Science.gov

Sample records for resistance oxidative stress

  1. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  2. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  3. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context.

  4. Fecundity and survival in relation to resistance to oxidative stress in a free-living bird.

    PubMed

    Bize, Pierre; Devevey, Godefroy; Monaghan, Patricia; Doligez, Blandine; Christe, Philippe

    2008-09-01

    Major life history traits, such as fecundity and survival, have been consistently demonstrated to covary positively in nature, some individuals having more resources than others to allocate to all aspects of their life history. Yet, little is known about which resources (or state variables) may account for such covariation. Reactive oxygen species (ROS) are natural by-products of metabolism and, when ROS production exceeds antioxidant defenses, organisms are exposed to oxidative stress that can have deleterious effects on their fecundity and survival. Using a wild, long-lived bird, the Alpine Swift (Apus melba), we examined whether individual red cell resistance to oxidative stress covaried with fecundity and survival. We found that males that survived to the next breeding season tended to be more resistant to oxidative stress, and females with higher resistance to oxidative stress laid larger clutches. Furthermore, the eggs of females with low resistance to oxidative stress were less likely to hatch than those of females with high resistance to oxidative stress. By swapping entire clutches at clutch completion, we then demonstrated that hatching failure was related to the production of low-quality eggs by females with low resistance to oxidative stress, rather than to inadequate parental care during incubation. Although male and female resistance to oxidative stress covaried with age, the relationships among oxidative stress, survival, and fecundity occurred independently of chronological age. Overall, our study suggests that oxidative stress may play a significant role in shaping fecundity and survival in the wild. It further suggests that the nature of the covariation between resistance to oxidative stress and life history traits is sex specific, high resistance to oxidative stress covarying primarily with fecundity in females and with survival in males.

  5. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    PubMed Central

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-01-01

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate. PMID:27690079

  6. Higher in vitro resistance to oxidative stress in extra-pair offspring.

    PubMed

    Losdat, S; Helfenstein, F; Saladin, V; Richner, H

    2011-11-01

    Oxidative stress is considered to act as a universal physiological constraint in life-history evolution of animals. This should be of interest for extra-pair paternity behaviour, and we tested here the prediction that offspring arising from extra-pair matings of female great tits show higher resistance to oxidative stress than within-pair offspring. Resistance to oxidative stress, measured as the whole blood resistance to a controlled free-radical attack, was significantly higher for extra-pair offspring as predicted although these were not heavier or in better body condition than within-pair offspring. Since resistance to oxidative stress has been suggested to enhance survival and reproductive rates, extra-pair offspring with superior resistance to oxidative stress, be it through maternal effects or paternal inheritance, may achieve higher fitness and thus provide significant indirect fitness benefits to their mothers. In addition, because oxidative stress affects colour signals and sperm traits, females may also gain fitness benefits by producing sons that are more attractive (sexy-sons hypothesis) and have sperm of superior quality (sexy-sperm hypothesis). Heritability of resistance to oxidative stress as well as maternal effects may both act as proximate mechanisms for the observed result. Disentangling these two mechanisms would require an experimental approach. Future long-term studies should also aim at experimentally testing whether higher resistance to oxidative stress of EP nestlings indeed translates into fitness benefits to females.

  7. Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon.

    PubMed

    Glover-Cutter, Kira M; Alderman, Stephen; Dombrowski, James E; Martin, Ruth C

    2014-11-01

    Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity in animal systems, characterizing conserved pathways known to increase oxidative stress resistance could prove fruitful for crop improvement strategies. This report argues for the usefulness and practicality of the model organism Brachypodium distachyon for identifying and validating stress resistance factors. Specifically, we focus on a zinc deficiency B. distachyon basic leucine zipper transcription factor, BdbZIP10, and its role in oxidative stress in the model organism B. distachyon. When overexpressed, BdbZIP10 protects plants and callus tissue from oxidative stress insults, most likely through distinct and direct activation of protective oxidative stress genes. Increased oxidative stress resistance and cell viability through the overexpression of BdbZIP10 highlight the utility of investigating conserved stress responses between plant and animal systems.

  8. Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity i...

  9. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men.

    PubMed

    Boden, Guenther; Homko, Carol; Barrero, Carlos A; Stein, T Peter; Chen, Xinhua; Cheung, Peter; Fecchio, Chiara; Koller, Sarah; Merali, Salim

    2015-09-09

    Obesity-linked insulin resistance greatly increases the risk for type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease, together known as the metabolic or insulin resistance syndrome. How obesity promotes insulin resistance remains incompletely understood. Plasma concentrations of free fatty acids and proinflammatory cytokines, endoplasmic reticulum ( ER) stress, and oxidative stress are all elevated in obesity and have been shown to induce insulin resistance. However, they may be late events that only develop after chronic excessive nutrient intake. The nature of the initial event that produces insulin resistance at the beginning of excess caloric intake and weight gain remains unknown. We show that feeding healthy men with ~6000 kcal/day of the common U.S. diet [~50% carbohydrate (CHO), ~ 35% fat, and ~15% protein] for 1 week produced a rapid weight gain of 3.5 kg and the rapid onset (after 2 to 3 days) of systemic and adipose tissue insulin resistance and oxidative stress but no inflammatory or ER stress. In adipose tissue, the oxidative stress resulted in extensive oxidation and carbonylation of numerous proteins, including carbonylation of GLUT4 near the glucose transport channel, which likely resulted in loss of GLUT4 activity. These results suggest that the initial event caused by overnutrition may be oxidative stress, which produces insulin resistance, at least in part, via carbonylation and oxidation-induced inactivation of GLUT4.

  10. Oxidative Stress: A Potential Recipe For Anxiety, Hypertension and Insulin Resistance

    PubMed Central

    Salim, Samina; Asghar, Mohammad; Chugh, Gaurav; Taneja, Manish; Xia, Zhilian; Saha, Kaustav

    2010-01-01

    We recently reported involvement of oxidative stress in anxiety-like behavior of rats. Others in separate studies have demonstrated a link between oxidative stress and hypertension as well as with type 2 diabetes/insulin resistance. In the present study, we have tested a putative role of oxidative stress in anxiety-like behavior, hypertension and insulin resistance using a rat model of oxidative stress. Oxidative stress in rats was produced by xanthine (0.1%; drinking water) and xanthine oxidase (5U/kg; i.p.). X+XO-treated rats had increased plasma and urinary 8-isoprostane levels (a marker of oxidative stress) and increased malondialdehyde (MDA) levels in the hippocampus and amygdala as compared to control rats. Serum corticosterone (a systemic marker of stress and anxiety) levels also increased with X+XO treatment. Moreover, anxiety-like behavior measured via open-field and light-dark exploration behavior tests significantly increased in X+XO-treated rats. Mean arterial blood pressure measured in anesthetized rats increased in X+XO-treated compared to control rats. Furthermore, plasma insulin but not glucose levels together with homeostasis model assessment (HOMA), an index of insulin resistance, were higher in X+XO-treated rats. Our studies suggest that oxidative stress is a common factor that link anxiety-like behavior, hypertension and insulin resistance in rats. PMID:20816762

  11. Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress.

    PubMed

    Chankova, Stephka G; Dimova, Evgeniya G; Mitrovska, Zhana; Miteva, Daniela; Mokerova, Dariya V; Yonova, Petranka A; Yurina, Nadezhda P

    2014-03-01

    Today, the information from model species that differ in their resistance to oxidative stress and the determination of suitable plant markers for screening stress-resistant genotypes are essential for better understanding of plant stress responses and for selection. Here we aimed to assess the differences in antioxidant and HSP70B responses to paraquat treatment between genotypes susceptible and resistant to oxidative stress. Four genotypes of Chlamydomonas reinhardtii were chosen as a model of plant cells: two susceptible genotypes: wild type and paraquat-sensitive; and two paraquat-resistant genotypes: with high and moderate resistance. Varying responses to paraquat treatment were found depending on the genotype and paraquat concentrations. High paraquat concentrations (>50μM) were shown to be very stressful for all C. reinhardtii genotypes, leading to inhibition of enzyme activity. Only the paraquat-sensitive genotype responded to low-level paraquat treatment with a marked enhancement of SOD, CAT, GST activities. The lack of statistically significant response measured as SOD, CAT, GST activities in WT and resistant genotypes could be considered as an indication of absence of strong oxidative stress. This could relate to higher levels of endogenous SOD and CAT activities characteristic of moderately and highly paraquat-resistant genotypes. The response to lower paraquat concentrations evaluated as HSP70B accumulation was proportional to the level of genotype susceptibility to PQ. New evidence is provided that low-level oxidative stress impacts the antioxidant and HSP70B responses differently depending on the genotype resistance. In light of the still unresolved challenge for identification of reliable characters for screening of genotype resistance/susceptibility to oxidative stress, our study demonstrates that HSP70B accumulation could be used as an early marker for induced oxidative stress in the studied genotypes. The obtained results that the most pronounced

  12. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae

    PubMed Central

    Wu, Hsing-Ju; Seib, Kate L.; Srikhanta, Yogitha N.; Edwards, Jennifer; Kidd, Stephen P.; Maguire, Tina L .; Hamilton, Amanda; Pan, Kuan-Tin; Hsiao, He-Hsuan; Yao, Chen-Wen; Grimmond, Sean M.; Apicella, Michael A.; McEwan, Alastair G.; Wang, Andrew H-J.; Jennings, Michael P.

    2014-01-01

    Neisseria gonorrhoeae has evolved a complex and novel network of oxidative stress responses, including defense mechanisms that are dependent on manganese (Mn). We performed systematic analyses at the transcriptomic and proteomic (1D SDS-PAGE and Isotope-Coded Affinity Tag [ICAT]) levels to investigate the global expression changes that take place in a high Mn environment, which results in a Mn-dependent oxidative stress resistance phenotype. These studies revealed that 97 proteins are regulated at the post-transcriptional level under conditions of increased Mn concentration, including proteins involved in virulence (eg. Pilin, a key adhesin), oxidative stress defence (eg. superoxide dismutase), cellular metabolism, protein synthesis, RNA processing and cell division. Mn regulation of inorganic pyrophosphatase (Ppa) indicated the potential involvement of phosphate metabolism in the Mn-dependent oxidative stress defense. A detailed analysis of the role of Ppa and polyphosphate kinase (Ppk) in the gonococcal oxidative stress response revealed that ppk and ppa mutant strains showed increased resistance to oxidative stress. Investigation of these mutants grown with high Mn suggests that phosphate and pyrophosphate are involved in Mn-dependent oxidative stress resistance. PMID:20004262

  13. Oxidative Stress and the Etiology of Insulin Resistance and Type 2 Diabetes

    PubMed Central

    Henriksen, Erik J.; Diamond-Stanic, Maggie K.; Marchionne, Elizabeth M.

    2010-01-01

    The condition of oxidative stress arises when oxidant production exceeds antioxidant activity in cells and plasma. The overabundance of oxidants is mechanistically connected with the multifactorial etiology of insulin resistance, primarily in skeletal muscle tissue, and the subsequent development of type 2 diabetes. Two important mechanisms for this oxidant excess are 1) the mitochondrial overproduction of hydrogen peroxide and superoxide ion in conditions of energy surplus and 2) the enhanced activation of cellular NADPH oxidase via angiotensin II (AT1) receptors. Several recent studies are reviewed that support the concept that direct exposure of mammalian skeletal muscle to an oxidant stress (including hydrogen peroxide) results in stimulation of the serine kinase p38 mitogen-activated protein kinase (p38 MAPK), and that the engagement of this stress-activated p38 MAPK signaling is mechanistically associated with diminished insulin-dependent stimulation of insulin signaling elements and glucose transport activity. The beneficial interactions between the antioxidant α-lipoic acid and the advanced glycation end product inhibitor pyridoxamine to ameliorate oxidant stress-associated defects in whole-body and skeletal muscle insulin action in the obese Zucker rat, a model of pre-diabetes, are also addressed. Overall, this review highlights the importance of oxidative stress in the development of insulin resistance in mammalian skeletal muscle tissue, at least in part via a p38 MAPK-dependent mechanism, and indicates that interventions that reduce this oxidative stress and oxidative damage can improve insulin action in insulin-resistant animal models. Strategies to prevent and ameliorate oxidative stress remain important in the overall treatment of insulin resistance and type 2 diabetes. PMID:21163347

  14. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  15. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    PubMed Central

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca2+ concentration, including cytosolic and mitochondrial Ca2+ in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca2+ overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance. PMID:27330840

  16. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.

    PubMed

    Zhang, Lu; Alfano, James R; Becker, Donald F

    2015-02-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.

  17. Oxidative stress in severely obese persons is greater in those with insulin resistance.

    PubMed

    Tinahones, Francisco J; Murri-Pierri, Mora; Garrido-Sánchez, Lourdes; García-Almeida, Jose M; García-Serrano, Sara; García-Arnés, Juan; García-Fuentes, Eduardo

    2009-02-01

    The postprandial state seems to have a direct influence on oxidative status and insulin resistance. We determined the effect of an increase in plasma triglycerides after a high-fat meal on oxidative stress in severely obese patients with differing degrees of insulin resistance. The study was undertaken in 60 severely obese persons who received a 60-g fat overload with a commercial preparation. Measurements were made of insulin resistance, the plasma activity of various antioxidant enzymes, the total antioxidant capacity (TAC) and the plasma concentration of thiobarbituric acid reactive substances (TBARS). The patients with greater insulin resistance had a lower plasma superoxide dismutase (SOD) activity (P < 0.05) and a greater glutathione peroxidase (GSH-Px) activity (P < 0.05). The high-fat meal caused a significant reduction in SOD activity and an increase in the plasma concentration of TBARS in all the patients. Only the patients with lower insulin resistance experienced a significant increase in plasma catalase activity (2.22 +/- 1.02 vs. 2.93 +/- 1.22 nmol/min/ml, P < 0.01), remaining stable in the patients with greater insulin resistance. These latter patients had a reduction in plasma TAC (6.92 +/- 1.93 vs. 6.29 +/- 1.80 mmol/l, P < 0.01). In conclusion, our results show a close association between the degree of insulin resistance and markers of oxidative stress, both before and after a high-fat meal. The postprandial state causes an important increase in oxidative stress, especially in severely obese persons with greater insulin resistance. However, we are unable to determine from this study whether there is first an increase in oxidative stress or in insulin resistance.

  18. Differential response of DDT susceptible and resistant Drosophila melanogaster strains to DDT and oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic DDT resistance in Drosophila melanogaster is associated with increased cytochrome P450 expression. Increased P450 activity is also associated with increased oxidative stress. In contrast, increased glutathione S transferase (GST) expression has been associated with a greater ability of o...

  19. Mitochondria thioredoxin's backup role in oxidative stress resistance in Trichoderma reesei.

    PubMed

    Wang, Guokun; Wang, Haijun; Xiong, Xiaochao; Chen, Shulin; Zhang, Dongyuan

    2015-02-01

    Microorganisms often suffer from oxidative stress created from nutrient starvation and environmental changes. Thioredoxin (Trx) and glutathione (GSH) pathways are believed critical in related protective functions. The roles of Trx in improving abiotic stress resistance in Trichoderma reesei are still unclear. In this study, we identified a Trx-encoding gene, Trtrx1. The protein expressed located specifically in the mitochondria as verified by the fluorescence signals of TrTRX1-EGFP. TrTRX1 can catalyze the reduction of insulin disulfides by dithiothreitol (DTT). Loss of Trtrx1 however, did not lead to either significant morphology abnormality under normal and oxidative stress condition, or detectable difference in reactive oxygen species (ROS) resistance. The unchanged GSH amount in Trtrx1 deletion strain under normal condition and slight increase under oxidative stress condition, as well as the interplay between Trx and GSH systems suggested that GSH system was dominant and sufficient to maintain the mitochondrial redox state in T. reesei, where TrTRX1 played a role as the backup oxidative stress resistance.

  20. Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress

    PubMed Central

    Mendes, Vanda; Vilaça, Rita; de Freitas, Victor; Ferreira, Pedro Moradas; Mateus, Nuno; Costa, Vítor

    2015-01-01

    The health beneficial effects of dietary polyphenols have been attributed to their intrinsic antioxidant activity, which depends on the structure of the compound and number of hydroxyl groups. In this study, the protective effects of pyrogallol, phloroglucinol, and myricetin on the yeast Saccharomyces cerevisiae were investigated. Pyrogallol and myricetin, which have a pyrogallol structure in the B ring, increased H2O2 resistance associated with a reduction in intracellular oxidation and protein carbonylation, whereas phloroglucinol did not exert protective effects. The acquisition of oxidative stress resistance in cells pretreated with pyrogallol and myricetin was not associated with an induction of endogenous antioxidant defences as assessed by the analysis of superoxide dismutase and catalase activities. However, myricetin, which provided greater stress resistance, prevented H2O2-induced glutathione oxidation. Moreover, myricetin increased the chronological lifespan of yeast lacking the mitochondrial superoxide dismutase (Sod2p), which exhibited a premature aging phenotype and oxidative stress sensitivity. These findings show that the presence of hydroxyl groups in the ortho position of the B ring in pyrogallol and myricetin contributes to the antioxidant protection afforded by these compounds. In addition, myricetin may alleviate aging-induced oxidative stress, particularly when redox homeostasis is compromised due to downregulation of endogenous defences present in mitochondria. PMID:26000072

  1. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  2. Fission yeast Vps1 and Atg8 contribute to oxidative stress resistance.

    PubMed

    Mikawa, Takumi; Kanoh, Junko; Ishikawa, Fuyuki

    2010-03-01

    Organisms have evolved diverse means to protect themselves from oxidative stress. To better understand the molecular mechanisms involved in oxidative stress resistance, we screened fission yeast mutants sensitive to paraquat, a reagent acting on the mitochondria to generate reactive oxygen species. Among the mutants we isolated, we focused on a mutant defective in the vps1(+) (vacuolar protein sorting 1) gene that encodes a dynamin-related protein family member. vps1Δ exhibited aberrant mitochondrial and vacuolar morphology on treatment with paraquat. vps1Δ was sensitive to osmotic stress, high concentrations of Ca(2+) and Fe(2+). Interestingly, the deletion of atg8(+), a gene essential for the autophagy pathway, exhibited strong genetic interactions with vps1Δ. The vps1Δatg8Δ double mutant was additively sensitive to oxidative stress, osmotic stress and Ca(2+). The deletion of vps1(+) rescued the bizarre vacuolar morphology shown by atg8Δ. Such genetic interactions were not observed with other atg mutants. Furthermore, the atg8-G116A mutant did not show abnormal vacuolar morphology while being sensitive to nitrogen starvation, an autophagy-related phenotype. Taken together, we conclude that atg8(+) regulates vacuolar functions independently of its role in autophagy. We propose that Vps1 and Atg8 cooperatively participate in vacuolar function, thereby contributing to oxidative stress resistance.

  3. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress.

    PubMed

    Handtke, Stefan; Schroeter, Rebecca; Jürgen, Britta; Methling, Karen; Schlüter, Rabea; Albrecht, Dirk; van Hijum, Sacha A F T; Bongaerts, Johannes; Maurer, Karl-Heinz; Lalk, Michael; Schweder, Thomas; Hecker, Michael; Voigt, Birgit

    2014-01-01

    Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.

  4. Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance.

    PubMed

    Kang, Kyoung Ah; Hyun, Jin Won

    2017-01-01

    Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.

  5. Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance

    PubMed Central

    Kang, Kyoung Ah; Hyun, Jin Won

    2017-01-01

    Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy. PMID:28133507

  6. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  7. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway

    PubMed Central

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A.

    2016-01-01

    Abstract Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway. Antioxid. Redox Signal. 24, 543–547. PMID:26596469

  8. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction

    PubMed Central

    Keane, Kevin Noel; Cruzat, Vinicius Fernandes; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem; Newsholme, Philip

    2015-01-01

    The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation. PMID:26257839

  9. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Burdyliuk, Nadia; Lushchak, Volodymyr

    2017-01-01

    Alpha-ketoglutarate (AKG) is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+) but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG. PMID:28154578

  10. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria; Burdyliuk, Nadia; Lushchak, Volodymyr

    2017-01-01

    Alpha-ketoglutarate (AKG) is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe(2+) and Cu(2+)) but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  11. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    PubMed Central

    Özdemir, F; Çolak, R

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8) and untrained (N=8) men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM); 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE) and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP) significantly increased during the test and then decreased during the recovery in both groups (p<0.05); the POST-24 h LHP level was lower than PRE-LHP. Protein carbonyl (PCO) and superoxide dismutase (SOD) significantly increased (p<0.05); however, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and glutathione (GSH) were not affected by the RE (p > 0.05). The results indicated that there was no significant training status x intensity interaction for examined variables (p > 0.05). Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50%) is enough to increase LHP, whereas higher intensity (more than 80%) is required to evoke protein oxidation. PMID:26681835

  12. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance.

    PubMed

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N(1)-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H(2)O(2) and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  13. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Nikel, Pablo I; Oppezzo, Oscar J; López, Nancy I

    2013-02-01

    The role of Anr in oxidative stress resistance was investigated in Pseudomonas extremaustralis, a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. In silico analysis of the genome sequence of P. extremaustralis revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply.

  14. Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases

    PubMed Central

    Cheng, R; Choudhury, D; Liu, C; Billet, S; Hu, T; Bhowmick, NA

    2015-01-01

    Periodontal diseases are classified as inflammation affecting the supporting tissue of teeth, which eventually leads to tooth loss. Mild reversible gingivitis and severe irreversible periodontitis are the most common periodontal diseases. Periodontal pathogens initiate the diseases. The bacterial toxin, lipopolysaccharide (LPS), triggers the inflammatory response and leads to oxidative stress. However, the progress of oxidative stress in periodontal diseases is unknown. The purpose of this study is to examine oxidative stress and cell damage in gingivitis and periodontitis. Our results showed that LPS increases reactive oxygen species (ROS) accumulation in gingival fibroblast (GF). However, oxidative stress resulting from excessive ROS did not influence DNA damage and cell apoptosis within 24 h. The mechanism may be related to the increased expression of DNA repair genes, Ogg1, Neil1 and Rad50. Detection of apoptosis-related proteins also showed anti-apoptotic effects and pro-apoptotic effects were balanced. The earliest damage appeared in DNA when increased γH2AX, an early biomarker for DNA damage, was detected in the LPS group after 48 h. Later, when recurrent inflammation persisted, 8-OHdG, a biomarker for oxidative stress was much higher in periodontitis model compared to the control in vivo. Staining of 8-OHdG in human periodontitis specimens confirmed the results. Furthermore, TUNEL staining of apoptotic cells indicated that the periodontitis model induced more cell apoptosis in gingival tissue. This suggested GF could resist early and acute inflammation (gingivitis), which was regarded as reversible, but recurrent and chronic inflammation (periodontitis) led to permanent cell damage and death. PMID:27551475

  15. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance.

    PubMed

    Paul, Sanjoy; Doering, Tamara L; Moye-Rowley, W Scott

    2015-01-01

    Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in C. neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans.

  16. Gengnianchun, a Traditional Chinese Medicine, Enhances Oxidative Stress Resistance and Lifespan in Caenorhabditis elegans by Modulating daf-16/FOXO

    PubMed Central

    2017-01-01

    Objective. Gengnianchun (GNC), a traditional Chinese medicine (TCM), is primarily used to improve declining functions related to aging. In this study, we investigated its prolongevity and stress resistance properties and explored the associated regulatory mechanism using a Caenorhabditis elegans model. Methods. Wild-type C. elegans N2 was used for lifespan analysis and oxidative stress resistance assays. Transgenic animals were used to investigate pathways associated with antioxidative stress activity. The effects of GNC on levels of reactive oxygen species (ROS) and expression of specific genes were examined. Results. GNC-treated wild-type worms showed an increase in survival time under both normal and oxidative stress conditions. GNC decreased intracellular ROS levels by 67.95%. GNC significantly enhanced the oxidative stress resistance of several mutant strains, suggesting that the protective effect of GNC is independent of the function of these genes. However, the oxidative stress resistance effect of GNC was absent in worms with daf-16 mutation. We also found upregulation of daf-16 downstream targets including sod-3 and mtl-1. Conclusions. Our findings suggest that GNC extends the lifespan of C. elegans and enhances its resistance to oxidative stress via a daf-16/FOXO-dependent pathway. This study also provides a feasible method for screening the biological mechanisms of TCMs.

  17. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1.

    PubMed

    Watanabe, Masayuki; van der Veen, Stijn; Nakajima, Hadjime; Abee, Tjakko

    2012-01-01

    Lactobacillus plantarum is a facultatively anaerobic bacterium that can perform respiration under aerobic conditions in the presence of haem, with vitamin K2 acting as a source of menaquinone. We investigated growth performance and oxidative stress resistance of Lb. plantarum WCFS1 cultures grown in de Man, Rogosa and Sharpe (MRS) medium without and with added manganese under fermentative, aerobic, aerobic with haem, and respiratory conditions. Previous studies showed that Lb. plantarum WCFS1 lacks a superoxide dismutase and requires high levels of manganese for optimum fermentative and aerobic growth. In this study, respiratory growth with added manganese resulted in significantly higher cell densities compared to the other growth conditions, while without manganese added, similar but lower cell densities were reached. Notably, cells derived from the respiratory cultures showed the highest hydrogen peroxide resistance in all conditions tested, although similar activity levels of haem-dependent catalase were detected in cells grown under aerobic conditions with haem. These results indicate that oxidative stress resistance of Lb. plantarum is affected by respiratory growth, growth phase, haem and manganese. As levels of haem and manganese can differ considerably in the raw materials used in fermentation processes, including those of milk, meat and vegetables, the insight gained here may provide tools to increase the performance and robustness of starter bacteria.

  18. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response

    SciTech Connect

    Ji, Quanjiang; Zhang, Liang; Sun, Fei; Deng, Xin; Liang, Haihua; Bae, Taeok; He, Chuan

    2014-10-02

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H{sub 2}O{sub 2}. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.

  19. In Vivo Fitness Adaptations of Colistin-Resistant Acinetobacter baumannii Isolates to Oxidative Stress

    PubMed Central

    Singh, Shweta S.; Alamneh, Yonas; Casella, Leila G.; Ernst, Robert K.; Lesho, Emil P.; Waterman, Paige E.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT The loss of fitness in colistin-resistant (CR) Acinetobacter baumannii was investigated using longitudinal isolates from the same patient. Early CR isolates were outcompeted by late CR isolates for growth in broth and survival in the lungs of mice. Fitness loss was associated with an increased susceptibility to oxidative stress since early CR strains had reduced in vitro survival in the presence of hydrogen peroxide and decreased catalase activity compared to that of late CR and colistin-susceptible (CS) strains. PMID:27993849

  20. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response

    PubMed Central

    Sheng, Xia; Tucci, Jonathan; Parmentier, Jean-Hugues; Ji, Lingyun; Behan, James W.; Heisterkamp, Nora; Mittelman, Steven D.

    2016-01-01

    Adipocytes promote cancer progression and impair treatment, and have been shown to protect acute lymphoblastic leukemia (ALL) cells from chemotherapies. Here we investigate whether this protection is mediated by changes in oxidative stress. Co-culture experiments showed that adipocytes protect ALL cells from oxidative stress induced by drugs or irradiation. We demonstrated that ALL cells induce intracellular ROS and an oxidative stress response in adipocytes. This adipocyte oxidative stress response leads to the secretion of soluble factors which protect ALL cells from daunorubicin (DNR). Collectively, our investigation shows that ALL cells elicit an oxidative stress response in adipocytes, leading to adipocyte protection of ALL cells against DNR. PMID:27705905

  1. Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    PubMed Central

    Diezmann, Stephanie; Dietrich, Fred S.

    2009-01-01

    Background Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. Methodology/Principal Findings DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. Conclusions/Significance Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups. PMID:19390633

  2. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    PubMed

    Vaziri, Nosratola D; Liu, Shu-Man; Lau, Wei Ling; Khazaeli, Mahyar; Nazertehrani, Sohrab; Farzaneh, Seyed H; Kieffer, Dorothy A; Adams, Sean H; Martin, Roy J

    2014-01-01

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  3. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  4. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast.

    PubMed

    Kang, Woo Kyu; Kim, Yeong Hyeock; Kim, Byoung-Soo; Kim, Jeong-Yoon

    2014-08-01

    Silent Information Regulator 2 (Sir2), a conserved NAD(+)-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phase-dependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.

  5. Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice.

    PubMed

    Wang, Zixuan; Hou, Lin; Huang, Lanhui; Guo, Jun; Zhou, Xinli

    2017-04-22

    Oxidative stress is associated with obesity and may be accompanied by liver insulin resistance and mitochondrial dysfunction. Decreased mitochondrial respiratory chain enzymatic activities and decreased insulin metabolic signaling may promote these maladaptive changes. In this context, exenatide has been reported to reduce hepatic lipid deposition, improve insulin sensitivity and improve mitochondrial dysfunction. We hypothesized that exenatide would attenuate mitochondrial dysfunction by reducing hepatic lipid deposition, blunting oxidant stress and promoting insulin metabolic signaling in a high fat diet-induced model of obesity and insulin resistance. Sixteen-week-old male C57BL/6 diet-induced obese (DIO) mices and age-matched standard diet (STD) mices were treated with exenatide (10 μg/kg twice a day) for 28 days. Compared with untreated STD mice, untreated DIO mice exhibited deposited excessive lipid in liver and produced the oxidative stress in conjunction with insulin resistance, abnormal hepatic cells and mitochondrial histoarchitecture, mitochondrial dysfunction and reduced organism metabolism. Exenatide reduced hepatic steatosis, decreased oxidative stress, and improved insulin resistance in DIO mice, in concert with improvements in the insulin metabolic signaling, mitochondrial respiratory chain enzymatic activation, adenine nucleotide production, organism metabolism and weight gain. Results support the hypothesis that exenatide reduces hepatic cells and mitochondrial structural anomaly and improves insulin resistance in concert with improvements in insulin sensitivity and mitochondrial function activation, concomitantly with reductions in oxidative stress.

  6. Iron chelators increase the resistance of Ataxia telangeictasia cells to oxidative stress.

    PubMed

    Shackelford, Rodney E; Manuszak, Ryan P; Johnson, Cybele D; Hellrung, Daniel J; Link, Charles J; Wang, Suming

    2004-10-05

    Ataxia telangeictasia (A-T) is an autosomal recessive disorder characterized by immune dysfunction, genomic instability, chronic oxidative damage, and increased cancer incidence. Previously, desferal was found to increase the resistance of A-T, but not normal cells to exogenous oxidative stress in the colony forming-efficiency assay, suggesting that iron metabolism is dysregulated in A-T. Since desferal both chelates iron and modulates gene expression, we tested the effects of apoferritin and the iron chelating flavonoid quercetin on A-T cell colony-forming ability. We demonstrate that apoferritin and quercetin increase the ability of A-T cells to form colonies. We also show that labile iron levels are significantly elevated in Atm-deficient mouse sera compared to syngeniec wild type mice. Our findings support a role for labile iron acting as a Fenton catalyst in A-T, contributing to the chronic oxidative stress seen in this disease. Our findings further suggest that iron chelators might promote the survival of A-T cells and hence, individuals with A-T.

  7. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors.

