Sample records for resistant mice strains

  1. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo.

    PubMed Central

    Field, H J; Darby, G

    1980-01-01

    Mice infected with three different isolates of herpes simplex virus (HSV) and treated with acyclovir (acycloguanosine; ACV) showed low levels of virus replication during the acute phase of infection. However, virus isolated from such treated mice did not show increased resistance to ACV. In contrast, resistant virus was readily isolated in vitro by passaging HSV in the presence of the drug. The degree of resistance was determined, in part, by the nature of the cells used to test the virus. The majority of ACV-resistant strains induced low or undetectable levels of HSV-specified thymidine kinase (TK), the enzyme responsible for phosphorylating ACV in infected cells. The TK-resistant strains were attenuated when injected into mice as indicated by reductions in virus replication, inflammation, and establishment of latent infections in sensory ganglia. The reduced virulence of the TK- strains was most marked after intracerebral inoculation, where the lethal dose was increased more than 100-fold compared with the parental isolates. However, one mutant is described which induced high levels of TK but was highly resistant to ACV and retained virulence for mice. PMID:6247969

  2. Proto-oncogene activation in liver tumors of hepatocarcinogenesis-resistant strains of mice.

    PubMed

    Stanley, L A; Devereux, T R; Foley, J; Lord, P G; Maronpot, R R; Orton, T C; Anderson, M W

    1992-12-01

    Activation of the ras family of oncogenes occurs frequently in liver tumors of the B6C3F1 mouse, a strain which is highly sensitive to hepatocarcinogenesis. Many other mouse strains are much more resistant to hepatocarcinogenesis; the aim of this study was to determine the frequency and pattern of oncogene activation in spontaneous and chemically induced liver tumors of three such strains, the C57BL/6J, the C57BL/6 x DBA/2 F1 hybrid (B6D2F1) and the C57BL/6 x Balb/c F1 hybrid (B6BCF1). The C57BL/6, DBA/2 and Balb/c strains are all relatively resistant to spontaneous hepatocarcinogenesis (1.5-3.6% of animals develop liver tumors in 2 years); with regard to chemically induced hepatocarcinogenesis the Balb/c is highly resistant, the C57BL/6 has low susceptibility and the DBA/2 has low to moderate susceptibility. The nude mouse tumorigenicity assay was used to search for activated oncogenes in 15 C57BL/6J liver tumors induced by a single neonatal dose of vinyl carbamate (VC, 0.15 mumol/g body weight). Three tumors contained H-ras genes activated by point mutations at codon 61 and one contained a non-ras oncogene. The polymerase chain reaction and allele-specific oligonucleotide hybridization were used to study H-ras mutations in spontaneous and VC-induced tumors from all three strains of mice. The frequency of H-ras codon 61 mutations in tumors induced by 0.15 mumol/g body weight VC in the C57BL/6J mouse (5/37) was similar to that in spontaneous tumors (2/9); surprisingly, tumors induced by a lower dose of VC (0.03 mumol/g body weight) had a higher frequency of H-ras mutations (12/28). The frequencies of H-ras activation detected in VC (0.03 mumol/g body weight)-induced tumors from the two F1 hybrids studied differed markedly. Only one VC-induced B6BCF1 tumor contained a mutated H-ras gene (1/10), whereas the majority of B6D2F1 tumors contained such mutations (23/33). Several spontaneous B6D2F1 liver tumors contained H-ras codon 61 mutations (6/15). Thus, H

  3. Innate resistance of mice to experimental infection with Naegleria fowleri.

    PubMed Central

    Haggerty, R M; John, D T

    1978-01-01

    The mouse system provides an excellent model for studying host resistance to Naegleria fowleri, the agent of primary amoebic meningoencephalitis. Innate resistance to infection with N. fowleri was examined with respect to infecting dose and the age, sex, and strain of mice. Intravenous inoculation with 10(7) amoebae per mouse produced 100% mortality in 9 days, whereas inoculation with fewer amoebae reduced the cumulative mortality. Male and female DUB/ICR mice of varying ages were inoculated intravenously with 2.5 X 10(5) N. fowleri per g of body weight. The youngest mice died first, with 100% mortality for both males and females, and mortality decreased with increasing age. Female mice were significantly more resistant to infection than males. Five strains of mice weighing approximately 20 g were inoculated intravenously with weight-adjusted doses; mortality ranged from 10% in C57BL/6 mice to 95% in A/HeCr mice. PMID:669800

  4. Metabolomic analysis of insulin resistance across different mouse strains and diets.

    PubMed

    Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E

    2017-11-24

    Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice.

    PubMed

    Diniz, Lívia de Figueiredo; Mazzeti, Ana Lia; Caldas, Ivo Santana; Ribeiro, Isabela; Bahia, Maria Terezinha

    2018-06-01

    Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies. Copyright © 2018 Diniz et al.

  6. Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice

    PubMed Central

    Mazzeti, Ana Lia; Caldas, Ivo Santana; Ribeiro, Isabela; Bahia, Maria Terezinha

    2018-01-01

    ABSTRACT Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies. PMID:29555633

  7. Atypical patterns of neural infection produced in mice by drug-resistant strains of herpes simplex virus.

    PubMed

    Field, H J; Anderson, J R; Wildy, P

    1982-03-01

    Mice inoculated intracerebrally (i.c.) with a mutant strain of HSV were found to develop cataracts 1 to 2 months after inoculation. Cataract formation was subsequently shown to follow an acute retinitis which commenced within 1 week of inoculation. The mutant had been selected for high resistance to the nucleoside analogue acyclovir and has been shown previously to be defective in the induction of thymidine kinase and also to express an altered DNA polymerase. The LD50 for mice inoculated i.c. was greater than 10(5) p.f.u. compared with approx 7 p.f.u. for the parental strain. Studies of virus replication following i.c. inoculation with a sublethal dose of the mutant revealed that only small amounts of infectious virus were produced in the brain, but during a period from 6 to 12 days after inoculation vigorous replication occurred in retinal tissue, producing very high titres of virus.

  8. Evaluation of Nitrofurantoin Combination Therapy of Metronidazole-Sensitive and -Resistant Helicobacter pylori Infections in Mice

    PubMed Central

    Jenks, Peter J.; Ferrero, Richard L.; Tankovic, Jacques; Thiberge, Jean-Michel; Labigne, Agnès

    2000-01-01

    The main objectives of this study were to determine whether the nitroreductase enzyme encoded by the rdxA gene of Helicobacter pylori was responsible for reductive activation of nitrofurantoin and whether a triple-therapy regimen with nitrofurantoin was able to eradicate metronidazole-sensitive and -resistant H. pylori infections from mice. The susceptibilities to nitrofurantoin of parent and isogenic rdxA mutant strains (three pairs), as well as a series of matched metronidazole-sensitive and -resistant strains isolated from mice (30) and patients (20), were assessed by agar dilution determination of the MIC. Groups of mice colonized with the metronidazole-sensitive H. pylori SS1 strain or a metronidazole-resistant rdxA SS1 mutant were treated with either metronidazole or nitrofurantoin as part of a triple-therapy regimen. One month after the completion of treatment the mice were sacrificed and their stomachs were cultured for H. pylori. The nitrofurantoin MICs for all strains tested were between 0.5 and 4.0 μg/ml. There was no significant difference between the susceptibility to nitrofurantoin of the parental strains and those of respective rdxA mutants or between those of matched metronidazole-sensitive and -resistant H. pylori isolates. The regimen with metronidazole eradicated infection from all eight SS1-infected mice and from one of eight mice inoculated with the rdxA mutant (P ≤ 0.001). The regimen with nitrofurantoin failed to eradicate infection from any of the six SS1-infected mice (P ≤ 0.001) and cleared infection from one of seven mice inoculated with the rdxA mutant. These results demonstrate that, despite the good in vitro activity of nitrofurantoin against H. pylori and the lack of cross-resistance between metronidazole and nitrofurantoin, eradication regimens involving nitrofurantoin are unable to eradicate either metronidazole-sensitive or -resistant H. pylori infections from mice. PMID:10991835

  9. Substrains of 129 Mice Are Resistant to Yersinia pestis KIM5: Implications for Interleukin-10-Deficient Mice▿

    PubMed Central

    Turner, Joshua K.; Xu, John L.; Tapping, Richard I.

    2009-01-01

    Interleukin-10 (IL-10)-deficient mice are resistant to several pathogens, including Yersinia pestis. Surprisingly, we observed that heterozygous IL-10+/− mice also survive high-dose intravenous infection with Y. pestis KIM5 (Pgm−). Analysis of commercial IL-10−/− mice revealed that at least 30 cM of genomic DNA from the original 129 strain remains, including a functional Slc11a1 (Nramp1) gene. Interestingly, two substrains of 129 mice were resistant to high-dose Y. pestis KIM5. Resistance does not appear to be recessive, as F1 mice (C57BL/6J × 129) also survived a high-dose challenge. A QTL-based genetic scan of chromosome 1 with 35 infected F1 backcrossed mice revealed that resistance to KIM5 maps to a region near IL-10. Two novel IL-10+/+ mouse strains which each possess most of the original 30-cM stretch of 129 DNA maintained resistance to high-dose infection with Y. pestis KIM5 even in a heterozygous state. Conversely, a novel IL-10−/− mouse strain in which most of the 129 DNA has been crossed out exhibited intermediate resistance to KIM5, while the corresponding IL-10+/− strain was completely susceptible. Taken together, these results demonstrate that 129-derived genomic DNA near IL-10 confers resistance to Yersinia pestis KIM5 and contributes to the observed resistance of IL-10−/− mice. PMID:18955473

  10. Strain differences in the proteome of dioxin-sensitive and dioxin-resistant mice treated with 2,3,7,8-tetrabromodibenzo-p-dioxin.

    PubMed

    Nguyen, Hoa Thanh; Tsuchiya, Maria Claret Lauan; Yoo, Jean; Iida, Midori; Agusa, Tetsuro; Hirano, Masashi; Kim, Eun-Young; Miyazaki, Tatsuhiko; Nose, Masato; Iwata, Hisato

    2017-04-01

    Dioxins cause various toxic effects through the aryl hydrocarbon receptor (AHR) in vertebrates, with dramatic species and strain differences in susceptibility. Although inbred mouse strains C3H/HeJ-lpr/lpr (C3H/lpr) and MRL/MpJ-lpr/lpr (MRL/lpr) are known as dioxin-sensitive and dioxin-resistant mice, respectively, the molecular mechanism underlying this difference remains unclear. The difference in the hepatic proteome of the two mouse strains treated with vehicle or 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) was investigated by a proteomic approach of two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF). To confirm the strain-difference in response to TBDD treatment, cytochrome P450 (CYP) 1A1 and 1A2 protein levels were measured in both strains. A dose of 10 µg/kg body weight of TBDD induced hepatic CYP1A1 and CYP1A2 expression in both strains, but the expression levels of both CYP1A proteins were higher in C3H/lpr mice than in MRL/lpr mice, supporting that C3H/lpr mice are more sensitive to dioxins than MRL/lpr mice. Proteins that were more induced or suppressed by TBDD treatment in C3H/lpr mice were successfully identified by 2-DE and MALDI-TOF/TOF, including proteins responsible for AHR activation through production of endogenous ligands such as aspartate aminotransferase, indolethylamine N-methyltransferase, and aldehyde dehydrogenases, as well as proteins reducing oxidative stress, such as superoxide dismutase and peroxiredoxins. Taken together, our results provide insights into the molecular mechanism underlying the high dioxin susceptibility of the C3H/lpr strain, in which AHR activation by TBDD is more prompted by the production of endogenous ligands, but the adaptation to oxidative stress is also acquired.

  11. The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17.

    PubMed

    Turner, Joshua K; McAllister, Milton M; Xu, John L; Tapping, Richard I

    2008-09-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis.

  12. The Resistance of BALB/cJ Mice to Yersinia pestis Maps to the Major Histocompatibility Complex of Chromosome 17▿

    PubMed Central

    Turner, Joshua K.; McAllister, Milton M.; Xu, John L.; Tapping, Richard I.

    2008-01-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F2 mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis. PMID:18573896

  13. Exposure to Metronidazole In Vivo Readily Induces Resistance in Helicobacter pylori and Reduces the Efficacy of Eradication Therapy in Mice

    PubMed Central

    Jenks, Peter J.; Labigne, Agnes; Ferrero, Richard L.

    1999-01-01

    The Helicobacter pylori SS1 mouse model was used to characterize the development of resistance in H. pylori after treatment with metronidazole monotherapy and to examine the effect of prior exposure to metronidazole on the efficacy of a metronidazole-containing eradication regimen. Mice colonized with the metronidazole-sensitive H. pylori SS1 strain were treated for 7 days with either peptone trypsin broth or the mouse equivalent of 400 mg of metronidazole once a day or three times per day (TID). In a separate experiment, H. pylori-infected mice were administered either peptone trypsin broth or the mouse equivalent of 400 mg of metronidazole TID for 7 days, followed 1 month later by either peptone trypsin broth or the mouse equivalent of 20 mg of omeprazole, 250 mg of clarithromycin, and 400 mg of metronidazole twice a day for 7 days. At least 1 month after the completion of treatment, the mice were sacrificed and their stomachs were cultured for H. pylori. The susceptibilities of isolates to metronidazole were assessed by agar dilution determination of the MICs. Mixed populations of metronidazole-resistant and -sensitive strains were isolated from 70% of mice treated with 400 mg of metronidazole TID. The ratio of resistant to sensitive strains was 1:100, and the MICs for the resistant strains varied from 8 to 64 μg/ml. In the second experiment, H. pylori was eradicated from 70% of mice treated with eradication therapy alone, compared to 25% of mice pretreated with metronidazole (P < 0.01). Mice still infected after treatment with metronidazole and eradication therapy contained mixed populations of metronidazole-resistant and -sensitive isolates in a ratio of 1:25. These results demonstrate that H. pylori readily acquires resistance to metronidazole in vivo and that prior exposure of the organism to metronidazole is associated with failure of eradication therapy. H. pylori-infected mice provide a suitable model for the study of resistance mechanisms in H. pylori

  14. Photodynamic inactivation of antibiotic resistant strain of Pseudomonas aeruginosa in vivo

    NASA Astrophysics Data System (ADS)

    Hashimoto, M. C. E.; Toffoli, D. J.; Prates, R. A.; Courrol, Lilia C.; Ribeiro, M. S.

    2009-06-01

    Burns are frequently contamined by pathogenic microorganisms and the widespread occurrence of antibiotic resistant strains of Pseudomonas aeruginosa in hospitals is a matter of growing concern. Hypocrellin B (HB) is a new generation photosensitizer extracted from the fungus Hypocrella bambusae with absorption bands at 460, 546 and 584 nm. Lanthanide ions change the HB molecular structure and a red shift in the absorption band is observed as well as an increase in the singlet oxygen quantum yield. In this study, we report the use of HB:La+3 to kill resistant strain of P. aeruginosa infected burns. Burns were produced on the back of mice and wounds were infected subcutaneously with 1x109 cfu/mL of P. aeruginosa. Three-hours after inoculation, the animals were divided into 4 groups: control, HB:La+3, blue LED and HB:La+3+blue LED. PDT was performed using 10μM HB:La+3 and 500mW light-emitting diode (LED) emitting at λ=470nm+/-20nm during 120s. The animals of all groups were killed and the infected skin was removed for bacterial counting. Mice with photosensitizer alone, light alone or untreated infected wounds presented 1x108 cfu/g while mice PDT-treated showed a reduction of 2 logs compared to untreated control. These results suggest that HB:La+3 associated to blue LED is effective in diminishing antibiotic resistant strain P. aeruginosa in infected burns.

  15. Investigation of the susceptibility of various strains of mice to methyllycaconitine toxicosis.

    PubMed

    Welch, K D; Green, B T; Panter, K E; Gardner, D R; Pfister, J A; Cook, D; Stegelmeier, B L

    2009-04-01

    Although the mechanism of action for larkspur alkaloids has been described, little information is available on the variation of the physiological response of individual animals to larkspur alkaloids. Anecdotal observations and pilot studies in cattle indicate that there is animal-to-animal variation in response to a debilitating dose of larkspur alkaloids. The objective of this study was to determine whether there is variation in susceptibility of different strains of mice to larkspur alkaloid toxicosis and to identify factors responsible for the variation that could then be used as a model for studies in cattle. The acute toxicity of methyllycaconitine (MLA) in 9 different inbred strains of mice was compared. The rank order, from most to least susceptible, was A/J>B10>FVB>BALB/c>C57Bl/6>NZW>C3H>DBA>129. The calculated LD(50) ranged from 3.3+/-0.2 to 5.8+/-0.8 mg/kg of BW. The toxicokinetic profiles of MLA in the susceptible A/J strain and the more resistant 129 strain were compared to determine whether their differences in susceptibility were due to differences in their ability to eliminate MLA. The differences in toxicokinetic variables observed did not explain the differences in susceptibility. The protein expression of various nicotinic acetylcholine receptor (nAChR) subunits was also compared between the more resistant 129 strain and the susceptible A/J strain. The 129 strain of mice had twice the amount of alpha7 nAChR subunit expression as the A/J strain, which was in direct proportion to the approximately 2-fold difference in LD(50). There was also a significant difference (P<0.05) in expression of the alpha3 and alpha5 nAChR subunits between the 129 and A/J strains, with the 129 strain having a greater expression in each case. These data suggest that the increased susceptibility of the A/J mice could be due to a reduced expression of nAChR subunits. Similar analyses need to be made in cattle to determine whether there is a difference between breeds in

  16. Immunological aspects of Giardia muris and Spironucleus muris infections in inbred and outbred strains of laboratory mice: a comparative study.

    PubMed

    Brett, S J; Cox, F E

    1982-08-01

    The intestinal flagellates, Giardia muris and Spironucleus muris, cause similar infections in CBA mice as determined by trophozoite and cyst counts. Both parasites occur all along the small intestine with G. muris, being mainly present in the anterior part and S. muris towards the posterior. The early stages of infection are similar in all strains of mice examined and peak levels of both trophozoites and cysts occur 1-2 weeks after infection. All strains of mice overcome the infection but the rate of recovery varies considerably between strains, being most rapid in BALB/c and slowest in A and C57BL.B10. Outbred mice are more variable in their recovery than inbred mice. After recovery, mice are partially resistant to reinfection with the homologous but not the heterologous parasite. Resistance to reinfection with S. muris is greatest in those strains that eliminate the primary infection most rapidly. Giardia muris and S. muris cause similar changes in the mucosa of the small intestine of BALB/c mice with increased intra-epithelial lymphocyte counts from 3 weeks onwards corresponding with the start of the elimination of the parasites from the gut. A reduction in villus height and increase in crypt depth is also characteristic of these infections.

  17. A comparison of mucosal inflammatory responses to Giardia muris in resistant B10 and susceptible BALB/c mice.

    PubMed

    Venkatesan, P; Finch, R G; Wakelin, D

    1997-03-01

    In the first three weeks of primary Giardia muris infections B10 mice clear infection more rapidly than BALB/c mice. There is evidence that interferon-gamma contributes to the relative resistance of B10 mice. The nature of the functional contribution of interferon-gamma is unclear and does not relate to the secretory or serum antibody response. Mucosal inflammatory events in these strains have been studied. Apart from a small rise in both strains of goblet cell and mucosal mast cell numbers, associated with release of mast cell protease-1 in serum, no inflammatory infiltrate was observed at the time trophozoites were cleared from the intestinal lumen. Inhibition of mast cell products (5-hydroxytryptamine and histamine) by cyproheptadine enhanced the intensity of infection in both strains. The relative resistance of B10 mice could not be explained in terms of the mucosal inflammatory response.

  18. Respiratory and intraperitoneal infection of mice with encephalomyocarditis virus: effect of sublethal x-irradiation on host resistance and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogaerts, W.J.C.; Durville-vanderoord, B.J.

    1975-01-01

    The relationships governing host resistance to viral infection were evaluated in mice following respiratory or peritoneal infection with three strains of encephalomyocarditis (EMC) virus, which were antigenically similar but differed in virulence. Host resistance to each strain was evaluated by determining the mean lethal dose LD50, and the mean infectious dose ID50. The contribution of non-specific resistance to the overall defense of the host was assessed in mice that had received 450 R of x irradiation prior to viral infection. Experimental results indicate that host capacity to resist respiratory infection exceeds that for peritoneal infection for the three EMC strains.more » It is concluded that respiratory inoculation of virus affords better immunization against EMC virus infection than does peritoneal infection. (Author) (GRA)« less

  19. Characteristics of Mononuclear Phagocytes Mediating Antilisterial Resistance in Splenectomized Mice

    PubMed Central

    Pietrangeli, Carolynn; Pang, King C.; Skamene, Emil; Kongshavn, Patricia A. L.

    1983-01-01

    The characteristics of mononuclear phagocytes mediating resistance to infection with Listeria monocytogenes during the early phase (up to 48 h) of the response were investigated in mice of the A strain that had undergone splenectomy. Although irradiation in the sham-operated host had no effect on its antilisterial response when administered immediately before infection, it markedly reduced the ability of the splenectomized host to resist listerial challenge. This effect of radiation was demonstrable in the high-dose range (600 r) and could not be reversed immediately by repopulation with 20 × 106 syngeneic nucleated bone marrow cells. Administration of silica 24 h before infection profoundly enhanced the growth of L. monocytogenes in the liver of splenectomized mice. Shielding of the liver, but not the bone marrow, protected the splenectomized host against the effects of radiation, indicating that the cell population responsible for mediating the enhanced antilisterial resistance resides in the liver. The enhanced antilisterial resistance of splenectomized mice was specifically because of the absence of the spleen and not merely because of the removal of a favorable replicating environment for listeria organisms. PMID:6299948

  20. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans

    PubMed Central

    Break, Timothy J; Desai, Jigar V; Ferre, Elise M N; Henderson, Christina; Zelazny, Adrian M; Siebenlist, Ulrich; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P; Lionakis, Michail S

    2018-01-01

    Abstract Background Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. Objectives To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. Methods MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1−/− mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. Results Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1−/− mice. Conclusions VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains. PMID:29040636

  1. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    PubMed

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  2. Genetic Control of the Innate Resistance of Mice to Salmonella typhimurium: Expression of the Ity Gene in Peritoneal Macrophages Isolated In Vitro

    DTIC Science & Technology

    1984-07-20

    Carter and Collins, 1974a; Collins and Carter, 1978; O’Brien, 1982a). S. typhimurium and certain strains of Salmonella enteritidis are facultative...tested by S. enteritidis challenge of mice chronically infected with an antigenically dissimilar Salmonella species, S. montevideo. These mice were...given 5 X lO"’’ S. enteritidis . Crosses of resistant and susceptible strains resulted in Fl progeny of a Salmonella resistant phenotype. Backcross

  3. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  4. [Salmonella spp. strains resistant to drugs].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia

    2010-01-01

    The aim of the study was retrospective analysis of Salmonella spp. strains isolated from patients of State Infectious Diseases Observatory Hospital of T. Browicz in Bydgoszcz (SZAK) and University of dr. A. Jurasz in Bydgoszcz (SU CM UMK) in 2006-2009. The percentages of Salmonella spp. strains resistant to at least one drug were: 19,0% in 2006, 12,5% in 2007, 50,6% in 2008 and 43,8% in the first half of 2009 year. The highest number of Salmonella spp. strains resistant to drugs were isolated from stool (96,7%) and from patients of SZAK (83,3%). Among all isolated Salmonella spp. strains resistant to drugs the highest percentage were S. enterica serovar Enteritidis (56,7%). Among S. enterica bacilli predominated resitant phenotypes to ampicillin, amoxicillin, chloramphenicol and nalidixic acid. The increasing number of strains resistant to ciprofloxacin (0,0 - 26,7%) and high percentage of strains resistant to nalidixic acid (97,3%) were noted. Decreasing resistance to chloramphenicol was observed in our study (54,5 - 14,3%).

  5. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  6. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice.

    PubMed

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-06-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori, Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii, JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice.

    PubMed

    Lackner, Michaela; Rambach, Günter; Jukic, Emina; Sartori, Bettina; Fritz, Josef; Seger, Christoph; Hagleitner, Magdalena; Speth, Cornelia; Lass-Flörl, Cornelia

    2017-12-08

    No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitroazole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  9. Cross-resistance of bisultap resistant strain of Nilaparvata lugens and its biochemical mechanism.

    PubMed

    Ling, Shanfeng; Zhang, Runjie

    2011-02-01

    The resistant (R) strain of the planthopper Nilaparvata lugens (Stål) selected for bisultap resistance displayed 7.7-fold resistance to bisultap and also had cross-resistance to nereistoxin (monosultap, thiocyclam, and cartap), chlorpyrifos, dimethoate, and malathion but no cross-resistance to buprofezin, imidacloprid, and fipronil. To find out the biochemical mechanism of resistance to bisultap, biochemical assay was done. The results showed that cytochrome P450 monooxygenases (P450) activity in R strain was 2.71-fold that in susceptible strain (S strain), in which the changed activity for general esterase (EST) was 1.91 and for glutathione S-transferases only 1.32. Piperonyl butoxide (PBO) could significantly inhibit P450 activity (percentage of inhibition [PI]: 37.31%) in the R strain, with ESTs PI = 16.04% by triphenyl phosphate (TPP). The results also demonstrated that diethyl maleate had no synergism with bisultap. However, PBO displayed significant synergism in three different strains, and the synergism increased with resistance (S strain 1.42, Lab strain, 2.24 and R strain, 3.23). TPP also showed synergism for three strains, especially in R strain (synergistic ratio = 2.47). An in vitro biochemical study and in vivo synergistic study indicated that P450 might be play important role in the biochemical mechanism of bisultap resistance and that esterase might be the important factor of bisultap resistance. Acetylcholinesterase (AChE) insensitivity play important role in bisultap resistance. We suggest that buprofezin, imidacloprid, and fipronil could be used in resistance management programs for N. lugens via alternation and rotation with bisultap.

  10. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  11. Differences in susceptibility of inbred mice to Bacillus anthracis.

    PubMed Central

    Welkos, S L; Keener, T J; Gibbs, P H

    1986-01-01

    Animal species differ in their resistance both to infection by Bacillus anthracis and to anthrax toxin. A mouse model was developed to study the basis of the host differences and the pathogenesis of infection. When mice were infected with the virulent B. anthracis strain Vollum 1B, low 50% lethal dose (LD50) values (5 to 30 spores) were found for all 10 strains of inbred mice tested. However, analysis of time-to-death data revealed significant differences among the strains, which could be divided into three groups: most susceptible (A/J and DBA/2J); least susceptible (CBA/J, BALB/cJ, and C57BR/cdJ); and intermediate (the remaining five strains). In contrast, the mice were distinctly susceptible or resistant to lethal infection by the toxigenic, nonencapsulated Sterne vaccine strain. The LD50 for the susceptible A/J and DBA/2J mice was approximately 10(3) spores of the Sterne strain, whereas the remaining eight relatively resistant strains were killed only by 10(6) or more spores. F1 hybrid and backcross studies suggested that resistance to the Sterne strain is determined by a single dominant gene or gene complex. Mice lethally infected with B. anthracis showed an acute course of infection, characterized by extensive gelatinous edema and large concentrations of bacilli in the blood and organs (e.g., 10(9) CFU/g of spleen). The susceptibility of A/J and CBA/J mice to intravenously injected anthrax toxin components appeared to differ from their susceptibility to infection. The toxin LD50 values for both strains were similar. However, CBA/J mice died sooner than did A/J mice, with mean time to death of 0.9 and 3.7 days, respectively, in mice given 4 LD50 of toxin. The mouse model appears to be useful in studies on host resistance to anthrax and on the pathogenesis of the infection. PMID:3081444

  12. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  13. Activity of Gemifloxacin against Quinolone-Resistant Streptococcus pneumoniae Strains In Vitro and in a Mouse Pneumonia Model

    PubMed Central

    Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.

    2005-01-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901

  14. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-09-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype.

  15. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed Central

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-01-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype. PMID:3624203

  16. [Analysis of drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa strains isolated from burn wards].

    PubMed

    Liu, Shuhua; Liu, Pinghong; Xue, Xiaodong; Chen, Zhaojun; Pei, Decui

    2014-02-01

    To analyze the drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa (IRPA) strains isolated from burn wards. From June 2011 to June 2012, 30 strains of IRPA were isolated from wound excretion, sputum, and venous catheter attachment from burn patients hospitalized in Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine. Drug resistance of the IRPA to 12 antibiotics commonly used in clinic, including ceftazidime, amikacin, ciprofloxacin, etc., was tested with K-B paper agar disk diffusion method. Metallo-β-lactamase (MBL)-producing IRPA was detected by synergism test with imipenem-2-mercaptoethanol. Plasmid of IRPA was extracted, and it was inserted into competent cells, producing transformation strains (TSs). Drug resistance of TSs to imipenem and the MBL-producing TSs were detected. The genes blaIMP, blaVIM, blaOXA-1, blaOXA-2 and blaOXA-10 of IRPA and the TSs were detected by polymerase chain reaction. The drug resistance of IRPA producing MBL or OXA enzyme was summed up. The sensitive rates of the 30 strains of IRPA to the 12 antibiotics were equal to or above 60.0%. Six strains of MBL-producing IRPA were screened. Twenty-four TSs were resistant to imipenem, and 6 strains among them were MBL-producing positive. Among the 30 strains of IRPA, 6 strains and their corresponding TSs carried blaVIM; 20 strains and their corresponding TSs carried blaOXA-10; no strain was detected to carry blaIMP, blaOXA-1 or blaOXA-2. Two strains and their corresponding TSs were detected carrying both blaVIM and blaOXA-10. No significant difference of drug resistance was observed between strains producing only MBL or OXA enzyme, with the same high resistance to β-lactam antibiotics and some degree of sensitivity to aminoglycoside antibiotics. Strains producing enzymes MBL and OXA were all resistant to the 12 antibiotics. IRPA strains isolated from burn wards of Guangzhou Hospital of Integrated Traditional Chinese and Western

  17. Galectins expressed differently in genetically susceptible C57BL/6 and resistant BALB/c mice during acute ocular Toxoplasma gondii infection.

    PubMed

    Chen, S-J; Zhang, Y-X; Huang, S-G; Lu, F-L

    2017-07-01

    Ocular toxoplasmosis (OT) caused by Toxoplasma gondii is a major cause of infectious uveitis, however little is known about its immunopathological mechanism. Susceptible C57BL/6 (B6) and resistant BALB/c mice were intravitreally infected with 500 tachyzoites of the RH strain of T. gondii. B6 mice showed more severe ocular pathology and higher parasite loads in the eyes. The levels of galectin (Gal)-9 and its receptors (Tim-3 and CD137), interferon (IFN)-γ, IL-6 and IL-10 were significantly higher in the eyes of B6 mice than those of BALB/c mice; however, the levels of IFN-α and -β were significantly decreased in the eyes and CLNs of B6 mice but significantly increased in BALB/c mice after infection. After blockage of galectin-receptor interactions by α-lactose, neither ocular immunopathology nor parasite loads were different from those of infected BALB/c mice without α-lactose treatment. Although the expressions of Gal-9/receptor were significantly increased in B6 mice and Gal-1 and -3 were upregulated in both strains of mice upon ocular T. gondii infection, blockage of galectins did not change the ocular pathogenesis of genetic resistant BALB/c mice. However, IFN-α and -β were differently expressed in B6 and BALB/c mice, suggesting that type I IFNs may play a protective role in experimental OT.

  18. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    PubMed Central

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings

  19. Interferon in resistance to bacterial and protozoan infections

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  20. Chemokines expression during Leptospira interrogans serovar Copenhageni infection in resistant BALB/c and susceptible C3H/HeJ mice.

    PubMed

    da Silva, Josefa B; Ramos, Tatiane M V; de Franco, Marcelo; Paiva, Delhi; Ho, Paulo Lee; Martins, Elizabeth A L; Pereira, Martha M

    2009-08-01

    The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1 alpha (MIP-1 alpha) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 10(6) cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1 alpha were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1 alpha observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis.

  1. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance.

    PubMed

    Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M

    2017-02-01

    Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.

  2. New York City House Mice (Mus musculus) as Potential Reservoirs for Pathogenic Bacteria and Antimicrobial Resistance Determinants

    PubMed Central

    Williams, Simon H.; Che, Xiaoyu; Paulick, Ashley; Guo, Cheng; Lee, Bohyun; Muller, Dorothy; Uhlemann, Anne-Catrin; Lowy, Franklin D.; Corrigan, Robert M.

    2018-01-01

    ABSTRACT House mice (Mus musculus) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria. A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella, Salmonella, Clostridium difficile, and diarrheagenic Escherichia coli. Furthermore, genes mediating antimicrobial resistance to fluoroquinolones (qnrB) and β-lactam drugs (blaSHV and blaACT/MIR) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment. PMID:29666289

  3. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, R.B.

    1987-05-19

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  4. New York City House Mice (Mus musculus) as Potential Reservoirs for Pathogenic Bacteria and Antimicrobial Resistance Determinants.

    PubMed

    Williams, Simon H; Che, Xiaoyu; Paulick, Ashley; Guo, Cheng; Lee, Bohyun; Muller, Dorothy; Uhlemann, Anne-Catrin; Lowy, Franklin D; Corrigan, Robert M; Lipkin, W Ian

    2018-04-17

    House mice ( Mus musculus ) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella , Salmonella , Clostridium difficile , and diarrheagenic Escherichia coli Furthermore, genes mediating antimicrobial resistance to fluoroquinolones ( qnrB ) and β-lactam drugs ( bla SHV and bla ACT/MIR ) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment. IMPORTANCE Mice are commensal pests often found in close proximity to humans, especially in urban centers. We surveyed mice from seven sites across New York City and found multiple pathogenic bacteria associated with febrile and gastrointestinal disease as well as an array of antimicrobial resistance genes. Copyright © 2018 Williams et al.

  5. Strain-dependent Differences in LTP and Hippocampus-dependent Memory in Inbred Mice

    PubMed Central

    Nguyen, Peter V.; Abel, Ted; Kandel, Eric R.; Bourtchouladze, Roussoudan

    2000-01-01

    Many studies have used “reverse” genetics to produce “knock-out” and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices prepared from four different inbred strains of mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms-+Ter?/J. We found that LTP induced by four 100-Hz trains of stimulation was robust and long-lasting in C57BL/6J and DBA/2J mice but decayed in CBA/J and 129/SvEms-+Ter?/J mice. LTP induced by one 100-Hz train was significantly smaller after 1 hr in the 129/SvEms-+Ter?/J mice than in the other three strains. Theta-burst LTP was shorter lasting in CBA/J, DBA/2J, and 129/SvEms-+Ter?/J mice than in C57BL/6J mice. We also observed specific memory deficits, among particular mouse strains, in spatial and nonspatial tests of hippocampus-dependent memory. CBA/J mice showed defective learning in the Morris water maze, and both DBA/2J and CBA/J strains displayed deficient long-term memory in contextual and cued fear conditioning tests. Our findings provide strong support for a genetic basis for some forms of synaptic plasticity that are linked to behavioral long-term memory and suggest that genetic background can influence the electrophysiological and behavioral phenotypes observed in genetically modified mice generated for elucidating the molecular bases of learning, memory, and LTP. PMID:10837506

  6. More About High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.

    1994-01-01

    Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.

  7. Sost deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched in vivo loading experiments in mice.

    PubMed

    Albiol, Laia; Cilla, Myriam; Pflanz, David; Kramer, Ina; Kneissel, Michaela; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2018-04-01

    Sclerostin, a product of the Sost gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. Sost knockout (KO) mice were examined to gain insight into how long-term Sost deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult Sost KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in Sost KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of Sost KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from Sost KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched Sost KO and LC mice or between young and adult animals within the same genotype. © 2018 The Author(s).

  8. Compartmental responses after thoracic irradiation of mice: Strain differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, C.-S.; Liu, W.-C.; Jung, S.-M.

