various thicknesses of the superalloy PWA 1480 were hydrogen annealed at various times (8 to 100 hr) and temperatures (1000 to 1300 C), resulting in coupons with sulfur contents ranging from about 0.05 to 5 ppm. Cyclic oxidation tests at 1100 C were then used to assess adhesion and spalling. The weight change of one set of 20-mil (0.5-mm) samples, annealed for 20 hr at 1000, 1100, 1200, and 1300 C, is shown in the following figure. Clearly, the effect of the annealing temperature is quite dramatic in that the higher temperatures produced scales

  10. "Broadband" Bioinformatics Skills Transfer with the Knowledge Transfer Programme (KTP): Educational Model for Upliftment and Sustainable Development.

    PubMed

    Chimusa, Emile R; Mbiyavanga, Mamana; Masilela, Velaphi; Kumuthini, Judit

    2015-11-01

    A shortage of practical skills and relevant expertise is possibly the primary obstacle to social upliftment and sustainable development in Africa. The "omics" fields, especially genomics, are increasingly dependent on the effective interpretation of large and complex sets of data. Despite abundant natural resources and population sizes comparable with many first-world countries from which talent could be drawn, countries in Africa still lag far behind the rest of the world in terms of specialized skills development. Moreover, there are serious concerns about disparities between countries within the continent. The multidisciplinary nature of the bioinformatics field, coupled with rare and depleting expertise, is a critical problem for the advancement of bioinformatics in Africa. We propose a formalized matchmaking system, which is aimed at reversing this trend, by introducing the Knowledge Transfer Programme (KTP). Instead of individual researchers travelling to other labs to learn, researchers with desirable skills are invited to join African research groups for six weeks to six months. Visiting researchers or trainers will pass on their expertise to multiple people simultaneously in their local environments, thus increasing the efficiency of knowledge transference. In return, visiting researchers have the opportunity to develop professional contacts, gain industry work experience, work with novel datasets, and strengthen and support their ongoing research. The KTP develops a network with a centralized hub through which groups and individuals are put into contact with one another and exchanges are facilitated by connecting both parties with potential funding sources. This is part of the PLOS Computational Biology Education collection. PMID:26583922

  11. "Broadband" Bioinformatics Skills Transfer with the Knowledge Transfer Programme (KTP): Educational Model for Upliftment and Sustainable Development.

    PubMed

    Chimusa, Emile R; Mbiyavanga, Mamana; Masilela, Velaphi; Kumuthini, Judit

    2015-11-01

    A shortage of practical skills and relevant expertise is possibly the primary obstacle to social upliftment and sustainable development in Africa. The "omics" fields, especially genomics, are increasingly dependent on the effective interpretation of large and complex sets of data. Despite abundant natural resources and population sizes comparable with many first-world countries from which talent could be drawn, countries in Africa still lag far behind the rest of the world in terms of specialized skills development. Moreover, there are serious concerns about disparities between countries within the continent. The multidisciplinary nature of the bioinformatics field, coupled with rare and depleting expertise, is a critical problem for the advancement of bioinformatics in Africa. We propose a formalized matchmaking system, which is aimed at reversing this trend, by introducing the Knowledge Transfer Programme (KTP). Instead of individual researchers travelling to other labs to learn, researchers with desirable skills are invited to join African research groups for six weeks to six months. Visiting researchers or trainers will pass on their expertise to multiple people simultaneously in their local environments, thus increasing the efficiency of knowledge transference. In return, visiting researchers have the opportunity to develop professional contacts, gain industry work experience, work with novel datasets, and strengthen and support their ongoing research. The KTP develops a network with a centralized hub through which groups and individuals are put into contact with one another and exchanges are facilitated by connecting both parties with potential funding sources. This is part of the PLOS Computational Biology Education collection.

  12. Low-power interstitial photocoagulation of uterine leiomyomas by KTP/YAG laser: a review of 50 consecutive cases

    NASA Astrophysics Data System (ADS)

    Chapman, Roxana

    1994-12-01

    Interstitial laser photocoagulation (ILP), which is a new method of low power laser destruction of tumors, has been used to treat laparoscopically 50 consecutive patients with symptomatic uterine leiomyomas which were difficult or impossible to remove via laparoscopy. The KTP/YAG laser, with wavelengths of 532 and 1064 nm respectively, was employed. Holes 2 cm apart were drilled with a 600 micrometers quartz laser fiber employing the KTP component at 8 W and subsequent coagulation of the surrounding myoma tissue was accomplished during the withdrawal of the fiber over the course of 10 - 30 s but using the YAG component at 8 W until the whole myoma had been treated. Thirty seven became symptom free and have remained so. Six were lost to follow up. Of 10 complaining of subfertility 4, in whom uterine myomas were the only etiological factor, have become pregnant. Seven patients required further treatment: Two were retreated because their myomas were excessively large and did not completely disappear with the initial ILP, 2 received further ILP because of the development of new myomas and 3 were subjected to laparoscopically assisted vaginal hysterectomy at patients' request (2 because of the development of new myomas and 1 because of the development of further endometriosis). Finally, in 7 cases, residual tumor or scar tissue was biopsied and examined for the presence of oestrogen and progesterone receptors. None was discovered and in 2 subsequent pregnancy did not cause further growth of residual myoma tissue.

  13. The progress of optical parametric oscillator based on LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Xia, Lin-zhong; Zhang, Chun-xiao

    2014-11-01

    The MgO:PPLN-based QPM OPO is one of the most important method to generate mid-infrared laser. In this paper we attempt to briefly overview the historic development of LiNbO3 crystal and introduce the theoretical foundation of MgO:PPLN-based QPM OPO. We subsequently give a analysis of different kinds of MgO:PPLN-based QPM OPO. The wavelength region of 3-5 μm (belonging to the mid-infrared) is important atmospheric window in the optical spectrum. The mid-infrared lasers have drawn enormous interest and obtained a variety of applications, such as, air pollution detection, optical fiber communication, military countermeasures, and so on. In recent years, along with the emergence of lots of nonlinear materials (such as AgGaS2 and AgGaSe2, KTP and KTA, ZnGeP2, LiIO3, LiNbO3), it's become easier to obtain mid-infrared lasers. Because of those new nonlinear materials can satisfy the follow conditions, large nonlinearity, transparency in operating wavelength range and high damage resistance. Among those nonlinear materials, the LiNbO3 (LN) crystal is one of the most suitable materials to be used to obtain mid-infrared laser.

  14. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    SciTech Connect

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  15. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    PubMed Central

    Frey, Kathleen M.; Liu, Jieying; Lombardo, Michael N.; Bolstad, David B.; Wright, Dennis L.; Anderson, Amy C.

    2009-01-01

    SUMMARY Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance. PMID:19249312

  16. Hydrostatic pressure (8 GPa) dependence of electrical resistivity of BaCo{sub 2}As{sub 2} single crystal

    SciTech Connect

    Ganguli, Chandreyee; Matsubayashi, Kazuyuki; Ohgushi, Kenya; Uwatoko, Yoshiya; Kanagaraj, Moorthi; Arumugam, Sonachalam

    2013-10-15

    Graphical abstract: - Highlights: • Single crystals of BaCo{sub 2}As{sub 2} were grown by CoAs self-flux method. • We have studied pressure effects (8 GPa) on dc electrical resistivity of BaCo{sub 2}As{sub 2}. • On applied external pressure BaCo{sub 2}As{sub 2} remains a metallic state up to 8 GPa. • Superconductivity is absent in BaCo{sub 2}As{sub 2} because of its proximity to ferromagnetism. - Abstract: The pressure dependence of the electrical resistivity of BaCo{sub 2}As{sub 2} single crystal as a function of temperature was measured at ambient and high pressures up to 8 GPa for the first time using cubic anvil high pressure cell. It is observed that at room temperature the resistivity monotonically decreases with increasing pressure and it remains in the metallic state even at an applied pressure of 8 GPa. From the temperature dependence of the resistivity measurements under pressure, we found that superconductivity is absent up to 8 GPa. The value of the electron's scattering factor (A) is found to be large at ambient pressure and it decreases with the application of pressure, indicating that the substantial electron correlation effect of BaCo{sub 2}As{sub 2} is reduced under pressure, revealing a dramatic change of density of states at the Fermi energy.

  17. Threshold effects for resistance to optical damage and nonvolatile holographic storage properties in In:Mn:Fe:LiNbO3 crystals

    SciTech Connect

    Zhen Xihe; Li Qiang; Xu Yuheng

    2005-07-20

    The threshold concentration for In2O3 was found in In:Mn:Fe:LiNbO3 crystals by measurement of the infrared spectra of the crystals. The resistance of the In:Mn:Fe:LiNbO3 crystals to optical damage is characterized by changes in photoinduced birefringence as well as by distortion of the transmitted beam pattern. The resistance increases remarkably when the concentration of In2O3 exceeds its threshold. The resistance to optical damage of a In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is 2 orders of magnitude higher that of a Mn:Fe:LiNbO3 crystal. The dependence of defects on the resistance to optical damage of the In:Mn:Fe:LiNbO3 crystals is discussed in detail. Nonvolatile holographic storage was achieved for all crystals, and the sensitivity of the In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is much higher than that of the others.

  18. Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene

    PubMed Central

    Oral, Ebru; Beckos, Christine A. Godleski; Lozynsky, Andrew J.; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2013-01-01

    Higher crystallinity and extended chain morphology are induced in ultra-high molecular weight polyethylene (UHMWPE) in the hexagonal phase at temperatures and pressures above the triple point, resulting in improved mechanical properties. In this study, we report the effects of the presence of a plasticizing agent, namely vitamin E (α-tocopherol), in UHMWPE during high pressure crystallization. We found that this new vitamin E-blended and high pressure crystallized UHMWPE (VEHPE) has improved fatigue strength and wear resistance compared to virgin high pressure crystallized (HP) UHMWPE. This suggested different mechanisms of wear reduction and fatigue crack propagation resistance in UHMWPE. PMID:19135247

  19. Resistively detected NMR spectra of the crystal states of the two-dimensional electron gas in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Côté, R.; Simoneau, Alexandre M.

    2016-02-01

    Transport experiments on the two-dimensional electron gas (2DEG) confined into a semiconductor quantum well and subjected to a quantizing magnetic field have uncovered a rich variety of uniform and nonuniform phases such as the Laughlin liquids, the Wigner, bubble, and Skyrme crystals, and the quantum Hall stripe state. Optically pumped nuclear magnetic resonance (OP-NMR) has also been extremely useful in studying the magnetization and dynamics of electron solids with exotic spin textures such as the Skyrme crystal. Recently, it has been demonstrated that a related technique, resistively-detected nuclear magnetic resonance (RD-NMR), could be a good tool to study the topography of the electron solids in the fractional and integer quantum Hall regimes. In this work, we compute theoretically the RD-NMR line shapes of various crystal phases of the 2DEG and study the relation between their spin density and texture and their NMR spectra. This allows us to evaluate the ability of the RD-NMR to discriminate between the various types of crystal states.

  20. The bleaching efficiency of KTP and diode 810 nm lasers on teeth stained with different substances: An in vitro study.

    PubMed Central

    Lagori, G; Vescovi, P; Merigo, E; Meleti, M.; Fornaini, C

    2014-01-01

    Background and aims: The purpose of this study was to evaluate the bleaching efficiency of two different lasers (KTP and diode 810 nm) on teeth, randomly divided by means an Excel function (Microsoft Excel 2010 “Fx causale”) and stored in physiological solution, that were previously stained with different substances commonly considered as a cause of tooth discoloration, such as coffee, tea and red fruits and to investigate the role of laser irradiation in an experimental model, during the dental bleaching process. Methods: Three groups of 45 bovine teeth were created and immersed for one week in a solution of tea, coffee or red fruits respectively. Each group was divided into three sub-groups of fifteen teeth. One was bleached with a 30% hydrogen peroxide gel for 30 min only as control, another 15 teeth group was bleached with the gel plus 810 nm diode laser irradiation and the last group was bleached with the gel plus KTP irradiation. The lasers were applied in three cycles of 30 sec each with a power of 1.5 W localized on a 10 mm spot on the teeth. The temperature of the gel was checked during the bleaching procedure using a thermometer and the colour of each tooth was measured by a spectrophotometer. Results: Statistical analysis of the collected data was performed using Graph Pad Prism, version 6.01 software, Kruskal-Wallis test and Dunn's multiple comparison test and Mann-Whitney test. P value <0.0001 was considered extremely significant (***), P value between 0.001 to 0.01 very significant (**), P value between 0.01 to 0.05 significant (*) and P value >0.05 not significant (ns). By these tests diode laser was effective only at bleaching teeth stained with coffee meanwhile the KTP laser was efficient at bleaching teeth with coffee, tea and red fruits stains. Conclusion: This study suggests that a relation between the laser wavelength and the type of staining on the dental enamel and the efficacy of the whitening treatment exists. PMID:24771968

  1. Overexpression, purification, crystallization and preliminary X-ray diffraction of the nisin resistance protein from Streptococcus agalactiae.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-06-01

    Nisin is a 34-amino-acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram-positive bacteria, including some human-pathogenic strains. However, there are some nisin-non-producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method in hanging and sitting drops, resulting in crystals that diffracted X-rays to 2.8 and 2.2 Å, respectively. PMID:26057793

  2. Overexpression, purification, crystallization and preliminary X-ray diffraction of the nisin resistance protein from Streptococcus agalactiae.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-06-01

    Nisin is a 34-amino-acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram-positive bacteria, including some human-pathogenic strains. However, there are some nisin-non-producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method in hanging and sitting drops, resulting in crystals that diffracted X-rays to 2.8 and 2.2 Å, respectively.

  3. Domain wall orientation and domain shape in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Vaskina, E. M.; Pelegova, E. V.; Chuvakova, M. A.; Akhmatkhanov, A. R.; Kizko, O. V.; Ivanov, M.; Kholkin, A. L.

    2016-09-01

    Domain shape evolution and domain wall motion have been studied in KTiOPO4 (KTP) ferroelectric single crystals using complementary experimental methods. The in situ visualization of domain kinetics has allowed revealing: (1) qualitative change of the domain shape, (2) dependence of the domain wall velocity on its orientation, (3) jump-like domain wall motion caused by domain merging, (4) effect of domain shape stability. The model of domain wall motion driven by generation of elementary steps (kink-pair nucleation) and subsequent kink motion is presented. The decrease in the relative velocity of the approaching parallel domain walls is attributed to electrostatic interaction. The effect of polarization reversal induced by chemical etching is observed. The obtained results are important for the development of domain engineering in the crystals of KTP family.

  4. NONLINEAR OPTICAL PHENOMENA: Peculiarites of second harmonic generation of radiation from a pulsed ytterbium-doped fibre laser in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Krylov, Aleksandr A.

    2007-07-01

    Second harmonic generation of radiation from a high-power fibre Yb3+ laser is studied upon sf—f phase matching near the X axis of the KTP crystal (KTiOPO4). The temperature dependence of the phase-matching wavelength as well as its spectral, angular and temperature tuning characteristics of the second harmonic generator are experimentally measured. It is found that the increase in the average output power of the second harmonic in a single crystal is limited, first of all, by the thermal self-focusing of radiation caused by the absorption of radiation from the second harmonic, whose threshold decreases with increasing the crystal temperature. When the two-channel scheme is used, the maximum stable ~4-W output power of the second harmonic is obtained in two tandem KTP crystals.

  5. Tissue effects of Nd:YAG, KTP, and FiberTomeTM lasers with varying fiber tips and power settings

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Snyder, Wendy J.; Pergadia, Vani R.; Fishbein, Michael C.; Weiss, Andrew B.; Duffy, J. T.; Thomas, Reem; Shi, Wei-Qiang; Fry, Stephen M.; Grundfest, Warren S.

    1994-02-01

    This study compared the laser tissue effect of the Dornier FiberTomeTM system, the conventional Nd:YAG and the KTP laser on the stomach and liver. The cutting capabilities, thermal effects of the laser systems, as well as their dependence on power output and tissue type, were evaluated. A motorized fiber holder to maintain constant conditions (cutting speed fiber angle, and pressure) was developed. The results show that the cutting depth and cutting width are inversely proportional to the output level. The thermal damage remained constant as the output increased. Use of the FiberTomeTM system appears to be more advantageous than the conventional Nd:YAG laser in pigmented tissues, in the range of the parameters tested.

  6. Crystal Structures of Penicillin-Binding Protein 2 From Penicillin-Susceptible And -Resistant Strains of Neisseria Gonorrhoeae Reveal An Unexpectedly Subtle Mechanism for Antibiotic Resistance

    SciTech Connect

    Powell, A.J.; Tomberg, J.; Deacon, A.M.; Nicholas, R.A.; Davies, C.

    2009-05-21

    Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for {beta}-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by {beta}-lactam antibiotics.

  7. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance.

    PubMed

    Powell, Ailsa J; Tomberg, Joshua; Deacon, Ashley M; Nicholas, Robert A; Davies, Christopher

    2009-01-01

    Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics. PMID:18986991

  8. Mechanism of Drug Resistance Revealed by the Crystal Structure of the Unliganded HIV-1 Protease with F53L Mutation

    SciTech Connect

    Liu, Fengling; Kovalevsky, Andrey Y.; Louis, John M.; Boross, Peter I.; Wang, Yuan-Fang; Harrison, Robert W.; Weber, Irene T.

    2010-12-03

    Mutations in HIV-1 protease (PR) that produce resistance to antiviral PR inhibitors are a major problem in AIDS therapy. The mutation F53L arising from antiretroviral therapy was introduced into the flexible flap region of the wild-type PR to study its effect and potential role in developing drug resistance. Compared to wild-type PR, PR{sub F53L} showed lower (15%) catalytic efficiency, 20-fold weaker inhibition by the clinical drug indinavir, and reduced dimer stability, while the inhibition constants of two peptide analog inhibitors were slightly lower than those for PR. The crystal structure of PR{sub F53L} was determined in the unliganded form at 1.35 {angstrom} resolution in space group P4{sub 1}2{sub 1}2. The tips of the flaps in PR{sub F53L} had a wider separation than in unliganded wild-type PR, probably due to the absence of hydrophobic interactions of the side-chains of Phe53 and Ile50{prime}. The changes in interactions between the flaps agreed with the reduced stability of PR{sub F53L} relative to wild-type PR. The altered flap interactions in the unliganded form of PR{sub F53L} suggest a distinct mechanism for drug resistance, which has not been observed in other common drug-resistant mutants.

  9. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    SciTech Connect

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C.

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  10. Effectiveness of KTP laser versus 980 nm diode laser to kill Enterococcus faecalis in biofilms developed in experimentally infected root canals.

    PubMed

    Romeo, Umberto; Palaia, Gaspare; Nardo, Alessia; Tenore, Gianluca; Telesca, Vito; Kornblit, Roly; Del Vecchio, Alessandro; Frioni, Alessandra; Valenti, Piera; Berlutti, Francesca

    2015-04-01

    This study aimed to evaluate the antibacterial action of KTP (potassium-titanyl-phosphate) laser irradiations (compared with 980 nm diode laser), associated with conventional endodontic procedures, on Enterococcus faecalis biofilms. Fifty-six dental roots with single canals were prepared with Ni-Ti rotary instruments, autoclaved, inoculated with an E. faecalis suspension and incubated for 72 h. They were randomly allocated to control and treatment groups. Laser parameters were as follows: power 2.5 W, Ton 35 ms, Toff 50 ms (KTP laser); power 2.5 W, Ton 30 ms, Toff 30 ms (980 nm diode laser). To evaluate the residual bacterial load, BioTimer Assay was employed. The chemo-mechanical treatment together with laser irradiations (KTP and 980 nm diode lasers) achieved a considerable reduction of bacterial load (higher than 96% and 93%, respectively). Regarding both laser systems, comparisons with conventional endodontic procedures (mortality rate of about 67%) revealed statistically highly significant differences (P ≤ 0.01). This study confirms that laser systems can provide an additional aid in endodontic disinfection.

  11. Anisotropic magnetism, resistivity, London penetration depth and magneto-optical imaging of superconducting K0.80Fe1.76Se2 single crystals

    NASA Astrophysics Data System (ADS)

    Hu, R.; Cho, K.; Kim, H.; Hodovanets, H.; Straszheim, W. E.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.

    2011-06-01

    Single crystals of K0.80Fe1.76Se2 were successfully grown from a ternary solution. We show that, although crystals form when cooling a near-stoichiometric melt, crystals are actually growing out of a ternary solution that remains liquid to at least 850 °C. We investigated their chemical composition, anisotropic magnetic susceptibility and resistivity, specific heat, thermoelectric power, London penetration depth and flux penetration via magneto-optical imaging. Whereas the samples appear to be homogeneously superconducting at low temperatures, there appears to be a broadened transition range close to Tc ~ 30 K that may be associated with small variations in stoichiometry.

  12. Modification of superconducting and resistive properties of HoBa2Cu3O7-δ single crystals under application-removal of high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Dobrovolskiy, O. V.; Kamchatna, S. N.; Chroneos, A.

    2016-06-01

    The influence of a high hydrostatic pressure on the basal-plane electrical resistance along the twin boundaries in underdoped HoBa2Cu3O7-δ single crystals is investigated. An enhancement of the phase segregation caused by the high-pressure-induced redistribution of the labile oxygen has been revealed. The temperature dependences of the electrical resistance above Tc can be approximated well within the framework of the model of s - d electron-phonon scattering.

  13. Effect of long aging on the resistivity properties of optimally doped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Samoilov, A. V.; Goulatis, I. L.; Chroneos, A.

    2013-09-01

    We investigate the conducting properties in the basal ab-plane before and after a long time exposure in air atmosphere of the optimally oxygen doped YBa2Cu3O7-δ single crystals. Prolonged exposure leads to an increase of the effective scattering centers of the normal carriers. The excess conductivity in a wide temperature range has exponential temperature dependence and near the critical temperature is well described within the Aslamazov-Larkin theoretical model. The prolonged exposure increases to a great extent the temperature range of the implementation of the pseudogap state, narrowing the linear section of the temperature dependence of the resistivity in the ab-plane, ρab(Т).

  14. Characterization of Multi-Domain Bumps of Organic Resists in Color Filters for Wide-Viewing-Angle Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Yang, Sheng-Hung; Kawai, Tomoji

    2008-06-01

    Negative-type multi-domain vertical alignment (MVA) photoresists have technically been fabricated and integrated in color filter processing for the application of wide-viewing-angle liquid crystal displays. The expectable results including excellent light transmittance, stability and uniformity of protrudent bumps in shape, superior reliability in material characteristics and wider gamut have extensively been achieved. The superior brightness (GY) of negative-type photo resists used in color filters to positive-type photoresists is attended with the result of excellent transmittances. The transmittances of positive-type and negative-type protrudent bumps photoresists in color filters are 70 and 100%, respectively. NTSC ratio of the color-filter sample with negative-type photoresist in MVA protrudent bumps is improved from 61.9 to 62.8% and higher. Comparisons in characteristics between negative-type (NPR) photoresist and positive-type (PPR) photoresist materials have eventually been analyzed and demonstrated as well.