    PubMed

    Olczak, Adriana A; Wang, Ge; Maier, Robert J

    2005-11-01

    Twenty-six Helicobacter pylori targeted mutant strains with deficiencies in oxidative stress combating proteins, including 12 double mutant strains were analyzed via physiological and proteomic approaches to distinguish the major expression changes caused by the mutations. Mutations were introduced into both a Mtz(S) and a Mtz(R) strain background. Most of the mutations caused increased growth sensitivity of the strains to oxygen, and they all exhibited clear compensatory up-expression of oxidative stress resistance proteins enabling survival of the bacterium. The most frequent up-expressed oxidative stress resistance factor (observed in 16 of the mutants) was the iron-sequestering protein NapA, linking iron sequestration with oxidative stress resistance. The up-expression of individual proteins in mutants ranged from 2 to 10 fold that of the wild type strain, even when incubated in a low O(2) environment. For example, a considerably higher level of catalase expression (4 fold of that in the wild-type strain) was observed in ahpC napA and ahpC sodB double mutants. A Fur mutant up-expressed ferritin (Pfr) protein 20-fold. In some mutant strains the bacterial DNA is protected from oxidative stress damage apparently via overexpression of oxidative stress-combating proteins such as NapA, catalase or MdaB (an NADPH quinone reductase). Our results show that H. pylori has a variety of ways to compensate for loss of major oxidative stress combating factors.

  8. Impact of different resistance training protocols on muscular oxidative stress parameters.

    PubMed

    Scheffer, Débora L; Silva, Luciano A; Tromm, Camila B; da Rosa, Guilherme L; Silveira, Paulo C L; de Souza, Claudio T; Latini, Alexandra; Pinho, Ricardo A

    2012-12-01

    This study analyzes oxidative stress in skeletal muscle using different resisted training protocols. We hypothesize that different types of training produce different specifics. To test our hypothesis, we defined 3 resistance training protocols and investigated the respective biochemical responses in muscle. Twenty-four male Wistar rats were distributed in 4 groups: untrained (UT), muscular resistance training (RT), hypertrophy training (HT), and strength training (ST). After 12 weeks of training on alternate days, the red portion of the brachioradialis was removed and the following parameters were assessed: lactate and glycogen content, superoxide production, antioxidant enzyme content, and activities (superoxide dismutase, SOD; catalase, CAT; GPx, glutathione peroxidase). Thiobarbituric acid-reactive substances (TBARS), carbonyl, and thiol groups were also measured. Results showed increased superoxide production (UT = 5.348 ± 0.889; RT = 5.117 ± 0,651; HT = 8.412 ± 0.431; ST = 6.354 ± 0.552), SOD (UT = 0.078 ± 0.0163; RT = 0.101 ± 0.013; HT = 0.533 ± 0.109; ST = 0.388 ± 0.058), GPx (UT = 0.290 ± 0.023; RT = 0.348 ± 0.014; HT = 0.529 ± 0.049; ST = 0.384 ± 0.038) activities, and content of GPx (HT = 3.8 times; ST = 3.0 times) compared with the UT group. CAT activity was lower (UT = 3.966 ± 0.670; RT = 3.474 ± 0.583; HT = 2.276 ± 0.302; ST = 2.028 ± 0.471) in HT and ST groups. Oxidative damage was observed in the HT group (TBARS = 0.082 ± 0.009; carbonyl = 0.73 ± 0.053; thiol = 12.78 ± 0.917) compared with the UT group. These findings indicate that HT causes an imbalance in oxidative parameters in favor of pro-oxidants, causing oxidative stress in skeletal muscle.

  9. Microbial resistance in relation to catalase activity to oxidative stress induced by photolysis of hydrogen peroxide.

    PubMed

    Nakamura, Keisuke; Kanno, Taro; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro

    2012-01-01

    The purpose of the present study was to evaluate the mechanism of microbial resistance to oxidative stress induced by photolysis of hydrogen peroxide (H(2)O(2)) in relation to microbial catalase activity. In microbicidal tests, Staphylococcus aureus and Candida albicans were killed and this was accompanied by production of hydroxyl radicals. C. albicans was more resistant to hydroxyl radicals generated by photolysis of H(2)O(2) than was S. aureus. A catalase activity assay demonstrated that C. albicans had stronger catalase activity; accordingly, catalase activity could be one of the reasons for the resistance of the fungus to photolysis of H(2)O(2). Indeed, it was demonstrated that C. albicans with strong catalase activity was more resistant to photolysis of H(2)O(2) than that with weak catalase activity. Kinetic analysis using a modified Lineweaver-Burk plot also demonstrated that the microorganisms reacted directly with hydroxyl radicals and that this was accompanied by decomposition of H(2)O(2). The results of the present study suggest that the microbicidal effects of hydroxyl radicals generated by photolysis of H(2)O(2) can be alleviated by decomposition of H(2)O(2) by catalase in microorganisms.

  10. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome.

    PubMed

    Enli, Yasar; Fenkci, Semin Melahat; Fenkci, Veysel; Oztekin, Ozer

    2013-12-01

    This study was designed to determine serum Fetuin-A levels and establish whether serum Fetuin-A level is related with insulin resistance, oxidative stress, ovarian hyperandrogenism and dyslipidemia in women with polycystic ovary syndrome (PCOS). Twenty-two patients with PCOS and twenty-one healthy control women were evaluated in this controlled clinical study. Serum Fetuin-A, lipid fractions, glucose, insulin, malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD) and other hormone (gonadotropins, androgens) levels were measured. The estimate of insulin resistance was calculated by homeostasis model assessment (HOMA-R). The women with PCOS had significantly higher serum fasting glucose, insulin, luteinizing hormone (LH), MDA, Fetuin-A levels, and LH/follicle-stimulating hormone (FSH) ratio, free androgen index (FAI), HOMA-IR than healthy women. However, sex hormone-binding globulin (SHBG) and GSH levels were significantly lower in patients with PCOS compared with controls. Fetuin-A was positively correlated with insulin, HOMA-IR and FAI. Multiple regression analysis revealed that FAI was strong predictor of serum Fetuin-A level. Serum Fetuin-A level was related with insulin resistance and ovarian hyperandrogenism in women with PCOS. These results suggest that Fetuin-A may have a role in triggering the processes leading to insulin resistance and androgen excess in PCOS.

  11. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity.

    PubMed

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J L; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  12. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  13. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast

    PubMed Central

    2013-01-01

    Abstract Significance: Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn2+, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn2+ with superoxide and specifically shield proteins from oxidative damage. Recent Advances: There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn2+ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. Critical Issues: What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn2+-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. Future Directions: Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn2+. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes. Antioxid. Redox Signal. 19, 933–944. PMID:23249283

  14. Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics.

    PubMed

    Heindorf, Magdalena; Kadari, Mahendar; Heider, Christine; Skiebe, Evelyn; Wilharm, Gottfried

    2014-01-01

    Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii.

  15. Impact of Acinetobacter baumannii Superoxide Dismutase on Motility, Virulence, Oxidative Stress Resistance and Susceptibility to Antibiotics

    PubMed Central

    Heider, Christine; Skiebe, Evelyn; Wilharm, Gottfried

    2014-01-01

    Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii. PMID:25000585

  16. Association of Circulating Irisin with Insulin Resistance and Oxidative Stress in Obese Women.

    PubMed

    Belviranli, M; Okudan, N; Çelik, F

    2016-09-01

    Irisin is a myokine/adipokine with potential role in obesity and diabetes. The purpose of the present study was to assess irisin levels and its association with insulin resistance and oxidative stress markers in premenopausal normal-weight and obese women. Ten obese (mean body mass index, 32.65±3.04 kg m(-2)) and 10 normal-weight (23.00±2.23 kg m(-2)) premenopausal women were involved in the present study. Anthropometric, and body composition parameters, blood chemistry, oxidative stress markers, and irisin concentrations of different groups were measured. Correlation analyses were performed between irisin and other measured parameters. Plasma irisin levels were lower in the obese group than the normal-weight group (p<0.05). Glucose, homeostasis model assessment index (HOMA-IR), and MDA levels in the obese group were higher than that in the normal-weight group (p<0.05). Plasma irisin was negatively correlated with insulin (r=-0.648, p<0.05), HOMA-IR (r=-0.664, p<0.05) and MDA (r=-0.690, p<0.05). These data suggest that irisin levels are decreased with obesity, and irisin may have an antidiabetic and antioxidant effects.

  17. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease

    PubMed Central

    Verdile, Giuseppe; Keane, Kevin N.; Cruzat, Vinicius F.; Medic, Sandra; Sabale, Miheer; Rowles, Joanne; Wijesekara, Nadeeja; Martins, Ralph N.; Fraser, Paul E.; Newsholme, Philip

    2015-01-01

    Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD. PMID:26693205

  18. Altered detoxification status and increased resistance to oxidative stress by K-ras transformation.

    PubMed

    Recktenwald, Christian V; Kellner, Roland; Lichtenfels, Rudolf; Seliger, Barbara

    2008-12-15

    Mutated K-ras is frequently found in human malignancies and plays a key role in many signal transduction processes resulting in an altered gene and/or protein expression pattern. Proteins controlled by a constitutive activated mitogen-activated protein kinase pathway are primarily related to alterations in the mitochondrial and nuclear compartments. Therefore, different K-Ras mutants and respective control cells were subjected to two-dimensional gel electrophoresis using basic pH gradients. This approach led to the identification of differentially expressed proteins, such as members of the heterogeneous ribonucleoprotein family, and enzymes involved in cellular detoxification as well as in oxidative stress. Increased expression of these enzymes was paralleled by an elevated tolerance of K-ras mutants against the cytotoxic potential of hydrogen peroxide and formaldehyde as well as an altered redox status based on enhanced intracellular glutathione (GSH) levels indicating an improved detoxification potential of defined K-ras transfectants, whereas down-regulation by RNA interference of candidate proteins reversed the tolerance against these compounds. This hypothesis is supported by an up-regulated expression of a key enzyme of the pentose phosphate pathway resulting in an increased production of NADPH required for anabolic processes as well as the rebuilding of oxidized GSH. Both the enhanced resistance against xenobiotic compounds as well as an altered oxidative pathway might confer growth advantages for tumor cells carrying dominant-positive K-ras mutations such as in lung or pancreatic adenocarcinoma.

  19. Açaí (Euterpe oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis elegans by Direct and Indirect Mechanisms

    PubMed Central

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796

  20. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  1. Cyanobacterial Mn-catalase ‘KatB’: Molecular link between salinity and oxidative stress resistance

    PubMed Central

    Chakravarty, Dhiman; Banerjee, Manisha; Waghmare, Namrata; Ballal, Anand

    2016-01-01

    ABSTRACT Catalases are ubiquitous enzymes that detoxify H2O2 in virtually all organisms exposed to oxygen. The filamentous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120, shows the presence of 2 genes (katA and katB) that encode Mn-catalases. We have recently shown that pre-treatment of Anabaena with NaCl causes substantial induction of the KatB protein, which consequently leads to increased oxidative stress resistance in that cyanobacterium. Interestingly, when compared to the wild-type, the katB mutant shows decreased growth and impaired photosynthetic activity in the presence of NaCl. Furthermore, the NaCl-treated katB mutant is extremely sensitive to H2O2. In this study, the ultrastructural changes occurring in the katB mutant and the wild-type Anabaena cells are analyzed to understand the cellular basis of the above-mentioned protective phenomena. Other data show that a wide variety of osmolytes induce katB expression in Anabaena, indicating that katB is a genuine osmo-inducible gene. These results have important biotechnological implications for the development of novel cyanobacterial biofertilzers and transgenic plants with improved resistance to salinity. PMID:27829979

  2. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress

    PubMed Central

    Ma, Heran; Liu, Rui; Zhao, Ziyuan; Zhang, Zhixian; Cao, Yue; Ma, Yudan; Guo, Yi; Xu, Li

    2016-01-01

    Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI). The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC–MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da). FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans), FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products. PMID:27455060

  3. Eel green fluorescent protein is associated with resistance to oxidative stress.

    PubMed

    Funahashi, Aki; Komatsu, Masaharu; Furukawa, Tatsuhiko; Yoshizono, Yuki; Yoshizono, Hikari; Orikawa, Yasuhiro; Takumi, Shota; Shiozaki, Kazuhiro; Hayashi, Seiichi; Kaminishi, Yoshio; Itakura, Takao

    2016-01-01

    Green fluorescent protein (GFP) from eel (Anguilla japonica) muscle (eelGFP) is unique in the vertebrates and requires bilirubin as a ligand to emit fluorescence. This study was performed to clarify the physiological function of the unique GFP. Investigation of susceptibility to oxidative stress was carried out using three types of cell lines including jellyfish (Aequorea coerulescens) GFP (jfGFP)-, or eel GFP (eelGFP)-expressing HEK293 cells, and control vector-transfected HEK293 cells. Binding of eelGFP to bilirubin was confirmed by the observation of green fluorescence in HEK293-eelGFP cells. The growth rate was compared with the three types of cells in the presence or absence of phenol red which possessed antioxidant activity. The growth rates of HEK293-CV and HEK293-jfGFP under phenol red-free conditions were reduced to 52 and 31% of those under phenol red. Under the phenol red-free condition, HEK293-eelGFP had a growth rate of approximately 70% of the phenol red-containing condition. The eelGFP-expressing cells were approximately 2-fold resistant to oxidative stress such as H2O2 exposure. The fluorescence intensity partially decreased or disappeared after exposure to H2O2, and heterogeneous intensity of fluorescence was also observed in isolated eel skeletal muscle cells. These results suggested eelGFP, but not jfGFP, coupled with bilirubin provided the antioxidant activity to the cells as compared to non-bound free bilirubin.

  4. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance

    PubMed Central

    McKenzie, Rachelle M. E.; Henry, Leroy G.; Boutrin, Marie-Claire; Ximinies, Alexia

    2016-01-01

    Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential − 10 region at − 3 nt and a − 35 region at − 39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage. PMID:26581883

  5. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase

    PubMed Central

    Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571

  6. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase.

    PubMed

    Victor, Victor M; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR.

  7. Aflatoxin production and environmental oxidative stress in Aspergillus flavus: Implications forhost resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of maize kernel tissues with aflatoxin is of major concern in global food production, particularly in developing countries. Resistance to aflatoxin is negatively influenced by environmental stress, namely drought stress. Given that reactive oxygen species (ROS) are known to accumul...

  8. Green Synthesis of Oxovanadium(IV)/chitosan Nanocomposites and Its Ameliorative Effect on Hyperglycemia, Insulin Resistance, and Oxidative Stress.

    PubMed

    Liu, Yanjun; Jie, Xu; Guo, Yongli; Zhang, Xin; Wang, Jingfeng; Xue, Changhu

    2016-02-01

    In this paper, the preparation, characterization, and ameliorative effect on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, oxidative stress in mice of novel oxovanadium(IV)/chitosan (OV/CS) nanocomposites were investigated. The nanobiocomposite was produced by chemical reduction by chitosan and L-ascorbic acid using microwave heating, under environment-friendly conditions, using aqueous solutions, and notably, by using both mediators as reducing and stabilizing agents. In addition, OV/CS nanocomposites were characterized by transmission electron microscopy, energy dispersive spectroscopy, particle size, and zeta potential measurements. In vivo experiments were designed to examine whether the OV/CS nanocomposites would provide additional benefits on oxidative stress, hyperglycemia, and insulin resistance in mice with type 2 diabetes. The results rendered insulin resistant by treating with OV/CS nanocomposites alleviate insulin resistance and improve oxidative stress. Such nanocomposite seem to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

  9. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance

    PubMed Central

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W.; van Vliet, Arnoud H. M.; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes. PMID:28082970

  10. Mechanisms of Oxidative Stress Resistance in The Brain: Lessons Learned From Hypoxia Tolerant Extremophilic Vertebrates

    PubMed Central

    Garbarino, Valentina R.; Orr, Miranda E.; Rodriguez, Karl A.; Buffenstein, Rochelle

    2016-01-01

    The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel’s second axiom that “evolution is smarter than we are” and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases. PMID:25841340

  11. Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression

    PubMed Central

    Lewerenz, J; Sato, H; Albrecht, P; Henke, N; Noack, R; Methner, A; Maher, P

    2012-01-01

    Selecting neuronal cell lines for resistance against oxidative stress might recapitulate some adaptive processes in neurodegenerative diseases where oxidative stress is involved like Parkinson's disease. We recently reported that in hippocampal HT22 cells selected for resistance against oxidative glutamate toxicity, the cystine/glutamate antiporter system xc−, which imports cystine for synthesis of the antioxidant glutathione, and its specific subunit, xCT, are upregulated. (Lewerenz et al., J Neurochem 98(3):916–25). Here, we show that in these glutamate-resistant HT22 cells upregulation of xCT mediates glutamate resistance, and xCT expression is induced by upregulation of the transcription factor ATF4. The mechanism of ATF4 upregulation consists of a 13 bp deletion in the upstream open reading frame (uORF2) overlapping the ATF4 open reading frame. The resulting uORF2–ATF4 fusion protein is efficiently translated even at a low phosphorylation levels of the translation initiation factor eIF2α, a condition under which ATF4 translation is normally suppressed. A similar ATF4 mutation associated with prominent upregulation of xCT expression was identified in PC12 cells selected for resistance against amyloid β-peptide. Our data indicate that ATF4 has a central role in regulating xCT expression and resistance against oxidative stress. ATF4 mutations might have broader significance as upregulation of xCT is found in tumor cells and associated with anticancer drug resistance. PMID:22095285

  12. Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus

    PubMed Central

    2013-01-01

    Background Pine wilt disease (PWD) caused by the pinewood nematode Bursaphelenchus xylophilus is one of the most serious forest diseases in the world. The role of B. xylophilus-associated bacteria in PWD and their interaction with the nematode, have recently been under substantial investigation. Several studies report a potential contribution of the bacteria for the PWD development, either as a helper to enhance the pathogenicity of the nematode or as a pathogenic agent expressing interesting traits related to lifestyle host-adaptation. Results We investigated the nematode-bacteria interaction under a severe oxidative stress (OS) condition using a pro-oxidant hydrogen peroxide and explored the adhesion ability of these bacteria to the cuticle surface of the nematodes. Our results clearly demonstrated a beneficial effect of the Serratia spp. (isolates LCN-4, LCN-16 and PWN-146) to B. xylophilus under the OS condition. Serratia spp. was found to be extremely OS-resistant, and promote survival of B. xylophilus and down-regulate two B. xylophilus catalase genes (Bxy-ctl-1 and Bxy-ctl-2). In addition, we show that the virulent isolate (Ka4) of B. xylophilus survives better than the avirulent (C14-5) isolate under the OS condition. The bacterial effect was transverse for both B. xylophilus isolates. We could not observe a strong and specific adhesion of these bacteria on the B. xylophilus cuticle surface. Conclusions We report, for the first time, that B. xylophilus associated bacteria may assist the nematode opportunistically in the disease, and that a virulent B. xylophilus isolate displayed a higher tolerance towards the OS conditions than an avirulent isolate. PMID:24365493

  13. Bovine retinal pericytes are resistant to glucose-induced oxidative stress in vitro.

    PubMed

    Agardh, Carl-David; Hultberg, Björn; Nayak, Ramesh C; Farthing-Nayak, Pamela; Agardh, Elisabet

    2005-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, and loss of pericytes represents early signs of its development. We tested the hypothesis that high glucose levels may induce signs of oxidative stress in cultured bovine retinal pericytes. Pericytes were exposed to either normal (5.5 mM) or high (22 mM) glucose levels for 1, 3, and 5 days. Signs of oxidative stress were measured by expression of copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase using real-time RTPCR. To elucidate the role of oxidative stress, we also measured glutathione (GSH) concentration in the cells and investigated the impact of thiol-reactive metal ions and hydrogen peroxide (H(2)O(2)) on intracellular GSH. Despite the stimulation with high glucose, thiol-reactive metal ions, or H(2)O(2), there was no clear increased expression of antioxidant enzymes or influence of GSH levels. Lipid peroxidation (malondialdehyde level) was increased in bovine aortic smooth muscle cells, but not in bovine retinal pericytes. The data indicate that pericytes do not develop oxidative stress in response to hyperglycemia. However, it is not definitively excluded that oxidative stress may occur after longer time periods of glucose stimulation.

  14. Modulation of Methuselah Expression Targeted to Drosophila Insulin-producing Cells Extends Life and Enhances Oxidative Stress Resistance

    PubMed Central

    Gimenez, Luis E. D.; Ghildyal, Parakashtha; Fischer, Kathleen E.; Hu, Hongxiang; Ja, William W.; Eaton, Benjamin A.; Wu, Yimin; Austad, Steven N.; Ranjan, Ravi

    2013-01-01

    Ubiquitously reduced signaling via Methuselah (MTH), a G-protein coupled receptor (GPCR) required for neurosecretion, has previously been reported to extend life and enhance stress resistance in flies. Whether these effects are due to reduced MTH signaling only in specific tissue(s) and through with signaling effects reduced MTH might produce these phenotypes remains unknown. We determined that reduced expression of mth targeted only to the insulin-producing cells (IPCs) of the fly brain was sufficient to extend life and enhance oxidative stress resistance. Paradoxically, we discovered that overexpression of mth targeted to the same cells has similar phenotypic effects to reduced expression due to MTH’s interaction with β-arrestin, which uncouples GPCRs from their G-proteins. We confirmed the functional relationship between MTH and β-arrestin by finding that IPC-targeted overexpression of β-arrestin alone mimics the longevity phenotype of reduced MTH signaling. As reduced MTH signaling also inhibits insulin secretion from the IPCs, the most parsimonious mechanistic explanation for its longevity and stress resistance enhancement might be through reduced insulin/IGF signaling (IIS). However, examination of phenotypic features of long-lived IPC-mth modulated flies as well as several downstream IIS targets implicates enhanced activity of the JNK stress resistance pathway more directly than insulin signaling in the longevity and stress resistance phenotypes. PMID:23121290

  15. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Liu, Dongyang; Yang, Xingbin

    2016-03-01

    Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs.

  16. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  17. O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans.

    PubMed

    Li, Hongyuan; Liu, Xin; Wang, Dan; Su, Liangping; Zhao, Tingting; Li, Zhongwei; Lin, Cong; Zhang, Yu; Huang, Baiqu; Lu, Jun; Li, Xiaoxue

    2017-03-08

    In C. elegans, the transcription factor skinhead-1 (SKN-1), the ortholog of human NF-E2-related factor 2 (Nrf-2), plays important roles in oxidative stress defense and aging processes. It has been documented that the activity of SKN-1 is regulated by its phosphorylation modification. However, whether other posttranslational modifications of SKN-1 affect its function remains unclear to date. Here we report, for the first time, that SKN-1 is O-GlcNAcylated at Ser470 and Thr493 by O-GlcNActransferase OGT-1. By generating the double mutations of Ser470/Thr493 in the wild type and skn-1(zu67) worms, respectively, we found that disruption of O-GlcNAc modification on SKN-1 repressed the accumulation of SKN-1 in the intestinal nuclei, and decreased the activities of SKN-1 in modulating lifespan and oxidative stress resistance. Moreover, under oxidative stress, SKN-1 was highly O-GlcNAcylated, resulting in the decrease of GSK-3-mediated phosphorylation at Ser483 adjacent to the O-GlcNAcylated residues (Ser470 and Thr493). These data suggest that O-GlcNAcylation of SKN-1 is crucial for regulating lifespan and oxidative stress resistance via the crosstalk with its phosphorylation in C. elegans. These findings have important implications for studying the functions of O-GlcNAcylation on Nrf-2 in human aging-related diseases.

  18. O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans

    PubMed Central

    Li, Hongyuan; Liu, Xin; Wang, Dan; Su, Liangping; Zhao, Tingting; Li, Zhongwei; Lin, Cong; Zhang, Yu; Huang, Baiqu; Lu, Jun; Li, Xiaoxue

    2017-01-01

    In C. elegans, the transcription factor skinhead-1 (SKN-1), the ortholog of human NF-E2-related factor 2 (Nrf-2), plays important roles in oxidative stress defense and aging processes. It has been documented that the activity of SKN-1 is regulated by its phosphorylation modification. However, whether other posttranslational modifications of SKN-1 affect its function remains unclear to date. Here we report, for the first time, that SKN-1 is O-GlcNAcylated at Ser470 and Thr493 by O-GlcNActransferase OGT-1. By generating the double mutations of Ser470/Thr493 in the wild type and skn-1(zu67) worms, respectively, we found that disruption of O-GlcNAc modification on SKN-1 repressed the accumulation of SKN-1 in the intestinal nuclei, and decreased the activities of SKN-1 in modulating lifespan and oxidative stress resistance. Moreover, under oxidative stress, SKN-1 was highly O-GlcNAcylated, resulting in the decrease of GSK-3-mediated phosphorylation at Ser483 adjacent to the O-GlcNAcylated residues (Ser470 and Thr493). These data suggest that O-GlcNAcylation of SKN-1 is crucial for regulating lifespan and oxidative stress resistance via the crosstalk with its phosphorylation in C. elegans. These findings have important implications for studying the functions of O-GlcNAcylation on Nrf-2 in human aging-related diseases. PMID:28272406

  19. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.

  20. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats.

    PubMed

    Bagul, Pankaj K; Middela, Harish; Matapally, Saidulu; Padiya, Raju; Bastia, Tanmay; Madhusudana, K; Reddy, B Raghunath; Chakravarty, Sumana; Banerjee, Sanjay K

    2012-09-01

    Metabolic syndrome and oxidative stress are common complications of type 2 diabetes mellitus. The present study was designed to determine whether resveratrol, a widely used nutritional supplement, can improve insulin sensitivity, metabolic complication as well as hepatic oxidative stress in fructose-fed rats. Male Sprague Dawley rats (180-200 g) were divided into four groups with 8 animals each. Fructose-fed insulin resistant group (Dia) animals were fed 65% fructose (Research diet, USA) for a period of 8 weeks, whereas control group (Con) animals were fed 65% cornstarch (Research Diet, USA). Resveratrol, 10 mg/kg/day (Dia+Resv) or metformin 300 mg/kg/day (Dia+Met) were administered orally to the 65% fructose-fed rats for 8 weeks. At the end of the feeding schedule, Dia group had insulin resistance along with increased blood glucose, triglyceride, uric acid and nitric oxide (NO) levels. Significant (p<0.05) increase in hepatic TBARS and conjugated dienes, and significant (p<0.05) decrease in hepatic SOD and vitamin C was observed in Dia group compared to Con group. Administration of metformin or resveratrol significantly (p<0.05) normalized all the altered metabolic parameters. However, a marked insulin sensitizing action was only observed in the Dia+Resv group. Similarly, while metformin administration failed to normalize the increased TBARS levels and decreased SOD activity, resveratrol showed a more promising effect of all oxidative stress parameters measured in the present study. Attenuation of hepatic oxidative stress in fructose-fed rat liver after resveratrol administration was associated with significant (p<0.05) increase in nuclear level of NRF2 compared with other groups. The present study demonstrates that resveratrol is more effective than metformin in improving insulin sensitivity, and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.

  1. Lactococcus lactis SpOx Spontaneous Mutants: a Family of Oxidative-Stress-Resistant Dairy Strains§

    PubMed Central

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Corthier, Gérard; Coqueran, Bérard; Nader-Macias, Maria-Elena; Gruss, Alexandra; Langella, Philippe

    2005-01-01

    Numerous industrial bacteria generate hydrogen peroxide (H2O2), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H2O2. Three SpOx mutants displayed greater H2O2 resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H2O2-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected. PMID:15870374

  2. Modulation of Cell Metabolic Pathways and Oxidative Stress Signaling Contribute to Acquired Melphalan Resistance in Multiple Myeloma Cells

    PubMed Central

    Zub, Kamila Anna; de Sousa, Mirta Mittelstedt Leal; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70–80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance. PMID:25769101

  3. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    PubMed

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.

  4. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  5. Oxidative stress, nitric oxide, and diabetes.

    PubMed

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.

  6. Multiple transport systems mediate virus-induced acquired resistance to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we report the phenomenon of acquired cross-tolerance to oxidative (UV-C and H2O2) stress in Nicotiana benthamiana plants infected with Potato virus X (PVX) and investigate the functional expression of transport systems in mediating this phenomenon. By combining multiple approaches, we...

  7. Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia.

    PubMed

    El-Halfawy, Omar M; Valvano, Miguel A

    2014-07-01

    Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic-resistant bacterium Burkholderia cenocepacia protects less-resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sublethal concentrations of PmB and other bactericidal antibiotics induces reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS, such as superoxide ion and hydrogen peroxide, was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild-type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sublethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine-synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study reveals BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.

  8. Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei.

    PubMed

    Wang, Guohong; Yin, Sheng; An, Haoran; Chen, Shangwu; Hao, Yanling

    2011-08-01

    Lactic acid bacteria (LAB) encounter various types of stress during industrial processes and gastrointestinal transit. Catalase (CAT) and bile salt hydrolase (BSH) can protect bacteria from oxidative stress or damage caused by bile salts by decomposing hydrogen peroxide (H(2)O(2)) or deconjugating the bile salts, respectively. Lactobacillus casei is a valuable probiotic strain and is often deficient in both CAT and BSH. In order to improve the resistance of L. casei to both oxidative and bile salts stress, the catalase gene katA from L. sakei and the bile salt hydrolase gene bsh1 from L. plantarum were coexpressed in L. casei HX01. The enzyme activities of CAT and BSH were 2.41 μmol H(2)O(2)/min/10(8) colony-forming units (CFU) and 2.11 μmol glycine/min/ml in the recombinant L. casei CB, respectively. After incubation with 8 mM H(2)O(2), survival ratio of L. casei CB was 40-fold higher than that of L. casei CK. Treatment of L. casei CB with various concentrations of sodium glycodeoxycholate (GDCA) showed that ~10(5) CFU/ml cells survived after incubation with 0.5% GDCA, whereas almost all the L. casei CK cells were killed when treaded with 0.4% GDCA. These results indicate that the coexpression of CAT and BSH confers high-level resistance to both oxidative and bile salts stress conditions in L. casei HX01.

  9. An evolutionarily conserved Rit GTPase–p38 MAPK signaling pathway mediates oxidative stress resistance

    PubMed Central

    Cai, Weikang; Rudolph, Jennifer L.; Harrison, Susan M. W.; Jin, Ling; Frantz, Aubrey L.; Harrison, Douglas A.; Andres, Douglas A.

    2011-01-01

    Ras-related small GTP-binding proteins control a wide range of cellular processes by regulating a variety of effector pathways, including prominent roles in the control of mitogen-activated protein kinase (MAPK) cascades. Although the regulatory role(s) for many Ras family GTPases are well established, the physiological function for the Rit/Rin subfamily has been lacking. Here, using both knockout mice and Drosophila models, we demonstrate an evolutionarily conserved role for Rit subfamily GTPases (mammalian Rit and Rin, and the Drosophila RIC homologue) in governing survival in response to oxidative stress. Primary embryonic fibroblasts derived from Rit knockout mice display increased apoptosis and selective disruption of MAPK signaling following reactive oxygen species (ROS) exposure but not in response to endoplasmic reticulum stress or DNA damage. These deficits include a reduction in ROS-mediated stimulation of a p38-MK2-HSP27 signaling cascade that controls Akt activation, directing Bad phosphorylation to promote cell survival. Furthermore, D-RIC null flies display increased susceptibility to environmental stresses and reduced stress-dependent p38 signaling, extending the Rit-p38 survival pathway to Drosophila. Together, our studies establish the Rit GTPases as critical regulators of an evolutionarily conserved, p38 MAPK–dependent signaling cascade that functions as an important survival mechanism for cells in response to oxidative stress. PMID:21737674

  10. A Role for Sigma Factor σE in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress

    PubMed Central

    Pacheco, Luis G. C.; Castro, Thiago L. P.; Carvalho, Rodrigo D.; Moraes, Pablo M.; Dorella, Fernanda A.; Carvalho, Natália B.; Slade, Susan E.; Scrivens, James H.; Feelisch, Martin; Meyer, Roberto; Miyoshi, Anderson; Oliveira, Sergio C.; Dowson, Christopher G.; Azevedo, Vasco

    2012-01-01

    Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ) factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σE for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE-null mutant strain (ΔsigE) of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO). The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS), confirming the significance of σE for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σE in composition of this bacterium’s exoproteome. PMID:22514549

  11. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae).