    2005-07-01

    Purpose: To examine and compare the molecular and cellular processes leading to radiation fibrosis and pneumonitis in C57BL/6J and C3H/HeN mice. Methods and Materials: At indicated times after various doses of thoracic irradiation, the cell populations obtained by bronchoalveolar lavage of C57BL/6J mice were differentially analyzed by cytology and assessed by RNase protection (RPA) assay for levels of cytokines and related genes. The molecular responses in bronchial alveolar lavage (BAL) populations were compared with those in whole lung of C57BL/6J mice and with those of C3H/HeN mice. The former strain develops late radiation fibrosis, whereas the latter develop subacute radiationmore » pneumonitis. Results: In C57BL/6J mice, a decrease in the total number of BAL cells was found 1 week after 6, 12, or 20 Gy thoracic irradiation with a subsequent dose-dependent increase up to 6 months. After 12 and 20 Gy, large, foamy macrophages and multinucleated cells became evident in BAL at 3 weeks, only to disappear at 4 months and reappear at 6 months. This biphasic response was mirrored by changes expression of mRNA for proinflammatory cytokines and the Mac-1 macrophage-associated antigen. As with BAL, whole lung tissue also showed biphasic cytokine and Mac-1 mRNA responses, but there were striking temporal differences between the two compartments, with changes in whole lung tissue correlating better than BAL with the onset of fibrosis in this strain. The radiation-induced proinflammatory mRNA responses had strain-dependent and strain-independent components. Thoracic irradiation of C3H/HeN induced similar increases in tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{alpha}/{beta}, and interferon (IFN)-{gamma} mRNA expression in lung as it did in C57BL/6J mice during the 'presymptom' phase at 1-2 months. However, immediately preceding and during the pneumonitic time period at 3-4 months, TNF-{alpha} and IL-1{alpha}/{beta} mRNAs were highly upregulated in C3H

  9. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  10. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    PubMed

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Correlation between in vitro and in vivo antimalarial activity of compounds using CQ-sensitive and CQ-resistant strains of Plasmodium falciparum and CQ-resistant strain of P. yoelii.

    PubMed

    Srivastava, Kumkum; Agarwal, Pooja; Soni, Awakash; Puri, S K

    2017-07-01

    Present efforts have been made to establish a correlation between in vitro and in vivo antimalarial activity using MIC, IC 50 and IC 90 values against CQ-sensitive (3D7) and CQ-resistant (K1) strains of Plasmodium falciparum and in vivo activity against Plasmodium yoelii. The method of discriminant function analysis (DFA) was applied to analyze the data. It was observed that in vitro IC 90 values against both 3D7 and K1 strains (p < 0.001) have strong correlation with in vivo curative activity. The respective IC 50 and IC 90 values of compounds, which cured mice (i.e., animals did not show recrudescence of parasitemia even after 60 days posttreatment), ranged between 3 and 14 nM and 14 and 186 nM against 3D7 and between 9 and 65 nM and 24 and 359 nM against the K1 strain of P. falciparum. Whereas the IC 50 and IC 90 values of compounds which exhibited in vivo suppressive activity in mice ranged between 10 and 307 nm and 61 and >965 nM, respectively, against 3D7 and 75 and >806 nm and 241 and >1232 nM against the K1 strain of P. falciparum. The findings suggest that IC 90 values against both 3D7 and K1 strains (p < 0.02) are the main contributors for the prediction of in vivo curative activity of a new molecule. Apart from this, a reasonable correlation between MIC and IC 50 values of compounds has also been established.

  12. Pathogenicity and Genetic Variation of 3 Strains of Corynebacterium bovis in Immunodeficient Mice

    PubMed Central

    Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B

    2013-01-01

    Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice. PMID:23849444

  13. Pathogenicity and genetic variation of 3 strains of Corynebacterium bovis in immunodeficient mice.

    PubMed

    Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B

    2013-07-01

    Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice.

  14. Resistance pattern of multi-drug resistant strains of Mycobacterium tuberculosis and characteristics of patients with multi-drug resistant tuberculosis.

    PubMed

    Moisoiu, Adriana; Mitran, Cristina Iulia; Mitran, Mãdãlina Irina; Huhu, Mihaela Roxana; Ioghen, Octavian Costin; Gheorghe, Adelina-Silvana; Tampa, Mircea; Georgescu, Simona Roxana; Popa, Mircea Ioan

    2016-01-01

    Multi-drug resistant tuberculosis (MDR-TB) is a major concern in the medical community. Knowledge about the drug resistance pattern of Mycobacterium tuberculosis strains plays an essential role in the management of the disease. We conducted a retrospective, 3-year study (2009-2011), in an urban area. We collected data on the drug resistance for 497 M. tuberculosis strains, isolated from patients with pulmonary TB. Among the 497 strains, we identified 158 MDR strains. Eighty medical recorders of patients infected with MDR strains were available and we included those patients in the study group. Of the 497 analysed strains, 8% were resistant to a single anti-TB drug. We identified 5.2% polyresistant drug strains, the most frequent combination being INH+EMB (1.4%). Of the 158 MDR strains identified (31.8%), over 60% were resistant to all first line anti-TB drugs tested. Most of them presented resistance to STM (86.1%) and EMB (67.7%). With respect to second line anti-TB drugs resistance to KM (23.4%) was the most common, followed by OFX (8.2%). With respect to the patients with MDR-TB, a percentage of 61.2% of them had a history of anti-TB treatment. Regarding lifestyle habits, 61.2% of the patients were smokers and 18.8% were abusing alcohol. Out of 51 patients, for whom information was available regarding their occupation, only 33.3 % were employees. MDR strains of Mycobacterium tuberculosis display an increased resistance to first line anti-TB drugs. Extension of resistance to second line anti-TB drugs narrows the therapeutic options. Knowledge of MDR-TB risk factors is imperative for the correct and rapid initiation of the treatment.

  15. A study of the interaction between H. pylori mice passage strains and gastric epithelial cells.

    PubMed

    Rahman, Inayatur; Idrees, Muhammad; Waqas, Mohammad; Karim, Abdul

    2018-05-01

    Helicobacter pylori (H. pylori) infections are very serious health problem that are further worsened by increasing/developing resistance to the current antibiotics. Therefore, new therapeutic agents are needed for H. pylori eradication. Use of a CD46 derived peptide (P3) as bactericidal agent against H. pylori has shown high activity rate in vivo and this study examines the changes in H. pylori features in response to effect of P3 treatment.AGS cells were infected with H. pylori wild type strain 67:21 and its mice passage strains (P3 treated and untreated strains) and further examined using immunoblotting assay, FACS and Urease activity analysis. Comparatively we found increased level of Urease alpha subunit A (UreA) and alkyl hydroperoxide reductase C (AhpC) proteins for P3 treated strain of H. pylori than its wild type or untreated strain after infection of AGS cells. Conclusion These results suggest that there might be a high rate of adherence to host cells for the P3 treated passage strain than untreated or wild type strain. Our findings also indicate that either adhesins are being changed or H. pylori interaction to the host cells is affected after P3 treatment.

  16. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  17. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  18. Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain

    PubMed Central

    Zhang, Anding; Wu, Jiayan; Chen, Bo; Hua, Yafeng; Yu, Jun; Chen, Huanchun; Xiao, Jingfa; Jin, Meilin

    2011-01-01

    Background Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. Results In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. Conclusions Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61. PMID:21966396

  19. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain.

    PubMed

    Hu, Pan; Yang, Ming; Zhang, Anding; Wu, Jiayan; Chen, Bo; Hua, Yafeng; Yu, Jun; Chen, Huanchun; Xiao, Jingfa; Jin, Meilin

    2011-01-01

    Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.

  20. Comparison of neutrophil functions between two strains of inbred mice.

    PubMed

    Zhang, Xiaohuan; Zhao, Sainan; Sun, Luping; Li, Wenqing; Glogauer, Michael; Hu, Yan

    2016-12-01

    In this study, differences between two strains of inbred mice in aspects of neutrophil function, namely Rac1 expression, chemotaxis, nicotinamide adenine dinucleotide phosphate oxidase activity and formation of neutrophil extracellular traps (NETs), were determined. Neutrophils from CBA/CaH mice exhibited weaker Rac1 expression and a slower chemotactic gradient than BALB/c mice. Furthermore, PMA- or fMLP-stimulated neutrophils from CBA/CaH mice generated much less superoxide and NETs than similarly stimulated neutrophils from BALB/c mice. These findings suggest that neutrophils from BALB/c mice are functionally more efficient than those from CBA/CaH mice. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  1. The Effect of Ivermectin in Seven Strains of Aedes aegypti (Diptera: Culicidae) Including a Genetically Diverse Laboratory Strain and Three Permethrin Resistant Strains

    PubMed Central

    Deus, K. M.; Saavedra-rodriguez, K.; Butters, M. P.; Black, W. C.; Foy, B. D.

    2014-01-01

    Seven different strains of Aedes aegypti (L.), including a genetically diverse laboratory strain, three laboratory-selected permethrin-resistant strains, a standard reference strain, and two recently colonized strains were fed on human blood containing various concentrations of ivermectin. Ivermectin reduced adult survival, fecundity, and hatch rate of eggs laid by ivermectin-treated adults in all seven strains. The LC50 of ivermectin for adults and the concentration that prevented 50% of eggs from hatching was calculated for all strains. Considerable variation in adult survival after an ivermectin-bloodmeal occurred among strains, and all three permethrin-resistant strains were significantly less susceptible to ivermectin than the standard reference strain. The hatch rate after an ivermectin bloodmeal was less variable among strains, and only one of the permethrin-resistant strains differed significantly from the standard reference strain. Our studies suggest that ivermectin induces adult mortality and decreases the hatch rate of eggs through different mechanisms. A correlation analysis of log-transformed LC50 among strains suggests that permethrin and ivermectin cross-resistance may occur. PMID:22493855

  2. Differences in susceptibility of mouse strains to tetrodotoxin.

    PubMed

    Suzuki, Hodaka

    2016-09-01

    The mouse bioassay for tetrodotoxin has been used for many years in Japan. To the best of our knowledge, however, there have only been a few reports that have specifically investigated differences in susceptibility to tetrodotoxin among mouse strains. In this study, we investigated the response of various mouse strains to tetrodotoxin. Tetrodotoxin solution was injected intraperitoneally into male mice of 5 inbred strains (A/J, BALB/c, C3H/He, C57BL/6, and DBA/2) and male and female mice of 2 non-inbred strains (ddY and ICR). Significant differences in susceptibility to tetrodotoxin were found among the mouse strains tested. In comparison to the ddY male mice, which are designated to be used in the Japanese reference method, the 5 inbred strains of mice tested were significantly more resistant to tetrodotoxin. However, no significant differences in tetrodotoxin susceptibility were observed between ddY male and female mice or between ddY male mice and ICR male and female mice. These results indicate that the users of the mouse bioassay should pay attention to differences in mouse strain in susceptibility to tetrodotoxin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains.

    PubMed

    Stanton, Thad B; Humphrey, Samuel B

    2011-10-01

    Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC=64 to >256 μg/ml) and to carry mosaic (recombinant) tetracycline resistance genes. Baby pigs inherit intestinal microbiota from the mother sow. In these investigations we addressed two questions. When do M. elsdenii strains from the sow colonize baby pigs? Can five antibiotic-sensitive M. elsdenii strains administered intragastrically to newborn pigs affect natural colonization of the piglets by antibiotic-resistant (AR) M. elsdenii strains from the mother? M. elsdenii natural colonization of newborn pigs was undetectable (<10(4) CFU/g [wet weight] of feces) prior to weaning (20 days after birth). After weaning, all pigs became colonized (4 × 10(5) to 2 × 10(8) CFU/g feces). In a separate study, 61% (76/125) of M. elsdenii isolates from a gravid sow never exposed to antibiotics were resistant to chlortetracycline, ampicillin, or tylosin. The inoculation of the sow's offspring with mixtures of M. elsdenii antibiotic-sensitive strains prevented colonization of the offspring by maternal AR strains until at least 11 days postweaning. At 25 and 53 days postweaning, however, AR strains predominated. Antibiotic susceptibility phenotypes and single nucleotide polymorphism (SNP)-based identities of M. elsdenii isolated from sow and offspring were unexpectedly diverse. These results suggest that dosing newborn piglets with M. elsdenii antibiotic-sensitive strains delays but does not prevent colonization by maternal resistant strains. M. elsdenii subspecies diversity offers an explanation for the persistence of resistant strains in the absence of antibiotic selection.

  4. Molecular characterization of ciprofloxacin resistance of gonococcal strains in Spain.

    PubMed

    Alcalá, B; Arreaza, L; Salcedo, C; Antolín, I; Borrell, N; Cacho, J; De Las Cuevas, C; Otero, L; Sauca, G; Vázquez, F; Villar, H; Vázquez, J A

    2003-05-01

    Over the past several years, the emergence of gonococcal isolates with intermediate or full resistance to fluoroquinolones has become a significant concern in several countries, including Spain. The goal was to determine the occurrence of ciprofloxacin resistance among Neisseria gonorrhoeae strains in Spain during 2000 to 2001 and determine the frequency and patterns of mutations at gyrA, gyrB, and parC genes in these isolates. Eleven ciprofloxacin-resistant strains (with MICs ranging from 1 to 64 micrograms/mL) and two intermediate isolates (with MICs of 0.12 and 0.5 microgram/mL) were found. Mutations were identified by polymerase chain reaction and direct sequencing of the amplified products. Alterations at Ser-91 and Asp-95 in GyrA were detected in all strains except one, an isolate for which the MIC was 0.12 microgram/mL. Alterations in ParC were more variable, and there was no clear correlation between the number of parC mutations and the level of resistance. No alterations at gyrB gene associated with ciprofloxacin resistance were found. The resistance was distributed among different types of strains, suggesting that the increase in the incidence of ciprofloxacin-resistant strains in Spain was not exclusively due to the appearance of a single-strain outbreak.

  5. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    PubMed Central

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  6. The influence of visual ability on learning and memory performance in 13 strains of mice.

    PubMed

    Brown, Richard E; Wong, Aimée A

    2007-03-01

    We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.

  7. Multidrug-resistant strains of Salmonella enterica Typhimurium, United States, 1997-1998.

    PubMed

    Rabatsky-Ehr, Therese; Whichard, Jean; Rossiter, Shannon; Holland, Ben; Stamey, Karen; Headrick, Marcia L; Barrett, Timothy J; Angulo, Frederick J

    2004-05-01

    To evaluate multidrug-resistant strains of Salmonella enterica serotype Typhimurium, including definitive type 104 (DT104) in the United States, we reviewed data from the National Antimicrobial Resistance Monitoring System (NARMS). In 1997 to 1998, 703 (25%) of 2,767 serotyped Salmonella isolates received at NARMS were S. Typhimurium; antimicrobial susceptibility testing and phage typing were completed for 697. Fifty-eight percent (402) were resistant to > or = 1 antimicrobial agent. Three multidrug-resistant (> or = 5 drugs) strains accounted for (74%) 296 of all resistant isolates. Ceftriaxone resistance was present in 8 (3%), and nalidixic acid resistance in 4 (1%), of these multidrug-resistant strains. By phage typing, 259 (37%) of S. Typhimurium isolates were DT104, 209 (30%) were of undefined type and 103 (15%) were untypable. Fifty percent (202) of resistant (> or = 1 drug) isolates were DT104. Multidrug-resistant S. Typhimurium isolates, particularly DT104, account for a substantial proportion of S. Typhimurium isolates; ceftriaxone resistance is exhibited by some of these strains.

  8. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  9. Efflux-mediated resistance identified among norfloxacin resistant clinical strains of group B Streptococcus from South Korea

    PubMed Central

    Dang, Trang Nguyen Doan; Srinivasan, Usha; Britt, Zachary; Marrs, Carl F.; Zhang, Lixin; Ki, Moran; Foxman, Betsy

    2014-01-01

    OBJECTIVES: Group B Streptococcus (GBS), a common bowel commensal, is a major cause of neonatal sepsis and an emerging cause of infection in immune-compromised adult populations. Fluoroquinolones are used to treat GBS infections in those allergic to beta-lactams, but GBS are increasingly resistant to fluoroquinolones. Fluoroquinolone resistance has been previously attributed to quinolone resistance determining regions (QRDRs) mutations. We demonstrate that some of fluoroquinolone resistance is due to efflux-mediated resistance. METHODS: We tested 20 GBS strains resistant only to norfloxacin with no mutations in the QRDRs, for the efflux phenotype using norfloxacin and ethidium bromide as substrates in the presence of the efflux inhibitor reserpine. Also tested were 68 GBS strains resistant only to norfloxacin not screened for QRDRs, and 58 GBS strains resistant to ciprofloxacin, levofloxacin or moxifloxacin. Isolates were randomly selected from 221 pregnant women (35-37 weeks of gestation) asymptomatically carrying GBS, and 838 patients with GBS infection identified in South Korea between 2006 and 2008. The VITEK II automatic system (Biomerieux, Durham, NC, USA) was used to determine fluoroquinolone resistance. RESULTS: The reserpine associated efflux phenotype was found in more than half of GBS strains resistant only to norfloxacin with no QRDR mutations, and half where QRDR mutations were unknown. No evidence of the efflux phenotype was detected in GBS strains that were resistant to moxifloxacin or levofloxacin or both. The reserpine sensitive efflux phenotype resulted in moderate increases in norfloxacin minimum inhibitory concentration (average=3.6 fold, range=>1-16 fold). CONCLUSIONS: A substantial portion of GBS strains resistant to norfloxacin have an efflux phenotype. PMID:25322878

  10. Strain commonalities and differences in response-outcome decision making in mice

    PubMed Central

    Zimmermann, Kelsey S.; Hsu, Chia-Chun; Gourley, Shannon L.

    2016-01-01

    The ability to select between actions that are more vs. less likely to be reinforced is necessary for survival and navigation of a changing environment. A task termed “response-outcome contingency degradation” can be used in the laboratory to determine whether rodents behave according to such goal-directed response strategies. In one iteration of this task, rodents are trained to perform two food-reinforced behaviors, then the predictive relationship between one instrumental response and the associated outcome is modified by providing the reinforcer associated with that response non-contingently. During a subsequent probe test, animals can select between the two trained responses. Preferential engagement of the behavior most likely to be reinforced is considered goal-directed, while non-selective responding is considered a failure in response-outcome conditioning, or “habitual.” This test has largely been used with rats, and less so with mice. Here we compiled data collected from several cohorts of mice tested in our lab between 2012-2015. Mice were bred on either a C57BL/6 or predominantly BALB/c strain background. We report that both strains of mice can use information acquired as a result of instrumental contingency degradation training to select amongst multiple response options the response most likely to be reinforced. Mice differ, however, during the training sessions when the familiar response-outcome contingency is being violated. BALB/c mice readily generate perseverative or habit-like response strategies when the only available response is unlikely to be reinforced, while C57BL/6 mice more readily inhibit responding. These findings provide evidence of strain differences in response strategies when an anticipated reinforcer is unlikely to be delivered. PMID:27003118

  11. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    PubMed Central

    Thelin, Jonas; Schouenborg, Jens

    2008-01-01

    Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR) system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1) if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2) if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP) in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting. PMID:18495020

  12. Sensitivity of inbred and selectively bred mice to ethanol.

    PubMed

    Smolen, A; Smolen, T N; van de Kamp, J L

    1987-01-01

    The Long-Sleep (LS) and Short-Sleep (SS) mice were bred for differences in sensitivity to ethanol as measured by duration of loss of the righting response (sleep time). The foundation population was a heterogeneous stock (HS) which was derived from a cross of eight inbred strains. Ethanol-induced sleep time and waking blood and brain ethanol levels were measured in the eight inbred strains, LS, SS and HS mice. The C3H and ISBI strains were quite resistant to ethanol as measured by sleep time, and only one, RIII, was very sensitive. Waking ethanol concentrations were similar for all of the inbreds, implying a narrow range of central nervous system sensitivity to ethanol. The HS mice had relatively short sleep times and blood ethanol levels equal to most of the inbred. The LS mice were significantly more, and the SS mice significantly less sensitive to ethanol than any of the inbreds or HS mice. These studies suggest that the extremes of CNS sensitivities to ethanol manifested by the LS and SS mice cannot be traced to any of the inbred strains, and must have arisen through the selection process by changes in allelic frequencies of those genes conferring ethanol sensitivity and resistance.

  13. Lipid Content of Antibiotic-Resistant and -Sensitive Strains of Serratia marcescens

    PubMed Central

    Chang, Chuan-Yi; Molar, Roger E.; Tsang, Joseph C.

    1972-01-01

    The lipid content of antibiotic-resistant, nonpigmented strain (Bizio) and antibiotic-sensitive, pigmented strain (08) of Serratia marcescens was studied. The resistant strain contains at least three times more total extractable lipid and phospholipid than the sensitive strain. Lysophosphatidylethanolamine, phosphatidylserine, lecithin, phosphatidylglycerol, phosphatidylethanolamine, and polyglycerolphosphatide were identified in the phospholipid fractions of both strains. Images PMID:4568257

  14. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1.

    PubMed

    Gopal, Pooja; Tasneen, Rokeya; Yee, Michelle; Lanoix, Jean-Philippe; Sarathy, Jansy; Rasic, George; Li, Liping; Dartois, Véronique; Nuermberger, Eric; Dick, Thomas

    2017-07-14

    Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.

  15. Divergent prion strain evolution driven by PrPC expression level in transgenic mice

    PubMed Central

    Le Dur, Annick; Laï, Thanh Lan; Stinnakre, Marie-George; Laisné, Aude; Chenais, Nathalie; Rakotobe, Sabine; Passet, Bruno; Reine, Fabienne; Soulier, Solange; Herzog, Laetitia; Tilly, Gaëlle; Rézaei, Human; Béringue, Vincent; Vilotte, Jean-Luc; Laude, Hubert

    2017-01-01

    Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission. PMID:28112164

  16. Radial maze performance in three strains of mice - Role of the fimbria/fornix

    NASA Technical Reports Server (NTRS)

    Reinstein, D. K.; Deboissiere, T.; Robinson, N.; Wurtman, R. J.

    1983-01-01

    Three strains of mice were tested on an 8-arm radial maze, an index of hippocampus-dependent spatial memory. Levels of performance differed betweens strains with C57Br/cdj greater than Balb/cj greater than C57B1/6j. Lesions of the fimbria/fornix disrupted performance in the C57Br and Balb strains: the C57Bl mice never performed better than chance before or after surgery. Choline acetyltransferase activity in hippocampus was not correlated with radial maze performance. These findings suggest a possible genetic contribution towards radial maze behavior.

  17. Exploration and risk assessment in female wild house mice (Mus musculus musculus) and two laboratory strains.

    PubMed

    Augustsson, Hanna; Dahlborn, Kristina; Meyerson, Bengt J

    2005-02-15

    In an evolutionary prospective, it is possible that female mice have a differential perception of novel events than male mice and use a different behavioural strategy for risk assessment. However, female mice are less studied than male mice in behavioural tests of emotional reactivity. The aim of the present study was to investigate how wild-derived female house mice differ from domesticated female mice in their risk assessment strategy. A total of 46 adult female mice, 14 BALB/c, 16 C57BL/6 and 14 Wild mice were tested in the Concentric Square Field (CSF), Open Field (OF) and Elevated Plus Maze (EPM) at three consecutive days. Parameters from all three tests were categorized according to their relevance to activity, exploration, approach-avoidance and use of open areas-shelter. Principal Component Analysis (PCA-SIMCA) of the animals' behaviour in the CSF arena was performed both for females alone and in comparison with earlier findings in male mice under the same test conditions. The results clearly show that female wild mice had a higher avoidance of open areas than the laboratory strains. There was also a trend indicating differences in exploration and approach-avoidance between female Wild and the laboratory strains. The multivariate test, CSF, was able to detect differences between Wild and laboratory strains in three (exploration, approach-avoidance, open-shelter) of the four functional categories measured. Wild female mice also had a higher frequency of rearing and grooming and a lower duration in the corridors in the CSF. Clear strain differences were found between BALB and C57BL in all tests where BALB generally had higher risk assessment and lower risk taking than C57BL. No general sex differences were found, however the sex differences were greater in Wild mice compared to the laboratory strains.

  18. Clinical Trichophyton rubrum Strain Exhibiting Primary Resistance to Terbinafine

    PubMed Central

    Mukherjee, Pranab K.; Leidich, Steven D.; Isham, Nancy; Leitner, Ingrid; Ryder, Neil S.; Ghannoum, Mahmoud A.

    2003-01-01

    The in vitro antifungal susceptibilities of six clinical Trichophyton rubrum isolates obtained sequentially from a single onychomycosis patient who failed oral terbinafine therapy (250 mg/day for 24 weeks) were determined by broth microdilution and macrodilution methodologies. Strain relatedness was examined by random amplified polymorphic DNA (RAPD) analyses. Data obtained from both broth micro- and macrodilution assays were in agreement and revealed that the six clinical isolates had greatly reduced susceptibilities to terbinafine. The MICs of terbinafine for these strains were >4 μg/ml, whereas they were <0.0002 μg/ml for the susceptible reference strains. Consistent with these findings, the minimum fungicidal concentrations (MFCs) of terbinafine for all six strains were >128 μg/ml, whereas they were 0.0002 μg/ml for the reference strain. The MIC of terbinafine for the baseline strain (cultured at the initial screening visit and before therapy was started) was already 4,000-fold higher than normal, suggesting that this is a case of primary resistance to terbinafine. The results obtained by the broth macrodilution procedure revealed that the terbinafine MICs and MFCs for sequential isolates apparently increased during the course of therapy. RAPD analyses did not reveal any differences between the isolates. The terbinafine-resistant isolates exhibited normal susceptibilities to clinically available antimycotics including itraconazole, fluconazole, and griseofulvin. However, these isolates were fully cross resistant to several other known squalene epoxidase inhibitors, including naftifine, butenafine, tolnaftate, and tolciclate, suggesting a target-specific mechanism of resistance. This is the first confirmed report of terbinafine resistance in dermatophytes. PMID:12499173

  19. Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis.

    PubMed

    Poussin, Carinne; Ibberson, Mark; Hall, Diana; Ding, Jun; Soto, Jamie; Abel, E Dale; Thorens, Bernard

    2011-09-01

    To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.

  20. Molecular Characteristics of Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Strains Isolated in Vietnam

    PubMed Central

    Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-01-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905

  1. Molecular characteristics of rifampin- and isoniazid-resistant mycobacterium tuberculosis strains isolated in Vietnam.

    PubMed

    Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-03-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.

  2. Multidrug-resistant Strains of Salmonella enterica Typhimurium, United States, 1997–19981

    PubMed Central

    Whichard, Jean; Rossiter, Shannon; Holland, Ben; Stamey, Karen; Headrick, Marcia L.; Barrett, Timothy J.; Angulo, Frederick J.

    2004-01-01

    To evaluate multidrug-resistant strains of Salmonella enterica Typhimurium, including definitive type 104 (DT104) in the United States, we reviewed data from the National Antimicrobial Resistance Monitoring System (NARMS). In 1997–1998, 25% (703) of 2,767 serotyped Salmonella isolates received at NARMS were S. Typhimurium; antimicrobial susceptibility testing and phage typing were completed for 697. Fifty-eight percent (402) were resistant to >1 antimicrobial agent. Three multidrug-resistant (>5 drugs) strains accounted for 74% (296) of all resistant isolates. Ceftriaxone resistance was present in 3% (8), and nalidixic acid resistance in 1% (4), of these multidrug-resistant strains. By phage typing, 37% (259) of S. Typhimurium isolates were DT104, 30% (209) were of undefined type and 15% (103) were untypable. Fifty percent (202) of resistant (>1 drug) isolates were DT104. Multidrug-resistant S. Typhimurium isolates, particularly DT104, account for a substantial proportion of S. Typhimurium isolates; ceftriaxone resistance is exhibited by some of these strains. PMID:15200811

  3. Z-100, a lipid-arabinomannan extracted from Mycobacterium tuberculosis, improves the resistance of thermally injured mice to herpes virus infections.

    PubMed

    Kobayashi, M; Herndon, D N; Pollard, R B; Suzuki, F

    1994-06-01

    The effect of Z-100, a lipid-arabinomannan extracted from Mycobacterium tuberculosis strain Aoyama B, was investigated on the resistance of thermally injured mice (TI-mice) to herpes simplex virus type 1 (HSV) infections. The susceptibility of TI mice to infection was about 100 times greater than it was in normal mice (N mice). However, the increased susceptibility of TI mice to infection was effectively counteracted to the levels observed in N mice when treated with Z-100 (10 mg/kg i.p.; 1, 3 and 5 days after thermal injury). Adoptive transfer of burn-associated CD8+ CD11b+ TCR gamma/delta + suppressor T (BAST) cells, prepared from TI mice, increased the susceptibility of N mice to infection by HSV, while the susceptibility of N mice, inoculated with the CD8+ T-cell fraction prepared from Z-100-treated TI mice (ZTC), to infection was not changed. In addition, the suppressor cell activity of BAST cells was not demonstrated when they were assayed in vitro in the presence of anti-IL-4 monoclonal antibody (mAb). BAST cells released IL-4 into their culture fluids without stimulation. The suppressor cell activity of ZTC and IL-4 production by ZTC were minimal. These results suggest that Z-100 may improve the resistance of TI mice to HSV infection through the regulation of BAST cells and/or the release of IL-4 from these cells.

  4. Comparative Genomics of Klebsiella pneumoniae Strains with Different Antibiotic Resistance Profiles▿†

    PubMed Central

    Kumar, Vinod; Sun, Peng; Vamathevan, Jessica; Li, Yong; Ingraham, Karen; Palmer, Leslie; Huang, Jianzhong; Brown, James R.

    2011-01-01

    There is a global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology of K. pneumoniae strains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes of K. pneumoniae are available. To better understand the multidrug resistance factors in K. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other published K. pneumoniae genomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to other K. pneumoniae strains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data on K. pneumoniae strains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates. PMID:21746949

  5. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of Ventilated Caging on Water Intake and Loss in 4 Strains of Laboratory Mice

    PubMed Central

    Nicolaus, Mackenzie L; Bergdall, Valerie K; Davis, Ian C; Hickman-Davis, Judy M

    2016-01-01

    Food availability, temperature, humidity, strain, and caging type all affect water consumption by mice. Measurement of transepidermal water loss (TEWL) is a new technique for the quantification of water turnover in mice. To understand water turnover in common strains of adult mice, male and female SCID, SKH, C57BL/6, and FVB mice were housed in same-sex groups of 5 animals in static cages or IVC. Body weight, TEWL, urine osmolality, and water consumption of mice and intracage temperature and humidity were measured every 48 h for comparison. Static cages were monitored for 7 d and IVC for 14 d before cage change. Female SCID, FVB, and C57 mice drank less water than did their male counterparts. Male and female SCID, SKH, and FVB mice in IVC drank less water and had higher urine osmolality than did those in static cages. In SCID and SKH mice, TEWL paralleled water consumption. C57 mice in static cages drank less water, had lower urine osmolality, and had less TEWL than did those in IVC. Temperature and humidity within the cage was higher than the macroenvironmental levels for all housing conditions, mouse strains, and sexes. Temperatures within IVC ranged from 76.6 to 81.4 °F compared with 69 ± 0.4 °F in the room. Humidity within IVC ranged from 68% to 79% compared with 27.o% ± 2.7% within the room. These data demonstrate that mouse strain and housing conditions significantly influence water balance and indicate that macroenvironmental measurements do not always reflect the intracage environment. PMID:27657706

  7. Rifaximin-resistant Clostridium difficile strains isolated from symptomatic patients.

    PubMed

    Reigadas, E; Muñoz-Pacheco, P; Vázquez-Cuesta, S; Alcalá, L; Marín, M; Martin, A; Bouza, E

    2017-12-01

    Rifaximin has been proposed as an alternative treatment for specific cases of Clostridium difficile infection (CDI) and intestinal decontamination. Rifaximin-resistant C. difficile has occasionally been reported. Antibiotic susceptibility testing relies on anaerobic agar dilution (reference method), which is cumbersome and not routinely used. There is no commercial test for detection of resistance to rifaximin. To assess resistance to rifaximin by C. difficile and to evaluate the correlation between the results of the rifampicin E-test and susceptibility to rifaximin. We compared the in vitro susceptibility of clinical CDI isolates to rifaximin over a 6-month period using the agar dilution method with susceptibility to rifampicin using the E-test. All isolates were characterized using PCR-ribotyping. Clinical data were recorded prospectively. We recovered 276 consecutive C. difficile isolates and found that 32.2% of episodes were caused by rifaximin-resistant strains. The MICs for rifaximin ranged from <0.0009-256 mg/L, with a geometric mean (GM) of 0.256 mg/L, an MIC 50/90 of 0.015/>256 mg/L. Rifaximin and rifampicin MICs were comparable, and all strains classed as resistant by agar dilution were correctly classified as resistant by E-test. The most common ribotypes were 001 (37.2%), 078/126 (14.3%), and 014 (12.0%). Ribotype 001 exhibited the highest MICs for rifaximin. Resistance to rifaximin was common; resistance rates were higher in ribotype 001 strains. Susceptibility to rifaximin determined by agar dilution correlated with susceptibility to rifampicin determined using the E-test, including rifaximin-resistant strains. Our results suggest that the rifampicin E-test is a valid method for the prediction of rifaximin-resistant C. difficile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.

    PubMed

    Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian

    2014-05-01

    This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.

  9. Bumble bee parasite strains vary in resistance to phytochemicals

    PubMed Central

    Palmer-Young, Evan C.; Sadd, Ben M.; Stevenson, Philip C.; Irwin, Rebecca E.; Adler, Lynn S.

    2016-01-01

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline. PMID:27883009

  10. Bumble bee parasite strains vary in resistance to phytochemicals.

    PubMed

    Palmer-Young, Evan C; Sadd, Ben M; Stevenson, Philip C; Irwin, Rebecca E; Adler, Lynn S

    2016-11-24

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals-either within bees or during parasite transmission via flowers-could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.

  11. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, Ray B.

    1988-01-01

    A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

  12. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    PubMed

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  13. Clonal Multidrug-Resistant Corynebacterium striatum Strains, Italy

    PubMed Central

    Campanile, Floriana; Carretto, Edoardo; Barbarini, Daniela; Grigis, Annalisa; Falcone, Marco; Goglio, Antonio; Venditti, Mario

    2009-01-01

    We assessed the clinical relevance and performed molecular characterization of 36 multidrug-resistant strains of Corynebacterium striatum. Pulsed-field gel electrophoresis confirmed a single clone, possessing erm(X), tetA/B, cmxA/B, and aphA1 genes, but few related subclones. This strain is emerging as a pathogen in Italy. PMID:19116057

  14. High temperature static strain measurement with an electrical resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  15. Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae

    PubMed Central

    Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.

    2015-01-01

    Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  16. Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains.

    PubMed

    Khosravi, Azar Dokht; Jenabi, Atefeh; Montazeri, Effat Abbasi

    2017-12-01

    Today Methicillin-Resistant Staphylococcus aureus (MRSA) have acquired multiple resistance to a wide range of antibiotics including aminoglycosides. So, this study was aimed to investigate the rate of aminoglycoside resistance and the frequency of aminoglycoside resistance mediated genes of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia among MRSA strains. A total of 467 staphylococci isolates were collected from various clinical samples. S. aureus strains were identified by standard culture and identification criteria and investigating of presence of 16S rRNA and nuc genes. Cefoxitin disk diffusion, and oxacillin-salt agar screening methods were used to detect the MRSA strains with subsequent molecular identification for the presence of mecA gene. Antibiotic susceptibility of MRSA strains against aminoglycoside antibiotics was evaluated by using agar disk diffusion method. Multiplex PCR for the presence of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia encoding genes for aminoglycosides were performed for MRSA strains. From total staphylococci tested isolates, 262 (56.1%) were identified as S. aureus, of which 161 (61.45%) were detected as MRSA and all comprised mecA gene. The resistance pattern of MRSA strains to aminoglycoside antibiotics were: gentamicin 136 (84.5%); amikacin 125 (77.6%); kanamycin 139 (86.3%); tobramycin 132 (82%); and neomycin 155 (96.3%). The frequency of aac(Ia)-2, aph(3)-IIIa, and ant(4')-Ia genes among MRSA strains, were 64%, 42% and 11.8% respectively. In conclusion, as MRSA strains are of great concern in human infections, the results of present study could provide a useful resource for health sectors for choosing appropriate antibiotics for the effective treatment of infections due to MRSA strains. Copyright © 2017. Published by Elsevier Taiwan.

  17. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  18. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  19. IMMUNITY TO YELLOW FEVER ENCEPHALITIS OF MONKEYS AND MICE IMMUNIZED BY NEURAL AND EXTRANEURAL ROUTES

    PubMed Central

    Fox, John P.