  15. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  16. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  17. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  18. Purification, crystallization and preliminary X-ray diffraction studies to near-atomic resolution of dihydrodipicolinate synthase from methicillin-resistant Staphylococcus aureus

    SciTech Connect

    Burgess, Benjamin R.; Dobson, Renwick C. J. Dogovski, Con; Jameson, Geoffrey B.; Parker, Michael W.; Perugini, Matthew A.

    2008-07-01

    Dihydrodipicolinate synthase (DHDPS), an enzyme of the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the expression, purification, crystallization and preliminary diffraction analysis to 1.45 Å resolution of DHDPS from methicillin-resistant S. aureus is reported. In recent years, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has received considerable attention from both mechanistic and structural viewpoints. DHDPS is part of the diaminopimelate pathway leading to lysine, coupling (S)-aspartate-β-semialdehyde with pyruvate via a Schiff base to a conserved active-site lysine. In this paper, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS from methicillin-resistant Staphylococcus aureus, an important bacterial pathogen, are reported. The enzyme was crystallized in a number of forms, predominantly from PEG precipitants, with the best crystal diffracting to beyond 1.45 Å resolution. The space group was P1 and the unit-cell parameters were a = 65.4, b = 67.6, c = 78.0 Å, α = 90.1, β = 68.9, γ = 72.3°. The crystal volume per protein weight (V{sub M}) was 2.34 Å{sup 3} Da{sup −1}, with an estimated solvent content of 47% for four monomers per asymmetric unit. The structure of the enzyme will help to guide the design of novel therapeutics against the methicillin-resistant S. aureus pathogen.

  19. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    SciTech Connect

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function.

  20. High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO

    PubMed Central

    Hui, Jie; Yu, Qianhuan; Ma, Teng; Wang, Pu; Cao, Yingchun; Bruning, Rebecca S.; Qu, Yueqiao; Chen, Zhongping; Zhou, Qifa; Sturek, Michael; Cheng, Ji-Xin; Chen, Weibiao

    2015-01-01

    Lipid deposition inside the arterial wall is a hallmark of plaque vulnerability. Based on overtone absorption of C-H bonds, intravascular photoacoustic (IVPA) catheter is a promising technology for quantifying the amount of lipid and its spatial distribution inside the arterial wall. Thus far, the clinical translation of IVPA technology is limited by its slow imaging speed due to lack of a high-pulse-energy high-repetition-rate laser source for lipid-specific first overtone excitation at 1.7 μm. Here, we demonstrate a potassium titanyl phosphate (KTP)-based optical parametric oscillator with output pulse energy up to 2 mJ at a wavelength of 1724 nm and with a repetition rate of 500 Hz. Using this laser and a ring-shape transducer, IVPA imaging at speed of 1 frame per sec was demonstrated. Performance of the IVPA imaging system’s resolution, sensitivity, and specificity were characterized by carbon fiber and a lipid-mimicking phantom. The clinical utility of this technology was further evaluated ex vivo in an excised atherosclerotic human femoral artery with comparison to histology. PMID:26601018

  1. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  2. Use Of A Quartz Crystal Microbalance Rate Monitor To Examine Photoproduct Effects On Resist Dissolution

    NASA Astrophysics Data System (ADS)

    Hinsberg, W. D.; Willson, C. G.; Kanazawa, K. K.

    1985-04-01

    A new general method for measuring dissolution kinetics of thin films has been developed. This technique employs a quartz crystal microbalance to measure the mass of the dissolving thin film. The method allows the measurement of very rapid dissolution rates, and can also be used to study the dissolution kinetics of thick or opaque films. The technique has several advantages over alternative in situ methods based on optical interferometry or capacitance. This instrument has been used to examine the effects of photoproducts on the dissolution kinetics of positive photoresist. The influence of photolytically generated carboxylic acid, and the nitrogen byproduct entrapped in the film, have been independently assessed by comparing the solubility of films of novolac resin, and films of resin plus carboxylic acid photoproduct, with that of exposed photoresist. Our results indicate that the acid does not significantly influence the solubility of the resin, and that entrapped gaseous photoproducts exert a rate-enhancing effect.

  3. Low Density, High Creep Resistant Single Crystal Super Alloy for Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A. (Inventor); Gabb, Timothy P. (Inventor); Smialek, James L. (Inventor); Nathal, Michael V. (Inventor)

    2007-01-01

    A nickel-base superalloy article for use in turbines has increased creep resistance and lower density. The superalloy article includes, as measured in % by weight, 6.0-12.0% Mo, 5.5-6.5%Al, 3.0-7.0% Ta, 0-15% Co, 2.0-6.0% Cr, 1.0-4.0% Re, 0-1.5% W, 0-1.5% Ru, 0-2.0% Ti, 0-3.0% Nb, 0-0.2% Hf, 0-0.02% Y, 0.001-0.005% B, 0.01-0.04% C, and a remainder including nickel plus impurities.

  4. Development of Creep-Resistant NiAl(Ti,Hf) Single-Crystal Alloys

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nickel-base superalloys are the current choice for high-temperature jet engine applications such as turbine blades and vanes. However, after more than five decades of use, nickel-base superalloys have reached their limit, since the operating temperatures in gas turbine engines are now approaching the melting temperature of these alloys. Thus alternative materials, such as lightweight NiAl intermetallic alloys with superior properties, (e.g., high melting temperature, high thermal conductivity, and excellent chemical stability and oxidation resistance) are required for the next generation of high-temperature structural materials for more efficient 21st century civil transport systems. The two major disadvantages that have historically prevented the application of NiAl as a high-temperature structural material are its poor creep resistance and low room-temperature ductility. Alloying strategies similar to those used for nickel-base superalloys are being used to improve the high-temperature strength via solid-solution and precipitate-hardening effects. This study highlights the potent role of Ti and Hf as potential solid-solution strengtheners in NiAl and also the added effect of second-phase particles when Ti and Hf are both used.

  5. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

    SciTech Connect

    Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S.; Cetel, A.D.

    1999-07-01

    The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

  6. Controlling the Integration of Polyvinylpyrrolidone onto Substrate by Quartz Crystal Microbalance with Dissipation To Achieve Excellent Protein Resistance and Detoxification.

    PubMed

    Zheng, Jian; Wang, Lin; Zeng, Xiangze; Zheng, Xiaoyan; Zhang, Yan; Liu, Sa; Shi, Xuetao; Wang, Yingjun; Huang, Xuhui; Ren, Li

    2016-07-27

    Blood purification systems, in which the adsorbent removes exogenous and endogenous toxins from the blood, are widely used in clinical practice. To improve the protein resistance of and detoxification by the adsorbent, researchers can modify the adsorbent with functional molecules, such as polyvinylpyrrolidone (PVP). However, achieving precise control of the functional molecular density, which is crucial to the activity of the adsorbent, remains a significant challenge. In the present study, we prepared a model system for blood purification adsorbents in which we controlled the integration density of PVP molecules of different molecular weights on an Au substrate by quartz crystal microbalance with dissipation (QCM-D). We characterized the samples with atomic force microscopy, X-ray photoelectron spectroscopy, and QCM-D and found that the molecular density and the chain length of the PVP molecules played important roles in determining the properties of the sample. At the optimal condition, the modified sample demonstrated strong resistance to plasma proteins, decreasing the adsorption of human serum albumin (HSA) and fibrinogen (Fg) by 92.5% and 79.2%, respectively. In addition, the modified sample exhibited excellent detoxification, and the adsorption of bilirubin increased 2.6-fold. Interestingly, subsequent atomistic molecular dynamics simulations indicated that the favorable interactions between PVP and bilirubin were dominated by hydrophobic interactions. An in vitro platelet adhesion assay showed that the adhesion of platelets on the sample decreased and that the platelets were maintained in an inactivated state. The CCK-8 assay indicated that the modified sample exhibited negligible cytotoxicity to L929 cells. These results demonstrated that our method holds great potential for the modification of adsorbents in blood purification systems. PMID:27363467

  7. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies

    PubMed Central

    Kasper, Manuel; Traxler, Lukas; Salopek, Jasmina; Grabmayr, Herwig; Ebner, Andreas; Kienberger, Ferry

    2016-01-01

    We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements. PMID:27231946

  8. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies.

    PubMed

    Kasper, Manuel; Traxler, Lukas; Salopek, Jasmina; Grabmayr, Herwig; Ebner, Andreas; Kienberger, Ferry

    2016-05-25

    We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements.

  9. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies.

    PubMed

    Kasper, Manuel; Traxler, Lukas; Salopek, Jasmina; Grabmayr, Herwig; Ebner, Andreas; Kienberger, Ferry

    2016-01-01

    We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements. PMID:27231946

  10. A new endotracheal tube for carbon dioxide and KTP laser surgery of the aerodigestive tract.

    PubMed

    Ossoff, R H; Aly, A; Gonzales, D; Koriwchak, M J; Houchin, N

    1993-01-01

    We have tested the fire-resistance of a new endotracheal tube designed for use in laser surgery of the upper aerodigestive tract. This Teflon/metallic-wrapped silicone tube seems capable of withstanding occasional, accidental pulsed laser impact at power settings used clinically (1 to 10 watts) without fire. On rare occasions when continuous mode is used, the tube seems capable of withstanding at least several seconds of continuous irradiation at clinical power settings without igniting. When used with other recommended safety procedures, this tube should minimize the risk of endotracheal tube fire from accidental laser impact. PMID:8437882

  11. Can the KTP laser change the cementum surface of healthy and diseased teeth providing an acceptable root surface for fibroblast attachment?

    NASA Astrophysics Data System (ADS)

    Mailhot, Jason M.; Garnick, Jerry J.

    1996-04-01

    The purpose of our research is to determine the effects of KTP laser on root cementum and fibroblast attachment. Initial work has been completed in testing the effect of different energy levels on root surfaces. From these studies optimal energy levels were determined. In subsequent studies the working distance and exposure time required to obtain significant fibroblast attachment to healthy cementum surfaces were investigated. Results showed that lased cemental surfaces exhibited changes in surface topography which ranged from a melted surface to an apparent slight fusion of the surface of the covering smear layer. When the optimal energy level was used, fibroblasts demonstrate attachment on the specimens, resulting in the presence of a monolayer of cells on the control surfaces as well as on the surfaces lased with this energy level. The present study investigates the treatment of pathological root surfaces and calculus with a KTP laser utilizing these optimal parameters determine previously. Thirty single rooted teeth with advanced periodontal disease and ten healthy teeth were obtained, crowns were sectioned and roots split longitudinally. Forty test specimens were assigned into 1 of 4 groups; pathologic root--not lased, pathologic root--lased, root planed root and health root planed root. Human gingival fibroblasts were seeded on specimens and cultured for 24 hours. Specimens were processed for SEM. The findings suggest that with the KTP laser using a predetermined energy level applied to pathological root surfaces, the lased surfaces provided an unacceptable surface for fibroblast attachment. However, the procedural control using healthy root planed surfaces did demonstrate fibroblast attachment.

  12. Randomized controlled trial comparing the effects of Nd:YAG prostate ablation with or without KTP laser bladder neck incision

    NASA Astrophysics Data System (ADS)

    Langley, Stephen; Gallegos, Christopher; Moisey, Clifford

    1997-05-01

    A randomized, double blind, power determined, prospective study compared patients with benign prostatic hyperplasia undergoing endoscopic laser ablation of prostate, ELAP, -- Group 1 -- to those with KTP bladder neck incision and ELAP -- Group 2. A dual wavelength Laserscope KPT/532TM laser was used with add/stat side-firing fibers. Post-operatively a urethral catheter was inserted, which was removed at 18 hours. Patients unable to void at this stage where then re-catheterized, discharged and readmitted two weeks later for catheter removal. Patients were followed up at three month intervals. Eighty eight patients were studied, pre-operatively there was no statistical difference between Group 1 and Group 2 in mean age, 68.0, 68.4 yrs; prostate size 28, 29 g; post void residual, PVR, 141, 126 ml; max flow rate, Qmax, 9.8, 9.4 ml/s; or AUA score 18.0, 20.4; respectively. Post-operatively 57% of Group 1 patients were able to void on catheter removal at 18 hours compared to 80% from Group 2; p less than 0.05, (chi) 2. After one month, two patients from Group 2 and one from Group 1 failed to void and required further surgery. At six months, data for Group 1 and 2 respectively: PVR equals 78.7, 61.4 ml, Qmax equals 16.2, 18.1 ml/s, AUA score equals 9.6, 6.38, p less than 0.005 for each. Group 2 had a significantly greater improvement in AUA7 score than Group 1.

  13. Lumbar percutaneous KTP532 wavelength laser disc decompression and disc ablation in the management of discogenic pain.

    PubMed

    Knight, Martin; Goswami, Ankul

    2002-02-01

    The objective of this research was to determine the outcome of laser disc decompression and laser disc ablation in the management of painful degenerative disc disease with or without associated disc prolapse. Nonendoscopic percutaneous laser disc decompression was performed under x-ray control via the posterolateral approach with side-firing probes. All patients with chronic back pain who had reproduced pain during discography of a nature, pattern, and distribution similar to what they experienced normally were included in the study. Magnetic resonance which confirmed stenosis and sequestrated discs, and patients with acute neurological findings were excluded from the study. Laser disc decompression or ablation was done using the KTP532 wavelength. The functional outcome was assessed prospectively using the Oswestry Disability Index. Clinical benefit was considered significant in those patients with a percentage change in the index of > or =50% at review 3-9 years (mean, 5.33 years) following surgery. A total of 52% of patients demonstrated a sustained significant clinical benefit, with an additional 21% in whom functional improvement was noted. Cohort integrity was 67%. Long-term benefit of the laser disc ablation and decompression for discogenic pain suggests a mechanism other than principally mechanical as a cause of chronic back and sciatic pain. It may suggest that efficacy occurs by reduction in the intradiscal production of irritative products and by an effect upon discal and annular neoneuralization. The sustained nature of the benefit after long-term preoperative symptoms (mean, 4.7 years) rules out any placebo effect. Selection should be restricted to patients without significant lateral recess stenosis, retrolisthesis or olisthesis of > or =3 mm, significant dorsal or foraminal osteophytosis, extrusion, or sequestration. PMID:11902355

  14. Crystal growth and characterization of KTiOPO 4 isomorphs from the self-fluxes

    NASA Astrophysics Data System (ADS)

    Cheng, L. K.; Cheng, L. T.; Galperin, J.; Hotsenpiller, P. A. Morris; Bierlein, J. D.

    1994-03-01

    We report the crystal growth of KTiOPO 4 (KTP) and its isomorphs from the self-fluxes. Common features in the crystal growth properties of MTiOXO 4 within the M 2O-TiO 2-X 2O 5 ternary, where M={K, Rb or Cs} and X={P or As (for M=Cs only)}, are noted. The solubility of these crystals in the M 5X 3O 10 and M 6X 4O 13 fluxes are presented. A previously unreported (00-1) growth face was observed in KTiOAsO 4 (KTA) and the morphological stability of this face in KTP is also discussed. Optimization of the crystal growth parameters allows us to grow inclusion-free crystals of up to 18×35×35 mm 3 from 250 ml charges. We discuss the domain characteristics of these crystals and present the optical, electro-optical and dielectric properties of these materials.

  15. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Vaidya, Shyam V.; Yuan, Min; Narváez, Alfredo R.; Daghfal, David; Mattzela, James; Smith, David

    2016-02-01

    The protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating (Dursan®) were compared to that of an amorphous fluoropolymer (AF1600) coating and bare 316L grade stainless steel by studying non-specific adsorption of various proteins onto these surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D). A wash solution with nonionic surfactant, polyoxyethyleneglycol dodecyl ether (or Brij 35), facilitated 100% removal of the adsorbed bovine serum albumin (BSA), mouse immunoglobulin G (IgG), and normal human plasma proteins from the Dursan surface and of the adsorbed normal human plasma proteins from the AF1600 surface, whereas these proteins remained adsorbed on the bare stainless steel surface. Mechanical stress in the form of sonication demonstrated durability of the Dursan coating to mechanical wear and showed no negative impact on the coating's ability to prevent adsorption of plasma proteins. Surface delamination was observed in case of the sonicated AF1600 coating, which further led to adsorption of normal human plasma proteins.

  16. Room temperature terahertz wave imaging at 60 fps by frequency up-conversion in DAST crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki

    2014-02-01

    Terahertz imaging has attracted a lot of interests for more than 10 years. But real time, high sensitive, low cost THz imaging in room temperature, which is widely needed by fields such as biology, biomedicine and homeland security, has not been fully developed yet. A lot of approaches have been reported on electro-optic (E-O) imaging and THz focal plane arrays with photoconductive antenna or micro-bolometer integrated. In this paper, we report high sensitive realtime THz image at 60 frames per second (fps) employing a commercial infrared camera, using nonlinear optical frequency up-conversion technology. In this system, a flash-lamp pumped nanosecond pulse green laser is used to pump two optical parametric oscillator systems with potassium titanyl phosphate crystals (KTP-OPO). One system with dual KTP crystals is used to generate infrared laser for the pumping of THz difference frequency generation (DFG) in a 4- Dimethylamino-N-Methyl-4-Stilbazolium Tosylate (DAST) crystal. The other one is for generation of pumping laser for THz frequency up-conversion in a second DAST crystal. The THz frequency can be tuned continuously from a few THz to less than 30 THz by controlling the angle of KTP crystals. The frequency up-converted image in infrared region is recorded by a commercial infrared camera working at 60 Hz. Images and videos are presented to show the feasibility of this technique and the real-time ability. Comparison with a general micro-bolometer THz camera shows the high sensitivity of this technique.

  17. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    SciTech Connect

    Lee, J. H. Sohn, S. G. Jung, H. I. An, Y. J. Lee, S. H.

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  18. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  19. Crystallization and preliminary X-ray diffraction analyses of the TIR domains of three TIR-NB-LRR proteins that are involved in disease resistance in Arabidopsis thaliana.

    PubMed

    Wan, Li; Zhang, Xiaoxiao; Williams, Simon J; Ve, Thomas; Bernoux, Maud; Sohn, Kee Hoon; Jones, Jonathan D G; Dodds, Peter N; Kobe, Bostjan

    2013-11-01

    The Toll/interleukin-1 receptor (TIR) domain is a protein-protein interaction domain that is found in both animal and plant immune receptors. The N-terminal TIR domain from the nucleotide-binding (NB)-leucine-rich repeat (LRR) class of plant disease-resistance (R) proteins has been shown to play an important role in defence signalling. Recently, the crystal structure of the TIR domain from flax R protein L6 was determined and this structure, combined with functional studies, demonstrated that TIR-domain homodimerization is a requirement for function of the R protein L6. To advance the molecular understanding of the function of TIR domains in R-protein signalling, the protein expression, purification, crystallization and X-ray diffraction analyses of the TIR domains of the Arabidopsis thaliana R proteins RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1) and the resistance-like protein SNC1 (suppressor of npr1-1, constitutive 1) are reported here. RPS4 and RRS1 function cooperatively as a dual resistance-protein system that prevents infection by three distinct pathogens. SNC1 is implicated in resistance pathways in Arabidopsis and is believed to be involved in transcriptional regulation through its interaction with the transcriptional corepressor TPR1 (Topless-related 1). The TIR domains of all three proteins have successfully been expressed and purified as soluble proteins in Escherichia coli. Plate-like crystals of the RPS4 TIR domain were obtained using PEG 3350 as a precipitant; they diffracted X-rays to 2.05 Å resolution, had the symmetry of space group P1 and analysis of the Matthews coefficient suggested that there were four molecules per asymmetric unit. Tetragonal crystals of the RRS1 TIR domain were obtained using ammonium sulfate as a precipitant; they diffracted X-rays to 1.75 Å resolution, had the symmetry of space group P4(1)2(1)2 or P4(3)2(1)2 and were most likely to contain one molecule per asymmetric

  20. Synthesis, crystal growth, thermal and spectroscopic studies of acentric materials constructed from aminopyridines and 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Pavlovetc, Ilia M.; Draguta, Sergiu; Fokina, Maria I.; Timofeeva, Tatiana V.; Denisyuk, Igor Yu

    2016-03-01

    A series of single co-crystals of non-centrosymmetric complexes of different mono- and diaminopyridines, namely 4-aminopyridine, 3,4-diaminopyridine, 2-amino-6-methylpyridine, 2,6-diaminopyridine, 2-aminopyridine, with 4-nitrophenol were grown by slow evaporation technique from solution at constant temperature. Optical transparency in the region of 300-1100 nm was found to be suitable for nonlinear optical applications with cut off wavelengths at 420-474 nm for these co-crystals. Single crystal X-ray analysis confirms the non-centrosymmetric packing. Thermogravimetric and differential thermal analysis shows good thermal stability of the studied compounds with melting point at range 99-172 °C for different co-crystals. The second harmonic generation efficiency has been measured on single crystals by comparative SHG technique relative to KTP crystal. The nonlinear optical coefficient of the compounds was found to be up to 39 pm/V.

  1. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    SciTech Connect

    Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo; Cuff, Marianne E.; Lohman, Jeremy R.; Chang, Chin-Yuan; Ma, Ming; Yang, Dong; Clancy, Shonda; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  2. Research on VCSEL of single-mode multilayer photonic crystal

    NASA Astrophysics Data System (ADS)

    Li, Wenchao; Liu, Zhengjun; Sha, Xiaopeng

    2010-10-01

    Vertical-Cavity Surface-Emitting Lasers (VCSEL) of single mode have the potential advantage in the domains of optical information network, routing interactions, optical information storage and data transmission for their excellent performance. However, operating on the single-mode model in the whole pumped area is not solved, which impacts the technologies and applications. In this paper, a new research on VCSEL of single mode multilayer photonic crystal is presented. In the structure of photonic crystal, defects in the horizontal direction are provided by the micro-cavity, while the AIR-KTP interface on the top and the KTP-DBR (Distributed Bragg Reflection) interface at the bottom of cavity provide the defects in the vertical direction, which form quantum defects of electron-hole pairs. The PC-VCSEL in the paper has excellent mode-selection characteristics, which can operate continuously at 850nm in single mode. The single-mode suppression ratio (SMSR) of 45dB is obtained in a wide dynamic range. The PC-VCSEL is expected to become a high-power single-mode light in the future.

  3. Relaxation of the normal electrical resistivity induced by high-pressure in strongly underdoped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Goulatis, I. L.; Chroneos, A.