    PubMed

    Cheng, L; Watt, R; Piper, P W

    1994-05-10

    UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is expressed at a low level in vegetative cells, yet induced strongly in response to starvation, cadmium, DNA-damaging agents and heat shock. UBI4 is also expressed at a higher basal level in cells growing by respiration as compared to glucose-repressed cells growing by fermentation. This higher UBI4 expression of respiratory cultures probably helps to counteract the greater oxidative stress of respiratory growth. The effects of inactivating UBI4 on high temperature viability are more marked with respiratory cultures. Also loss of UBI4 leads to a considerably increased rate of killing of respiring cells by hydrogen peroxide, whereas the same gene inactivation has relatively little effect on the peroxide sensitivity of cells in which mitochondrial functions are repressed. This is the first study to reveal that ubiquitin levels in cells can influence their ability to withstand oxidative stress.

  12. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  13. mTORC2 Is Required for Rit-Mediated Oxidative Stress Resistance

    PubMed Central

    Cai, Weikang; Andres, Douglas A.

    2014-01-01

    Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which Rit-p38 signaling regulated Akt activity was unknown. Here, we identify mTORC2 as a critical downstream mediator of Rit-dependent survival signaling in response to reactive oxygen species (ROS) stress. Rit interacts with Sin1 (MAPKAP1), and Rit loss compromises ROS-dependent mTORC2 complex activation, blunting mTORC2-mediated phosphorylation of Akt kinase. Taken together, our findings demonstrate that the p38/mTORC2/Akt signaling cascade mediates Rit-dependent oxidative stress survival. Inhibition of this previously unrecognized cascade should be explored as a potential therapy of Rit-dependent malignancies. PMID:25531880

  14. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Raza, Haider; Yuvaraju, Priya; Beegam, Sumaya; John, Annie; Yasin, Javed; Hameed, Rasheed S; Adeghate, Ernest; Ali, Badreldin H

    2013-11-01

    Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.

  15. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  16. Oxidative stress and anxiety

    PubMed Central

    Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress. PMID:20357926

  17. Effects of a high-fat meal on resistance vessel reactivity and on indicators of oxidative stress in healthy volunteers.

    PubMed

    Schinkovitz, A; Dittrich, P; Wascher, T C

    2001-07-01

    High fat meals postprandially impair macrovascular endothelial function and a link to increased oxidative stress is suggested. Few information, on the other hand, exists on the effect of postprandial hyperlipidaemia on resistance vessel function. Under normal circumstances this vascular bed regulates tissue perfusion and, by controlling flow, impacts on macrovascular nitric oxide formation. The impact of a high fat meal (1200 kcal, 90 g fat, 46 g protein and 47 g carbohydrates) on postprandial resistance vessel reactivity and on indicators of oxidative stress was studied in 11 healthy subjects by venous-occlusion plethysmography using another six subjects as time control group. Ingestion of the test meal resulted in a pronounced increase of serum triglycerides from 1.05 +/- 0.61 mmol l(-1) in the fasting state to peak postprandial values of 1.94 +/- 0.41 mmol l(-1) (P < 0.001) reached after 4 h and a return to baseline after 8 h. Fasting peak reactive hyperaemia (RH) was 19.6 +/- 2.4 ml min(-1) (100 ml)(-1). Two hours after ingestion of the test meal peak RH was transiently reduced to 16.8 +/- 2.2 ml min(-1) (100 ml)(-1) (P < 0.05). No alteration of resting forearm perfusion was observed. The time course of peak RH suggested a potential biphasic effect of the test meal with an early impairment and a late increase of RH. Ingestion of a lipid rich test meal did not exert any influence on either total plasma antioxidant capacity given in trolox equivalents (513 +/- 26 micromol l(-1) at baseline) or on plasma peroxides measured as H2O2 equivalents (469 +/- 117 micromol l(-1)). Our results suggest that ingestion of a meal containing 90 g of fat results in a transient impairment of reactive hyperaemia in healthy subjects but these vascular alterations are not accompanied by signs of systemically increased oxidative stress.

  18. Tualang Honey Improves Human Corneal Epithelial Progenitor Cell Migration and Cellular Resistance to Oxidative Stress In Vitro

    PubMed Central

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in

  19. Oxidative stress and myocarditis.

    PubMed

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  20. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat

    2016-01-01

    For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.

  1. Skin resistance to oxidative stress induced by resveratrol: from Nrf2 activation to GSH biosynthesis.

    PubMed

    Soeur, J; Eilstein, J; Léreaux, G; Jones, C; Marrot, L

    2015-01-01

    Skin is particularly exposed to oxidative stress, either from environmental insults such as sunlight or pollution or as a consequence of specific impairments in antioxidant status resulting from pathologies or aging. Traditionally, antioxidant products are exogenously provided to neutralize pro-oxidant species. However, another approach based on stimulation of endogenous antioxidant defense pathways is more original. Resveratrol (RSV) was reported to display such a behavior in various tissues, but data about the mechanisms of action in skin are scarce. We show here that, in primary culture of normal human keratinocytes (NHKs) or in full-thickness reconstructed human skin, RSV activated the Nrf2 pathway at nontoxic doses, from 20 µM up to 100µM. Among the Nrf2 downstream genes, glutamylcysteinyl ligase and glutathione peroxidase-2 were induced at the mRNA and protein levels. In parallel, a significant increase in glutathione content, assessed by LC/MS analysis, was observed in both models. Nrf2 gene silencing experiments performed in NHKs confirmed that Nrf2 was involved in RSV-induced modulation of cellular antioxidant status, in part by increasing cellular glutathione content. Finally, improvement of endogenous defenses induced in RSV-pretreated reconstructed skin ensured protection against the toxic oxidative effects of cumene hydroperoxide (CHP). In fact after RSV pretreatment, in response to CHP stress, glutathione content did not decrease as in unprotected samples. Cellular alterations at the dermal-epidermal junction were clearly prevented. Together, these complementary experiments demonstrated the beneficial effects of RSV on skin, beyond its direct antioxidant properties, by upregulation of a cutaneous endogenous antioxidant pathway.

  2. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet

    PubMed Central

    Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah

    2016-01-01

    Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100

  3. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms may simultaneously encounter multiple stresses in their environment. To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems might provide against both oxidative and acid stress, the addition of diamide, a membrane-permeable thiol-specific ox...

  4. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong

    2014-08-01

    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis.

  5. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria.

    PubMed

    Gallardo, C; Monrás, J P; Plaza, D O; Collao, B; Saona, L A; Durán-Toro, V; Venegas, F A; Soto, C; Ulloa, G; Vásquez, C C; Bravo, D; Pérez-Donoso, J M

    2014-10-10

    Bacterial biosynthesis of nanoparticles represents a green alternative for the production of nanostructures with novel properties. Recently, the importance of antioxidant molecules on the biosynthesis of semiconductor fluorescent nanoparticles (quantum dots, QDs) by mesophilic bacteria was reported. The objective of this work was the isolation of psychrotolerant, oxidative stress-resistant bacteria from Antarctica to determine their ability for biosynthesizing CdS QDs at low temperatures. QDs biosynthesis at 15 °C was evaluated by determining their spectroscopic properties after exposing oxidative-stress resistant isolates identified as Pseudomonas spp. to Cd(2+) salts. To characterize the QDs biosynthetic process, the effect of metal exposure on bacterial fluorescence was determined at different times. Time-dependent changes in fluorescence color (green to red), characteristic of QDs, were observed. Electron microscopy analysis of fluorescent cells revealed that biosynthesized nanometric structures localize at the cell periphery. QDs were purified from the bacterial isolates and their fluorescence properties were characterized. Emission spectra displayed classical CdS peaks when excited with UV light. Thiol content, peroxidase activity, lipopolysaccharide synthesis, metabolic profiles and sulfide generation were determined in QDs-producing isolates. No relationship between QDs production and cellular thiol content or peroxidase activity was found. However, sulfide production enhanced CdS QDs biosynthesis. In this work, the use of Antarctic psychrotolerant Pseudomonas spp. for QDs biosynthesis at low temperature is reported for the first time.

  6. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress.

    PubMed

    Horváthová, Eva; Srančíková, Annamária; Regendová-Sedláčková, Eva; Melušová, Martina; Meluš, Vladimír; Netriová, Jana; Krajčovičová, Zdenka; Slameňová, Darina; Pastorek, Michal; Kozics, Katarína

    2016-01-01

    Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential.

  7. IscR plays a role in oxidative stress resistance and pathogenicity of a plant pathogen, Xanthomonas campestris.

    PubMed

    Fuangthong, Mayuree; Jittawuttipoka, Thichakorn; Wisitkamol, Ratiphorn; Romsang, Adisak; Duang-nkern, Jintana; Vattanaviboon, Paiboon; Mongkolsuk, Skorn

    2015-01-01

    Iron-sulfur ([Fe-S]) cluster is an essential cofactor of proteins involved in various physiological processes including cellular defense against oxidative stress. In Xanthomonas campestris pv. campestris (Xcc), IscR plays a negative role in regulation of the transcription of [Fe-S] assembly genes, iscR-sufBCDS. The expression level of sufBCDS was up-regulated in an Xcc iscR mutant. In addition, the iscR promoter activity in an Xcc iscR mutant was also higher than the wild-type strain, indicating an autoregulatory circuit. Purified IscR was shown to bind at the iscR promoter region and three putative IscR binding sites were identified. The expression of iscR-suf operon was highly induced by oxidant treatments and iron limited conditions. The iscR mutant showed increased sensitivity toward hydrogen peroxide phenotype but, surprisingly, had hyper-resistant phenotype toward plumbagin compared to the wild-type strain. Most importantly, the iscR mutant was impaired in its ability to cause lesion on leaves of a compatible host plant, Chinese radish (Raphanus sativus). These results demonstrate that a transcription regulator gene, iscR, negatively regulates genes involved in [Fe-S] biosynthesis and plays a role in oxidative stress response and pathogenesis of Xcc.

  8. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase.

    PubMed

    Carillon, Julie; Romain, Cindy; Bardy, Guillaume; Fouret, Gilles; Feillet-Coudray, Christine; Gaillet, Sylvie; Lacan, Dominique; Cristol, Jean-Paul; Rouanet, Jean-Max

    2013-12-01

    Oxidative stress is involved in obesity. However, dietary antioxidants could prevent oxidative stress-induced damage. We have previously shown the preventive effects of a melon superoxide dismutase (SODB) on oxidative stress. However, the mechanism of action of SODB is still unknown. Here, we evaluated the effects of a 1-month curative supplementation with SODB on the liver of obese hamsters. Golden Syrian hamsters received either a standard diet or a cafeteria diet composed of high-fat, high-sugar, and high-salt supermarket products, for 15 weeks. This diet resulted in insulin resistance and in increased oxidative stress in the liver. However, inflammatory markers (IL-6, TNF-α, and NF-κB) were not enhanced and no liver steatosis was detected, although these are usually described in obesity-induced insulin resistance models. After the 1-month supplementation with SODB, body weight and insulin resistance induced by the cafeteria diet were reduced and hepatic oxidative stress was corrected. This could be due to the increased expression of the liver antioxidant defense proteins (manganese and copper/zinc superoxide dismutase, catalase, and glutathione peroxidase). Even though no inflammation was detected in the obese hamsters, inflammatory markers were decreased after SODB supplementation, probably through the reduction of oxidative stress. These findings suggest for the first time that SODB could exert its antioxidant properties by inducing the endogenous antioxidant defense. The mechanisms underlying this induction need to be further investigated.

  9. Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria monocytogenes EGD-e In Vitro and In Vivo

    PubMed Central

    Mohamed, Walid; Mraheil, Mobarak Abu; Mukherjee, Krishnendu; Billion, André; Aharonowitz, Yair; Chakraborty, Trinad; Hain, Torsten

    2011-01-01

    Background Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species. Methods and Findings We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models. Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection. Conclusion This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions. PMID:21980369

  10. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    Oxidative stress occurs in cells when the equilibrium between prooxidant and antioxidant species is broken in favor of the prooxidant state. It is due to reactive oxygen species (ROS) generated either by the cellular metabolism such as phagocytosis, mitochondrial respiration, xenobiotic detoxification, or by exogenous factors such as ionizing radiation or chemical compounds performing red-ox reactions. Some ROS are extremely reactive and interact with all the macromolecules including lipids, nucleic acids and proteins. Cells have numerous defence systems to counteract the deleterious effects of ROS. Proteins and small molecules specifically eliminate ROS when they are formed. There are three species of superoxyde dismutases which transform the superoxyde anion O2- in hydrogen peroxyde H2O2 which in turn will be destroyed by peroxysomal catalase or by various peroxydases. There are numerous small molecules in the cell such as glutathion, alpha-tocopherol, vitamines A and C, melanine, etc. which are antioxydant molecules. ROS escaping destruction generate various lesions in DNA such as base modifications, degradation products of deoxyribose, chain breaks. These various lesions have been characterized and it is possible to quantitate them in the DNA of cells which have been irradiated or treated by free radical generating systems. The biological properties of the bases modified by ROS have been established. For example C8-hydroxyguanine (8-oxoG) is promutagenic since, if present in DNA during replication, it leads to incorporation of dAMP residues, leading to transversion mutation (GC-->TA). Purines whose imidazole ring is opened (Fapy residues) are stops for the DNA polymerase during DNA replication and are therefore potentially lethal lesions for the cell. Oxidized pyrimidines have comparable coding properties. Efficient DNA repair mechanisms remove these oxidized bases. In Escherichia coli cells, endonuclease III (NTH protein) and endonuclease VIII (NEI protein

  11. Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice.

    PubMed

    Liu, Yanjun; Xu, Jie; Guo, Yongli; Xue, Yong; Wang, Jingfeng; Xue, Changhu

    2015-10-01

    There is mounting evidence demonstrating causative links between hyperglycemia, oxidative stress, and insulin resistance, the core pathophysiological features of type 2 diabetes mellitus. Using a combinational approach, we synthesized a vanadium-antioxidant (i.e., l-ascorbic acid) complex and examined its effect on insulin resistance and oxidative stress. This study was designed to examine whether vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia, and insulin resistance in high-fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. Male C57BL/6J mice were fed a HFSD for 12 weeks to induce insulin resistance, rendering them diabetic. Diabetic mice were treated with rosiglitazone, sodium l-ascorbate, or VOAsc. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index, and serum adipocytokine levels were measured. Serum levels of nitric oxide (NO) parameters were also determined. The liver was isolated and used for determination of malondialdehyde, reduced glutathione, and catalase levels, and superoxide dismutase and glutathione peroxidase activities. VOAsc groups exhibited significant reductions in serum adipocytokine and NO levels, and oxidative stress parameters compared to the corresponding values in the untreated diabetic mice. The results indicated that VOAsc is non-toxic. In conclusion, we identified VOAsc as a potentially effective adjunct therapy for the management of type 2 diabetes.

  12. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection

    PubMed Central

    Lan, Lefu; Murray, Thomas S.; Kazmierczak, Barbara I.; He, Chuan

    2010-01-01

    Summary Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H2O2 resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and β-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H2O2 or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and β-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host. PMID:19943895

  13. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    SciTech Connect

    Thanan, Raynoo; Techasen, Anchalee; Hou, Bo; Jamnongkan, Wassana; Armartmuntree, Napat; Yongvanit, Puangrat; Murata, Mariko

    2015-08-14

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocyte cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from

  14. Proteomic Identification of Oxidized Proteins in Entamoeba histolytica by Resin-Assisted Capture: Insights into the Role of Arginase in Resistance to Oxidative Stress.

    PubMed

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Alterzon-Baumel, Sharon; Hertz, Rivka; Methling, Karen; Lalk, Michael; Ankri, Serge

    2016-01-01

    Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an infectious disease which targets the intestine and/or liver, is the second most common cause of human death due to a protozoan after malaria. Although amebiasis is usually asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the parasite is exposed to reactive oxygen species that are produced and released by cells of the innate immune system at the site of infection. The ability of the parasite to survive oxidative stress (OS) is essential for a successful invasion of the host. Although the effects of OS on the regulation of gene expression in E. histolytica and the characterization of some proteins whose function in the parasite's defense against OS have been previously studied, our knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the oxidized proteins in oxidatively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these proteins were associated with antioxidant activity, maintaining the parasite's cytoskeleton, translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs its function and contributes to the inhibition of E. histolytica adherence to host cells. We also provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and urea, is involved in the protection of the parasite against OS. Collectively, these results emphasize the importance of OS as a critical regulator of E. histolytica's functions and indicate a new role for arginase in E. histolytica's resistance to OS.

  15. Proteomic Identification of Oxidized Proteins in Entamoeba histolytica by Resin-Assisted Capture: Insights into the Role of Arginase in Resistance to Oxidative Stress

    PubMed Central

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Alterzon-Baumel, Sharon; Hertz, Rivka; Methling, Karen; Lalk, Michael; Ankri, Serge

    2016-01-01

    Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an infectious disease which targets the intestine and/or liver, is the second most common cause of human death due to a protozoan after malaria. Although amebiasis is usually asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the parasite is exposed to reactive oxygen species that are produced and released by cells of the innate immune system at the site of infection. The ability of the parasite to survive oxidative stress (OS) is essential for a successful invasion of the host. Although the effects of OS on the regulation of gene expression in E. histolytica and the characterization of some proteins whose function in the parasite's defense against OS have been previously studied, our knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the oxidized proteins in oxidatively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these proteins were associated with antioxidant activity, maintaining the parasite's cytoskeleton, translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs its function and contributes to the inhibition of E. histolytica adherence to host cells. We also provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and urea, is involved in the protection of the parasite against OS. Collectively, these results emphasize the importance of OS as a critical regulator of E. histolytica's functions and indicate a new role for arginase in E. histolytica's resistance to OS. PMID:26735309

  16. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress.

    PubMed Central

    Reveillaud, I; Niedzwiecki, A; Bensch, K G; Fleming, J E

    1991-01-01

    Superoxide dismutases (SOD) play a major role in the intracellular defense against oxygen radical damage to aerobic cells. In eucaryotes, the cytoplasmic form of the enzyme is a 32-kDa dimer containing two copper and two zinc atoms (CuZn SOD) that catalyzes the dismutation of the superoxide anion (O2-) to H2O2 and O2. Superoxide-mediated damage has been implicated in a number of biological processes, including aging and cancer; however, it is not certain whether endogenously elevated levels of SOD will reduce the pathological events resulting from such damage. To understand the in vivo relationship between an efficient dismutation of O2- and oxidative injury to biological structures, we generated transgenic strains of Drosophila melanogaster overproducing CuZn SOD. This was achieved by microinjecting Drosophila embryos with P-elements containing bovine CuZn SOD cDNA under the control of the Drosophila actin 5c gene promoter. Adult flies of the resulting transformed lines which expressed both mammalian and Drosophila CuZn SOD were then used as a novel model for evaluating the role of oxygen radicals in aging. Our data show that expression of enzymatically active bovine SOD in Drosophila flies confers resistance to paraquat, an O2(-)-generating compound. This is consistent with data on adult mortality, because there was a slight but significant increase in the mean lifespan of several of the transgenic lines. The highest level of expression of the active enzyme in adults was 1.60 times the normal value. Higher levels may have led to the formation of toxic levels of H2O2 during development, since flies that died during the process of eclosion showed an unusual accumulation of lipofuscin (age pigment) in some of their cells. In conclusion, our data show that free-radical detoxification has a minor by positive effect on mean longevity for several strains. Images PMID:1899285

  17. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems provide against oxidative stress, the addition of diamide or hydrogen peroxide were used concomitant with acid challenge at pH 2.5 to determine bacterial survival. Diamide and hydrogen peroxide both de...

  18. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  19. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose- fed rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic syndrome is characterized by insulin resistance, dyslipidemia, and increased oxidative stress. Tea polyphenols, as both insulin potentiating factors and antioxidants, might act in preventing the metabolic syndrome. We aimed to determine the effects of green tea extract consumption on oxida...

  20. Molecular Insights into Hydrogen Peroxide Sensing Mechanism of the Metalloregulator MntR in Controlling Bacterial Resistance to Oxidative Stresses.

    PubMed

    Chen, Zhaoyuan; Wang, Xinhui; Yang, Fan; Hu, Qingqing; Tong, Huichun; Dong, Xiuzhu

    2017-02-21

    Manganese contributes to anti-oxidative stress particularly in catalase-devoid bacteria, and DtxR family metalloregulators, through sensing cellular Mn(2+) content, regulate its homeostasis. Here, we show that metalloregulator MntR (So-MntR) functions dually as Mn(2+) and H2O2 sensors in mediating H2O2 resistance by an oral streptococcus. H2O2 disrupted So-MntR's binding to Mn(2+) transporter mntABC promoter, and induced disulfide-linked dimerization of the protein. Mass spectrometry identified Cys11-Cys156 and Cys11-Cys11 disulfide-linked peptides in H2O2 treated So-MntR. Site mutagenesis of Cys11 and Cys156, and particularly Cys11, abolished H2O2-induced disulfide-linked dimers, and weaken H2O2 damage on So-MntR binding, indicating that H2O2 inactivates So-MntR via disulfide-linked dimerization. So-MntR C123S mutant was extremely sensitive to H2O2 oxidization in dimerization/oligomerization, probably because the mutagenesis caused a conformational change that facilitates Cys11-Cys156 disulfide-linkage. Intermolecular Cys11-Cys11 disulfide was detected in C123S/C156S double mutant. Redox Western blot detected So-MntR oligomers in air-exposed cells, but remarkably decreased upon H2O2 pulsing, suggesting a proteolysis of the disulfide-linked So-MntR oligomers. Remarkably, elevated C11S and C156S but much lower C123S proteins were detected in H2O2-pulsed cells, confirming Cys11 and Cys156 contributed to H2O2-induced oligomerization and degradation. Accordingly, in the C11S and C156S mutants, expression of mntABC and cellular Mn(2+) were decreased but H2O2 susceptibility increased. While in the C123S mutant, increased mntABC expression, cellular Mn(2+) content and Mn-mediated H2O2 survival were determined. Given the wide distribution of Cys11 in streptococcal DtxR-like metalloregulators, the disclosed redox regulatory function and mechanism of So-MntR can be employed by the DtxR family proteins in bacterial resistance to oxidative stress.

  1. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence

    PubMed Central

    Saleh, Malek; Bartual, Sergio G; Abdullah, Mohammed R; Jensch, Inga; Asmat, Tauseef M; Petruschka, Lothar; Pribyl, Thomas; Gellert, Manuela; Lillig, Christopher H; Antelmann, Haike; Hermoso, Juan A; Hammerschmidt, Sven

    2013-01-01

    The respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we characterize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their redox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the way for the design of novel antimicrobials. PMID:24136784

  2. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  3. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  4. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  5. Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus subtilis

    PubMed Central

    Broden, Nicole J.; Flury, Sarah; King, Alyssa N.; Schroeder, Braden W.; Coe, Gabrielle Dierker

    2016-01-01

    understand how they differ from one another and to identify their function, if any, in protection against oxidative stress. Through these studies, we may better understand why bacteria have multiple enzymes designed to scavenge peroxides and thus have a more accurate understanding of oxidative stress resistance. PMID:26787766

  6. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  7. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis.

    PubMed

    Ilyas, Sidra; Rehman, Abdul

    2015-01-01

    In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl₂, Pb(NO₃)₂, NaAsO₂, CuSO₄ and K₂Cr₂O₇]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.

  8. Exploring the role of trehalose metabolism in resistance to oxidative and desiccation stress in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of trehalose, a disaccharide known to be involved in the ability of several organisms to withstand desiccation or drought...

  9. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni.

    PubMed

    Atack, John M; Kelly, David J

    2008-08-01

    The microaerophilic food-borne pathogen Campylobacter jejuni is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, Cj0637c and Cj1112c, are predicted to encode unrelated methionine sulphoxide reductases, which may repair oxidized methionine residues in proteins and thus contribute to oxidative stress defence. Cj0637 and Cj1112 were overexpressed, purified and shown by a coupled thioredoxin-thioredoxin reductase-NADPH assay to catalyse the stereospecific reduction of the S and R diastereoisomers, respectively, of the model compound methyl p-tolyl sulphoxide. Cj0637 is thus identified as MsrA and Cj1112 as MsrB. The contribution of these enzymes to oxidative and nitrosative stress resistance in C. jejuni was assessed by phenotypic analysis of a set of isogenic msrA, msrB and msrA/B insertion mutants. As RT-PCR data suggested a polar effect on Cj1111c in the msrB mutant, an msrB/msrB(+) merodiploid complementation strain was also constructed. The msrA/B strain was severely growth inhibited under standard microaerobic conditions, whereas the msrA and msrB strains grew normally. Agar plate disc diffusion assays showed that all mutants displayed increased sensitivity to hydrogen peroxide, organic peroxide, superoxide, and nitrosative and disulphide stress, but quantitative cell viability assays showed that the msrA/B double mutant was markedly more sensitive to both oxidative and nitrosative stress. All of the stress-sensitivity phenotypes observed for the msrB mutant were restored to wild-type in the msrB/msrB(+) merodiploid. It is concluded that MsrA and MsrB make a significant contribution to the protection of C. jejuni against oxidative and nitrosative stress.

  10. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress?

    PubMed

    Neto, Gabriel R; Novaes, Jefferson S; Salerno, Verônica P; Gonçalves, Michel M; Batista, Gilmário R; Cirilo-Sousa, Maria S

    2017-01-31

    The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72-96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.

  11. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  12. Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating

    PubMed Central

    Balvan, Jan; Gumulec, Jaromir; Raudenska, Martina; Krizova, Aneta; Stepka, Petr; Babula, Petr; Kizek, Rene; Adam, Vojtech; Masarik, Michal

    2015-01-01

    Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate. PMID:26671576

  13. Super CitriMax (HCA-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats.

    PubMed

    Asghar, Mohammad; Monjok, Emmanuel; Kouamou, Ghislaine; Ohia, Sunny E; Bagchi, Debasis; Lokhandwala, Mustafa F

    2007-10-01

    Super CitriMax (HCA-SX) is a novel calcium/potassium salt of (-)-hydroxycitric acid extracted from the dried fruit rind of the plant Garcinia cambogia, and commonly consumed as weight loss dietary supplement. In the present study, we investigated the effect of HCA-SX on inflammation, oxidative stress and insulin resistance in developing obese Zucker rats, an animal model of type II diabetes associated with inflammation and oxidative stress. Male Zucker rats (5-week old) were supplemented with vehicle (control) and HCA-SX in drinking water for 7 weeks. Oxidative stress markers, including malondialdehyde (MDA), protein carbonyl (DNPH), and protein tyrosine nitration (tyr-NO(2)) were measured in the liver and kidney tissues using biochemical and immunoblotting techniques. Compared to controls, the levels of MDA, DNPH and tyr-NO(2) were lower in the liver and kidney of HCA-SX-treated animals. Furthermore, the levels of C-reactive protein and interleukin-6, markers of inflammation measured by ELISA, were lower in the plasma of HCA-SX-supplemented animals compared to controls, as were levels of fasting plasma insulin, glucose, and triglycerides. Interestingly, insulin resistance did not develop in HCA-SX-supplemented rats. Food-intake and body weight gain was also lower in rats supplemented with HCA-SX compared to their control counterparts. These results suggest that HCA-SX supplementation in obese Zucker rats reduces food-intake, body weight gain, and also attenuates the increases in inflammation, oxidative stress, and insulin resistance observed in untreated animals. Therefore, HCA-SX may be used as an intervention to overcome obesity-related complications, including inflammation, oxidative stress, and insulin resistance.

  14. Oxidation Resistant Graphite Studies

    SciTech Connect

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  15. Erythropoietin and oxidative stress.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2008-05-01

    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  16. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress.

    PubMed

    Lee, Jeongmin; Hwang, Kwon-Tack; Heo, Moon-Soo; Lee, Jun-Haeng; Park, Kun-Young

    2005-01-01

    The antioxidative capacity of two lactic acid bacteria isolated from Kimchi, a Korean fermented food, was evaluated by measuring the resistance to reactive oxygen species (ROS) and compared with that of Lactobacillus rhamnosus GG as a positive control. Both intact cells and cell-free extracts of Lactobacillus plantarum KCTC 3099 exhibited higher antioxidative activity in inhibiting lipid peroxidation among the strains evaluated with an inhibitory level of 38.6% and 48.5%, respectively. To evaluate the resistance of the two lactic acid bacteria to ROS, we tested their survival in the presence of 1 mM hydrogen peroxide, 0.4 mM hydroxyl radicals, and superoxide anions induced by 10 mM paraquat. L. plantarum KCTC 3099 was viable even after 8 hours in the presence of both 1 mM hydrogen peroxide and 0.4 mM hydroxyl radicals. Moreover, the survival of L. plantarum KCTC 3099 was not affected by superoxide anions generated by using paraquat, indicating that it has resistance to superoxide anions. To define the antioxidative mechanism, superoxide dismutase (SOD) and metal ion chelating activities were determined. L. plantarum KCTC 3099 presented little SOD activity, but had the higher level of chelating activity for both Fe2+ and Cu2+ metal ions at 13.6 ppm and 23.9 ppm, respectively. These results suggested that the antioxidative capacity of L. plantarum KCTC 3099 is apparently caused by chelating metal ions rather than by SOD activation.

  17. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double-strand break repair.

    PubMed

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo A; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P C

    2014-11-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.

  18. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  19. Oxidation resistance of silicon ceramics

    NASA Technical Reports Server (NTRS)

    Yasutoshi, H.; Hirota, K.

    1984-01-01

    Oxidation resistance, and examples of oxidation of SiC, Si3N4 and sialon are reviewed. A description is given of the oxidation mechanism, including the oxidation product, oxidation reaction and the bubble size. The oxidation reactions are represented graphically. An assessment is made of the oxidation process, and an oxidation example of silicon ceramics is given.

  20. Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice.

    PubMed

    Ren, Daoyuan; Hu, Yuanyuan; Luo, Yiyang; Yang, Xingbin

    2015-10-01

    The present study was designed to evaluate the effects of selenium-containing tea polysaccharides (Se-GTP) from a new variety of selenium-enriched Ziyang green tea against high fructose (HF)-induced insulin resistance and hepatic oxidative stress in mice. Healthy male Kunming mice were fed 20% high fructose water and administered 200, 400 and 800 mg per kg bw Se-GTP for 8 weeks. Mice fed HF in drinking water displayed significant insulin resistance, hepatic steatosis and oxidative stress observed by hyperglycemia and hyperinsulinemia, as well as increases in hepatic non-esterified fatty acid (NEFA) and malonaldehyde (MDA). The administration of Se-GTP at 400 and 800 mg per kg bw significantly improved insulin sensitivity, and reduced liver steatosis and oxidative stress damage, and brought back the antioxidants and hepatic lipids towards near-normal values. In the oral glucose tolerance test, the administration of Se-GTP at 400 and 800 mg per kg bw had reduced plasma glucose concentrations after 30 min of glucose loading in HF-fed mice, suggesting that Se-GTP improved glucose intolerance. Histopathological examination indicated that the impaired pancreatic/hepatic tissues were effectively restored in HF-fed mice following the Se-GTP treatment. This is the first report showing that Se-GTP can ameliorate the high fructose-induced insulin resistance and hepatic oxidative injury.