    1943-01-01

    Monkeys and mice surviving cerebral infection with yellow fever virus of relatively avirulent strains have been found to resist maximal intracerebral doses of yellow fever virus of a highly neurotropic strain. Such animals, however, do not resist more than very small doses of intracerebrally inoculated virus of Eastern equine encephalomyelitis. Animals immunized by extraneural routes, on the other hand, are not uniformly resistant to neural infection with neurotropic yellow fever virus. Monkeys which have undergone systemic infection with virus of the avirulent 17D strain or of several jungle strains resist only small intracerebral doses of neurotropic virus; while mice, even when possessed of very high serum-antibody levels as the result of intraperitoneal hyperimmunization, manifest only an irregular resistance to intracerebral challenge inocula. The difference in the resistance of neurally and extraneurally immunized animals is not related to similar differences in the levels of protective antibody in the sera. Indeed, the average of the serum-antibody titers of the hyperimmune mice is several times that of the intracerebral immunes. A possibly significant relation does exist, however, between the resistance of mice to neural infection and the content of protective antibody in the brain. The protective activity of suspensions of brains from mice surviving cerebral infection was found to be several times that of brain suspensions from the hyperimmunized animals. It is concluded that the superior resistance to neural infection of animals whose immunity results from a previous non-fatal infection of the nervous system is effected by a specific local mechanism which is based at least in part upon an increased concentration of antibody in the cerebral tissue. PMID:19871299

  20. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    PubMed Central

    Drapeau, Elodie; Dorr, Nate P.; Elder, Gregory A.; Buxbaum, Joseph D.

    2014-01-01

    Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent. PMID:24652766

  1. Learning strategy selection in the water maze and hippocampal CREB phosphorylation differ in two inbred strains of mice.

    PubMed

    Sung, Jin-Young; Goo, June-Seo; Lee, Dong-Eun; Jin, Da-Qing; Bizon, Jennifer L; Gallagher, Michela; Han, Jung-Soo

    2008-04-01

    Learning strategy selection was assessed in two different inbred strains of mice, C57BL/6 and DBA/2, which are used for developing genetically modified mouse models. Male mice received a training protocol in a water maze using alternating blocks of visible and hidden platform trials, during which mice escaped to a single location. After training, mice were required to choose between the spatial location where the platform had been during training (a place strategy) and a visible platform presented in a new location (a cued/response strategy). Both strains of mice had similar escape performance on the visible and hidden platform trials during training. However, in the strategy preference test, C57BL/6 mice selected a place strategy significantly more often than DBA/2 mice. Because much evidence implicates the hippocampus and striatum as important neural substrates for spatial/place and cued/response learning, respectively, the engagement of the hippocampus was then assessed after either place or cue training by determining levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) in these two mouse strains. Results revealed that hippocampal CREB levels in both strains of mice were significantly increased after place in comparison to cued training. However, the relation of hippocampal pCREB levels to training was strain dependent; pCREB was significantly higher in C57BL/6 mice than in DBA/2 mice after place training, while hippocampal pCREB levels did not differ between strains after cued training. These findings indicate that pCREB, specifically associated with place/spatial training, is closely tied to differences in spatial/place strategy preference between C57BL/6 and DBA/2 mice.

  2. [Resistance of hospital strains of microorganisms to antibiotics and antiseptics].

    PubMed

    Paliĭ, G K; Mrug, V M

    1992-12-01

    The development of resistance of collection and freshly isolated S. aureus and C. albicans strains to the antiseptic decamethoxim and an original diarylcyclohexane derivative was studied comparatively in vitro. It was shown that the rate of the resistance development was low. After 20 subcultures in the presence of increasing concentrations of decamethoxin, its sensitivity of S. aureus and C. albicans decreased 16-32 and 16-fold respectively. After 20 subcultures in the presence of increasing doses of the diarylcyclohexane derivative, its sensitivity S. aureus and C. albicans decreased 4- and 4-8-fold, respectively. It was found that in the hospital strains of S. aureus and C. albicans, the antibiotic resistance and sensitivity to decamethoxin and the diarylcyclohexane remained high, which indicated that there was no cross resistance to these compounds in the strains studied.

  3. Autolytic activity and molecular characteristics of Staphylococcus haemolyticus strains with induced vancomycin resistance.

    PubMed

    Kim, Jung Wook; Chung, Gyung Tae; Yoo, Jung Sik; Lee, Yeong Seon; Yoo, Jae Il

    2012-10-01

    The aim of this study was to investigate the molecular characteristics of induced vancomycin resistance in Staphylococcus haemolyticus. Autolytic properties and phenotypic characteristics of passage-selected vancomycin-resistant S. haemolyticus strains were examined. In addition, expression of autolysis-related genes (atl, lrgAB, sarA and lytS) was investigated using the RNase protection assay (RPA). The RPA results indicated that only the expression of the atl gene was significantly upregulated (2.5- to 6-fold increase) in vancomycin-intermediate and vancomycin-resistant strains. The vancomycin-resistant strains exhibited lower expression of murein hydrolase proteins and reduced autolytic activity compared with the parent strain. In addition, a reduced growth rate, cell wall thickening and higher survival rate in the presence of lysostaphin were observed in vancomycin-intermediate and vancomycin-resistant induced strains compared with the parent strain. In conclusion, altered autolytic properties, in particular upregulation of the atl gene, may contribute to vancomycin resistance in S. haemolyticus.

  4. Triple-material stress-strain resistivity gage

    DOEpatents

    Stout, R.B.

    1988-05-17

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  5. Optochin Resistance among Streptococcus pneumoniae Strains Colonizing Healthy Children in Portugal▿

    PubMed Central

    Nunes, Sónia; Sá-Leão, Raquel; de Lencastre, Hermínia

    2008-01-01

    Two percent of 1,973 pneumococcus strains isolated from carriers since 2001 in Portugal were found to be optochin resistant. These strains belonged to eight serotypes (and some were nontypeable), and they had diverse genetic backgrounds. Novel optochin-resistant lineages were detected over time, suggesting that there was a continuous, although sporadic, emergence of optochin resistance. PMID:18032618

  6. Altering host resistance to infections through microbial transplantation.

    PubMed

    Willing, Benjamin P; Vacharaksa, Anjalee; Croxen, Matthew; Thanachayanont, Teerawat; Finlay, B Brett

    2011-01-01

    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.

  7. Phenotypic changes associated with the fitness cost in antibiotic resistant Escherichia coli strains.

    PubMed

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2016-02-01

    the acquisition of antibiotic resistance in bacterial cells is often accompanied with a reduction of fitness in the absence of antibiotics, known as the "fitness cost". The magnitude of this fitness cost is an important biological parameter that influences the degree to which antibiotic resistant strains become widespread. However, the relationship between the fitness cost and comprehensive phenotypic and genotypic changes remains unclear. Here, we quantified the fitness cost of resistant strains obtained by experimental evolution in the presence of various antibiotics, and analyzed how the cost correlated to phenotypic and genotypic changes in the resistant strains. we measured the specific growth rate of the resistant strains in the presence of various concentrations of drugs or in their absence. In the absence of drugs, the resistant strains showed reductions of approximately 20% to 50% in growth rate compared with the parent strain, which corresponded to the fitness cost. We found that the decrease of the specific growth rate was correlated with overall expression changes between the parent and resistant strains, measured by the Euclid distance between expression profiles. We also found that there are a number of genes whose changes in expression levels were significantly correlated with the growth rate, which may account for the observed correlation between the fitness cost and overall expression changes. our analysis provides a basis for quantitative understanding of the mechanism of the fitness cost. This understanding may provide clues on how to influence the fitness cost that accompanies resistance acquisition and consequently how to limit the spread of antibiotic resistant strains.

  8. A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice.

    PubMed

    De Montijo-Prieto, Soumi; Moreno, Encarnación; Bergillos-Meca, Triana; Lasserrot, Agustín; Ruiz-López, María-Dolores; Ruiz-Bravo, Alfonso; Jiménez-Valera, María

    2015-10-01

    Lactobacillus plantarum C4, previously isolated from kefir and characterized as a potential probiotic strain, was tested for its protective and immunomodulatory capacity in a murine model of yersiniosis. The inoculation of BALB/c mice with a low pathogenicity serotype O9 strain of Yersinia enterocolitica results in a prolonged intestinal infection with colonization of Peyer's patches. Pretreatment with C4 was without effect on fecal excretion of yersiniae, but shortened the colonization of Peyer's patches. This protective effect was associated with pro-inflammatory status in the intestinal mucosa (TNF-α production in infected mice was increased by C4) and an increase in total IgA secretion. At a systemic level, C4 did not promote a pro-inflammatory response, although production of the immunoregulatory cytokine IFN-γ was enhanced. These findings suggest that L. plantarum C4 can increase resistance to intestinal infections through its immunomodulatory activity. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, J.P.; Muller, I.; Louis, J.A.

    1989-03-15

    The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast,more » anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced.« less

  10. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain.

    PubMed

    Arouri, Rabeh; Le Goff, Gaelle; Hemden, Hiethem; Navarro-Llopis, Vicente; M'saad, Mariem; Castañera, Pedro; Feyereisen, René; Hernández-Crespo, Pedro; Ortego, Félix

    2015-09-01

    The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus crops. Spanish field populations of C. capitata have developed resistance to lambda-cyhalothrin (6-14-fold), achieving LC50 values (129-287 ppm) higher than the recommended concentration for field treatments (125 ppm). These results contrast with the high susceptibility to lambda-cyhalothrin found in three Tunisian field populations. We have studied the mechanism of resistance in the laboratory-selected resistant strain W-1Kλ (205-fold resistance). Bioassays with synergists showed that resistance was almost completely suppressed by the P450 inhibitor PBO. The study of the expression of 53 P450 genes belonging to the CYP4, CYP6, CYP9 and CYP12 families in C. capitata revealed that CYP6A51 was overexpressed (13-18-fold) in the resistant strain. The W-1Kλ strain also showed high levels of cross-resistance to etofenprox (240-fold) and deltamethrin (150-fold). Field-evolved resistance to lambda-cyhalothrin has been found in C. capitata. Metabolic resistance mediated by P450 appears to be the main resistance mechanism in the resistant strain W-1Kλ. The levels of cross-resistance found may compromise the effectiveness of other pyrethroids for the control of this species. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  11. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  12. Screening mutations in drug-resistant Mycobacterium tuberculosis strains in Yunnan, China.

    PubMed

    Li, Daoqun; Song, Yuzhu; Zhang, Cheng-Lin; Li, Xiaofei; Xia, Xueshan; Zhang, A-Mei

    Drug-resistant tuberculosis (DR-TB), especially multidrug-resistant tuberculosis (MDR-TB), is a serious medical and societal problem in China. The purpose of this study was to evaluate the mutation characteristics of drug-resistant Mycobacterium tuberculosis (M. tuberculosis) isolates in Yunnan, China. Drug susceptibility testing (DST) was performed in 523 clinical M. tuberculosis isolates. Six drug resistance genes (katG, inhA, rpoB, rpsL, embB, and pncA) were selected to screen for mutations. In total, 54 clinical M. tuberculosis strains were identified as drug-resistant by DST, including 18 single drug-resistant (SDR) strains and 36 multidrug-resistant (MDR) strains. Twenty-four types of mutations in five genes (excluding the inhA gene) were screened in forty-one strains. Six novel mutations were identified in this study, including three missense mutations (p.S302R in katG, p.D78G in embB, and p.M1I in pncA), two frameshift mutations (408 ins A and 538-580 del in pncA), and one mutation in a control region (-6 C>T located upstream of rpsL). The mutation frequencies in the hotspot mutation regions in the katG, rpoB, rpsL, embB, and pncA genes were 92.5%, 44.4%, 54.2%, 52.6%, and 37.5%, respectively. The mutation spectra and frequencies seemed somewhat unique in the Yunnan DR-TB strains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Genetic relatedness of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated in south Asia.

    PubMed

    Talukder, Kaisar A; Khajanchi, Bijay K; Islam, M Aminul; Dutta, Dilip K; Islam, Zhahirul; Safa, Ashrafus; Khan, G Y; Alam, Khorshed; Hossain, M A; Malla, Sarala; Niyogi, S K; Rahman, Mustafizur; Watanabe, Haruo; Nair, G Balakrish; Sack, David A

    2004-10-01

    The aim of the present study was to determine the clonal relationships of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated from south Asia, and S. dysenteriae 1 strains associated with epidemics in 1978, 1984 and 1994. The antimicrobial susceptibilities were examined by NCCLS methods. Molecular epidemiological characterization was performed by plasmid profiling, pulsed-field gel electrophoresis (PFGE) and mutation analysis of the quinolone resistance-determining region (QRDR) of gyrA by sequencing. Plasmid patterns of the current ciprofloxacin-resistant strains from India, Nepal and Bangladesh were very similar to those of the 1978, 1984 and 1994 epidemic isolates of S. dysenteriae 1, except for the presence of a new plasmid of approximately 2.6 MDa, which was found in one recent ciprofloxacin-resistant strain isolated in Bangladesh. PFGE analysis showed that the ciprofloxacin-resistant strains isolated in Bangladesh, India and Nepal belonged to a PFGE type (type A), which was possibly related to that of the 1984 and 1994 clone of S. dysenteriae 1, but different from 1978 epidemic strains. The current ciprofloxacin-resistant strains belong to five subtypes (A3-A7), all of which were found in India, but in Bangladesh and Nepal, only A3 existed. Mutation analysis of the QRDR of gyrA revealed that amino acid substitutions at positions 83 and 87 of ciprofloxacin-resistant strains isolated in Bangladesh were similar to those of the strains isolated in Nepal, but different (at position 87) from ciprofloxacin-resistant strains isolated in India. PFGE and mutation analysis of gyrA showed differences between the current ciprofloxacin-resistant S. dysenteriae 1 strains isolated in south Asia and those associated with epidemics in 1978, 1984 and 1994.

  14. The Chemokine CXCL12 Is Essential for the Clearance of the Filaria Litomosoides sigmodontis in Resistant Mice

    PubMed Central

    Attout, Tarik; Ehrhardt, Katharina; Lhermitte-Vallarino, Nathaly; Hachet-Haas, Muriel; Galzi, Jean Luc; Brotin, Emilie; Bachelerie, Françoise; Gavotte, Laurent; Moulia, Catherine; Bain, Odile; Martin, Coralie

    2012-01-01

    Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms. PMID:22511975

  15. Infection with non-lethal West Nile virus Eg101 strain induces immunity that protects mice against the lethal West Nile virus NY99 strain.

    PubMed

    Kumar, Mukesh; O'Connell, Maile; Namekar, Madhuri; Nerurkar, Vivek R

    2014-06-06

    Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice. Plaque reduction neutralization test data demonstrated that serum from WNV Eg101 infected mice neutralized WNV Eg101 and WNV NY99 strains with similar efficiency. Three weeks after infection, WNV Eg101 immunized mice were challenged subcutaneously or intracranially with lethal dose of WNV NY99 and observed for additional three weeks. All the challenged mice were protected against disease and no morbidity and mortality was observed in any mice. In conclusion, our data for the first time demonstrate that infection of mice with WNV Eg101 induced high titers of WNV specific IgM and IgG antibodies, and cross-reactive neutralizing antibodies, and the resulting immunity protected all immunized animals from both subcutaneous and intracranial challenge with WNV NY99. These observations suggest that WNV Eg101 may be a suitable strain for the development of a vaccine in humans against virulent strains of WNV.

  16. Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845

    PubMed Central

    Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H.

    2017-01-01

    ABSTRACT We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. PMID:28550056

  17. Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845.

    PubMed

    Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg

    2017-08-01

    We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.

  18. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains.

    PubMed

    Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S

    1998-12-01

    We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.

  19. Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan

    PubMed Central

    Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina

    2008-01-01

    Background The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. Methods M. tuberculosis strains isolated (2003–2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Results Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types. Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Conclusion Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the

  20. Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan.

    PubMed

    Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina

    2008-12-24

    The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. M. tuberculosis strains isolated (2003-2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types.Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan.

  1. Elastase‐2, an angiotensin II‐generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction

    PubMed Central

    Silva, Marcondes A B; Durand, Marina T; Prado, Cibele M; Oliveira, Eduardo B; Ribeiro, Mauricio S; Salgado, Helio C; Salgado, Maria Cristina O; Tostes, Rita C

    2017-01-01

    Background and Purpose Angiotensin II (Ang II), whose generation largely depends on angiotensin‐converting enzyme (ACE) activity, mediates most of the renin‐angiotensin‐system (RAS) effects. Elastase‐2 (ELA‐2), a chymotrypsin‐serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II‐generation in resistance arteries are unknown. We hypothesized that ELA‐2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. Experimental Approach Concentration‐effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA‐2 knockout (ELA‐2KO) mice subjected to left anterior descending coronary artery ligation (MI). Key Results MI size was similar in WT and ELA‐2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA‐2KO mice. Ang I‐induced contractions increased in WT mice subjected to MI (MI‐WT) compared with sham‐WT mice. No differences were observed in Ang I reactivity between arteries from ELA‐2KO and ELA‐2KO subjected to MI (MI‐ELA‐2KO). Ang I contractions increased in arteries from MI‐WT versus MI‐ELA‐2KO mice. Chymostatin attenuated Ang I‐induced vascular contractions in WT mice, but did not affect Ang I responses in ELA‐2KO arteries. Conclusions and Implications These results provide the first evidence that ELA‐2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA‐2 as a key player in ACE‐independent dysregulation of the RAS. PMID:28222221

  2. Elastase-2, an angiotensin II-generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction.

    PubMed

    Becari, Christiane; Silva, Marcondes A B; Durand, Marina T; Prado, Cibele M; Oliveira, Eduardo B; Ribeiro, Mauricio S; Salgado, Helio C; Salgado, Maria Cristina O; Tostes, Rita C

    2017-05-01

    Angiotensin II (Ang II), whose generation largely depends on angiotensin-converting enzyme (ACE) activity, mediates most of the renin-angiotensin-system (RAS) effects. Elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II-generation in resistance arteries are unknown. We hypothesized that ELA-2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. Concentration-effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA-2 knockout (ELA-2KO) mice subjected to left anterior descending coronary artery ligation (MI). MI size was similar in WT and ELA-2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA-2KO mice. Ang I-induced contractions increased in WT mice subjected to MI (MI-WT) compared with sham-WT mice. No differences were observed in Ang I reactivity between arteries from ELA-2KO and ELA-2KO subjected to MI (MI-ELA-2KO). Ang I contractions increased in arteries from MI-WT versus MI-ELA-2KO mice. Chymostatin attenuated Ang I-induced vascular contractions in WT mice, but did not affect Ang I responses in ELA-2KO arteries. These results provide the first evidence that ELA-2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA-2 as a key player in ACE-independent dysregulation of the RAS. © 2017 The British Pharmacological Society.

  3. Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments.

    PubMed

    Carlson, Courtney; Singh, Nitin K; Bibra, Mohit; Sani, Rajesh K; Venkateswaran, Kasthuri

    2018-02-01

    We have characterized a broad collection of extremophilic bacterial isolates from a deep subsurface mine, compost dumping sites, and several hot spring ecosystems. Spore-forming strains isolated from these environments comprised both obligate thermophiles/thermotolerant species (growing at > 55 °C; 240 strains) and mesophiles (growing at 15 to 40 °C; 12 strains). An overwhelming abundance of Geobacillus (81.3%) and Bacillus (18.3%) species was observed among the tested isolates. 16S rRNA sequence analysis documented the presence of 24 species among these isolates, but the 16S rRNA gene was shown to possess insufficient resolution to reliably discern Geobacillus phylogeny. gyrB-based phylogenetic analyses of nine strains revealed the presence of six known Geobacillus and one novel species. Multilocus sequence typing analyses based on seven different housekeeping genes deduced from whole genome sequencing of nine strains revealed the presence of three novel Geobacillus species. The vegetative cells of 41 Geobacillus strains were exposed to UVC 254 , and most (34 strains) survived 120 J/m 2 , while seven strains survived 300 J/m 2 , and cells of only one Geobacillus strain isolated from a compost facility survived 600 J/m 2 . Additionally, the UVC 254 inactivation kinetics of spores from four Geobacillus strains isolated from three distinct geographical regions were evaluated and compared to that of a spacecraft assembly facility (SAF) clean room Geobacillus strain. The purified spores of the thermophilic SAF strain exhibited resistance to 2000 J/m 2 , whereas spores of two environmental Geobacillus strains showed resistance to 1000 J/m 2 . This study is the first to investigate UV resistance of environmental, obligately thermophilic Geobacillus strains, and also lays the foundation for advanced understanding of necessary sterilization protocols practiced in food, medical, pharmaceutical, and aerospace industries.

  4. B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus.

    PubMed

    Goenka, Radhika; Parent, Michelle A; Elzer, Philip H; Baldwin, Cynthia L

    2011-04-15

    Brucella species are facultative intracellular bacteria that cause lifelong infections in humans and livestock. Here we evaluated the contribution of B cells in control of murine brucellosis in the more susceptible BALB/c and the more resistant C57BL/6 mice by infecting B cell-deficient mice. Strikingly, in the absence of B cells in both C57BL/6 and BALB/c mice, 99% and 99.5% of the infection found in wild type mice was cleared, respectively. This augmented clearance was not reversed in either strain by passive transfer of immune serum. In C57BL/6 mice, the clearance of infection coincided with an increase in interferon γ (IFN-γ)-producing CD4 and CD8 T cells and a reduction in interleukin 10 (IL-10)-producing cells. In BALB/c mice, this clearance was IFN-γ-dependent, as B cell/IFN-γ dual knockout mice were unable to clear the infection, and was inversely related to the levels of transforming growth factor β (TGF-β). Furthermore, B cells were found to produce TGF-β and IL-10 during early stages of infection in BALB/c wild-type and C57BL/6 wild-type mice, respectively. Thus, we demonstrate that the establishment of the high plateau phase of infection is dependent on non-antibody-mediated B cell effector mechanisms, including B regulatory functions, during murine brucellosis. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

  5. Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus).

    PubMed

    Farroway, L N; Gorman, S; Lawson, M A; Harvey, N L; Jones, D A; Shellam, G R; Singleton, G R

    2005-08-01

    To control plagues of free-living mice (Mus domesticus) in Australia, a recombinant murine cytomegalovirus (MCMV) expressing fertility proteins is being developed as an immunocontraceptive agent. Real-time quantitative PCR was used to monitor the transmission of two genetically variable field strains of MCMV through mouse populations after 25% of founding mice were infected with the N1 strain, followed by the G4 strain 6 weeks later. Pathogen-free wild-derived mice were released into outdoor enclosures located in northwestern Victoria (Australia). Of those mice not originally inoculated with virus, N1 DNA was detected in more than 80% of founder mice and a third of their offspring and similarly, G4 DNA was detected in 13% of founder mice and in 3% of their offspring. Thus, prior immunity to N1 did not prevent transmission of G4. This result is promising for successful transmission of an immunocontraceptive vaccine through Australian mouse populations where MCMV infection is endemic.

  6. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Social behaviors and acoustic vocalizations in different strains of mice.

    PubMed

    Faure, Alexis; Pittaras, Elsa; Nosjean, Anne; Chabout, Jonathan; Cressant, Arnaud; Granon, Sylvie

    2017-03-01

    Proposing a framework for the study of core functions is valuable for understanding how they are altered in multiple mental disorders involving prefrontal dysfunction, for understanding genetic influences and for testing therapeutic compounds. Social and communication disabilities are reported in several major psychiatric disorders, and social communication disorders also can occur independently. Being able to study social communication involving interactions and associated acoustic vocalizations in animal models is thus important. All rodents display extensive social behaviors, including interactions and acoustic vocalizations. It is therefore important to pinpoint potential genetic-related strain differences -and similarities- in social behavior and vocalization. One approach is to compare different mouse strains, and this may be useful in choosing which strains may be best suitable in modeling psychiatric disorders where social and communication deficits are core symptoms. We compared social behavior and ultrasonic acoustic vocalization profiles in males of four mouse strains (129S2/Sv, C57BL/6J, DBA/2, and CD-1) using a social interaction task that we previously showed to rely on prefrontal network activity. Our social interaction task promotes a high level of ultrasonic vocalization with both social and acoustic parameters, and further allows other measures of social behaviors. The duration of social contact, dominance and aggressiveness varied with the mouse strains. Only C57BL/6J mice showed no attacks, with social contact being highly affiliative, whereas others strains emitted aggressive attacks. C57BL/6J mice also exhibited a significantly higher rate of ultrasonic vocalizations (USV), especially during social interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of antigens, adjuvants and strains on sexually dimorphic antibody response to vaccines in mice.

    PubMed

    Li, Xin; Guo, Sheng; Yang, Lei; Hua, Li; Li, Zhiqin; Hao, Xu; Yu, Yongli; Sun, Wei; Wang, Liying

    2017-07-01

    Sexually dimorphic antibody response to vaccines has long been noticed. In addition to sex hormones, other factors such as antigens, adjuvants and strains of mice, as shown by indirect evidence, could also impact the sexual dimorphism. To clarify this, we immunized both gender mice of distinct strains with inactivated FMDV or HBsAg with or without adjuvants, and detected the specific antibody response of the mice. We found that in absence of adjuvants, the recombinant HBsAg but not the inactivated FMDV induced enhanced IgG antibody response in the female BALB/c mice. The o/w emulsion could facilitate the HBsAg to induce the comparable level of IgG antibodies in the male BALB/c mice as that in the females. The o/w emulsion rather than ISA206, a w/o/w emulsion, could assist the inactivated FMDV to induce higher levels of IgM antibodies in the female BALB/c mice. Moreover, the sexually dimorphic antibody response varied among the ICR, BALB/c and the F1 (BALB/c × C57BL/6) mice. Thus the data suggest that antigens, adjuvants and strains all impact the sexually dimorphic antibody response to vaccines and may provide insights for developing gender-based vaccines. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Development of amnesia in different mouse strains.

    PubMed

    Sinovyev, D R; Dubrovina, N I; Kulikov, A V

    2009-05-01

    We studied passive avoidance retrieval after amnestic stimulation (arrest in unsafe section of the experimental setup) in C57Bl/6J, BALB/c, CBA/Lac, AKR/J, DBA/2J, C3H/HeJ, and ASC/Icg mice. We demonstrated resistance to amnestic stimulation in mice with high predisposition to freezing reaction (ASC/Icg) and memory deficit in other mouse strains.

  10. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  11. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical strains isolated in the Philippines.

    PubMed

    Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan A; Portero, José L; Jiménez, M Soledad

    2004-06-01

    The prevalence of mutations in the katG, inhA and oxyR-ahpC genes of isoniazid (INH)-resistant Mycobacterium tuberculosis isolates in the Philippines were determined. Of 306 M. tuberculosis isolates studied, 81 (26.5%) exhibited INH-resistance. Forty-four strains (54.3%) had mutations in the katG gene, eighteen strains (22.2%) had mutations in the putative inhA locus region, seven had mutations in both regions and five strains had mutations in the oxyR-ahpC operon. Only seven strains had no mutations. A total of 71 of the 81 (87.6%) resistant strains and 65 of the 72 (90.3%) INH sensitive randomly selected strains showed amino acid substitution in codon 463 (Arg to Leu) (88.9%). This fact supports the hypothesis that mutations at codon 463 are independent of INH-resistance and are linked to the geographical origins of the strains. Copyright 2004 Elsevier B.V.

  12. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  13. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  14. Lung tumor induction in strain A mice with benzotrichloride.

    PubMed

    Stoner, G D; You, M; Morgan, M A; Superczynski, M J

    1986-11-01

    Benzotrichloride (BTC) is used in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. In the present study, BTC was evaluated for its ability to induce lung adenomas in strain A/J mice. Four groups of 15 male and 15 female A/J mice were injected i.p. with either tricaprylin or BTC in tricaprylin three times a week for 8 weeks. BTC groups received doses totaling 1440 mg/kg, 719 mg/kg or 287 mg/kg. The mean number of lung tumors per mouse was 127 87 +/- 5.81, 43 +/- 2.44, and 17.73 +/- 1.09 in the groups treated with either 1440 mg/kg, 719 mg/kg, or 287 mg/kg, respectively. Tricaprylin-vehicle controls had a mean number of 0.46 +/- 0.15 lung tumors per mouse. Therefore, BTC produced a significant (P less than 0.001) and dose-related increase in the lung tumor response when compared to tricaprylin controls and is a potent carcinogen in the strain A mouse lung tumor bioassay.

  15. Near-Isogenic Cry1F-Resistant Strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Investigate Fitness Cost Associated With Resistance in Brazil.

    PubMed

    Horikoshi, Renato J; Bernardi, Oderlei; Bernardi, Daniel; Okuma, Daniela M; Farias, Juliano R; Miraldo, Leonardo L; Amaral, Fernando S A; Omoto, Celso

    2016-04-01

    Field-evolved resistance to Cry1F maize in Spodoptera frugiperda (J.E. Smith) populations in Brazil was reported in 2014. In this study, to investigate fitness costs, we constructed a near-isogenic S. frugiperda-resistant strain (R-Cry1F) using Cry1F-resistant and Cry1F-susceptible strains sharing a close genetic background. A near-isogenic R-Cry1F strain was obtained by eight repeated backcrossings, each followed by sib-mating and selection among resistant and susceptible strains. Fitness cost parameters were evaluated by comparing the biological performance of resistant, susceptible, and heterozygous strains on artificial diet. Fitness parameters monitored included development time and survival rates of egg, larval, pupal, and egg-to-adult periods; sex ratio; adult longevity; timing of preoviposition, oviposition, and postoviposition; fecundity; and fertility. A fertility life table was also calculated. The near-isogenic R-Cry1F strain showed lower survival rate of eggs (32%), when compared with Sus and reciprocal crosses (41 and 55%, respectively). The number of R-Cry1F insects that completed the life cycle was reduced to ∼25%, compared with the Sus strain with ∼32% reaching the adult stage. The mean generation time (T) of R-Cry1F strain was ∼2 d shorter than R-Cry1F♂×Sus♀ and Sus strains. The reproductive parameters of R-Cry1F strain were similar to the Sus strain. However, fewer females were produced by R-Cry1F strain than R-Cry1F♀×Sus♂ and more females than R-Cry1F♂×Sus♀. In summary, no relevant fitness costs are observed in a near-isogenic Cry1F-resistant strain of S. frugiperda, indicating stability of resistance to Cry1F protein in Brazilian populations of this species in the absence of selection pressure.

  16. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital

    PubMed Central

    Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  17. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  18. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture

    PubMed Central

    Rupp, Sabrina; Weber, Roland W. S.; Rieger, Daniel; Detzel, Peter; Hahn, Matthias

    2017-01-01

    Botrytis cinerea is a major plant pathogen, causing gray mold rot in a variety of cultures. Repeated fungicide applications are common but have resulted in the development of fungal populations with resistance to one or more fungicides. In this study, we have monitored fungicide resistance frequencies and the occurrence of multiple resistance in Botrytis isolates from raspberries, strawberries, grapes, stone fruits and ornamental flowers in Germany in 2010 to 2015. High frequencies of resistance to all classes of botryticides was common in all cultures, and isolates with multiple fungicide resistance represented a major part of the populations. A monitoring in a raspberry field over six seasons revealed a continuous increase in resistance frequencies and the emergence of multiresistant Botrytis strains. In a cherry orchard and a vineyard, evidence of the immigration of multiresistant strains from the outside was obtained. Inoculation experiments with fungicide-treated leaves in the laboratory and with strawberry plants cultivated in the greenhouse or outdoors revealed a nearly complete loss of fungicide efficacy against multiresistant strains. B. cinerea field strains carrying multiple resistance mutations against all classes of site-specific fungicides were found to show similar fitness as sensitive field strains under laboratory conditions, based on their vegetative growth, reproduction, stress resistance, virulence and competitiveness in mixed infection experiments. Our data indicate an alarming increase in the occurrence of multiresistance in B. cinerea populations from different cultures, which presents a major threat to the chemical control of gray mold. PMID:28096799

  19. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture.

    PubMed

    Rupp, Sabrina; Weber, Roland W S; Rieger, Daniel; Detzel, Peter; Hahn, Matthias

    2016-01-01

    Botrytis cinerea is a major plant pathogen, causing gray mold rot in a variety of cultures. Repeated fungicide applications are common but have resulted in the development of fungal populations with resistance to one or more fungicides. In this study, we have monitored fungicide resistance frequencies and the occurrence of multiple resistance in Botrytis isolates from raspberries, strawberries, grapes, stone fruits and ornamental flowers in Germany in 2010 to 2015. High frequencies of resistance to all classes of botryticides was common in all cultures, and isolates with multiple fungicide resistance represented a major part of the populations. A monitoring in a raspberry field over six seasons revealed a continuous increase in resistance frequencies and the emergence of multiresistant Botrytis strains. In a cherry orchard and a vineyard, evidence of the immigration of multiresistant strains from the outside was obtained. Inoculation experiments with fungicide-treated leaves in the laboratory and with strawberry plants cultivated in the greenhouse or outdoors revealed a nearly complete loss of fungicide efficacy against multiresistant strains. B. cinerea field strains carrying multiple resistance mutations against all classes of site-specific fungicides were found to show similar fitness as sensitive field strains under laboratory conditions, based on their vegetative growth, reproduction, stress resistance, virulence and competitiveness in mixed infection experiments. Our data indicate an alarming increase in the occurrence of multiresistance in B. cinerea populations from different cultures, which presents a major threat to the chemical control of gray mold.

  20. Daptomycin Resistance in Clinical MRSA Strains Is Associated with a High Biological Fitness Cost

    PubMed Central

    Roch, Melanie; Gagetti, Paula; Davis, James; Ceriana, Paola; Errecalde, Laura; Corso, Alejandra; Rosato, Adriana E.

    2017-01-01

    Daptomycin remains as one of the main treatment options for Methicillin-Resistant Staphylococcus aureus (MRSA). Sporadic resistance cases reported in patients treated with either daptomycin or glycopeptides are a growing concern. In a previous study, we described a clinical case of a patient with a community-acquired MRSA infection resistant to daptomycin and with intermediate resistance to vancomycin who developed a recurrent infection with a susceptible isogenic strain. In the present work, we further investigated the sequential events to determine whether the switch from a daptomycin resistance to a susceptible phenotype was due to a phenomenon of resistance reversion or recurrent infection with a susceptible strain. Pairwise competition experiments showed that the susceptible clinical recurrent SA6850 strain had increased fitness when compared to the resistant counterpart SA6820 strain. In fact, although we have demonstrated that reversion of daptomycin resistance to daptomycin susceptible can occur in vitro after serial passages in drug-free media, phylogenetic analysis suggested that the in vivo process was the result of a recurrent infection with a previous susceptible isolate carried by the patient rather than a resistance reversion of the strain. Whole genome sequence of evolved strains showed that daptomycin resistance in MRSA is associated with a high fitness cost mediated by mutations in mprF gene, revealed as a key element of the biological cost. Moreover, we determined that daptomycin resistance-associated fitness cost was independent of vancomycin intermediate resistance phenotype, as demonstrated in additional clinical MRSA vancomycin susceptible strains. This study highlights important observations as, despite daptomycin offers a useful treatment option for the patients with persistent infections, it has to be carefully monitored. The high fitness cost associated to daptomycin resistance may explain the reduced dissemination of daptomycin

  1. Daptomycin Resistance in Clinical MRSA Strains Is Associated with a High Biological Fitness Cost.

    PubMed

    Roch, Melanie; Gagetti, Paula; Davis, James; Ceriana, Paola; Errecalde, Laura; Corso, Alejandra; Rosato, Adriana E

    2017-01-01

    Daptomycin remains as one of the main treatment options for Methicillin-Resistant Staphylococcus aureus (MRSA). Sporadic resistance cases reported in patients treated with either daptomycin or glycopeptides are a growing concern. In a previous study, we described a clinical case of a patient with a community-acquired MRSA infection resistant to daptomycin and with intermediate resistance to vancomycin who developed a recurrent infection with a susceptible isogenic strain. In the present work, we further investigated the sequential events to determine whether the switch from a daptomycin resistance to a susceptible phenotype was due to a phenomenon of resistance reversion or recurrent infection with a susceptible strain. Pairwise competition experiments showed that the susceptible clinical recurrent SA6850 strain had increased fitness when compared to the resistant counterpart SA6820 strain. In fact, although we have demonstrated that reversion of daptomycin resistance to daptomycin susceptible can occur in vitro after serial passages in drug-free media, phylogenetic analysis suggested that the in vivo process was the result of a recurrent infection with a previous susceptible isolate carried by the patient rather than a resistance reversion of the strain. Whole genome sequence of evolved strains showed that daptomycin resistance in MRSA is associated with a high fitness cost mediated by mutations in mprF gene, revealed as a key element of the biological cost. Moreover, we determined that daptomycin resistance-associated fitness cost was independent of vancomycin intermediate resistance phenotype, as demonstrated in additional clinical MRSA vancomycin susceptible strains. This study highlights important observations as, despite daptomycin offers a useful treatment option for the patients with persistent infections, it has to be carefully monitored. The high fitness cost associated to daptomycin resistance may explain the reduced dissemination of daptomycin

  2. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    PubMed

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  3. The analgesic effects of oral paracetamol in two strains of mice undergoing vasectomy.