    2012-11-01

    We investigate the relaxation of the normal electrical resistivity, induced by high-pressure in YBa2Cu3O6.45 single crystals. It is determined that the pressure affects to the phase composition of the sample. Under pressure phases with different (but similar) critical temperatures form. It is determined that the application-removal pressure process is completely reversible. Above Tc the temperature dependence of the resistivity in the layers' plane at different hydrostatic pressures can be approximated with high accuracy with the scattering of electrons by phonons model. With increasing pressure, the residual resistance is reduced and the contribution of intraband s-s scattering increases. Additionally, the role of the interband s-d scattering and the Debye temperature is enhanced.

  4. Motional Resistance Evaluation of the Quartz Crystal Microbalance to Study the Formation of a Passive Layer in the Interfacial Region of a Copper|Diluted Sulfuric Solution.

    PubMed

    Cuenca, Alejandro; Agrisuelas, Jerónimo; Catalán, Raquel; García-Jareño, José J; Vicente, Francisco

    2015-09-01

    A hyphenated technique based on vis–NIR spectroscopy and electrochemical quartz crystal microbalance with motional resistance monitoring was employed to investigate the dissolution of copper in acid media. Changes in motional resistance, current, mass, and absorbance during copper dissolution allow the evolution of the interfacial region of copper|diluted sulfuric solution to be understood. In particular, motional resistance is presented in this work as a useful tool to observe the evolution of the passive layer at the interface. During the forced copper electrodissolution in sulfuric solution, SO4(2–) favors the formation of soluble [Cu(H2O)6]2+. On the contrary, OH– involves the formation of Cu(H2O)4(OH)2, which precipitates on the electrode surface. The high viscosity and density of Cu(H2O)4(OH)2 formed on surface causes an increase in motional resistance independently of resonance frequency changes. During the copper corrosion in a more natural acidic environment, the results of electrochemical impedance spectra at open circuit potential indicate that corrosion is controlled by the diffusion of copper to the solution at short experimental times. However, copper diffusion is hindered by the formation of a passive layer on the electrode surface at long experimental times. During the copper corrosion, motional resistance shows an oscillatory response because of an oscillatory formation/dissolution of the passive later. Vis–NIR spectroscopy and electrochemical quartz crystal microbalance with motional resistance monitoring give new perspectives for reaching a deep understanding of metal corrosion processes and, in a future, other interfacial processes such as the catalysis or adsorption of (bio)molecules.

  5. High-power (80-w) KTP laser vaporization of the prostate in the management of urinary retention: long-term follow up

    NASA Astrophysics Data System (ADS)

    Kleeman, M.; Nseyo, Unyime O.

    2004-07-01

    Introduction and Objectives: We have previously reported the use of high-powered photoselective vaporization of the prostate (PVP) for patients in urinary retention due to benign prostatic hyperplasia (BPH). PVP is a relatively new treatment for bladder outlet obstruction due to BPH, using laser energy to vaporize obstructing prostatic tissue. This study investigates the long-term follow up of patients treated with PVP for urinary retention. Materials and Methods: All participants signed informed consent, and were treated with high power 80 W quasi-continuous wave potassium-titanyl-phosphate (KTP) laser. Ten patients underwent the procedure from December 2001 until the present. One patient was excluded from the study for failure to return for follow-up. Mean patient follow-up was nine months, maximum of twelve months. Results: The mean pre-operative gland size by trans-rectal ultrasound was 48 grams. Mean urethral length was 3.2 cm. Mean laser time was 48.2 minutes and the mean energy usage was 82.2 kJoules. There were no peri-operative complications such as sepsis or measurable postoperative bleeding. The preoperative AUA Symptom Score (AUASS) decreased from a mean of 22.6 preoperatively to 17 at nine months postoperatively (p = 0.032). The Quality of Life Score (QOL) decreased from 4.6 preoperatively to 3.25 at 12 months postoperatively (p = 0.26). The maximum urine flow rate increased from a mean of 7.7 cc/sec preoperatively to 14.5 cc/sec at six months follow-up (p = 0.03). Conclusions: This follow-up study suggests that HP-KTP has a durable response in patients treated specifically for retention. It significantly improved urine flow rate and symptom score, and had a trend towards improvement in subjective quality of life. HP-KTP prostatectomy should be considered in treating patients in retention, especially those with significant co-morbidities or taking anticoagulation.

  6. Syntheses, crystal structures, and resistivities of the two new ternary uranium selenides, Er3USe8 and Yb3USe8

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Mesbah, Adel; Beard, Jessica C.; Malliakas, Christos D.; Ibers, James A.

    2016-01-01

    Two new ternary lanthanide (Ln) uranium selenides, Er3USe8 and Yb3USe8, were synthesized at 1198 K using NaI as a flux. Single-crystal X-ray studies show these two compounds to be isostructural and to crystallize in space group D2h 11 -Pbcm of the orthorhombic crystal system. The Ln and U atoms are disordered on the same crystallographic site in these crystal structures. Each Ln/U atom is coordinated to eight Se atoms in a bicapped trigonal prism, and sharing of these (Ln/U)Se8 units creates a three-dimensional network. Se2 atoms are connected to each other to form infinite one-dimensional chains along the c axis. In these chains, the two Se atoms are separated by about 2.74 Å, a distance intermediate to those of a Se-Se single bond and a van der Waals interaction. Temperature-dependent resistivity measurements show that Er3USe8 and Yb3USe8 are semiconductors with activation energies of 0.08(1) and 0.17(1) eV, respectively.

  7. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    NASA Astrophysics Data System (ADS)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  8. High-strength, creep-resistant Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} single crystal fibers

    SciTech Connect

    McClellan, K.J.; Sayir, H.; Heuer, A.H.

    1993-06-20

    Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} (Y-CSZ) single crystal fibers have much higher thermal expansion coefficients than other possible oxide fibers and thus can serve as viable reinforcements for metallic- and intermetallic-matrix composites; furthermore, they offer good isotropic creep resistance. Data is presented for [001] ZrO{sub 2} single crystal fibers (9.5-21 m/o Y{sub 2}O{sub 3}) grown by the laser heated floating zone process; high temperature strengths were measured as a function of composition and the variation in tensile strength with temperature was measured for 21 m/o Y-CSZ fibers. Strengths of {approximately}2.0 GPa at -196{degrees}C, {approximately}1.5 GPa at room temperature and {approximately}500 MPa at 1400{degrees}C were achieved. All fibers failed in a brittle manner from surface or near-surface flaws.

  9. Intracavity KTP-based OPO pumped by a dual-loss modulated, simultaneously Q-switched and mode-locked Nd:GGG laser.

    PubMed

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Dechun; Li, Guiqiu; Li, Tao; Qiao, Wenchao

    2014-11-01

    An intracavity KTiOPO(4) (KTP) optical parametric oscillator (OPO) pumped by a simultaneously Q-switched and mode-locked (QML) Nd:Gd(3)Ga(5)O(12) (Nd:GGG) laser with an acousto-optic modulator (AOM) and a Cr(4+):YAG saturable absorber is presented. A minimum mode-locking pulse duration underneath the Q-switched envelope was evaluated to be about 290 ps. A maximum QML output power of 82 mW at the signal wavelength of 1570 nm was achieved, corresponding to a maximum mode-locked pulse energy of about 5.12 μJ. The M(2) values were measured to be about 1.3 and 1.5 for tangential and sagittal directions using knife-edge technique. PMID:25401841

  10. On linear resistivity from ~1 to 103 K in Sr2RuO4 - δ single crystals grown by flux technique

    NASA Astrophysics Data System (ADS)

    Berger, H.; Forró, L.; Pavuna, D.

    1998-03-01

    We report transport measurements on single crystals of Sr2RuO4 - δ, grown by the flux technique. The temperature dependence of the Hall coefficient is similar to the one measured in cuprates, and the linear resistivity persists up to ~1000 K, while the superconductivity remains confined below 1 K. This suggests that the linear temperature dependence of resistivity is not an exclusive signature of the anomalous normal state of high-Tc cuprates but rather of layered oxides in general, especially single-layer perovskites, possibly independently of the magnitude of the superconducting temperature. In addition, such Sr2RuO4 - δ may be used as a broad-range thermometer.

  11. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  12. Current controlled negative differential resistance behavior in Co2FeO2BO3 and Fe3O2BO3 single crystals

    NASA Astrophysics Data System (ADS)

    dos Santos, E. C.; Freitas, D. C.; Fier, I.; Fernandes, J. C.; Continentino, M. A.; de Oliveira, A. J. A.; Walmsley, L.

    2016-03-01

    I-V curves showing negative differential resistance (NDR) are reported for single crystals of Co2FeO2BO3 at 315 K and 290 K and for Fe3O2BO3 at 300 K, 260 K and 220 K. Resistivity measurements are presented for both systems, parallel and perpendicular to the c axis, in the range 315-120 K. The high hysteretic behavior of the I-V curves in Co2FeO2BO3 around room temperature is discussed and the heat dissipated is estimated, suggesting an increase in the sample temperature of almost 22 K for the I-V curve at 315 K and a dominant contribution of Joule self-heating for the observed NDR. In contrast, insignificant hysteresis is observed on the I-V curves of Fe3O2BO3 around room temperature. The depinning of charge order domains is suggested as the main contribution to the NDR phenomenon for Fe3O2BO3. The high reproducibility of the NDR in the Fe3O2BO3 single crystal allows its use as a low frequency oscillator, as it is demonstrated.

  13. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    SciTech Connect

    Anderson, Amy C.

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  14. Characterization of vertical Au/β-Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    X, Z. Liu; C, Yue; C, T. Xia; W, L. Zhang

    2016-01-01

    High-resistivity β-Ga2O3 thin films were grown on Si-doped n-type conductive β-Ga2O3 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6× 106 Ω. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 × 1018 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 × 102% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga2O3 thin films and the n-type conductive β-Ga2O3 single-crystal substrate. Project supported by the National Nature Science Foundation of China (Grant No. 61223002) the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13111103700), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012018530003).

  15. Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7-δ single crystals with unidirectional planar defects

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2013-08-01

    In the present work the effect of hydrostatic pressure up to 10 kbar on in-plane electrical resistivity of well-structured YBa2Cu3O7-δ (δ<0.15, Тс≈91 K, ΔТс≈0.3 K) single crystals was investigated. The influence of the twin boundaries on the electrical resistivity was minimized. The resistivities temperature dependences in the interval Тс up to 300 K can be approximated by taking into account the linear term at high temperatures and the fluctuation conductivity (Maki-Thompson model) near Тс. The parameters of the linear dependence of R(T) are decreasing as the pressure is increasing. Тс increases linearly when the pressure increases with the derivative dTc/dP≈0.080 K/kbar. Among the Maki-Thompson model parameters the inter-layer distance, d, can be considered to be independent from pressure, the transverse coherence length, ξc(0)∼0.1d.

  16. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    SciTech Connect

    Campi, Davide; Bernasconi, Marco; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg

    2015-01-07

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  17. INFLUENCE OF INTRINSIC PINNING ON THE RESISTIVE PROPERTIES OF YBa2Cu3O7-δ SINGLE CRYSTALS

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Samoilov, A. V.; Goulatis, I. L.; Chroneos, A.

    2013-12-01

    The dynamics of vortex matter in YBa2Cu3O7-δ single crystal with unidirectional twin boundaries is studied experimentally in a wide range of velocities of the magnetic flux in a tilted magnetic field. It is determined that with the orientation of the magnetic field vector in the locality of the ab-plane, the dynamics of the magnetic flux near the melting temperature of the vortex lattice can be described by the Kim-Anderson model and as the temperature is lowered, by the theory of collective pinning on small-scale defects or by the vortex glass model. The intrinsic pinning caused by the layered crystal structure of the material has an impact on the dynamics of magnetic flux and this effect increases with the decreasing of the temperature.

  18. Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. R.

    2012-10-01

    We present results of structural, electrical, and defect characterization of 4H-SiC epitaxial layers and bulk crystals and show performance of the radiation detectors fabricated from these materials. The crystal quality was evaluated by x-ray diffraction (XRD) rocking curve measurements, electron beam induced current (EBIC) imaging, and defect delineating etching in conjunction with optical microscopy and scanning electron microscopy (SEM). Studies of the electrically active intrinsic defects and impurities were conducted using thermally stimulated current (TSC) measurements in a wide temperature range of 94 - 750K. The results are correlated with the capability of bulk crystals and epitaxial layers for the detection of α-particles, low to high energy x-rays and gamma rays. High barrier rectifying Schottky diodes have been fabricated and tested. The epitaxial 4H-SiC radiation detectors exhibited low leakage current (< 1 nA) at ~ 200 V operating voltage up to 200 C. The soft x-ray responsivity measurements performed at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab (BNL) showed significantly improved characteristics compared to commercially-available SiC UV photodiode detectors.

  19. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    SciTech Connect

    Alwin, Jennifer Louise

    1999-08-01

    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  20. On the mobility and contact resistance evaluation for transistors based on MoS{sub 2} or two-dimensional semiconducting atomic crystals

    SciTech Connect

    Chang, Hsiao-Yu; Zhu, Weinan; Akinwande, Deji

    2014-03-17

    Contact resistance (R{sub c}) can substantially obscure the extracted mobility based on standard transconductance or two-point conductance measurements of field-effect devices especially for low density of states materials such as MoS{sub 2} or similar atomic crystals. Currently, there exists a pressing need for a routine technique that can decouple mobility extraction from R{sub c}. By combining experiments and analysis, we show that the Y-function method offers a robust route for evaluating the low-field mobility, threshold voltage and R{sub c} even when the contact is a Schottky-barrier as is common in two-dimensional transistors. In addition, an independent modified transfer length method evaluation corroborates the Y-function analysis.

  1. Crossovers in the out-of-plane resistivity of superconducting Tl2Ba2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Berger, H.; Halbritter, A.; Mihály, G.; Pavuna, D.; Forró, L.

    2000-12-01

    We report the in-plane (ρab) and out-of-plane (ρc) resistivities in the 4 800 K range on single crystals of Tl2Ba2CaCu2O8 high-Tc cuprate with Tc = 111 K (ρc/ρab approx 1000). ρab(T) exhibits "usual" linear behavior and ρc(T) follows generally metallic-like, positive slope in the 150 400 K temperature range. There is a clear crossover to semiconductor-like behavior close to Tc. However, for the first time in a chainless high-Tc cuprate we observe a crossover above 500 K due to hopping conduction. Under high pressures ( < 15 kbar) the magnitude of ρc strongly decreases, yet the ρc(T) slope does not change. This suggests that the out-of-plane charge transport is governed by the interplane tunneling rate.

  2. Miniature resistance thermometers based on GaAs filamentary crystals for the range of 0. 4-300/sup 0/Kickel

    SciTech Connect

    Varshava, S.S.; Kytin, G.A.; Manenkov, A.A.; Mikhailova, G.N.; Troitskii, V.F.; Shcherbai, K.S.

    1987-08-01

    A new wide-range resistance thermometer is described that employs filamentary crystals of heavily doped gallium arsenide and has small size, high speed, and high reliability. The sensitive element, which has dimensions of 0.1 x 0.1 x (0.2-0.8) mm, provides a speed of 1.5 sec for a metal housing and 0.1 sec for other designs. Depending on the degree of compensation of the material, the sensitivity varies from 0.2 to 200 omega/K. Advantages of the new thermometer include little variation of sensitivity over the working range of 0.4-300/sup 0/K and the possibility of use in magnetic fields of up to 5 kOe and under conditions of vibration.

  3. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests.

    PubMed

    Kiani, Sarfraz; Mohamed, Bahaeldeen Babiker; Shehzad, Kamran; Jamal, Adil; Shahid, Muhammad Naveed; Shahid, Ahmad Ali; Husnain, Tayyab

    2013-07-10

    Plants transformed with single Bt gene are liable to develop insect resistance and this has already been reported in a number of studies carried out around the world where Bt cotton was cultivated on commercial scale. Later, it was envisaged to transform plants with more than one Bt genes in order to combat with resistant larvae. This approach seems valid as various Bt genes possess different binding domains which could delay the likely hazards of insect resistance against a particular Bt toxin. But it is difficult under field conditions to develop homozygous plants expressing all Bt genes equally after many generations without undergoing recombination effects. A number of researches claiming to transform plants from three to seven transgenes in a single plant were reported during the last decade but none has yet applied for patent of homozygous transgenic lines. A better strategy might be to use hybrid-Bt gene(s) modified for improved lectin-binding domains to boost Bt receptor sites in insect midgut. These recombinant-Bt gene(s) would express different lectin domains in a single polypeptide and it is relatively easy to develop homozygous transgenic lines under field conditions. Enhanced chloroplast-localized expression of hybrid-Bt gene would leave no room for insects to develop resistance. We devised and successfully applied this strategy in cotton (Gossypium hirsutum) and data up to T3 generation showed that our transgenic cotton plants were displaying enhanced chloroplast-targeted Cry1Ac-RB expression. Laboratory and field bioassays gave promising results against American bollworm (Heliothis armigera), pink bollworm (Pictinophora scutigera) and fall armyworm (Spodoptera frugiperda) that otherwise, were reported to have evolved resistance against Cry1Ac toxin. Elevated levels of hybrid-Bt toxin were confirmed by ELISA of chloroplast-enriched protein samples extracted from leaves of transgenic cotton lines. While, localization of recombinant Cry1Ac-RB protein in

  4. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals

    PubMed Central

    Zheng, Dahuai; Kong, Yongfa; Liu, Shiguo; Chen, Muling; Chen, Shaolin; Zhang, Ling; Rupp, Romano; Xu, Jingjun

    2016-01-01

    For a long time that optical damage was renamed as photorefraction, here we find that the optical damage resistance and photorefraction can be simultaneously enhanced in MgO and Bi2O3 co-doped LiNbO3 (LN:Bi,Mg). The photorefractive response time of LN:Bi,Mg was shortened to 170 ms while the photorefractive sensitivity reached up to 21 cm2/J. Meanwhile, LN:Bi,Mg crystals could withstand a light intensity higher than 106  W/cm2 without apparent optical damage. Our experimental results indicate that photorefraction doesn’t equal to optical damage. The underground mechanism was analyzed and attributed to that diffusion dominates the transport process of charge carriers, that is to say photorefraction causes only slight optical damage under diffusion mechanism, which is very important for the practical applications of photorefractive crystals, such as in holographic storage, integrated optics and 3D display. PMID:26837261

  5. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers.

    PubMed

    Delgado-López, José Manuel; Iafisco, Michele; Rodríguez-Ruiz, Isaac; Gómez-Morales, Jaime

    2013-10-01

    In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.

  6. Effect of Structural Relaxation on the In-Plane Electrical Resistance of Oxygen-Underdoped ReBaCuO (Re = Y, Ho) Single Crystals

    NASA Astrophysics Data System (ADS)

    Vovk, Ruslan V.; Vovk, Nikolaj R.; Dobrovolskiy, Oleksandr V.

    2014-05-01

    The effect of jumpwise temperature variation and room-temperature storing on the basal-plane electrical resistivity of underdoped ReBaCuO (Re = Y, Ho) single crystals is investigated. Reducing the oxygen content has been revealed to lead to the phase segregation accompanied by both, labile component diffusion and structural relaxation in the sample volume. Room-temperature storing of single crystals with different oxygen hypostoichiometries leads to a substantial widening of the rectilinear segment in in conjunction with a narrowing of the temperature range of existence of the pseudogap state. It is established that the excess conductivity obeys an exponential law in a broad temperature range, while the pseudogap's temperature dependence is described satisfactory in the framework of the BCS-BEC crossover theory. Substituting yttrium with holmium essentially effects the charge distribution and the effective interaction in CuO planes, thereby stimulating disordering processes in the oxygen subsystem. This is accompanied by a notable shift of the temperature zones corresponding to transitions of the metal-insulator type and to the regime of manifestation of the pseudogap anomaly.

  7. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals.

    PubMed

    Zheng, Dahuai; Kong, Yongfa; Liu, Shiguo; Chen, Muling; Chen, Shaolin; Zhang, Ling; Rupp, Romano; Xu, Jingjun

    2016-01-01

    For a long time that optical damage was renamed as photorefraction, here we find that the optical damage resistance and photorefraction can be simultaneously enhanced in MgO and Bi2O3 co-doped LiNbO3 (LN:Bi,Mg). The photorefractive response time of LN:Bi,Mg was shortened to 170 ms while the photorefractive sensitivity reached up to 21 cm(2)/J. Meanwhile, LN:Bi,Mg crystals could withstand a light intensity higher than 10(6)  W/cm(2) without apparent optical damage. Our experimental results indicate that photorefraction doesn't equal to optical damage. The underground mechanism was analyzed and attributed to that diffusion dominates the transport process of charge carriers, that is to say photorefraction causes only slight optical damage under diffusion mechanism, which is very important for the practical applications of photorefractive crystals, such as in holographic storage, integrated optics and 3D display. PMID:26837261

  8. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers.

    PubMed

    Delgado-López, José Manuel; Iafisco, Michele; Rodríguez-Ruiz, Isaac; Gómez-Morales, Jaime

    2013-10-01

    In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer. PMID:23648093

  9. High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator.

    PubMed

    Cho, C Y; Chen, Y C; Huang, Y P; Huang, Y J; Su, K W; Chen, Y F

    2014-04-01

    We demonstrate a high-repetition-rate millijoule passively Q-switched eye-safe Nd:YVO(4) laser pumped by a quasi-CW diode stack. A theoretical analysis has been explored for the design criteria of generating TEM(n,0) mode in the diode-stack directly side-pumping configuration. We successfully generate TEM(n,0) modes at 1064 nm by adjusting the gain medium with respected to the laser axis. We further observe the spatial cleaning ability for generating an nearly TEM(0,0) mode output at 1573 nm with a monolithic OPO cavity. At the repetition rate up to 200 Hz, the output pulse energy reaches 1.21 mJ with the threshold pump energy of 17.9 mJ.

  10. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein.

    PubMed

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V; Xia, Di

    2016-08-01

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space group P1), with unit-cell parameters a = 40.67, b = 44.91, c = 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  11. Effect of praseodymium on the electrical resistance of YВа2Сu3О7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-07-01

    The electrical resistivity in the ab-plane of the Y1-yPryВа2Сu3О7-δ single crystals with high degree of perfection in the interval of Тc - 300 K was investigated. The increasing of praseodymium content leads to the reduction of the critical temperature (Tc) from 92 to 30 K. The experimental results can be approximated by the expression, taking into account the scattering of electrons by phonons, defects, the fluctuation conductivity in the 3D Aslamazov-Larkin model, as well as the transition to a "semiconductor" type behavior of the resistivity at the high praseodymium concentrations. The concentration dependences of all fitting parameters indicate a structural transition in the region 0.35≤у≤0.43. In particular, the Debye temperature changes in this range from 350 to 550 K, and the transverse coherence length passes through a maximum ξС(0)≈5 Å. The concentration dependence of the critical temperature testifies the d-pairing of the BCS model.