  1. Design for Oxidation Resistance

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, Jon C.; Barrett, Charles A.

    1997-01-01

    Alloys intended for use in high-temperature environment rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation and hot corrosion resistance. To be protective, this oxide layer must be chemically, thermodynamically stable. Successful alloy design for oxidative environment is best achieved by developing alloys that are capable of forming adherent scales of either alumina (Al2O3), chromia (Cr2O3), or silica (SiO2). In this article, emphasis has been placed on the issue related to high-temperature oxidation of superalloys used in gas turbine engine application. Despite the complexity of these alloys, optimal performance has been associated with protective alumina scale formation. As will be described below, both compositional makeup and protective coatings play key role in providing oxidation protection. Other high-temperature materials described include nickel and titanium aluminide intermetallics, refractory metal, and ceramics.

  2. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance.

    PubMed

    Bekele, Raie T; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G K; Mackey, John R; Godbout, Roseline; Curtis, Jonathan M; McMullen, Todd P W; Brindley, David N

    2016-02-17

    Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer.

  3. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance

    PubMed Central

    Bekele, Raie T.; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G. K.; Mackey, John R.; Godbout, Roseline; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.

    2016-01-01

    Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer. PMID:26883574

  4. Oxidative stress and glycemic regulation.

    PubMed

    Ceriello, A

    2000-02-01

    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  5. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis.

    PubMed

    Xia, Xiaoyun; Larios-Valencia, Jessie; Liu, Zhi; Xiang, Fu; Kan, Biao; Wang, Hui; Zhu, Jun

    2017-01-01

    Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.

  6. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis

    PubMed Central

    Xia, Xiaoyun; Larios-Valencia, Jessie; Liu, Zhi; Xiang, Fu; Kan, Biao; Zhu, Jun

    2017-01-01

    Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae’s transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis. PMID:28151956

  7. Iron efflux by PmtA is critical for oxidative stress resistance and contributes significantly to group A streptococcus virulence.

    PubMed

    VanderWal, Arica R; Makthal, Nishanth; Pinochet-Barros, Azul; Helmann, John D; Olsen, Randall J; Kumaraswami, Muthiah

    2017-03-27

    Group A streptococcus (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defenses and suggested to protect against zinc toxicity. Here, we report that PmtA is a P1B4-type ATPase that functions as an Fe(II) exporter and aids GAS defenses against iron intoxication and oxidative stress. Expression of pmtA is specifically induced by iron excess and this induction requires PerR. Furthermore, the pmtA mutant exhibited increased sensitivity to iron toxicity and oxidative stress due to elevated intracellular accumulation of iron. RNA-sequencing analysis revealed that GAS undergoes significant alterations in gene expression to adapt to iron toxicity. Finally, using two mouse models of invasive infection, we demonstrated that iron efflux by PmtA is critical for bacterial survival during infection and GAS virulence. Together, these data demonstrate that PmtA is a key component of GAS antioxidant defenses and contributes significantly to GAS virulence.

  8. Effect of S-Methyl-L-Cysteine on Oxidative Stress, Inflammation and Insulin Resistance in Male Wistar Rats Fed with High Fructose Diet

    PubMed Central

    Thomas, Sithara; Senthilkumar, Gandhipuram Periyasamy; Sivaraman, Kuppuswamy; Bobby, Zachariah; Paneerselvam, Sankar; Harichandrakumar, Kotten Thazhath

    2015-01-01

    Background S-methyl cysteine (SMC) is a hydrophilic cysteine-containing compound naturally found in garlic and onion. The purpose of the present study was to investigate the protective effect of SMC on oxidative stress, inflammation and insulin resistance in an experiment of metabolic syndrome. Methods Male Wistar rats were divided into five groups (6 rats in each group), namely; control, control+S-methyl cysteine (SMC), high fructose diet (HFD), HFD+SMC and HFD+metformin. The 60% fructose used for 8 weeks and SMC in the dose of 100 mg/kg bw/day/rat was used in the study. The fasting glucose, insulin, insulin resistance, and tumor necrosis factor alpha and erythrocyte enzymatic antioxidants were measured. Results Increased levels of plasma glucose, insulin, malondialdehyde, tumor necrosis factor-alpha, and insulin resistance and decreased levels of glutathione, glutathione peroxidase, and catalase were found in rats on a high fructose diet. Oral administration of SMC (100 mg/kg bw/day/rat) for 60 days resulted in significant attenuation of plasma glucose, insulin, tumor necrosis factor–alpha, insulin resistance and improved antioxidant enzyme activities. Conclusion Oral treatment of SMC is effective in improving insulin resistance while attenuating metabolic syndrome, inflammation, and oxidative stress in male rats fed with fructose rich diet. PMID:25650289

  9. Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms.

    PubMed

    Sankar, P; Zachariah, Bobby; Vickneshwaran, V; Jacob, Sajini Elizabeth; Sridhar, M G

    2015-03-01

    Estrogen deficiency after menopause accelerates the redox imbalance and insulin signaling, leading to oxidative stress (OS) and insulin resistance (IR). The molecular mechanisms by which the loss of ovarian hormone leads to OS and IR remain unclear. In the present study we found that rats when subjected to ovariectomy (OVX) resulted in reduction of whole blood antioxidants and elevation of oxidant markers. The expression of anti-oxidant enzymes, superoxide dismutase (SOD1) and glutathione peroxidase (GPX1) was suppressed whereas the pro-oxidative enzyme NADPH oxidase (NOX4) and mitogen activated protein (MAP) kinases ERK 1/2 and p38 were increased at different tissues. Treatment with soy (SIF, 150 mg/kg BW for 12 weeks) extract markedly reversed these metabolic changes and improved OS. Ovariectomized rats also displayed glucose intolerance (GI) and IR as evident from the impaired glucose tolerance test, and reduced expression of adipose and hepatic insulin receptor beta (IRβ) and adipose tissue GLUT4. Treatment with SIF reversed the ovariectomy induced GI and IR. On the other hand, all these metabolic changes were further augmented when ovariectomy was followed by a high fat diet, and these changes were also reversed by SIF. Taken together, these findings emphasized the antioxidant property and anti-diabetic effects of soy isoflavones suggesting the use of this natural phytoestrogen as a strategy for relieving oxidative stress and insulin resistance in postmenopausal women.

  10. Oxidative stress & male infertility.

    PubMed

    Makker, Kartikeya; Agarwal, Ashok; Sharma, Rakesh

    2009-04-01

    The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.

  11. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  12. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  13. [Some peculiarities in the manifestation of oxidative stress and current status of antioxidant system in adolescents of different age groups with obesity, complicated by insulin resistance and without it].

    PubMed

    Kuleshova, D K; Davydov, V V

    2014-01-01

    The study has shown that neuroendocrine obesity in adolescents is associated with the formation of oxidative stress which is more pronounced in early than in late puberty. Obesity with concomitant insulin resistance increases manifestations of oxidative stress accompanied by a compensatory increase in the activity of catabolic enzymes and reduced capacity of the defense antioxidant system in late puberty. These alterations may be caused by age-related changes in hormonal secretion under conditions of insulin resistance in late puberty.

  14. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  15. Oxidative stress in myopia.

    PubMed

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  16. Chemical composition of Pleurotus eryngii polysaccharides and their inhibitory effects on high-fructose diet-induced insulin resistance and oxidative stress in mice.

    PubMed

    Ren, Daoyuan; Zhao, Yan; Nie, Yan; Lu, Xinshan; Sun, Yanfei; Yang, Xingbin

    2014-10-01

    High intake of dietary fructose exerts a number of adverse metabolic effects. The present study investigates the preventive effects of Pleurotus eryngii polysaccharides (PEP), which showed powerful antioxidant activity in vitro, on insulin resistance and oxidative stress in mice fed a high-fructose diet. PEP was identified by HPLC as the heteropolysaccharides with d-glucose (62.8%, mol%), d-galactose (24.4%) and d-mannose (9.8%) being the main component monosaccharides. Mice fed 20% fructose in drinking water for 6 weeks significantly displayed hyperglycemia, hyperinsulinemia, dyslipidemia and liver oxidative stress with impaired insulin sensitivity (p < 0.05). The administration of PEP at 400 and 800 mg kg(-1) bw significantly reduced the fasting serum glucose and insulin concentrations and lipid deposition in HF-fed mice, and caused the reduction of liver lipid peroxidation and the elevation of the hepatic antioxidant system. The histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a HF diet and the hepatoprotective effect of PEP. These results suggest that Pleurotus eryngii is a potential source of polysaccharides, and might be regarded as a novel preventive and therapeutic product for the mitigation of insulin resistance, oxidative stress and liver dysfunction.

  17. A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis.

    PubMed

    Wang, Fei; Zang, Xin-shan; Kabir, Muhammad Rezaul; Liu, Ke-lu; Liu, Zhen-shan; Ni, Zhong-fu; Yao, Ying-yin; Hu, Zhao-rong; Sun, Qi-xin; Peng, Hui-ru

    2014-10-15

    Wheat (Triticum aestivum L.) is one of the major grain crops, and heat stress adversely affects wheat production in many regions of the world. Previously, we found a heat-responsive gene named Lipid Transfer Protein 3 (TaLTP3) in wheat. TaLTP3 was deduced to be regulated by cold, ABA, MeJA, Auxin and oxidative stress according to cis-acting motifs in its promoter sequences. In this study, we show that TaLTP3 is responsive to prolonged water deficit, salt or ABA treatment in wheat seedlings. Also, TaLTP3 accumulation was observed after the plant suffered from heat stress both at the seedling and the grain-filling stages. TaLTP3 protein was localized in the cell membrane and cytoplasm of tobacco epidermal cells. Overexpression of TaLTP3 in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic Arabidopsis plants engineered to overexpress TaLTP3 showed higher thermotolerance than control plants at the seedling stage. Further investigation indicated that transgenic lines decreased H₂O₂ accumulation and membrane injury under heat stress. Taken together, our results demonstrate that TaLTP3 confers heat stress tolerance possibly through reactive oxygen species (ROS) scavenging.

  18. Ptgr1 expression is regulated by NRF2 in rat hepatocarcinogenesis and promotes cell proliferation and resistance to oxidative stress.

    PubMed

    Sánchez-Rodríguez, Ricardo; Torres-Mena, Julia Esperanza; Quintanar-Jurado, Valeria; Chagoya-Hazas, Victoria; Rojas Del Castillo, Emilio; Del Pozo Yauner, Luis; Villa-Treviño, Saul; Pérez-Carreón, Julio Isael

    2017-01-01

    Prostaglandin reductase-1 (Ptgr1) is an alkenal/one oxidoreductase that is involved in the catabolism of eicosanoids and lipid peroxidation such as 4-hydroxynonenal (4-HNE). Recently, we reported that Ptgr1 is overexpressed in human clinical and experimentally induced samples of hepatocellular carcinoma (HCC). However, how the expression of this gene is regulated and its role in carcinogenesis are not yet known. Here, we studied parameters associated with antioxidant responses and the mechanisms underlying the induction of Ptgr1 expression by the activation of Nuclear Factor (erythroid-derived-2)-like-2 (NRF2). For these experiments, we used two protocols of induced hepatocarcinogenesis in rats. Furthermore, we determined the effect of PTGR1 on cell proliferation and resistance to oxidative stress in cell cultures of the epithelial liver cell line, C9. Ptgr1 was overexpressed during the early phase in altered hepatocyte foci, and this high level of expression was maintained in persistent nodules until tumors developed. Ptgr1 expression was regulated by NRF2, which bound to an antioxidant response element at -653bp in the rat Ptgr1 gene. The activation of NRF2 induced the activation of an antioxidant response that included effects on proteins such as glutamate-cysteine ligase, catalytic subunit, NAD(P)H dehydrogenase quinone-1 (NQO1) and glutathione-S-transferase-P (GSTP1). These effects may have produced a reduced status that was associated with a high proliferation rate in experimental tumors. Indeed, when Ptgr1 was stably expressed, we observed a reduction in the time required for proliferation and a protective effect against hydrogen peroxide- and 4-HNE-induced cell death. These data were consistent with data showing colocalization between PTGR1 and 4-HNE protein adducts in liver nodules. These findings suggest that Ptgr1 and antioxidant responses act as a metabolic adaptation and could contribute to proliferation and cell-death evasion in liver tumor cells

  19. Oxidative stress and ageing.

    PubMed

    Birch-Machin, M A; Bowman, A

    2016-10-01

    Oxidative stress is the resultant damage due to redox imbalances (increase in destructive free radicals [reactive oxygen species (ROS)] and reduction in antioxidant protection/pathways) and is linked to ageing in many tissues including skin. In ageing skin there are bioenergetic differences between keratinocytes and fibroblasts which provide a potential ageing biomarker. The differences in skin bioenergy are part of the mitochondrial theory of ageing which remains one of the most widely accepted ageing theories describing subsequent increasing free radical generation. Mitochondria are the major source of cellular oxidative stress and form part of the vicious cycle theory of ageing. External and internal sources of oxidative stress include UVR/IR, pollution (environment), lifestyle (exercise and diet), alcohol and smoking all of which may potentially impact on skin although many exogenous actives and endogenous antioxidant defence systems have been described to help abrogate the increased stress. This also links to differences in skin cell types in terms of the UVR action spectrum for nuclear and mitochondrial DNA damage (the latter a previously described UVR biomarker in skin). Recent work associates bioenergy production and oxidative stress with pigment production thereby providing another additional potential avenue for targeted anti-ageing intervention in skin. This new data supporting the detrimental effects of the numerous wavelengths of UVR may aid in the development of cosmetic/sunscreen design to reduce the effects of photoageing. Recently, complex II of the mitochondrial electron transport chain appears to be more important than previously thought in the generation of free radicals (suggested predominantly by non-human studies). We investigated the relationship between complex II and ageing using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering

  20. EmrA1 Membrane Fusion Protein of Francisella tularensis LVS is required for Resistance to Oxidative Stress, Intramacrophage Survival and Virulence in Mice

    PubMed Central

    Ma, Zhuo; Banik, Sukalyani; Rane, Harshita; Mora, Vanessa T.; Rabadi, Seham M.; Doyle, Christopher R.; Thanassi, David G.; Bakshi, Chandra Shekhar; Malik, Meenakshi

    2014-01-01

    Francisella tularensis is a Category A Biodefense agent that causes a fatal human disease known as tularemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defenses to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild type F. tularensis LVS levels either by transcomplementation, inhibition of ROS generation, or infection in NADPH oxidase deficient (gp91Phox−/−) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox−/− mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defense mechanisms of F. tularensis. PMID:24397487

  1. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation.

    PubMed

    Röhl, Claudia; Armbrust, Elisabeth; Herbst, Eva; Jess, Anne; Gülden, Michael; Maser, Edmund; Rimbach, Gerald; Bösch-Saadatmandi, Christine

    2010-05-01

    Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.

  2. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans

    PubMed Central

    Ewald, Collin Yvès; Hourihan, John M; Bland, Monet S; Obieglo, Carolin; Katic, Iskra; Moronetti Mazzeo, Lorenza E; Alcedo, Joy; Blackwell, T Keith; Hynes, Nancy E

    2017-01-01

    Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity. DOI: http://dx.doi.org/10.7554/eLife.19493.001 PMID:28085666

  3. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans.

    PubMed

    Ewald, Collin Yvès; Hourihan, John M; Bland, Monet S; Obieglo, Carolin; Katic, Iskra; Moronetti Mazzeo, Lorenza E; Alcedo, Joy; Blackwell, T Keith; Hynes, Nancy E

    2017-01-13

    Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity.

  4. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus.

    PubMed

    Kyuma, Tatsuhiko; Kizaki, Hayato; Ryuno, Hiroki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-12-01

    We previously reported that the rRNA methyltransferases RsmI and RsmH, which are responsible for cytidine dimethylation at position 1402 of 16S rRNA in the decoding center of the ribosome, contribute to Staphylococcus aureus virulence. Here we evaluated other 16S rRNA methyltransferases, including KsgA (RsmA), RsmB/F, RsmC, RsmD, RsmE, and RsmG. Knockout of KsgA, which methylates two adjacent adenosines at positions 1518 and 1519 of 16S rRNA in the intersubunit bridge of the ribosome, attenuated the S. aureus killing ability against silkworms. The ksgA knockout strain was sensitive to oxidative stress and had a lower survival rate in murine macrophages than the parent strain. The ksgA knockout strain exhibited decreased translational fidelity in oxidative stress conditions. Administration of N-acetyl-l-cysteine, a free-radical scavenger, restored the killing ability of the ksgA knockout strain against silkworms. These findings suggest that the methyl-modifications of 16S rRNA by KsgA contribute to maintain ribosome function under oxidative conditions and thus to S. aureus virulence.

  5. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats.

    PubMed

    Reddy, Singareddy Sreenivasa; Ramatholisamma, Pasurla; Karuna, Rasineni; Saralakumari, Desireddy

    2009-09-01

    High intake of dietary fructose exerts a number of adverse metabolic effects. The aim of the present study was to investigate whether aqueous extract of Tinospora cordifolia stem (TCAE) alleviates high-fructose diet-induced insulin resistance and oxidative stress in rats. High-fructose diet (66% of fructose) and TCAE (400 mg/kg/day) were given simultaneously for a period of 60 days. Fructose fed rats showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, impaired glucose tolerance and impaired insulin sensitivity (P<0.05). TCAE treatment prevented the rise in glucose levels by 21.3%, insulin by 51.5%, triglycerides by 54.12% and glucose-insulin index by 59.8% of the fructose fed rats. Regarding liver antioxidant status, fructose fed rats showed higher values of lipid peroxidation (91.3%), protein carbonyl groups (44%) and lowered GSH levels (42.1%) and, lowered activities of enzymatic antioxidants, while TCAE treatment prevented all these observed abnormalities. In conclusion, our data indicate the preventive role of T. cordifolia against fructose-induced insulin resistance and oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of chronic diseases characterized by hyperinsulinemia, hypertriglyceridemia, insulin resistance and aggravated antioxidant status.

  6. Beneficial effects of hydro-alcoholic extract of Caralluma fimbriata against high-fat diet-induced insulin resistance and oxidative stress in Wistar male rats.

    PubMed

    Sudhakara, G; Mallaiah, P; Sreenivasulu, N; Sasi Bhusana Rao, B; Rajendran, R; Saralakumari, D

    2014-06-01

    The main aim of this study was to investigate the beneficial effects of hydro-alcoholic extract of Caralluma fimbriata (CFE) on the effects of high-fat diet feeding on insulin resistance and oxidative stress in Wistar rats. High-fat diet (60% of fat) and CFE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 90 days. Feeding with high-fat diet resulted in the development of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia and impaired insulin sensitivity (P < 0.05). Administration of CFE to high-fat diet-fed rats for 90 days resulted in a significant improvement in plasma glucose, insulin, leptin, and triglycerides. Regarding liver antioxidant status, high-fat fed rats showed higher levels of lipid peroxidation, protein oxidation and lower GSH levels and lower activities of enzymatic antioxidants, while CFE treatment prevented all these observed abnormalities. In conclusion, intake of CFE may be beneficial for the suppression of high-fat diet-induced insulin resistance and oxidative stress.

  7. Influence of Insulin Resistance and TNF-α on the Inflammatory Process, Oxidative Stress, and Disease Activity in Patients with Rheumatoid Arthritis

    PubMed Central

    Delongui, Francieli; Alfieri, Daniela Frizon; Lozovoy, Marcell Alysson Batisti; Amin, Ricardo Braga; Dichi, Isaias; Simão, Andréa Name Colado

    2016-01-01

    The aim of this study was to evaluate the involvement of TNF-α and insulin resistance (IR) in the inflammatory process, oxidative stress, and disease activity in patients with rheumatoid arthritis (RA). This cross-sectional study included 270 subjects (control group, n = 97) and RA patients (n = 173). RA patients were divided into four groups: the first group without IR and not using antitumor necrosis factor-α (TNF−) (G1, IR− TNF−); the second group without IR and using anti-TNF-α (G2, IR− TNF+); the third group with IR and not using anti-TNF-α (G3, IR+ TNF−); and the fourth group with IR and using anti-TNF-α (G4, IR+ TNF+). G3 and G4 had higher (p < 0.05) advanced oxidation protein products (AOPPs) and oxidative stress index (OSI) compared to G1. G4 group presented higher (p < 0.05) AOPPs and OSI than G2. TRAP was significantly lower in G3 compared to G1. Plasma TNF-α levels were significantly higher in G4 and G2 compared to G1 (p < 0.0001) and G3 (p < 0.0001 and p < 0.01, resp.). The presence of insulin resistance was robustly associated with both oxidative stress and TNF-α levels. More studies are warranted to verify if IR can be involved in therapeutic failure with TNF-α inhibitors. This trial is registered with Brazilian Clinical Trials Registry Register number RBR-2jvj92. PMID:27340510

  8. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats

    PubMed Central

    Vázquez-Medina, José Pablo; Popovich, Irina; Thorwald, Max A.; Viscarra, Jose A.; Rodriguez, Ruben; Sonanez-Organis, Jose G.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2013-01-01

    Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H2O2-producing Nox4 increased 40–100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50–70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60–70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart. PMID:23771688

  9. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats.

    PubMed

    Vázquez-Medina, José Pablo; Popovich, Irina; Thorwald, Max A; Viscarra, Jose A; Rodriguez, Ruben; Sonanez-Organis, Jose G; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2013-08-15

    Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H₂O₂-producing Nox4 increased 40-100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50-70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60-70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart.

  10. The Effect of Green Tea versus Sour Tea on Insulin Resistance, Lipids Profiles and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized Clinical Trial

    PubMed Central

    Mozaffari-Khosravi, Hassan; Ahadi, Zeinab; Fallah Tafti, Marziyeh

    2014-01-01

    Background: By decreasing oxidative stress and whereby decreasing insulin resistance, it may be possible to decrease complications of Diabetes Mellitus (DM). Green tea and sour tea contain phytochemicals which have anti-oxidative function. The aim of this study is to compare the effect of sour and green tea consumption on insulin resistance and oxidative stress in DM. Methods: This study is a randomized clinical trial in which 100 type 2 diabetes patients were randomly assigned into sour tea group (ST) and green tea group (GT). The patients were instructed to drink 150ml sour tea and green tea infusion, respectively, three times a day for 4 weeks. Fasting blood sugar (FBS), fructosamine, lipid profiles, fasting blood insulin (FBI), homeostasis model assessment of insulin resistance (HOMA-IR); beta cell function (b%), insulin sensitivity (S%) and malondialdehyde (MDA) were monitored. Results: HDL-c significantly increased in both groups. The median of FBI in GT showed significant decrease (8.5 to 6.6 μIU/mL) unlike the ST which showed significant increase (8.2 to 16.3 μIU/mL). The median of HOMA-IR after the intervention in GT showed lower levels than the ST (1.1 vs. 1.6, P=0.004). The median of b% only in ST showed significant increase from 38.2% at the baseline to 47.7% after the intervention. The mean of S% only in ST showed significant decrease after the intervention.      Conclusion: This study shows that the use of 150 ml infusion of green tea or sour tea, three times a day for four weeks, has positive effect on insulin resistance and certain lipoproteins in type 2 DM. Trial Registration Number: IRCT201107317161N1  PMID:25242840

  11. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats.

    PubMed

    Salman, Zenat K; Refaat, Rowaida; Selima, Eman; El Sarha, Ashgan; Ismail, Menna A

    2013-08-15

    Increasing evidence has established causative links between obesity, chronic inflammation and insulin resistance; the core pathophysiological feature in type 2 diabetes mellitus. This study was designed to examine whether the combination of L-cysteine and metformin would provide additional benefits in reducing oxidative stress, inflammation and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Male Wistar rats were fed a high-fat diet (HFD) for 8 weeks to induce insulin resistance after which they were rendered diabetic with low-dose streptozotocin. Diabetic rats were treated with metformin (300 mg/kg/day), L-cysteine (300 mg/kg/day) and their combination along with HFD for another 2 weeks. Control rats were fed normal rat chow throughout the experiment. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index (HOMA-IR) and serum free fatty acids (FFAs) were measured. Serum levels of the inflammatory markers; monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and nitrite/nitrate were also determined. The liver was isolated and used for determination of malondialdehyde (MDA), reduced glutathione (GSH), caspase-3 and cytochrome c levels. The hypoglycemic effect of the combination therapy exceeded that of metformin and L-cysteine monotherapies with more improvement in insulin resistance. All treated groups exhibited significant reductions in serum FFAs, oxidative stress and inflammatory parameters, caspase-3 and cytochrome c levels compared to untreated diabetic rats with the highest improvement observed in the combination group. In conclusion, the present results clearly suggest that L-cysteine can be strongly considered as an adjunct to metformin in management of type 2 diabetes.

  12. Associating growth-phase-related changes in the proteome of Acinetobacter baumannii with increased resistance to oxidative stress.

    PubMed

    Soares, Nelson C; Cabral, Maria P; Gayoso, Carmen; Mallo, Susana; Rodriguez-Velo, Patricia; Fernández-Moreira, Esteban; Bou, Germán

    2010-04-05

    Acinetobacter baumannii is an opportunistic pathogen that has been associated with severe infections and outbreaks in hospitals. At present, very little is known about the biology of this bacterium, particularly as regards mechanisms of adaptation, persistence and virulence. To investigate the growth phase-dependent regulation of proteins in this microorganism, we analyzed the proteomic pattern of A. baumannii ATCC 17978 at different stages of in vitro growth. In this study, proteomics analyses were conducted using 2-DE and MALDI-TOF/TOF complemented by iTRAQ LC-MS/MS. Here we have identified 107 differentially expressed proteins. We highlight the induction of proteins associated with signaling, putative virulence factors and response to stress (including oxidative stress). We also present evidence that ROS (O(2)(-) and OH(-)) and RNI (ONOO(-)) accumulate during late stages of growth. Further assays demonstrated that stationary cells survive at high concentrations of H(2)O(2) (30 mM), the O(2)(-) donor menadione (500 muM) or the NO donor sodium nitroprusside (1 mM), and showed a higher survival rate against several bactericidal antibiotics. The growth phase-dependent changes observed in the A. baumannii proteome are discussed within a context of adaptive biological responses, including those related to ROS and RNI stress.

  13. Loss of p14(ARF) confers resistance to heat shock- and oxidative stress-mediated cell death by upregulating β-catenin.

    PubMed

    Damalas, Alexander; Velimezi, Georgia; Kalaitzakis, Alexander; Liontos, Michalis; Papavassiliou, Athanasios G; Gorgoulis, Vassilis; Angelidis, Charalampos

    2011-04-15

    The p14(ARF) is a key tumor suppressor induced mainly by oncogenic stimuli. Although p14(ARF) does not seem to respond to DNA damage, there are very few data regarding its role in other forms of stress, such as heat shock (HS) and oxidative stress (OS). Here, we report that suppression of p14(ARF) increased resistance to cell death when cells were treated with H(2) O(2) or subjected to HS. In this setting, protection from cell death was mediated by elevated levels and activity of β-catenin, as downregulation of β-catenin alleviated the protective role of p14(ARF) silencing. Moreover, Hsp70 was shown to regulate β-catenin protein levels by interacting with p14(ARF) , suggesting that Hsp70, p14(ARF) and β-catenin form a regulatory network. This novel pathway triggers cell death signals when cells are exposed to HS and OS.

  14. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress.

    PubMed

    Nciri, Riadh; Desmoulin, Frank; Allagui, Mohamed Saleh; Murat, Jean-Claude; Feki, Abdelfattah El; Vincent, Christian; Croute, Françoise

    2013-03-01

    Recent studies suggest that lithium protects neurons from death induced by a wide array of neurotoxic insults, stimulates neurogenesis and could be used to prevent age-related neurodegenerative diseases. In this study, SH-SY5Y human neuronal cells were cultured in the absence (Con) or in the presence (Li+) of a low lithium concentration (0.5 mm Li2CO3, i.e. 1 mm lithium ion) for 25-50 wk. In the course of treatment, growth rate of Con and Li+ cells was regularly analysed using Alamar Blue dye. Resistance to oxidative stress was investigated by evaluating: (1) the adverse effects of high concentrations of lithium (4-8 mm) or glutamate (20-90 mm) on cell growth rate; (2) the levels of lipid peroxidation (TBARS) and total glutathione; (3) the expression levels of the anti-apoptotic Bcl-2 protein. In addition, glucose metabolism was investigated by analysing selected metabolites in culture media and cell extracts by 1H-NMR spectroscopy. As compared to Con, Li+ cells multiplied faster and were more resistant to stress, as evidenced by a lower dose-dependent decrease of Alamar Blue reduction and dose-dependent increase of TBARS levels induced by toxic doses of lithium and glutamate. Total glutathione content and Bcl-2 level were increased in Li+ cells. Glucose consumption and glycolytic activity were enhanced in Li+ cells and an important release of pyruvate was observed. We conclude that chronic exposure to lithium induces adaptive changes in metabolism of SH-SY5Y cells involving a higher cell growth rate and a better resistance to oxidative stress.

  15. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses.

    PubMed

    Tan, Jiali; Wang, Congying; Xiang, Bin; Han, Ruihong; Guo, Zhenfei

    2013-02-01

    myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.

  16. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  17. Effect of food seasoning spices mixture on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats.

    PubMed

    Suganthi, R; Rajamani, S; Ravichandran, M K; Anuradha, C V

    2007-03-01

    High fructose feeding in normal rats induces insulin resistance and also facilitates oxidative damage. The present study examines the effects of a spices mixture (SM) on oxidative stress markers and antioxidant potential in tissues of high fructose-fed insulin-resistant rats. Male Wistar rats received a semisynthetic diet containing either 60% fructose or 60% starch. SM administration at three different doses (10, 30, and 50 mg/day per rat) was initiated orally 15 days later and continued for the next 30 days. After the total experimental period of 45 days, peroxidation of lipids and antioxidant status in liver and kidney were quantified. Fructose-treated rats showed increased levels of peroxidation indices such as thiobarbituric acid-reactive substances and lipid hydroperoxides in tissues. The condition was associated with an inadequate antioxidant system. Administration of SM along with fructose diet reduced the levels of peroxidation markers in tissues and improved the antioxidant status. The positive effect of SM on the oxidant-antioxidant balance could be attributed to the active constituents of the different spices present in the mixture.

  18. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress.

    PubMed

    Pedreño, Yolanda; González-Párraga, Pilar; Martínez-Esparza, María; Sentandreu, Rafael; Valentín, Eulogio; Argüelles, Juan-Carlos

    2007-05-01

    In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of intracellular trehalose and trehalose-metabolizing enzymes revealed that significant amounts of the disaccharide were stored in response to thermal and oxidative challenge in the two cell types. The antioxidant activities of catalase and glutathione reductase were triggered by moderate oxidative exposure (5 mM H(2)O(2)), whereas superoxide dismutase was inhibited dramatically by H(2)O(2), where a more marked decrease was observed in atc1Delta cells. In turn, the atc1Delta mutant exhibited a decreased capacity of hypha and pseudohypha formation tested in different media. Finally, the homozygous null mutant in a mouse model of systemic candidiasis displayed strongly reduced pathogenicity compared with parental or heterozygous strains. These results suggest not only a novel role for the ATC1 gene in dimorphism and infectivity, but also that an interconnection between stress resistance, dimorphic conversion and virulence in C. albicans may be reconsidered. They also support the hypothesis that Atc1p is not involved in the physiological hydrolysis of endogenous trehalose.