    PubMed

    Dickinson, Amy L; Leach, Matthew C; Flecknell, Paul A

    2009-10-01

    As the production of transgenic mice increases, the need for vasectomized mice also increases. Currently, there is no accurate method of identifying pain in these mice which can be used routinely and therefore no acceptable analgesic regimens can be established. Sixteen male CBA/CaCrl and 16 male DBA/2JCrl mice were randomly allocated to one of four treatment groups (saline, low, medium and high dose oral paracetamol) and then underwent abdominal vasectomy. Their behaviour was videotaped (filmed) preoperatively and at one hour postoperatively and the data were analysed using an automated system - HomeCageScan. HomeCageScan detected significant changes in 16 behaviours following vasectomy. Such behaviours included twitching, rearing and grooming with varying levels of significance between the strains. No significant effects of drug treatment in any of the behaviours analysed by HomeCageScan were detected in the postoperative observation period. Strain-specific changes do occur in behaviour following abdominal vasectomy and HomeCageScan is capable of detecting these changes. The use of orally administered paracetamol was deemed to be an ineffective analgesic for CBA/CaCrl and DBA/2JCrl mice undergoing vasectomy.

  4. [Behavior of mice from different strains: modifications produced by noopept].

    PubMed

    Bel'nik, A P; Ostrovskaia, R U; Poletaeva, I I

    2007-01-01

    Genotype-dependent behavioral effects were demonstrated in BALB/c, C57BL/6J [Russian character: see text] DBA/2J mice after injections of nootropic drug Noopept. In an elevated plus maze, drug administration induced an increase in the number of enterings into bright arms in BALB/c mice, whereas the opposite effect was observed in C57BL/6J. After the Noopept administration, animals from all the three strains increased the number of active avoidance reactions in stress-inducing slip-funnel test. A significant intensification of exploration behavior was observed in a closed plus-maze in BALB/c and C57BL/6J. The Noopept affected weakly or had no effect on the behavior of DBA/2J mice.

  5. Comparison of Brucella abortus and Brucella melitensis infections of mice and their effect on acquired cellular resistance.

    PubMed Central

    Young, E J; Gomez, C I; Yawn, D H; Musher, D M

    1979-01-01

    By using mice infected with strains of Brucella abortus and Brucella melitensis we examined the histological responses to infection, the relationship of histology to persistence of organisms, and the relation of persistence of organisms to the acquisition of acquired cellular resistance (ACR). Infection with B. abortus resulted in well-formed granulomas in the livers, which persisted for more than 30 days. In contrast, infection with B. melitensis produced microabscesses in the livers which resolved before 30 days. The clearance of organisms from the tissues was also different. A total of 30 days after infection, large numbers of viable bacteria were recovered from the tissues of B. abortus-infected mice whereas bacteria were no longer recoverable from B. melitensis-infected animals. ACR to Listeria monocytogenes, another intracellular pathogen, persisted for more than 30 days in B. abortus-infected mice but waned rapidly in B. melitensis-infected animals. This disappearance of ACR due to B. melitensis paralleled the clearance of bacteria from the tissues. Images PMID:121113

  6. Comparison of antibody and cytokine responses to primary Giardia muris infection in H-2 congenic strains of mice.

    PubMed

    Venkatesan, P; Finch, R G; Wakelin, D

    1996-11-01

    The course of primary infections with Giardia muris differs between BALB and B10 H-2 congenic strains of mice. In the first 3 weeks of infection, there is a more rapid decline in intestinal trophozoite and fecal cyst counts in B10 strains than in BALB strains. To determine whether this difference could be explained by variation in specific antibody responses, both secretory immunoglobulin A (IgA) and serum antibody responses were compared between these strains. No significant differences in the timing, titer, or specificity of secretory or serum antibodies were found. However, on comparing specific anti-G. muris serum IgG subclass responses, we found that B10 strains produced IgG2a while BALB strains produced IgG1, suggesting differential involvement of T helper 1 and 2 subsets of lymphocytes. When cells harvested from mesenteric lymph nodes were stimulated with concanavalin A in vitro, both gamma interferon and interleukin-5 were secreted by cells from B10 mice, but only interleukin-5 was secreted by cells from BALB/c mice. Specific blockade of gamma interferon by monoclonal antibody administered to B10 mice resulted in an enhanced intensity of infection.

  7. Strain differences in the influence of open field exposure on sleep in mice.

    PubMed

    Tang, Xiangdong; Xiao, Jihua; Liu, Xianling; Sanford, Larry D

    2004-09-23

    The open field (OF) is thought to induce anxiety in rodents. It also allows an opportunity for exploration in a novel environment. Less activity in the OF is thought to indicate greater anxiety whereas more activity may reflect greater exploration, and possibly greater exploratory learning. Anxiety and learning have poorly understood relationships to sleep. In order to determine how anxiety and exploration in the OF could influence sleep, we recorded sleep in mouse strains (C57BL/6J (B6), BALB/cJ (C), DBA/2J (D2), and CB6F1/J (CB6)) with different levels of anxiety and exploration after 30 min in an OF. In all strains, OF exposure induced immediate decreases in rapid eye movement sleep (REM) followed by longer latency increases in REM. The time course and amount of REM decreases and increases varied among strains. Compared to less anxious B6, D2 and CB6 mice, C mice had greater and longer lasting immediate decreases in REM. C mice also displayed longer periods of decreases REM and a smaller, longer latency increase in REM. OF exploratory activity was positively correlated to percentage of REM increases from 6 to 10h after OF exposure. The results suggest that the anxiogenic component of the OF produced an immediate decrease in REM that was greater in more "anxious" mice. In contrast, exploration in the OF was associated with increased REM, with the increase greater in less anxious mice. The results are discussed with respect to the potential influences of anxiety and learning on sleep.

  8. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Peñuelas-Urquides, K; González-Escalante, L; Villarreal-Treviño, L; Silva-Ramírez, B; Gutiérrez-Fuentes, D J; Mojica-Espinosa, R; Rangel-Escareño, C; Uribe-Figueroa, L; Molina-Salinas, G M; Dávila-Velderrain, J; Castorena-Torres, F; Bermúdez de León, M; Said-Fernández, S

    2013-09-01

    Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.

  9. The Influence of Visual Ability on Learning and Memory Performance in 13 Strains of Mice

    ERIC Educational Resources Information Center

    Brown, Richard E.; Wong, Aimee A.

    2007-01-01

    We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial…

  10. Strain-induced negative differential resistance in ultrasmall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Zhang, Fei-Peng; Ruan, Xing-Xiang; Huang, Can-Sheng; Jiang, Zhi-Nian; Peng, Jin-Yun; Wang, Ru-Zhi

    2017-08-01

    The transport properties in ultrasmall single-wall carbon nanotubes (SWCNTs) under tensile strain have been theoretically investigated. The regular negative differential resistance (NDR) induced by the strain undergoes a process from enhancement to weakening in the zigzag (3,0) SWCNT. The NDR achieves maximum with applying 4% tensile strain. Compared to the case of (3,0) SWCNT, that NDR cannot be manipulated by applying strain clearly in (4,0) and (5,0) ultrasmall SWCNTs with tensile strain lower than 10%. It proposes this strain-induced NDR effect to demonstrate the possibility of finding potential applications in SWCNT-based NDR nanodevices such as in memory devices, oscillators and fast switching devices.

  11. [Multidrug-Resistant Tuberculosis by Strains of Beijing Family, in Patients from Lisbon, Portugal: Preliminary Report].

    PubMed

    Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel

    2017-03-31

    Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.

  12. Antibiotic sensitivity and resistance in Ornithobacterium rhinotracheale strains from Belgian broiler chickens.

    PubMed

    Devriese, L A; De Herdt, P; Haesebrouck, F

    2001-06-01

    Establishing the antibiotic sensitivity of the avian respiratory pathogen Ornithobacterium rhinotracheale is difficult because of the organism's complex growth requirements and the unusually frequent occurrence of resistance. The minimal inhibitory concentrations of 10 antibiotics were determined for 45 strains of O. rhinotracheale from Belgian broiler chickens collected from 45 farms between 1995 and 1998. They were compared with the type strain, which was isolated from a turkey, and a strain isolated from a rook. All the broiler strains were resistant to lincomycin and to the beta-lactams ampicillin and ceftiofur. Less than 10% of the strains were sensitive to the macrolides tylosin and spiramycin, tilmicosin and flumequine. A few strains were sensitive to enrofloxacin and doxycycline. All strains were sensitive to tiamulin.

  13. Hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice: a comparison of two mouse strains.

    PubMed

    Cottrell, M B; Jackson, C W; McDonald, T P

    1991-07-01

    Several previous studies have shown that hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice. It has been postulated that the thrombocytopenia is caused by stem cell competition between the erythrocytic and megakaryocytic cell lines. In the present work, we compared the effects of severe hypoxia (5.5-6.0% O2) in both male and female C3H and BALB/c mice by measuring their abilities to produce red blood cells and platelets. All mice had significant increases in packed cell volumes and marked decreases in platelet production after hypoxia; however, there were significant differences in the degree of stimulation in the two mouse strains. After 14 days of hypoxia, the percentage of 35S incorporation into platelets, total circulating platelet counts and total circulating platelet masses were lower in C3H mice than in BALB/c mice, but platelet sizes were larger. Also, hypoxia caused greater changes in male mice than in female mice, with male C3H mice showing the greatest increase in packed cell volumes and the lowest platelet counts of all mice tested. The least responses were observed in female BALB/c mice. BALB/c mice had higher P50 (right-shifted O2 dissociation curves) and lower erythrocyte 2,3-diphosphoglycerate values than C3H mice, indicating a lower hemoglobin O2 affinity for BALB/c mice. The results indicate that the effects of hypoxia are not direct upon platelet production, but that the thrombocytopenia is a result of stimulation of erythropoiesis. These data support the stem cell competition hypothesis and illustrate that the degree of the inverse relationship between red blood cells and platelet production of hypoxic mice is dependent, to a large degree, upon the sex and strain of mice that are used.

  14. Genome Sequence of Lactobacillus johnsonii Strain W1, Isolated from Mice.

    PubMed

    Wu, Xiaolin; Zhao, Chunyan; Guo, Zhonghe; Hao, Yuchong; Li, Jinghua; Shi, Hongyan; Sun, Yanbo

    2016-06-16

    Lactobacillus johnsonii, a member of the gut lactobacilli, plays an important role in normal gut functioning. Here, we report the draft genome sequence of L. johnsonii strain W1 isolated from ICR mice. Copyright © 2016 Wu et al.

  15. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism.

    PubMed

    Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle

    2018-04-01

    Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.

  16. Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains.

    PubMed

    Adamus-Bialek, Wioletta; Zajac, Elzbieta; Parniewski, Pawel; Kaca, Wieslaw

    2013-04-01

    Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.

  17. Large-scale Phenotyping of Noise-Induced Hearing Loss in 100 Strains of Mice

    PubMed Central

    Myint, Anthony; White, Cory H.; Ohmen, Jeffrey D.; Li, Xin; Wang, Juemei; Lavinsky, Joel; Salehi, Pezhman; Crow, Amanda L.; Ohyama, Takahiro; Friedman, Rick A.

    2015-01-01

    A cornerstone technique in the study of hearing is the Auditory Brainstem Response (ABR), an electrophysiologic technique that can be used as a quantitative measure of hearing function. Previous studies have published databases of baseline ABR thresholds for mouse strains, providing a valuable resource for the study of baseline hearing function and genetic mapping of hearing traits in mice. In this study, we further expand upon the existing literature by characterizing the baseline ABR characteristics of 100 inbred mouse strains, 47 of which are newly characterized for hearing function. We identify several distinct patterns of baseline hearing deficits and provide potential avenues for further investigation. Additionally, we characterize the sensitivity of the same 100 strains to noise exposure using permanent thresholds shifts, identifying several distinct patterns of noise-sensitivity. The resulting data provides a new resource for studying hearing loss and noise-sensitivity in mice. PMID:26706709

  18. Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units.

    PubMed

    Vitkauskienė, Astra; Skrodenienė, Erika; Dambrauskienė, Asta; Bakšytė, Giedrė; Macas, Andrius; Sakalauskas, Raimundas

    2011-01-01

    The aim of this study was to determine the characteristics of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains and 5-year changes in resistance in a tertiary university hospital. The study included 90 and 101 randomly selected P. aeruginosa strains serotyped in 2003 and 2008, respectively. The standardized disk diffusion test and E-test were used to determine resistance to antibiotics. P. aeruginosa strains were considered to have high-level resistance if a minimum inhibitory concentration (MIC) for imipenem or meropenem was >32 µg/mL. To identify serogroups, sera containing specific antibodies against O group antigens of P. aeruginosa were used. P. aeruginosa isolates resistant to imipenem or/and meropenem were screened for metallo-β-lactamase (MBL) production by using the MBL E-test. Comparison of the changes in resistance of P. aeruginosa strains to carbapenems within the 5-year period revealed that the level of resistance to imipenem increased. In 2003, 53.3% of P. aeruginosa strains were found to be highly resistant to imipenem, while in 2008, this percentage increased to 87.8% (P=0.01). The prevalence of MBL-producing strains increased from 15.8% in 2003 to 61.9% in 2008 (P<0.001). In 2003 and 2008, carbapenem-resistant P. aeruginosa strains were more often resistant to ciprofloxacin and gentamicin than carbapenem-sensitive strains. In 2008, carbapenem-resistant strains additionally were more often resistant to ceftazidime, cefepime, aztreonam, piperacillin, and amikacin than carbapenem-sensitive strains. MBL-producing P. aeruginosa strains belonged more often to the O:11 serogroup than MBL-non-producing strains (51.7% vs. 34.3%, P<0.05). A greater percentage of non-MBL-producing strains had low MICs against ciprofloxacin and amikacin as compared with MBL-producing strains. The results of our study emphasize the need to restrict the spread of O:11 serogroup P. aeruginosa strains and usage of carbapenems to treat infections with P

  19. Genetic variation within and between strains of outbred Swiss mice.

    PubMed

    Cui, S; Chesson, C; Hope, R

    1993-04-01

    The aim of this survey was to measure levels of genetic variation within and between 5 different strains of outbred Swiss mice. Ten to 15 animals from each strain (NIH, Q(S), ARC, IMVS and STUD) were typed, using allozyme electrophoresis, at 10 gene loci: Mod-1, Idh-1, Gpi-I, Es-1, Es-3, Hbb, Pep-3, Gr-1, Got-2 and Pgm-1. Polymorphic variation in at least one of the 5 strains was detected at all 10 loci. The proportion of polymorphic loci ranged from 0.3 (NIH) to 0.8 (IMVS) with a mean of 0.52. Average expected heterozygosities ranged from 0.08 (NIH) to 0.37 (IMVS) with a mean of 0.21. The inbred strain SWR was, as expected, homozygous at all 10 loci. The amount of allelic substitution between pairs of strains was quantified using Nei's genetic distance, and a dendrogram based on these genetic distances showed a close overall similarity in its branching pattern to the known genealogy of the strains. This survey showed that a considerable degree of genetic variation persists in the 5 strains examined, a level of variation similar to that previously detected by Rice and O'Brien (1980) in 3 other outbred Swiss strains.

  20. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan.

    PubMed

    Lin, Yi-Tsung; Cheng, Yi-Hsiang; Juan, Chih-Han; Wu, Ping-Feng; Huang, Yi-Wei; Chou, Sheng-Hua; Yang, Tsuey-Ching; Wang, Fu-Der

    2018-06-12

    Capsular type K1 Klebsiella pneumoniae, highly virulent strains which are common in Asian countries, can cause pyogenic infections. These hypervirulent strains are usually susceptible to most antimicrobials, except for ampicillin. Little is known regarding the clinical and molecular characteristics of antimicrobial-resistant K1 K. pneumoniae strains. This retrospective study evaluated patients infected with capsular type K1 K. pneumoniae strains in a Taiwanese medical centre between April 2013 and March 2016. Antimicrobial-resistant strains were defined based on non-susceptibility to antimicrobial agents except ampicillin. We compared the clinical outcome of patients infected with and without antimicrobial-resistant strains. The in vivo virulence, genetic relatedness, and resistance mechanisms of these hypervirulent antimicrobial-resistant strains were also investigated. A total of 182 capsular type K1 K. pneumoniae strains were identified, including 18 antimicrobial-resistant strains. The 28-day mortality rate among the 18 cases caused by antimicrobial-resistant strains was significantly higher than that among 164 cases caused by antimicrobial-sensitive strains (50% vs. 10.4%, p < 0.001). Infection with antimicrobial-resistant strain independently increased the 28-day mortality risk. Most antimicrobial -resistant strains were not clonally related, and they exhibited high in vivo virulence in a mouse lethality experiment. The major resistance mechanisms involved the presence of β-lactamases and the overexpression of efflux pumps. In conclusion, hypervirulent antimicrobial-resistant capsular type K1 K. pneumoniae strains can predispose to a fatal outcome. These strains may represent an emerging threat to public health in Taiwan. Copyright © 2018. Published by Elsevier B.V.

  1. Asthma progression to airway remodeling and bone marrow eosinophil responses in genetically distinct strains of mice.

    PubMed

    Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S

    2008-12-01

    Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.

  2. Treatment of trypanosome-infected mice with exogenous interferon, interferon inducers, or antibody to interferon

    NASA Technical Reports Server (NTRS)

    Degee, Antonie L. W.; Mansfield, John M.; Sonnenfeld, Gerald

    1986-01-01

    Earlier studies have demonstrated that mice resistant to Trypanosoma brucei rhodesiense (the B10.BR/SgSnJ strain) produces, upon infection by this parasite, two peaks of serum interferon (IFN), while the susceptible mice (C3HeB/FeJ) produces no IFN. In the present study, survival times were compared for B10.BR/SgSnJ, C3HeB/FeJ, and CBA/J (an intermediately resistant strain) mice that were injected, prior to infection with the parasite, with either of the following three preparations (1) IFN-gamma, (2) an antibody to IFN-gamma and (3) polyriboinosinic-polyribocytidylic acid (to induce IFN-alpha/beta). No effect on the survival times of mice by any of these preparations could be demonstrated, contrary to some previous reports.

  3. Combinatorial Strategies for Improving Multiple-Stress Resistance in Industrially Relevant Escherichia coli Strains

    PubMed Central

    Herrgård, Markus J.

    2014-01-01

    High-cell-density fermentation for industrial production of chemicals can impose numerous stresses on cells due to high substrate, product, and by-product concentrations; high osmolarity; reactive oxygen species; and elevated temperatures. There is a need to develop platform strains of industrial microorganisms that are more tolerant toward these typical processing conditions. In this study, the growth of six industrially relevant strains of Escherichia coli was characterized under eight stress conditions representative of fed-batch fermentation, and strains W and BL21(DE3) were selected as platforms for transposon (Tn) mutagenesis due to favorable resistance characteristics. Selection experiments, followed by either targeted or genome-wide next-generation-sequencing-based Tn insertion site determination, were performed to identify mutants with improved growth properties under a subset of three stress conditions and two combinations of individual stresses. A subset of the identified loss-of-function mutants were selected for a combinatorial approach, where strains with combinations of two and three gene deletions were systematically constructed and tested for single and multistress resistance. These approaches allowed identification of (i) strain-background-specific stress resistance phenotypes, (ii) novel gene deletion mutants in E. coli that confer single and multistress resistance in a strain-background-dependent manner, and (iii) synergistic effects of multiple gene deletions that confer improved resistance over single deletions. The results of this study underscore the suboptimality and strain-specific variability of the genetic network regulating growth under stressful conditions and suggest that further exploration of the combinatorial gene deletion space in multiple strain backgrounds is needed for optimizing strains for microbial bioprocessing applications. PMID:25085490

  4. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid.

    PubMed

    Toh, Seok-Ming; Xiong, Liqun; Arias, Cesar A; Villegas, Maria V; Lolans, Karen; Quinn, John; Mankin, Alexander S

    2007-06-01

    Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

  5. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  6. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana

    PubMed Central

    Müller, Pie; Donnelly, Martin J; Ranson, Hilary

    2007-01-01

    Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases) have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD) gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance. PMID:17261191

  7. Systemic candidiasis in mice. II.--Main role of polymorphonuclear leukocytes in resistance to infection.

    PubMed

    Hurtrel, B; Lagrange, P H; Michel, J C

    1980-01-01

    Cyclophosphamide (CY) increased whereas the talc embedded in a calcium phosphate gel (TCP) decreased the susceptibility of mice to systemic candidiasis estimated by measuring mean survival time and "renal infectivity" 12 h after challenge. Transfers of plasma from CY- and TCP-treated mice did not modify cnadidiasis susceptibility of recipient mice. Granulopenia and granulocytosis induced respectively by CY and TCP were significantly correlated with susceptibility or resistance to candidiasis. Nevertheless, TCP produced significant reticuloendothelial stimulation which could be also correlated with TCP protection. Reticuloendothelial stimulation with associated granulopenia in TCP-CY-treated mice gave protection against Listeria monocytogenes challenge but not against Candida albicans. Thus, blood polymorphonuclear leukocytes seem to play the main role in natural resistance of mice to candidiasis. This was corroborated after injection of immunostimulants; a good correlation was found between C. albicans resistance and the induced granulocytosis.

  8. Experimental reinfection of BALB/c mice with different recombinant type I/III strains of Toxoplasma gondii: involvement of IFN-gamma and IL-10.

    PubMed

    Brandão, Geane Peroni; Melo, Maria Norma; Gazzinelli, Ricardo Tostes; Caetano, Braulia Costa; Ferreira, Adriana Melo; Silva, Letícia Azevedo; Vitor, Ricardo Wagner Almeida

    2009-03-01

    To assess reinfection of BALB/c mice with different Toxoplasma gondii strains, the animals were prime infected with the non-virulent D8 strain and challenged with virulent recombinant strains. Thirty days after challenge, brain cysts were obtained from surviving BALB/c mice and inoculated in Swiss mice to obtain tachyzoites for DNA extraction and PCR-RFLP analysis to distinguish the different T. gondii strains present in possible co-infections. Anti-Toxoplasma immune responses were evaluated in D8-primed BALB/c mice by detecting IFN-gamma and IL-10 produced by T cells and measuring immunoglobulin levels in serum samples. PCR-RFLP demonstrated that BALB/c mice were reinfected with the EGS strain at 45 days post prime infection (dpi) and with the EGS and CH3 strains at 180 dpi. High levels of IFN-gamma were detected after D8 infection, with no significant difference between 45 and 180-day intervals. However, higher IL-10 levels and higher plasmatic IgG1 and IgA were detected from samples obtained 180 days after infection. BALB/c mice were susceptible to reinfection with different recombinant T. gondii strains and this susceptibility correlated with enhancement of IL-10 production.

  9. Resistance Status and Resistance Mechanisms in a Strain of Aedes aegypti (Diptera: Culicidae) From Puerto Rico.

    PubMed

    Estep, Alden S; Sanscrainte, Neil D; Waits, Christy M; Louton, Jessica E; Becnel, James J

    2017-11-07

    Puerto Rico (PR) has a long history of vector-borne disease and insecticide-resistant Aedes aegypti (L.). Defining contributing mechanisms behind phenotypic resistance is critical for effective vector control intervention. However, previous studies from PR have each focused on only one mechanism of pyrethroid resistance. This study examines the contribution of P450-mediated enzymatic detoxification and sodium channel target site changes to the overall resistance phenotype of Ae. aegypti collected from San Juan, PR, in 2012. Screening of a panel of toxicants found broad resistance relative to the lab susceptible Orlando (ORL1952) strain. We identified significant resistance to representative Type I, Type II, and nonester pyrethroids, a sodium channel blocker, and a sodium channel blocking inhibitor, all of which interact with the sodium channel. Testing of fipronil, a chloride channel agonist, also showed low but significant levels of resistance. In contrast, the PR and ORL1952 strains were equally susceptible to chlorfenapyr, which has been suggested as an alternative public health insecticide. Molecular characterization of the strain indicated that two common sodium channel mutations were fixed in the population. Topical bioassay with piperonyl butoxide (PBO) indicated cytochrome P450-mediated detoxification accounts for approximately half of the resistance profile. Transcript expression screening of cytochrome P450s and glutathione-S-transferases identified the presence of overexpressed transcripts. This study of Puerto Rican Ae. aegypti with significant contributions from both genetic changes and enzymatic detoxification highlights the necessity of monitoring for resistance but also defining the multiple resistance mechanisms to inform effective mosquito control. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  10. Morphological Characteristics of Schistosoma mansoni PZQ-Resistant and -Susceptible Strains Are Different in Presence of Praziquantel

    PubMed Central

    Pinto-Almeida, António; Mendes, Tiago; de Oliveira, Rosimeire Nunes; Corrêa, Sheila de Andrade Penteado; Allegretti, Silmara Marques; Belo, Silvana; Tomás, Ana; Anibal, Fernanda de Freitas; Carrilho, Emanuel; Afonso, Ana

    2016-01-01

    Schistosomiasis is one of the most common human parasitic diseases whose socioeconomic impact is only surpassed by malaria. Praziquantel (PZQ) is the only drug commercially available for the treatment of all schistosome species causing disease in humans. However, there has been stronger evidences of PZQ-resistance on Schistosoma mansoni and thus it is very important to study the phenotypic characteristics associated with it. The aim of this study was to evaluate morphological alterations in S. mansoni PZQ-resistant adult worms and eggs, by comparing a PZQ- resistant strain obtained under PZQ drug pressure with a PZQ-susceptible strain. For this, scanning electronic microscopy was used to assess tegumental responsiveness of both strains under PZQ exposure, and optical microscopy allowed the monitoring of worms and eggs in the presence of the drug. Those assays showed that PZQ-susceptible worms exposed to the drug had more severe tegumental damages than the resistant one, which had only minor alterations. Moreover, contrary to what occurred in the susceptible strain, resistant worms were viable after PZQ exposure and gradually regaining full motility after removal of the drug. Eggs from resistant strain parasites are considerably smaller than those from susceptible strain. Our results suggest that there might be a difference in the tegument composition of the resistant strain and that worms are less responsive to PZQ. Changes observed in egg morphology might imply alterations in the biology of schistosomes associated to PZQ-resistance, which could impact on transmission and pathology of the disease. Moreover, we propose a hypothetical scenario where there is a different egg tropism of the S. mansoni resistant strain. This study is the first comparing two strains that only differ in their resistance characteristics, which makes it a relevant step in the search for resistance determinants. PMID:27199925

  11. Strain differences in the somnogenic effects of interferon inducers in mice.

    PubMed

    Toth, L A

    1996-12-01

    Increased slow-wave sleep accompanies influenza infection in C57BL/6 mice but not BALB/c mice. These strains of mice possess different alleles of the genetic lucus If-1, which codes for high (If-1h; C57BL/6) and low (If-1(1); BALB/c) production of interferon (IFN), a putative sleep-inducing cytokine. To evaluate the contribution of the If-1 gene to differences in murine sleep propensity, sleep patterns were evaluated in mice treated with the IFN inducers polyinosinic:polycytidilic acid (pIC) or Newcastle disease virus (NDV), with influenza virus, or with murine interferon (IFN-alpha) or IFN-alpha/beta. As compared with baseline values, C57BL/6 mice exhibited increased slow-wave sleep after all three challenges, but BALB/c mice did not. Congenic B6.C-H28c mice, which bear the BALB/c allele for low IFN production on the C57BL/6 genetic background, showed enhanced slow-wave sleep after influenza infection but not after NDV. Exogenous IFN did not enhance slow-wave sleep in either C57BL/6 or BALB/c mice. These data suggest that the If-1 allele may influence the somnogenic responsiveness of mice under some conditions but that additional mechanisms may contribute to sleep enhancement during infectious disease.

  12. [Characterization of methicillin- and linezolid-resistant Staphylococcus epidermidis and S. haemolyticus strains in a Spanish hospital].

    PubMed

    Lozano, Carmen; Aspiroz, Carmen; Gómez-Sanz, Elena; Tirado, Gabriel; Fortuño, Blanca; Zarazaga, Myriam; Torres, Carmen

    2013-03-01

    Linezolid resistance is mainly due to mutations in the 23S rRNA target. The aim of this study was to characterize linezolid and methicillin resistant Staphylococcus epidermidis (SE-LM(R)) and S. haemolyticus (SH-LM(R)) strains detected in a Spanish hospital. SE-LM(R) and SH-LM(R) strains obtained in the period June 2009-August 2011 in a second level hospital were recorded along with the epidemiological characteristics of the patients. These strains were typed, and their resistance, phenotype, genotype and the factors determining their virulence were analysed. Linezolid resistance was explained by the presence of G2603T mutation (23S rRNA) and aminoacid changes in L3 and L4 ribosomal proteins. The 25 SE-LM(R) strains belonged to sequence type ST2, presented SCCmec typeIII, and two different PFGE patterns. The two SH-LM(R) strains showed non-typeable SCCmec. SE-LM(R) strains harboured the resistance genes aac(6')-aph(2"), and dfrS1. SH-LM(R) strains contained these genes and the gene erm(C). No lincomycin resistance mechanism was identified in SE-LM(R) strains regardless of showing lincomycin resistance and diminished susceptibility to clindamycin. Linezolid resistance is of concern in hospitals, and requires continued vigilance. Several linezolid resistance mechanisms (mutation in 23S RNAr and amino acid changes in L3 and L4) were identified in this study. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  13. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    PubMed Central

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  14. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  15. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  16. Genome sequences of Listeria monocytogenes strains with resistance to arsenic

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes frequently exhibits resistance to arsenic. We report here the draft genome sequences of eight genetically diverse arsenic-resistant L. monocytogenes strains from human listeriosis and food-associated environments. Availability of these genomes would help to elucidate the role ...

  17. Protection of mice against Giardia muris infection.

    PubMed Central

    Roberts-Thomson, I C; Mitchell, G F

    1979-01-01

    Strains of mice showing relatively rapid (BALB/c) and defective (C3H/He) spontaneous elimination of Giardia muris displayed marked differences in the degree of resistance to infection induced by prior injection of trophozoites in Freund complete adjuvant. PMID:468385

  18. A Strain of Bacillus sphaericus Causes Slower Development of Resistance in Culex quinquefasciatus

    PubMed Central

    Pei, Guofeng; Oliveira, Cláudia M. F.; Yuan, Zhiming; Nielsen-LeRoux, Christina; Silva-Filha, Maria Helena; Yan, Jianpin; Regis, Lêda

    2002-01-01

    Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae. PMID:12039761

  19. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction.

    PubMed

    Hua, Xu; Cao, Xin-Yuan; Wang, Xiao-Li; Sun, Peng; Chen, Ling

    2017-11-01

    Exposure to triclosan (TCS), an antibacterial agent, during pregnancy is associated with hypothyroxinemia and decreases in placental glucose transporter expression and activity. The objective of this study was to investigate the influence of TCS on glucose homeostasis and insulin sensitivity in gestational mice (G-mice) and nongestational female mice (Ng-mice) as a control. Herein, we show that the exposure of G-mice to TCS (8 mg/kg) from gestational day (GD) 5 to GD17 significantly increased their levels of fasting plasma glucose and serum insulin, and insulin content in pancreatic β-cells with reduced homeostasis model assessment (HOMA)-β index and increased HOMA-IR index. Area under curve (AUC) of glucose and insulin tolerance tests in TCS (8 mg/kg)-treated G-mice were markedly larger than controls. When compared with controls, TCS (8 mg/kg)-treated G-mice showed a significant decrease in the levels of thyroxine and triiodothyroninelevels, PPARγ and glucose transporter 4 (GLUT4) expression, and Akt phosphorylation in adipose tissue and muscle. Replacement of L-thyroxine in TCS (8 mg/kg)-treated G-mice corrected their insulin resistance and recovered the levels of insulin, PPARγ and GLUT4 expression, and Akt phosphorylation. Activation of PPARγ by administration of rosiglitazone recovered the decrease in Akt phosphorylation, but not GLUT4 expression. Although exposure to TCS (8 mg/kg) in Ng-mice reduced thyroid hormones levels, it did not cause the insulin resistance or affect PPARγ and GLUT4 expression, and Akt phosphorylation. The findings indicate that the exposure of gestational mice to TCS (≥8 mg/kg) results in insulin resistance via thyroid hormones reduction. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Activities of Various 4-Aminoquinolines Against Infections with Chloroquine-Resistant Strains of Plasmodium falciparum1

    PubMed Central

    Schmidt, L. H.; Vaughan, Dennis; Mueller, Donna; Crosby, Ruth; Hamilton, Rebecca

    1977-01-01

    The studies reported here stemmed from a personal report by Geiman on the capacity of the 4-aminoquinoline amodiaquin to inhibit in vitro maturation of ring stages of the chloroquine-resistant Monterey strain of Plasmodium falciparum. This observation, confirmed in owl monkeys infected with this strain, led to a comparison of the activities of chloroquine, amodiaquin, amopyroquin, and dichlorquinazine (12,278 RP) against infections with various chloroquine-susceptible and chloroquine-resistant strains. The results showed that: (i) these 4-aminoquinolines were essentially equally active against infections with chloroquine-susceptible strains and (ii) the activities of amodiaquin, amopyroquin, and dichlorquinazine were reduced significantly in the face of chloroquine resistance, but (iii) well-tolerated doses of these compounds would cure infections with strains that fully resisted treatment with maximally tolerated doses of chloroquine. Two other 4-aminoquinolines, SN-8137 and SN-9584, which also exhibited activity against chloroquine-resistant parasites in vitro, displayed curative activity in monkeys infected with a chloroquine-resistant strain. These observations show that there is cross-resistance among the 4-aminoquinolines, confirming earlier findings, but indicate that the dimensions of this phenomenon are sufficiently limited so that some derivatives are therapeutically effective against infections refractory to maximally tolerated doses of chloroquine. PMID:406829

  1. [Isolation and characterization of a new glyphosate-resistant strain from extremely polluted environment].

    PubMed

    Sh, Jiying; Jin, Dan; Lu, Wei; Zhang, Xiaoyu; Zhang, Chao; Li, Liang; Ma, Ruiqiang; Xiao, Lei; Wang, Yiding; Lin, Min

    2008-06-01

    To isolate and characterize a glyphosate-resistant strain from extremely polluted environment. A glyphosate-resistant strain was isolated from extremely polluted soil taking glyphosate as the selection pressure. Its glyphosate resistance, growth optimal pH and antibiotic sensitivity were detected. Its morphology, cultural characteristics, physiological and biochemical properties, chemotaxonomy and 16S rDNA sequences were studied. Based on these results, the strain was identified according to the ninth edition of Bergey's manual of determinative bacteriology. The isolate was named SL06500. It could grow in M9 minimal medium containing up to 500 mmol/L glyphosate. The cell growth optimal pH of SL06500 was 4.0. It was resistant to ampicillin, kanamycin, tetracycline and chloromycetin. The 16S rDNA of SL06500 was amplified by PCR and sequenced. Compared with the published nucleotide sequence of 16S rDNA in NCBI (National Center for Biotechnology Information), SL06500 showed high identity with Achromobacter and Alcaligenes. Based on morphological, physiological and biochemical characteristics, the strain was identified as Alcaligenes xylosoxidans subsp.xylosoxidans SL06500 according to the ninth edition of Bergey's manual of determinative bacteriology. Strain SL06500 is worthy to be studied because of its high glyphosate resistance.

  2. Cytotoxic Escherichia coli strains encoding colibactin isolated from immunocompromised mice with urosepsis and meningitis

    PubMed Central

    Feng, Yan; Mannion, Anthony; Ge, Zhongming; Garcia, Alexis; Scott, Kathleen E.; Caron, Tyler J.; Jacobsen, Johanne T.; Victora, Gabriel; Jaenisch, Rudolf; Fox, James G.