  12. Photothermal method for absorption measurements in anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Stubenvoll, M.; Schäfer, B.; Mann, K.; Novak, O.

    2016-02-01

    A measurement system for quantitative determination of both surface and bulk contributions to the photo-thermal absorption has been extended to anisotropic optical media. It bases upon a highly sensitive Hartmann-Shack wavefront sensor, accomplishing precise on-line monitoring of wavefront deformations of a collimated test beam transmitted perpendicularly through the laser-irradiated side of a cuboid sample. Caused by the temperature dependence of the refractive index as well as thermal expansion, the initially plane wavefront of the test beam is distorted. Sign and magnitude depend on index change and expansion. By comparison with thermal theory, a calibration of the measurement is possible, yielding a quantitative absolute measure of bulk and surface absorption losses from the transient wavefront distortion. Results for KTP and BBO single crystals are presented.

  13. The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus.

    PubMed

    Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B; Bzymek, Krzysztof P; Williams, John C; Brakhage, Axel A; Kalkum, Markus

    2016-01-01

    Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target. PMID:27624005

  14. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  15. The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus

    PubMed Central

    Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B.; Bzymek, Krzysztof P.; Williams, John C.; Brakhage, Axel A.; Kalkum, Markus

    2016-01-01

    Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3’s peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target. PMID:27624005

  16. The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus.

    PubMed

    Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B; Bzymek, Krzysztof P; Williams, John C; Brakhage, Axel A; Kalkum, Markus

    2016-09-14

    Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.

  17. Efficient generation of 1096 nm and 1572 nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal

    NASA Astrophysics Data System (ADS)

    Huang, H. T.; He, J. L.; Liu, S. D.; Yang, J. F.; Zhang, B. T.; Liu, F. Q.

    2011-04-01

    The simultaneous stimulated Raman scattering (SRS) and optical parametric oscillation (OPO) for the 1064 nm radiation were realized in one KTP crystal for the first time. At an incident diode laser power of 8.6 W, the maximum average output powers at 1096 nm and 1572 nm were 1.1 W and 0.36 W, respectively. The conversion efficiency to Stokes with respect to the incident diode power was as high as 12.8%. The corresponding minimum pulse widths at 1096 nm and 1572 nm were 2.8 and 1.1 ns, respectively.

  18. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    NASA Astrophysics Data System (ADS)

    Borghesani, A. F.; Braggio, C.; Guarise, M.

    2016-06-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at 1064 nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO3), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  19. Infrared Attenuation Spectrum of Bulk High-Resistivity CdZnTe Single Crystal in Transparent Wavelength Region Between Electronic and Lattice Absorptions

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Kaji, Sayumi; Ikeda, Yuji; Kobayashi, Naoto; Sukegawa, Takashi; Nakagawa, Takao; Kataza, Hirokazu; Kondo, Sohei; Yasui, Chikako; Nakanishi, Kenshi; Kawakita, Hideyo

    2016-09-01

    We report measurement of the internal attenuation coefficient, α _{att} , of a bulk high-resistivity cadmium zinc telluride (CdZnTe) single crystal at wavelength, λ = 0.84-26 μ m, to the unprecedentedly low level of α _{att} ˜ 0.001 cm^{-1} . This measurement reveals the spectral behavior for small attenuation in the infrared transparent region between the electronic and lattice absorptions. This result is essential for application of CdZnTe as an infrared transmitting material. Comparing the attenuation spectrum with model spectra obtained on the basis of Mie theory, we find that sub-micrometer-sized Te particles (inclusions) with a number density of approximately 10^{7.5-9} cm^{-3} are the principal source of the small attenuation observed at λ = 0.9-13 μ m. In addition, we determine α _{att} = (7.7 ± 1.9) × 10^{-4} cm^{-1} at λ = 10.6 μ m, which is valuable for CO_2 laser applications. Higher transparency can be achieved by reducing the number of inclusions rather than the number of precipitates. This study also demonstrates that high-accuracy measurement of CdZnTe infrared transmittance is a useful approach to investigating the number density of sub-micrometer-sized Te particles that cannot be identified via infrared microscopy.

  20. Penetration depth and flux-flow resistivity measurements of BaFe2(As0.55P0.45)2 single crystals

    NASA Astrophysics Data System (ADS)

    Okada, T.; Imai, Y.; Takahashi, H.; Nakajima, M.; Iyo, A.; Eisaki, H.; Maeda, A.

    2014-09-01

    We measured the surface impedance of BaFe2(As0.55P0.45)2 single crystals under finite magnetic fields by using a microwave technique. We found that the penetration depth increased as λ(T)=λ(0)+A×Tn with an exponent of n≈1.7 in the temperature region of 0.1resistivity showed an almost H-linear dependence and a remarkably rapid enhancement in the low-H region; ρf/ρn≈αH/Hc2 with a gradient of α>2.5. Such a behavior is similar to that of SrFe2(As,P)2. By comparing these with results of 111-materials and SrFe2(As0.7P0.3)2, it has been clarified that the gap anisotropy dominates the gradient α of iron-based materials.

  1. Surface and defect correlation studies on high resistivity 4H SiC bulk crystals and epitaxial layers for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Krishna, Ramesh M.; Hayes, Timothy C.

    2011-09-01

    Radiation detectors have been fabricated using bulk semi-insulating (SI) 4H-SiC crystals and SI and n-type 4H-SiC epitaxial layers grown by chemical vapor deposition (CVD) on highly doped (0001) 4H-SiC substrates. The devices have been characterized by optical microscopy, current-voltage (I-V) measurements, thermally stimulated current (TSC) spectroscopy (94K - 650 K), Hall effect, van der Pauw measurements, and electron beam induced current (EBIC) technique. Both epitaxial layers exhibited relatively shallow levels related to Al, B, L- and D- centers. Deep level centers in the n-type epitaxial layer peaked at ~ 400 K (Ea ~ 1.1 eV) and ~ 470 K were correlated with IL2 defect and 1.1 eV center in high purity bulk SI 4H-SiC. The SI epitaxial layer exhibited peak at ~ 290 K (Ea = 0.82 - 0.87 eV) that was attributed to IL1 center and 3C inclusions, and at ~ 525 K that was related to intrinsic defects and their complexes with energy levels close to the middle of the band gap. The TSC spectra of the SI epitaxial layer exhibited peaks with different current polarity which we attributed to the built-in electric field reversal. Results of EBIC and optical microscopy characterization showed segregation of threading dislocations around comet tail defects in the n-type epitaxial layers and presence of stacking faults and 3C-SiC inclusions in both epitaxial layers. The I-V characteristics of the devices on SI epi obtained in wide temperature range (94K - 650 K) exhibited steps at ~ 1 V and ~ 70 V corresponding to the ultimate trap filling of deep centers peaked at > 500 K and at ~ 250 K (Ea ~ 0.57 eV), & ~ 300 K (Ea ~ 0.85 eV) respectively. Slow processes of the injected carrier capture on traps resulted in the I-V characteristic with negative differential resistance (NDR). The high temperature resistivity measurements of bulk SI 4H-SiC sample revealed resistivity hysteresis that was attributed to the filling of the deep level electron trap centers.

  2. Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices

    SciTech Connect

    Aslam, N.; Rodenbücher, C.; Szot, K.; Waser, R.; Hoffmann-Eifert, S.; Longo, V.; Roozeboom, F.; Kessels, W. M. M.

    2014-08-14

    The resistive switching (RS) properties of strontium titanate (Sr{sub 1+x}Ti{sub 1+y}O{sub 3+(x+2y)}, STO) based metal-oxide-metal structures prepared from industrial compatible processes have been investigated focusing on the effects of composition, microstructure, and device size. Metastable perovskite STO films were prepared on Pt-coated Si substrates utilizing plasma-assisted atomic layer deposition (ALD) from cyclopentadienyl-based metal precursors and oxygen plasma at 350 °C, and a subsequent annealing at 600 °C in nitrogen. Films of 15 nm and 12 nm thickness with three different compositions [Sr]/([Sr] + [Ti]) of 0.57 (Sr-rich STO), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO) were integrated into Pt/STO/TiN crossbar structures with sizes ranging from 100 μm{sup 2} to 0.01 μm{sup 2}. Nano-structural characterizations revealed a clear effect of the composition of the as-deposited STO films on their crystallization behavior and thus on the final microstructures. Local current maps obtained by local-conductivity atomic force microscopy were in good agreement with local changes of the films' microstructures. Correspondingly, also the initial leakage currents of the Pt/STO/TiN devices were affected by the STO compositions and by the films' microstructures. An electroforming process set the Pt/STO/TiN devices into the ON-state, while the forming voltage decreased with increasing initial leakage current. After a RESET process under opposite voltage has been performed, the Pt/STO/TiN devices showed a stable bipolar RS behavior with non-linear current-voltage characteristics for the high (HRS) and the low (LRS) resistance states. The obtained switching polarity and nearly area independent LRS values agree with a filamentary character of the RS behavior according to the valence change mechanism. The devices of 0.01 μm{sup 2} size with a 12 nm polycrystalline stoichiometric STO film were switched at a current compliance of 50 μA with

  3. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase

    SciTech Connect

    Seetharamappa, Jaldappagari; Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal; Overton, Ian M.; Niekirk, C. A. Johannes van; Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F.; Barton, Geoffrey J.; Coote, Peter J.; Naismith, James H.

    2007-05-01

    As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported. Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P2{sub 1}2{sub 1}2{sub 1}. A complete data set was collected to 2.5 Å resolution.

  4. IncP-1β plasmids of Comamonas sp. and Delftia sp. strains isolated from a wastewater treatment plant mediate resistance to and decolorization of the triphenylmethane dye crystal violet.

    PubMed

    Stolze, Yvonne; Eikmeyer, Felix; Wibberg, Daniel; Brandis, Gerrit; Karsten, Christina; Krahn, Irene; Schneiker-Bekel, Susanne; Viehöver, Prisca; Barsch, Aiko; Keck, Matthias; Top, Eva M; Niehaus, Karsten; Schlüter, Andreas

    2012-08-01

    The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1β plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1β backbone modules that are highly similar to those of previously sequenced IncP-1β plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV

  5. Crystal structure of the effector AvrLm4-7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins.

    PubMed

    Blondeau, Karine; Blaise, Françoise; Graille, Marc; Kale, Shiv D; Linglin, Juliette; Ollivier, Bénédicte; Labarde, Audrey; Lazar, Noureddine; Daverdin, Guillaume; Balesdent, Marie-Hélène; Choi, Danielle H Y; Tyler, Brett M; Rouxel, Thierry; van Tilbeurgh, Herman; Fudal, Isabelle

    2015-08-01

    The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region. PMID:26082394

  6. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  7. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Wang, Yu; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui

    2014-09-01

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La1-xBaxMnO3 (x = 0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb1/2)O3-0.34PbTiO3 (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R)strain] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La0.8Ba0.2MnO3 film and 150 K for the La0.6Ba0.4MnO3 film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  8. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La{sub 1-x}Ba{sub x}MnO₃ thin films epitaxially grown on relaxor-based ferroelectric single crystals

    SciTech Connect

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui; Wang, Yu

    2014-09-21

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La{sub 1-x}Ba{sub x}MnO₃ (x=0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In{sub 1/2}Nb{sub 1/2})O₃-0.35Pb(Mg{sub 1/3}Nb{sub 1/2})O₃-0.34PbTiO₃ (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R){sub strain}] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La₀.₈Ba₀.₂MnO₃ film and 150 K for the La₀.₆Ba₀.₄MnO₃ film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  9. Synthesis, properties, and structure of potassium titanyl phosphate single crystals doped with hafnium

    SciTech Connect

    Orlova, E. I.; Kharitonova, E. P.; Novikova, N. E. Verin, I. A.; Alekseeva, O. A.; Sorokina, N. I.; Voronkova, V. I.

    2010-05-15

    Single crystals of potassium titanyl phosphate doped with hafnium are grown by spontaneous flux crystallization. Their physical properties are studied, and the structure of three KTi{sub 1-x}Hf{sub x}OPO{sub 4} crystals (x = 0.01, 0.03, and 0.12) is determined. In the crystals studied, hafnium mostly occupies the second titanium position. The doping of KTP crystals with hafnium results in an elongation of K-O bonds in the potassium polyhedra and, as a consequence, in a considerable (by approximately 180 deg. C) decrease in the temperature of ferroelectric phase transition. The magnitude of anomalous permittivity substantially decreases. The electrical conduction in the specimens studied decreases by approximately half an order of magnitude in the low-temperature region but remains almost unchanged in the high-temperature region. Even at minor concentrations, the presence of a hafnium additive in the specimens considerably (by 35%) enhances the intensity of the second harmonic generation of laser radiation.

  10. Response in soil of Cupriavidus necator and other copper-resistant bacterial predators of bacteria to addition of water, soluble nutrients, various bacterial species, or Bacillus thuringiensis spores and crystals

    SciTech Connect

    Casida, L.E. Jr. )

    1988-09-01

    Soil was incubated with various species of bacteria, Bacillus subtilis, or Bacillus thuringiensis spores and crystals. These were added to serve as potential prey for indigenous, copper-resistant, nonobligate bacterial predators of bacteria in the soil. Alternatively, the soil was incubated with soluble nutrients or water only to cause potential indigenous prey cells to multiply so the predator cells would multiply. All of these incubation procedures caused excessive multiplication of some gram-negative bacteria in soil. Even greater multiplication, however, often occurred for certain copper-resistant bacterial predators of bacteria that made up a part of the gram-negative response. Incubation of the soil with copper per se did not give these responses. In most cases, the copper-resistant bacteria that responded were Cupriavidus necator, bacterial predator L-2, or previously unknown bacteria that resembled them. The results suggest that, under various conditions of soil incubation, gram-negative bacterial predators of bacteria multiply and that several copper-resistant types among them can be detected, counted, and isolated by plating dilutions of the soil onto media containing excess copper.

  11. The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis

    SciTech Connect

    Card, G L; Peterson, N A; Smith, C A; Rupp, B; Schick, B M; Baker, E N

    2005-02-15

    Mycobacterium tuberculosis, the cause of TB, is a devastating human pathogen. The emergence of multi-drug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structure of Rv1347c was determined by MAD phasing from selenomethionine-substituted protein and refined at 2.2 {angstrom} resolution (R = 0.227, R{sub free} = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acylCoA binding site that is shared with other GNAT family members, and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the N{sup {var_epsilon}}-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.

  12. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  13. Magnetotransport Properties of High Quality Co:ZnO and Mn:ZnO Single Crystal Pulsed Laser Deposition films: Pitfalls Associated with Magnetotransport on High Resistivity Materials

    SciTech Connect

    McCloy, John S.; Ryan, Joseph V.; Droubay, Timothy C.; Kaspar, Tiffany C.; Chambers, Scott A.; Look, David

    2010-06-01

    The electrical resistivity values for a series of pure and doped (Co, Mn, Al) ZnO epitaxial films grown by pulsed laser deposition were measured with equipment designed for determining the DC resistivity of high resistance samples. Room-temperature resistances ranging from 7x10^1 ohms/square to 4x10^8 ohms/square were measured on vacuum-reduced cobalt-doped ZnO, (Al,Co) co-doped ZnO, pure cobalt-doped ZnO, Mn-doped ZnO, and undoped ZnO. Using a four-point collinear geometry with gold spring-pin contacts, resistivities were measured from 295 to 5 K for resistances of < ~10^12 ohms/square. In addition, magnetoresistance (MR) and Hall effect were measured as a function of temperature for select samples. Throughout the investigation, samples were also measured on commercially available instrumentation with good agreement. The challenges of transport measurements on high resistivity samples are discussed, along with some offered solutions to those challenges.

  14. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity.

    PubMed

    Wang, Ching-I A; Guncar, Gregor; Forwood, Jade K; Teh, Trazel; Catanzariti, Ann-Maree; Lawrence, Gregory J; Loughlin, Fionna E; Mackay, Joel P; Schirra, Horst Joachim; Anderson, Peter A; Ellis, Jeffrey G; Dodds, Peter N; Kobe, Bostjan

    2007-09-01

    The gene-for-gene mechanism of plant disease resistance involves direct or indirect recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins. Flax rust (Melampsora lini) AvrL567 avirulence proteins and the corresponding flax (Linum usitatissimum) L5, L6, and L7 resistance proteins interact directly. We determined the three-dimensional structures of two members of the AvrL567 family, AvrL567-A and AvrL567-D, at 1.4- and 2.3-A resolution, respectively. The structures of both proteins are very similar and reveal a beta-sandwich fold with no close known structural homologs. The polymorphic residues in the AvrL567 family map to the surface of the protein, and polymorphisms in residues associated with recognition differences for the R proteins lead to significant changes in surface chemical properties. Analysis of single amino acid substitutions in AvrL567 proteins confirm the role of individual residues in conferring differences in recognition and suggest that the specificity results from the cumulative effects of multiple amino acid contacts. The structures also provide insights into possible pathogen-associated functions of AvrL567 proteins, with nucleic acid binding activity demonstrated in vitro. Our studies provide some of the first structural information on avirulence proteins that bind directly to the corresponding resistance proteins, allowing an examination of the molecular basis of the interaction with the resistance proteins as a step toward designing new resistance specificities.

  15. Laser resistant stainless steel endotracheal tube: experimental and clinical evaluation.

    PubMed

    Fried, M P; Mallampati, S R; Liu, F C; Kaplan, S; Caminear, D S; Samonte, B R

    1991-01-01

    A fire due to endotracheal tube (ET) ignition is a catastrophic event that may occur during laser surgery of the upper airway, regardless of the wavelength utilized. Although methods exist that permit laser surgery without an ET, this is frequently not feasible. The current investigation was undertaken to evaluate the efficacy of a double-cuffed stainless steel ET, first in the laboratory and subsequently in a clinical setting. Bench testing was performed using CO2 (both standard and milliwatt) and KTP/532 lasers. Only the distal polyvinyl chloride cuffed end of the tube was potentially ignitable, however, the appropriate use of saline to fill the cuffs allowed only for cuff perforation without ignition. Canine testing was performed in 10 animals: 4 dogs were intubated from 3 to 4.5 hours with the laser resistant stainless steel endotracheal tube (LRSS-ET) (Laser-Flex Tracheal Tube; Mallinckrodt Anesthesia Products, St. Louis, MO) and 2 with an aluminum tape wrapped red rubber ET. Visual and histological examination were performed in both groups at 3 and 7 days. Four dogs underwent CO2 laser laryngeal surgery with visual and histological examination performed at 7 days postoperatively. No untoward effects could be demonstrated due to the LRSS-ET. A clinical study was then performed in 24 patients who underwent laser surgery of the upper aerodigestive tract with either a CO2 or KTP/532 laser. In all cases ventilation was adequate, the shaft of the LRSS-ET proved impervious to the laser, and the distal end of the tube protected the tracheobronchial tree safely.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1861569

  16. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  17. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  18. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  19. Dissipation by a crystallization process

    NASA Astrophysics Data System (ADS)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  20. Reliable use of resistance evaporation of Pt and C for high resolution freeze-fracturing and a crystal surface image complementary to the E-face of yeast plasma membranes.

    PubMed

    Steere, R L

    1982-11-01

    Freeze-fracture specimens of bakers yeast plasma membranes faces were prepared in both a modified Denton DFE-2-freeze-etch module and a modified Balzers BAF-301 freeze-etch unit. Each unit was equipped with a liquid nitrogen cooled shroud, resistance evaporators with PT-C and C sources 7 cm from the specimens and with a resistance monitor to control PT-C shadow film thickness. Optical diffraction patterns of specimens prepared in these units have fourth, fifth or sixth order spots. Therefore, on the basis of optical diffraction patterns, resolution of yeast plasma membrane specimens prepared in these units is equivalent to or better than that obtained by others with an ultrahigh vacuum system equipped with specially redesigned electron guns. A new image with tube-like particles in hexagonal arrays, each surrounded by six substructure particles, nearly perfect high-resolution complement to the hexagonal array of ring-like depressions and the six surrounding subunit depressions of the E-face, has been revealed on the surfaces of cubic crystals (presumably ice) which formed in the gap between the P- and E-faces within fissures that occurred when the samples were frozen in liquid Freon 22. When the samples were subsequently freeze-fractured at 77 K at a chamber vacuum of 13 microPa in which the specimens were protected from surface contamination by a liquid nitrogen cooled shroud, these crystals remained attached to the P-face but pulled away from the E-face against which they had apparently made molecular contact. PMID:6757442

  1. Spin gap and hole pairing of Sr{sub 14{minus}x}A{sub x}Cu{sub 24}O{sub 41} (A = Ca and La) single crystals studied by the electrical resistivity and thermal conductivity

    SciTech Connect

    Kudo, K.; Ishikawa, S.; Noji, T.; Adachi, T.; Koike, Y.; Maki, K.; Tsuji, S.; Kumagai, K.

    1999-12-01

    The authors have measured the electrical resistivity {rho} and the thermal conductivity {kappa} of Sr{sub 14{minus}x}A{sub x}Cu{sub 24}O{sub 41} (A = Ca and La) single crystals. The Arrhenius plot of ln {rho} vs T{sup {minus}1} gives two kinds of activation energy with a boundary temperature T{sub {rho}}. The activation energy at T < T{sub {rho}} is in approximate agreement with the spin gap in the ladder estimated from the NMR measurements, suggesting that holes in the ladder are paired and localized at T < T{sub {rho}}. The observed {kappa} has been analyzed to be composed of {kappa}{sub ph}, {kappa}{sub spin} and {kappa}{sub hole} due to phonons, spins and holes, respectively. The {kappa}{sub ph} exhibits a small peak at {approximately}30 K in every direction of every single-crystal. The contribution of {kappa}{sub spin} is observed along the c-axis except for x(Ca) {ge} 6, and the spin gap, which corresponds to the spin excitation from spin-singlet to spin-triplet, has been estimated to be {approximately}420 K for x(Ca) {ge} 6, the spin gap, which corresponds to the destruction of spin-singlet pairs, i.e., the dissociation of hole pairs, has been estimated from {kappa} along the c-axis at T > T{sub {rho}} to decrease with increasing x(Ca).

  2. 1.1 MW peak power in doubly QML composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser with EO and Bi-GaAs.

    PubMed

    Li, Shixia; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Li, Xiangyang; Qiao, Hui

    2016-02-22

    By simultaneously employing electro-optic (EO) modulator and Bi-doped GaAs, dual-loss-modulated Q-switched and mode-locked (QML) multi-segment composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser is demonstrated with low repetition rate and high peak power. When the incident pump power is up to 6.93 W, only one mode-locking pulse underneath a Q-switching envelope is generated with sub-nanosecond pulse duration at one kilohertz repetition rate. An average output power of 445 mW and a pulse duration of 399 ps are obtained with the incident pump power of 11.13 W, corresponding to a peak power of 1.115 MW which is the highest one in doubly QML sub-nanosecond green laser by now. The laser characteristics are better than those obtained with EO and GaAs. The experimental results indicate that Bi-GaAs is a promising saturable absorber for dual-loss-modulated QML laser.