  19. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  20. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  1. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  2. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p.

    PubMed

    Cuéllar-Cruz, Mayra; Briones-Martin-del-Campo, Marcela; Cañas-Villamar, Israel; Montalvo-Arredondo, Javier; Riego-Ruiz, Lina; Castaño, Irene; De Las Peñas, Alejandro

    2008-05-01

    We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.

  3. High Resistance to Oxidative Stress in the Fungal Pathogen Candida glabrata Is Mediated by a Single Catalase, Cta1p, and Is Controlled by the Transcription Factors Yap1p, Skn7p, Msn2p, and Msn4p▿

    PubMed Central

    Cuéllar-Cruz, Mayra; Briones-Martin-del-Campo, Marcela; Cañas-Villamar, Israel; Montalvo-Arredondo, Javier; Riego-Ruiz, Lina; Castaño, Irene; De Las Peñas, Alejandro

    2008-01-01

    We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H2O2 than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H2O2 and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H2O2 in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence. PMID:18375620

  4. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.

    PubMed

    Liu, Dong; Chan, Sic L; de Souza-Pinto, Nadja C; Slevin, John R; Wersto, Robert P; Zhan, Ming; Mustafa, Khadija; de Cabo, Rafael; Mattson, Mark P

    2006-01-01

    The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.

  5. The effect of some factors of polluted environment on catalase responses and resistance of microbial isolates against toxic oxidative stress.

    PubMed

    Polek, Bystrík; Godočíková, Jana

    2012-10-01

    The properties of bacterial isolates from polluted environments which are characterized by increased levels of oxidative stress do not reflect only the level of contaminants, but also arise as a consequence of many permanently changed conditions. The survival rate of Comamonas terrigena N3H isolates from an environment with elevated levels of H(2)O(2) is correlated with stimulation of catalase. The response of bacterial catalase to the effect of phenol in exogenous conditions was affected by the presence of an additional contaminant, Cd(2+). An isolate of Aspergillus niger selected from river sediment containing 363 mg/kg As, 93 mg/kg Sb at pH 5.2-4.8 grew on Czapek-Dox agar ~1.6 times faster than an isolate of the same species from coal dust sediment with approximately the same level of pollution (400 mg/kg As) but somewhat lower pH (3.3-2.8). It also exhibited differences in the microscopic characteristics of its mycelial structures. Both isolates exhibited a higher tolerance to the exogenic toxic effects of metals (As(5+), Cd(2+), and Cu(2+) at 5, 25, or 50 mg/L) than a control culture, but the differences in tolerance between them were only slight. These laboratory results suggest that there are complicated relationships which may exist in the "in situ" environment.

  6. TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses.

    PubMed

    Morán-Diez, M Eugenia; Cardoza, Rosa E; Gutiérrez, Santiago; Monte, Enrique; Hermosa, Rosa

    2010-02-01

    The evolutionarily conserved Dim1 proteins belong to the TRX fold superfamily. An EST showing high identity values with genes coding for Dim1 proteins was selected from an EST library collection of Trichoderma virens T59. Here, we report the cloning, characterization, and functional analysis of a T. virens T59 TvDim1 gene. The TvDim1 gene, with a sequence size of 614 bp, was PCR-amplified and found to contain three introns. The TvDim1 gene was present as a single copy in the T. virens genome and was also present in another five Trichoderma strains investigated. Increased levels of expression and redox-activity were detected when the fungus was grown in the presence of H(2)O(2). The overexpression and silencing of TvDim1 in T. harzianum T34 gave rise to transformants, with higher and lower growth, redox-activity, and quantities of biomass, respectively, than the wild-type strain after culture under oxidative stress.

  7. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis.

    PubMed

    Lyu, Changjiang; Hu, Sheng; Huang, Jun; Luo, Maiqi; Lu, Tao; Mei, Lehe; Yao, Shanjing

    2016-12-05

    Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound which can paradoxically produce themselves and lead to the growth arrest and cell death. To counteract the potentially toxic effects of this compound, the gene katE encoding a heme-dependent catalase (CAT) belonging to the family of monofunctional CATs was cloned from Lactobacillus brevis CGMCC1306. The enhanced homologous CAT expression was achieved using the NICE system. L. brevis cells with overexpressed CAT showed 685-fold and 823-fold higher survival when exposed to 30mmol/L of H2O2 and long-term aerated stress (after 72h), respectively, than that of the wild type cells. Furtherly, the effects of activated CAT on GABA production in L. brevis were investigated. A GABA production level of 66.4g/L was achieved using two-step biotransformation that successively employed the growing and resting cells derived from engineering L. brevis CAT. These results demonstrated clearly that overexpression of the KatE gene in L. brevis led to a marked increased survival in oxidizing environment, and shed light on a novel feasible approach to enhance the GABA production level by improving the antioxidative properties.

  8. Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants

    PubMed Central

    Terhzaz, Selim; Cabrero, Pablo; Chintapalli, Venkateswara R.; Davies, Shireen-A.

    2010-01-01

    Mitochondria accumulate at sites of intense metabolic activity within cells, but the adaptive value of this placement is not clear. In Drosophila, sesB encodes the ubiquitous isoform of adenine nucleotide translocase (ANT, the mitochondrial inner membrane ATP/ADP exchanger); null alleles are lethal, whereas hypomorphic alleles display sensitivity to a range of stressors. In the adult renal tubule, which is densely packed with mitochondria and hence enriched for sesB, both hypomorphic alleles and RNA interference knockdowns cause the mitochondria to lose their highly polarized distribution in the tissue and to become rounded. Basal cytoplasmic and mitochondrial calcium levels are both increased, and neuropeptide calcium response compromised, with concomitant defects in fluid secretion. The remaining mitochondria in sesB mutants are overactive and maintain depleted cellular ATP levels while generating higher levels of hydrogen peroxide than normal. When sesB expression is knocked down in just tubule principal cells, the survival of the whole organism upon oxidative stress is reduced, implying a limiting role for the tubule in homeostatic response to stressors. The physiological impacts of defective ANT expression are thus widespread and diverse. PMID:20009008

  9. Oxidative stress and hypertension.

    PubMed

    Harrison, David G; Gongora, Maria Carolina

    2009-05-01

    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  10. Oxidative stress in Parkinson's disease.

    PubMed

    Nikam, Shashikant; Nikam, Padmaja; Ahaley, S K; Sontakke, Ajit V

    2009-01-01

    Oxidative stress contributes to the cascade, leading to dopamine cell degeneration in Parkinson's disease. However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to or is a consequence of, these events. Oxidative stress was assessed by estimating lipid peroxidation product in the form of thiobarbituric acid reactive substances, nitric oxide in the form of nitrite & nitrate. Enzymatic antioxidants in the form of superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin and non enzymatic antioxidant vitamins e.g. vitamin E and C in either serum or plasma or erythrocyte in 40 patients of Parkinson's disease in the age group 40-80 years. Trace elements e.g. copper, zinc and selenium were also estimated. Plasma thiobarbituric acid reactive substances and nitric oxide levels were Significantly high but superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, vitamin-E, vitamin-C, copper, zinc and selenium levels were significantly low in Parkinson's disease when compared with control subjects. Present study showed that elevated oxidative stress may be playing a role in dopaminergic neuronal loss in substentia nigra pars compacta and involved in pathogenesis of the Parkinson's disease.

  11. Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system.

    PubMed

    Yang, Yang; Fan, Fangfang; Zhuo, Rui; Ma, Fuying; Gong, Yangmin; Wan, Xia; Jiang, Mulan; Zhang, Xiaoyu

    2012-08-01

    Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H(2)O(2) and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H(2)O(2). The stimulation of laccase gene expression in response to exogenous H(2)O(2) stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H(2)O(2)-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage.

  12. Organic Nitrates and Nitrate Resistance in Diabetes: The Role of Vascular Dysfunction and Oxidative Stress with Emphasis on Antioxidant Properties of Pentaerithrityl Tetranitrate

    PubMed Central

    Oelze, Matthias; Schuhmacher, Swenja; Daiber, Andreas

    2010-01-01

    Organic nitrates represent a class of drugs which are clinically used for treatment of ischemic symptoms of angina as well as for congestive heart failure based on the idea to overcome the impaired NO bioavailability by “NO” replacement therapy. The present paper is focused on parallels between diabetes mellitus and nitrate tolerance, and aims to discuss the mechanisms underlying nitrate resistance in the setting of diabetes. Since oxidative stress was identified as an important factor in the development of tolerance to organic nitrates, but also represents a hallmark of diabetic complications, this may represent a common principle for both disorders where therapeutic intervention should start. This paper examines the evidence supporting the hypothesis that pentaerithrityl tetranitrate may represent a nitrate for treatment of ischemia in diabetic patients. This evidence is based on the considerations of parallels between diabetes mellitus and nitrate tolerance as well as on preliminary data from experimental diabetes studies. PMID:21234399

  13. Organic nitrates and nitrate resistance in diabetes: the role of vascular dysfunction and oxidative stress with emphasis on antioxidant properties of pentaerithrityl tetranitrate.

    PubMed

    Oelze, Matthias; Schuhmacher, Swenja; Daiber, Andreas

    2010-01-01

    Organic nitrates represent a class of drugs which are clinically used for treatment of ischemic symptoms of angina as well as for congestive heart failure based on the idea to overcome the impaired NO bioavailability by "NO" replacement therapy. The present paper is focused on parallels between diabetes mellitus and nitrate tolerance, and aims to discuss the mechanisms underlying nitrate resistance in the setting of diabetes. Since oxidative stress was identified as an important factor in the development of tolerance to organic nitrates, but also represents a hallmark of diabetic complications, this may represent a common principle for both disorders where therapeutic intervention should start. This paper examines the evidence supporting the hypothesis that pentaerithrityl tetranitrate may represent a nitrate for treatment of ischemia in diabetic patients. This evidence is based on the considerations of parallels between diabetes mellitus and nitrate tolerance as well as on preliminary data from experimental diabetes studies.

  14. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata.

    PubMed

    Chen, Li-Hung; Tsai, Hsieh-Chin; Yu, Pei-Ling; Chung, Kuang-Ren

    2017-01-01

    Major Facilitator Superfamily (MFS) transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin), and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA). AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP) kinases, the 'two component' histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter.

  15. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.

  16. Increased Abundance of Proteins Involved in Resistance to Oxidative and Nitrosative Stress at the Last Stages of Growth and Development of Leishmania amazonensis Promastigotes Revealed by Proteome Analysis

    PubMed Central

    Alonso, Ana; García-Tabares, Francisco; Mena, María C.; Ciordia, Sergio; Larraga, Vicente

    2016-01-01

    Leishmania amazonensis is one of the major etiological agents of the neglected, stigmatizing disease termed american cutaneous leishmaniasis (ACL). ACL is a zoonosis and rodents are the main reservoirs. Most cases of ACL are reported in Brazil, Bolivia, Colombia and Peru. The biological cycle of the parasite is digenetic because sand fly vectors transmit the motile promastigote stage to the mammalian host dermis during blood meal intakes. The amastigote stage survives within phagocytes of the mammalian host. The purpose of this study is detection and identification of changes in protein abundance by 2DE/MALDI-TOF/TOF at the main growth phases of L. amazonensis promastigotes in axenic culture and the differentiation process that takes place simultaneously. The average number of proteins detected per gel is 202 and the non-redundant cumulative number is 339. Of those, 63 are differentially abundant throughout growth and simultaneous differentiation of L. amazonensis promastigotes. The main finding is that certain proteins involved in resistance to nitrosative and oxidative stress are more abundant at the last stages of growth and differentiation of cultured L. amazonensis promastigotes. These proteins are the arginase, a light variant of the tryparedoxin peroxidase, the iron superoxide dismutase, the regulatory subunit of the protein kinase A and a light HSP70 variant. These data taken together with the decrease of the stress-inducible protein 1 levels are additional evidence supporting the previously described pre-adaptative hypothesis, which consists of preparation in advance towards the amastigote stage. PMID:27776144

  17. Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications.

    PubMed

    Mirabella, A; Terwagne, M; Zygmunt, M S; Cloeckaert, A; De Bolle, X; Letesson, J J

    2013-02-01

    Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts.

  18. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism.

    PubMed

    Cao, Yingying; Huang, Shan; Dai, Baodi; Zhu, Zhenyu; Lu, Hui; Dong, Lingling; Cao, Yongbing; Wang, Yan; Gao, Pinghui; Chai, Yifeng; Jiang, Yuanying

    2009-02-01

    Candida albicans, an opportunistic pathogen, can undergo programmed cell death upon various stimuli, including oxidative stress. In this study, we showed that deletion of CaMCA1, a homologue of Saccharomyces cerevisiae metacaspase YCA1, could both attenuated oxidative stress-induced cell death and caspase activation. Compared to wild-type strain, Camca1Delta mutant showed higher accumulation of trehalose and transcription of the genes related to trehalose biosynthesis (TPS2 and TPS3) under the condition of oxidative stress. Furthermore, lower intracellular ATP concentration and mitochondrial membrane potential, less endogenous reactive oxygen species (ROS) generation were observed in Camca1Delta mutant. Our results suggest that CaMCA1 might mediate the sensitiveness to oxidative stress by affecting energy metabolism in C. albicans.

  19. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  20. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy.

    PubMed

    Mercau, María E; Repetto, Esteban M; Perez, Matías N; Martinez Calejman, Camila; Sanchez Puch, Silvia; Finkielstein, Carla V; Cymeryng, Cora B

    2016-03-01

    A sustained elevation of glucocorticoid production, associated with the establishment of insulin resistance (IR) could add to the deleterious effects of the IR state. The aim of this study is to analyze the consequences of long-term feeding with a sucrose-rich diet (SRD) on Pomc/ACTH production, define the underlying cellular processes, and determine the effects of moderate exercise (ME) on these parameters. Animals fed a standard chow with or without 30% sucrose in the drinking water were subjected to ME. Circulating hormone levels were determined, and pituitary tissues were processed and analyzed by immunobloting and quantitative real-time PCR. Parameters of oxidative stress (OxS), endoplasmic reticulum stress, and autophagy were also determined. Rats fed SRD developed a decrease in pituitary Pomc/ACTH expression levels, increased expression of antioxidant enzymes, and induction of endoplasmic reticulum stress and autophagy. ME prevented pituitary dysfunction as well as induction of antioxidant enzymes and autophagy. Reporter assays were performed in AtT-20 corticotroph cells incubated in the presence of palmitic acid. Pomc transcription was inhibited by palmitic acid-dependent induction of OxS and autophagy, as judged by the effect of activators and inhibitors of both processes. Long-term feeding with SRD triggers the generation of OxS and autophagy in the pituitary gland, which could lead to a decline in Pomc/ACTH/glucocorticoid production. These effects could be attributed to an increase in fatty acids availability to the pituitary gland. ME was able to prevent these alterations, suggesting additional beneficial effects of ME as a therapeutic strategy in the management of IR.

  1. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy.

    PubMed

    Toyokuni, Shinya

    2016-05-01

    Helmut Sies established the concept of oxidative stress in 1985. However, it took some time to introduce this concept into pathology, where investigators count on formalin-fixed paraffin-embedded tissue sections. I sought out antigens for this purpose based on an oxidative stress-induced rat renal carcinogenesis model, which revealed that 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins are ideal. These two monoclonal antibodies successfully revealed the involvement of oxidative stress in numerous human diseases, including carcinogenesis and atherosclerosis. Shigeru Okada established the aforementioned ferric nitrilotriacetate (Fe-NTA)-induced rat renal carcinogenesis model, which thus far has answered many questions regarding the presence of target genes in oxidative stress-induced carcinogenesis and the sites that are susceptible to oxidative stress in the genome. Particularly, the similarity of genomic alterations between Fe-NTA-induced renal cancer and human cancers suggests that excess iron plays a role also in human carcinogenesis. Furthermore, excess iron is a major pathology in asbestos-induced mesothelioma, including chrysotile. Despite an analogy to asbestos, multi-wall carbon nanotubes were distinct in that diameter is another responsible factor for mesothelial carcinogenesis. Recently, non-thermal plasma emerged as a candidate for medical intervention for wounds and cancers via manipulating oxidative stress. Counteracting excess iron is a promising preventive strategy for major diseases.

  2. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress.

  3. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata

    PubMed Central

    Chen, Li-Hung; Tsai, Hsieh-Chin; Yu, Pei-Ling

    2017-01-01

    Major Facilitator Superfamily (MFS) transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin), and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA). AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP) kinases, the ‘two component’ histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter. PMID:28060864

  4. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  5. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood.

  6. Impact of Oxidative Stress and Peroxisome Proliferator–Activated Receptor γ Coactivator-1α in Hepatic Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Tamura, Yoshifumi; Uchida, Toyoyoshi; Ogihara, Takeshi; Fujitani, Yoshio; Hirose, Takahisa; Mochizuki, Hideki; Kawamori, Ryuzo; Watada, Hirotaka

    2008-01-01

    OBJECTIVE—Recent studies identified accumulation of reactive oxygen species (ROS) as a common pathway causing insulin resistance. However, whether and how the reduction of ROS levels improves insulin resistance remains to be elucidated. The present study was designed to define this mechanism. RESEARCH DESIGN AND METHODS—We investigated the effect of overexpression of superoxide dismutase (SOD)1 in liver of obese diabetic model (db/db) mice by adenoviral injection. RESULTS—db/db mice had high ROS levels in liver. Overexpression of SOD1 in liver of db/db mice reduced hepatic ROS and blood glucose level. These changes were accompanied by improvement in insulin resistance and reduction of hepatic gene expression of phosphoenol-pyruvate carboxykinase and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), which is the main regulator of gluconeogenic genes. The inhibition of hepatic insulin resistance was accompanied by attenuation of phosphorylation of cAMP-responsive element-binding protein (CREB), which is a main regulator of PGC-1α expression, and attenuation of Jun NH2-terminal kinase (JNK) phosphorylation. Simultaneously, overexpression of SOD1 in db/db mice enhanced the inactivation of forkhead box class O1, another regulator of PGC-1α expression, without the changes of insulin-induced Akt phosphorylation in liver. In hepatocyte cell lines, ROS induced phosphorylation of JNK and CREB, and the latter, together with PGC-1α expression, was inhibited by a JNK inhibitor. CONCLUSIONS—Our results indicate that the reduction of ROS is a potential therapeutic target of liver insulin resistance, at least partly by the reduced expression of PGC-1α. PMID:18487450

  7. Peroxisomes, oxidative stress, and inflammation

    PubMed Central

    Terlecky, Stanley R; Terlecky, Laura J; Giordano, Courtney R

    2012-01-01

    Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented. PMID:22649571

  8. Oxidative stress in cyanobacteria.

    PubMed

    Latifi, Amel; Ruiz, Marion; Zhang, Cheng-Cai

    2009-03-01

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and potent agents that cause oxidative damage. In oxygenic photosynthetic organisms such as cyanobacteria, ROS are inevitably generated by photosynthetic electron transport, especially when the intensity of light-driven electron transport outpaces the rate of electron consumption during CO(2) fixation. Because cyanobacteria in their natural habitat are often exposed to changing external conditions, such as drastic fluctuations of light intensities, their ability to perceive ROS and to rapidly initiate antioxidant defences is crucial for their survival. This review summarizes recent findings and outlines important perspectives in this field.

  9. Oxidative stress in obstructive nephropathy.

    PubMed

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-06-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.

  10. Oxidative stress in obstructive nephropathy

    PubMed Central

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-01-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress. PMID:20804541

  11. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  12. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  13. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    PubMed

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria

    2014-12-01

    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  14. Haemophilus influenzae and oxidative stress

    PubMed Central

    Harrison, Alistair; Bakaletz, Lauren O.; Munson, Robert S.

    2012-01-01

    Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen. PMID:22919631

  15. Estradiol and neurodegenerative oxidative stress.

    PubMed

    Nilsen, Jon

    2008-10-01

    Estradiol is a potent preventative against neurodegenerative disease, in part, by activating antioxidant defense systems scavenging reactive oxygen species, limiting mitochondrial protein damage, improving electron transport chain activity and reducing mitochondrial DNA damage. Estradiol also increases the activity of complex IV of the electron transport chain, improving mitochondrial respiration and ATP production under normal and stressful conditions. However, the high oxidative cellular environment present during neurodegeneration makes estradiol a poor agent for treatment of existing disease. Oxidative stress stimulates the production of the hydroperoxide-dependent hydroxylation of estradiol to the catecholestrogen metabolites, which can undergo reactive oxygen species producing redox cycling, setting up a self-generating toxic cascade offsetting any antioxidant/antiapoptotic effects generated by the parent estradiol. Additional disease-induced factors can further perpetuate this cycle. For example dysregulation of the catecholamine system could alter catechol-O-methyltransferase-catalyzed methylation, preventing removal of redox cycling catecholestrogens from the system enhancing pro-oxidant effects of estradiol.

  16. Low viscosity oils. [oxidation resistance

    SciTech Connect

    Harris, S.W.; Schaap, L.A.; Udelhofen, J.H.

    1981-08-04

    An improved low viscosity (I.E.) 5 W to 7 1/2 W engine oil resistant to oxidation and consumption comprising a major portion of a lubricating oil stock, a sulfurized oil, a dispersant, an anti-corrosion agent, an anti-rust agent, a detergent, an antioxidant, and a viscosity index improver.

  17. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  18. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  19. AbuO, a TolC-Like Outer Membrane Protein of Acinetobacter baumannii, Is Involved in Antimicrobial and Oxidative Stress Resistance

    PubMed Central

    Srinivasan, Vijaya Bharathi; Vaidyanathan, Vasanth

    2014-01-01

    Although Acinetobacter baumannii is well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC from Escherichia coli. Inactivation of abuO led to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuO mutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pump acrD, 8-fold; SMR-type emrE homolog, 12-fold; and major facilitator superfamily [MFS]-type ampG homolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold; ompR, 10.43-fold) in the ΔabuO mutant together with downregulation of rstA (4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P < 0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeled abuO promoter suggests regulation of abuO by SoxR in A. baumannii. PMID:25512405

  20. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    PubMed

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular

  1. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  2. Robust Glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI Family Member Protein, Is Critical for Oxidative Stress Resistance in Saccharomyces cerevisiae*

    PubMed Central

    Bankapalli, Kondalarao; Saladi, SreeDivya; Awadia, Sahezeel S.; Goswami, Arvind Vittal; Samaddar, Madhuja; D'Silva, Patrick

    2015-01-01

    Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny. PMID:26370081

  3. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  4. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    PubMed

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  5. The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candida albicans.

    PubMed

    Pendreño, Yolanda; Pedreño, Y; González-Párraga, Pilar; González-Párraga, P; Conesa, Sergio; Conesa, S; Martínez-Esparza, María; Martínez-Esparza, M; Aguinaga, Ana; Aguinaga, A; Hernández, José A; Hernández, J A; Argüelles, Juan Carlos

    2006-01-01

    The protective role of trehalose against oxidative stress caused by hydrogen peroxide in Candida albicans has been investigated in the homozygous mutant ntc1Delta/ntc1Delta, disrupted in the NTC1 gene, which encodes the neutral (cytosolic) trehalase (Ntc1p). After a severe oxidative exposure (50 mM H(2)O(2)), both parental (CAI-4) and ntc1Delta/ntc1Delta exponential-phase cells stored large amounts of intracellular trehalose. In turn, the degree of cell survival was roughly equivalent in both strains, although slightly higher in ntc1Delta/ntc1Delta cultures. The mechanism of 'adaptive tolerance' was functional in the two strains. Thus, a gently oxidative pretreatment (5 mM H(2)O(2)) increased the recovery of cellular viability when it was followed by a severe challenge (50 mM H(2)O(2)); this phenomenon was accompanied by a significant elevation of the endogenous trehalose content. Oxidative stress also induced specific activation of the antioxidant enzymes catalase and glutathione reductase upon gentle oxidative treatment (5 mM H(2)O(2)), whereas superoxide dismutase activity was only activated upon prolonged exposure. Taken together, these results strongly suggest that in C. albicans neutral trehalase activity does not play an essential role in the protective response against oxidative stress. They also suggest that a diminished Ntc1p activity might favour the growth of C. albicans cells subjected to a strong oxidative exposure.

  6. Hemoglobin oxidative stress in cancer.

    PubMed

    Della Rovere, F; Granata, A; Broccio, M; Zirilli, A; Broccio, G

    1995-01-01

    The role played by free radicals in carcinogenesis and their relationships with antioxidant pool and cancer have already been shown. Free radicals induce increased membrane permeability through membrane lipid peroxidation, protein oxidation and histamine release from mast cells. Free radicals also cause oxyhemoglobin oxidative stress which increases methemoglobin and hemichromes. For this reason, we studied the in vitro formation of methemoglobin at 0' and 90', dosed following the HPLC method, after oxidative stress of blood by means of acetylphenylhydrazine in 40 subjects with cancer and 40 healthy donors. The results showed that methemoglobin formation was highly significant in tumors as compared to controls (P < 0.0001). The statistical analyses we carried out showed that metHb formation is not affected by age, sex, smoking habit, red blood cell number, Hb, Ht or tumor staging. This makes us believe that free radicals alter erythrocyte membrane permeability and predenaturate oxyhemoglobin so that erythrocyte membrane becomes more susceptible to new oxidative stress. This caused the abnormal response we found. Our results clearly underline the role played by free radicals in tumorous disease and provide a successful and easy method to detect early, even in a pre-clinical stage, the presence of tumorous alterations in the human body.

  7. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata.

    PubMed

    Chen, Li-Hung; Yang, Siwy Ling; Chung, Kuang-Ren

    2014-05-01

    The ability of the necrotrophic fungus Alternaria alternata to detoxify reactive oxygen species (ROS) is crucial for pathogenesis to citrus. We report regulation of siderophore-mediated iron acquisition and ROS resistance by the NADPH oxidase (NOX), the redox activating yes-associated protein 1 (YAP1) regulator, and the high-osmolarity glycerol 1 (HOG1) mitogen-activated protein kinase (MAPK). The A. alternata nonribosomal peptide synthetase (NPS6) is essential for the biosynthesis of siderophores, contributing to iron uptake under low-iron conditions. Fungal strains impaired for NOX, YAP1, HOG1 or NPS6 all display increased sensitivity to ROS. Exogenous addition of iron at least partially rescues ROS sensitivity seen for NPS6, YAP1, HOG1, and NOX mutants. Importantly, expression of the NPS6 gene and biosynthesis of siderophores are regulated by NOX, YAP1 and HOG1, supporting a functional link among these regulatory pathways. Although iron fully rescues H2O2 sensitivity seen in mutants impaired for the response regulator SKN7, neither expression of NPS6 nor biosynthesis of siderophores is controlled by SKN7. Our results indicate that the acquisition of environmental iron has profound effects on ROS detoxification.

  8. SodA and Manganese Are Essential for Resistance to Oxidative Stress in Growing and Sporulating Cells of Bacillus subtilis

    PubMed Central

    Inaoka, Takashi; Matsumura, Yoshinobu; Tsuchido, Tetsuaki

    1999-01-01

    We constructed a sodA-disrupted mutant of Bacillus subtilis 168, BK1, by homologous recombination. The mutant was not able to grow in minimal medium without Mn(II). The spore-forming ability of strain BK1 was significantly lower in Mn(II)-depleted medium than that of the wild-type strain. These deleterious effects caused by the sodA mutation were reversed when an excess of Mn(II) was used to supplement the medium. Moreover, the growth inhibition by superoxide generators in strain BK1 and its parent strain was also reversed by the supplementation with excess Mn(II). We therefore estimated the Mn-dependent superoxide-scavenging activity in BK1 cells. Whereas BK1 cells have no detectable superoxide dismutase (Sod) on native gel, the superoxide-scavenging activity in crude extracts of BK1 cells grown in Mn(II)-supplemented LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl per liter) was significantly detected by the modified Sod assay method without using EDTA. The results obtained suggest that Mn, as a free ion or a complex with some cellular component, can catalyze the elimination of superoxide and that both SodA and Mn(II) are involved not only in the superoxide resistance of vegetative cells but also in sporulation. PMID:10074093

  9. The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus.

    PubMed

    Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B; Bzymek, Krzysztof P; Williams, John C; Brakhage, Axel A; Kalkum, Markus

    2016-09-14

    Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.

  10. The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus

    PubMed Central

    Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B.; Bzymek, Krzysztof P.; Williams, John C.; Brakhage, Axel A.; Kalkum, Markus

    2016-01-01

    Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3’s peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target. PMID:27624005

  11. Oxidative stress in diabetes: implications for vascular and other complications.

    PubMed

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-10-30

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the "final common pathway" through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients.

  12. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications

    PubMed Central

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-01-01

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571

  13. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea).

    PubMed

    Yan, Saihong; Wu, Huimin; Qin, Jianhui; Zha, Jinmiao; Wang, Zijian

    2017-03-16

    Halogen-free organophosphorus flame retardants are widespread in aquatic environments. Although it has been documented that they affect the behavior and reproduction of aquatic species, researches investigating cellular detoxification and the defense system in bivalves are scarce. In this study, adult Asian clams (C. fluminea) were exposed to tris (2-butoxyethyl) phosphate (TBEP) and tributyl phosphate (TBP) at 20, 200, and 2000 μg/L for 28 d. The results showed no noticeable difference in siphoning behavior. However, the siphoning behavior displayed a trend toward a slight decrease in the treatment groups. GR activity was markedly reduced compared with the control groups, whereas the levels of cyp4 significantly increased following the 2000 μg/L TBP treatments (p < 0.05). Moreover, the levels of gsts1 and gstm1 significantly decreased following all TBEP treatments and were significantly inhibited by 20 μg/L TBP (p < 0.05). The adverse effects on antioxidant enzymes suggested that C. fluminea mainly relies on the antioxidant system to reduce damage without an increase in MDA levels following exposure to a low concentration. Moreover, mRNA expression levels of heat shock proteins (hsp 22, 40, 60, 70, and 90) were significantly down-regulated with TBEP and TBP treatments lower than 200 μg/L (p < 0.05), whereas significant up-regulations were observed for hsp 22 and hsp 70 in response to 2000 μg/L TBP treatment (p < 0.05). Up-regulation of ATP-binding cassette (ABC) transporter genes (abcb1 and abcc1) showed that TBEP and TBP could activate the multixenobiotic resistance (MXR) system to discharge xenobiotics in C. fluminea, which kept its shell closed at high concentrations to prevent xenobiotic entry. Our results provide a new insight into the different mechanisms of cellular detoxification and the MXR system of C. fluminea in response to low and high concentrations of TBEP and TBP.