    2018-01-01

    Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli. PMID:29554148

  3. Risk assessment, cross-resistance potential, and biochemical mechanism of resistance to emamectin benzoate in a field strain of house fly (Musca domestica Linnaeus).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Khan, Tiyyabah; Haider, Muhammad Saleem; Iqbal, Naeem; Zubair, Muhammad

    2016-05-01

    Reduced sensitivity to insecticides in insect pests often results in control failures and increases in the dose and frequency of applications, ultimately polluting the environment. Reduced sensitivity to emamectin benzoate, a broad-spectrum agrochemical belonging to the avermectin group of pesticides, was reported in house flies (Musca domestica L.) collected from Punjab, Pakistan, in 2013. The aim of the present study was to investigate the risk for resistance development, biochemical mechanism, and cross-resistance potential to other insecticides in an emamectin benzoate selected (EB-SEL) strain of house flies. A field-collected strain showing reduced sensitivity to emamectin was re-selected in the laboratory for five consecutive generations and compared with a laboratory susceptible (Lab-Susceptible) reference strain, using bioassays. The field strain showed rapid development of resistance to emamectin (resistance ratio (RR) increased from 35.15 to 149.26-fold) as a result of selection experiments; however, resistance declined when the selection pressure uplifted. The EB-SEL strain showed reduction in resistance to abamectin, indoxacarb, and thiamethoxam. The results of synergism experiments using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) enzyme inhibitors and biochemical analyses revealed that the metabolic resistance mechanism was not responsible in developing emamectin resistance in the EB-SEL strain. In conclusion, the risk for the rapid development of emamectin resistance under continuous selection pressure suggests using a multifaceted integrated pest management approach for house flies. Moreover, the instable nature of emamectin resistance in the EB-SEL strain and lack of cross-resistance to other insecticides provide windows for the rotational use of insecticides with different modes of action. This will ultimately reduce emamectin selection pressure and help improving management programs for house flies without polluting the

  4. Severity of Group B Streptococcal Arthritis in Selected Strains of Laboratory Mice

    PubMed Central

    Puliti, Manuela; Bistoni, Francesco; von Hunolstein, Christina; Orefici, Graziella; Tissi, Luciana

    2001-01-01

    The susceptibilities of C3H/HeN, BALB/c, and C57BL/6N mouse strains to group B streptococci (GBS) infection were evaluated. C3H/HeN mice developed severe polyarthitis; mild lesions and no lesions were observed in BALB/c and C57BL/6N mice, respectively. A correlation between the severity of arthritis, the number of GBS in the joints, and local interleukin-6 and interleukin-1β production was evident. PMID:11119551

  5. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.

    PubMed

    Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise

    2009-05-31

    Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that

  6. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction.

    PubMed

    Karasawa, Hiroshi; Takaishi, Kiyosumi; Kumagae, Yoshihiro

    2011-03-01

    An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

  7. Measuring persistent temporomandibular joint nociception in rats and two mice strains.

    PubMed

    Kramer, Phillip R; Kerins, Carolyn A; Schneiderman, Emet; Bellinger, Larry L

    2010-04-19

    CFA-induced nociception in the TMJ over the course of several weeks in unrestrained rats and for up to seven days in the DBA/1LacJ mouse strain. In addition, C57Bl/6 mice are resistant to CFA-induced TMJ nociception at the same dose used in the DBA/1LacJ mice. (c) 2010 Elsevier Inc. All rights reserved.

  8. Draft Genome Sequence of Lactobacillus johnsonii Strain 16, Isolated from Mice.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Elgavish, Sharona; Kashi, Yechezkel

    2015-10-08

    Here, we report the genome sequence of Lactobacillus johnsonii, a member of the gut lactobacilli. This draft genome of L. johnsonii strain 16 isolated from C57BL/6J mice enables the identification of bacterial genes responsible for host-specific gut persistence. Copyright © 2015 Buhnik-Rosenblau et al.

  9. [Isolation of a carbapenem-resistant K1 serotype Klebsiella pneumonia strain and the study of resistance mechanism].

    PubMed

    Zhang, Rong; Wang, Xuan; Lü, Jianxin

    2014-12-16

    To study the virulence and mechanism of carbapenem resistance of a clinical isolate of carbapenem-resistant K1 serotype Klebsiella pneumonia strain. Identification of isolate was carried out with VITEK-2 compact system. Antimicrobial susceptibility was determined by E-test; Metallo β-lactamases and carbapenemases screening were conducted by imipenem-EDTA double disc synergy test and modified Hodge test, respectively.Specific polymerehse chain reaction (PCR) and DNA sequencing were preformed to detect the virulence genes including K1, K2, K5, K20, K54, K57, magA, rmpA, wcaG and a series of β-lactamase resistence genes. Conjunction experiment was also performed. The plasmids of transconjugants were submitted to PCR-based replicon typing (PBRT) method. Molecular typing was performed by multilocus sequence typing (MLST). Antimicrobial susceptibility testing revealed that the Klebsiella pneumonia strain was resistant to most of the antibiotics used in clinic. Phynotype confirmary rest revealed the production of carbapanemases, while Metallo β-lactamases were negative; PCR and DNA sequencing confirmed the isolate was positive for blaKPC-2, blaCTX-M-15, blaTEM-1, blaSHV-1 and virulence genes K1, magA, rmpA, wcaG simultaneously; blaKPC-2 was transferred from donor to Escherichia EC600 by conjunction experiment, while no virulence genes were found in the transconjugants. PBRT revealed that Frep plasmid was found in transconjugants. MLST analysis revealed that this strain belonged to ST23. K1 serotype Klebsiella pneumonia strain carries virulence genes and carbapenem resistance gene blaKPC-2, noteworthily the carbapenem resistance genes can be transferred through horizontal transmission on plasmids.

  10. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  11. Enhanced oxidative killing of azole-resistant Candida glabrata strains with ERG11 deletion.

    PubMed Central

    Kan, V L; Geber, A; Bennett, J E

    1996-01-01

    The susceptibility of genetically defined Candida glabrata strains to killing by H2O2 and neutrophils was assessed. Fluconazole-susceptible L5L and L5D strains demonstrated survival rates higher than those of two fluconazole-resistant strains lacking the ERG11 gene coding for 14 alpha-demethylase. Fluconazole resistance can occur by mechanisms which increase fungal susceptibility to oxidative killing by H2O2 and neutrophils. PMID:8807069

  12. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  13. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    PubMed

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  14. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing

    PubMed Central

    Gallistel, C. R.; Tucci, Valter; Nolan, Patrick M.; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-01-01

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability. PMID:24446498

  15. [Surveillance of Antimicrobial Resistant Esherichia coli by Rectal Swab Method--Annual Change of Prevalence of Quinolone-resistant and ESBL Producing Strains from 2009 to 2013].

    PubMed

    Nasu, Yoshitsugu; Sako, Shinichi; Yano, Tomofumi; Kosaka, Noriko

    2015-09-01

    Although most of commonly used antimicrobial agents had been susceptible to Esherichia coli, recently there are a lot of reports concerning about community-acquired infection caused by resistant E. coli. The aim of this study is to define the prevalence of resistant E. coli in normal flora colonization by the rectal swab method. From June 2009 to December 2013, 251 male patients (50-85 year-old, median 68) planned to transrectal prostate biopsy participated in this study. Stools stuck on the glove at the digital examination were provided for culture specimen. Identification of E. coli and determination of MIC was performed by MicroScan WalkAway40plus (Siemens). Isolated E. coli were deemed quinolone-resistant strains when their MIC of levofloxacine was 4 μg/mL or above according to the breakpoint MIC by the CLSI criteria. ESBL producing ability was determined by the double disk method used by CVA contained ESBL definition disc (Eikenkagaku). Of the 251 study patients, 224 patients had positive cultures of E. coli. Twenty-four patients had quinolone-resistant strains and 9 patients had ESBL producing strains. The prevalence of quinolone-resistant strains in 2009, 2010, 2011, 2012 and 2013 were 5.9% (2 out of 34 strains), 13.5% (5 out of 37 strains), 12.5% (4 out of 32 strains), 9.0% (6 out of 67) and 13.0% (7 out of 54 strains), respectively. The prevalence of ESBL producing strains in 2009, 2010, 2011, 2012 and 2013 were 0% (0 out of 34 strains), 5.4% (2 out of 37 strains), 3.1% (1 out of 32 strains), 3.0% (2 out of 67 strains) and 7.4% (4 out of 54 strains), respectively. In 2013, the prevalence of antimicrobial resistant E. coli, both quinolone-resistant and ESBL producing strains, were increasing. We have to pay a close attention to the increase of resistant E. coli.

  16. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains.

    PubMed

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Gupta, Anuj Kumar; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal

    2018-01-01

    Despite more than three decades of multidrug therapy (MDT), leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae) is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains - comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain - was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB , that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s) in RNA polymerase gene(s), resulting in rifampicin resistance in relapsed leprosy patients.

  17. Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    PubMed Central

    Pasieka, Tracy Jo; Collins, Lynne; O'Connor, Megan A.; Chen, Yufei; Parker, Zachary M.; Berwin, Brent L.; Piwnica-Worms, David R.; Leib, David A.

    2011-01-01

    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons

  18. Comparison of mouse strains for susceptibility to styrene-induced hepatotoxicity and pneumotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.P.

    1997-10-01

    Styrene is known to cause both hepatotoxicity and pneumotoxicity in mice. Strain differences have been reported by other investigators suggesting that Swiss mice are less susceptible than non-Swiss mice to styrene-induced liver damage. In this study, All and C57BL16 mice were found to be similar to non-Swiss albino (NSA) mice in susceptibility whereas CD-1 (Swiss) mice were more resistant to hepatotoxicity as assessed by serum sorbitol dehydrogenase levels and pneumotoxicity as determined by gamma-glutamyltranspeptidase and lactate dehydrogenase measurements in bronchoalveolar ravage fluid. Styrene was hepatotoxic in CD-1 mice treated with pyridine to induce CYP2E1. CYP2E1 apoprotein levels and p-nitrophenol hydroxylasemore » activities in control and pyridine-induced mice were similar in the two strains. Hepatic and pulmonary microsomal preparations from both strains metabolized styrene to styrene oxide at similar rates. CD-1 mice were as susceptible as the NSA mice to the effects of styrene oxide. The data suggest that there are no differences in the bioactivation of styrene to styrene oxide or innate susceptibility to the active metabolite that would account for the differences between the CD-1 and NSA mice. 26 refs., 6 tabs.« less

  19. High prevalence of methicillin resistant staphylococci strains isolated from surgical site infections in Kinshasa.

    PubMed

    Iyamba, Jean-Marie Liesse; Wambale, José Mulwahali; Lukukula, Cyprien Mbundu; za Balega Takaisi-Kikuni, Ntondo

    2014-01-01

    Surgical site infections (SSIs) after surgery are usually caused by Staphylococcus aureus and coagulase-negative staphylococci (CNS). In low income countries, methicillin resistant Staphylococcus aureus (MRSA) and methicillin resistant coagulase-negative staphylococci (MR-CNS) surgical site infections are particularly associated with high treatment cost and remain a source of mortality and morbidity. This study aimed to determine the prevalence and the sensitivity to antibiotics of MRSA and MR-CNS isolated from SSIs. Wound swabs were collected from 130 hospitalized surgical patients in two major hospitals of Kinshasa. S. aureus and CNS strains were identified by standard microbiological methods and latex agglutination test (Pastorex Staph-Plus). The antibiotic susceptibility of all staphylococcal strains was carried out using disk-diffusion method. Eighty nine staphylococcal strains were isolated. Out of 74 S. aureus and 15 CNS isolated, 47 (63.5%) and 9 (60%) were identified as MRSA and MR-CNS respectively. Among the MRSA strains, 47 strains (100%) were sensitive to imipenem, 39 strains (89%) to amoxycillin-clavulanic acid and 38 strains (81%) to vancomycin. All MR-CNS were sensitive to imipenem, amoxycillin-clavulanic acid and vancomycin. The isolated MRSA and MR-CNS strains showed multidrug resistance. They were both resistant to ampicillin, cotrimoxazole, erythromycin, clindamycin, ciprofloxacin, cefotaxime and ceftazidime. The results of the present study showed a high prevalence of MRSA and MR-CNS. Imipenem, amoxycillin-clavulanic acid and vancomycin were the most active antibiotics. This study suggests that antibiotic surveillance policy should become national priority as MRSA and MR-CNS were found to be multidrug resistant.

  20. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    PubMed Central

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-01-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus. PMID:7793931

  1. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    PubMed

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-06-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus.

  2. Evaluation of Anthelmintic Resistance and Exhaust Air Dust PCR as a Diagnostic Tool in Mice Enzootically Infected with Aspiculuris tetraptera

    PubMed Central

    Kapoor, Pratibha; Hayes, Yumiko O; Jarrell, Leslie T; Bellinger, Dwight A; Thomas, Rhiannon D; Lawson, Gregory W; Arkema, Jaclyn D; Fletcher, Craig A; Nielsen, Judith N

    2017-01-01

    The entry of infectious agents in rodent colonies occurs despite robust sentinel monitoring programs, strict quarantine measures, and stringent biosecurity practices. In light of several outbreaks with Aspiculuris tetraptera in our facilities, we investigated the presence of anthelmintic resistance and the use of exhaust air dust (EAD) PCR for early detection of A. tetraptera infection. To determine anthelmintic resistance, C57BL/6, DBA/2, and NCr nude mice were experimentally inoculated with embryonated A. tetraptera ova harvested from enzootically infected mice, followed by treatment with 150 ppm fenbendazole in feed, 150 ppm fenbendazole plus 5 ppm piperazine in feed, or 2.1 mg/mL piperazine in water for 4 or 8 wk. Regardless of the mouse strain or treatment, no A. tetraptera were recovered at necropsy, indicating the lack of resistance in the worms to anthelmintic treatment. In addition, 10 of 12 DBA/2 positive-control mice cleared the A. tetraptera infection without treatment. To evaluate the feasibility of EAD PCR for A. tetraptera, 69 cages of breeder mice enzootically infected with A. tetraptera were housed on a Tecniplast IVC rack as a field study. On day 0, 56% to 58% of the cages on this rack tested positive for A. tetraptera by PCR and fecal centrifugation flotation (FCF). PCR from EAD swabs became positive for A. tetraptera DNA within 1 wk of placing the above cages on the rack. When these mice were treated with 150 ppm fenbendazole in feed, EAD PCR reverted to pinworm-negative after 1 mo of treatment and remained negative for an additional 8 wk. The ability of EAD PCR to detect few A. tetraptera positive mice was investigated by housing only 6 infected mice on another IVC rack as a field study. The EAD PCR from this rack was positive for A. tetraptera DNA within 1 wk of placing the positive mice on it. These findings demonstrate that fenbendazole is still an effective anthelmintic and that EAD PCR is a rapid, noninvasive assay that may be a useful

  3. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  4. Immune Cells from SR/CR Mice Induce the Regression of Established Tumors in BALB/c and C57BL/6 Mice

    PubMed Central

    Koch, Janne; Hau, Jann; Pravsgaard Christensen, Jan; Elvang Jensen, Henrik; Bagge Hansen, Morten; Rieneck, Klaus

    2013-01-01

    Few experimental models are available for the study of natural resistance to cancer. One of them is the SR/CR (spontaneous regression/complete resistance) mouse model in which natural resistance to a variety of cancer types appeared to be inherited in SR/CR strains of BALB/c and C57BL/6 mice. The genetic, cellular, and molecular effector mechanisms in this model are largely unknown, but cells from the innate immune system may play a significant role. In contrast to previous observations, the cancer resistance was limited to S180 sarcoma cancer cells. We were unable to confirm previous observations of resistance to EL-4 lymphoma cells and J774A.1 monocyte-macrophage cancer cells. The cancer resistance against S180 sarcoma cells could be transferred to susceptible non-resistant BALB/c mice as well as C57BL/6 mice after depletion of both CD4+/CD8+ leukocytes and B-cells from SR/CR mice. In the responding recipient mice, the cancer disappeared gradually following infiltration of a large number of polymorphonuclear granulocytes and remarkably few lymphocytes in the remaining tumor tissues. This study confirmed that the in vivo growth and spread of cancer cells depend on a complex interplay between the cancer cells and the host organism. Here, hereditary components of the immune system, most likely the innate part, played a crucial role in this interplay and lead to resistance to a single experimental cancer type. The fact that leukocytes depleted of both CD4+/CD8+ and B cells from the cancer resistant donor mice could be transferred to inhibit S180 cancer cell growth in susceptible recipient mice support the vision of an efficient and adverse event free immunotherapy in future selected cancer types. PMID:23555858

  5. Genetic Pathway in Acquisition and Loss of Vancomycin Resistance in a Methicillin Resistant Staphylococcus aureus (MRSA) Strain of Clonal Type USA300

    PubMed Central

    Gardete, Susana; Kim, Choonkeun; Hartmann, Boris M.; Mwangi, Michael; Roux, Christelle M.; Dunman, Paul M.; Chambers, Henry F.; Tomasz, Alexander

    2012-01-01

    An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy

  6. Sarcocystis neurona infection in gamma interferon gene knockout (KO) mice: comparative infectivity of sporocysts in two strains of KO mice, effect of trypsin digestion on merozoite viability, and infectivity of bradyzoites to KO mice and cell culture.

    PubMed

    Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A

    2013-09-01

    The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals. Published by Elsevier B.V.

  7. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles.

    PubMed

    Sevastos, A; Markoglou, A; Labrou, N E; Flouri, F; Malandrakis, A

    2016-03-01

    Six benzimidazole (BMZ)-resistant Fusarium graminearum strains were obtained after UV mutagenesis and selection on carbendazim (MBC)-amended medium. In vitro bioassays resulted in the identification of two resistant phenotypes that were highly HR (Rf: 40-170, based on EC50) and moderately MR (Rf: 10-20) resistant to carbendazim. Cross resistance studies with other fungicides showed that all mutant strains tested were also resistant to other BMZs, such as benomyl and thiabendazole, but retained their parental sensitivity to fungicides belonging to other chemical groups. A point mutation at codon 6 (His6Asn) was found in the β2-tubulin gene of MR isolates while another mutation at codon 200 (Phe200Tyr) was present in one MR and one HR isolates. Interestingly, low temperatures suppressed MBC-resistance in all isolates bearing the H6N mutation. The three-dimensional homology model of the wild-type and mutants of β-tubulins were constructed, and the possible carbendazim binding site was analyzed. Studies on fitness parameters showed that the mutation(s) for resistance to BMZs did not affect the mycelial growth rate whereas adverse effects were found in sporulation and conidial germination in most of the resistant mutants. Pathogenicity tests on corn cobs revealed that mutants were less or equally aggressive to the wild-type strain but expressed their BMZ-resistance after inoculation on maize cobs treated with MBC. Analysis of mycotoxin production by high performance liquid chromatography revealed that only two HR strains produced zearalenone (ZEA) at concentrations similar to that of the wild-type strain, while no ZEA levels were detected in the rest of the mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  9. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1.

    PubMed

    Thurston, G; Suri, C; Smith, K; McClain, J; Sato, T N; Yancopoulos, G D; McDonald, D M

    1999-12-24

    Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) are endothelial cell-specific growth factors. Direct comparison of transgenic mice overexpressing these factors in the skin revealed that the VEGF-induced blood vessels were leaky, whereas those induced by Ang1 were nonleaky. Moreover, vessels in Ang1-overexpressing mice were resistant to leaks caused by inflammatory agents. Coexpression of Ang1 and VEGF had an additive effect on angiogenesis but resulted in leakage-resistant vessels typical of Ang1. Ang1 therefore may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated VEGF and, in combination with VEGF, for promoting growth of nonleaky vessels.

  10. Development and characterization of PdCr temperature-compensated wire resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1989-01-01

    A temperature-compensated resistance static strain gage with potential to be used to 600 C was recently developed. Gages were fabricated from specially developed palladium-13 w/o chromium (Pd-13Cr) wire and platinum (Pt) compensator. When bonded to high temperature Hastelloy X, the apparent strain from room temperature to 600 C was within 400 microstrain for gages with no preheat treatment and within 3500 microstrain for gages with 16 hours prestabilization at 640 C. The apparent strain versus temperature relationship of stabilized PdCr gages were repeatable with the reproducibility within 100 microstrain during three thermal cycles to 600 C and an 11 hours soak at 600 C. The gage fabrication, construction and installation is described. Also, the coating system used for this compensated resistance strain gage is explained. The electrical properties of the strain sensing element and main characteristics of the compensated gage including apparent strain, drift and reproducibility are discussed.

  11. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  12. Genotyping of clinical and environmental multidrug resistant Enterococcus faecium strains.

    PubMed

    Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza

    2017-01-01

    Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.

  13. Primary and acquired drug resistance in Mycobacterium tuberculosis strains in western region of Libyan Arab Jamahiriya.

    PubMed

    Elghoul, M T; Joshi, R M; Rizghalla, T

    1989-10-01

    Drug resistance in Mycobacterium tuberculosis strains prevalent in the Western Region of Libyan Arab Jamahiriya was studied for the years 1984, 1985 and 1986 at the regional tuberculosis control centre at Gurgi, Tripoli. Records of resistance to streptomycin, isoniazid, ethambutol and rifampicin were analysed. Whereas primary drug resistance was observed in 5.1%, 19.5% and 3.8%, acquired drug resistance was found in 12.2%, 34.0% and 15.3% of the strains in 1984, 1985 and 1986 respectively. Only 3 out of 598 strains (1.2%) were found to show acquired resistance to rifampicin. No primary resistance to rifampicin was observed. The situation of drug resistance in pulmonary tuberculosis in the Jamahiriya is discussed.

  14. [Antibiotic resistance to erythromycin, clindamycin and tetracycline of 573 strains of Streptococcus pyogenes (1992-1994)].

    PubMed

    Orden, B; Martínez, R; López de los Mozos, A; Franco, A

    1996-02-01

    The aim of this study was to know the antibiotic resistence of Streptococcus pyogenes to erythromycine, clindamycine and/or tetracycline in community samples. The second aim was to determine the existence of multiresistant strains and to know the relationship between resistant strains, clinical samples and age of the patient. A retrospective analysis was performed in all the strains of S. pyogenes isolated from January 1992 to December 1994. Antibiotic sensitivity was studied by MIC by the microdilution method using the Pasco semiautomatic system. During the study period 573 beta hemolytic streptococci were identified as S. pyogenes. The global resistance to erythromycine (2.8%), clindamycine (1.4%) and tetracycline (7.3%) remains at low levels but has significantly increased in the case of erythromycine (p < 0.05) and tetracycline (p < 0.05) over these 3 years. The incidence of strains resistant to clindamycine has also increased slowly although this rise is not significant. Five strains (0.9%) were not sensitive to the three antibiotics studied, 4 being isolated in the last trimester of 1994 in pharyngeal exudates. S. pyogenes resistant to erythromycine was most frequently isolated from cutaneous lesions and in pediatric patients (under the age of 14 years). These results confirm the trend towards an increase in the number of strains of S. pyogenes resistant to erythromycine, clindamycine and/or tetracycline, being most often found in cutaneous lesions and pediatric patients.

  15. Pathogenesis of Infection by Clinical and Environmental Strains of Vibrio vulnificus in Iron-Dextran-Treated Mice

    PubMed Central

    Starks, Angela M.; Schoeb, Trenton R.; Tamplin, Mark L.; Parveen, Salina; Doyle, Thomas J.; Bomeisl, Philip E.; Escudero, Gloria M.; Gulig, Paul A.

    2000-01-01

    Vibrio vulnificus is an opportunistic pathogen that contaminates oysters harvested from the Gulf of Mexico. In humans with compromising conditions, especially excess levels of iron in plasma and tissues, consumption of contaminated seafood or exposure of wounds to contaminated water can lead to systemic infection and disfiguring skin infection with extremely high mortality. V. vulnificus-associated diseases are noted for the rapid replication of the bacteria in host tissues, with extensive tissue damage. In this study we examined the virulence attributes of three virulent clinical strains and three attenuated oyster or seawater isolates in mouse models of systemic disease. All six V. vulnificus strains caused identical skin lesions in subcutaneously (s.c.) inoculated iron dextran-treated mice in terms of numbers of recovered CFU and histopathology; however, the inocula required for identical frequency and magnitude of infection were at least 350-fold higher for the environmental strains. At lethal doses, all strains caused s.c. skin lesions with extensive edema, necrosis of proximate host cells, vasodilation, and as many as 108 CFU/g, especially in perivascular regions. These data suggest that the differences between these clinical and environmental strains may be related to growth in the host or susceptibility to host defenses. In non-iron dextran-treated mice, strains required 105-fold-higher inocula to cause an identical disease process as with iron dextran treatment. These results demonstrate that s.c. inoculation of iron dextran-treated mice is a useful model for studying systemic disease caused by V. vulnificus. PMID:10992486

  16. Complete Proteome of a Quinolone-Resistant Salmonella Typhimurium Phage Type DT104B Clinical Strain

    PubMed Central

    Correia, Susana; Nunes-Miranda, Júlio D.; Pinto, Luís; Santos, Hugo M.; de Toro, María; Sáenz, Yolanda; Torres, Carmen; Capelo, José Luis; Poeta, Patrícia; Igrejas, Gilberto

    2014-01-01

    Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen. PMID:25196519

  17. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    PubMed Central

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  18. Mechanism of Antibacterial Activities of a Rice Hull Smoke Extract (RHSE) Against Multidrug-Resistant Salmonella Typhimurium In Vitro and in Mice.

    PubMed

    Kim, Sung Phil; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2018-02-01

    The present study tested antibacterial activity of a rice hull smoke extract (RHSE) against a multidrug-resistant strain of Salmonella Typhimurium and examined its mode of suppressive action in vitro and in mice. In vitro studies showed that the minimum inhibitory concentration (MIC) value of RHSE was 1.29% (v/v). The inactivation was confirmed by complete loss of cell viability in the range of 10 4 to 10 7 colony forming units of the resistant Salmonella Typhimurium strain. Agarose and sodium dodecyl sulfate-polyacrylamide gel electrophoreses were used to evaluate the integrities of bacterial genomic DNA and total cellular protein profiles. The antibacterial action of RHSE results from a leakage of intracellular macromolecules following rupture of bacterial cells. Scanning electron microscopy of the cells shows that RHSE also induced deleterious morphological changes in the bacterial cell membrane of the pathogens. In vivo antibacterial activity of RHSE at a 1 × MIC concentration was examined in a bacterial gastroenteritis model using Balb/c mice orally infected with the Salmonella Typhimurium. The results show greatly decreased excretion of the bacteria into the feces and suppressed translocation of the bacteria to internal organs (cecum, mesenteric lymph node, spleen, and liver) compared with the infected mice not subjected to the RHSE treatment. Collectively, the present findings indicate that the mechanism of the antibacterial activities both in vitro and in the gastroenteritis environment of the animal model is the result of the direct disruption of cell structure, leading to cell death. RHSE has the potential to serve as a multifunctional food additive that might protect consumers against infections by antibiotic-resistant microorganisms. The rice hull derived liquid smoke has the potential to complement widely used wood-derived smoke as an antimicrobial flavor and health-promoting formulation for application in foods and feeds. Published 2017. This article

  19. Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the alpine marmot.

    PubMed

    Caprioli, A; Donelli, G; Falbo, V; Passi, C; Pagano, A; Mantovani, A

    1991-04-01

    Escherichia coli strains isolated from 81 fecal samples from red deer (Cervus elaphus), roe deer (Capreoulus capreoulus), chamois (Rupicapra rupicapra) and alpine marmot (Marmota marmota) living in the Stelvio National Park, Italy, were examined for antimicrobial resistance and production of toxic factors. Direct plating of specimens on media containing antimicrobial drugs allowed us to isolate resistant strains of E. coli from 10 of 59 (17%) specimens examined by this technique. Nine of 31 specimens from red deer (29%) contained resistant strains. Different animals were likely colonized by the same resistant strain of E. coli. Conjugative R plasmids were found in four strains isolated from the marmot, roe deer and chamois. A strain from red deer produced heat-stable enterotoxin and another strain produced both hemolysin and cytotoxic necrotizing factor. A marmot isolate produced hemolysin alone. No strains were found to produce heat-labile enterotoxin or verotoxins.

  20. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice.

    PubMed

    Bergmann, Silke; Rohde, Manfred; Schughart, Klaus; Lengeling, Andreas

    2013-07-15

    In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis. To analyse and image listerial dissemination after oral infection we have generated a murinised Xen32 strain (Xen32-mur) which expresses a previously described mouse-adapted internalin A. This strain was used alongside the Xen32 wild type strain and the bioluminescent L. monocytogenes strains EGDe-lux and murinised EGDe-mur-lux to characterise bacterial dissemination in orally inoculated BALB/cJ mice. After four days of infection, Xen32 and Xen32-mur infected mice displayed consistently higher rates of bioluminescence compared to EGDe-lux and EGDe-mur-lux infected animals. However, surprisingly both Xen32 strains showed attenuated virulence in orally infected BALB/c mice that correlated with lower bacterial burden in internal organs at day 5 post infection, smaller losses in body weights and increased survival compared to EGDe-lux or EGDe-mur-lux inoculated animals. The Xen32 strain was made bioluminescent by integration of a lux-kan transposon cassette into the listerial flaA locus. We show here that this integration results in Xen32 in a flaA frameshift mutation which makes this strain flagella deficient. The bioluminescent L. monocytogenes strain Xen32 is deficient in flagella expression and highly attenuated in orally infected BALB/c mice. As this listerial strain has been used in many BLI studies of murine listeriosis, it is important that the scientific community is aware of its reduced virulence in vivo.

  1. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    PubMed

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice

    PubMed Central

    Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.

    2007-01-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741

  3. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  4. RESISTANCE PRODUCED IN MICE BY EXPOSURE TO IRRADIATED SCHISTOSOMA MANSONI CERCARIAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radke, M.G.; Sadun, E.H.

    1963-04-01

    Studies were undertaken to determine whether gamma irradiation of cercariae might provide a means of investigating some of the mechanisms involved in the acquired resistance to schistosomiasis. Control mice received 200 nonirradiated cercariae, and other groups received the same number of cercariae that had been exposed to 6 different doses of Co/sup 60/ gamma irradiation varying from 1000--20000 rep. Eight weeks later the worms recovered were counted. Doses of 4000 rep or higher completely inhibited the development of schistosomes. A few stunted and underdeveloped worms were found in some of the mice receiving cercariae irradiated at 2500 and 3000 rep.more » Some adult schistosomes were observed in the groups receiving 1500 and 2000 rep and eggs were found in the liver but not in the stools of some mice. However, all of the mice exposed to cercariae irradiated with 1000 rep had eggs in liver and stools. The worm burden decreased regularly with increasing dosages up to 3000 rep, beyond which no worms were found at necropsy. The decrease in the number of worms mice acquired was linear only when cercariae were exposed from 1000to 2000 rep, however, even beyond such dosages, it followed a straight line when the logarithm of irradiation dose was plotied. Acquired resistance to S. mansoni was observed in mice following a previous exposure to irradiated cercariae. (TCO)« less

  5. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate.

    PubMed

    Naik, M M; Khanolkar, D; Dubey, S K

    2013-02-01

    A lead-resistant bacteria isolated from soil contaminated with car battery waste were identified as Providencia alcalifaciens based on biochemical characteristics, FAME profile and 16S rRNA sequencing and designated as strain 2EA. It resists lead nitrate up to 0·0014 mol l(-1) by precipitating soluble lead as insoluble light brown solid. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometric analysis (SEM-EDX) and X-ray diffraction spectroscopy (XRD) revealed extracellular light brown precipitate as lead orthophosphate mineral, that is, Pb(9) (PO(4))(6) catalysed by phosphatase enzyme. This lead-resistant bacterial strain also demonstrated tolerance to high levels of cadmium and mercury along with multiple antibiotic resistance. Providencia alcalifaciens strain 2EA could be used for bioremediation of lead-contaminated environmental sites, as it can efficiently precipitate lead as lead phosphate. © 2012 The Society for Applied Microbiology.

  6. A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice.

    PubMed

    Chapnik, Nava; Solomon, Gili; Genzer, Yoni; Miskin, Ruth; Gertler, Arieh; Froy, Oren

    2013-06-01

    Transgenic alpha murine urokinase-type plasminogen activator (αMUPA) mice are resistant to obesity and their locomotor activity is altered. As these mice have high leptin levels, our objective was to test whether leptin is responsible for these characteristics. αMUPA, their genetic background control (FVB/N), and C57BL mice were injected s.c. every other day with 20  mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA) for 6 weeks. We tested the effect of PEG-SMLA on body weight, locomotion, and bone health. The antagonist led to a rapid increase in body weight and subsequent insulin resistance in all treated mice. Food intake of PEG-SMLA-injected animals increased during the initial period of the experiment but then declined to a similar level to that of the control animals. Interestingly, αMUPA mice were found to have reduced bone volume (BV) than FVB/N mice, although PEG-SMLA increased bone mass in both strains. In addition, PEG-SMLA led to disrupted locomotor activity and increased corticosterone levels in C57BL but decreased levels in αMUPA or FVB/N mice. These results suggest that leptin is responsible for the lean phenotype and reduced BV in αMUPA mice; leptin affects corticosterone levels in mice in a strain-specific manner; and leptin alters locomotor activity, a behavior determined by the central circadian clock.

  7. Clarithromycin Resistance Mutations in Helicobacter pylori in Association with Virulence Factors and Antibiotic Susceptibility of the Strains.

    PubMed

    Boyanova, Lyudmila; Markovska, Rumyana; Yordanov, Daniel; Gergova, Galina; Mitov, Ivan

    2016-04-01

    Antibiotic resistance is the major cause for Helicobacter pylori eradication failure. H. pylori clarithromycin resistance mutations were evaluated in 84 (82 phenotypically clarithromycin resistant and 2 intermediately susceptible) strains by allele-specific PCR and 3'-mismatched PCR. Many (57.1%) of these strains were metronidazole resistant. Prevalence of cagA(+), cagE(+), vacA s1a, m1, i1, and i2 strains was 76.2%, 58.0%, 82.1%, 35.7%, 50.0%, and 50.0%, respectively. A2143G, A2142G, A2142C, and A2143G+A2142G mutation rates were 64.3%, 23.8%, 1.2%, and 10.7%, respectively. Strains harboring the A2142G mutation showed 5.3-fold higher clarithromycin MIC50 than those harboring the A2143G mutation. The A2143G mutation alone was 1.7-fold more common in vacA i2 strains compared with vacA i1 strains, while the A2142G mutation alone was 3-fold more frequent in vacA i1 strains than vacA i2 strains and 3.1-fold more common in metronidazole-susceptible compared with metronidazole-resistant strains. Briefly, clarithromycin resistance mutations were significantly linked to vacA i allele and metronidazole susceptibility. This is the first report about associations between the A2143G mutation and less virulent vacA i2 strains, and between the A2142G mutation and more virulent vacA i1 strains. As the 2143G mutation often predicts eradication failure by clarithromycin-based regimens, the results may be linked to the better eradication of more virulent strains compared with the less virulent strains.

  8. A new approach for breeding low-temperature-resistant Volvariella volvacea strains: Genome shuffling in edible fungi.

    PubMed

    Zhu, Ziping; Wu, Xiao; Lv, Beibei; Wu, Guogan; Wang, Jinbin; Jiang, Wei; Li, Peng; He, Jianhua; Chen, Jianzhong; Chen, Mingjie; Bao, Dapeng; Zhang, Jinsong; Tan, Qi; Tang, Xueming

    2016-09-01

    Volvariella volvacea is difficult to store fresh because of the lack of low-temperature resistance. Many traditional mutagenic strategies have been applied in order to select out strains resistant to low temperature, but few commercially efficient strains have been produced. In order to break through the bottleneck of traditional breeding and significantly improve low-temperature resistance of the edible fungus V. volvacea, strains resistant to low temperature were constructed by genome shuffling. The optimum conditions of V. volvacea strain mutation, protoplast regeneration, and fusion were determined. After protoplasts were treated with 1% (v/v) ethylmethylsulfonate (EMS), 40 Sec of ultraviolet (UV) irradiation, 600 Gy electron beam implantation, and 750 Gy 60 Co-γ irradiation, separately, the lethality was within 70%-80%, which favored generating protoplasts being used in following forward mutation. Under these conditions, 16 strains of V. volvacea mutated by EMS, electron beam, UV irradiation, and 60 Co-γ irradiation were obtained. The 16 mutated protoplasts were selected to serve as the shuffling pool based on their excellent low-temperature resistance. After four rounds of genome shuffling and low-temperature resistance testing, three strains (VF 1 , VF 2 , and VF 3 ) with high genetic stability were screened. VF 1 , VF 2 , and VF 3 significantly enhanced fruit body shelf life to 20, 28, and 28 H at 10 °C, respectively, which exceeded 25%, 75%, and 75%, respectively, compared with the storage time of V23, the most low-temperature-resistant strain. Genome shuffling greatly improved the low-temperature resistance of V. volvacea, and shortened the course of screening required to generate desirable strains. To our knowledge, this is the first paper to apply genome shuffling to breeding new varieties of mushroom, and offers a new approach for breeding edible fungi with optimized phenotype. © 2015 International Union of Biochemistry and Molecular Biology

  9. Dynamic Viral Dissemination in Mice Infected with Yellow Fever Virus Strain 17D

    PubMed Central

    Erickson, Andrea K.

    2013-01-01

    Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response. PMID:24027319

  10. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  11. Tapering Courses of Oral Vancomycin Induce Persistent Disruption of the Microbiota That Provide Colonization Resistance to Clostridium difficile and Vancomycin-Resistant Enterococci in Mice.