  3. Photoselective vaporization of the prostate (PVP) with green light KTP laser in the management of symptomatic benign prostatic enlargement (BPE): does the anatomy of the TURP-like cavity predict the clinical outcome?

    NASA Astrophysics Data System (ADS)

    Nseyo, Unyime

    2005-04-01

    Photoselective vaporization of the prostate (PVP) is evolving as an alternative outpatient surgical treatment to transurethral resection of the prostate (TURP) in the management of patients with symptomatic benign prostatic hypertrophy/enlargement (BPH/BPE). The purported benefits of PVP include rapid vaporization of the prostate with an instant creation of TURP-like anatomic defect, an excellent hemostasis, shorter (<24 hours) duration of catheterization, short (< 24 hours) hospital stay, and quick return to work. We retrospectively reviewed the video clips of our cases to determine whether or not the anatomic appearance of the post-PVP prostatic cavity per se could predict clinical outcome. Forty-three, non-consecutive patients, diagnosed with symptomatic BPH have been treated with PVP using the 80W KTP laser and followed for at least 18 months (range 18-24). A majority (N=32) of the patients was enrolled under an Institutional Review Board approved multi-center protocol at the Hunter McGuire Veterans Administration Medical Center, Richmond, Virginia. We reviewed the urodynamic parameters: AUA-SI, QOL, Qmax and PVR at 3, 6, 12, 18 and 24 months postoperatively. We plan to present video documentations of the various anatomic appearances of the TURP-like prostatic cavity at the conclusion of the PVP treatment along with summaries of the short and long term clinical outcomes.

  4. Anisotropy in the resistive superconducting transition under magnetic fields in single crystal Pb{sub 2}Sr{sub 2}Ho{sub 0.5}Ca{sub 0.5}Cu{sub 3}O{sub 8}

    SciTech Connect

    Noji, Takashi; Koike, Yoji; Kato, Masatsune

    1996-02-01

    Anisotropic properties of the single crystal Pb{sub 2}Sr{sub 2}Ho{sub 0.5}Ca{sub 0.5}Cu{sub 3}O{sub 8} have been investigated by measuring the electrical resistivity in the ab-plane {rho}{sub ab}(H, {theta}, T), which depends on the angle {theta} between the ab-plane and the magnetic-field direction, in various constant fields H perpendicular to the current direction. All the angle-dependent values of {rho}{sub ab}(H, {theta}, T) at a constant temperature are scaled to be on one curve as a function of reduced field. The anisotropic parameter {gamma} {triple_bond} (m{sub c}*/m{sub ab}*){sup 1/2} is estimated as 12-13, which is larger than that of YBa{sub 2}Cu{sub 3}O{sub 7} and much smaller than that of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. It has been concluded that the anisotropy does not always depend on the thickness of the blocking layer but seems to depend on the overlap of the electronic wave functions along the c-axis. Anisotropy in the pinning potential has also been discussed from the resistive tail in the temperature dependence of {rho}{sub ab}(H, {theta}, T).

  5. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  6. Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2'-O-Ribonucleic Acid Modifications

    SciTech Connect

    Egli, Martin; Minasov, George; Tereshko, Valentina; Pallan, Pradeep S.; Teplova, Marianna; Inamati, Gopal B.; Lesnik, Elena A.; Owens, Steve R.; Ross, Bruce S.; Prakash, Thazha P.; Manoharan, Muthiah

    2010-03-05

    The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the

  7. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP.

    PubMed

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-01

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  8. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP

    NASA Astrophysics Data System (ADS)

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-01

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  9. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  10. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  11. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  12. Investigation of intracavity third-harmonic generation at 1.06 μm in YCa4O(BO3)3 crystals

    NASA Astrophysics Data System (ADS)

    Du, C.; Wang, Z.; Liu, J.; Xu, X.; Fu, K.; Xu, G.; Wang, J.; Shao, Z.

    Intracavity sum-frequency mixing of 1.06 μm and 532 nm in YCa4O(BO3)3 (YCOB) crystals cut for different type-I phase-matching directions of (θ,ϕ)=(106°,77.2°), (111°, 79.6°) and (65°, 82.8°) was investigated in a compact diode-end-pumped acousto-optical Q-switched Nd:YVO4/KTP laser formed with a three-mirror folded resonator. The maximum 355-nm average output power of 124 mW was obtained in the phase-matching direction of (106°, 77.2°) with a pump-to-ultraviolet conversion efficiency of 3.3% at the repetition frequency of 20 kHz.

  13. Crystal Structure of a Complex of Surfactant Protein D (SP-D) and Haemophilus influenzae Lipopolysaccharide Reveals Shielding of Core Structures in SP-D-Resistant Strains

    PubMed Central

    Clark, Howard W.; Mackay, Rose-Marie; Deadman, Mary E.; Hood, Derek W.; Madsen, Jens; Moxon, E. Richard; Townsend, J. Paul; Reid, Kenneth B. M.; Ahmed, Abdul; Shaw, Amy J.; Greenhough, Trevor J.

    2016-01-01

    The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325. Combined with enzyme-linked immunosorbent assays (ELISAs) and fluorescence-activated cell sorter (FACS) binding analyses, our results show that extended LPS structures previously thought to be targets for collectins are important in shielding the more vulnerable sites in the LPS core, revealing a mechanism by which pathogens with complex LPS extensions efficiently evade a first-line mucosal innate immune defense. The structure also reveals for the first time the dominant form of anhydro-Kdo. PMID:26953329

  14. Crystal Structure of a Complex of Surfactant Protein D (SP-D) and Haemophilus influenzae Lipopolysaccharide Reveals Shielding of Core Structures in SP-D-Resistant Strains.

    PubMed

    Clark, Howard W; Mackay, Rose-Marie; Deadman, Mary E; Hood, Derek W; Madsen, Jens; Moxon, E Richard; Townsend, J Paul; Reid, Kenneth B M; Ahmed, Abdul; Shaw, Amy J; Greenhough, Trevor J; Shrive, Annette K

    2016-05-01

    The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325. Combined with enzyme-linked immunosorbent assays (ELISAs) and fluorescence-activated cell sorter (FACS) binding analyses, our results show that extended LPS structures previously thought to be targets for collectins are important in shielding the more vulnerable sites in the LPS core, revealing a mechanism by which pathogens with complex LPS extensions efficiently evade a first-line mucosal innate immune defense. The structure also reveals for the first time the dominant form of anhydro-Kdo.

  15. Efficient nanosecond optical parametric oscillators based on periodically poled KTP emitting in the 1.8-2.5-mum spectral region.

    PubMed

    Hellström, J; Pasiskevicius, V; Laurell, F; Karlsson, H

    1999-09-01

    The use of periodically poled KTiOPO(4) as a gain medium in efficient nanosecond optical parametric oscillators pumped by a flash-lamp-pumped Q-switched Nd:YAG laser is demonstrated. Parametric radiation in the 1.8-2.5-mu m spectral region was achieved when the crystal temperature was tuned from 10 to 100 degrees C. A maximum total output energy of 1.8 mJ was obtained at a pump level of 3.5 mJ. Stable operation was achieved, with conversion efficiencies reaching 50%. No gray tracking or laser damage was observed, even for pump intensities of 450MW/cm(2). PMID:18073994

  16. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  17. Microfluidic crystallization.

    PubMed

    Leng, Jacques; Salmon, Jean-Baptiste

    2009-01-01

    Microfluidics offers a wide range of new tools that permit one to revisit the formation of crystals in solution and yield insights into crystallization processes. We review such recent microfluidic devices and particularly emphasize lab-on-chips dedicated to the high-throughput screening of crystallization conditions of proteins with nanolitre consumption. We also thoroughly discuss the possibilities offered by the microfluidic tools to acquire thermodynamic and kinetic data that may improve industrial processes and shed a new light on nucleation and growth mechanisms.

  18. Crystal Furnace

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A "melt recharging" technique which eliminates the cooldown and heating periods in a crystal "growing" crucible, resulted from a Jet Propulsion Laboratory (JPL)/Kayex Corporation program. Previously, the cost of growing the silicon solar cells had been very high. The JPL/Kayex system improved productivity by serially growing crystals from the same crucible using a melt recharger which made it possible to add raw silicon to an operating crucible. An isolation value, developed by Kayex, allowed the hopper to be lowered into the crucible without disturbing the inert gas atmosphere. The resulting product, a CG6000 crystal growing furnace, has become the company's major product.

  19. Nonlinear optical crystal development for laser wavelength shifting at AFRL Materials Directorate

    NASA Astrophysics Data System (ADS)

    Fernelius, Nils C.; Hopkins, Frank K.; Ohmer, M. C.

    1999-06-01

    Our objective is to develop crystals that shift the light from well developed laser sources to application specific wavelengths which may be tunable. Military applications extend across the entire spectrum from ultraviolet through the far-infrared but our greatest interest has been in materials for the mid-IR (3-5 μm) and far-IR (8-12 μm) atmospheric windows. Our primary applications that drive crystal development are infrared countermeasures and remote sensing of chemical and biological warfare agents. To achieve these results we have pursued two tracks: birefringent bulk materials and quasi-phase-matched structures. Birefringent studies include the grey track problem in KTiOPO4 (KTP) plus growth of its isomorphs, KTIOAsO4 (KTA), RbTiOAsO4 (RTA), CsTiOAsO4 (CTA), and KxRb1-xTiOPO4 (KRTA); chalcopyrites: ZnGeP2, CdGeAs2, AgGaS2, AgGaSe2, AgGa(1-x)InxSe2, AgGaTe2; plus GaSE, and HgGa2S4. A small portion of the effort is pursuing UV materials, the foremost being the borates MM'(B3O5)3 where M=Sr, Ba, Pb; M'=Li,Na. Previously, work was done on LiB3O5 (LBO), β-bonding (GaAs), by periodic poling (LiNbO3, LiTaO3, KTP, BaTiO3) and by periodic doping. Th cover the 4.5-5.0 μm band, work is being done on RTA and Pb{MgxNbyTi1-x-y}O3 (PMNT). For periodic poling in the 8-12 μm region studies are being made on CGC (CsGeCl3), CGB (CsGeBr3), Tl3PbBr5, Tl4PbI6 and Tl4HgI6. QPM can also be obtained using total internal reflection devices (GaAs, ZnSe).

  20. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  1. Industry needs for silicon crystals and standards

    NASA Technical Reports Server (NTRS)

    Benson, K. E.

    1981-01-01

    The trend of the device fabrication industry requirement for larger crystals is reviewed. The ranges of properties and uniformities measurement standards needed for resistivity (four-point probe and spreading resistance) and for the chemical composition of oxygen and carbon impurities are presented.

  2. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  3. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  4. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  5. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  6. Site selective substitution Pt for Ti in KTiOPO{sub 4}:Ga crystals revealed by electron paramagnetic resonance

    SciTech Connect

    Grachev, V.; Meyer, M.; Jorgensen, J.; Malovichko, G.; Hunt, A. W.

    2014-07-28

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO{sub 4}) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO{sub 4} creating Pt{sup 3+} centers. Two different Pt{sup 3+} centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with {sup 39}K and two {sup 31}P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt{sup 3+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  7. Site selective substitution Pt for Ti in KTiOPO4:Ga crystals revealed by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Grachev, V.; Meyer, M.; Jorgensen, J.; Hunt, A. W.; Malovichko, G.

    2014-07-01

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO4) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO4 creating Pt3+ centers. Two different Pt3+ centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with 39K and two 31P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt3+ ions substitute for Ti4+ ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  8. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH.

    PubMed

    Cody, Vivian; Luft, Joe R; Pangborn, Walt

    2005-02-01

    Structural data are reported to 2.5 A resolution for the first full analysis of the methotrexate-resistant Leu22Arg (L22R) variant of mouse dihydrofolate reductase (mDHFR) crystallized as a ternary complex with methotrexate (MTX) and the cofactor NADPH. These results are compared with the MTX and NADPH ternary complexes of L22R human DHFR (hDHFR) and those of mouse and human wild-type DHFR enzymes. The conformation of mDHFR Arg22 is such that it makes hydrogen-bonding contacts with Asp21, Trp24 and a structural water molecule, observations which were not made in the L22R hDHFR ternary complex. These data show that there is little difference between the structures of the wild type and L22R variant for either mouse or human DHFR; however, there are significant differences between the species. Comparison of these structures reveals that the active site of mDHFR is larger than that in the hDHFR structure. In mDHFR, the position of MTX is shifted 0.6 A toward helix C (residues 59-65), which in turn is shifted 1.2 A away from the active site relative to that observed in the hDHFR ternary complexes. In the L22R variant mDHFR structure, MTX makes shorter contacts to the conserved residues Ile7, Val115 and Tyr121 than in the L22R variant human DHFR structure. These contacts are comparable in both wild-type enzymes. The unexpected results from this comparison of the mouse and human DHFR complexes bound with the same ligand and cofactor illustrate the importance of detailed study of several species of enzyme, even when there is a high sequence homology between them. These data suggest that the differences in binding interactions of the L22R variant are in agreement with the weaker binding affinity for MTX in the variant enzymes; the larger size of the binding site in mDHFR supports the observation that the binding affinity of MTX for L22R mDHFR is significantly weaker than that of the L22R hDHFR enzyme.

  9. Resistance-Resistant Antibiotics

    PubMed Central

    Oldfield, Eric; Feng, Xinxin

    2014-01-01

    New antibiotics are needed because as drug resistance is increasing, the introduction of new antibiotics is decreasing. Here, we discuss six possible approaches to develop ‘resistance-resistant’ antibiotics. First, multi-target inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy due to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, re-purposing existing drugs can lead to combinations of multi-target therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and in some cases suggest that sensitivity to existing antibiotics may be restored, in otherwise drug resistant organisms. PMID:25458541

  10. Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant.

    PubMed

    Das, K; Ding, J; Hsiou, Y; Clark, A D; Moereels, H; Koymans, L; Andries, K; Pauwels, R; Janssen, P A; Boyer, P L; Clark, P; Smith, R H; Kroeger Smith, M B; Michejda, C J; Hughes, S H; Arnold, E

    1996-12-20

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is an important target for chemotherapeutic agents used in the treatment of AIDS; the TIBO compounds are potent non-nucleoside inhibitors of HIV-1 RT (NNRTIs). Crystal structures of HIV-1 RT complexed with 8-Cl TIBO (R86183, IC50 = 4.6 nM) and 9-Cl TIBO (R82913, IC50 = 33 nM) have been determined at 3.0 A resolution. Mutant HIV-1 RT, containing Cys in place of Tyr at position 181 (Tyrl81Cys), is highly resistant to many NNRTIs and HIV-1 variants containing this mutation have been selected in both cell culture and clinical trials. We also report the crystal structure of Tyrl81Cys HIV-1 RT in complex with 8-Cl TIBO (IC50 = 130 nM) determined at 3.2 A resolution. Averaging of the electron density maps computed for different HIV-1 RT/NNRTI complexes and from diffraction datasets obtained using a synchrotron source from frozen (-165 degrees C) and cooled (-10 degrees C) crystals of the same complex was employed to improve the quality of electron density maps and to reduce model bias. The overall locations and conformations of the bound inhibitors in the complexes containing wild-type HIV-1 RT and the two TIBO inhibitors are very similar, as are the overall shapes and volumes of the non-nucleoside inhibitor-binding pocket (NNIBP). The major differences between the two wild-type HIV-1 RT/TIBO complexes occur in the vicinity of the TIBO chlorine substituents and involve the polypeptide segments around the beta5-beta6 connecting loop (residues 95 to 105) and the beta13-beta14 hairpin (residues 235 and 236). In all known structures of HIV-1 RT/NNRTI complexes, including these two, the position of the beta12-beta13 hairpin or the "primer grip" is significantly displaced relative to the position in the structure of HIV-1 RT complexed with a double-stranded DNA and in unliganded HIV-1 RT structures. Since the primer grip helps to position the template-primer, this displacement suggests that binding of NNRTIs

  11. Non-critical phase matching of Gd xY 1- xCa 4O(BO 3) 3(Gd xY 1- xCOB) crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zhengping; Xu, Xinguang; Fu, Kun; Song, Renbo; Wang, Jiyang; Wei, Jingqian; Liu, Yaogang; Shao, Zongshu

    2001-11-01

    By using an optical parametric amplifier (OPA), we have measured the non-critical phase-matching (NCPM) wavelengths for frequency-doubling (including type I and type II) in different Gd xY 1- xCOB crystals. From the Sellmeier equations of YCOB and GdCOB, we calculated the ranges of NCPM wavelengths in Gd xY 1- xCOB, and compared them with the data obtained from our experiment. When the output power of a mode-locked Nd/YAG laser is 110 mW (λ=1.064 μm), a conversion efficiency of 37% is obtained for the type II NCPM frequency-doubling in Gd 0.2Y 0.8COB crystal. Using a KTP crystal as frequency-doubler, we have achieved NCPM third harmonic generation (THG) in Gd 0.22Y 0.78COB crystal. When the output power of Nd/YAG laser is 94 mW and the power of the second-harmonic wave is 38 mW, THG conversion efficiency can reach 21%.

  12. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  13. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  14. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  15. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  16. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  17. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  18. Ribbon crystals.

    PubMed

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order.

  19. Ribbon Crystals

    PubMed Central

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet–Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order. PMID:24098360

  20. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their

  1. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  2. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  3. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  4. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-01

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  5. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  6. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  7. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter.

    PubMed

    Suizu, Koji; Miyamoto, Katsuhiko; Yamashita, Tomoyu; Ito, Hiromasa

    2007-10-01

    The exact power output of a table-top-sized terahertz (THz)-wave source using a nonlinear optical process has not been clarified because detectors for these experiments [Si bolometer, deuterated triglycine sulfate (DTGS), etc.] are not calibrated well. On the other hand, powermeters for the mid-infrared (mid-IR) region are well established and calibrated. We constructed a high-power dual-wavelength optical parametric oscillator with two KTP crystals as a light source for difference frequency generation. The obtained powers of dual waves were 21 mJ at ~1300 nm, ten times higher than that of the previous measurement. The device provides high-power THz-wave generation with ~100 times greater output power than that reported in previous works. A well-calibrated mid-IR powermeter at ~27 THz detected the generated THz wave; its measured energy was 2.4 microJ. Although the powermeter had no sensitivity in the lower-frequency range (below 20 THz), the pulse energy at such a low-frequency region was estimated in reference to the output spectrum obtained using a DTGS detector: the energy would be from about the submicrojoule level to a few microjoules in the THz-wave region.

  8. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  9. Sub-Kelvin resistance thermometer

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H. (Inventor)

    1992-01-01

    A device capable of accurate temperature measurement down to 0.01 K of a particular object is discussed. The device is comprised of the following: a heat sink wafer; a first conducting pad bonded near one end of the heat sink wafer; a second conducting pad bonded near the other end of the heat sink wafer; and an oblong doped semiconductor crystal such as germanium. The oblong doped semiconductor crystal has a third conducting pad bonded on its bottom surface with the oblong doped semiconductor crystal bonded to the heat sink wafer by having the fourth conducting pad bonded to the first conducting pad. A wire is bonded between the second and third conducting pads. Current and voltage wires bonded to the first and second conducting pads measure the change in resistance of the oblong doped semiconductor crystal; this indicates the temperature of the object whose temperature is to be measured.

  10. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  11. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  12. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  13. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  14. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  15. The growth and dissolution of ammonium perchlorate crystals in a fluidized bed crystallizer

    NASA Astrophysics Data System (ADS)

    Tanrikulu, S. Ü.; Eroğlu, I.; Bulutcu, A. N.; Özkar, S.

    1998-11-01

    The growth and the dissolution of ammonium perchlorate crystals were studied in pure and in sodium chloride containing aqueous solutions, in a fluidized bed crystallizer. The presence of sodium chloride in the solution reduced the growth and the dissolution rates of ammonium perchlorate crystals. The growth rates were interpreted in terms of supersaturation levels. The orders and rate constants were reported. The effectiveness factors were estimated from the growth rate data to evaluate the relative magnitude of the two resistances in series, diffusion and integration. The controlling mechanism is mainly by diffusion for the crystal growth of ammonium perchlorate in pure aqueous solution. However, both diffusion and integration steps affect the growth of ammonium perchlorate crystals in the presence of sodium chloride in solution.

  16. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing options ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets and ...

  17. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  18. Crystallization and preliminary crystallographic analysis of an aminoglycoside kinase from Legionella pneumophila

    SciTech Connect

    Lemke, Christopher T.; Hwang, Jiyoung; Xiong, Bing; Cianciotto, Nicholas P.; Berghuis, Albert M.

    2005-06-01

    Two crystal forms of the antibiotic resistance enzyme APH(9)-Ia from L. pneumophila are reported. 9-Aminoglycoside phosphotransferase type Ia [APH(9)-Ia] is a resistance factor in Legionella pneuemophila, the causative agent of legionnaires’ disease. It is responsible for providing intrinsic resistance to the antibiotic spectinomycin. APH(9)-Ia phosphorylates one of the hydroxyl moieties of spectinomycin in an ATP-dependent manner, abolishing the antibiotic properties of this drug. Here, the crystallization and preliminary X-ray studies of this enzyme in two crystal forms is reported. One of the these crystal forms provides diffraction data to a resolution of 1.7 Å.

  19. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  20. RESISTIVITY METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistivity methods were among the first geophysical techniques developed. The basic concept originated with Conrad Schlumberger, who conducted the initial resistivity field tests in Normandy, France during 1912. The resistivity method, employed in its earliest and most conventional form, uses an ex...

  1. Enhancing ubiquitin crystallization through surface-entropy reduction.

    PubMed

    Loll, Patrick J; Xu, Peining; Schmidt, John T; Melideo, Scott L

    2014-10-01

    Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.

  2. Enhancing ubiquitin crystallization through surface-entropy reduction

    PubMed Central

    Loll, Patrick J.; Xu, Peining; Schmidt, John T.; Melideo, Scott L.

    2014-01-01

    Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization. PMID:25286958

  3. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.

    2013-09-04

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  4. Photorefractive effect in CdMnTe:V Crystal

    NASA Technical Reports Server (NTRS)

    Pour, K. M.; Chattopadahyay, K.; Chen, H.; Chen, K. T.; Morgan, S.; Burger, A.