  14. Neurodegenerative diseases and oxidative stress.

    PubMed

    Emerit, J; Edeas, M; Bricaire, F

    2004-01-01

    Oxidative stress is now recognized as accountable for redox regulation involving reactive oxygen species (ROS) and reactive nitrogen species (RNS). Its role is pivotal for the modulation of critical cellular functions, notably for neurons astrocytes and microglia, such as apoptosis program activation, and ion transport, calcium mobilization, involved in excitotoxicity. Excitotoxicity and apoptosis are the two main causes of neuronal death. The role of mitochondria in apoptosis is crucial. Multiple apoptotic pathways emanate from the mitochondria. The respiratory chain of mitochondria that by oxidative phosphorylation, is the fount of cellular energy, i.e. ATP synthesis, is responsible for most of ROS and notably the first produced, superoxide anion (O(2)(;-)). Mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of ROS, is a final common pathogenic mechanism in aging and in neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Nitric oxide (NO(;)), an RNS, which can be produced by three isoforms of NO-synthase in brain, plays a prominent role. The research on the genetics of inherited forms notably ALS, AD, PD, has improved our understanding of the pathobiology of the sporadic forms of neurodegenerative diseases or of aging of the brain. ROS and RNS, i.e. oxidative stress, are not the origin of neuronal death. The cascade of events that leads to neurons, death is complex. In addition to mitochondrial dysfunction (apoptosis), excitotoxicity, oxidative stress (inflammation), the mechanisms from gene to disease involve also protein misfolding leading to aggregates and proteasome dysfunction on ubiquinited material.

  15. [Oxidative stress and endothelial dysfunction].

    PubMed

    Jarasūniene, Dalia; Simaitis, Audrius

    2003-01-01

    Growing numbers of morbidity and mortality due to the Coronary Heart Disease (CHD) is recognized as the more increasing challenge in the world. The initial stage of atherosclerosis, early diagnosis and treatment of CHD are the main objectives of current research. Endothelium dysfunction, the earliest expression of the atherosclerotic process is associated with subtle biochemical changes that gradually are transformed into the structural changes of the arterial wall. The theory of free radicals is the most common among the atherosclerosis explanations. Overproduction or impaired neutralization of the free radicals accounts for oxidative stress that is causing substantial damage to the low density lipoproteins, nitric oxyde (NO), endothelium cells, tissue cells and finally leads to the endothelium dysfuction. Pathophysiology of oxidative stress and its role in the endothelium dysfunction are discussed in this paper. Positive role of various medications (statins, angiotensin converting enzym inhibitors, aldosteron antagonists, estrogens, antioxidants, b-blockers with vasodilatative properties) to the oxidative stress and consequently to the endothelium dysfuction are discussed as well.

  16. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  17. p53, Oxidative Stress, and Aging

    PubMed Central

    Liu, Dongping

    2011-01-01

    Abstract Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits prooxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage. Antioxid. Redox Signal. 15, 1669–1678. PMID:21050134

  18. The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Herman, Allison; Serfecz, Jacquelyn; Kinnally, Alexandra; Crosby, Kathleen; Youngman, Matthew; Wykoff, Dennis

    2016-01-01

    ABSTRACT The iprA gene (formerly known as yaiV or STM0374) is located in a two-gene operon in the Salmonella enterica serovar Typhimurium genome and is associated with altered expression during spaceflight and rotating-wall-vessel culture conditions that increase virulence. However, iprA is uncharacterized in the literature. In this report, we present the first targeted characterization of this gene, which revealed that iprA is highly conserved across Enterobacteriaceae. We found that S. Typhimurium, Escherichia coli, and Enterobacter cloacae ΔiprA mutant strains display a multi-log-fold increase in oxidative stress resistance that is complemented using a plasmid-borne wild-type (WT) copy of the S. Typhimurium iprA gene. This observation was also associated with increased catalase activity, increased S. Typhimurium survival in macrophages, and partial dependence on the katE gene and full dependence on the rpoS gene. Our results indicate that IprA protein activity is sensitive to deletion of the N- and C-terminal 10 amino acids, while a region that includes amino acids 56 to 80 is dispensable for activity. RNA sequencing (RNA-Seq) analysis revealed several genes altered in expression in the S. Typhimurium ΔiprA mutant strain compared to the WT, including those involved in fimbria formation, spvABCD-mediated virulence, ethanolamine utilization, the phosphotransferase system (PTS) transport, and flagellin phase switching from FlgB to FliC (likely a stochastic event) and several genes of hypothetical or putative function. IMPORTANCE Overall, this work reveals that the conserved iprA gene measurably influences bacterial biology and highlights the pool of currently uncharacterized genes that are conserved across bacterial genomes. These genes represent potentially useful targets for bacterial engineering, vaccine design, and other possible applications. PMID:27246569

  19. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  20. Oxidative stress in androgenetic alopecia

    PubMed Central

    Prie, BE; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient’s psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia. Abbreviations: AAG = androgenetic alopecia, MDA = malondialdehyde, SOD = superoxide dismutase

  1. Oxidative stress in androgenetic alopecia.

    PubMed

    Prie, B E; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient's psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia.

  2. Oxidative Stress in Inherited Mitochondrial Diseases

    PubMed Central

    Hayashi, Genki; Cortopassi, Gino

    2015-01-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially-expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production, or decreased ROS protection. The role of oxidative stresses in the five most common inherited mitochondrial diseases; Friedreich's ataxia (FA), LHON, MELAS, MERRF and Leigh Syndrome (LS) is discussed. Published reports for oxidative stress involvement in pathomechanism in these five mitochondrial diseases are reviewed. The strongest for oxidative stress pathomechanism among the five diseases was in Friedreich's ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for oxidative stress citation count frequency within each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is in Friedreich's ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich's diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich's ataxia. PMID:26073122

  3. Oxidative Stress in Oral Diseases

    PubMed Central

    Kesarwala, Aparna H.; Krishna, Murali C.; Mitchell, James B.

    2014-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  4. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be

  5. Oxidative Stress in Diabetic Nephropathy

    PubMed Central

    Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S.

    2013-01-01

    Diabetic nephropathy is a leading cause of end-stage renal failure worldwide. Its morphologic characteristics include glomerular hypertrophy, basement membrane thickening, mesangial expansion, tubular atrophy, interstitial fibrosis and arteriolar thickening. All of these are part and parcel of microvascular complications of diabetes. A large body of evidence indicates that oxidative stress is the common denominator link for the major pathways involved in the development and progression of diabetic micro- as well as macrovascular complications of diabetes. There are a number of macromolecules that have been implicated for increased generation of reactive oxygen species (ROS), such as, NAD(P)H oxidase, advanced glycation end products (AGE), defects in polyol pathway, uncoupled nitric oxide synthase (NOS) and mitochondrial respiratory chain via oxidative phosphorylation. Excess amounts of ROS modulate activation of protein kinase C, mitogen-activated protein kinases, and various cytokines and transcription factors which eventually cause increased expression of extracellular matrix (ECM) genes with progression to fibrosis and end stage renal disease. Activation of renin-angiotensin system (RAS) further worsens the renal injury induced by ROS in diabetic nephropathy. Buffering the generation of ROS may sound a promising therapeutic to ameliorate renal damage from diabetic nephropathy, however, various studies have demonstrated minimal reno-protection by these agents. Interruption in the RAS has yielded much better results in terms of reno-protection and progression of diabetic nephropathy. In this review various aspects of oxidative stress coupled with the damage induced by RAS are discussed with the anticipation to yield an impetus for designing new generation of specific antioxidants that are potentially more effective to reduce reno-vascular complications of diabetes. PMID:20939814

  6. Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor: Role in Hepatocytes Resistance to Oxidative Stress and Apoptosis

    PubMed Central

    Di Maso, Vittorio; Mediavilla, María Gabriela; Vascotto, Carlo; Lupo, Francesco; Baccarani, Umberto; Avellini, Claudio; Tell, Gianluca; Tiribelli, Claudio; Crocè, Lory Saveria

    2015-01-01

    Objective Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC. Design In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH) over-expressing APE1/Ref-1. Results APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis. Conclusion APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment. PMID:26624999

  7. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  8. Inflammation, oxidative stress, and obesity.

    PubMed

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Angel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  9. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  10. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.

    PubMed

    Liu, Bo; Hong, Yong-Bo; Zhang, Ya-Fen; Li, Xiao-Hui; Huang, Lei; Zhang, Hui-Juan; Li, Da-Yong; Song, Feng-Ming

    2014-10-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant responses to biotic and abiotic stresses; however, only a few of tomato WRKYs have been studied for their biological functions. In the present study, we identified a Botrytis cinerea-responsive WRKY gene SlDRW1 (Solanum lycopersicumdefense-related WRKY1) from tomato. SlDRW1 is a nucleus localized protein with transactivation activity in yeast. Expression of SlDRW1 was significantly induced by B. cinerea, leading to 10-13 folds of increase than that in the mock-inoculated plants but not by Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlDRW1 resulted in increased severity of disease caused by B. cinerea, but did not affect the phenotype of disease caused by Pst DC3000. In addition, silencing of SlDRW1 also resulted in decreased tolerance against oxidative stress but did not affect drought stress tolerance. Furthermore, silencing of SlDRW1 attenuated defense response such as expression of defense-related genes after infection by B. cinerea. Our results demonstrate that SlDRW1 is a positive regulator of defense response in tomato against B. cinerea and oxidative stress.

  11. Oxidative stress in neonatology: a review.

    PubMed

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L

    2014-02-01

    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared.

  12. Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain.

    PubMed

    Szalay, Csaba Imre; Erdélyi, Katalin; Kökény, Gábor; Lajtár, Enikő; Godó, Mária; Révész, Csaba; Kaucsár, Tamás; Kiss, Norbert; Sárközy, Márta; Csont, Tamás; Krenács, Tibor; Szénási, Gábor; Pacher, Pál; Hamar, Péter

    2015-01-01

    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and

  13. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  14. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  15. The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel

    PubMed Central

    2010-01-01

    Background Drinking water contaminated with inorganic arsenic is associated with increased risk for different types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not been carried out. Methods Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human genes were associated with the GI50 data of the NCI-60 tumor cell line panel from the developmental therapeutics program (DTP) database. Selected biomarkers were tested in vitro for the ability to influence tumor susceptibility to arsenic trioxide. Results A significant association was found between the baseline expression levels of 209 human genes and the sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using shRNA-mediated knock-down. Conclusions In this study, we show that the expression level of genes in the NRF2 pathway serve as potential gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in understanding the mechanism of

  16. Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence

    PubMed Central

    Li, Yan; Wang, Zhongkang; Liu, Xuee; Song, Zhangyong; Li, Ren; Shao, Changwen; Yin, Youping

    2016-01-01

    capacity for iron acquisition leads to the loss of virulence in Spodoptera litura while the ΔNrFtrA mutants behaved as WT during infection. Together, these results prove siderophore-assisted iron mobilization is the major pathway of cellular iron uptake and essential for conidiation, dimorphism transition, oxidative stress resistance, pigmented microsclerotium formation and full virulence. PMID:27379061

  17. Impact of oxidative stress in fetal programming.

    PubMed

    Thompson, Loren P; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  18. Effect of carnosine alone or combined with α-tocopherol on hepatic steatosis and oxidative stress in fructose-induced insulin-resistant rats.

    PubMed

    Giriş, Murat; Doğru-Abbasoğlu, Semra; Kumral, Alkın; Olgaç, Vakur; Koçak-Toker, Necla; Uysal, Müjdat

    2014-06-01

    A diet high in fructose (HFr) induces insulin resistance in animals. Free radicals are involved in the pathogenesis of HFr-induced insulin resistance. Carnosine (CAR) is a dipeptide with antioxidant properties. We investigated the effect of CAR alone or in combination with α-tocopherol (CAR + TOC) on HFr-induced insulin-resistant rats. Rats fed with HFr containing 60% fructose received CAR (2 g/L in drinking water) with/without TOC (200 mg/kg, i.m. twice a week) for 8 weeks. Insulin resistance, serum lipids, inflammation markers, hepatic lipids, lipid peroxides, and glutathione (GSH) levels together with glutathione peroxidase (GSH-Px) and superoxide dismutase 1 (CuZnSOD; SOD1) activities and their protein expressions were measured. Hepatic histopathological examinations were performed. HFr was observed to cause insulin resistance, inflammation and hypertriglyceridemia, and increased triglyceride and lipid peroxide levels in the liver. GSH-Px activity and expression decreased, but GSH levels and SOD1 activity and expression did not alter in HFr rats. Hepatic marker enzyme activities in serum increased and marked macro- and microvesicular steatosis were seen in the liver. CAR treatment did not alter insulin resistance and hypertriglyceridemia, but it decreased steatosis and lipid peroxidation without any change in the antioxidant system of the liver. However, CAR + TOC treatment decreased insulin resistance, inflammation, hepatic steatosis, and lipid peroxidation and increased GSH-Px activity and expression in the liver. Our results may indicate that CAR + TOC treatment is more effective to decrease HFr-induced insulin resistance, inflammation, hepatic steatosis, and dysfunction and pro-oxidant status in rats than CAR alone.

  19. Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice1[C][W][OA

    PubMed Central

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-01-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice. PMID:20852032

  20. Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?

    PubMed

    Argüelles, Sandro; García, Sonia; Maldonado, Mariam; Machado, Alberto; Ayala, Antonio

    2004-11-01

    The oxidant status of an individual is assessed by determining a group of markers in noninvasive samples. One limitation when measuring these biomarkers is that they do not give information about tissue localization of oxidative stress. The present study was undertaken to establish whether the serum oxidative stress biomarkers are indicative of oxidative stress in tissues of an individual. To accomplish this, we determined a few generic markers of oxidation in serum and tissues of six groups of rats treated experimentally, to modulate their oxidative stress status. The correlation between serum and tissue levels was calculated for each marker. Also, for each tissue, the correlation between the values of these oxidative stress biomarkers was analysed. Our results show that only lipid peroxides in serum could be useful to predict the oxidative stress in tissues. No correlation was found between any of the oxidative stress markers in serum.

  1. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

    PubMed Central

    Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.

    2015-01-01

    Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396

  2. Diverse Oxidative Stress Resistance Mechanisms in Sulfate-reducing Bacteria as Revealed by Global Analysis of the Impact of H2O2 Exposure on Desulfovibrio vulgaris Hildenborough

    NASA Astrophysics Data System (ADS)

    Zhou, A.; Mukhopadhyay, A.; He, Z.; Hemme, C. L.; Keasling, J. D.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2008-12-01

    Desulfovibrio vulgaris Hildenborough (DvH) plays important roles in the bioremediation of toxic metals. It has been shown aero-tolerant. In order to understand the molecular mechanism of DvH oxidative stress response, mid-log DvH cells were subjected to 1 mM of H2O2 and the transcriptomic changes were examined at 30, 60, 120, 240 and 480 min. The microarray data demonstrated that the gene expression was extensively affected with 29% of genes in the genome significantly up- or down-regulated after 120-min H2O2 treatment. In response to elevated cellular H2O2, expression of thiol-peroxidase genes ahpC and bcp were increased in addition to the significant induction of many thioredoxin reductase and thioredoxin genes, which represent the thiol switch in the oxidative stress response. Increased gene expression PerR regulon genes including PerR itself provided evidence for the regulatory role of PerR in oxidative stress response. The role of Fur was suggested by the significant up-regulation of Fur regulon genes. In terms of the H2O2 scavenging enzymes, different from the stress response to air where both rbr and rbr2 were induced, only rbr2 was up-regulated in response to H2O2; together with up-regulated rdl, they might be the additional players for the detoxification of H2O2. Superoxide scavenging enzyme katA was significantly down-regulated, which is in contrast to its role in facultative microbes such as E.coli and B. subtilis. The links between the up- regulated genes involved in H2O2 scavenging, protein fate, DNA metabolism and lipid metabolism and the down-regulated genes involved in sulfate reduction, energy production and translation were demonstrated by the gene co-expression network. The proteomics data provided further evidence in translation level and complemented the transcriptomics data. Taken together, the cellular response of D. vulgaris Hildenborough to H2O2 was the up-regulation of detoxification, protein and DNA repair systems and the down

  3. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  4. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    PubMed

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  5. Oxidative Stress and Pulmonary Fibrosis

    PubMed Central

    Cheresh, Paul; Kim, Seok-Jo; Tulasiram, Sandhya; Kamp, David W.

    2012-01-01

    Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory / interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis are not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria / NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways are examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. PMID:23219955

  6. Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice

    PubMed Central

    Seo, Kun-Ho; Bartley, Glenn E.; Tam, Christina; Kim, Hong-Seok; Kim, Dong-Hyeon; Chon, Jung-Whan; Yokoyama, Wallace

    2016-01-01

    To identify differentially expressed hepatic genes contributing to the improvement of high-fat (HF) diet-induced hepatic steatosis and insulin resistance following supplementation of partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd), diet-induced obese (DIO) mice were fed HF diets containing either ChrSd or microcrystalline cellulose (MCC, control) for 5 weeks. The 2-h insulin area under the curve was significantly lowered by ChrSd, indicating that ChrSd improved insulin sensitivity. ChrSd intake also significantly reduced body weight gain, liver and adipose tissue weight, hepatic lipid content, and plasma low-density lipoprotein (LDL)-cholesterol, despite a significant increase in food intake. Exon microarray analysis of hepatic gene expression revealed down-regulation of genes related to triglyceride and ceramide synthesis, immune response, oxidative stress, and inflammation and upregulation of genes related to fatty acid oxidation, cholesterol, and bile acid synthesis. In conclusion, the effects of ChrSd supplementation in a HF diet on weight gain, insulin resistance, and progression of hepatic steatosis in DIO mice were associated with modulation of hepatic genes related to oxidative stress, inflammation, ceramide synthesis, and lipid and cholesterol metabolism. PMID:27977712

  7. Impact of chromium dinicocysteinate supplementation on inflammation, oxidative stress, and insulin resistance in type 2 diabetic subjects: an exploratory analysis of a randomized, double-blind, placebo-controlled study

    PubMed Central

    Saiyed, Zainulabedin M.; Lugo, James P.

    2016-01-01

    Background Chromium dinicocysteinate (CDNC) is a unique chromium complex consisting of chromium, niacin, and L-cysteine. Previous preclinical and clinical studies support the safety and efficacy of CDNC in modulating oxidative stress, vascular inflammation, and glycemia in type 2 diabetes. Objective Herein, we report the results of several exploratory analyses conducted on type 2 diabetic subjects who previously participated in a 3-month randomized, double-blind, placebo-controlled trial and were treated with only metformin as standard diabetic care in addition to receiving the test supplementations. Design Results from 43 metformin users, who were randomly assigned to receive either placebo (P, n=13), chromium picolinate (CP, 400 µg elemental Cr3+/day, n=12), or CDNC (400 µg elemental Cr3+/day, n=18), were analyzed for blood markers of vascular inflammation, insulin resistance, and oxidative stress at baseline and at 3 months of supplementation. Results A statistically significant decrease in insulin resistance in the CDNC-supplemented cohort compared to placebo (p=0.01) was observed at 3 months. The CDNC group also demonstrated a significant reduction in insulin levels (p=0.03), protein carbonyl (p=0.02), and in TNF-α (p=0.03) compared to the placebo group. The CP group only showed a significant reduction in protein carbonyl levels (p=0.03) versus placebo. Conclusions When controlling for diabetes medication, CDNC supplementation showed beneficial effects on blood markers of vascular inflammation, insulin resistance, and oxidative stress compared to placebo. The findings suggest that CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes. PMID:27687012

  8. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    PubMed Central

    Pickering, Andrew M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2013-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster, are capable of adapting to chronic or repeated stress by up-regulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12 hours or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the level of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila, nevertheless also caused significant reductions in lifespan for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. PMID:23142766

  9. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  10. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  11. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    PubMed

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group.

  12. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  13. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    PubMed

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells.

  14. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits.

    PubMed

    Marri, Viviana; Richner, Heinz

    2014-05-01

    Oxidative stress is the imbalance between the production of reactive species and antioxidants, which causes damage to lipids, proteins and DNA. Antioxidants, like vitamins and carotenoids, can limit oxidative damage and can therefore regulate the trade-off between growth, which is a period of high reactive species production, and self-maintenance. However, the role of carotenoids as antioxidants in vivo has been debated, and it has been suggested that carotenoid-based signals indicate the availability of non-pigmentary antioxidants (e.g. vitamins) that protect carotenoids from oxidation, known as the 'protection hypothesis'. To evaluate the importance of vitamins versus carotenoids as antioxidants during growth and to test the protection hypothesis, we supplemented nestling great tits, Parus major, 3, 5 and 7 days after hatching with a single dose of carotenoids and/or vitamins in a 2×2 full-factorial design. We subsequently measured body condition, antioxidant capacity, oxidative damage, fledging success and plumage reflectance. Vitamins enhanced antioxidant capacity, but did not affect oxidative damage. Vitamin-treated nestlings had higher growth rates and higher probability of fledging. In contrast, carotenoids did not affect any of these traits. Furthermore, carotenoid-based colouration increased over the breeding season in nestlings that received vitamins only. This study shows that vitamins are limiting for growth rate and fledging success, and suggests that vitamins could regulate the trade-off between growth and self-maintenance in favour of the former. Moreover, our results are consistent with the idea that carotenoids are minor antioxidants in birds, but they do not support the protection hypothesis.

  15. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  16. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  17. Oxidative stress in the neonate.

    PubMed

    Robles, R; Palomino, N; Robles, A

    2001-11-01

    The aim of this study is to determine the oxidative state of term and preterm neonates at the moment of birth and during the first days of life, and the influence of exposure to oxygen on the premature neonates.A total of 20 neonates were selected. Group A: 10 healthy full-term neonates, and Group B: 10 preterm neonates with no other pathology associated, requiring oxygen therapy. Venous samples were taken in cord at 3 and 72 h in Group A, and in cord at 3, 24 and 72 h and 7 days in Group B.Hydroperoxides, Q10 coenzyme (Co Q10) and alpha-tocopherol were measured within the erythrocyte membrane. Levels of hydroperoxides present in erythrocyte membrane were higher than normal both in Group A and in Group B at birth. This increase was greater in the group of premature neonates. Levels of alpha-tocopherol at birth increase significantly at 72 h in term neonates. Among the premature newborns, alpha-tocopherol levels are two to three times lower at birth and do not rise to higher levels as in the term neonate group. Fall in levels of Co Q10 in erythrocyte membranes is observed, and perhaps is due to the role of Co Q10 in maintaining the pool of reduced tocopherol. At birth, the neonate presents an increase of markers of oxidative stress and a decrease of their antioxidant defenses. This difference is greater as gestational age decreases. The application of oxygen therapy resulted in these levels which remain low throughout the study period.

  18. PARTICULATE MATTER, OXIDATIVE STRESS AND ...

    EPA Pesticide Factsheets

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (<100 nm) particles quickly exit the lungs and enter the circulation where they distribute to various organ systems (l.e., liver, kidneys, testes, lymph nodes) (Takenaka et aI

  19. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  20. Ageing, oxidative stress, and mitochondrial uncoupling.

    PubMed

    Harper, M-E; Bevilacqua, L; Hagopian, K; Weindruch, R; Ramsey, J J

    2004-12-01

    Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  1. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  2. Neuronal cells but not muscle cells are resistant to oxidative stress mediated protein misfolding and cell death: role of molecular chaperones.

    PubMed

    Bhattacharya, Arunabh; Wei, Rochelle; Hamilton, Ryan T; Chaudhuri, Asish R

    2014-04-18

    Our recent study in a mouse model of familial-Amyotrophic Lateral Sclerosis (f-ALS) revealed that muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low mutant CuZn-superoxide dismutase, which is considered to be the key toxic element for initiation and progression of f-ALS. More importantly, we observed differential level of heat shock proteins (Hsp's) between skeletal muscle and spinal cord tissues prior to the onset and during disease progression; spinal cord maintains significantly higher level of Hsp's compared to skeletal muscle. In this study, we report two important observations; (i) muscle cells (but not neuronal cells) are extremely vulnerable to protein misfolding and cell death during challenge with oxidative stress and (ii) muscle cells fail to mount Hsp's during challenge unlike neuronal cells. These two findings can possibly explain why muscle atrophy precedes the death of motor neurons in f-ALS mice.

  3. Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Cytoplasmic stress granules (SGs) are critical for facilitating stress responses and for preventing the accumulation of misfolded proteins. SGs, however, have been linked to the pathogenesis of neurodegenerative diseases, in part because SGs share many components with neuronal granules. Oxidative stress is one of the conditions that induce SG formation. SGs regulate redox levels, and SG formation in turn is differently regulated by various types of oxidative stress. These associations and other evidences suggest that SG formation contributes to the development of neurodegenerative diseases. In this paper, we review the regulation of SG formation/assembly and discuss the interactions between oxidative stress and SG formation. We then discuss the links between SGs and neurodegenerative diseases and the current therapeutic approaches for neurodegenerative diseases that target SGs. PMID:28194255

  4. Are the intertidal fish highly resistant to UV-B radiation? A study based on oxidative stress in Girella laevifrons (Kyphosidae).

    PubMed

    Carrasco-Malio, A; Díaz, M; Mella, M; Montoya, M J; Miranda, A; Landaeta, M F; Sánchez, G; Hidalgo, M E

    2014-02-01

    Sea chub, Girella laevifrons, is a coastal fish that inhabits high intertidal rockpools along the coast of Chile. The intertidal pools where the juveniles live, are an extreme environment with high levels of ultraviolet (UV) radiation, becoming harmful to the organisms, due to oxidative stress generated by reactive oxygen species. For this reason organisms develop adaptations that allow them to survive in this complex environment. The search of biomonitor species, sensitive to UV radiation is very important in aquatic ecosystems, mainly in the southern hemisphere where depletion of the ozone layer and the consequent increase of UV radiation, have become an environmental problem. The aim of this study was to evaluate the effect of ultraviolet radiation in G. laevifrons and its possible use as UV-B radiation biomonitor specie in intertidal systems, which are very important for the Chilean fisheries. The effect of UV radiation exposure on juvenile G. laevifrons was measured through oxidative stress parameters. Catalase's activity increased with the time of exposure, unlike superoxide dismutase's activity which peaked at 2h, decreasing towards the 5th hour of irradiation. The superoxide dismutase activity in muscle tissue did not show significant differences. The lipid peroxidation and DNA damage increased in relation to exposition times. Tissue muscle's DNA damage was shown only at 5h of exposure. Significant differences between the two organs in the antioxidant capacity were observed, the liver of G. laevifrons exhibited the higher antioxidant capacity. It can be concluded that this specie exhibits effective protection mechanisms against UV radiation exposure and it is not appropriate specie as a biomonitor in intertidal systems.

  5. QCM-4, a 5-HT₃ receptor antagonist ameliorates plasma HPA axis hyperactivity, leptin resistance and brain oxidative stress in depression and anxiety-like behavior in obese mice.

    PubMed

    Kurhe, Yeshwant; Mahesh, Radhakrishnan; Devadoss, Thangaraj

    2015-01-02

    Several preclinical studies have revealed antidepressant and anxiolytic-like effect of 5-HT3 receptor antagonists. In our earlier study, we have reported the antidepressive-like effect of 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) in obese mice subjected to chronic stress. The present study deals with the biochemical mechanisms associated with depression co-morbid with obesity. Mice were fed with high fat diet (HFD) for 14 weeks, further subjected for treatment with QCM-4 (1 and 2mg/kg p.o.) and standard antidepressant escitalopram (ESC) (10mg/kg p.o.) for 28 days. Behavioral assays for depression such as sucrose preference test (SPT), forced swim test (FST) and for anxiety such as light and dark test (LDT) and hole board test (HBT) were performed in obese mice. Biochemical assessments including plasma leptin and corticosterone concentration followed by brain oxidative stress parameters malonaldehyde (MDA) and reduced glutathione (GSH) were performed. Results confirmed that QCM-4 exhibits antidepressive effect by increasing the sucrose consumption in SPT, reducing immobility time in FST and anxiolytic effect by increasing transitions and time in light chamber in LDT, increasing head dip and crossing score in HBT. Furthermore, QCM-4 attenuated the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity by reducing the plasma corticosterone, reversing altered plasma leptin, restoring the imbalance of brain MDA and GSH concentration. In conclusion, QCM-4 showed antidepressive and anxiolytic effect by reversing the behavioral alterations that were supported by biochemical estimations in obese mice.

  6. Fipronil insecticide toxicology: oxidative stress and metabolism.

    PubMed

    Wang, Xu; Martínez, María Aránzazu; Wu, Qinghua; Ares, Irma; Martínez-Larrañaga, María Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-11-01

    Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.

  7. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  8. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias.

    PubMed

    Karagueuzian, Hrayr S; Nguyen, Thao P; Qu, Zhilin; Weiss, James N

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.

  9. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias

    PubMed Central

    Karagueuzian, Hrayr S.; Nguyen, Thao P.; Qu, Zhilin; Weiss, James N.

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death. PMID:23423152

  10. Role of Nrf2 in Oxidative Stress and Toxicity

    PubMed Central

    Ma, Qiang

    2015-01-01

    Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body’s needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol–based redox signaling. The nuclear factor erythroid 2–related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element–dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense. PMID:23294312

  11. Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance

    NASA Astrophysics Data System (ADS)

    Lou, Kang; Wang, Feng Hui; Lu, Yong Jun; Zhao, Xiang

    2016-09-01

    Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.

  12. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.

  13. Cellular Mechanisms of Oxidative Stress and Action in Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  14. Proteomics, oxidative stress and male infertility.

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi; Halabi, Jacques; Peng, Jason; Vazquez-Levin, Monica

    2014-07-01

    Oxidative stress has been established as one of the main causes of male infertility and has been implicated in many diseases associated with infertile men. It results from high concentrations of free radicals and suppressed antioxidant potential, which may alter protein expression in seminal plasma and/or spermatozoa. In recent years, proteomic analyses have been performed to characterize the protein profiles of seminal ejaculate from men with different clinical conditions, such as high oxidative stress. The aim of the present review is to summarize current findings on proteomic studies performed in men with high oxidative stress compared with those with physiological concentrations of free radicals, to better understand the aetiology of oxidative stress-induced male infertility. Each of these studies has suggested candidate biomarkers of oxidative stress, among them are DJ-1, PIP, lactotransferrin and peroxiredoxin. Changes in protein concentrations in seminal plasma samples with oxidative stress conditions were related to stress responses and to regulatory pathways, while alterations in sperm proteins were mostly associated to metabolic responses (carbohydrate metabolism) and stress responses. Future studies should include assessment of post-translational modifications in the spermatozoa as well as in seminal plasma proteomes of men diagnosed with idiopathic infertility. Oxidative stress, which occurs due to a state of imbalance between free radicals and antioxidants, has been implicated in most cases of male infertility. Cells that are in a state of oxidative stress are more likely to have altered protein expression. The aim of this review is to better understand the causes of oxidative stress-induced male infertility. To achieve this, we assessed proteomic studies performed on the seminal plasma and spermatozoa of men with high levels of oxidative stress due to various clinical conditions and compared them with men who had physiological concentrations of free

  15. Heat resistant polymers of oxidized styrylphosphine

    NASA Technical Reports Server (NTRS)

    Paciorek, K. J. L. (Inventor)

    1978-01-01

    Homopolymers, copolymers and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer or by polymerizing p-diphenylphosphinestyrene and then oxidizing the polymerized monomer with an organoazide. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer. Flame resistant vinyl based polymers whose degradation products are non toxic and non corrosive are obtained.

  16. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease.