    PubMed

    Tomas, Myreen E; Mana, Thriveen S C; Wilson, Brigid M; Nerandzic, Michelle M; Joussef-Piña, Samira; Quiñones-Mateu, Miguel E; Donskey, Curtis J

    2018-05-01

    Vancomycin taper regimens are commonly used for the treatment of recurrent Clostridium difficile infections. One rationale for tapering and pulsing of the dose at the end of therapy is to reduce the selective pressure of vancomycin on the indigenous intestinal microbiota. Here, we used a mouse model to test the hypothesis that the indigenous microbiota that provide colonization resistance against C. difficile and vancomycin-resistant enterococci (VRE) is repopulated during tapering courses of vancomycin. Mice were treated orally with vancomycin daily for 10 days, vancomycin in a tapering dose for 42 days, fidaxomicin for 10 days, or saline. To assess colonization resistance, subsets of mice were challenged with 10 4 CFU of C. difficile or VRE at multiple time points during and after completion of treatment. The impact of the treatments on the microbiome was measured by cultures, real-time PCR for selected anaerobic bacteria, and deep sequencing. Vancomycin taper-treated mice developed alterations of the microbiota and disruption of colonization resistance that was persistent 18 days after treatment. In contrast, mice treated with a 10-day course of vancomycin exhibited recovery of the microbiota and of colonization resistance by 15 days after treatment, and fidaxomicin-treated mice maintained intact colonization resistance. These findings demonstrate that alteration of the indigenous microbiota responsible for colonization resistance to C. difficile and VRE persist during and after completion of tapering courses of vancomycin. Copyright © 2018 American Society for Microbiology.

  12. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-07-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  13. Antigenic variants of influenza A virus, PR8 strain. I. Their development during serial passage in the lungs of partially immune mice.

    PubMed

    GERBER, P; LOOSLI, C G; HAMBRE, D

    1955-06-01

    Antigenically different strains of mouse-adapted PR8 influenza A virus have been produced by 17 serial passages of the virus in the lungs of mice immunized with the homologous agent. Comparative serological tests show that the variant strains share antigenic components with the parent strain but the dominant antigen is different. By means of antibody absorption it was shown that the "new" antigenic component of the variant was already present in minor amounts up to the eighth passage and thereafter gained prominence with continued passage in vaccinated mice. Groups of mice vaccinated with either the PR8-S or T(21) virus and having comparable antibody titers showed no growth of virus in the lungs following aid-borne challenge with homologous strains. On the other hand, following heterologous air-borne challenge no deaths occurred, but virus grew in the lungs of both groups of vaccinated mice. Almost unrestricted virus multiplication took place in the lungs of mice vaccinated with the parent strain and challenged with the PR8-T(21) virus which resulted in extensive consolidation. Less virus grew in the lungs of the mice vaccinated with the variant strains and challenged with the PR8-S virus. In these animals only microscopic evidence of changes due to virus growth in the lungs was observed. The successful serial passage of PR8 influenza A virus in immunized animals was dependent on the initial selection of mice with uniformly low H.I. antibody titers as determined on tail blood, and the intranasal instillation of sufficient virus to favor the survival of those virus particles least related to the antibodies present. The epidemiological implications of these observations are discussed briefly.

  14. Drug Resistance and Population Structure of Mycobacterium tuberculosis Beijing Strains Isolated in Poland.

    PubMed

    Kozińska, Monika; Augustynowicz-Kopeć, Ewa

    2015-01-01

    In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.

  15. Strain-Specific Transfer of Antibiotic Resistance from an Environmental Plasmid to Foodborne Pathogens

    PubMed Central

    Van Meervenne, Eva; Van Coillie, Els; Kerckhof, Frederiek-Maarten; Devlieghere, Frank; Herman, Lieve; De Gelder, Leen S. P.; Top, Eva M.; Boon, Nico

    2012-01-01

    Pathogens resistant to multiple antibiotics are rapidly emerging, entailing important consequences for human health. This study investigated if the broad-host-range multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring amoxicillin, streptomycin, sulfonamide, and tetracycline resistance genes, was transferable to the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the phenotype of the recipients. The transfer ratio was determined by both plating and flow cytometry. Antibiotic resistance profiles were determined for both recipients and transconjugants using the disk diffusion method. For 14 of the 15 recipient strains, transconjugants were detected. Based on plating, transfer ratios were between 6.8 × 10−9 and 3.0 × 10−2 while using flow cytometry, transfer ratios were between <1.0 × 10−5 and 1.9 × 10−2. With a few exceptions, the transconjugants showed phenotypically increased resistance, indicating that most of the transferred resistance genes were expressed. In summary, we showed that an environmental plasmid can be transferred into foodborne pathogenic bacteria at high transfer ratios. However, the transfer ratio seemed to be recipient strain dependent. Moreover, the newly acquired resistance genes could turn antibiotic susceptible strains into resistant ones, paving the way to compromise human health. PMID:22791963

  16. The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction.

    PubMed

    Riedlinger, Gregory; Adams, Jonathan; Stehle, John R; Blanks, Michael J; Sanders, Anne M; Hicks, Amy M; Willingham, Mark C; Cui, Zheng

    2010-05-03

    Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy. In this study, we challenged SR/CR mice with additional lethal transplantable mouse cancer cell lines to determine their resistance spectrum. The ability of these transplantable cancer cell lines to induce leukocyte infiltration was quantified and the percentage of different populations of responding immune cells was determined using flow cytometry. In comparison to wild type (WT) mice, SR/CR mice showed significantly higher resistance to all cancer cell lines tested. However, SR/CR mice were more sensitive to MethA sarcoma (MethA), B16 melanoma (B16), LL/2 lung carcinoma (LL/2) and J774 lymphoma (J774) than to sarcoma 180 (S180) and EL-4 lymphoma (EL-4). Further mechanistic studies revealed that this lower resistance to MethA and LL/2 was due to the inability of these cancer cells to attract SR/CR leukocytes, leading to tumor cell escape from resistance mechanism. This escape mechanism was overcome by co-injection with S180, which could attract SR/CR leukocytes allowing the mice to resist higher doses of MethA and LL/2. S180-induced cell-free ascites fluid (CFAF) co-injection recapitulated the results obtained with live S180 cells, suggesting that this chemoattraction by cancer cells is mediated by diffusible molecules. We also tested for the first time whether SR/CR mice were able to resist additional cancer cell lines prior to S180 exposure. We found that SR/CR mice had an innate resistance against EL-4 and J774. Our results suggest that the cancer resistance in SR/CR mice is based on at least two separate processes: leukocyte migration/infiltration to the site of cancer cells and recognition of common surface properties on cancer cells. The infiltration of SR

  17. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.

    PubMed

    Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G

    2018-04-03

    Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E

  18. Plasmid-mediated resistance of Neisseria gonorrhoeae strains isolated from female sex workers in North Sumatra, Indonesia, 1996.

    PubMed

    Su, Xiaohong; Hutapea, Namyo; Tapsall, John W; Lind, Inga

    2003-02-01

    Sentinel surveillance of the antimicrobial resistance of strains isolated from female sex workers in North Sumatra, Indonesia, has been carried out since 1975. In 1996 a high prevalence of strains with plasmid-mediated resistance to tetracycline and penicillin was observed. The goal was to further characterize strains isolated from a core group of patients in Indonesia with sexually transmitted infections in 1996. The strains were characterized by antimicrobial susceptibility testing, plasmid analysis, subtype of the determinant, and analysis of genomic DNA by pulsed-field gel electrophoresis (PFGE). A total 161 strains obtained from 592 female sex workers in 10 different places in North Sumatra, Indonesia, in 1996 were investigated. All strains exhibited plasmid-mediated resistance to penicillin (PPNG: penicillinase-producing ) and/or tetracycline (TRNG: tetracycline-resistant ); 115 strains were PPNG/TRNG (71%), 45 were TRNG (28%), and 1 was PPNG. All strains were susceptible to ceftriaxone, ciprofloxacin, kanamycin, and spectinomycin. All PPNG strains tested carried the 7.2-kb (Asian type) plasmid except one, which carried the 4.9-kb (Toronto type) plasmid. All TRNG strains except one contained the Dutch-type gene. PFGE analysis of 156 strains documented that a diversity of strains existed and that certain genotypes had spread in a defined area or between different areas in North Sumatra. Our results underline the importance of continuous surveillance of the changing patterns of antimicrobial resistance of in high-risk populations.

  19. Linezolid-Resistant Staphylococcus aureus Strain 1128105, the First Known Clinical Isolate Possessing the cfr Multidrug Resistance Gene

    PubMed Central

    Zuill, Douglas E.; Scharn, Caitlyn R.; Deane, Jennifer; Sahm, Daniel F.; Denys, Gerald A.; Goering, Richard V.; Shaw, Karen J.

    2014-01-01

    The Cfr methyltransferase confers resistance to six classes of drugs which target the peptidyl transferase center of the 50S ribosomal subunit, including some oxazolidinones, such as linezolid (LZD). The mobile cfr gene was identified in European veterinary isolates from the late 1990s, although the earliest report of a clinical cfr-positive strain was the 2005 Colombian methicillin-resistant Staphylococcus aureus (MRSA) isolate CM05. Here, through retrospective analysis of LZDr clinical strains from a U.S. surveillance program, we identified a cfr-positive MRSA isolate, 1128105, from January 2005, predating CM05 by 5 months. Molecular typing of 1128105 revealed a unique pulsed-field gel electrophoresis (PFGE) profile most similar to that of USA100, spa type t002, and multilocus sequence type 5 (ST5). In addition to cfr, LZD resistance in 1128105 is partially attributed to the presence of a single copy of the 23S rRNA gene mutation T2500A. Transformation of the ∼37-kb conjugative p1128105 cfr-bearing plasmid from 1128105 into S. aureus ATCC 29213 background strains was successful in recapitulating the Cfr antibiogram, as well as resistance to aminoglycosides and trimethoprim. A 7-kb cfr-containing region of p1128105 possessed sequence nearly identical to that found in the Chinese veterinary Proteus vulgaris isolate PV-01 and in U.S. clinical S. aureus isolate 1900, although the presence of IS431-like sequences is unique to p1128105. The cfr gene environment in this early clinical cfr-positive isolate has now been identified in Gram-positive and Gram-negative strains of clinical and veterinary origin and has been associated with multiple mobile elements, highlighting the versatility of this multidrug resistance gene and its potential for further dissemination. PMID:25155597

  20. Mouse strain-dependent differences in estrogen sensitivity during vaginal candidiasis.

    PubMed

    Mosci, Paolo; Pietrella, Donatella; Ricci, Giovanni; Pandey, Neelam; Monari, Claudia; Pericolini, Eva; Gabrielli, Elena; Perito, Stefano; Bistoni, Francesco; Vecchiarelli, Anna

    2013-02-01

    The animal models available for studying the immune response to genital tract infection require induction of a pseudo estrous state, usually achieved by administration of 17-β-estradiol. In our experimental model of vaginal candidiasis, under pseudo estrus, different strains of mice were used. We observed major differences in the clearance of Candida albicans infection among the different strains, ascribable to differing susceptibility to estradiol treatment. In the early phase of infection CD1, BALB/c, C57BL/6 albino and C57BL/6 mice were colonized to similar levels, while in the late phase of infection, BALB/c mice, which are considered genetically resistant to C. albicans infection, exhibited greater susceptibility to vaginal candidiasis than CD1 and C57BL/6 albino strains of mice. This was because estradiol induced "per se" enlarged and fluid-filled uteri, more pronounced in infected mice and consistently more evident in BALB/c and C57BL/6 mice than in CD1 mice. Unlike CD1, BALB/c and C57BL/6 mice showed a heavy fungal colonization of the uterus, even though C57BL/6 mice apparently cleared C. albicans from the vagina. The presence of C. albicans in the vagina and uterus was accompanied by a heavy bacterial load. Collectively these observations prompted us to carry out a careful analysis of estradiol effects in a mouse model of vaginal infection.

  1. COMPARISON OF THE EFFECTS OF ACUTE AND SUBACUTE TREATMENT OF PHENOBARBITAL IN DIFFERENT STRAINS OF MICE

    EPA Science Inventory

    A strain specificity has been demonstrated for the effect of subsequent administration of phenobarbital. n which diethylnitresamine-initiated hepatocarcinogenesis was presented in C3H mice, inhibited in B6C3F1 (C57BL X C3M) and not affected in C57BL mice. herefore, we examined in...

  2. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    PubMed

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  3. Resistance of Permafrost and Modern Acinetobacter lwoffii Strains to Heavy Metals and Arsenic Revealed by Genome Analysis.

    PubMed

    Mindlin, Sofia; Petrenko, Anatolii; Kurakov, Anton; Beletsky, Alexey; Mardanov, Andrey; Petrova, Mayya

    2016-01-01

    We performed whole-genome sequencing of five permafrost strains of Acinetobacter lwoffii (frozen for 15-3000 thousand years) and analyzed their resistance genes found in plasmids and chromosomes. Four strains contained multiple plasmids (8-12), which varied significantly in size (from 4,135 to 287,630 bp) and genetic structure; the fifth strain contained only two plasmids. All large plasmids and some medium-size and small plasmids contained genes encoding resistance to various heavy metals, including mercury, cobalt, zinc, cadmium, copper, chromium, and arsenic compounds. Most resistance genes found in the ancient strains of A . lwoffii had their closely related counterparts in modern clinical A . lwoffii strains that were also located on plasmids. The vast majority of the chromosomal resistance determinants did not possess complete sets of the resistance genes or contained truncated genes. Comparative analysis of various A . lwoffii and of A . baumannii strains discovered a number of differences between them: (i) chromosome sizes in A . baumannii exceeded those in A . lwoffii by about 20%; (ii) on the contrary, the number of plasmids in A . lwoffii and their total size were much higher than those in A . baumannii ; (iii) heavy metal resistance genes in the environmental A . lwoffii strains surpassed those in A . baumannii strains in the number and diversity and were predominantly located on plasmids. Possible reasons for these differences are discussed.

  4. Resistance of Permafrost and Modern Acinetobacter lwoffii Strains to Heavy Metals and Arsenic Revealed by Genome Analysis

    PubMed Central

    Kurakov, Anton; Beletsky, Alexey; Mardanov, Andrey

    2016-01-01

    We performed whole-genome sequencing of five permafrost strains of Acinetobacter lwoffii (frozen for 15–3000 thousand years) and analyzed their resistance genes found in plasmids and chromosomes. Four strains contained multiple plasmids (8–12), which varied significantly in size (from 4,135 to 287,630 bp) and genetic structure; the fifth strain contained only two plasmids. All large plasmids and some medium-size and small plasmids contained genes encoding resistance to various heavy metals, including mercury, cobalt, zinc, cadmium, copper, chromium, and arsenic compounds. Most resistance genes found in the ancient strains of A. lwoffii had their closely related counterparts in modern clinical A. lwoffii strains that were also located on plasmids. The vast majority of the chromosomal resistance determinants did not possess complete sets of the resistance genes or contained truncated genes. Comparative analysis of various A. lwoffii and of A. baumannii strains discovered a number of differences between them: (i) chromosome sizes in A. baumannii exceeded those in A. lwoffii by about 20%; (ii) on the contrary, the number of plasmids in A. lwoffii and their total size were much higher than those in A. baumannii; (iii) heavy metal resistance genes in the environmental A. lwoffii strains surpassed those in A. baumannii strains in the number and diversity and were predominantly located on plasmids. Possible reasons for these differences are discussed. PMID:27795957

  5. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture

    PubMed Central

    Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar

    2018-01-01

    ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700

  6. Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice

    PubMed Central

    Wang, Linlin; Hu, Lujun; Xu, Qi; Yin, Boxing; Fang, Dongsheng; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-01-01

    Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains’ growth rates, adhesive capacity and effects on the gut microbiome and microenvironment. PMID:28230723

  7. Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén).

    PubMed

    Li, Yongteng; Liu, Xiangdong; Guo, Huifang

    2018-06-01

    The endosymbionts Wolbachia and Rickettsia have been shown to be correlated with the insecticide resistance of mosquito and whitefly. The small brown planthopper (SBPH), Laodelphax striatellus, harbours many species of endosymbionts, and has developed a high resistance to buprofezin in China. In this study, we examined the species and the infection incidences of endosymbionts in a buprofezin-resistant (BR) strain, a buprofezin-susceptible (BS) strain, and the BR strain after exposure to buprofezin, and we also investigated the change in buprofezin susceptibility after removal of Wolbachia from the BR strain. The results showed that Wolbachia infection incidences were 100% in both the BR and BS strains, but the Wolbachia density in the BR strain was significantly higher than that in the BS strain. There were no significant differences in Arsenophonus infection incidence between the two strains. However, the infection incidence of Serratia and double infection incidence of Serratia + Wolbachia in the BR strain were significantly higher than that in the BS strain. After the BR strain was exposed to 1200 mg/L buprofezin, the infection incidence of Arsenophonus in the surviving individuals increased, and the infection rate of Serratia did not differ, but the double infection incidence of Serratia + Wolbachia decreased. And when a Wolbachia-infected line originating from the BR strain was cleared of Wolbachia, its susceptibility to buprofezin increased. The results suggest that Serratia and Wolbachia infection might improve the buprofezin resistance of SBPH.

  8. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections.

    PubMed

    de Roode, Jacobus C; Culleton, Richard; Bell, Andrew S; Read, Andrew F

    2004-09-14

    Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by feeding mice to Anopheles stephensi mosquitoes. In the absence of drugs, the sensitive clone competitively suppressed the resistant clone; this resulted in lower asexual parasite densities and also reduced transmission to the mosquito vector. Drug treatment, however, allowed the resistant clone to fill the ecological space emptied by the removal of the sensitive clone, allowing it to transmit as well as it would have done in the absence of competition. These results show that under drug pressure, resistant strains can have two advantages: (1) they survive better than sensitive strains and (2) they can exploit the opportunities presented by the removal of their competitors. When mixed infections are common, such effects could increase the spread of drug resistance.

  9. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    PubMed

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  10. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a 'resistance-disarmed' model organism.

    PubMed

    Bi, Dexi; Jiang, Xiaofei; Sheng, Zi-Ke; Ngmenterebo, David; Tai, Cui; Wang, Minggui; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2015-10-01

    This study aims to investigate the landscape of the mobile genome, with a focus on antibiotic resistance-associated factors in carbapenem-resistant Klebsiella pneumoniae. The mobile genome of the completely sequenced K. pneumoniae HS11286 strain (an ST11, carbapenem-resistant, near-pan-resistant, clinical isolate) was annotated in fine detail. The identified mobile genetic elements were mapped to the genetic contexts of resistance genes. The blaKPC-2 gene and a 26 kb region containing 12 clustered antibiotic resistance genes and one biocide resistance gene were deleted, and the MICs were determined again to ensure that antibiotic resistance had been lost. HS11286 contains six plasmids, 49 ISs, nine transposons, two separate In2-related integron remnants, two integrative and conjugative elements (ICEs) and seven prophages. Sixteen plasmid-borne resistance genes were identified, 14 of which were found to be directly associated with Tn1721-, Tn3-, Tn5393-, In2-, ISCR2- and ISCR3-derived elements. IS26 appears to have actively moulded several of these genetic regions. The deletion of blaKPC-2, followed by the deletion of a 26 kb region containing 12 clustered antibiotic resistance genes, progressively decreased the spectrum and level of resistance exhibited by the resultant mutant strains. This study has reiterated the role of plasmids as bearers of the vast majority of resistance genes in this species and has provided valuable insights into the vital role played by ISs, transposons and integrons in shaping the resistance-coding regions in this important strain. The 'resistance-disarmed' K. pneumoniae ST11 strain generated in this study will offer a more benign and readily genetically modifiable model organism for future extensive functional studies. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Experimental allergic orchitis in mice. V. Resistance to actively induced disease in BALB/cJ substrain mice is mediated by CD4+ T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, C.; Hickey, W.F.; Korngold, R.

    1990-01-01

    Previous studies have shown that differential susceptibility to actively induced experimental allergic orchitis (EAO) exists among various BALB/c substrains. Of 13 substrains studied, BALB/cJ mice consistently exhibit greater resistance to disease induction. Such resistance is associated with a single recessive genotypic difference in an immunoregulatory locus which is unlinked to any of the known alleles distinguishing the BALB/cJ substrain. In this study, gene complementation protocols were used to study the genetics of susceptibility and resistance to EAO. The results indicate that resistance in BALB/cJ mice is not due to a mutation in the H-2Dd linked gene which governs the phenotypicmore » expression of autoimmune orchitis. The mechanistic basis for disease resistance was examined using reciprocal bone marrow radiation chimeras generated between the disease-susceptible BALB/cByJ (ByJ) substrain and BALB/cJ (Jax) mice. All constructs, including Jax----Jax and Jax----ByJ, developed severe EAO following inoculation with mouse testicular homogenate (MTH) and adjuvants whereas control chimeras immunized with adjuvants alone did not. These results suggest that an active immunoregulatory mechanism rather than a passive one, such as the lack of T cells and/or B cells with receptors for the aspermatogenic autoantigens relevant in the induction of EAO, is responsible for disease resistance in BALB/cJ mice. The role of immunoregulatory cells was examined by pretreating BALB/cJ mice with either cyclophosphamide (20 mg/kg) or low-dose whole body or total lymphoid irradiation (350 rads) 2 days prior to inoculation. BALB/cJ mice immunized with MTH plus adjuvants generate immunoregulatory spleen cells (SpCs) that, when transferred to naive BALB/cByJ recipients, significantly reduce the severity of autoimmune orchitis observed during actively induced EAO.« less

  12. Genetically obese (ob/ob) mice are resistant to the lethal effects of thioacetamide hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Young-Suk; Song, Ji-Won; Lim, Jong-Hwan

    Obesity increases the risk of chronic liver diseases, including viral hepatitis, alcohol-induced liver disease, and non-alcoholic steatohepatitis. In this study, we investigated the effects of obesity in acute hepatic failure using a murine model of thioacetamide (TA)-induced liver injury. Genetically obese ob/ob mice, together with non-obese ob/+ littermates, were subjected to a single intraperitoneal injection of TA, and examined for signs of hepatic injury. ob/ob mice showed a significantly higher survival rate, lower levels of serum alanine aminotransferase and aspartate aminotransferase, and less hepatic necrosis and apoptosis, compared with ob/+ mice. In addition, ob/ob mice exhibited significantly lower levels ofmore » malondialdehyde and significantly higher levels of glutathione and antioxidant enzyme activities compared with their ob/+ counterparts. Bioactivation analyses revealed reduced plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in ob/ob mice. Together, these data demonstrate that genetically obese mice are resistant to TA-induced acute liver injury through diminished bioactivation of TA and antioxidant effects. - Highlights: • ob/ob mice are resistant to lethal doses of thioacetamide, compared to ob/+ mice. • ob/ob mice show reduced oxidative stress and enhanced antioxidant enzyme activity. • ob/ob mice exhibit diminished bioactivation of thioacetamide.« less

  13. Learning Strategy Selection in the Water Maze and Hippocampal CREB Phosphorylation Differ in Two Inbred Strains of Mice

    ERIC Educational Resources Information Center

    Sung, Jin-Young; Goo, June-Seo; Lee, Dong-Eun; Jin, Da-Qing; Bizon, Jennifer L.; Gallagher, Michela; Han, Jung-Soo

    2008-01-01

    Learning strategy selection was assessed in two different inbred strains of mice, C57BL/6 and DBA/2, which are used for developing genetically modified mouse models. Male mice received a training protocol in a water maze using alternating blocks of visible and hidden platform trials, during which mice escaped to a single location. After training,…

  14. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains

    PubMed Central

    2013-01-01

    Background The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of a Pseudomonas aeruginosa-derived compound against MRSA strains. Methods Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was studied to evaluate antibacterial effect. Results The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological changes to the cell wall of the MRSA strains. Conclusions These results suggest that P. aeruginosa-produced compounds such as phenazines have inhibitory effects against MRSA and may be a good alternative treatment to control infections caused by MRSA. PMID:23773484

  15. [Changes of resistant phenotype and CRISPR/Cas system of four Shigella strains passaged for 90 times without antibiotics].

    PubMed

    Zhang, B; Hong, L J; Duan, G C; Liang, W J; Yang, H Y; Xi, Y L

    2017-02-10

    Objective: To explore the stability of resistant phenotypes and changes of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) gene system on four Shigella strains in the absence of antibiotics. Methods: Four clinical isolated Shigella strains that resistant to different antibiotics were consecutive passaged for 90 times without antibiotics. Agar dilution method was used to determine the minimum inhibitory concentration of Shigella strains. After sequence analysis with PCR, CRISPR Finder and Clustal X 2.1 were applied to identify the changes of CRISPR loci in the Shigella strains. Results: After the consecutive transfer of 90 generations, sensitivity to certain antibiotics of four Shigella strains with different drug resistant spectrums increased. Mel-sf1998024/zz resistance to ampicillin, cephalexin, cefotaxime, chloramphenicol decreased, mel-s2014026/sx resistance to norfloxacin, trimethoprim decreased, mel-sf2004004/sx drug resistance to ampicillin, cefuroxime, cefotaxime, chloramphenicol, trimethoprim decreased and mel-sf2013004/bj resistance to chloramphenicol decreased. The spacer of which matched gene codes Cas and its upstream repeat in 3'end of CRISPR3 got lost in mel-sf1998024/zz and mel-sf2013004/bj. Conclusions: Shigella strains could reduce or lose their resistance to some antibiotics after consecutive transfers, without the interference of antibiotics. CRISPR3 locus had dynamic spacers in Shigella strains while CRISPR3 locus and cas genes might have been co-evolved.

  16. Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.

    PubMed

    Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio

    2017-09-01

    In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Heavy metal resistant strains are widespread along Streptomyces phylogeny.

    PubMed

    Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia

    2013-03-01

    The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Thiamethoxam acts as a target-site synergist of spinosad in resistant strains of Frankliniella occidentalis.

    PubMed

    Guillén, Juan; Bielza, Pablo

    2013-02-01

    Previous studies have suggested that the resistance mechanism towards spinosad in Frankliniella occidentalis (Pergande) is an altered target site. Like the neonicotinoids, the spinosyns act on nicotinic acetylcholine receptors (nAChRs) in insects, but at a distinct site. The changes in nAChRs related to spinosad resistance in thrips might involve interaction with neonicotinoids. In this study, the efficacy of spinosad and neonicotinoids, alone and in combination, was evaluated in susceptible and spinosad-resistant thrips strains. The neonicotinoids tested were imidacloprid, thiacloprid, acetamiprid, thiamethoxam and clothianidin. No cross-resistance was shown between spinosad and any of the neonicotinoids. However, an increased toxicity was observed when a mixture of spinosad with thiamethoxam or clothianidin was tested. No synergism was found in the susceptible strains. The more spinosad-resistant the thrips strain, the stronger was the synergism. Data suggest that spinosad and thiamethoxam may interact at the nAChRs in spinosad-resistant thrips, facilitating enhanced insecticidal action. Copyright © 2012 Society of Chemical Industry.

  19. Long-term fermented soybean paste improves metabolic parameters associated with non-alcoholic fatty liver disease and insulin resistance in high-fat diet-induced obese mice.

    PubMed

    Kim, Min-Seok; Kim, Bobae; Park, Haryung; Ji, Yosep; Holzapfel, Wilhelm; Kim, Do-Young; Hyun, Chang-Kee

    2018-01-08

    Recently, Korean traditional fermented soybean paste, called Doenjang, has attracted attention for its protective effect against diet-related chronic diseases such as obesity and type 2 diabetes. Long-term fermented soybean pastes (LFSPs) are made by fermentation with naturally-occurring microorganisms for several months, whereas short-term fermented soybean pastes (SFSPs) are produced by shorter-time fermentation inoculated with a starter culture. Here, we demonstrate that administration of LFSP, but not SFSP, protects high-fat diet (HFD)-fed obese mice against non-alcohol fatty liver disease (NAFLD) and insulin resistance. LFSP suppressed body weight gain in parallel with reduction in fat accumulation in mesenteric adipose tissue (MAT) and the liver via modulation of MAT lipolysis and hepatic lipid uptake. LFSP-treated mice also had improved glucose tolerance and increased adiponectin levels concomitantly with enhanced AMPK activation in skeletal muscle and suppressed expression of pro-inflammatory cytokines in skeletal muscle and the liver. LFSP also attenuated HFD-induced gut permeability and lowered serum lipopolysaccharide level, providing an evidence for its probiotic effects, which was supported by the observation that treatment of a probiotic mixture of LFSP-originated Bacillus strains protected mice against HFD-induced adiposity and glucose intolerance. Our findings suggest that the intake of LFSP, but not SFSP, offers protection against NAFLD and insulin resistance, which is an effect of long-term fermentation resulting in elevated contents of active ingredients (especially flavonoids) and higher diversity and richness of Bacillus probiotic strains compared to SFSP. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Patterns of hemopoietic reconstitution in nonobese diabetic mice: dichotomy of allogeneic resistance versus competitive advantage of disease-resistant marrow.

    PubMed

    Kaufman, C L; Li, H; Ildstad, S T

    1997-03-01

    Complete replacement of the immune system via allogeneic bone marrow transplantation is sufficient to prevent diabetes in the nonobese diabetic (NOD) mouse model. In the present study we examined whether mixed allogeneic reconstitution would be sufficient to interrupt the autoimmune process with respect to occurrence of overt diabetes, as well as preexisting autoimmune insulitis. NOD mice were lethally irradiated and reconstituted with a mixture of NOD and B10.BR marrow. A relative resistance to allogeneic bone marrow engraftment was noted in NOD recipients of the mixed bone marrow inoculum, compared with disease-resistant controls. Moreover, unlike disease-resistant controls, all animals that initially repopulated as mixed donor/host chimeras became predominantly allogeneic by 4 mo, suggesting a competitive advantage for long term engraftment for disease-resistant marrow. All but one mouse in the group that engrafted with allogeneic marrow remained free of diabetes for the entire follow-up period (n = 22). Moreover, in all animals examined, virtually all islets were free of insulitis. In contrast, 74% of NOD mice that received similar conditioning and failed to engraft with donor marrow developed acute diabetes and intra-islet insulitis was present in all animals examined. These data suggest that NOD mice exhibit a relative resistance to engraftment compared with disease-resistant recipients. Conversely, animals that initially repopulated as a mixture of syngeneic and donor marrow become converted to virtually all donor by 4 mo. These data provide additional support that a defective stem cell is responsible for autoimmune diabetes in this experimental model.

  1. Construction of a series of congenic mice with recombinant chromosome 1 regions surrounding the genetic loci for resistance to intracellular parasites (Ity, Lsh, and Bcg), DNA repair responses (Rep-1), and the cytoskeletal protein villin (Vil).

    PubMed

    Mock, B A; Holiday, D L; Cerretti, D P; Darnell, S C; O'Brien, A D; Potter, M

    1994-01-01

    The interval of mouse chromosome 1 extending from Idh-1 to Pep-3 harbors the natural resistance gene Ity/Lsh/Bcg; it controls the outcome of infection with Salmonella typhimurium, Leishmania donovani, and several Mycobacterium species. This region also contains a DNA repair gene, Rep-1, which determines the rapidity with which double-strand breaks in chromatin are repaired. BALB/cAnPt and DBA/2N mice differ in their phenotypic expression of these genes. To generate appropriate strains of mice for the study of these genes, a series of 10 C.D2 congenic strains recombinant across a 28-centimorgan interval of mouse chromosome 1 extending from Idh-1 to Pep-3 were derived from crosses of the C.D2-Idh-1 Pep-3 congenic strain back to BALB/cAn. Analyses of these recombinant strains will allow the correlation of biological-immunological phenotypes with defined genetic regions.

  2. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice.

    PubMed

    Pratti, Juliana Elena Silveira; Ramos, Tadeu Diniz; Pereira, Joyce Carvalho; da Fonseca-Martins, Alessandra Marcia; Maciel-Oliveira, Diogo; Oliveira-Silva, Gabriel; de Mello, Mirian França; Chaves, Suzana Passos; Gomes, Daniel Claudio Oliveira; Diaz, Bruno Lourenço; Rossi-Bergmann, Bartira; de Matos Guedes, Herbert Leonel

    2016-10-06

    We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here, we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental model of human cutaneous leishmaniasis. C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10 μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of infection. Cytokines were quantified by ELISA in the homogenates of infected footpads. C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile, displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and Schneider's media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy. This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral protection irrespective of the genetic background of the host.

  3. Protective Vaccine Efficacy of the Complete Form of PPE39 Protein from Mycobacterium tuberculosis Beijing/K Strain in Mice.

    PubMed

    Kim, Ahreum; Hur, Yun-Gyoung; Gu, Sunwha; Cho, Sang-Nae

    2017-11-01

    The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis -infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses ( P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses ( P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log 10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4 + T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens ( P < 0.01) and CD4 + multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 ( P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo , may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients. Copyright © 2017 American Society for Microbiology.

  4. Susceptibilities of Norwegian Candida albicans strains to fluconazole: emergence of resistance. The Norwegian Yeast Study Group.

    PubMed Central

    Sandven, P; Bjørneklett, A; Maeland, A

    1993-01-01

    All Candida albicans isolates in Norwegian microbiological laboratories in 1991 judged clinically important (except vaginal isolates) were collected. The isolates were tested for susceptibility to fluconazole with an agar dilution test and a commercially available agar diffusion test. A total of 212 strains (95%) were susceptible to fluconazole, and MICs for most of the strains (92%) were < or = 1.56 micrograms/ml. The agar diffusion test using a 15-micrograms tablet and a 48-h incubation period separated resistant from susceptible strains with a wide margin. The only exception was a strain for which the MIC was 6.25 micrograms/ml. The difference in zone size between the resistant and the susceptible populations of strains was 11 mm. Accordingly, it appears that the agar diffusion test is an appropriate method for detecting fluconazole resistance. The 12 fluconazole-resistant isolates originated from eight AIDS patients with oral or esophageal Candida infections. Seven of the patients had been given fluconazole for 1 month or more, often as self medication. Four had infections that were clinically resistant to fluconazole; one additional patient responded only when the dose was increased. All isolates recovered from these patients were analyzed by multilocus enzyme electrophoresis. The 12 C. albicans isolates belonged to five electrophoretic types, but three of four patients attending one hospital had isolates belonging to one electrophoretic type. One possible explanation for this finding could be that a nosocomial spread of resistant strains has occurred. PMID:8285631

  5. Resistance to Diamide Insecticides in Plutella xylostella (Lepidoptera: Plutellidae): Comparison Between Lab-Selected Strains and Field-Collected Populations.

    PubMed

    Qin, Chao; Wang, Cheng-Hua; Wang, Ying-Ying; Sun, Shi-Qing; Wang, Huan-Huan; Xue, Chao-Bin

    2018-04-02

    Diamondback moth, Plutella xylostella (L.; Lepidoptera: Plutellidae), is an important pest of crucifers worldwide. The extensive use of diamide insecticides has led to P. xylostella resistance and this presents a serious threat to vegetable production. We selected chlorantraniliprole (Rf) and flubendiamide (Rh) resistance strains of P. xylostella with resistance ratios of 684.54-fold and 677.25-fold, respectively. The Rf and Rh strains underwent 46 and 36 generations of lab-selection for resistance, respectively. Low cross resistance of Rh to cyantraniliprole was found. Cross resistance to chlorfenapyr, tebufenozid, and indoxacarb was not found in Rf and Rh strains. The P. xylostella ryanodine receptor gene (PxRyR) transcripts level in the Rf and Rh strains was up-regulated. Except for Rf34 and Rh36, PxRyR expression in all generations of Rf and Rh selection gradually increased with increasing resistance. Two resistant populations were field-collected from Guangzhou Baiyun (Rb) and Zengcheng (Rz) and propagated for several generations without exposure to any pesticide had higher PxRyR expression than the susceptible strain (S). In the S strain, PxRyR expression was not related to the resistance ratio. Gene sequencing found that the RyR 4946 gene site was glycine (G) in the S, Rf, and Rh strains, and was glutamate (E) with 70% and 80% frequency in the Rb and Rz populations, respectively. The 4946 gene site was substituted by valine (V) with the frequency of 30% and 20% in Rb and Rz populations, respectively. These results increase the understanding of the mechanisms of diamide insecticide resistance in P. xylostella.

  6. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains.