    1998-01-01

    We present two-wave mixing result obtained with a CdMnTe:V crystal. A photorefractive gain coefficient of 0.20 /cm was observed at 633 nm with the signal-to-pump ratio being of the order of 10(exp -3). This crystal was grown by vertical Bridgman Technique and doped with Vanadium during the growth. The crystal were of good optical quality and showed high resistivity. Room temperature absorption and low temperature photoluminescence studies comparing the band edge and defect center at the doped and undoped CdMnTe crystal will also be discussed.

  5. Hg-1212 and Hg-1223 single crystals: Synthesis and characterisation

    NASA Astrophysics Data System (ADS)

    Gatt, R.; Olsson, E.; Morawski, A.; Lada, T.; Paszewin, A.; Bryntse, I.; Grishin, A. M.; Eeltsev, Yu.; Berastegui, P.; Johansson, L.-G.

    1997-02-01

    Single crystals of HgBa 2CaCu 2O 6+δ (Hg-1212) and HgBa 2Ca 2Cu 3O 8+δ (Hg-1223) were grown from the melt at an argon pressure of 10 kbar. Electron microscopy, as well as single crystal X-ray diffraction studies show that the crystals are well ordered. The EDS analysis indicates the presence of a minor amount of other cations replacing Hg, Ba and Ca in the structure. Refined fractional coordinates and thermal parameters are given for a crystal of Hg-1223 type. Magnetic and resistive measurements show a Tc of 133 K for the Hg-1223 phase.

  6. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  7. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... Antimicrobial (Drug) Resistance Antibiotic-Resistant Mycobacterium tuberculosis (TB) Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Multidrug-Resistant Neisseria ...

  8. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  9. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  10. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  11. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  12. Growth, Defects and Electrooptic Properties of RbTiOAsO4 Crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ji-yang; Wei, Jing-qian; Yin, Xin; Hu, Xiao-bo; Cui, Wei-hong; Guan, Qing-cai; Liu, Yao-gang

    1999-09-01

    RbTiOAsO4 (RTA) crystals of high optical quality were grown with flux method. The defects of RTA crystals are mainly growth striations, growth sector boundaries and sometimes ferroelectric domains. The refractive indices and electrooptic coefficients were measured together with dielectric constants, ionic conductivity and direct current resistivities. It is shown that RbTiOAsO4 is not only as good a nonlinear optical crystal as KTiOPO4 but also a superior electrooptic crystal.

  13. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  14. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  15. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  16. Total immersion crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.

  17. Food Crystalization and Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  18. Triangular ice crystals

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin; Salzmann, Christoph; Heymsfield, Andrew; Neely, Ryan

    2014-05-01

    We are all familiar with the hexagonal form of snow crystals and it is well established that this shape is derived from the arrangement of water molecules in the crystal lattice. However, crystals with a triangular form are often found in the Earth's atmosphere and the reason for this non-hexagonal shape has remained elusive. Recent laboratory work has shed light on why ice crystals should take on this triangular or three-fold scalene habit. Studies of the crystal structure of ice have shown that ice which initially crystallises can be made of up of hexagonal layers which are interlaced with cubic layers to produce a 'stacking disordered ice'. The degree of stacking disorder can vary from crystals which are dominantly hexagonal with a few cubic stacking faults, through to ice where the cubic and hexagonal sequences are fully randomised. The introduction of stacking disorder to ice crystals reduces the symmetry of the crystal from 6-fold (hexagonal) to 3-fold (triangular); this offers an explanation for the long standing problem of why some atmospheric ice crystals have a triangular habit. We discuss the implications of triangular crystals for halos, radiative properties, and also discuss the implications for our understanding of the nucleation and early stages of ice crystal growth for ice crystals in the atmosphere.

  19. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  20. Transgenic resistance.

    PubMed

    Cillo, Fabrizio; Palukaitis, Peter

    2014-01-01

    Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.

  1. Resistance mechanisms

    PubMed Central

    Cag, Yasemin; Caskurlu, Hulya; Fan, Yanyan; Cao, Bin

    2016-01-01

    By definition, the terms sepsis and septic shock refer to a potentially fatal infectious state in which the early administration of an effective antibiotic is the most significant determinant of the outcome. Because of the global spread of resistant bacteria, the efficacy of antibiotics has been severely compromised. S. pneumonia, Escherichia coli (E. coli), Klebsiella, Acinetobacter, and Pseudomonas are the predominant pathogens of sepsis and septic shock. It is common for E. coli, Klebsiella, Acinetobacter and Pseudomonas to be resistant to multiple drugs. Multiple drug resistance is caused by the interplay of multiple resistance mechanisms those emerge via the acquisition of extraneous resistance determinants or spontaneous mutations. Extended-spectrum beta-lactamases (ESBLs), carbapenemases, aminoglycoside-modifying enzymes (AMEs) and quinolone resistance determinants are typically external and disseminate on mobile genetic elements, while porin-efflux mechanisms are activated by spontaneous modifications of inherited structures. Porin and efflux mechanisms are frequent companions of multiple drug resistance in Acinetobacter and P. aeruginosa, but only occasionally detected among E. coli and Klebsiella. Antibiotic resistance became a global health threat. This review examines the major resistance mechanisms of the leading microorganisms of sepsis. PMID:27713884

  2. Transgenic resistance.

    PubMed

    Cillo, Fabrizio; Palukaitis, Peter

    2014-01-01

    Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such. PMID:25410101

  3. Investigation of substitution effects and the phase transition in type-I clathrates Rb{sub x}Cs{sub 8-x}Sn{sub 44}square{sub 2} (1.3<=x<=2.1) using single-crystal X-ray diffraction, Raman spectroscopy, heat capacity and electrical resistivity measurements

    SciTech Connect

    Kaltzoglou, Andreas; Faessler, Thomas F.; Gold, Christian; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang; Kume, Tetsuji; Shimizu, Hiroyasu

    2009-10-15

    The substitution of cations in Rb{sub x}Cs{sub 8-x}Sn{sub 44}square{sub 2}(1.3<=x<=2.1) is reported. The compounds crystallize at room temperature in the space group la3-bard adopting the type-I clathrate 2x2x2 superstructure with partly ordered framework vacancies (square), whereas at higher temperatures they transform to the primitive, more disordered modification (space group Pm3-barn). The guest atom distributions in the Sn cages on the Rb: Cs ratios is studied by means of single-crystal X-ray diffraction for Rb{sub 2.1(1)}Cs{sub 5.8(1)}Sn{sub 44} at T=293 K (1), Rb{sub 1.42(8)}Cs{sub 6.58(8)}Sn{sub 44} at T=293 K (2a), Rb{sub 1.46(5)}Cs{sub 6.54(5)}Sn{sub 44} at T=373 K (2b) and Rb{sub 1.32(8)}Cs{sub 6.68(8)}Sn{sub 44} at T=293 K (3). The structural order-disorder phase transition influences the electrical resistivity. The hysteresis observed for the electrical resistivity in combination with the symmetric shape of the specific heat anomaly suggests that the transformation is of first-order type and is characterized by an entropy change of about 2.5 J mol{sup -1} K{sup -1}. The Raman spectrum for the low-temperature modification of 2 is also reported. - Graphical Abstract: The effects of substitution of cations in the type-I clathrates Rb{sub x}Cs{sub 8-x}Sn{sub 44} (1.3<=x<=2.1) are reported. The distribution of the guests in the Sn cages under different reaction stoichiometries and annealing times is studied by X-ray diffraction. A structural phase transition in Rb{sub 1.4}Cs{sub 6.6}Sn{sub 44} at 333-363 K affects significantly the electrical resistivity and heat capacity.

  4. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  5. Understanding single-crystal superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.

    1986-01-01

    The unique properties of single crystals are considered. The anisotropic properties of single crystals, and the relation between crystal orientation and the fatigue life and slip systems of the crystals are examined. The effect of raft formation on the creep-rupture life of the crystals is studied. Proposed research on the properties of and new applications for single crystals is discussed.

  6. Resistant Hypertension.

    PubMed

    Doroszko, Adrian; Janus, Agnieszka; Szahidewicz-Krupska, Ewa; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-01-01

    Resistant hypertension is a severe medical condition which is estimated to appear in 9-18% of hypertensive patients. Due to higher cardiovascular risk, this disorder requires special diagnosis and treatment. The heterogeneous etiology, risk factors and comorbidities of resistant hypertension stand in need of sophisticated evaluation to confirm the diagnosis and select the best therapeutic options, which should consider lifestyle modifications as well as pharmacological and interventional treatment. After having excluded pseudohypertension, inappropriate blood pressure measurement and control as well as the white coat effect, suspicion of resistant hypertension requires an analysis of drugs which the hypertensive patient is treated with. According to one definition - ineffective treatment with 3 or more antihypertensive drugs including diuretics makes it possible to diagnose resistant hypertension. A multidrug therapy including angiotensin - converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, diuretics, long-acting calcium channel blockers and mineralocorticoid receptor antagonists has been demonstrated to be effective in resistant hypertension treatment. Nevertheless, optional, innovative therapies, e.g. a renal denervation or baroreflex activation, may create a novel pathway of blood pressure lowering procedures. The right diagnosis of this disease needs to eliminate the secondary causes of resistant hypertension e.g. obstructive sleep apnea, atherosclerosis and renal or hormonal disorders. This paper briefly summarizes the identification of the causes of resistant hypertension and therapeutic strategies, which may contribute to the proper diagnosis and an improvement of the long term management of resistant hypertension.

  7. Managing Resistance.

    ERIC Educational Resources Information Center

    Maag, John W.

    2000-01-01

    This article presents some considerations and ideas for managing students' resistance. They are organized around four topics: the impact of context on behavior, the importance of being comprehensive and nonrestrictive in behavior, the adaptive function of resistant behavior, and the benefit of joining children in their frame of reference.…

  8. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  9. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems.

  10. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  11. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  12. Between Crystal and Glass: Thermal Transport in C60 Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Simon; Kumar, Sushant; McGaughey, Alan

    Molecular crystals of the fullerene C60 and its derivatives [e.g., phenyl-C61-butyric acid methyl ester (PCBM)] are candidate materials for use in photovoltaics and thermoelectrics. In thermoelectrics, their usefulness is due in part to their exceptionally low thermal conductivities (0.4 W/m-K for C60 and 0.05 W/m-K for PCBM) at room temperature. Little is known regarding the microscopic physics underlying these low thermal conductivities. An important question is whether thermal transport in the C60 molecular crystal is (i) crystal-like, where energy is transported as collective vibrations of the centers of mass of the molecules, or (ii) amorphous-like, where energy diffuses from molecule to molecule. We use molecular dynamics (MD) simulations and the Green-Kubo method to probe this question by predicting the relative contributions of crystal-like and amorphous-like transport to the thermal conductivity of the C60 molecular crystal. To isolate crystal-like transport, we perform simulations on C60 crystals where molecular rotations and intra-molecular vibrations are prohibited. To isolate amorphous-like transport, we fix the centers of mass of the molecules. We compare the MD results to predictions from a fully diffusive network resistance model. This work is supported by the National Science Foundation (Grant DMR-1507325).

  13. Resisting HRD's Resistance to Diversity

    ERIC Educational Resources Information Center

    Bierema, Laura L.

    2010-01-01

    Purpose: The purpose of this paper is to empirically illustrate how human resource development (HRD) resists and omits issues of diversity in academic programs, textbooks, and research; analyze the research on HRD and diversity over a ten-year period; discuss HRD's resistance to diversity; and offer some recommendations for a more authentic…

  14. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  15. Resistivity analysis

    DOEpatents

    Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Edward Jr. I.; Hawkins, Charles F.; Tangyungong, Paiboon

    2006-06-13

    According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

  16. Graphene-based liquid crystal device.

    PubMed

    Blake, Peter; Brimicombe, Paul D; Nair, Rahul R; Booth, Tim J; Jiang, Da; Schedin, Fred; Ponomarenko, Leonid A; Morozov, Sergey V; Gleeson, Helen F; Hill, Ernie W; Geim, Andre K; Novoselov, Kostya S

    2008-06-01

    Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter, we demonstrate liquid crystal devices with electrodes made of graphene that show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally used metal oxides in terms of low resistivity, high transparency and chemical stability.

  17. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  18. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  19. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  20. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  1. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  2. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  3. Antimicrobial Resistance

    MedlinePlus

    ... and health professionals can play their part; rewarding innovation and development of new treatment options and other ... and industry can help tackle resistance by: fostering innovation and research and development of new vaccines, diagnostics, ...

  4. Antimicrobial Resistance

    MedlinePlus

    ... antibiotic are known as methicillin-resistant S. aureus or MRSA. Antibiotics and other antimicrobial drugs first became widely ... factors for infection are known as community-associated MRSA (CA-MRSA). Recently, several cases overseas and in ...

  5. Structural, thermal and optical properties of KTi(0.92)La(0.08)OPO4 and KTi(0.94)Nd(0.06)OPO4.

    PubMed

    Sadhasivam, S; Perumal, Rajesh Narayana; Ramasamy, P

    2015-10-01

    KTi0.92La0.08OPO4 (KTP:La) and KTi0.94Nd0.06OPO4 (KTP:Nd) single crystals are grown using high temperature top seeded flux growth technique. The strain derived from doping is calculated from Williamson-Hall relation. The packing structure and lattice parameter of the grown crystals are analyzed using single crystal X-ray diffraction. The bonding, distortion and change in inter-atomic distances by strain effects of doping are assessed by Raman spectroscopy. Thermal stabilities of grown crystals are evaluated by specific heat capacity measurement. Pronounced high specific heat capacity is recorded as 1.16 J/gK at 498 K for KTP:Nd. Second harmonic generation intensities are measured for KTP:Nd and KTP:La single crystal. PMID:25956331

  6. Inhomogeneities in single crystals of cuprate oxide superconductors

    NASA Technical Reports Server (NTRS)

    Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.

    1991-01-01

    The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.

  7. Lantibiotic Resistance

    PubMed Central

    Draper, Lorraine A.; Ross, R. Paul

    2015-01-01

    SUMMARY The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry. PMID:25787977

  8. Lantibiotic resistance.

    PubMed

    Draper, Lorraine A; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2015-06-01

    The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry. PMID:25787977

  9. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  10. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  11. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  12. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  13. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  14. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  15. First Single-Crystal Mullite Fibers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ceramic-matrix composites strengthened by suitable fiber additions are being developed for high-temperature use, particularly for aerospace applications. New oxide-based fibers, such as mullite, are particularly desirable because of their resistance to high-temperature oxidative environments. Mullite is a candidate material in both fiber and matrix form. The primary objective of this work was to determine the growth characteristics of single-crystal mullite fibers produced by the laser-heated floating zone method. Directionally solidified fibers with nominal mullite compositions of 3Al2O3 2SiO2 were grown by the laser-heated floating zone method at the NASA Lewis Research Center. SEM analysis revealed that the single-crystal fibers grown in this study were strongly faceted and that the facets act as critical flaws, limiting fiber strength. The average fiber tensile strength is 1.15 GPa at room temperature. The mullite fibers exhibit superior strength retention (80 percent of their room temperature tensile strength at 1450 C). Examined by transmission electron microscopy, these mullite single crystals are free of dislocations, low-angle boundaries, and voids. In addition, they show a high degree of oxygen vacancy ordering. High-resolution digital images from an optical microscope furnish evidence of the formation of a liquid-liquid miscibility gap during crystal growth. These images represent the first experimental evidence of liquid immiscibility for these compositions and temperatures. Continuing investigation with controlled seeding of mullite single crystals is planned.

  16. Vaterite Crystals Contain Two Interspersed Crystal Structures

    NASA Astrophysics Data System (ADS)

    Kabalah-Amitai, Lee; Mayzel, Boaz; Kauffmann, Yaron; Fitch, Andrew N.; Bloch, Leonid; Gilbert, Pupa U. P. A.; Pokroy, Boaz

    2013-04-01

    Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.

  17. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  18. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also

  19. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  20. Polymorphic control of inhalation microparticles prepared by crystallization.

    PubMed

    Murnane, Darragh; Marriott, Christopher; Martin, Gary P

    2008-09-01

    Milling processes are known to cause polymorphic transition in enantiotropic systems and the micronization process employed to produce microparticles for inhalation formulations has been reported to result in solid-state damage. The aim of the current work was to investigate the polymorphism of salmeterol xinafoate (SX) following antisolvent micronization from poly(ethylene glycol) (PEG) solvents and compare this to the properties of SX conventionally crystallized and micronized. Powder X-ray diffraction revealed that SX crystallized predominantly as the SX form I polymorph following rapid precipitation from PEG solvents and cooling crystallization from propan-2-ol. Thermo-kinetic analysis using a modified Avrami-Erofe'ev equation was applied to differential scanning calorimetric thermographs of crystallized and micronized SX. The kinetic analysis revealed that SX crystallized from PEG solvents underwent significantly less or no re-crystallization of SX form II from the melt. A polymorphic transition was identified upon heating ball-milled SX, although the untreated material was resistant to such transformation. The thermal behaviour of SX crystallized from PEG solvents was consistent with a lower degree of crystal lattice disorder and higher enantiotropic purity than SX crystallized from propan-2-ol; the same was also true when comparing SX before and after micronization.

  1. A study on the properties of lead tungstate crystals

    NASA Astrophysics Data System (ADS)

    Y. Zhu, R.; Ma, D. A.; Newman, H. B.; Woody, C. L.; Kierstead, J. A.; Stoll, S. P.; Levy, P. W.

    1996-07-01

    This report summarizes the results of a study on the properties of five large and five small size lead tungstate (PbWO4) crystals. Data are presented on the longitudinal optical transmittance and light attenuation length, light yield and response uniformity, emission spectra and decay time. The radiation resistance of large crystals and possible curing with optical bleaching are discussed. The result of an in depth materials study, including trace impurities analysis, are also presented. The general conclusion from this investigation is that further research and development is needed to develop fast, radiation-hard PbWO4 crystals for the CMS experiment at the CERN LHC.

  2. Crystal growth of cadmium oxide from the vapor phase

    SciTech Connect

    Shimada, S.; Nomura, S.; Kodaira, K.; Matsushita, T.

    1987-10-01

    Single crystals of CdO were grown at temperatures of 930/sup 0/ to 1080/sup 0/C from the vapor phase by air oxidation of Cd vapors which were generated at a constant rate by reaction of CdO with graphite. A prolonged growth up to 70 h at 1030/sup 0/C produced a crystal conglomerate with a maximum size of 13.5 mm. The electrical resistivity and electron density of the crystal in the direction of <100> were 5x10/sup -4/ ..cap omega...cm and 1.3x10/sup 20/cm/sup 3/, respectively, at 20/sup 0/C.oefficients

  3. Limiting pump intensity for sulfur-doped gallium selenide crystals

    NASA Astrophysics Data System (ADS)

    Guo, J.; Li, D.-J.; Xie, J.-J.; Zhang, L.-M.; Feng, Z.-S.; Andreev, Yu M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Shaiduko, A. V.; Svetlichnyi, V. A.

    2014-05-01

    High optical quality undoped and sulfur-doped gallium selenide crystals were grown from melts by the modified vertical Bridgman method. Detailed study of the damage produced under femtosecond pulse exposure has shown that evaluation of the damage threshold by visual control is unfounded. Black matter spots produced on crystal surfaces do not noticeably decrease either its transparency or its frequency conversion efficiency as opposed to real damage identified as caked well-cohesive gallium structures. For the first time it was demonstrated that optimally sulfur-doped gallium selenide crystal possesses the highest resistivity to optical emission (about four times higher in comparison with undoped gallium selenide).

  4. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  5. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed. PMID:26886982

  6. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  7. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  8. Walkout in Crystal City

    ERIC Educational Resources Information Center

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  9. Crystals for stellar spectrometers

    NASA Technical Reports Server (NTRS)

    Alexandropoulos, N. G.; Cohen, G. G.

    1974-01-01

    Crystal evaluation as it applies to instrumentation employed in X-ray astronomy is reviewed, and some solutions are offered to problems that are commonly encountered. A general approach for selecting the most appropriate crystals for a given problem is also suggested. The energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (101) KAP, and (001) RAP are reported.

  10. Crystal Shape Bingo.

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    This document describes a game that provides students with practice in recognizing three dimensional crystal shapes and planar geometric shapes of crystal faces. It contains information on the objective of the game, game preparation, and rules for playing. Play cards are included (four to a page). (ASK)

  11. Potential productivity benefits of float-zone versus Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  12. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  13. Direct preparation of spherically agglomerated salicylic acid crystals during crystallization.

    PubMed

    Kawashima, Y; Okumura, M; Takenaka, H; Kojima, A

    1984-11-01

    Needle-like salicylic acid crystals were transformed into a spherically shaped dense form during crystallization by the spherical crystallization technique. Agitation of a mixture of ethanol-water-chloroform containing salicylic acid yielded spherically agglomerated salicylic acid crystals. The crystallinity of the agglomerated salicylic acid the amount of ethanol in the solvent mixture was decreased. The wettability of the agglomerated crystals increased when the amount of ethanol in the solvent mixture was decreased, and this enhanced the dissolution rate of the crystals. The remarkable improvements in the flow and packing of the agglomerated crystals enabled the direct compression of the crystals.

  14. Observation of an Anisotropic Wigner Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  15. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  16. Observation of an Anisotropic Wigner Crystal.

    PubMed

    Liu, Yang; Hasdemir, S; Pfeiffer, L N; West, K W; Baldwin, K W; Shayegan, M

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1/3≲ν≲2/3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B_{∥}) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B_{∥}. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B_{∥} about 10 times smaller than the resistance perpendicular to B_{∥}. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal. PMID:27636486

  17. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  18. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    SciTech Connect

    Boal, Amie K.; Rosenzweig, Amy C.

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

  19. Acoustic and optical properties of thallium ion-exchanged KTiOPO4

    NASA Astrophysics Data System (ADS)

    Chu, David K. T.

    1994-10-01

    Both acoustic and optical properties of thallium ion-exchanged KTiOPO4 (Tl:KTP) plates were examined. Surface acoustic wave (SAW) velocity of the thallium-exchanged z-cut KTP possesses a reduction of 13% from the unchanged KTP. Temperature stability of SAW resonance (1/f0 df/dT) changed from ≊-81 ppm of an untreated z-cut KTP substrate to ≊-121 ppm of a z-cut Tl:KTP substrate. Large optical refractive indices changes at the Tl ion-exchanged surface were observed [Δneff(TE)≊0.3, Δneff(TM)≊0.22]. Tl ion concentration profile from the crystal surface into substrate was also studied using electron beam microscopy and the optical index m-line measurement. Tl-exchanged KTP, therefore, possesses both acoustic and optical waveguiding properties.

  20. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  1. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  2. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  3. [Resistant fungi].