    PubMed

    Heeba, Gehan H; Morsy, Mohamed A

    2015-11-01

    Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. In the present study, we investigated the therapeutic effect of fucoidan on non-alcoholic fatty liver disease (NAFLD) in rats. Rats were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD. Oral administrations of fucoidan (100mg/kg, orally), metformin (200mg/kg, orally) or the vehicle were started in the last four weeks. Results showed that administration of fucoidan for 4 weeks attenuated the development of NAFLD as evidenced by the significant decrease in liver index, serum liver enzymes activities, serum total cholesterol and triglycerides, fasting serum glucose, insulin, insulin resistance, and body composition index. Further, fucoidan decreased hepatic malondialdehyde as well as nitric oxide concentrations, and concomitantly increased hepatic reduced glutathione level. In addition, the effect of fucoidan was accompanied with significant decrease in hepatic mRNA expressions of tumor necrosis factor-α, interleukins-1β and matrix metalloproteinase-2. Furthermore, histopathological examination confirmed the effect of fucoidan. In conclusion, fucoidan ameliorated the development of HFD-induced NAFLD in rats that may be, at least partly, related to its hypolipidemic, insulin sensitizing, antioxidant and anti-inflammatory mechanisms.

  17. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  18. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  19. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  20. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  1. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  2. Oxidative stress in IgA nephropathy.

    PubMed

    Coppo, R; Camilla, R; Amore, A; Peruzzi, L

    2010-01-01

    IgA nephropathy (IgAN) is characterized by mesangial deposits of IgA1, likely due to accumulation of IgA immune complexes. The activation of intracellular signaling mostly results in oxidative stress, as detected in mesangial cells cultured with aberrantly glycosylated IgA or IgA aggregates and in renal biopsies of patients with IgAN. Signs of altered oxidation/antioxidation balance have been detected in sera and/or in erythrocytes of patients with IgAN, including increased levels of lipoperoxide or malondialdehyde and reduced activity of superoxide dismutase, catalase and glutathione peroxidase. Moreover, increased levels of a marker of oxidative stress, advanced oxidation protein products (AOPPs), have been reported to be significantly associated with proteinuria and disease progression in patients with IgAN. AOPPs are often carried by albumin and can in turn enhance the oxidative stress in the circulation. Recent research suggests that the nephrotoxicity of aberrantly glycosylated IgA1 in IgAN is enhanced in the presence of systemic signs of oxidative stress, and it is tempting to hypothesize that the level of the oxidative milieu conditions the different expression and progression of IgAN.

  3. Oxidative stress in severe acute illness

    PubMed Central

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T.; Brody, Edward N.

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione–glutathione disulfide, reduced thioredoxin–oxidized thioredoxin, and NAD+–NADH (and NADP–NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation–reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents. PMID:25644686

  4. Role of oxidative stress on platelet hyperreactivity during aging.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2016-03-01

    Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.

  5. Radical-free biology of oxidative stress

    PubMed Central

    Jones, Dean P.

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thiol redox circuits, which normally function in cell signaling and physiological regulation. The redox states of thiol systems are sensitive to two-electron oxidants and controlled by the thioredoxins (Trx), glutathione (GSH), and cysteine (Cys). Trx and GSH systems are maintained under stable, but nonequilibrium conditions, due to a continuous oxidation of cell thiols at a rate of about 0.5% of the total thiol pool per minute. Redox-sensitive thiols are critical for signal transduction (e.g., H-Ras, PTP-1B), transcription factor binding to DNA (e.g., Nrf-2, nuclear factor-κB), receptor activation (e.g., αIIbβ3 integrin in platelet activation), and other processes. Nonradical oxidants, including peroxides, aldehydes, quinones, and epoxides, are generated enzymatically from both endogenous and exogenous precursors and do not require free radicals as intermediates to oxidize or modify these thiols. Because of the nonequilibrium conditions in the thiol pathways, aberrant generation of nonradical oxidants at rates comparable to normal oxidation may be sufficient to disrupt function. Considerable opportunity exists to elucidate specific thiol control pathways and develop interventional strategies to restore normal redox control and protect against oxidative stress in aging and age-related disease. PMID:18684987

  6. Dietary protein enhances non-specific immunity, anti-oxidative capability and resistance to Aeromonas hydrophila in Labeo rohita fingerlings pre-exposed to short feed deprivation stress.

    PubMed

    Yengkokpam, Sona; Debnath, Dipesh; Sahu, N P; Pal, A K; Jain, K K; Baruah, Kartik

    2016-12-01

    Present experiment was conducted to study the effect of dietary protein levels on growth, immunity and anti-oxidative status of Labeo rohita fingerlings during feed deprivation followed by refeeding. Fish (5.44 ± 0.10 g) were deprived of feed for 3 weeks and then re-fed to satiation for 5 weeks with one of the diets containing 25 (25P), 30 (30P), 35 (35P) or 40 (40P) percent crude protein (CP) level. In addition to these groups, a control group (C) was also maintained by feeding to satiation level twice daily with a diet containing 30% CP throughout the experimental period. At the end of 8-weeks' trial, fish were challenged with Aeromonas hydrophila and survival was recorded for the next 7 days. Complete recovery of growth in terms of weight gain percentage was achieved in the fish fed 35 and 40% protein during refeeding. The body indices (condition factor and hepatosomatic index), haematological parameters and serum protein contents at the end of the experimental trial were not significantly different (P > 0.05) among different groups suggesting that the overall health of the fish was not compromised. However, respiratory burst activity and serum lysozyme activity were indicative of a better immune function in the higher protein fed groups (35P and 40P) than the lower protein groups (25P and 30P). Following challenge with Aeromonas hydrophila, survival rate, blood monocyte%, respiratory burst activity, serum lysozyme activity, serum protein and globulin were significantly higher (P < 0.05) in the 35P and 40P groups compared to the other groups. Further, fish fed lower dietary protein were not able to restore the activities of anti-oxidative enzymes (superoxide dismutase and catalase) in the liver. Conclusively, an improved disease resistance capability and immune status was observed in the fish fed a higher dietary protein (35-40%), even out-performing the daily-fed fish.

  7. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  8. Contribution of mitochondrial oxidative stress to hypertension

    PubMed Central

    Dikalov, Sergey I.; Dikalova, Anna E.

    2016-01-01

    Purpose of review In 1954 Harman proposed the free radical theory of aging, and in 1972 he suggested that mitochondria are both the source and the victim of toxic free radicals. Interestingly, hypertension is age-associated disease and clinical data show that by age 70, 70% of the population has hypertension and this is accompanied by oxidative stress. Antioxidant therapy however is not currently available and common antioxidants like ascorbate and vitamin E are ineffective in preventing hypertension. The present review focuses on molecular mechanisms of mitochondrial oxidative stress and therapeutic potential of targeting mitochondria in hypertension. Recent findings In the past several years, we have shown that the mitochondria become dysfunctional in hypertension and have defined novel role of mitochondrial superoxide radicals in this disease. We have shown that genetic manipulation of mitochondrial antioxidant enzyme superoxide dismutase (SOD2) affects blood pressure and have developed mitochondria-targeted therapies such as SOD2 mimetics that effectively lower blood pressure. The specific mechanism of mitochondrial oxidative stress in hypertension, however, remains unclear. Recent animal and clinical studies have demonstrated several hormonal, metabolic, inflammatory, and environmental pathways contributing to mitochondrial dysfunction and oxidative stress. Summary Nutritional supplements, calorie restriction, and life style change are the most effective preventive strategies to improve mitochondrial function and reduce mitochondrial oxidative stress. Aging associated mitochondrial dysfunction, however, reduces efficacy of these strategies. Therefore, we propose that new classes of mitochondria-targeted antioxidants can provide high therapeutic potential to improve endothelial function and reduce hypertension. PMID:26717313

  9. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  10. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  11. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health.

  12. Potential markers of oxidative stress in stroke.

    PubMed

    Cherubini, Antonio; Ruggiero, Carmelinda; Polidori, M Cristina; Mecocci, Patrizia

    2005-10-01

    Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.

  13. Nitrosative stress and pathogenesis of insulin resistance.

    PubMed

    Kaneki, Masao; Shimizu, Nobuyuki; Yamada, Daisuke; Chang, Kyungho

    2007-03-01

    Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.

  14. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H2O2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions.

  15. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria.

    PubMed

    Poole, Keith

    2012-05-01

    Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.

  16. Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1.

    PubMed

    Park, Sang-Kyu; Tedesco, Patricia M; Johnson, Thomas E

    2009-06-01

    Oxidative stress has been hypothesized to play a role in normal aging. The response to oxidative stress is regulated by the SKN-1 transcription factor, which also is necessary for intestinal development in Caenorhabditis elegans. Almost a thousand genes including the antioxidant and heat-shock responses, as well as genes responsible for xenobiotic detoxification were induced by the oxidative stress which was found using transcriptome analysis. There were also 392 down-regulated genes including many involved in metabolic homeostasis, organismal development, and reproduction. Many of these oxidative stress-induced transcriptional changes are dependent on SKN-1 action; the induction of the heat-shock response is not. When RNAi to inhibit genes was used, most had no effect on either resistance to oxidative stress or longevity; however two SKN-1-dependent genes, nlp-7 and cup-4, that were up-regulated by oxidative stress were found to be required for resistance to oxidative stress and for normal lifespan. nlp-7 encodes a neuropeptide-like protein, expressed in neurons, while cup-4 encodes a coelomocyte-specific, ligand-gated ion channel. RNAi of nlp-7 or cup-4 increased sensitivity to oxidative stress and reduced lifespan. Among down-regulated genes, only inhibition of ent-1, a nucleoside transporter, led to increased resistance to oxidative stress; inhibition had no effect on lifespan. In contrast, RNAi of nhx-2, a Na(+)/H(+) exchanger, extended lifespan significantly without affecting sensitivity to oxidative stress. These findings showed that a transcriptional shift from growth and maintenance towards the activation of cellular defense mechanisms was caused by the oxidative stress; many of these transcriptional alterations are SKN-1 dependent.

  17. Plant adaptogens increase lifespan and stress resistance in C. elegans.

    PubMed

    Wiegant, F A C; Surinova, S; Ytsma, E; Langelaar-Makkinje, M; Wikman, G; Post, J A

    2009-02-01

    Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way. In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.

  18. Oxidative stress as a mechanism of teratogenesis.

    PubMed

    Hansen, Jason M

    2006-12-01

    Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.

  19. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  20. Oxidative stress and mitochondrial dysfunction in sepsis.

    PubMed

    Galley, H F

    2011-07-01

    Sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit (ICU), despite advances in healthcare and science. Marked oxidative stress as a result of the inflammatory responses inherent with sepsis initiates changes in mitochondrial function which may result in organ damage. Normally, a complex system of interacting antioxidant defences is able to combat oxidative stress and prevents damage to mitochondria. Despite the accepted role that oxidative stress-mediated injury plays in the development of organ failure, there is still little conclusive evidence of any beneficial effect of systemic antioxidant supplementation in patients with sepsis and organ dysfunction. It has been suggested, however, that antioxidant therapy delivered specifically to mitochondria may be useful.

  1. Oxidative stress in development: nature or nurture?

    PubMed

    Dennery, Phyllis A

    2010-10-15

    An unavoidable consequence of aerobic respiration is the generation of reactive oxygen species (ROS). These may negatively impact development. Nevertheless, a certain amount of oxidative stress is required to allow for the normal progression of embryonic and fetal growth. Alterations in placental oxidative stress results in altered placental function and ultimately altered fetal growth and/or developmental programming leading to long-term consequences into adulthood. This article reviews the role of redox in fetal development and will focus on how developmental programming is influenced by the fetal and placental redox state as well as discuss potential therapeutic interventions.

  2. Involvement of oxidative stress in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Castellani, Rudy J; Zhu, Xiongwei; Moreira, Paula I; Perry, George; Smith, Mark A

    2006-07-01

    Genetic and lifestyle-related risk factors for Alzheimer disease (AD) are associated with an increase in oxidative stress, suggesting that oxidative stress is involved at an early stage of the pathologic cascade. Moreover, oxidative stress is mechanistically and chronologically associated with other key features of AD, namely, metabolic, mitochondrial, metal, and cell-cycle abnormalities. Contrary to the commonly held notion that pathologic hallmarks of AD signify etiology, several lines of evidence now indicate that aggregation of amyloid-beta and tau is a compensatory response to underlying oxidative stress. Therefore, removal of proteinaceous accumulations may treat the epiphenomenon rather than the disease and may actually enhance oxidative damage. Although some antioxidants have been shown to reduce the incidence of AD, the magnitude of the effect may be modified by individual factors such as genetic predisposition (e.g. apolipoprotein E genotype) and habitual behaviors. Because caloric restriction, exercise, and intellectual activity have been experimentally shown to promote neuronal survival through enhancement of endogenous antioxidant defenses, a combination of dietary regimen of low total calorie and rich antioxidant nutrients and maintaining physical and intellectual activities may ultimately prove to be one of the most efficacious strategies for AD prevention.

  3. Oxidative stress in brain ischemia.

    PubMed

    Love, S

    1999-01-01

    Brain ischemia initiates a complex cascade of metabolic events, several of which involve the generation of nitrogen and oxygen free radicals. These free radicals and related reactive chemical species mediate much of damage that occurs after transient brain ischemia, and in the penumbral region of infarcts caused by permanent ischemia. Nitric oxide, a water- and lipid-soluble free radical, is generated by the action of nitric oxide synthases. Ischemia causes a surge in nitric oxide synthase 1 (NOS 1) activity in neurons and, possibly, glia, increased NOS 3 activity in vascular endothelium, and later an increase in NOS 2 activity in a range of cells including infiltrating neutrophils and macrophages, activated microglia and astrocytes. The effects of ischemia on the activity of NOS 1, a Ca2+-dependent enzyme, are thought to be secondary to reversal of glutamate reuptake at synapses, activation of NMDA receptors, and resulting elevation of intracellular Ca2+. The up-regulation of NOS 2 activity is mediated by transcriptional inducers. In the context of brain ischemia, the activity of NOS 1 and NOS 2 is broadly deleterious, and their inhibition or inactivation is neuroprotective. However, the production of nitric oxide in blood vessels by NOS 3, which, like NOS 1, is Ca2+-dependent, causes vasodilatation and improves blood flow in the penumbral region of brain infarcts. In addition to causing the synthesis of nitric oxide, brain ischemia leads to the generation of superoxide, through the action of nitric oxide synthases, xanthine oxidase, leakage from the mitochondrial electron transport chain, and other mechanisms. Nitric oxide and superoxide are themselves highly reactive but can also combine to form a highly toxic anion, peroxynitrite. The toxicity of the free radicals and peroxynitrite results from their modification of macromolecules, especially DNA, and from the resulting induction of apoptotic and necrotic pathways. The mode of cell death that prevails probably

  4. Nitric oxide and oxidative stress in placental explant cultures.

    PubMed

    Goncalves, Juvic M; Casart, Ysabel C; Camejo, María I

    2016-01-01

    Placental explant culture, and cellular cytolysis and cellular differentiation have been previously studied. However, oxidative stress and nitric oxide profiles have not been evaluated in these systems. The aim of this study was to determine the release of lipid peroxidation and nitric oxide from placental explants cultured over a seven day period. Placental explants were maintained for seven days in culture and the medium was changed every 24 hours. The response was assessed in terms of syncytiotrophoblast differentiation (human chorionic gonadotropin, hCG), cellular cytolysis (lactate dehydrogenase, LDH), oxidative stress (thiobarbituric acid reactive substances, TBARS), and nitric oxide (NO). Levels of hCG increased progressively from day two to attain its highest level on days four and five after which it decreased gradually. In contrast, the levels of LDH, TBARS, and NO were elevated in the early days of placental culture when new syncytiotrophoblast from cytotrophoblast were forming and also in the last days of culture when tissue was declining. In conclusion, the levels of NO and lipid peroxidation follow a pattern similar to LDH and contrary to hCG. Future placental explant studies to evaluate oxidative stress and NO should consider the physiological changes inherent during the time of culture.

  5. Good genes, oxidative stress and condition-dependent sexual signals.

    PubMed Central

    von Schantz, T; Bensch, S; Grahn, M; Hasselquist, D; Wittzell, H

    1999-01-01

    The immune and the detoxication systems of animals are characterized by allelic polymorphisms, which underlie individual differences in ability to combat assaults from pathogens and toxic compounds. Previous studies have shown that females may improve offspring survival by selecting mates on the basis of sexual ornaments and signals that honestly reveal health. In many cases the expression of these ornaments appears to be particularly sensitive to oxidative stress. Activated immune and detoxication systems often generate oxidative stress by an extensive production of reactive metabolites and free radicals. Given that tolerance or resistance to toxic compounds and pathogens can be inherited, female choice should promote the evolution of male ornaments that reliably reveal the status of the bearers' level of oxidative stress. Hence, oxidative stress may be one important agent linking the expression of sexual ornaments to genetic variation in fitness-related traits, thus promoting the evolution of female mate choice and male sexual ornamentation, a controversial issue in evolutionary biology ever since Darwin. PMID:10081154

  6. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  7. Heat- And Oxidation-Resistant Electrodes

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1990-01-01

    Alloys coated with electrically conductive ceramics used to make strong, oxidation-resistant electrodes for electrochemical cells operating at temperatures of 1,000 to 1,300 degrees C. Fe3Al or Ni3Al coated with strontium-doped lanthanum manganite more resistant to chemical attack than all-metal electrode, less brittle than all-ceramic electrode, and less costly than either alternative.

  8. Rapidly Solidified Oxidation Resistant Niobium Base Alloys

    DTIC Science & Technology

    1992-03-01

    107 Figure 4.25 Graph showing the weight change / area versus time for Nb-Ti alioys, commercial Nb alloys and Rene ’ 41 during the 800’C...properties with better oxidation resistance than Nb alloys ............................. J09 Figure 4.29 Cross sectional optical micrographs of Rene ’ 41 ...186 Figure 5.58 Optical cross sectional micrographs of etched Rene ’ 41 after 760*C cyclic oxidation and hardness testing. A

  9. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  10. Diabetes and Alzheimer Disease, Two Overlapping Pathologies with the Same Background: Oxidative Stress

    PubMed Central

    Rosales-Corral, Sergio; Tan, Dun-Xian; Manchester, Lucien; Reiter, Russel J.

    2015-01-01

    There are several oxidative stress-related pathways interconnecting Alzheimer's disease and type II diabetes, two public health problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer's or the only ones related to Alzheimer's pathology. Oxidative stress is inherent to Alzheimer's and feeds a vicious cycle with other key pathological features, such as inflammation and Ca2+ dysregulation. Alzheimer's pathology by itself may lead to insulin resistance in brain, insulin resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes, overlapping with the Alzheimer's pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same pathophysiological background is behind the consequences, oxidative stress. We emphasize oxidative stress and its detrimental role in some key regulatory enzymes. PMID:25815110

  11. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not

  12. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHd

  13. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.

    PubMed

    Husain, Maroof; Bourret, Travis J; McCollister, Bruce D; Jones-Carson, Jessica; Laughlin, James; Vázquez-Torres, Andrés

    2008-03-21

    Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNgamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H(2)O(2). NADH antagonizes the hydroxyl radical (OH(.)) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

  14. Oxidative stress markers in affective disorders.

    PubMed

    Siwek, Marcin; Sowa-Kućma, Magdalena; Dudek, Dominika; Styczeń, Krzysztof; Szewczyk, Bernadeta; Kotarska, Katarzyna; Misztakk, Paulina; Pilc, Agnieszka; Wolak, Małgorzata; Nowak, Gabriel

    2013-01-01

    Affective disorders are a medical condition with a complex biological pattern of etiology, involving genetic and epigenetic factors, along with different environmental stressors. Increasing numbers of studies indicate that induction of oxidative and nitrosative stress (O&NS) pathways, which is accompanied by immune-inflammatory response, might play an important role in the pathogenic mechanisms underlying many major psychiatric disorders, including depression and bipolar disorder. Reactive oxygen and nitrogen species have been shown to impair the brain function by modulating activity of principal neurotransmitter (e.g., glutamatergic) systems involved in the neurobiology of depression. Both preclinical and clinical studies revealed that depression is associated with altered levels of oxidative stress markers and typically reduced concentrations of several endogenous antioxidant compounds, such as glutathione, vitamin E, zinc and coenzyme Q10, or enzymes, including glutathione peroxidase, and with an impairment of the total antioxidant status. These oxidative stress parameters can be normalized by successful antidepressant therapy. On the other hand, some antioxidants (zinc, N-acetylcysteine, omega-3 free fatty acids) may exhibit antidepressant properties or enhance standard antidepressant therapy. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present paper reviews selected animal and human studies providing evidence that oxidative stress is implicated in the pathophysiology and treatment of depression and bipolar disorder.

  15. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  16. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  17. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1978-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  18. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  19. Oxidative stress in benign prostate hyperplasia.

    PubMed

    Zabaiou, N; Mabed, D; Lobaccaro, J M; Lahouel, M

    2016-02-01

    To assess the status of oxidative stress in benign prostate hyperplasia, a very common disease in older men which constitutes a public health problem in Jijel, prostate tissues were obtained by transvesical adenomectomy from 10 men with benign prostate hyperplasia. We measured the cytosolic levels of malondialdehyde (MDA) and glutathione (GSH) and cytosolic enzyme activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase. The development of benign prostate hyperplasia is accompanied by impaired oxidative status by increasing levels of MDA, depletion of GSH concentrations and a decrease in the activity of all the antioxidant enzymes studied. These results have allowed us to understand a part of the aetiology of benign prostate hyperplasia related to oxidative stress.

  20. Oxidative stress, phototherapy and the neonate.

    PubMed

    Gathwala, G; Sharma, S

    2000-11-01

    Phototherapy is the most widely used form of therapy for unconjugated hyperbilirubinaemia. Its non-invasive nature and few side effects reported earlier have led to the assumption that it is innocuous. Recent research has revealed that phototherapy is a photodynamic stress and can induce lipid peroxidation. There is increasing evidence that many severe diseases of the neonate are caused by oxidative injury and lipid peroxidation. In the present communique, we review the oxidative susceptibility of the neonate and the evidence now available that phototherapy induces oxidative stress. Although intensive phototherapy (up to 40 mwatt/cm2/nm) has been reported to be increasingly effective, a little caution, we believe is warranted, till more definite data in the human neonate, help resolve the issue.

  1. Piracetam improves mitochondrial dysfunction following oxidative stress.

    PubMed

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2006-01-01

    1.--Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. 2.--Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. 3.--Piracetam treatment at concentrations between 100 and 1000 microM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 microM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. 4.--Piracetam treatment (100-500 mg kg(-1) daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. 5.--In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients.

  2. Resistance switching memory in perovskite oxides

    SciTech Connect

    Yan, Z.B. Liu, J.-M.

    2015-07-15

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given.

  3. Resistance switching in oxides with inhomogeneous conductivity

    NASA Astrophysics Data System (ADS)

    Shang, Da-Shan; Sun, Ji-Rong; Shen, Bao-Gen; Wuttig, Matthias

    2013-06-01

    Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal—oxide—semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.

  4. Oxidation Resistance of Reactive Atoms in Graphene

    SciTech Connect

    Chisholm, Matthew F; Duscher, Gerd; Windl, Wolfgang

    2012-01-01

    We have found that reactive elements that are normally oxidized at room temperature are present as individual atoms or clusters on and in graphene. Oxygen is present in these samples but it is only detected in the thicker amorphous carbon layers present in the graphene specimens we have examined. However, we have seen no evidence that oxygen reacts with the impurity atoms and small clusters of these normally reactive elements when they are incorporated in the graphene layers. First principles calculations suggest that the oxidation resistance is due to kinetic effects such as preferential bonding of oxygen to nonincorporated atoms and H passivation. The observed oxidation resistance of reactive atoms in graphene may allow the use of these incorporated metals in catalytic applications. It also opens the possibility of designing and producing electronic, opto-electronic, and magnetic devices based on these normally reactive atoms.

  5. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  6. Multimarker Screening of Oxidative Stress in Aging

    PubMed Central

    Syslová, Kamila; Böhmová, Adéla; Kuzma, Marek; Pelclová, Daniela; Kačer, Petr

    2014-01-01

    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups. PMID:25147595

  7. Endothelial dysfunction and preeclampsia: role of oxidative stress

    PubMed Central

    Sánchez-Aranguren, Lissette C.; Prada, Carlos E.; Riaño-Medina, Carlos E.; Lopez, Marcos

    2014-01-01

    Preeclampsia (PE) is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5–10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are 20 times higher than those reported in developed countries. Risk factors for the development of PE include obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED). However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS), hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation. PMID:25346691

  8. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  9. Role of oxidative stress in pathogenesis of metabolic syndrome

    PubMed Central

    Mahjoub, Soleiman; Masrour-Roudsari, Jila

    2012-01-01

    The metabolic syndrome (MS) recognized as a major cause of type 2 diabetes and cardiovascular diseases, has become one of the major public health challenges worldwide. The pathogenesis of the metabolic syndrome is multiple and still poorly understood. No single factor has yet been identified as an underlying causal factor. There is a growing belief, however, that obesity, especially visceral obesity, may play an important role in the development of the syndrome. Visceral adiposity seems to be an independent predictor of insulin sensitivity, impaired glucose tolerance, dyslipidemia and elevated blood pressure. An increasing number of studies confirm that oxidative stress, chronic inflammation and angiogenesis all play important roles in the pathogenesis of MS. Chronic hyperglycemia causes oxidative stress in tissues prone to complications in patients with diabetes. Oxidative stress occurs in a cellular system when the production of free radical moieties exceeds the antioxidant capacity of that system. If cellular antioxidants do not remove free radicals, radicals attack and damage proteins, lipids, and nucleic acids. The oxidized or nitrosylated products of free radical attack have decreased biological activity, leading to loss of energy metabolism, cell signaling, transport, and other major functions. These altered products are also targeted for proteosome degradation, further decreasing cellular function. Accumulation of such injury ultimately leads a cell to die through necrotic or apoptotic mechanisms. In conclusion, a puzzle of many pieces of evidence suggests that free radical overgeneration may be considered the key in the generation of insulin resistance, diabetes, and cardiovascular disease. PMID:26557292

  10. Oxidative Stress: A Promising Target for Chemoprevention

    PubMed Central

    John, AM Sashi Papu; Ankem, Murali K; Damodaran, Chendil

    2016-01-01

    Cancer is a leading cause of death worldwide, and treating advanced stages of cancer remains clinically challenging. Epidemiological studies have shown that oxidants and free radicals induced DNA damage is one of the predominant causative factors for cancer pathogenesis. Hence, oxidants are attractive targets for chemoprevention as well as therapy. Dietary agents are known to exert an anti-oxidant property which is one of the most efficient preventive strategy in cancer progression. In this article, we highlight dietary agents can potentially target oxidative stress, in turn delaying, preventing, or treating cancer development. Some of these agents are currently in use in basic research, while some have been launched successfully into clinical trials. PMID:27088073

  11. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  12. Oxidative stress response in Paracoccidioides brasiliensis.

    PubMed

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  13. Compound oxidized styrylphosphine. [flame resistant vinyl polymers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. J. L. (Inventor)

    1979-01-01

    A process is described for preparing flame resistant, nontoxic vinyl polymers which contain phosphazene groups and which do not emit any toxic or corrosive products when they are oxidatively degraded. Homopolymers, copolymers, and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer from a group of organic azides, or by polymerizing p-diphenylphosphinestyrene and then oxidizing that monomer with an organoazide from the group of (C6H5)2P(O)N3, (C6H5O)2P(O)N3, (C6H5)2C3N3(N3), and C6H5C3N3(N3)2. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer.

  14. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome.

    PubMed

    Goodwill, Adam G; Frisbee, Jefferson C

    2012-01-01

    The evolution of the metabolic syndrome in afflicted individuals is, in part, characterized by the development of a severely pro-oxidant state within the vasculature. It has been previously demonstrated by many investigators that this increasingly pro-oxidant state can have severe negative implications for many relevant processes within the vasculature, including the coordination of dilator/constrictor tone or reactivity, the structural adaptations of the vascular wall or distal networks, as well as the integrated regulation of perfusion resistance across and throughout the vascular networks. The purpose of this review article is to present the different sources of oxidant stress within the setting of the metabolic syndrome, the available mechanism for attempts at regulation and the vascular outcomes associated with this condition. It is anticipated that this overview will help readers and investigators to more effectively design experiments and interpret their results within the extremely complicated setting of metabolic syndrome.

  15. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  16. Oxidative stress and inflammatory bowel disease.

    PubMed

    Almenier, Hazem A; Al Menshawy, Hazem H; Maher, Maha M; Al Gamal, Salah

    2012-01-01

    Inflammatory Bowel Disease (IBD) is a chronic relapsing and remitting inflammatory condition of the gastrointestinal tract. The exact cause of IBD remains undetermined, the condition appears to be related to a combination of genetic and environmental factors. While many gaps in our knowledge still exist, the last two decades have witnessed an unprecedented progress not only in the etiology ; but mainly in the mechanisms underlying the chronic inflammatory response, immunologic and genetic aspects. We review some recent points of research in pathogenesis with special stress on oxidative stress and its correlations with disease activity.

  17. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  18. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  19. The Mismetallation of Enzymes during Oxidative Stress*

    PubMed Central

    Imlay, James A.

    2014-01-01

    Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity. PMID:25160623

  20. Green Tea Increases Insulin Sensitivity and Decreases Brain Oxidative Stress in Fructose Fed Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperglycemia and insulin resistance are leading causes of early brain alterations. Our objective was to investigate the in vivo effects of green tea extract on insulin sensitivity, insulin signaling, and brain oxidative stress using an experimental rodent model of diet-induced insulin resistance, t...

  1. Effects of Oxidation on Oxidation-Resistant Graphite

    SciTech Connect

    Windes, William; Smith, Rebecca; Carroll, Mark

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  2. Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid.

    PubMed

    Oliveira, Sayonara Rangel; Kallaur, Ana Paula; Lopes, Josiane; Colado Simão, Andrea Name; Vissoci Reiche, Edna Maria; de Almeida, Elaine Regina Delicato; Morimoto, Helena Kaminami; de Carvalho Jennings de Pereira, Wildea Lice; Alfieri, Daniela Frizon; Flauzino, Tamires; de Meleck Proença, Caio; Gomes, Anna Maria; Kaimen-Maciel, Damacio Ramón; Maes, Michael

    2017-04-01

    Depression is accompanied by metabolic disorders in iron metabolism, lipoproteins, and insulin resistance. We measured plasma levels of ferritin, iron, lipids, insulin, and glucose and computed the homeostasis model assessment (HOMA2IR) and atherogenic index of plasma (AIP) in MS patients with and without depression and healthy controls. Explanatory variables were serum uric acid, interleukin (IL)-6, lipid hydroperoxides (CL-LOOH), albumin, and C-reactive protein (CRP). Depression was assessed using the Hospital Anxiety and Depression Scale (HADS), neurological disability using the Expanded Disability Status Scale (EDSS), and disease progression using ∆EDSS over five years earlier. HOMA2IR and insulin were predicted by diagnosis (increased in MS), age and body mass index (BMI); AIP by diagnosis, sex, BMI, CRP, and uric acid; triglycerides by diagnosis (higher in MS without depression), age, BMI and uric acid; ferritin by diagnosis (higher in MS), sex, CRP, and albumin; and iron by albumin. The HADS score was significantly predicted by ∆EDSS, gastro-intestinal symptoms, iron (inverse), and age. MS is characterized by significantly increased insulin resistance, which is determined by increased insulin levels; and increased ferritin, a biomarker of inflammation. Depression in MS is not associated with increased insulin resistance and atherogenicity but with lowered iron.