    PubMed

    Kondaparla, Srinivasarao; Soni, Awakash; Manhas, Ashan; Srivastava, Kumkum; Puri, Sunil K; Katti, S B

    2017-02-01

    In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Towards a tolerance toolkit: Gene expression signatures enabling the emergence of resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Erickson, Keesha; Chatterjee, Anushree

    2014-03-01

    Microbial pathogens are able to rapidly acquire tolerance to chemical toxins. Developing next-generation antibiotics that impede the emergence of resistance will help avoid a world-wide health crisis. Conversely, the ability to induce rapid tolerance gains could lead to high-yielding strains for sustainable production of biofuels and commodity chemicals. Achieving these goals requires an understanding of the general mechanisms allowing microbes to become resistant to diverse toxins. We apply top-down and bottom-up methodologies to identify biological network changes leading to adaptation and tolerance. Using a top-down approach, we perform evolution experiments to isolate resistant strains, collect samples for transcriptomic and proteomic analysis, and use the omics data to inform mathematical gene regulatory models. Using a bottom-up approach, we build and test synthetic genetic devices that enable increased or decreased expression of selected genes. Unique patterns in gene expression are identified in cultures actively gaining resistance, especially in pathways known to be involved with stress response, efflux, and mutagenesis. Genes correlated with tolerance could potentially allow the design of resistance-free antibiotics or robust chemical production strains.

  8. Plasmid-Mediated Resistance to Expanded-Spectrum Cephalosporins among Enterobacter aerogenes Strains

    PubMed Central

    Pitout, Johann D. D.; Thomson, Kenneth S.; Hanson, Nancy D.; Ehrhardt, Anton F.; Coudron, Philip; Sanders, Christine C.

    1998-01-01

    Resistance to expanded-spectrum cephalosporins commonly develops in Enterobacter aerogenes during therapy due to selection of mutants producing high levels of the chromosomal Bush group 1 β-lactamase. Recently, resistant strains producing plasmid-mediated extended-spectrum β-lactamases (ESBLs) have been isolated as well. A study was designed to investigate ESBL production among 31 clinical isolates of E. aerogenes from Richmond, Va., with decreased susceptibility to expanded-spectrum cephalosporins and a positive double-disk potentiation test. Antibiotic susceptibility was determined by standard disk diffusion and agar dilution procedures. β-Lactamases were investigated by an isoelectric focusing overlay technique which simultaneously determined isoelectric points (pIs) and substrate or inhibitor profiles. Decreased susceptibility to cefotaxime, ceftazidime, and aztreonam (MIC range, 1 to 64 μg/ml) was detected and associated with resistance to gentamicin and trimethoprim-sulfamethoxazole. All strains produced an inducible Bush group 1 β-lactamase (pI 8.3). Twenty-nine of the 31 isolates also produced an enzyme similar to SHV-4 (pI 7.8), while 1 isolate each produced an enzyme similar to SHV-3 (pI 6.9) and to SHV-5 (pI 8.2). The three different SHV-derived ESBLs were transferred by transconjugation to Escherichia coli C600N and amplified by PCR. Plasmid profiles of the clinical isolates showed a variety of different large plasmids. Because of the linkage of resistance to aminoglycosides and trimethoprim-sulfamethoxazole with ESBL production, it is possible that the usage of these drugs was responsible for selecting plasmid-mediated resistance to extended-spectrum cephalosporins in E. aerogenes. Furthermore, it is important that strains such as these be recognized, because they can be responsible for institutional spread of resistance genes. PMID:9517938

  9. Insights about minority HIV-1 strains in transmitted drug resistance mutation dynamics and disease progression.

    PubMed

    Leda, Ana Rachel; Hunter, James; Oliveira, Ursula Castro; Azevedo, Inacio Junqueira; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie

    2018-04-19

    The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies >20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies <14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+ T cell count decay. Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.

  10. Fates of Acid-Resistant and Non-Acid-Resistant Shiga Toxin-Producing Escherichia coli Strains in Ruminant Digestive Contents in the Absence and Presence of Probiotics ▿

    PubMed Central

    Chaucheyras-Durand, Frédérique; Faqir, Fahima; Ameilbonne, Aurélie; Rozand, Christine; Martin, Christine

    2010-01-01

    Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination. PMID:19948865

  11. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    PubMed

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  12. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012-2016 that differ by antibiotic resistance genes and virulence genes profiles.

    PubMed

    Lev, Anastasia I; Astashkin, Eugeny I; Kislichkina, Angelina A; Solovieva, Ekaterina V; Kombarova, Tatiana I; Korobova, Olga V; Ershova, Olga N; Alexandrova, Irina A; Malikov, Vladimir E; Bogun, Alexander G; Borzilov, Alexander I; Volozhantsev, Nikolay V; Svetoch, Edward A; Fursova, Nadezhda K

    2018-04-30

    The antibacterial resistance and virulence genotypes and phenotypes of 148 non-duplicate Klebsiella pneumoniae strains collected from 112 patients in Moscow hospitals in 2012-2016 including isolates from the respiratory system (57%), urine (30%), wounds (5%), cerebrospinal fluid (4%), blood (3%), and rectal swab (1%) were determined. The majority (98%) were multidrug resistant (MDR) strains carrying bla SHV (91%), bla CTX-M (74%), bla TEM (51%), bla OXA (38%), and bla NDM (1%) beta-lactamase genes, class 1 integrons (38%), and the porin protein gene ompK36 (96%). The beta-lactamase genes bla TEM-1 , bla SHV-1 , bla SHV-11 , bla SHV-110 , bla SHV-190 , bla CTX-M-15 , bla CTX-M-3 , bla CTX-M-55 , bla OXA-48 , bla OXA-244 , and bla NDM-1 were detected; class 1 integron gene cassette arrays (aadA1), (dfrA7), (dfrA1-orfC), (aadB-aadA1), (dfrA17-aadA5), and (dfrA12-orfF-aadA2) were identified. Twenty-two (15%) of clinical K. pneumoniae strains had hypermucoviscous (HV) phenotype defined as string test positive. The rmpA gene associated with HV phenotype was detected in 24% of strains. The intrapersonal mutation of rmpA gene (deletion of one nucleotide at the polyG tract) was a reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive K. pneumoniae strain KPB584. Eighteen virulent for mice strains with LD 50  ≤ 10 4  CFU were attributed to sequence types ST23, ST86, ST218, ST65, ST2174, and ST2280 and to capsular types K1, K2, and K57. This study is the first report about hypervirulent K. pneumoniae strain KPB2580-14 of ST23 K1 harboring extended-spectrum beta-lactamase CTX-M-15 and carbapenemase OXA-48 genes located on pCTX-M-15-like and pOXA-48-like plasmids correspondingly.

  13. Antibiotic resistance assessment in S. aureus strains isolated from raw sheep's milk cheese.

    PubMed

    Spanu, V; Virdis, S; Scarano, C; Cossu, F; De Santis, E P L; Cosseddu, A M

    2010-06-01

    In vitro activities of 16 antibiotics were tested against 36 Staphylococcus aureus (SA) strains isolated from raw sheep's milk cheese from six dairies. The minimum inhibitory concentration (MIC) was determined using a broth microdilution method (CLSI). All 36 isolates were analyzed for the presence of the accessory gene regulator gene, agr (I-IV), and genes encoding resistance to methicillin (mecA), erythromycin (ermA), penicillin (blaZ), and vancomycin (vanA-B). The isolates were also analyzed for similarities in pulsed-field gel electrophoresis (PFGE) patterns. SA strains showed resistance to ampicillin (36.1%), penicillin (33.3%), tetracycline (11.1%), and cloxacillin (2.8%) but were susceptible (>or=94.4%) to 12 out of 16 tested antimicrobials. The overall susceptibility of the strains to oxacillin, vancomycin, and erythromycin was confirmed by the absence of the mecA, vanA-B, and ermA genes. The PFGE results showed that 32 strains belonged to 10 different clusters (P1-P10) while four strains were untypeable.

  14. [Multidrug resistance E-ESKAPE strains isolated from blood cultures in patients with cancer].

    PubMed

    Velázquez-Acosta, Consuelo; Cornejo-Juárez, Patricia; Volkow-Fernández, Patricia

    2018-01-01

    To describe the trend of multidrug resistant (MDR) strains isolated from blood in patients with cancer from 2005 to 2015. 33 127 blood cultures were processed by retrospective analysis. Identification and antimicrobial sensitivity were performed through automated methods: WaLK away (Siemens Labora- tory Diagnostics) and BD Phoenix (Becton, Dickinson and Company). Resistant strains were determined according to the minimum inhibitory concentration, following the parameters of the Clinical and Laboratory Standards Institute (CLSI). Of 6 397 isolates, 5 604 (16.9%) were positive; 3 732 (58.4%) Gram- bacilli; 2 355 (36.9%) Gram+ cocci; 179 (2.7%) yeasts, and 126 (1.9%) Gram+ bacilli. Escherichia coli (n=1 591, 24.5%) was the most frequent bacteria, with 652 (41%) strains being extended-spectrum beta-lactamases producers (ESBL); of Enterococcus faecium (n=143, 2.1%), 45 (31.5%) were vancomycin resistant; of Staphylococcus aureus (n=571, 8.7%), 121 (21.2%) methicillin resistant (MRSA); of Klebsiella pneumoniae (n=367, 5.6%), 41 (11.2%) ESBL; of Acinetobacter baumanii (n=96, 1.4%), 23 (24%) MDR, and of Pseudomonas aeruginosa (n=384, 5.6%), 43 (11.2%) MDR. MDR strains were significantly more frequent in patients with hematological malignancies, compared to those with solid tumors: MRSA (OR=4.48, 95%CI 2.9-6.8), ESBL E. coli(OR=1.3, 95%CI 1.10-1.65) and MDR Acinetobacter baumanii (OR=3.2, 95%CI 1.2-8.3). We observed significantly higher isolations of E-ESPAKE MDR strains in patients with hematological malignancies.

  15. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice

    PubMed Central

    Lei, Kelly; Wegner, Scott A.; Yu, Ji-Hwan; Simms, Jeffrey A.; Hopf, F. Woodward

    2016-01-01

    Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 μM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol–quinine in the 24-h session showed significantly reduced alcohol–quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol–quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol–quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of

  16. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    NASA Astrophysics Data System (ADS)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-03-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.

  17. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  18. [Physiological and biochemical effects of intermittent fasting combined with hunger-resistant food on mice].

    PubMed

    Shen, Xiao-Dong; Hua, Wei-Guo; Chu, Wei-Zhong; Xu, Feng; Wang, Yu-Ying; Chen, Hui-Ju

    2006-11-01

    To observe the physiological and biochemical effects of intermittent fasting combined with hunger-resistant food on mice, and to evaluate the safety and beneficial effects of this regimen. One hundred and forty-four adult ICR mice were divided into 4 groups: standard feed AL group (ad libitum intake of standard feed), hunger-resistant food AL group (ad libitum intake of hunger-resistant food), standard feed IF group (feeding standard feed and fasting on alternate days), and hunger-resistant food IF group (feeding hunger-resistant food and fasting on alternate days). The experiment lasted for 4-8 weeks and all mice drank water freely. The quality of life, body weight, fasting blood glucose, serum lipid, blood routine test, liver and kidney functions as well as the viscera indexes were examined. Compared to the standard feed AL group, the caloric taking and the increment of body-weight were reduced (P<0.01), and the viscera indexes of the liver and kidney were elevated (P<0.05) in the hunger-resistant food AL group and the hunger-resistant food IF group, the values of fasting blood glucose were reduced in standard feed IF group and hunger-resistant food IF group (P<0.01), the value of triglycerides was reduced in hunger-resistant food IF group (P<0.05), while the quality of life, blood routine test as well as the liver and kidney functions were not obviously affected in the hunger-resistant food AL group, standard feed IF group and hunger-resistant food IF group. The regimen of intermittent fasting combined with hunger-resistant food is safe and beneficial to metabolic regulation, such as controlling body-weight and adjusting blood glucose and serum lipid. It is expected that development of this regimen will be helpful to the control of obesity and diabetes, etc.

  19. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains

    PubMed Central

    Tadmor-Levi, Roni; Asoulin, Efrat; Hulata, Gideon; David, Lior

    2017-01-01

    Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them

  20. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains.

    PubMed

    Tadmor-Levi, Roni; Asoulin, Efrat; Hulata, Gideon; David, Lior

    2017-01-01

    Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain "Amur Sassan" was successfully introgressed into two susceptible cultured strains up to the first backcross (BC 1 ) generation. Variation in resistance of families from F 1 and BC 1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC 1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them

  1. The 14alpha-Demethylasse(CYP51A1) Gene is Overexpressed in Venturia inaequalis Strains Resistant to Myclobutanil.

    PubMed

    Schnabel, G; Jones, A L

    2001-01-01

    ABSTRACT We identified the cytochrome P450 sterol 14alpha-demethylase (CYP51A1) gene from Venturia inaequalis and optional insertions located upstream from CYP51A1 and evaluated their potential role in conferring resistance to the sterol demethylation-inhibitor (DMI) fungicide my-clobutanil. The CYP51A1 gene was completely sequenced from one my-clobutanil sensitive (S) and two myclobutanil-resistant (R) strains. No nucleotide variation was found when the three sequences were aligned. Allele-specific polymerase chain reaction (PCR) analysis indicated that a previously described single base pair mutation that correlated with resistance to DMI fungicides in strains of other filamentous fungi was absent in 19 S and 32 R strains of V. inaequalis from Michigan and elsewhere. The sequencing results and PCR analyses suggest that resistance in these strains was not due to a mutation in the sterol demethylase target site for DMI fungicides. Expression of CYP51A1 was determined for strains from an orchard that had never been sprayed with DMI fungicides (baseline orchard), and the data provided a reference for evaluating the expression of strains collected from a research orchard and from three commercial Michigan apple orchards with a long history of DMI use and a high frequency of R strains. Overexpression of CYP51A1 was significantly higher in 9 of 11 R strains from the research orchard than in S strains from the baseline orchard. The high expression was correlated with the presence of a 553-bp insertion located upstream of CYP51A1. Overexpression of the CYP51A1 gene was also detected in eight of eight, five of nine, and nine of nine R strains from three commercial orchards, but the insertion was not detected in the majority of these strains. The results suggest that overexpression of the target-site CYP51A1 gene is an important mechanism of resistance in some field resistant strains of V. inaequalis, but other mechanisms of resistance also appear to exist.

  2. Reproductive Cost Associated With Juvenile Hormone in Bt-Resistant Strains of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Zhang, W N; Ma, L; Wang, B J; Chen, L; Khaing, M M; Lu, Y H; Liang, G M; Guo, Y Y

    2016-12-01

    Transgenic Bacillus thuringiensis (Bt) crops are increasingly significant in pest control, but resistance development of target pests is a major issue in the sustainable deployment of Bt crops. The fitness cost of resistance in target pests is regarded as one of the main factors delaying resistance when adopting the refuge strategy. In this study, we compared the life-history traits of three independent sets of Helicoverpa armigera (Hübner, 1809) adults, of each there were a susceptible population and a Cry1Ac-resistant population derived by selection from it. Confirming to the previous studies, resistant individuals exhibited fewer progeny, less fecundity, lower egg hatching rate, and longer adult longevity. And poor fecundity in resistant strains was associated with the decline of the mature follicular amount, the ovarian weight ratio, and the length of the longest ovarian tubule. Interestingly, the juvenile hormone (JH) level appeared higher in resistant strains relative to susceptible strains. Application of methoprene (JH analogue) in vivo was effective in reducing fecundity and hatchability with the up-regulation of detected JH titer. These results suggested that resistance against Bt toxin reduced the reproductive capacity of H. armigera, and JH level is affected in the tradeoff between reproductive capacity and Bt resistance. © Crown copyright 2016.

  3. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  4. Enhanced Molecular Typing of Treponema pallidum subspecies pallidum Strains From 4 Italian Hospitals Shows Geographical Differences in Strain Type Heterogeneity, Widespread Resistance to Macrolides, and Lack of Mutations Associated With Doxycycline Resistance.

    PubMed

    Giacani, Lorenzo; Ciccarese, Giulia; Puga-Salazar, Christian; Dal Conte, Ivano; Colli, Laura; Cusini, Marco; Ramoni, Stefano; Delmonte, Sergio; DʼAntuono, Antonietta; Gaspari, Valeria; Drago, Francesco

    2018-04-01

    Although syphilis rates have been relatively high in Italy for more than 15 years, no data on the molecular types of Treponema pallidum subspecies pallidum circulating in this country are yet available. Likewise, no data on how widespread is resistance to macrolide or tetracycline antibiotics in these strains exist. Such data would, however, promote comprehensive studies on the molecular epidemiology of syphilis infections in Italy and inform future interventions aiming at syphilis control in this and other European countries. Swabs from oral, genital, cutaneous, or anal lesions were obtained from 60 syphilis patients attending dermatology clinics in Milan, Turin, Genoa, and Bologna. Molecular typing of T. pallidum DNA was performed to provide a snapshot of the genetic diversity of strains circulating in Northern Italy. Samples were also screened for mutations conferring resistance to macrolides and tetracyclines. T. pallidum DNA was detected in 88.3% (53/60) of the specimens analyzed. Complete and partial T. pallidum typing data were obtained for 77.3% (41/53) and 15.0% (8/53) of samples, respectively, whereas 4 samples could not be typed despite T. pallidum DNA being detected. The highest strain type heterogeneity was seen in samples from Bologna and Milan, followed by Genoa. Minimal diversity was detected in samples from Turin, despite the highest number of typeable samples collected there. Resistance to macrolides was detected in 94.3% (50/53) of the strains, but no known mutations associated with tetracycline resistance were found. Genetic diversity among T. pallidum strains circulating in Northern Italy varies significantly among geographical areas regardless of physical distance. Resistance to macrolides is widespread.

  5. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    PubMed

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese.

    PubMed

    Montet, M P; Jamet, E; Ganet, S; Dizin, M; Miszczycha, S; Dunière, L; Thevenot, D; Vernozy-Rozand, C

    2009-01-01

    Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 10(3) CFU mL(-1). The STEC counts (AR and NAR) initially increased by 1 to 2 log(10) CFU g(-1) during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.

  7. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese

    PubMed Central

    Montet, M. P.; Jamet, E.; Ganet, S.; Dizin, M.; Miszczycha, S.; Dunière, L.; Thevenot, D.; Vernozy-Rozand, C.

    2009-01-01

    Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 103 CFU mL−1. The STEC counts (AR and NAR) initially increased by 1 to 2 log10 CFU g−1 during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains. PMID:20016668

  8. Differences in the Flexibility of Switching Learning Strategies and CREB Phosphorylation Levels in Prefrontal Cortex, Dorsal Striatum and Hippocampus in Two Inbred Strains of Mice

    PubMed Central

    Cho, Woo-Hyun; Han, Jung-Soo

    2016-01-01

    Flexibility in using different learning strategies was assessed in two different inbred strains of mice, the C57BL/6 and DBA/2 strains. Mice were trained sequentially in two different Morris water maze protocols that tested their ability to switch their learning strategy to complete a new task after first being trained in a different task. Training consisted either of visible platform trials (cued training) followed by subsequent hidden platform trials (place training) or the reverse sequence (place training followed by cued training). Both strains of mice showed equivalent performance in the type of training (cued or place) that they received first. However, C57BL/6 mice showed significantly better performances than DBA/2 mice following the switch in training protocols, irrespective of the order of training. After completion of the switched training session, levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were measured in the hippocampus, striatum and prefrontal cortex of the mice. Prefrontal cortical and hippocampal pCREB levels differed by strain, with higher levels found in C57BL/6 mice than in DBA/2 mice. No strain differences were observed in the medial or lateral region of the dorsal striatum. These findings indicate that the engagement (i.e., CREB signaling) of relevant neural structures may vary by the specific demands of the learning strategy, and this is closely tied to differences in the flexibility of C57BL/6 and DBA/2 mice to switch their learning strategies when given a new task. PMID:27695401

  9. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    PubMed

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.

  10. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.

    PubMed

    Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2017-03-03

    Chronic exposure to fine ambient particulate matter (PM 2.5 ) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM 2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM 2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2 -/- mice were subjected to exposure to concentrated ambient PM 2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM 2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM 2.5 -exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM 2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM 2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.

  11. Genetic variation of iron-induced uroporphyria in mice.

    PubMed Central

    Smith, A G; Francis, J E

    1993-01-01

    Iron overload causes inhibition of hepatic uroporphyrinogen decarboxylase (UROD) and uroporphyria in C57BL/10ScSn but not DBA/2 mice [Smith, Cabral, Carthew, Francis and Manson (1989) Int. J. Cancer 43, 492-496]. We have investigated the induction of uroporphyria in 12 inbred strains of mice 25 weeks after iron treatment (600 mg/kg) to determine if there was any correlation with the Ah locus. Under these conditions, inhibition of UROD occurred to varying degrees in Ahd mice (SWR and AKR) as well as nominally Ahb-1 (C57BL/6J, C57BL/10ScSn and C57BL/10-cc) and Ahb-2 strains (BALB/c and C3H/HeJ). Five other Ahb or Ahd strains (C57BL/Ks, A/J, CBA/J, LP and DBA/2) were unaffected. Thus there appeared to be no correlation with the Ah phenotype and this illustrated that some other variable inherited factors are involved. Comparisons between another susceptible strain, A2G, and the congenic A2G-hr/+strain (carrying the recessive hr gene) showed a modulating influence associated with the hr locus. In contrast with individual mice of inbred strains, which showed consistent responses to iron, those of the outbred MF1 strain showed a spectrum of sensitivities as might be expected for a heterogeneic stock. The rate of porphyria development was accelerated by administration of 5-aminolaevulinic acid (5-ALA) in the drinking water, but this did not overcome strain differences. Among four strains the order of susceptibility was SWR > C57BL/10ScSn > C57B1/6J > DBA/2 (the last strain was completely resistant). With degrees of iron loading greater than 600 mg of Fe/kg (1200-1800 mg of Fe/kg) C57BL/10ScSn mice (after 20 weeks) and SWR mice (after 5 weeks which included 4 weeks of 5-ALA treatment) had less inhibition of UROD and a lower uroporphyric response, showing that there was an optimum level of liver iron concentration. Studies on selected microsomal enzyme activities associated with cytochrome P-450 showed no correlation with the propensities of strains to develop porphyria

  12. Differences in Susceptibility of Inbred Mice to Bacillus anthracis

    DTIC Science & Technology

    1985-04-26

    dilutions of the mixture were prepared and injected into A/J and CBA/J mice via the tail vein, as described by Ezzell et al. (9). Five mice per strain were...xylazine (Rompun, Miles Laboratories, Shawnee, Kansas) in 50 pl, and were dissected iwnmediately. Gross pathological changes were noted, heart blood and...anthracis; a histopathological study of skin lesions produced by B. anthracis in susceptible and resistant animal species. J. Infect. Dis. 80:1-13. 9. Ezzell

  13. Genetic differentiation of methicillin-resistant Staphylococcus aureus strains from Korea and Japan.

    PubMed

    Soo Ko, Kwan; Peck, Kyong Ran; Sup Oh, Won; Lee, Nam Yong; Hiramatsu, Keiichi; Song, Jae-Hoon

    2005-01-01

    In this study, we evaluated genetic differentiation between methicillin-resistant Staphylococcus aureus (MRSA) strains from Korea and Japan. Seventy-five MRSA strains, including 25 h VISA strains, were analyzed by molecular typing methods, including multilocus sequence typing (MLST), SCC mec typing, and spa typing. The most prevalent genotype of MRSA strains, in both Korea and Japan, was ST 5-MRSA-II with the DMGMK spa motif, characteristic of the New York/Japan MRSA clone. In spite of these common features in MRSA strains from Korea and Japan, we also observed some genotypic divergence in MRSA from the two countries. Several spa types might be differentiated from a prevalent prototype (TJMBMDMGMK) that is shared by the two countries, revealing a unique geographic distribution. SCC mec type II lacking pUB110, designated type IIA, was found more frequently in Korea than in Japan. The rate of gentamicin resistance was also dramatically different between the two countries: 87.2% (Korea) vs. 28.6% (Japan). These preliminary findings suggested that MRSA strains from Korea and Japan might have originated from a common ancestor, but then clearly differentiated according to locality. A further comprehensive study should be performed to document the hypotheses from this study.

  14. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  15. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.

  16. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    PubMed Central

    Terra, Jill K.; France, Bryan; Cote, Christopher K.; Jenkins, Amy; Bozue, Joel A.; Welkos, Susan L.; Bhargava, Ragini; Ho, Chi-Lee; Mehrabian, Margarete; Pan, Calvin; Lusis, Aldons J.; Davis, Richard C.; LeVine, Steven M.; Bradley, Kenneth A.

    2011-01-01

    Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. PMID:22241984

  17. The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains

    PubMed Central

    Garbusińska, Aleksandra; Kowalska, Magdalena; Król, Wojciech

    2015-01-01

    The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans, and C. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 μg/mL to an average of 38.46 μg/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 μg/mL to an average of 66.62 μg/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections. PMID:25722982

  18. The Plasmodium berghei RC strain is highly diverged and harbors putatively novel drug resistance variants

    PubMed Central

    Kulawonganunchai, Supasak; Wilantho, Alisa; Koonyosying, Pongpisid; Uthaipibull, Chairat

    2017-01-01

    Background The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, Plasmodium falciparum parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds. Methods The Plasmodium berghei RC strain (PbRC) is described as resistant to different antimalarials, including chloroquine (CQ) and ART. In an attempt to identify the genetic basis for the antimalarial resistance trait in PbRC, its genome was sequenced and compared with five other previously sequenced P. berghei strains. Results We found that PbRC is eight-fold less sensitive to the ART derivative artesunate than the reference strain PbANKA. The genome of PbRC is markedly different from other strains, and 6,974 single nucleotide variants private to PbRC were identified. Among these PbRC private variants, non-synonymous changes were identified in genes known to modulate antimalarial sensitivity in rodent malaria species, including notably the ubiquitin carboxyl-terminal hydrolase 1 gene. However, no variants were found in some genes with strong evidence of association with ART resistance in P. falciparum such as K13 propeller protein. Discussion The variants identified in PbRC provide insight into P. berghei genome diversity and genetic factors that could modulate CQ and ART resistance in Plasmodium spp. PMID:29018598

  19. Prevention of Mycobacterium avium subsp. paratuberculosis Infection in BALB/c Mice by Feeding Lactobacillus acidophilus Strain NP-51

    USDA-ARS?s Scientific Manuscript database

    The immune responses of 390 BALB/c mice fed the probiotic Lactobacillus acidophilus strain NP51® and infected with Mycobacterium avium subspecies paratuberculosis (MAP) were evaluated in a 6-month trial. Mice were randomized to nine treatment groups fed either viable- or heat-killed NP51 and inocula...

  20. Construction of a series of congenic mice with recombinant chromosome 1 regions surrounding the genetic loci for resistance to intracellular parasites (Ity, Lsh, and Bcg), DNA repair responses (Rep-1), and the cytoskeletal protein villin (Vil).

    PubMed Central

    Mock, B A; Holiday, D L; Cerretti, D P; Darnell, S C; O'Brien, A D; Potter, M

    1994-01-01

    The interval of mouse chromosome 1 extending from Idh-1 to Pep-3 harbors the natural resistance gene Ity/Lsh/Bcg; it controls the outcome of infection with Salmonella typhimurium, Leishmania donovani, and several Mycobacterium species. This region also contains a DNA repair gene, Rep-1, which determines the rapidity with which double-strand breaks in chromatin are repaired. BALB/cAnPt and DBA/2N mice differ in their phenotypic expression of these genes. To generate appropriate strains of mice for the study of these genes, a series of 10 C.D2 congenic strains recombinant across a 28-centimorgan interval of mouse chromosome 1 extending from Idh-1 to Pep-3 were derived from crosses of the C.D2-Idh-1 Pep-3 congenic strain back to BALB/cAn. Analyses of these recombinant strains will allow the correlation of biological-immunological phenotypes with defined genetic regions. PMID:8262646

  1. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham

  2. Strain-dependent airway hyperresponsiveness and a chromosome 7 locus of elevated lymphocyte numbers in cystic fibrosis transmembrane conductance regulator-deficient mice.

    PubMed

    Bazett, Mark; Stefanov, Anguel N; Paun, Alexandra; Paradis, Josee; Haston, Christina K

    2012-03-01

    We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures. Finally, we mapped the phenotype of pulmonary lymphocyte counts in BALB × C57BL/6J F2 Cftr(tm1UNC) mice and reviewed positional candidate genes. By FACS analysis, both the lungs and spleens of BALB Cftr(tm1UNC) mice had more CD3(+) (both CD4(+) and CD8(+)) cells than did littermates or C57BL/6J Cftr(tm1UNC) mice. Cftr(tm1UNC) and littermate mice of either strain did not differ in anti-CD3-stimulated apoptosis or proliferation levels. Lymphocytes from BALB Cftr(tm1UNC) mice produced more IL-4 and IL-5 and reduced levels of IFN-γ than did littermates, whereas lymphocytes from C57BL/6J Cftr(tm1UNC) mice demonstrated increased Il-17 secretion. BALB Cftr(tm1UNC) mice presented an enhanced airway hyperresponsiveness to methacholine challenge compared with littermates and C57BL/6J Cftr(tm1UNC) mice. A chromosome 7 locus was identified to be linked to lymphocyte numbers, and genetic evaluation of the interval suggests Itgal and Il4ra as candidate genes for this trait. We conclude that the pulmonary phenotype of BALB Cftr(tm1UNC) mice includes airway hyperresponsiveness and increased lymphocyte numbers, with the latter trait being influenced by a chromosome 7 locus.

  3. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain.

    PubMed

    Sinha, Manish; Dola, Vasanth R; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B

    2014-07-15

    Emergence and spread of multidrug resistant strains of Plasmodium falciparum has severely limited the antimalarial chemotherapeutic options. In order to overcome the obstacle, a set of new side-chain modified 4-aminoquinolines were synthesized and screened against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of P. falciparum. The key feature of the designed molecules is the use of methylpiperazine linked α, β(3)- and γ-amino acids to generate novel side chain modified 4-aminoquinoline analogues. Among the evaluated compounds, 20c and 30 were found more potent than CQ against K1 and displayed a four-fold and a three-fold higher activity respectively, with a good selectivity index (SI=5846 and 11,350). All synthesized compounds had resistance index between 1.06 and >14.13 as against 47.2 for chloroquine. Biophysical studies suggested that this series of compounds act on heme polymerization target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A novel system for tracking social preference dynamics in mice reveals sex- and strain-specific characteristics.

    PubMed

    Netser, Shai; Haskal, Shani; Magalnik, Hen; Wagner, Shlomo

    2017-01-01

    Deciphering the biological mechanisms underlying social behavior in animal models requires standard behavioral paradigms that can be unbiasedly employed in an observer- and laboratory-independent manner. During the past decade, the three-chamber test has become such a standard paradigm used to evaluate social preference (sociability) and social novelty preference in mice. This test suffers from several caveats, including its reliance on spatial navigation skills and negligence of behavioral dynamics. Here, we present a novel experimental apparatus and an automated analysis system which offer an alternative to the three-chamber test while solving the aforementioned caveats. The custom-made apparatus is simple for production, and the analysis system is publically available as an open-source software, enabling its free use. We used this system to compare the dynamics of social behavior during the social preference and social novelty preference tests between male and female C57BL/6J mice. We found that in both tests, male mice keep their preference towards one of the stimuli for longer periods than females. We then employed our system to define several new parameters of social behavioral dynamics in mice and revealed that social preference behavior is segregated in time into two distinct phases. An early exploration phase, characterized by high rate of transitions between stimuli and short bouts of stimulus investigation, is followed by an interaction phase with low transition rate and prolonged interactions, mainly with the preferred stimulus. Finally, we compared the dynamics of social behavior between C57BL/6J and BTBR male mice, the latter of which are considered as asocial strain serving as a model for autism spectrum disorder. We found that BTBR mice ( n  = 8) showed a specific deficit in transition from the exploration phase to the interaction phase in the social preference test, suggesting a reduced tendency towards social interaction. We successfully

  5. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements.

    PubMed

    Ferferieva, V; Van den Bergh, A; Claus, P; Jasaityte, R; La Gerche, A; Rademakers, F; Herijgers, P; D'hooge, J

    2013-08-01

    This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.

  6. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.

    PubMed

    Reis, Vanda Renata; Antonangelo, Ana Teresa Burlamaqui Faraco; Bassi, Ana Paula Guarnieri; Colombi, Débora; Ceccato-Antonini, Sandra Regina

    Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Expression analysis of several antiviral related genes to BmNPV in different resistant strains of silkworm, Bombyx mori

    PubMed Central

    Cheng, Yang; Wang, Xue-yang; Du, Chang; Gao, Juan; Xu, Jia-ping

    2014-01-01

    Abstract Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a highly pathogenic virus in the sericultural industry, often causing severe damage leading to large economic losses. The immune mechanisms of B. mori against this virus remain obscure. Previous studies had demonstrated Bmlipase-1, BmNox and Bmserine protease-2 showing antiviral activity in vitro , but data on the transcription levels of these proteins in different resistant strains were not reported. In order to determine the resistance level of the four different strains (P50, A35, A40, A53) and gain a better understanding of the mechanism of resistance to BmNPV in B. mori , the relative expression level of the genes coding the three antiviral proteins in larval haemolymph and midgut of different B. mori strains resistant to BmNPV was determined. The results showed that these genes expressed significantly higher in the resistant strains compared to the susceptible strain, and the differential expression levels were consistent with the LC50 values in different strains. The transcription level of the target genes almost all up-regulated in the larvae midgut and down-regulated in the haemolymph. The results indicate the correlation of these genes to BmNPV resistance in B. mori. PMID:25373223

  8. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  9. Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada.

    PubMed

    Piercey, Marta J; Ells, Timothy C; Macintosh, Andrew J; Truelstrup Hansen, Lisbeth

    2017-09-18

    Listeria monocytogenes is a pathogenic foodborne microorganism noted for its ability to survive in the environment and food processing facilities. Survival may be related to the phenotype of individual strains including the ability to form biofilms and resist desiccation and/or sanitizer exposure. The objectives of this research were to compare 14 L. monocytogenes strains isolated from blood (3), food (6) and water (5) with respect to their benzalkonium chloride (BAC) sensitivity, desiccation resistance, and ability to form biofilm. Correlations were tested between those responses, and the presence of the SSI-1 (Stress Survival Islet) and LGI1/CC8 (Listeria Genomic Island 1 in a clonal complex 8 background) genetic markers. Genetic sequences from four strains representing different phenotypes were also probed for predicted amino acid differences in biofilm, desiccation, and membrane related genes. The water isolates were among the most desiccation susceptible strains, while strains exhibiting desiccation resistance harboured SSI-1 or both the SSI-1 and LGI1/CC8 markers. BAC resistance was greatest in planktonic LGI1/CC8 cells (relative to non-LGI1/CC8 cells), and higher BAC concentrations were also needed to inhibit the formation of biofilm by LGI1/CC8 strains during incubation for 48h and 6days compared to other strains. Formation of biofilm on stainless steel was not significantly (p>0.05) different among the strains. Analysis of genetic sequence data from desiccation and BAC sensitive (CP4 5-1, CP5 2-3, both from water), intermediate (Lm568, food) and desiccation and BAC resistant (08 5578, blood, human outbreak) strains led to the finding of amino acid differences in predicted functional protein domains in several biofilm, desiccation and peptidoglycan related genes (e.g., lmo0263, lmo0433, lmo0434, lmo0771, lmo0973, lmo1080, lmo1224, lmo1370, lmo1744, and lmo2558). Notably, the LGI1/CC8 strain 08-5578 had a frameshift mutation in lmo1370, a gene previously

  10. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  11. Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin.

    PubMed Central

    Henrion, D; Terzi, F; Matrougui, K; Duriez, M; Boulanger, C M; Colucci-Guyon, E; Babinet, C; Briand, P; Friedlander, G; Poitevin, P; Lévy, B I

    1997-01-01

    The intermediate filament vimentin might play a key role in vascular resistance to mechanical stress. We investigated the responses to pressure (tensile stress) and flow (shear stress) of mesenteric resistance arteries perfused in vitro from vimentin knockout mice. Arteries were isolated from homozygous (Vim-/-, n = 14) or heterozygous vimentin-null mice (Vim+/-, n = 5) and from wild-type littermates (Vim+/+, n = 9). Passive arterial diameter (175+/-15 micron in Vim+/+ at 100 mmHg) and myogenic tone were not affected by the absence of vimentin. Flow-induced (0-150 microl/min) dilation (e. g., 19+/-3 micron dilation at 150 mmHg in Vim+/+) was significantly attenuated in Vim-/- mice (13+/-2 micron dilation, P < 0.01). Acute blockade of nitric oxide synthesis (NG-nitro- L-arginine, 10 microM) significantly decreased flow-induced dilation in both groups, whereas acute blockade of prostaglandin synthesis (indomethacin, 10 microM) had no significant effect. Mean blood pressure, in vivo mesenteric blood flow and diameter, and mesenteric artery media thickness or media to lumen ratio were not affected by the absence of vimentin. Thus, the absence of vimentin decreased selectively the response of resistance arteries to flow, suggesting a role for vimentin in the mechanotransduction of shear stress. PMID:9389758

  12. Genomic and transcriptomic differences in community acquired methicillin resistant Staphylococcus aureus USA300 and USA400 strains.