    PubMed

    Vehreschild, M J G T; Cornely, O A

    2015-11-01

    Particularly in the area of hematology/oncology and intensive care medicine, infections due to resistant fungi are to be expected. Emergence of resistance in fungi is a less dynamic process than in bacteria; it can, however, have an equally important impact on treatment strategies. In the following article, the most important resistance patterns of yeasts and molds (Candida albicans , Aspergillus fumigatus, the order Mucorales and the genus Fusarium) will be presented and discussed. Their diagnosis mostly being based on blood cultures, resistance testing for yeasts is usually readily available. Culture-based therapeutic adjustments in mold infections are, however, only rarely possible, as most antifungal therapies for these infections are initiated on an empirical basis after identification of typical infiltrates on a CT scan. Response to therapy is then evaluated on the basis of clinical signs and symptoms in combination with follow-up CT scans. In case of therapeutic failure or appearance of suspicious infiltrates under antifungal prophylaxis, an open or CT-guided biopsy is recommended to allow efficient adaptation of antifungal treatment. In individual cases, particularly in patients diagnosed with mucormycosis, resection of the focus of infection may be necessary to achieve a satisfactory treatment response.

  4. Synchronized generation of 1534 and 1572 nm by the mixed optical parameter oscillation

    NASA Astrophysics Data System (ADS)

    Huang, H. T.; He, J. L.; Liu, S. D.; Liu, F. Q.; Yang, X. Q.; Yang, H. W.; Yang, Y.; Yang, H.

    2011-05-01

    A novel nonlinear frequency conversion process was demonstrated to realize the synchronized dual-wavelength emissions at 1534 and 1572 nm by the mixed optical parametric oscillation (OPO) conversion in gray-tracking-resistance KTP (GTR-KTP) and KTA crystals. Both the two crystals were inserted into the diode-pumped Nd:YAG/Cr4+:YAG fundamental resonator, with their Y axes perpendicular to each other. This could eliminate the competition of the two OPO processes in fundamental radiation. Furthermore, the ratio between the length of GTR-KTP and KTA has also been specially designed to satisfy the same OPO thresholds. The synchronized dual-wavelength lasing with the power ratio of 1:1 between 1534 and 1572 nm was successfully realized. At an incident LD pump power of 7 W, the maximum total output power of 460 mW was achieved, with the corresponding pulse width and repetition rate measured to be 3.9 ns and 5.5 kHz, respectively. This mixed conversion opens a new door for the multi-wavelength lasing.

  5. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  6. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  7. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  8. Hypersonic phononic crystals.

    PubMed

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  9. Quantum Hall Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2003-03-01

    Liquid-crystals, defined as states of matter intermediate in their properties between fully disordered isotropic liquids and fully ordered crystals are ubiquitous in nature. Recent transport measurements on two-dimensional electron systems in moderate magnetic fields suggest the existence of a spontaneously orientationally-ordered, compressible liquid state. I will discuss electronic liquid-crystals interpretation of these experiments, focusing on a recently proposed quantum Hall nematic state that is predicted to exhibit a novel, highly anisotropic q^3 density-director mode and other interesting phenomenology.

  10. Raman scattering in crystals

    SciTech Connect

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  11. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  12. Molecules in crystals

    NASA Astrophysics Data System (ADS)

    Spackman, Mark A.

    2013-04-01

    Hirshfeld surface analysis has developed from the serendipitous discovery of a novel partitioning of the crystal electron density into discrete molecular fragments, to a suite of computational tools used widely for the identification, analysis and discussion of intermolecular interactions in molecular crystals. The relationship between the Hirshfeld surface and very early ideas on the internal structure of crystals is outlined, and applications of Hirshfeld surface analysis are presented for three molecules of historical importance in the development of modern x-ray crystallography: hexamethylbenzene, hexamethylenetetramine and diketopiperazine.

  13. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  14. Mechanism of Insect Resistance to the Microbial Insecticide Bacillus thuringiensis

    NASA Astrophysics Data System (ADS)

    van Rie, J.; McGaughey, W. H.; Johnson, D. E.; Barnett, B. D.; van Mellaert, H.

    1990-01-01

    Receptor binding studies show that resistance of a laboratory-selected Plodia interpunctella strain to a Bacillus thuringiensis insecticidal crystal protein (ICP) is correlated with a 50-fold reduction in affinity of the membrane receptor for this protein. The strain is sensitive to a second type of ICP that apparently recognizes a different receptor. Understanding the mechanism of resistance will provide strategies to prevent or delay resistance and hence prolong the usefulness of B. thuringiensis ICPs as environmentally safe insecticides.

  15. Anthelmintic resistance.

    PubMed

    Waller, P J

    1997-11-01

    Since the first reports of resistance to the broad spectrum anthelmintics were made some three decades ago, this phenomenon has changed from being considered merely as a parasitological curiosity to a state of industry crisis in certain livestock sectors. This extreme situation exists with the small ruminant industry of the tropical/sub-tropical region of southern Latin America where resistance to the entire broad spectrum anthelmintic arsenal now occurs. In contrast, the cattle industry does not appear to be threatened--or so it seems. Although field reports of resistance have been made to the range of broad spectrum anthelmintics in nematode parasites of cattle, it appears that the evolution of resistance in cattle parasites is not as dramatic as for sheep worms. However, one cannot remain confident that this state of affairs will remain static. Concern is shared amongst parasitologists that we have not looked closely enough. In regions of the world where internal parasites are considered a problem in cattle and drenching occurs frequently, no widespread surveys have been carried out. It appears that because of the very high costs and risks associated with taking a new active drug down the development track to marketing, that the pharmaceutical industry has, in general, turned away from this activity. By implication, the international small ruminant industry is too small for these companies to make the necessary investment. This begs two questions: What is the fate of the sheep (and goat) industries in those parts of the world where resistance is rampant and immediate ameliorative parasite control options are required? What will be the response if significant resistance is found in cattle parasites? There is a body of opinion which suggests that if resistance becomes an issue in the control of cattle parasites then the pharmaceutical industry will find it commercially attractive to re-enter the anthelmintic discovery and development business. This is based on the

  16. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  17. Photonic crystal beam splitters.

    PubMed

    Chen, Chii-Chang; Chien, Hung-Da; Luan, Pi-Gang

    2004-11-20

    This work studies two-dimensional photonic crystal beam splitters with two input ports and two output ports. The beam splitter structure consists of two orthogonally crossed line defects and one point defect in square-lattice photonic crystals. The point defect is positioned at the intersection of the line defects to divide the input power into output ports. If the position and the size of the point defect are varied, the power of two output ports can be identical. The beam splitters can be used in photonic crystal Mach-Zehnder interferometers or switches. The simulation results show that a large bandwidth of the extinction ratio larger than 20 dB can be obtained while two beams are interfered in the beam splitters. This enables photonic crystal beam splitters to be used in fiber optic communication systems.

  18. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  19. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  20. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  1. Crystal-Clear Technology.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate J.; And Others

    1993-01-01

    Provides diagrams to aid in discussing polymer dispersed liquid crystal (PDLC) technology. Equipped with a knowledge of PDLC, teachers can provide students with insight on how the gap between basic science and technology is bridged. (ZWH)

  2. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  3. [Resistant hypertension].

    PubMed

    Feldstein, Carlos A

    2008-04-01

    Resistant hypertension, defined as a persistent blood pressure over 140/90 mmHg despite the use of three antihypertensive drugs including a diuretic, is unusual. The diagnosis requires ruling out initially pseudoresistance and a lack of compliance with treatment. Ambulatory blood pressure recording allow the recognition of white coat hypertension. When there is a clinical or laboratory suspicion, secondary causes of hypertension should be discarded. Excessive salt intake, the presence of concomitant diseases such as diabetes mellitus, chronic renal disease, obesity, and psychiatric conditions such as panic attacks, anxiety and depression, should also be sought. The presence of target organ damage requires a more aggressive treatment of hypertension. Recent clinical studies indicate that the administration of aldosterone antagonists as a fourth therapeutic line provides significant additional blood pressure reduction, when added to previous antihypertensive regimens in subjects with resistant hypertension. The possible blood pressure lowering effects of prolonged electrical activation of carotid baroreceptors is under investigation. PMID:18769797

  4. [Resistant hypertension].

    PubMed

    Feldstein, Carlos A

    2008-04-01

    Resistant hypertension, defined as a persistent blood pressure over 140/90 mmHg despite the use of three antihypertensive drugs including a diuretic, is unusual. The diagnosis requires ruling out initially pseudoresistance and a lack of compliance with treatment. Ambulatory blood pressure recording allow the recognition of white coat hypertension. When there is a clinical or laboratory suspicion, secondary causes of hypertension should be discarded. Excessive salt intake, the presence of concomitant diseases such as diabetes mellitus, chronic renal disease, obesity, and psychiatric conditions such as panic attacks, anxiety and depression, should also be sought. The presence of target organ damage requires a more aggressive treatment of hypertension. Recent clinical studies indicate that the administration of aldosterone antagonists as a fourth therapeutic line provides significant additional blood pressure reduction, when added to previous antihypertensive regimens in subjects with resistant hypertension. The possible blood pressure lowering effects of prolonged electrical activation of carotid baroreceptors is under investigation.

  5. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  6. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  7. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  8. Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  9. High-thermal-gradient Superalloy Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pearson, D. D.; Anton, D. L.; Giamei, A. F.

    1985-01-01

    Single, (001)-oriented crystals of PWA 1480 were processed in alumina/silica shell molds in a laboratory high gradient furnace. The furnace employs a graphite resistance heated element, a radiation baffle, and a water cooled radiation trap below the baffle. All crystals were grown in vacuum (10 torr) and all heat transfer was radiative. The element is constructed with a variable cross section that is tapered just above the baffle to maximize heat input and therefore thermal gradient. A maximum alloy temperature of 1600 C was used. A thermal gradient of 130 deg C/cm was recorded at 1370 C just above the solidus of the PWA 1480 alloys. Crystal bars with 14.4 and 17.5 mm diameters were grown in alumina/silica shell molds. Each crystal was started from a 1.6 mm pencil seed at a rate of 76 mm/hr and slowly accelerated to a rate of 200 mm/hr under computer control. Volume percent porosity and average pore size were measured as functions of distance in representative bars. Low cycle fatigue behavior and stress rupture properties were determined.

  10. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  11. High-throughput crystallization screening.

    PubMed

    Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei

    2014-01-01

    Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.

  12. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  13. Pre-resistance-welding resistance check

    DOEpatents

    Destefan, Dennis E.; Stompro, David A.

    1991-01-01

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  14. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  15. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  16. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  17. Magnetotransport properties of a percolating network of magnetite crystals embedded in a glass-ceramic matrix

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Bretcanu, Oana; Vernè, Enrica; Celegato, Federica; Coisson, Marco; Tiberto, Paola; Vinai, Franco; Spizzo, Federico; Tamisari, Melissa

    2009-04-01

    Electrical resistance, magnetization, and magnetoresistance have been measured as functions of temperature from 50 to 300 K on three ferromagnetic glass ceramics containing different magnetite crystals by preparing conditions and crystal morphology. Magnetite crystals form a percolating network for electrons with weak links at crystal-crystal contact points. All samples exhibit a broadened Verwey transition, peaked at temperatures lower than measured in bulk stoichiometric magnetite. The negative magnetoresistance ratio increases in absolute value with sample cooling from RT down to the Verwey temperature and decreases on further cooling. This behavior indicates that electron transfer between magnetite crystals is achieved through spin-dependent and spin-independent channels acting in parallel. Magnetic correlation states for spins at contact points between magnetite crystals are studied by plotting the magnetoresistance as a function of reduced magnetization. The transition from activated hopping to variable range hopping affects the magnetoresistance versus magnetization curves.

  18. Growth kinetics of potassium alum crystal in a well-agitated vessel

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Yu, K. H.

    1989-08-01

    Growth rates of potassium alum crystal in a well-agitated vessel were determined from the de-supersaturation curve of the solution. The mass transfer and surface integration coefficients were then estimated using the two-step model. Both coefficients were found to increase with increasing crystal size. Judging from the Damköhler number for crystal growth and the over-all order of the growth rate equation, it is concluded that both mass transfer resistance and surface integration resistance are significant in the growth process.

  19. On the deformation mechanisms in single crystal Hadfield manganese steels

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.

    1998-02-13

    Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

  20. Introduction to protein crystallization.

    PubMed

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  1. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  2. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  3. Fatigue Failure Criteria for Single Crystal Nickel Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    1999-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

  4. Magnetically actuated liquid crystals.

    PubMed

    Wang, Mingsheng; He, Le; Zorba, Serkan; Yin, Yadong

    2014-07-01

    Ferrimagnetic inorganic nanorods have been used as building blocks to construct liquid crystals with optical properties that can be instantly and reversibly controlled by manipulating the nanorod orientation using considerably weak external magnetic fields (1 mT). Under an alternating magnetic field, they exhibit an optical switching frequency above 100 Hz, which is comparable to the performance of commercial liquid crystals based on electrical switching. By combining magnetic alignment and lithography processes, it is also possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Developing such magnetically responsive liquid crystals opens the door toward various applications, which may benefit from the instantaneous and contactless nature of magnetic manipulation.

  5. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  6. Flexible ferroelectric organic crystals

    NASA Astrophysics Data System (ADS)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-10-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity--the properties that originate from their non-centrosymmetric crystal lattice--but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

  7. Flexible ferroelectric organic crystals

    PubMed Central

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-01-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals. PMID:27734829

  8. Frequency doubling crystals

    DOEpatents

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  9. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  10. Crystallization of atactic polystyrene

    NASA Astrophysics Data System (ADS)

    Chai, Yu; Forrest, James

    Atactic polystyrene is often used as an archetypical example of a material that has no crystalline ground state due to the lack of order in the arrangement of phenyl groups along the backbone. However, even in polymers with perfect Bernoullian (random) statistics, there is a probability that a given molecule will have larger blocks of a given stereoregularity. These blocks, in turn, could allow the formation of nanocrysalline domains. As a model system to investigate whether such blocks could lead to nanoscale crystallinity, we consider PS with Mw less than 1000 where there is a reasonable probability of a molecule having all meso or racemo diads . For the case of Mw 600, there are clear indications of crystal growth with two characteristic temperatures below which two different crystal species can nucleate and grow. Similar crystal growth and melting behavior is observed for Mw 1000.

  11. Cirrus Crystal Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  12. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  13. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  14. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  16. Investigation of the elemental composition of lanthanum-cerium hexaboride crystals

    NASA Astrophysics Data System (ADS)

    Badalyan, Georgi; Kuzanyan, Armen; Petrosyan, Vahagn; Kuzanyan, Vazgen; Gulian, Armen

    2010-10-01

    Crystals of solid solutions of lanthanum-cerium hexaborides (La1-xCex)B6 possess unique thermoelectric properties in the temperature range of 0.3-9 K and they can be used in thermoelectric single-photon detectors as a sensor. One can observe a wide spread in thermoelectric measurement values reported in the literature, which is because of different qualities of studied crystals. The greatest influence on both the Seebeck coefficient and electrical resistivity of samples is exercised by the presence of uncontrolled impurities in crystals and the deviation from stoichiometry. In this work we have studied just the aforementioned parameters of the crystals obtained by three different methods.

  17. Crystallization seeds favour crystallization only during initial growth

    PubMed Central

    Allahyarov, E.; Sandomirski, K.; Egelhaaf, S.U.; Löwen, H.

    2015-01-01

    Crystallization represents the prime example of a disorder–order transition. In realistic situations, however, container walls and impurities are frequently present and hence crystallization is heterogeneously seeded. Rarely the seeds are perfectly compatible with the thermodynamically favoured crystal structure and thus induce elastic distortions, which impede further crystal growth. Here we use a colloidal model system, which not only allows us to quantitatively control the induced distortions but also to visualize and follow heterogeneous crystallization with single-particle resolution. We determine the sequence of intermediate structures by confocal microscopy and computer simulations, and develop a theoretical model that describes our findings. The crystallite first grows on the seed but then, on reaching a critical size, detaches from the seed. The detached and relaxed crystallite continues to grow, except close to the seed, which now prevents crystallization. Hence, crystallization seeds facilitate crystallization only during initial growth and then act as impurities. PMID:25975451

  18. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  19. Image Annotation and Database Mining to Create a Novel Screen for the Chemotype-Dependent Crystallization of HCV NS3 Protease

    SciTech Connect

    H Klei; K Kish; M Russo; S Michalczyk; M Cahn; J Tredup; C Chang; J Khan; E Baldwin

    2011-12-31

    An effective process for screening, imaging, and optimizing crystallization trials using a combination of external and internal hardware and software has been deployed. The combination of this infrastructure with a vast annotated crystallization database enables the creation of custom crystallization screening strategies. Because of the strong chemotype-dependent crystallization observed with HCV NS3 protease (HCVPr), this strategy was applied to a chemotype resistant to all prior crystallization efforts. The crystallization database was mined for ingredients used to generate earlier HCVPr/inhibitor co-crystals. A random screen was created from the most prolific ingredients. A previously untested combination of proven ingredients was identified that led to a successful crystallization condition for the resistant chemotype.

  20. Materials discovery through crystal growth

    NASA Astrophysics Data System (ADS)

    zur Loye, Hans-Conrad

    2016-04-01

    The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.

  1. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    SciTech Connect

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  2. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  3. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  4. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  5. The Crystal Set

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  6. Computer-assisted Crystallization.

    ERIC Educational Resources Information Center

    Semeister, Joseph J., Jr.; Dowden, Edward

    1989-01-01

    To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)

  7. Single crystals of inulin.

    PubMed

    André, I; Putaux, J L; Chanzy, H; Taravel, F R; Timmermans, J W; de Wit, D

    1996-04-01

    Lamellar crystals of inulin were grown by crystallizing sharp fractions of low molecular weight inulin from dilute aqueous ethanol solutions. The crystals were analyzed using three-dimensional electron diffraction and X-ray powder diagrams. Two crystalline polymorphs were observed, depending on the hydration conditions: a hydrated form which indexed on an orthorhombic unit cell, with space group P2(1)2(1)2(1) and with cell dimensions of a = 1.670 nm, b = 0.980 nm and c (chain axis) = 1.47 nm, together with a pseudo-hexagonal semi-hydrated form with unit cell parameters a = 1.670 nm, b = 0.965 nm and c (chain axis) = 1.44 nm. These parameters, together with the density data, indicate that inulin crystallizes along a pseudo-hexagonal six-fold symmetry with an advance per monomer of 0.24 nm. The difference between the hydrated and the semi-hydrated unit cells does not seem to correspond to any change in the conformation of inulin, but rather to a variation in water content.

  8. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  9. Copolymer Crystallization: Approaching Equilibrium

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Finerman, Terry

    2002-03-01

    Random ethylene-butene copolymers of uniform chemical composition and degree of polymerization are crystallized by evaporation of thin films (1 μ m - 5 μ m) from solution. Macroscopic films ( 100 μm) formed by sequential layer deposition are characterized by density, calorimetry and X-ray techniques. Most notable is the density, which in some cases implies a crystalline fraction nearly 90% of the equilibrium value calculated from Flory theory. Melting temperature of these solution deposited layers is increased by as much as 8 ^oC over Tm for the same polymer crystallized from the melt. Small-angle X-ray scattering indicates that the amorphous layer thickness is strongly reduced by this layered crystallization process. X-ray diffraction shows a pronounced orientation of chain axes and lamellar normals parallel to the normal of the macroscopic film. It is clear that solvent enhances chain mobility, permitting proper sequences to aggregate and crystallize in a manner that is never achieved in the melt.

  10. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    SciTech Connect

    Yu, Guangbin; Tang, Chaolong; Song, Jinhui E-mail: wqlu@cigit.ac.cn; Lu, Wenqiang E-mail: wqlu@cigit.ac.cn

    2014-04-14

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

  11. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  12. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Bugg, Charles E.

    1991-01-01

    Studies of protein crystal growth in the microgravity environment in space are described with special attention given to the crystal growth facilities and the techniques used in Space Shuttle experiments. The properties of large space-grown crystals of gamma interferon, elastase, lathyros ochrus lectin I, and few other proteins grown on various STS flights are described. A comparison of the microgravity-grown crystals with the bast earth-grown crystals demonstrated that the space-grown crystals are more highly ordered at the molecular level than their earth-grown counterparts. When crystallization conditions were optimized, the microgravity-grown protein crystals were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolution than their earth-grown counterparts.

  13. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Karas, Andrew S.; Schultz, Benjamin A.; Engel, Michael; Glotzer, Sharon C.

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  14. Macromolecular crystal growth in microgravity

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander

    1996-03-01

    Two T=1 and one T=3 plant viruses, along with a protein were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994 (Koszelak, et al. 1995). The method employed was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than thirty times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots.

  15. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  16. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. PMID:26550757

  17. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils. PMID:27617640

  18. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

  19. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  20. Physical vapor transport crystal growth

    NASA Technical Reports Server (NTRS)

    Yoel, Dave W.; Anderson, Elmer; Wu, Maw-Kuen; Cheng, H. Y.

    1987-01-01

    The goals of this research are two-fold: to study effective means of growing ZnSe crystals of good optical quality and to determine the advantages of growing such crystals in microgravity. As of this date the optimal conditions for crystal growth have not been determined. However, successful growth runs were made in two furnances and the results are given.

  1. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  2. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  3. Surface properties of HMX crystal

    NASA Technical Reports Server (NTRS)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  4. Small Business Innovations (Crystal Components)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Scientific Materials Corporation, Bozeman, MT developed the SciMax line of improved Nd:Yag crystals under an Small Business Innovation Research (SBIR) contract with Langley Research Center. They reduced the amount of water trapped in the crystals during growth to improve the optical quality and efficiency. Applications of the crystals include fiber optics, telecommunications, welding, drilling, eye surgery and medical instrumentation.

  5. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  6. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  7. Resistivity of Rotated Graphite-Graphene Contacts.

    PubMed

    Chari, Tarun; Ribeiro-Palau, Rebeca; Dean, Cory R; Shepard, Kenneth

    2016-07-13

    Robust electrical contact of bulk conductors to two-dimensional (2D) material, such as graphene, is critical to the use of these 2D materials in practical electronic devices. Typical metallic contacts to graphene, whether edge or areal, yield a resistivity of no better than 100 Ω μm but are typically >10 kΩ μm. In this Letter, we employ single-crystal graphite for the bulk contact to graphene instead of conventional metals. The graphite contacts exhibit a transfer length up to four-times longer than in conventional metallic contacts. Furthermore, we are able to drive the contact resistivity to as little as 6.6 Ω μm(2) by tuning the relative orientation of the graphite and graphene crystals. We find that the contact resistivity exhibits a 60° periodicity corresponding to crystal symmetry with additional sharp decreases around 22° and 39°, which are among the commensurate angles of twisted bilayer graphene.

  8. Crystallization-induced properties from morphology-controlled organic crystals.

    PubMed

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  9. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  10. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  11. Unprecedented crystal dynamics: reversible cascades of single-crystal-to-single-crystal transformations.