  3. ALS and Oxidative Stress: The Neurovascular Scenario

    PubMed Central

    Thakur, Keshav; Gupta, Pawan Kumar

    2013-01-01

    Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS. PMID:24367722

  4. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  5. [Oxidative stress and preeclampsia: A review].

    PubMed

    Guerby, P; Vidal, F; Garoby-Salom, S; Vayssiere, C; Salvayre, R; Parant, O; Negre-Salvayre, A

    2015-11-01

    Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. Pathophysiology of preeclampsia is still unclear. According to the two-stage model of preeclampsia, the abnormal and hypoperfused placenta (stage 1) releases factors to the bloodstream, which are responsible for the maternal symptoms (stage 2), characterised by a systemic inflammation and endothelial dysfunction. Oxidative stress plays an important role in the pathophysiology of the preeclampsia and could be the common denominator between the two. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on oxidative stress. We also review the different factors that have been proposed to cause endothelial cell dysfunction in preeclampsia, and trials investigating the role of antioxidant supplementation in preeclampsia.

  6. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  7. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  8. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  9. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  10. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  11. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  12. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  13. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  14. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  15. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  16. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  17. Oxidative stress and male reproductive health

    PubMed Central

    Aitken, Robert J; Smith, Tegan B; Jobling, Matthew S; Baker, Mark A; De Iuliis, Geoffry N

    2014-01-01

    One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER) pathway, 8-oxoguanine glycosylase 1 (OGG1). The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1) needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceived in vitro and serves as a driver for current research into the origins of free radical generation in the germ line. PMID:24369131

  18. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  19. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  20. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  1. Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress.

    PubMed

    Bensimon, Julie; Biard, Denis; Paget, Vincent; Goislard, Maud; Morel-Altmeyer, Sandrine; Konge, Julie; Chevillard, Sylvie; Lebeau, Jérôme

    2016-03-01

    Along with CD44, CD24 is a key marker of breast cancer stem cells (CSCs), frequently defined by CD24(-)/CD44(+) labeling. Among all phenotypes classically attributed to breast CD24(-)/CD44(+) cancer cells, radiation resistance has been extensively described and seen as being implicated in radiotherapy failure. Our previous data indicated that CD24(-) cells constitute a radiation-resistant subpopulation transitory selected by high doses of ionizing radiation. However, little is known about the biological role of CD24 in breast cancers, and no function has been assigned to CD24 in radiation response. Here, CD24 expression was induced in CD24(-) cells or knocked-down in CD24(+) cells. We show that forced extinction of CD24 expression is associated with decreased proliferation rate, lower levels of reactive oxygen species (ROS) and decreased genomic instability. On the opposite when CD24 is artificially expressed in CD24(-) cells, proliferation rates in vitro and in vivo, ROS levels and genomic instability are enhanced. Moreover, we observe that loss of CD24 expression leads to radiation resistance, by preventing radiation-induced cell death and promoting generation of progeny in relation to lower G2/M blockade and a smaller proportion of polyploid cells. Finally, control of ROS levels appears to be the key event in the CD24-mediated radiation response. For the first time, CD24 is proposed as a direct actor in radiation response of breast cancer cells, independently of CD44 expression. These findings could have interesting applications in evaluating the intrinsic radiation response of primary tumors.

  2. Neuro-oxidative-nitrosative stress in sepsis.

    PubMed

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-07-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding brain parenchyma, due to failure of the local antioxidant systems. ROS/RNS cause structural membrane damage, induce inflammation, and scavenge nitric oxide (NO) to yield peroxynitrite (ONOO(-)). This activates the inducible NO synthase, which further compounds ONOO(-) formation. ROS/RNS cause mitochondrial dysfunction by inhibiting the mitochondrial electron transport chain and uncoupling oxidative phosphorylation, which ultimately leads to neuronal bioenergetic failure. Furthermore, in certain 'at risk' areas of the brain, free radicals may induce neuronal apoptosis. In the present review, we define a role for ROS/RNS-mediated neuronal bioenergetic failure and apoptosis as a primary mechanism underlying sepsis-associated encephalopathy and, in sepsis survivors, permanent cognitive deficits.

  3. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.

  4. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  5. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet.

    PubMed

    Augusto, Ricielle Lopes; Isaac, Alinny Rosendo; Silva-Júnior, Ivanildo Inácio da; Santana, David Filipe de; Ferreira, Diorginis José Soares; Lagranha, Claudia Jacques; Gonçalves-Pimentel, Catarina; Rodrigues, Marcelo Cairrão Araujo; Andrade-da-Costa, Belmira Lara da Silveira

    2017-02-01

    The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.

  6. Oxidative stress and antioxidant response in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Montoya-Pérez, Rocío; Salgado-Garciglia, Rafael; Aguilera-Aguirre, Leopoldo; Cortés-Rojo, Christian; Mejía-Zepeda, Ricardo; Arellano-Plaza, Melchor; Saavedra-Molina, Alfredo

    Stress tolerance is a key attribute that must be considered when using yeast cells for industrial applications. High temperature is one factor that can cause stress in yeast. High environmental temperature in particular may exert a natural selection pressure to evolve yeasts into thermotolerant strains. In the present study, three yeasts (Saccharomyces cerevisiae, MC4, and Kluyveromyces marxianus, OFF1 and SLP1) isolated from hot environments were exposed to increased temperatures and were then compared with a laboratory yeast strain. Their resistance to high temperature, oxidative stress, and antioxidant response were evaluated, along with the fatty acid composition of their cell membranes. The SLP1 strain showed a higher specific growth rate, biomass yield, and biomass volumetric productivity while also showing lower duplication time, reactive oxygen species (ROS) production, and lipid peroxidation. In addition, the SLP1 strain demonstrated more catalase activity after temperature was increased, and this strain also showed membranes enriched in saturated fatty acids. It is concluded that the SLP1 yeast strain is a thermotolerant yeast with less oxidative stress and a greater antioxidant response. Therefore, this strain could be used for fermentation at high temperatures.

  7. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori.

    PubMed

    Pelliciari, Simone; Vannini, Andrea; Roncarati, Davide; Danielli, Alberto

    2015-01-01

    The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress. Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur toward apo-operators, while the binding toward holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur toward the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to antibiotics.

  8. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats.

    PubMed

    Sharma, Ashok Kumar; Bharti, Saurabh; Kumar, Rajiv; Krishnamurthy, Bhaskar; Bhatia, Jagriti; Kumari, Santosh; Arya, Dharamvir Singh

    2012-01-01

    Syzygium cumini (SC) is well known for its anti-diabetic potential, but the mechanism underlying its amelioration of type 2 diabetes is still elusive. Therefore, for the first time, we investigated whether SC aqueous seed extract (100, 200, or 400 mg/kg) exerts any beneficial effects on insulin resistance (IR), serum lipid profile, antioxidant status, and/or pancreatic β-cell damage in high-fat diet / streptozotocin-induced (HFD-STZ) diabetic rats. Wistar albino rats were fed with HFD (55% of calories as fat) during the experiment to induce IR and on the 10th day were injected with STZ (40 mg/kg, i.p.) to develop type 2 diabetes. Subsequently, after confirmation of hyperglycemia on the 14th day (fasting glucose level > 13.89 mM), diabetic rats were treated with SC for the next 21 days. Diabetic rats showed increased serum glucose, insulin, IR, TNF-α, dyslipidemia, and pancreatic thiobarbituric acid-reactive substances with a concomitant decrease in β-cell function and pancreatic superoxide dismutase, catalase, and glutathione peroxidase antioxidant enzyme activities. Microscopic examination of their pancreas revealed pathological changes in islets and β-cells. These alterations reverted to near-normal levels after treatment with SC at 400 mg/kg. Moreover, hepatic tissue demonstrated increased PPARγ and PPARα protein expressions. Thus, our study demonstrated the beneficial effect of SC seed extract on IR and β-cell dysfunction in HFD-STZ-induced type 2 diabetic rats.

  9. Kolaviron Improved Resistance to Oxidative Stress and Inflammation in the Blood (Erythrocyte, Serum, and Plasma) of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ayepola, Omolola R.; Brooks, Nicole L.; Oguntibeju, Oluwafemi O.

    2014-01-01

    Aims. Bitter kola seed (Garcinia kola, family: Guttiferae) has been used as a social masticatory agent in Africa for several years and is believed to possess many useful medicinal properties. The present study evaluates the antioxidative, anti-inflammatory, and antilipidemic effects of kolaviron (an extract from the Garcinia kola seeds) in the blood of streptozotocin- (STZ) induced diabetic rats. Methods. Diabetic rats were treated with kolaviron (100 mg/kg b·wt) orally, five times a week for a period of six weeks. Serum glucose and HBA1C concentrations were estimated in experimental groups. The activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) (in erythrocytes) as well as plasma concentration of malondialdehyde (MDA), a product of lipid peroxidation, oxygen radical absorbing capacity (ORAC) and ferric-reducing antioxidant power (FRAP) were investigated. Serum levels of proinflammatory cytokines and growth factor: interleukin- (IL-) 1, monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF), respectively, were also analyzed. Results. Kolaviron treatment markedly improved antioxidant status and abated inflammatory response evidenced by reduction in the levels of proinflammatory cytokines and growth factor, lipid peroxidation product, and the restoration of activities of erythrocyte antioxidant enzymes in the blood of diabetic rats. Conclusion. Kolaviron improved antioxidant status, reduced inflammation, and protected against hyperglycemic-induced oxidative damage in the blood of diabetic rats. PMID:24795542

  10. Development of oxidation/corrosion-resistant composite materials and interfaces

    SciTech Connect

    Stinton, D.P.; Besmann, T.M.; Shanmugham, S.

    1995-06-01

    Continuous fiber ceramic composites (CFCCs) are being developed for high temperature structural applications, many of which are in oxidative environments. Such composites are attractive since they are light-weight and possess the desired mechanical properties at elevated temperature and in aggressive environments. The most significant advantage is their toughness and their non-catastrophic failure behavior. The mechanical properties of CFCCs have been characteristically linked with the nature of the interfacial bond between the fibers and the matrix. Weakly bonded fiber-matrix intefaces allow an impinging matrix crack to be deflected such that the fracture process occurs through several stages: Crack deflection, debonding at the interface, fiber slip and pull-out, and ultimately fiber failure. Such a composite will fail in a graceful manner and exhibit substantial fracture toughness. Currently, carbon interface coatings are used to appropriately tailor interface properties, however their poor oxidation resistance has required a search of an appropriate replacement. Generally, metal oxides are inherently stable to oxidation and possess thermal expansion coefficients relatively close to those of Nicalon and SiC. However, the metal oxides must also be chemically compatible with the fiber and matrix. If the fiber/interface/matrix system is chemically compatible, then the interfacial bonding stress is influenced by the thermal residual stresses that are generated as the composite is cooled from processing to room temperature. In the current work, thermomechanical computational results were obtained from a finite element model (FEM) for calculating the thermal residual stresses. This was followed by experimental evaluation of Nicalon/SiC composites with carbon, alumina, and mullite interfacial coatings.

  11. Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance

    PubMed Central

    Grosser, Melinda R.; Weiss, Andy; Shaw, Lindsey N.

    2016-01-01

    ABSTRACT The ability of Staphylococcus aureus to resist host innate immunity augments the severity and pervasiveness of its pathogenesis. Nitric oxide (NO˙) is an innate immune radical that is critical for the efficient clearance of a wide range of microbial pathogens. Exposure of microbes to NO˙ typically results in growth inhibition and induction of stress regulons. S. aureus, however, induces a metabolic state in response to NO˙ that allows for continued replication and precludes stress regulon induction. The regulatory factors mediating this distinctive response remain largely undefined. Here, we employ a targeted transposon screen and transcriptomics to identify and characterize five regulons essential for NO˙ resistance in S. aureus: three virulence regulons not formerly associated with NO˙ resistance, SarA, CodY, and Rot, as well as two regulons with established roles, Fur and SrrAB. We provide new insights into the contributions of Fur and SrrAB during NO˙ stress and show that the S. aureus ΔsarA mutant, the most sensitive of the newly identified mutants, exhibits metabolic dysfunction and widespread transcriptional dysregulation following NO˙ exposure. Altogether, our results broadly characterize the regulatory requirements for NO˙ resistance in S. aureus and suggest an intriguing overlap between the regulation of NO˙ resistance and virulence in this well-adapted human pathogen. IMPORTANCE The prolific human pathogen Staphylococcus aureus is uniquely capable of resisting the antimicrobial radical nitric oxide (NO˙), a crucial component of the innate immune response. However, a complete understanding of how S. aureus regulates an effective response to NO˙ is lacking. Here, we implicate three central virulence regulators, SarA, CodY, and Rot, as major players in the S. aureus NO˙ response. Additionally, we elaborate on the contribution of two regulators, SrrAB and Fur, already known to play a crucial role in S. aureus NO˙ resistance. Our study

  12. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  13. Oxidative stress, thyroid dysfunction & Down syndrome

    PubMed Central

    Campos, Carlos; Casado, Ángela

    2015-01-01

    Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS. PMID:26354208

  14. Reengineering of subtilisin Carlsberg for oxidative resistance.

    PubMed

    Vojcic, Ljubica; Despotovic, Dragana; Maurer, Karl-Heinz; Zacharias, Martin; Bocola, Marco; Martinez, Ronny; Schwaneberg, Ulrich

    2013-01-01

    Mild bleaching conditions by in situ production of hydrogen peroxide or peroxycarboxylic acid is attractive for pulp, textile, and cosmetics industries. The enzymatic generation of chemical oxidants is often limited by enzyme stability. The subtilisin Carlsberg variant T58A/L216W/M221 is a promiscuous protease that was improved in producing peroxycarboxylic acids. In the current article, we identified two amino acid positions (Trp216 and Met221) that are important for the oxidative resistance of subtilisin Carlsberg T58A/L216W/M221. Site-saturation mutagenesis at positions Trp216 and Met221, which are located close to the active site, resulted in variants M4 (T58/W216M/M221) and M6 (T58A/W216L/M221C). Variants M4 (T58/W216M/M221) and M6 (T58A/W216L/M221C) have a 2.6-fold (M4) and 1.5-fold (M6) increased oxidative resistance and 1.4-fold increased kcat values for peroxycarboxylic acid formation, compared with wild-type subtilisin Carlsberg.

  15. Flavonoids and oxidative stress in Drosophila melanogaster.

    PubMed

    Sotibrán, América Nitxin Castañeda; Ordaz-Téllez, María Guadalupe; Rodríguez-Arnaiz, Rosario

    2011-11-27

    Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.

  16. Oxidative stress and antioxidants: Distress or eustress?

    PubMed

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly.

  17. Inhibition of Adenylyl Cyclase Type 5 Increases Longevity and Healthful Aging through Oxidative Stress Protection

    PubMed Central

    Vatner, Stephen F.; Pachon, Ronald E.; Vatner, Dorothy E.

    2015-01-01

    Mice with disruption of adenylyl cyclase type 5 (AC5 knockout, KO) live a third longer than littermates. The mechanism, in part, involves the MEK/ERK pathway, which in turn is related to protection against oxidative stress. The AC5 KO model also protects against diabetes, obesity, and the cardiomyopathy induced by aging, diabetes, and cardiac stress and also demonstrates improved exercise capacity. All of these salutary features are also mediated, in part, by oxidative stress protection. For example, chronic beta adrenergic receptor stimulation induced cardiomyopathy was rescued by AC5 KO. Conversely, in AC5 transgenic (Tg) mice, where AC5 is overexpressed in the heart, the cardiomyopathy was exacerbated and was rescued by enhancing oxidative stress resistance. Thus, the AC5 KO model, which resists oxidative stress, is uniquely designed for clinical translation, since it not only increases longevity and exercise, but also protects against diabetes, obesity, and cardiomyopathy. Importantly, inhibition of AC5's action to prolong longevity and enhance healthful aging, as well as its mechanism through resistance to oxidative stress, is unique among all of the nine AC isoforms. PMID:25945149

  18. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    PubMed

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  19. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  20. Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus).

    PubMed

    Costantini, David; Casagrande, Stefania; De Filippis, Stefania; Brambilla, Gianfranco; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2006-05-01

    The fitness of an organism can be affected by conditions experienced during early development. In light of the impact that oxidative stress can have on the health and ageing of a bird species, this study evaluated factors accounting for the variation in oxidative stress levels in nestlings of the Eurasian kestrel (Falco tinnunculus) by measuring the serum concentration of reactive oxygen metabolites and the serum antioxidant barrier against hypochlorite-induced oxidation. The ratio between these two variables was considered as an index of oxidative stress, with higher values meaning higher oxidative damage. Six-chick broods showed the highest level of oxidative stress, while no effect of sex was found. Age showed an inverse relationship with the oxidants and the levels of oxidative stress, with younger birds having higher levels. Hatching date, body condition, body mass and carotenoid concentration did not show any relationship with oxidants, antioxidants or degree of oxidative stress. These findings suggest that intrabrood sibling competition could play a role in determining oxidative stress, and that in carnivorous birds other antioxidant molecules could be more important than carotenoids to reduce oxidative stress.

  1. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  2. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  3. PHEOCHROMOCYTOMA: A CATECHOLAMINE AND OXIDATIVE STRESS DISORDER

    PubMed Central

    Pacak, Karel

    2012-01-01

    The WHO classification of endocrine tumors defines pheochromocytoma as a tumor arising from chromaffin cells in the adrenal medulla — an intra-adrenal paraganglioma. Closely related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal paragangliomas. Almost all pheochromocytomas and paragangliomas produce catecholamines. The concentrations of catecholamines in pheochromocytoma tissues are enormous, potentially creating a volcano that can erupt at any time. Significant eruptions result in catecholamine storms called “attacks” or “spells”. Acute catecholamine crisis can strike unexpectedly, leaving traumatic memories of acute medical disaster that champions any intensive care unit. A very well-defined genotype-biochemical phenotype relationship exists, guiding proper and cost-effective genetic testing of patients with these tumors. Currently, the production of norepinephrine and epinephrine is optimally assessed by the measurement of their O-methylated metabolites, normetanephrine or metanephrine, respectively. Dopamine is a minor component, but some paragangliomas produce only this catecholamine or this together with norepinephrine. Methoxytyramine, the O-methylated metabolite of dopamine, is the best biochemical marker of these tumors. In those patients with equivocal biochemical results, a modified clonidine suppression test coupled with the measurement of plasma normetanephrine has recently been introduced. In addition to differences in catecholamine enzyme expression, the presence of either constitutive or regulated secretory pathways contributes further to the very unique mutation-dependent catecholamine production and release, resulting in various clinical presentations. Oxidative stress results from a significant imbalance between levels of prooxidants, generated during oxidative phosphorylation, and antioxidants. The gradual accumulation of prooxidants due to metabolic oxidative stress results in proto

  4. The cytotoxic mechanism of glyoxal involves oxidative stress.

    PubMed

    Shangari, Nandita; O'Brien, Peter J

    2004-10-01

    Glyoxal is a reactive alpha-oxoaldehyde that is a physiological metabolite formed by lipid peroxidation, ascorbate autoxidation, oxidative degradation of glucose and degradation of glycated proteins. Glyoxal is capable of inducing cellular damage, like methylglyoxal (MG), but may also accelerate the rate of glycation leading to the formation of advanced glycation end-products (AGEs). However, the mechanism of glyoxal cytotoxicity has not been precisely defined. In this study we have focused on the cytotoxic effects of glyoxal and its ability to overcome cellular resistance to oxidative stress. Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, e.g. fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.

  5. [Emotional stress in the development of experimental hemorrhagic stroke in rats with different resistance to stress].

    PubMed

    Ivannikova, N O; Koplik, E V; Popova, E N; Sudakov, K V

    2009-01-01

    Individual behavioral characteristics of rats in the open-field test reflect their resistance to emotional stress and determine the severity of neurological disorders during intracerebral hemorrhage. Stress-resistant rats are characterized by a more rapid restoration of neurological status and disappearance of locomotor and coordination disturbances on day 7 after unilateral hemorrhage stroke in the caudate nucleus as compared to stress-predisposed animals. After hemorrhage stroke in the caudate nucleus, changes in vessels and neurons of the contralateral sensorimotor cortex were more pronounced in stress-predisposed passive rats than in stress-resistant active animals. The newly formed capillaries were not seen in stress-predisposed specimens. To day 7 of post stress hemorrhage stroke in the caudate nucleus, signs of the involvement of compensatory mechanisms in the contralateral sensorimotor cortex appeared in stress-resistant but not in stress-predisposed rats. This finding suggests the possibility of restoration of structure and normal functioning of neurons.

  6. Redefining ‘stress resistance gene’, and why it matters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plant biologists work on the identification of genes related to abiotic stress resistance, but the term ‘stress resistance gene’ is widely used without proper definition. Here it is argued that there is a need to update our understanding of this term and for standardization to facilitate integr...

  7. Oxidative stress: Biomarkers and novel therapeutic pathways.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  8. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  9. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  10. Chasing great paths of Helmut Sies "Oxidative Stress".

    PubMed

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.

  11. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  12. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?

    PubMed

    Foucaud, L; Goulaouic, S; Bennasroune, A; Laval-Gilly, P; Brown, D; Stone, V; Falla, J

    2010-09-01

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles.

  13. Oxidative stress in marine environments: biochemistry and physiological ecology.

    PubMed

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  14. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    PubMed Central

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J.; Barcia, Jorge M.

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation. PMID:25215171

  15. Diabetes and the brain: oxidative stress, inflammation, and autophagy.

    PubMed

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J; Barcia, Jorge M

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  16. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  17. Biomarkers of exposure to endogenous oxidative and aldehyde stress.

    PubMed

    Bruce, W Robert; Lee, Owen; Liu, Zhen; Marcon, Norman; Minkin, Salomon; O'Brien, Peter J

    2011-08-01

    We observed an unexpectedly strong association of three different endogenous aldehydes and noted that the association could be explained by multiple reactions in which oxidative stress increased the formation of endogenous aldehydes and endogenous aldehydes increased oxidative stress. These interactions make it reasonable to assess multiple exposures to endogenous oxidative and aldehyde stress with less specific measures such as advanced glycation end-products or protein carbonyls.

  18. Morphological transitions under oxidative stress in response to metabolite formation in Aspergillus niger.

    PubMed

    Lv, Yangyong; Zhou, Feng; Wang, Bin; Pan, Li

    2015-03-01

    Oxidative stress is associated with metabolite formation in fungi. In contrast to an Aspergillus niger wild-type strain, a sclerotia-formation regulator ansclR deletion strain demonstrated increased susceptibility to oxidative stress and reduced transcription of the catalase gene, catB, while an ansclR overexpression strain showed enhanced resistance to oxidative stress and increased expression of catB. In addition, ansclR complementation strain expressed a wild-type level of catB. The ansclR overexpression strain also produced the same metabolites as the wild type strain treated with H2O2. Furthermore, LC-MS, NMR, and IR analyses showed that the main metabolite was a steroid analog. Our study adds new clues to oxidative stress-related factors and metabolite formation in A. niger.

  19. Oxidative and nitrosative stress in ammonia neurotoxicity.

    PubMed

    Skowrońska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.

  20. Alterations in magnesium and oxidative status during chronic emotional stress.

    PubMed

    Cernak, I; Savic, V; Kotur, J; Prokic, V; Kuljic, B; Grbovic, D; Veljovic, M

    2000-03-01

    Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic stress consisting of everyday mortal danger in military actions lasting more than 3 months. Significant decreases in plasma ionized Mg2+, total Mg and ionized Ca2+ concentrations were found in both groups. Similarly, both study groups exhibited oxidative stress as assessed by increased plasma superoxide anions and malondialdehyde and modified antioxidant defense. There were no significant differences between the two stress groups. A negative correlation between magnesium balance and oxidative stress was observed suggesting that the same etiological factor (chronic stress) initiate decreases in both free and total magnesium concentrations and simultaneously increase oxidative stress intensity. These findings support the need for magnesium supplementation with antioxidant vitamins for people living in conditions of chronic stress.

  1. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    PubMed Central

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses. PMID:24212283

  2. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses.

    PubMed

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  3. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  4. Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress.

    PubMed

    Battelli, Maria Giulia; Polito, Letizia; Bolognesi, Andrea

    2014-12-01

    Endothelial xanthine oxidoreductase (XOR) together with NAD(P)H oxidase and nitric oxide (NO) synthase plays a physiologic role in inflammatory signalling, the regulation of NO production and vascular function. The oxidative stress generated by these enzymes may induce endothelial dysfunction, leading to atherosclerosis, cardiovascular diseases and metabolic syndrome. XOR activity creates both oxidant and anti-oxidant products that are implicated in the development of hypertension, smoking vascular injury, dyslipidemia and diabetes, which are the main risk factors of atherosclerosis. In particular, uric acid may have a protective as well as a detrimental role in vascular alterations, thus justifying the multi-directional effects of XOR inhibition. Moreover, XOR products are associated with cell differentiation, leading to adipogenesis and foam cell formation, as well as to the production of monocyte chemoattractant protein-1 from arterial smooth muscle cells, after proliferation and migration. The role of XOR in adipogenesis is also connected with insulin resistance and obesity, two main features of type 2 diabetes.

  5. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  6. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen.

    PubMed

    Shah, Devendra H; Casavant, Carol; Hawley, Quincy; Addwebi, Tarek; Call, Douglas R; Guard, Jean

    2012-03-01

    Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σ(S). Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.

  7. Targeting oxidative stress response by green tea polyphenols: clinical implications.

    PubMed

    Yiannakopoulou, Eugenia Ch

    2013-09-01

    Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.

  8. Serum from humans on long-term calorie restriction enhances stress resistance in cell culture

    PubMed Central

    Salvatore, Francesco; Crosby, Seth D.; Fontana, Luigi

    2013-01-01

    Calorie restriction (CR) without malnutrition is the most robust intervention to slow aging and extend healthy lifespan in experimental model organisms. Several metabolic and molecular adaptations have been hypothesized to play a role in mediating the anti-aging effects of CR, including enhanced stress resistance, reduced oxidative stress and several neuroendocrine modifications. However, little is known about the independent effect of circulating factors in modulating key molecular pathways. In this study, we used sera collected from individuals practicing long-term CR and from age- and sex-matched individuals on a typical US diet to culture human primary fibroblasts and assess the effects on gene expression and stress resistance. We show that treatment of cultured cells with CR sera caused increased expression of stress-response genes and enhanced tolerance to oxidants. Cells cultured in serum from CR individuals showed a 30% increase in resistance to H2O2 damage. Consistently, SOD2 and GPX1 mRNA, two key endogenous antioxidant enzymes, were increased by 2 and 2.5 folds respectively in cells cultured with CR sera. These cellular and molecular adaptations mirror some of the key effects of CR in animals, and further suggest that circulating factors contribute to the CR-mediated protection against oxidative stress and stress-response in humans as well. PMID:23912304

  9. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  10. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  11. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties

    PubMed Central

    Xia, Tian; Kovochich, Michael; Liong, Monty; Mädler, Lutz; Gilbert, Benjamin; Shi, Haibin; Yeh, Joanne I.; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxides nanoparticles that are currently being produced in high tonnage, TiO2, ZnO and CeO2, were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Non-dissolved ZnO nanoparticles enter caveolae in BEAS-2B, but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO2 nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO2 suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO2 was processed by the same uptake pathways as CeO2 but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity. PMID:19206459

  12. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  13. Oxidative Stress and ADHD: A Meta-Analysis

    PubMed Central

    Joseph, Nidhin; Zhang-James, Yanli; Perl, Andras; Faraone, Stephen V.

    2017-01-01

    Objective To clarify the role of oxidative stress and antioxidant activity in ADHD. Method We examined the association of ADHD and oxidative stress by applying random effects meta-analysis to studies of oxidative stress and antioxidant status in medication naive patients with ADHD and controls. Results Six studies of a total of 231 ADHD patients and 207 controls met our selection criteria. The association between ADHD and antioxidant status was not significant. We found a significant association between ADHD and oxidative stress that could not be accounted for by publication bias. The significant association lost significance after correcting for intrastudy clustering. No one observation accounted for the positive result. Conclusion These results are preliminary given the small number of studies. They suggest that patients with ADHD have normal levels of antioxidant production, but that their response to oxidative stress is insufficient, leading to oxidative damage. PMID:24232168

  14. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  15. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    PubMed

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  16. Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit

    PubMed Central

    Zhang, Zhanquan; Chen, Jian; Li, Boqiang; He, Chang; Chen, Yong; Tian, Shiping

    2017-01-01

    The limitations of chemical fungicides for the control of postharvest diseases have recently become more apparent. The utilization of antagonistic microorganisms is a promising alternative to that of fungicides to control postharvest decay. In previous studies, the antagonistic yeast Cryptococcus laurentii has shown excellent effects of biocontrol and great potential for practical application. Adverse conditions, such as oxidative stress, limit the practical application of antagonistic yeast. In this study, we investigated the oxidative stress tolerance of C. laurentii and the associated mechanisms. The results indicated that exogenous oxidative stress has a significant effect on the viability and biocontrol efficiency of C. laurentii. H2O2-induced oxidative stress led to the accumulation of reactive oxygen species. The results of flow cytometric analysis suggested that apoptosis is responsible for the reduced survival rate of C. laurentii under oxidative stress. Using tests of antioxidant activity, we found that C. laurentii could employ enzymatic systems to resist exogenous oxidative stress. The addition of exogenous glutathione, a non-enzymatic antioxidant, to the media can significantly enhance oxidative tolerance and biocontrol efficiency of C. laurentii. PMID:28210254

  17. Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit.

    PubMed

    Zhang, Zhanquan; Chen, Jian; Li, Boqiang; He, Chang; Chen, Yong; Tian, Shiping

    2017-01-01

    The limitations of chemical fungicides for the control of postharvest diseases have recently become more apparent. The utilization of antagonistic microorganisms is a promising alternative to that of fungicides to control postharvest decay. In previous studies, the antagonistic yeast Cryptococcus laurentii has shown excellent effects of biocontrol and great potential for practical application. Adverse conditions, such as oxidative stress, limit the practical application of antagonistic yeast. In this study, we investigated the oxidative stress tolerance of C. laurentii and the associated mechanisms. The results indicated that exogenous oxidative stress has a significant effect on the viability and biocontrol efficiency of C. laurentii. H2O2-induced oxidative stress led to the accumulation of reactive oxygen species. The results of flow cytometric analysis suggested that apoptosis is responsible for the reduced survival rate of C. laurentii under oxidative stress. Using tests of antioxidant activity, we found that C. laurentii could employ enzymatic systems to resist exogenous oxidative stress. The addition of exogenous glutathione, a non-enzymatic antioxidant, to the media can significantly enhance oxidative tolerance and biocontrol efficiency of C. laurentii.

  18. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  19. The Oxygen Paradox, oxidative stress, and ageing.

    PubMed

    Davies, Kelvin J A

    2016-04-01

    Professor Helmut Sies is being lauded in this special issue of Archives of Biochemistry & Biophysics, on the occasion of his retirement as Editor-in-Chief. There is no doubt that Helmut has exerted an enormously positive influence on this journal, the fields of Biochemistry & Biophysics in general, and the areas of free radical and redox biology & medicine in particular. Helmut Sies' many discoveries about peroxide metabolism, glutathione, glutathione peroxidases, singlet oxygen, carotenoids in general and lycopene in particular, and flavonoids, fill the pages of his more than 600 publications. In addition, he will forever be remembered for coining the term 'oxidative stress' that is so widely used (and sometimes abused) by most of his colleagues.

  20. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as w