    PubMed

    Lv, Gao-Chao; Wang, Peng; Liu, Qing; Fan, Jian; Chen, Kai; Sun, Wei-Yin

    2012-10-21

    A series of Cu(II) complexes showed unprecedented reversible cascades of single-crystal-to-single-crystal (SCSC) transformations, and more interestingly, very rapid crystal dynamic processes were observed in this system via the substitution of coordinating components without loss of single crystallinity.

  12. HIV Genotypic Resistance Testing

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? HIV Antiretroviral Drug Resistance Testing, Genotypic Share this page: Was this page helpful? Also known as: Anti-retroviral Drug Resistance Testing; ARV Resistance Testing Formal name: ...

  13. Animation of Antimicrobial Resistance

    MedlinePlus

    ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  14. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  15. EDITORIAL: Photonic Crystal Devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pallab K.

    2007-05-01

    The engineering of electromagnetic modes at optical frequencies in artificial dielectric structures with periodic and random variation of the refractive index, enabling control of the radiative properties of the materials and photon localization, was first proposed independently by Yablonovitch and John in 1987. It is possible to control the flow of light in the periodic dielectric structures, known as photonic crystals (PC). As light waves scatter within the photonic crystal, destructive interference cancels out light of certain wavelengths, thereby forming a photonic bandgap, similar to the energy bandgap for electron waves in a semiconductor. Photons whose energies lie within the gap cannot propagate through the periodic structure. This property can be used to make a low-loss cavity. If a point defect, such as one or more missing periods, is introduced into the periodic structure a region is obtained within which the otherwise forbidden wavelengths can be locally trapped. This property can be used to realize photonic microcavities. Similarly, a line of defects can serve as a waveguide. While the realization of three-dimensional (3D) photonic crystals received considerable attention initially, planar two-dimensional (2D) structures are currently favoured because of their relative ease of fabrication. 2D photonic crystal structures provide most of the functionality of 3D structures. These attributes have generated worldwide research and development of sub-μm and μm size active and passive photonic devices such as single-mode and non- classical light sources, guided wave devices, resonant cavity detection, and components for optical communication. More recently, photonic crystal guided wave devices are being investigated for application in microfludic and biochemical sensing. Photonic crystal devices have been realized with bulk, quantum well and quantum dot active regions. The Cluster of articles in this issue of Journal of Physics D: Applied Physics provides a

  16. CRYSTAL/FACE

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Kok, Greg; Anderson, Bruce

    2004-01-01

    Droplet Measurement Technologies (DMT), under funding from NASA, participated in the CRYSTAL/FACE field campaign in July, 2002 with measurements of cirrus cloud hydrometeors in the size range from 0.5 to 1600 microns. The measurements were made with the DMT Cloud, Aerosol and Precipitation Spectrometer (CAPS) that was flown on NASA's WB57F. With the exception of the first research flight when the data system failed two hours into the mission, the measurement system performed almost flawlessly during the thirteen flights. The measurements from the CAPS have been essential for interpretation of cirrus cloud properties and their impact on climate. The CAPS data set has been used extensively by the CRYSTAL/FACE investigators and as of the date of this report, have been included in five published research articles, 10 conference presentations and six other journal articles currently in preparation.

  17. Graphite polyhedral crystals.

    PubMed

    Gogotsi, Y; Libera, J A; Kalashnikov, N; Yoshimura, M

    2000-10-13

    Polyhedral nano- and microstructures with shapes of faceted needles, rods, rings, barrels, and double-tipped pyramids, which we call graphite polyhedral crystals (GPCs), have been discovered. They were found in pores of glassy carbon. They have nanotube cores and graphite faces, and they can exhibit unusual sevenfold, ninefold, or more complex axial symmetry. Although some are giant radially extended nanotubes, Raman spectroscopy and transmission electron microscopy suggest GPCs have a degree of perfection higher than in multiwall nanotubes of similar size. The crystals are up to 1 micrometer in cross section and 5 micrometers in length, and they can probably be grown in much larger sizes. Preliminary results suggest a high electrical conductivity, strength, and chemical stability of GPC.

  18. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  19. Twisted aspirin crystals.

    PubMed

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-01

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the <010> growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites. PMID:23425247

  20. Resisting Resistors: Resistance in Critical Pedagogy Classrooms.

    ERIC Educational Resources Information Center

    Filax, Gloria

    1997-01-01

    Contends that resistance is not adequately problematized in the critical pedagogy literature. Asserts that clarification is necessary to point out the multiple resistances in classrooms and their implications rather than situating resistance only with students and only in relation to social inequality or critical pedagogy. (16 citations) (VWC)

  1. Crystal chemistry and real structure of crystals

    NASA Astrophysics Data System (ADS)

    Bartl, H.; Bats, J. W.; Dyck, W.; Fuess, H.; Gregory, A.; Joswig, W.; Lottermoser, W.; Koerfer, M.; Mueller, R.; Schweiss, B. P.

    1984-03-01

    Elastic and inelastic scattering, X-ray diffraction and spectroscopy were combined to obtain a comprehensive picture of the properties of crystals. The electron density distribution allows one to verify the models of the theoretical chemistry. Systematic investigations of chemically similar anions (ClO3 and ClO4; S2O3, SO3 and SO4) show differences in bonding and reaction capability. The X-ray-neutron method applied to these anions shows maxima between 0.2 and 0.4 eXA to the power-3 in the bondings of the unbound electrons on S and D. For the SO3-group good agreement is found with theoretical calculations. The effect of the Mg (two times ionized) cation on the density is demonstrated on the water molecules of MgS2O3.6H2O and MgSO3.6H2O. Magnetic structure and magnetization density were investigated on CO3V2O8, Fe2SiO4 and Mn2SiO4 with polarized neutrons. The differences in magnetic moments of both cation states is also demonstrated for Fe2SiO4 with complementary Mossbauer measurements. Inelastic time of flight experiments allow predictions concerning the motion of the NH3-group in aniliniumbromide and of the water molecule in natural zeolites. The theoretical model to calculate the photon dispersion on CaSO4 shows good agreement with the measured dispersion curves.

  2. Optical Restoration of Lead Fluoride Crystals

    SciTech Connect

    Spilker, A.; Cole, P. L.; Forest, T. A.; Mestari, M.; Naeem, S.; LeBaron, N.; Bertin, P.; Camacho, C. Munoz; Roche, J.

    2009-03-10

    Due to its relatively high resistance to high radiation, lead fluoride (PbF{sub 2}) crystals are becoming an increasingly popular material of choice for electromagnetic calorimetry, such as for experiments requiring the measurement of high-energy photons in Hall A of Jefferson Lab. For our studies we irradiated the PbF{sub 2} crystals using an electron linear accelerator (LINAC) followed by exposing the crystals to blue light so as to restore the nominal optical properties. This technique of optical bleaching with blue light affords an efficient and low-cost means for reversing the deleterious effects of optical transmission loss in radiation-damaged lead fluoride crystals. Whereas earlier experiments irradiated the PbF{sub 2} samples with 1.1 and 1.3 MeV gammas from {sup 60}Co, we used pulsed beams of energetic electrons from the tunable 25-MeV LINAC at Idaho Accelerator Center of Idaho State University in Pocatello, Idaho. A 20-MeV beam of electrons was targeted onto four separate 19 cm length samples of lead fluoride over periods of 1, 2, and 4 hours yielding doses between 7 kGy and 35 kGy. Samples were then bleached with blue light of wavelength 410-450 nm for periods between 19.5 and 24 hours. We performed this process twice - radiation, bleaching, radiation, and then followed by bleaching again - for each of these four PbF{sub 2} samples. We shall discuss the efficacy of blue light curing on samples that have undergone two cycles of electron irradiation and optical bleaching.

  3. Path to protein crystallization

    SciTech Connect

    2010-01-01

    Growth of two-dimensional S-layer crystals on supported lipid bilayers observed in solution using in situ atomic force microscopy. This movie shows proteins sticking onto the supported lipid bilayer, forming a mobile phase that condenses into amorphous clusters, and undergoing a phase transition to crystalline clusters composed of 2 to 15 tetramers. These initial clusters then enter a growth phase in which new tetramers form exclusively at unoccupied lattice sites along the cluster edges.

  4. The Crystal Set

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-04-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought I knew, but actually did not.

  5. Protein Crystal Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  6. Photonic crystal optical memory

    NASA Astrophysics Data System (ADS)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  7. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  8. Crystallization of human nicotinamide phosphoribosyltransferase

    SciTech Connect

    Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya; Kobayashi, Yuji; Ohkubo, Tadayasu

    2007-05-01

    Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å. Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.

  9. Modern trends in technical crystallization

    NASA Astrophysics Data System (ADS)

    Matz, G.

    1980-04-01

    Interesting and significant developments have occurred in the last decade in both crystallization equipment and in the theory of crystallization process. In the field of technical crystallization new crystallizers have been developed and computer modelling has become important in scaling up and in the achievement of increased performance. The DP-Kristaller developed by Escher-Wyss-Tsukishima, the Brodie purifier, the sieve tray column having dancing balls, the automated multiple crystallization process due to Mützenberg and Saxer and the double belt cooler, all of which represent technical developments, are described in the first section. The second part of the paper reviews computer modelling of the fluidized bed crystallizer, chemical precipitation, flaking and prilling. Finally, there is a brief discussion of the impact of technical crystallization processes on environmental protection.

  10. Crystallization of undercooled liquid fenofibrate.

    PubMed

    Amstad, Esther; Spaepen, Frans; Weitz, David A

    2015-11-28

    Formulation of hydrophobic drugs as amorphous materials is highly advantageous as this increases their solubility in water and therefore their bioavailability. However, many drugs have a high propensity to crystallize during production and storage, limiting the usefulness of amorphous drugs. We study the crystallization of undercooled liquid fenofibrate, a model hydrophobic drug. Nucleation is the rate-limiting step; once seeded with a fenofibrate crystal, the crystal rapidly grows by consuming the undercooled liquid fenofibrate. Crystal growth is limited by the incorporation of molecules into its surface. As nucleation and growth both entail incorporation of molecules into the surface, this process likely also limits the formation of nuclei and thus the crystallization of undercooled liquid fenofibrate, contributing to the good stability of undercooled liquid fenofibrate against crystallization.

  11. Gelled Lyotropic Liquid Crystals.

    PubMed

    Xu, Yang; Laupheimer, Michaela; Preisig, Natalie; Sottmann, Thomas; Schmidt, Claudia; Stubenrauch, Cosima

    2015-08-11

    In our previous work we were able to prove that gelled bicontinuous microemulsions are a novel type of orthogonal self-assembled system. The study at hand aims at complementing our previous work by answering the question of whether gelled lyotropic liquid crystals are also orthogonal self-assembled systems. For this purpose we studied the same system, namely, water-n-decane/12-hydroxyoctadecanoic acid (12-HOA)-n-decyl tetraoxyethylene glycol ether (C10E4). The phase boundaries of the nongelled and the gelled lyotropic liquid crystals were determined visually and with (2)H NMR spectroscopy. Oscillating shear measurements revealed that the absolute values of the storage and loss moduli of the gelled liquid crystalline (LC) phases do not differ very much from those of the binary organogel. While both the phase behavior and the rheological properties of the LC phases support the hypothesis that gelled lyotropic liquid crystals are orthogonal self-assembled systems, freeze-fracture electron microscopy (FFEM) seems to indicate an influence of the gel network on the structure of the Lα phase and vice versa.

  12. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  13. Slotted photonic crystal sensors.

    PubMed

    Scullion, Mark G; Krauss, Thomas F; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  14. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  15. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  16. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  17. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L.

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  18. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  19. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  20. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  1. Crystallization Optimum Solubility Screening: using crystallization results to identify the optimal buffer for protein crystal formation

    SciTech Connect

    Collins, Bernard; Stevens, Raymond C.; Page, Rebecca

    2005-12-01

    It is shown how protein crystallization results can be used to identify buffers that improve protein solubility and, in turn, crystallization success. An optimal solubility screen is described that uses the results of crystallization trials to identify buffers that improve protein solubility and, in turn, crystallization success. This screen is useful not only for standard crystallization experiments, but also can easily be implemented into any high-throughput structure-determination pipeline. As a proof of principle, the predicted novel-fold protein AF2059 from Archaeoglobus fulgidus, which was known to precipitate in most buffers and particularly during concentration experiments, was selected. Using the crystallization results of 192 independent crystallization trials, it was possible to identify a buffer containing 100 mM CHES pH 9.25 that significantly improves its solubility. After transferring AF2059 into this ‘optimum-solubility’ buffer, the protein was rescreened for crystal formation against these same 192 conditions. Instead of extensive precipitation, as observed initially, it was found that 24 separate conditions produced crystals and the exchange of AF2059 into CHES buffer significantly improved crystallization success. Fine-screen optimization of these conditions led to the production of a crystal suitable for high-resolution (2.2 Å) structure determination.

  2. Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

    PubMed

    Ferré, Juan; Van Rie, Jeroen

    2002-01-01

    Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins for use in conventional sprayable formulations and in transgenic crops, and it is the most promising alternative to synthetic insecticides. However, evolution of resistance in insect populations is a serious threat to this technology. So far, only one insect species has evolved significant levels of resistance in the field, but laboratory selection experiments have shown the high potential of other species to evolve resistance against Bt. We have reviewed the current knowledge on the biochemical mechanisms and genetics of resistance to Bt products and insecticidal crystal proteins. The understanding of the biochemical and genetic basis of resistance to Bt can help design appropriate management tactics to delay or reduce the evolution of resistance in insect populations.

  3. Constitutive modelling of single crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1986-01-01

    The trend towards improved engine efficiency and durability places increasing demands on materials that operate in the hot section of the gas turbine engine. These demands are being met by new coatings and materials such as single crystal and directionally solidified nickel-base superalloys which have greater creep/fatigue resistance at elevated temperatures and reduced susceptibility to grain boundary creep, corrosion and oxidation than conventionally cast alloys. Work carried out as part of a research program aimed at the development of constitutive equations to describe the elevated temperature stress-strain-time behavior of single crystal and directionally solidified turbine blade superalloys is discussed. The program involves both development of suitable constitutive models and their verification through elevated temperature tension-torsion testing of single crystals of PWA 1480.

  4. Synthesis and properties of erbium oxide single crystals

    SciTech Connect

    Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

    1999-04-01

    Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

  5. Prediction of Giant Thermoelectric Efficiency in Crystals with Interlaced Nanostructure.

    PubMed

    Puzyrev, Y S; Shen, X; Pantelides, S T

    2016-01-13

    We present a theoretical study of the thermoelectric efficiency of "interlaced crystals", recently discovered in hexagonal-CuInS2 nanoparticles. Interlaced crystals are I-III-VI2 or II-IV-V2 tetrahedrally bonded compounds. They have a perfect Bravais lattice in which the two cations have an infinite set of possible ordering patterns within the cation sublattice. The material comprises nanoscale interlaced domains and phases with corresponding boundaries. Here we employ density functional theory and large-scale molecular dynamics calculations based on model classical potentials to demonstrate that the phase and domain boundaries are effective phonon scatterers and greatly suppress thermal conductivity. However, the absence of both structural defects and strain in the interlaced material results in a minimal effect on electronic properties. We predict an increase of thermal resistivity of up to 2 orders of magnitude, which makes interlaced crystals an exceptional candidate for thermoelectric applications.

  6. Preparation and properties of metallic, superhard rhenium diboride crystals.

    PubMed

    Levine, Jonathan B; Nguyen, Sandy L; Rasool, Haider I; Wright, Jeffrey A; Brown, Stuart E; Kaner, Richard B

    2008-12-17

    Single crystals of ReB(2) have been prepared from an aluminum flux under inert gas flow. The crystals are typically 1-3 mm in diameter and 500 microm thick, growing along the [002] direction with a distinct hexagonal morphology. Vickers microhardness and nanoindentation testing indicate that the (002) plane possesses the highest hardness with measured values of 40.5 and 36.4 GPa, respectively. The elastic anisotropy was examined and the indentation moduli of the basal plane and an (hk0) plane of unknown indices are 675 and 510 GPa, respectively. Four-probe electrical resistivity measurements demonstrate that ReB(2) is the hardest material known to exhibit metallic behavior. Thermogravimetric analysis indicates that the crystals are stable in air up to 1000 degrees C due to the formation of a protective boron oxide coating.

  7. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  8. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase.

    PubMed

    Frey, Kathleen M; Lombardo, Michael N; Wright, Dennis L; Anderson, Amy C

    2010-04-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  9. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    SciTech Connect

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  10. Crystal growth in salt efflorescence

    NASA Astrophysics Data System (ADS)

    Zehnder, Konrad; Arnold, Andreas

    1989-09-01

    Salt efflorescences strongly affect wall paintings and other monuments. The external factors governing the crystal habits and aggregate forms are studied phenomenologically in laboratory experiments. As salt contaminated materials dry, slats crystallize forming distinct sequences of crystal habits and aggregate forms on and underneath the surfaces. Four phases may be distinguished: (1) Large individual crystals with equilibrium forms grow immersed in a thick solution film; (2) granular crusts of small isometric crystals grow covered by a thin solution film; (3) fibrous crusts of columnar crystals grow from a coherent but thin solution film so that the crystals are in contact with solution only at their base; (4) whiskers grow from isolated spots of very thin solution films into the air. The main factor governing these morphologies is the humidity of the substrate. A porous material cracks while granular crystals (approaching their equilibrium forms) grow within the large pores. As the fissures widen, the habits pass into columnar crystals and then into whiskers. Because this succession corresponds to the crystallization sequence on the substrate surface it can be traced back to the same growth conditions.

  11. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  12. Quartz crystal microbalance thin-film dissolution rate monitor

    NASA Astrophysics Data System (ADS)

    Hinsberg, William D.; Kanazawa, Kay K.

    1989-03-01

    We describe the details of construction and operation of an instrument useful for the characterization of dissolution kinetics of thin films. This device, based on a quartz crystal microbalance operating in contact with a liquid, avoids the limitations associated with the use of optical, electrical, and mechanical dissolution rate measurement techniques. The QCM rate monitor has general application to the measurement of the kinetics of dissolution of transparent and opaque thin films such as dielectrics, metals, and polymeric resists.

  13. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  14. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  15. Quality improvement of CdMnTe:In single crystals by an effective post-growth annealing

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Xu, Yadong; Luan, Lijun; Du, Yuanyuan; Zheng, Jiahong; Li, Hui; Jie, Wanqi

    2016-10-01

    In this paper, an effective annealing method in which CdMnTe:In (CMT:In) single crystals were coated with CMT powders of the same composition was used to improve the crystal quality of CMT:In crystals. The results indicated that the density of Te inclusions decreased as the annealing time increased. The resistivity and IR transmittance of annealed CMT:In crystals were enhanced obviously. The resistivity of 120 h annealed crystal increased even two orders of magnitude. The reduction of full-width at-half-maximum (FWHM) and the increase of the intensity of X-ray rocking curve indicated an improvement of the crystal quality. PL measurements also showed the crystal quality improved after annealing. No characteristic peak of 241Am γ-ray could be observed in the detector fabricated with as-grown crystal. Remarkably, for the detector fabricated with annealed crystals, the peak of 241Am γ-ray appeared. And the energy resolution and μτ value were improved as the annealing time increased. Specially, 120 h annealed CMT:In crystal with 10.11% energy resolution and 1.20×10-3 cm2/V μτ value has the best detector performance.

  16. Facts about Antibiotic Resistance

    MedlinePlus

    ... Trends and Cost Español: Datos breves Facts about Antibiotic Resistance Antibiotic resistance has been called one of the world’s most ... antibiotic use is a key strategy to control antibiotic resistance. Antibiotic resistance in children is of particular concern ...

  17. Study on photorefractive property of Mg:Fe:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Zhaopeng; Xu, Shiwen; Xu, Yuheng; Wang, Rui

    2005-02-01

    The congruent Fe (0.03%wt):LiNbO3 crystals doped with different concentration of MgO (0, 2, 4, 6 mol%) were grown by Czochralski method in air atmosphere. The ultraviolet-visible absorption spectra, infrared absorption spectra of the crystals were measured in order to analyze their structure. The absorption edge of the Mg: Fe: LiNbO3 crystals shifted to the ultraviolet band compared with that of Fe: LiNbO3. The OH- absorption peaks of I and II crystals located at about 3483cm-1, while those of III and IV crystals shifted to 3536cm-1. The mechanism of OH- absorption peak shifting was studied. The light scattering ability resistance of Mg: Fe: LiNbO3 crystal was observed by straightly observing transmission facula distortion method. It indicated that light scattering ability resistance of III crystals was three orders of magnitude higher than that of Fe: LiNbO3 crystals. The exponential gain coefficient, diffraction efficiency and respond time of Mg: Fe: LiNbO3 crystals were measured by two-wave-coupling technology. The results indicate that exponential gain coefficient of Mg: Fe: LiNbO3 crystal was almost four times as that of iron-doped LiNbO3 and the response time exhibited four times shorter than that of iron-doped LiNbO3. Furthermore, the dynamic range was also calculated by the expression: M # = (τe ∠√η)/τω. The results indicated that Mg (4 mol%): Fe:LiNbO3 was the most proper holographic recording media material among four crystals in the paper.

  18. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture.

    PubMed

    Verkoelen, C F; van der Boom, B G; Houtsmuller, A B; Schröder, F H; Romijn, J C

    1998-05-01

    The retention of crystals in the kidney is considered to be a crucial step in the development of a renal stone. This study demonstrates the time-dependent alterations in the extent of calcium oxalate (CaOx) monohydrate (COM) crystal binding to Madin-Darby canine kidney (MDCK) cells during their growth to confluence and during the healing of wounds made in confluent monolayers. As determined by radiolabeled COM crystal binding studies and confirmed by confocal-scanning laser microscopy, relatively large amounts of crystals (10.4 +/- 0.4 micrograms/cm2) bound to subconfluent cultures that still exhibited a low transepithelial electrical resistance (TER < 400 omega.cm2). The development of junctional integrity, indicated by a high resistance (TER > 1,500 omega.cm2), was followed by a decrease of the crystal binding capacity to almost undetectable low levels (0.13 +/- 0.03 microgram/cm2). Epithelial injury resulted in increased crystal adherence. The highest level of crystal binding was observed 2 days postinjury when the wounds were already morphologically closed but TER was still low. Confocal images showed that during the repair process, crystals selectively adhered to migrating cells at the wound border and to stacked cells at sites were the wounds were closed. After the barrier integrity was restored, crystal binding decreased again to the same low levels as in undamaged controls. These results indicate that, whereas functional MDCK monolayers are largely protected against COM crystal adherence, epithelial injury and the subsequent process of wound healing lead to increased crystal binding.

  19. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  20. Invisible defects in complex crystals

    SciTech Connect

    Longhi, Stefano Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out to be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.