    PubMed

    Jones, Marcus B; Montgomery, Christopher P; Boyle-Vavra, Susan; Shatzkes, Kenneth; Maybank, Rosslyn; Frank, Bryan C; Peterson, Scott N; Daum, Robert S

    2014-12-19

    Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all β-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.

  13. β-Lactamases in amoxicillin-clavulanate-resistant Escherichia coli strains isolated from a Chinese tertiary hospital.

    PubMed

    Ding, Juanjuan; Ma, Xitao; Chen, Zhuochang; Feng, Keqing

    2013-08-01

    A total of 52 strains were resistant to amoxicillin-clavulanate by disk diffusion method in a Chinese tertiary hospital from July 2011 to December 2011. Among these isolates, 2 isolates possessed a phenotype consistent with production of inhibitor-resistant temoniera (TEM) (IRT) β-lactamase, and the TEM-type gene was cloned into strains of Escherichia coli JM109 cells. Both had no blaTEM mutations and were identified as TEM-1 β-lactamase producers. As a result, no IRT β-lactamase was detected. Multiplex PCR detected most of these strains produced TEM-1 enzymes, and plasmid-mediated AmpC β-lactamase and oxacillinase-1 β-lactamases are important mechanisms of resistance as well. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.

    PubMed

    Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D

    2010-01-01

    Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.

  15. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  16. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    PubMed Central

    Alba-Fierro, Carlos A.; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  17. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry

    PubMed Central

    2011-01-01

    The macrolide class of antibiotics, including tylosin and tilmicosin, is widely used in the veterinary field for prophylaxis and treatment of mycoplasmosis. In vitro susceptibility testing of 50 strains of M. gallisepticum isolated in Israel during the period 1997-2010 revealed that acquired resistance to tylosin as well as to tilmicosin was present in 50% of them. Moreover, 72% (13/18) of the strains isolated from clinical samples since 2006 showed acquired resistance to enrofloxacin, tylosin and tilmicosin. Molecular typing of the field isolates, performed by gene-target sequencing (GTS), detected 13 molecular types (I-XIII). Type II was the predominant type prior to 2006 whereas type X, first detected in 2008, is currently prevalent. All ten type X strains were resistant to both fluoroquinolones and macrolides, suggesting selective pressure leading to clonal dissemination of resistance. However, this was not a unique event since resistant strains with other GTS molecular types were also found. Concurrently, the molecular basis for macrolide resistance in M. gallisepticum was identified. Our results revealed a clear-cut correlation between single point mutations A2058G or A2059G in domain V of the gene encoding 23S rRNA (rrnA, MGA_01) and acquired macrolide resistance in M. gallisepticum. Indeed, all isolates with MIC ≥ 0.63 μg/mL to tylosin and with MIC ≥ 1.25 μg/mL to tilmicosin possess one of these mutations, suggesting an essential role in decreased susceptibility of M. gallisepticum to 16-membered macrolides. PMID:21810258

  18. Some Factors Influencing Acid Production by an Oxytetracycline-Resistant Strain of Streptococcus lactis1

    PubMed Central

    Mikolajcik, E. M.; Harper, W. J.; Gould, I. A.

    1963-01-01

    Induction of oxytetracycline resistance in a strain of Streptococcus lactis caused this organism to display reduced acid production, salt tolerance, pyruvate synthesis, growth at alkaline pH, and a loss in ability to produce ammonia from arginine. α-Ketoglutaric and oxaloacetic acids were found to accumulate in the growth medium of resistant cells, in contrast to none in the medium of susceptible cells. No free arginine could be detected in the intracellular fraction of resistant cells, but arginine was present in the intracellular fraction of susceptible cells and decreased in concentration upon the addition of oxytetracycline to the growth medium. Depressed acid production in milk by the oxytetracycline resistant strain is evidently a consequence of the inability of this organism to metabolize arginine effectively. PMID:14063784

  19. Treatment of Chloroquine-Resistant Malaria with Esters of Cephalotaxine: Homoharringtonine

    DTIC Science & Technology

    1990-01-01

    AD-A233 355 1py Annals of Tropical Medicine and Parasitology, Vol. 84, No. 3,229-237 (1990) E L ECT E MAR 2 91991 Treatment of chloroquine -resistant...growth inhibition of two strains of chloroquine -resistant Plasmodiumfalciparum malaria in vitro. In vivo tests in mice infected with P.yoelii showed...usefulness of homoharringtonine in the treatment of chloroquine -resistant malaria, but also demonstrate the advantage of applying comparative biochemistry

  20. Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: impact of exercise training.

    PubMed

    Trask, Aaron J; Delbin, Maria A; Katz, Paige S; Zanesco, Angelina; Lucchesi, Pamela A

    2012-01-01

    The goals of the present study were to compare coronary resistance microvessel (CRM) remodeling between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mice, and to determine the impact of aerobic exercise training on CRM remodeling in diabetes. Eight week old male mice were divided into T1DM: control sedentary (Control-SD), T1DM sedentary (T1DM-SD) induced by streptozotocin, and T1DM exercise trained (T1DM-TR); T2DM: control sedentary (Db/db-SD), T2DM sedentary (db/db-SD), and T2DM trained (db/db-TR). Aerobic exercise training (TR) was performed on a mouse treadmill for 8weeks. CRMs were isolated and mounted on a pressure myograph to measure and record vascular remodeling and mechanics. CRM diameters, wall thickness, stress-strain, incremental modulus remained unchanged in T1DM-SD mice compared to control, and exercise training showed no effect. In contrast, CRMs isolated from db/db-SD mice exhibited decreased luminal diameter with thicker microvascular walls, which significantly increased the wall:lumen ratio (Db/db-SD: 5.8±0.3 vs. db/db-SD: 8.9±0.7, p<0.001). Compared to db/db-SD mice, coronary arterioles isolated from db/db-TR mice had similar internal diameter and wall thickness, while wall:lumen ratio (6.8±0.2, p<0.05) and growth index (db/db-SD: 16.2 vs. db/db-TR: 4.3, % over Db/db) were reduced. These data show that CRMs undergo adverse inward hypertrophic remodeling only in T2DM, but not T1DM, and that aerobic exercise training can partially mitigate this process. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  2. Energy-Dependent Accumulation of Fluoroquinolones in Quinolone-Resistant Klebsiella pneumoniae Strains

    PubMed Central

    Martínez-Martínez, Luis; García, Isabel; Ballesta, Sofía; Benedí, Vicente Javier; Hernández-Allés, Santiago; Pascual, Alvaro

    1998-01-01

    The intracellular accumulation of norfloxacin and pefloxacin in Klebsiella pneumoniae was evaluated. The roles of lipopolysaccharide, capsule, and outer membrane proteins were not important for the intrabacterial accumulation of fluoroquinolones in isogenic strains with known outer membrane alterations. In fluoroquinolone-resistant clinical isolates also expressing GyrA alterations, an active efflux leading to decreased accumulation of the drugs enhanced their resistance to these agents. PMID:9661034

  3. Toxoplasma gondii oral infection induces intestinal inflammation and retinochoroiditis in mice genetically selected for immune oral tolerance resistance.

    PubMed

    Dias, Raul Ramos Furtado; Carvalho, Eulógio Carlos Queiroz de; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis.

  4. Toxoplasma gondii Oral Infection Induces Intestinal Inflammation and Retinochoroiditis in Mice Genetically Selected for Immune Oral Tolerance Resistance

    PubMed Central

    Dias, Raul Ramos Furtado; de Carvalho, Eulógio Carlos Queiroz; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis. PMID:25437299

  5. Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution

    PubMed Central

    Creamer, Kaitlin E.; Ditmars, Frederick S.; Basting, Preston J.; Kunka, Karina S.; Hamdallah, Issam N.; Bush, Sean P.; Scott, Zachary; He, Amanda; Penix, Stephanie R.; Gonzales, Alexandra S.; Eder, Elizabeth K.; Camperchioli, Dominic W.; Berndt, Adama; Clark, Michelle W.; Rouhier, Kerry A.

    2016-01-01

    ABSTRACT Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA. Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. IMPORTANCE Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human

  6. Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution.

    PubMed

    Creamer, Kaitlin E; Ditmars, Frederick S; Basting, Preston J; Kunka, Karina S; Hamdallah, Issam N; Bush, Sean P; Scott, Zachary; He, Amanda; Penix, Stephanie R; Gonzales, Alexandra S; Eder, Elizabeth K; Camperchioli, Dominic W; Berndt, Adama; Clark, Michelle W; Rouhier, Kerry A; Slonczewski, Joan L

    2017-01-15

    Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to

  7. Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene

    PubMed Central

    de Lencastre, Hermínia; Tomasz, Alexander

    2017-01-01

    ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant. PMID:28069659

  8. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice.

    PubMed

    Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan; Simms, Jeffrey A; Hopf, F Woodward

    2016-09-01

    Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 μM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine-resistant

  9. Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice

    PubMed Central

    Sohrabi, Yahya; Volkova, Valeryia; Kobets, Tatyana; Havelková, Helena; Krayem, Imtissal; Slapničková, Martina; Demant, Peter; Lipoldová, Marie

    2018-01-01

    Interferon-induced GTPases [guanylate-binding proteins (GBPs)] play an important role in inflammasome activation and mediate innate resistance to many intracellular pathogens, but little is known about their role in leishmaniasis. We therefore studied expression of Gbp2b/Gbp1 and Gbp5 mRNA in skin, inguinal lymph nodes, spleen, and liver after Leishmania major infection and in uninfected controls. We used two different groups of related mouse strains: BALB/c, STS, and CcS-5, CcS-16, and CcS-20 that carry different combinations of BALB/c and STS genomes, and strains O20, C57BL/10 (B10) and B10.O20, OcB-9, and OcB-43 carrying different combinations of O20 and B10 genomes. The strains were classified on the basis of size and number of infection-induced skin lesions as highly susceptible (BALB/c, CcS-16), susceptible (B10.O20), intermediate (CcS-20), and resistant (STS, O20, B10, OcB-9, OcB-43). Some uninfected strains differed in expression of Gbp2b/Gbp1 and Gbp5, especially of Gbp2b/Gbp1 in skin. Uninfected BALB/c and STS did not differ in their expression, but in CcS-5, CcS-16, and CcS-20, which all carry BALB/c-derived Gbp gene-cluster, expression of Gbp2b/Gbp1 exceeds that of both parents. These data indicate trans-regulation of Gbps. Infection resulted in approximately 10× upregulation of Gbp2b/Gbp1 and Gbp5 mRNAs in organs of both susceptible and resistant strains, which was most pronounced in skin. CcS-20 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin, whereas CcS-16 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin and liver. This indicates a trans-regulation present in infected mice CcS-16 and CcS-20. Immunostaining of skin of five strains revealed in resistant and intermediate strains STS, CcS-5, O20, and CcS-20 tight co-localization of Gbp2b/Gbp1 protein with most L. major parasites, whereas in the highly susceptible strain, BALB/c most parasites did not associate with Gbp2b/Gbp1. In conclusion, expression of

  10. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  11. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    PubMed

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)resistance to SMZ in surface water is significantly higher compared to CPX and AMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Resistance to drugs and heavy metals, colicin production, and biochemical characteristics of selected bovine and porcine Escherichia coli strains.

    PubMed Central

    Harnett, N M; Gyles, C L

    1984-01-01

    A study was made of resistance to heavy metals and antibiotics, biochemical characteristics, and colicinogeny in selected strains of Escherichia coli of O serogroups 8, 9, 20, 64, 101, and X46. Of 42 strains that were investigated, 26 were porcine enterotoxigenic E. coli (ETEC), 8 were porcine non-enterotoxigenic E. coli (NETEC), and 8 were bovine ETEC. Multiple resistance to antimicrobial agents was common among the strains, and resistance to chloramphenicol and kanamycin was less common than resistance to other drugs, possibly reflecting the lower frequency of use of these agents in pigs and calves. Colicin production was a more common property of porcine ETEC (80.8%) than of porcine NETEC (25%), and all porcine ETEC of O serogroups 101 and 64 were colicinogenic. Equal numbers of bovine ETEC strains were colicinogenic as were non-colicinogenic. Resistance of bovine and porcine strains to sodium arsenate, mercury, and tellerium was 90, 16, and 5%, respectively. There was a close relationship between serogroup and biochemical reactions among the E. coli strains tested. PMID:6391383

  13. Expression analysis of several antiviral related genes to BmNPV in different resistant strains of silkworm, Bombyx mori.

    PubMed

    Cheng, Yang; Wang, Xue-yang; Du, Chang; Gao, Juan; Xu, Jia-ping

    2014-05-30

    Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a highly pathogenic virus in the sericultural industry, often causing severe damage leading to large economic losses. The immune mechanisms of B. mori against this virus remain obscure. Previous studies had demonstrated Bmlipase-1, BmNox and Bmserine protease-2 showing antiviral activity in vitro, but data on the transcription levels of these proteins in different resistant strains were not reported. In order to determine the resistance level of the four different strains (P50, A35, A40, A53) and gain a better understanding of the mechanism of resistance to BmNPV in B. mori, the relative expression level of the genes coding the three antiviral proteins in larval haemolymph and midgut of different B. mori strains resistant to BmNPV was determined. The results showed that these genes expressed significantly higher in the resistant strains compared to the susceptible strain, and the differential expression levels were consistent with the LC50 values in different strains. The transcription level of the target genes almost all up-regulated in the larvae midgut and down-regulated in the haemolymph. The results indicate the correlation of these genes to BmNPV resistance in B. mori. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  14. Antibiotic resistance pattern of Helicobacter pylori strains isolated in Italy during 2010-2016.

    PubMed

    Fiorini, Giulia; Zullo, Angelo; Saracino, Ilaria Maria; Pavoni, Matteo; Vaira, Dino

    2018-04-24

    Bacterial resistance toward the most used antibiotics is increasing in Helicobacter pylori strains worldwide. Emergence of multidrug resistance significantly affects the efficacy of standard therapy regimens. Therefore, monitoring for primary antimicrobial resistance is essential for H. pylori management in clinical practice. H. pylori isolates obtained from patients consecutively observed in a single center were tested for primary resistance by using E-test method. Bacterial strains showing MIC values >0.5, >8 and >1 mg/L toward clarithromycin, metronidazole and levofloxacin, respectively, were considered resistant. The trend of antibiotic prevalence, either single or combined, during 2010-2016 was assessed. Antibiotic susceptibility data were available in 1424 (82.3%) out of 1730 tested patients. The overall resistance for all the three antibiotics showed an increasing trend from 2010 to 2013 (clarithromycin: from 19% to 35.6%; metronidazole: from 33.6% to 45.3%; levofloxacin: from 19% to 29.7%; p < .001), when a plateau until 2016 was observed (clarithromycin: 35.9%; metronidazole: 40.2%; levofloxacin: 29.3%). A similar trend occurred for clarithromycin-metronidazole combined resistance rate (2010: 11.4%; 2013: 28.2%; 2016: 21.9%). Our data suggest that prevalence of primary resistance in H. pylori isolates toward the most frequently used antibiotics probably reached a plateau in the last years.

  15. Molecular Characteristics of Erythromycin-Resistant Streptococcus pyogenes Strains Isolated from Children Patients in Tunis, Tunisia.

    PubMed

    Ksia, Sonia; Smaoui, Hanen; Hraoui, Manel; Bouafsoun, Aida; Boutiba-Ben Boubaker, Ihem; Kechrid, Amel

    2017-07-01

    The aims of our study were to characterize phenotypically and genotypically erythromycin-resistant Streptococcus pyogenes or group A streptococci (ERGAS) isolates, to evaluate macrolide resistance and to analyze the association between emm types and virulence factors. Included in this study were all ERGAS strains isolated from 2000 to 2013 at the Children's hospital of Tunis. Antimicrobial susceptibility was performed according to the CA-SFM guidelines. Macrolide resistance genes were revealed by polymerase chain reaction (PCR) method. Virulence factor genes (pyrogenic exotoxin genes and superantigen gene) were detected by PCR, and the emm types were defined by the sequencing of the variable 5' end of the emm gene. Among the 289 GAS isolates collected, 15 (5.2%) were resistant to erythromycin; 7 of the strains were assigned to the cMLS B phenotype (46.6%); 5 harbored ermB gene alone (33.3%); and 2 strains coharbored ermB and mefA (13.3%). The remaining (53.4%) were assigned to the M phenotype and harbored the mefA gene. The frequency of detection of each toxin gene among ERGAS was 13.4% for speA (2 strains), 53.4% for speC (8 strains), and 13.4% for ssa (2 strains). Emm types 1, 58, 11, and 78 were the most frequent among ERGAS strains. The distribution of the cMLS B and M phenotypes changed over the period of investigation with a decrement of cMLS B phenotype and ermB gene that predominated between 2000 and 2006 and an increase of M phenotype and mefA gene between 2007 and 2013, but this difference was nonstatistically significant because of the low number of resistant strains. Emm types 1, 58, and 4 were only present among strains assigned to the M phenotype. However strains assigned to the cMLS B phenotype were associated to emm11, emm22, emm28, emm78, or emm76. There was diversity in emm distribution in ERGAS between the two study periods. There was diversity in emm distribution among ERGAS particularly in 2000-2006. Indeed, from 2000 to 2006, the 6 ERGAS

  16. Immunization of Mice with Formalin-Inactivated Spores from Avirulent Bacillus cereus Strains Provides Significant Protection from Challenge with Bacillus anthracis Ames

    PubMed Central

    Vergis, James M.; Cote, Christopher K.; Bozue, Joel; Alem, Farhang; Ventura, Christy L.; Welkos, Susan L.

    2013-01-01

    Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vaccine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that primarily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores (FIS) from a nonencapsulated, nontoxigenic B. anthracis strain confers protection against B. anthracis challenge when PA is also administered. To investigate the capacity of the spore particle to act as a vaccine without PA, we immunized mice subcutaneously with FIS from nontoxigenic, nonencapsulated B. cereus strain G9241 pBCXO1−/pBC210− (dcG9241), dcG9241 ΔbclA, or 569-UM20 or with exosporium isolated from dcG9241. FIS vaccination provided significant protection of mice from intraperitoneal or intranasal challenge with spores of the virulent B. anthracis Ames or Ames ΔbclA strain. Immunization with dcG9241 ΔbclA FIS, which are devoid of the immunodominant spore protein BclA, provided greater protection from challenge with either Ames strain than did immunization with FIS from BclA-producing strains. In addition, we used prechallenge immune antisera to probe a panel of recombinant B. anthracis Sterne spore proteins to identify novel immunogenic vaccine candidates. The antisera were variably reactive with BclA and with 10 other proteins, four of which were previously tested as vaccine candidates. Overall our data show that immunization with FIS from nontoxigenic, nonencapsulated B. cereus strains provides moderate to high levels of protection of mice from B. anthracis Ames challenge and that neither PA nor BclA is required for this protection. PMID:23114705

  17. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa

    PubMed Central

    Possiede, Y.M.; Gabardo, J.; Kava-Cordeiro, V.; Galli-Terasawa, L.V.; Azevedo, J.L.; Glienke, C.

    2009-01-01

    Citrus black spot (CBS) is a plant disease of worldwide occurrence, affecting crops in Africa, Oceania, and South America. In Brazil, climate provides favorable conditions and CBS has spread to the Southeast and South regions. CBS is caused by the fungus Guignardia citricarpa (anamorph: Phyllosticta citricarpa) and its control is based on the use of fungicides, such as benzimidazoles. In South Africa, the disease was kept under control for 10 years with benomyl, until cases of resistance to high concentrations of this fungicide were reported from all citrus-producing areas. Azoxystrobin (a strobilurin) has been found effective in controlling phytopathogens, including CBS, in a wide range of economically important crops. The present study investigated in vitro the effects of the fungicides benomyl and azoxystrobin on 10 strains of G. citricarpa isolated from lesions in citrus plants from Brazil and South Africa. Benomyl at 0.5 μg/mL inhibited mycelial growth in all strains except PC3C, of African origin, which exhibited resistance to concentrations of up to 100.0 μg/mL. The spontaneous mutation frequency for resistance to benomyl was 1.25 × 10-7. Azoxystrobin, even at high concentrations, did not inhibit mycelial growth in any of the strains, but significantly reduced sporulation rates, by as much as 100%, at a concentration of 5.0 μg/mL. Variations in sensitivity across strains, particularly to the strobilurin azoxystrobin, are possibly related to genetic variability in G. citricarpa isolates. PMID:24031363

  18. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant Enterococcus strains result in high-level vancomycin resistance and low-level teicoplanin resistance.

    PubMed

    Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y

    2000-04-15

    The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.

  19. Suppression of host resistance against Listeria monocytogenes infection by 15-deoxyspergualin in mice.

    PubMed Central

    Nakane, A; Numata, A; Minagawa, T

    1990-01-01

    The effects of 15-deoxyspergualin (DSG), an immunosuppressive agent, on host resistance against Listeria monocytogenes were studied in mice. Administration of DSG in the early phase of infection resulted in fatal listeriosis by preventing acquired anti-listerial resistance, even though the infectious dose was sublethal for the untreated controls. In contrast, DSG treatment started after development of the acquired immunity was ineffective. Endogenous production of interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) in the bloodstreams induced by the infection was normal in DSG-treated mice. Nevertheless, augmentation of macrophage functions such as expression of major histocompatibility complex (MHC) class II antigens, phagocytic activity and listericidal activity induced by the infection was abrogated by DSG treatment. These results suggest that the inhibitory effect of DSG on anti-listerial resistance might be different from cyclosporine A (CsA). PMID:2126253

  20. Diversity of Antibiotic Resistance Genes in Enterococcus Strains Isolated from Ready-to-Eat Meat Products.

    PubMed

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Łaniewska-Trokenheim, Łucja

    2016-10-25

    The objective of the study was to answer the question of whether the ready-to-eat meat products can pose indirect hazard for consumer health serving as reservoir of Enterococcus strains harboring tetracyclines, aminoglycosides, and macrolides resistance genes. A total of 390 samples of ready-to-eat meat products were investigated. Enterococcus strains were found in 74.1% of the samples. A total of 302 strains were classified as: Enterococcus faecalis (48.7%), Enterococcus faecium (39.7%), Enterococcus casseliflavus (4.3%), Enterococcus durans (3.0%), Enterococcus hirae (2.6%), and other Enterococcus spp. (1.7%). A high percentage of isolates were resistant to streptomycin high level (45%) followed by erythromycin (42.7%), fosfomycin (27.2%), rifampicin (19.2%), tetracycline (36.4%), tigecycline (19.9%). The ant(6')-Ia gene was the most frequently found gene (79.6%). Among the other genes that encode aminoglycosides-modifying enzymes, the highest portion of the strains had the aac(6')-Ie-aph(2'')-Ia (18.5%) and aph(3'')-IIIa (16.6%), but resistance of isolates from food is also an effect of the presence of aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id genes. Resistance to tetracyclines was associated with the presence of tetM (43.7%), tetL (32.1%), tetK (14.6%), tetW (0.7%), and tetO (0.3%) genes. The ermB and ermA genes were found in 33.8% and 18.9% of isolates, respectively. Nearly half of the isolates contained a conjugative transposon of the Tn916/Tn1545 family. Enterococci are widely present in retail ready-to-eat meat products. Many isolated strains (including such species as E. casseliflavus, E. durans, E. hirae, and Enterococcus gallinarum) are antibiotic resistant and carry transferable resistance genes. © 2016 Institute of Food Technologists®.

  1. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    USDA-ARS?s Scientific Manuscript database

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  2. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  3. Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis

    PubMed Central

    Sue, David; Gee, Jay E.; Elrod, Mindy G.; Hoffmaster, Alex R.; Randall, Linnell B.; Chirakul, Sunisa; Tuanyok, Apichai; Schweizer, Herbert P.; Weigel, Linda M.

    2017-01-01

    ABSTRACT Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei. Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis. PMID:28396541

  4. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa.

    PubMed

    Fournier, Damien; Richardot, Charlotte; Müller, Emeline; Robert-Nicoud, Marjorie; Llanes, Catherine; Plésiat, Patrick; Jeannot, Katy

    2013-08-01

    Pseudomonas aeruginosa can become resistant to carbapenems by both intrinsic (mutation-driven) and transferable (β-lactamase-based) mechanisms. Knowledge of the prevalence of these various mechanisms is important in intensive care units (ICUs) in order to define optimal prevention and therapeutic strategies. A total of 109 imipenem-non-susceptible (MIC >4 mg/L) strains of P. aeruginosa were collected in June 2010 from the ICUs of 26 French public hospitals. Their resistance mechanisms were characterized by phenotypic, enzymatic, western blotting and molecular methods. Single or associated imipenem resistance mechanisms were identified among the 109 strains. Seven isolates (6.4%) were found to produce a metallo-β-lactamase (one VIM-1, four VIM-2, one VIM-4 and one IMP-29). Porin OprD was lost in 94 (86.2%) strains as a result of mutations or gene disruption by various insertion sequences (ISPa1635, ISPa1328, IS911, ISPs1, IS51, IS222 and ISPa41). Thirteen other strains were shown to be regulatory mutants in which down-regulation of oprD was coupled with overexpressed efflux pumps CzcCBA (n = 1), MexXY (n = 9) and MexEF-OprN (n = 3). The lack of OprD was due to disruption of the oprD promoter by ISPsy2 in one strain and alteration of the porin signal sequence in another. Imipenem resistance in ICU P. aeruginosa strains may result from multiple mechanisms involving metallo-β-lactamase gene acquisition and genetic events (mutations and ISs) inactivating oprD, turning down its expression while increasing efflux activities or preventing insertion of porin OprD in the outer membrane. This diversity of mechanisms allows P. aeruginosa, more than any other nosocomial pathogen, to rapidly adapt to carbapenems in ICUs.

  5. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  6. The persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive M. elsdenii strains to prevent colonization of swine by antibiotic-resistant strains

    USDA-ARS?s Scientific Manuscript database

    Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC = 64->256 micro g/ml) and to carry mosaic (re...

  7. Antibiotic resistance and molecular characterization of probiotic and clinical Lactobacillus strains in relation to safety aspects of probiotics.

    PubMed

    Klein, Günter

    2011-02-01

    The evaluation of the safety of probiotic strains includes the exclusion of antibiotic resistance of clinical importance. Ninety-two strains from the genus Lactobacillus isolated from probiotics, food, and clinical sources were included in the investigation. Species tested were the L. acidophilus group, L. casei group, L. reuteri/fermentum group, and L. sakei/curvatus group. Cell and colony morphology, fermentation patterns, and growth characteristics as well as soluble whole cell proteins were analyzed. Antibiotic resistance against clinically important agents was determined by broth dilution tests. The vanA and tet genes were confirmed. Resistances occurred mainly against gentamicin, ciprofloxacin, clindamycin, sulfonamides, and, in some cases, glycopeptides. The natural glycopeptide resistance within the L. casei group and L. reuteri appears to be not of clinical relevance, as there was no vanA gene present. Therefore, the transfer of this resistance is very unlikely. Tet-(A), -(B), -(C), -(M), or -(O) gene could not be detected. The protein fingerprinting within the L. casei group proved that L. rhamnosus strains of clinical origin clustered together with probiotic strains. For safety evaluations resistance patterns of a broad range of strains are a useful criterion together with the exclusion of known resistance genes (like the vanA gene) and can be used for decision making on the safety of probiotics, both by authorization bodies and manufacturers.

  8. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge.

    PubMed

    Kelada, Samir N P

    2016-09-08

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics. Copyright © 2016 Kelada.

  9. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge

    DOE PAGES

    Kelada, Samir N. P.

    2016-07-22

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less

  10. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelada, Samir N. P.

    Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less

  11. Intradermal infections of mice by low numbers of african trypanosomes are controlled by innate resistance but enhance susceptibility to reinfection.

    PubMed

    Wei, Guojian; Bull, Harold; Zhou, Xia; Tabel, Henry

    2011-02-01

    Antibodies are required to control blood-stage forms of African trypanosomes in humans and animals. Here, we report that intradermal infections by low numbers of African trypanosomes are controlled by innate resistance but prime the adaptive immune response to increase susceptibility to a subsequent challenge. Mice were found 100 times more resistant to intradermal infections by Trypanosoma congolense or Trypanosoma brucei than to intraperitoneal infections. B cell-deficient and RAG2(-/-) mice are as resistant as wild-type mice to intradermal infections, whereas inducible nitric oxide synthase (iNOS)(-/-) mice and wild-type mice treated with antibody to tumor necrosis factor (TNF) α are more susceptible. We conclude that primary intradermal infections with low numbers of parasites are controlled by innate defense mediated by induced nitric oxide (NO). CD1d(-/-) and major histocompatibility complex (MHC) class II(-/-) mice are more resistant than wild-type mice to primary intradermal infections. Trypanosome-specific spleen cells, as shown by cytokine production, are primed as early as 24 h after intradermal infection. Infecting mice intradermally with low numbers of parasites, or injecting them intradermally with a trypanosomal lysate, makes mice more susceptible to an intradermal challenge. We suggest that intradermal infections with low numbers of trypanosomes or injections with trypanosomal lysates prime the adaptive immune system to suppress protective immunity to an intradermal challenge.

  12. Unexpected Resistance to X-Irradiation in a Strain of Hybrid Mammalian Cells

    PubMed Central

    Little, John B.; Richardson, U. Ingrid; Tashjian, Armen H.

    1972-01-01

    The radiosensitivities of a strain of mouse fibroblasts (Cl-1D), of rat pituitary cells (GH12C1), and of a hybrid between the two (α-RST) have been studied. Their mean chromosome numbers were 50, 70, and 111, respectively. The hybrid cells were much more resistent to radiation than either of the parent strains. The range of the D0 (reciprocal of the slope, and therefore a measure of radiosensitivity) for the linear portion of the survival curves for each cell line was: Cl-1D, 134-142 R; GH12C1, 154-170 R; and α-RST, 248-274 R. There were no significant differences in the magnitude of the shoulder or extrapolation number of the survival curves, nor in the ability of the three cell strains to accumulate and repair sublethal radiation damage. It appears unlikely that the unusual resistance of the hybrid strain is simply related to the increase in chromosome number; more likely, it involves some interaction between the two genomes. The study of somatic cell hybrids may offer further insight into the factors controlling the radiosensitivity of mammalian cells. PMID:4504344

  13. Coagulase-positive Staphylococcus isolated from wildlife: Identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Gnat, Sebastian; Wojtanowicz-Markiewicz, Katarzyna; Trościańczyk, Aleksandra

    2016-02-01

    The aim of the study was molecular analysis of coagulase-positive isolates of Staphylococcus bacteria obtained from wild animals and evaluation of their resistance to antimicrobial agents. A total of 76 rectal swabs were taken from wild animals. The species of the Staphylococcus isolates was determined by MALDI TOF MS, susceptibility to antimicrobials was evaluated by phenotypic and molecular methods, epidemiological analysis (ADSRRS-fingerprinting) was also carried out. MRSA isolate was typed by MLST and spa-typing. The animals tested, were carriers (n=38) of coagulase-positive Staphylococcus (S. aureus, S. pseudintermedius and S. delphini B). Analyzed isolates were resistant to 1 or 2 antimicrobials, which was confirmed by the presence of genes (blaZ, ermA, ermB, msrA, tetK and tetM). A multi-drug resistant and methicillin-resistant isolate of S. aureus was obtained as well (MRSA, ST8, t1635, PVL-positive and ACME-negative). The ADSRRS-fingerprinting method enabled interspecific and intraspecific differentiation of coagulase-positive Staphylococcus isolates, revealing a certain degree of correlation between the species of the isolate, and the degree of similarity between the isolates. The presence of resistance genes in 13% (5/38) of the isolates obtained from wild animals, including one methicillin-resistant isolate, is relatively small in comparison to the degree of colonization by resistant strains in humans, livestock or pets. Nevertheless, due to the possibility of contact between wild animals, domestic animals and humans, transmission of resistant strains is possible, as suggested by our isolation of a MRSA strain typed as ST8 and specific spa type t1635, which had previously been isolated exclusively from humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue.

    PubMed

    Cheng, Shaoji; Clancy, Cornelius J; Zhang, Zongde; Hao, Binghua; Wang, Wei; Iczkowski, Kenneth A; Pfaller, Michael A; Nguyen, M Hong

    2007-02-01

    After five serial passages of Candida albicans SC5314 through murine spleens by intravenous inoculation, we recovered a respiratory mutant (strain P5) that exhibited reduced colony size, stunted growth in glucose-deficient media, increased oxygen consumption and defective carbohydrate assimilation. Strain P5 was indistinguishable from SC5314 by DNA typing methods, but had a greater concentration of mitochondria by SYTO18 staining. Treatment with various inhibitors demonstrated that strain P5's electron transport chain was intact and oxidative phosphorylation was uncoupled. During disseminated candidiasis, the mutant did not kill mice or cause extensive damage to kidneys. The burden of strain P5 within kidneys on the first 3 days of disseminated candidiasis was significantly reduced. By days 28 and 60, it was similar to that at the time of death among mice infected with SC5314, suggesting that the mutant persisted and proliferated without killing mice. Strain P5 was resistant to phagocytosis by neutrophils and macrophages. It was also significantly more resistant to paraquat, suggesting that it is able to neutralize reactive oxygen species. Our findings indicate that regulation of respiration influences the interaction between C. albicans and the host. Uncoupling of oxidative phosphorylation might be a mechanism by which the organism adapts to stressful host environments.

  15. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    PubMed

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  16. Whole genome analysis of an MDR Beijing/W strain of Mycobacterium tuberculosis with large genomic deletions associated with resistance to isoniazid.

    PubMed

    Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng

    2016-05-15

    Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    PubMed Central

    Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael

    2011-01-01

    Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain

  18. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    PubMed

    Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2013-09-23

    The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans.

    PubMed

    Upadhya, Rajendra; Lam, Woei C; Maybruck, Brian; Specht, Charles A; Levitz, Stuart M; Lodge, Jennifer K

    2016-05-10

    Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection. The most commonly used anticryptococcal therapies include amphotericin B, 5-fluorocytosine, and fluconazole alone or in combination. Major drawbacks of these treatment options are their limited efficacy, poor availability in limited resource areas, and potential toxicity. The development of antifungal vaccines and immune-based therapeutic interventions is promising and an attractive alternative to chemotherapeutics

  20. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    PubMed Central

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  1. Genetic basis of differences in myxospore count between whirling disease-resistant and -susceptible strains of rainbow trout

    USGS Publications Warehouse

    Fetherman, Eric R.; Winkelman, Dana L.; Schisler, George J.; Antolin, Michael F.

    2012-01-01

    We used a quantitative genetics approach and estimated broad sense heritability (h2b) of myxospore count and the number of genes involved in myxospore formation to gain a better understanding of how resistance to Myxobolus cerebralis, the parasite responsible for whirling disease, is inherited in rainbow trout Oncorhynchus mykiss. An M. cerebralis-resistant strain of rainbow trout, the German Rainbow (GR), and a wild, susceptible strain of rainbow trout, the Colorado River Rainbow (CRR), were spawned to create 3 intermediate crossed populations (an F1 cross, F2 intercross, and a B2 backcross between the F1 and the CRR). Within each strain or cross, h2b was estimated from the between-family variance of myxospore counts using full-sibling families. Estimates of h2b and average myxospore counts were lowest in the GR strain, F1 cross, and F2 intercross (h2b = 0.34, 0.42, and 0.34; myxospores fish−1 = 275, 9566, and 45780, respectively), and highest in the B2 backcross and CRR strain (h2b = 0.93 and 0.89; myxospores fish−1 = 97865 and 187595, respectively). Comparison of means and a joint-scaling test suggest that resistance alleles arising from the GR strain are dominant to susceptible alleles from the CRR strain. Resistance was retained in the intermediate crosses but decreased as filial generation number increased (F2) or backcrossing occurred (B2). The estimated number of segregating loci responsible for differences in myxospore count in the parental strains was 9 ± 5. Our results indicate that resistance to M. cerebralis is a heritable trait within these populations and would respond to either artificial selection in hatcheries or natural selection in the wild.

  2. Complete Genome Sequence of Carbapenem-Resistant Klebsiella pneumoniae Strain 1756, Isolated from a Pus Specimen.

    PubMed

    Kao, Cheng-Yen; Yan, Jing-Jou; Lin, Yu-Chun; Zheng, Po-Xing; Wu, Jiunn-Jong

    2017-03-30

    Carbapenem-resistant Klebsiella pneumoniae strain 1756 was isolated from a pus specimen from a Taiwanese patient. Here, the complete genome sequence of strain 1756 is presented. Copyright © 2017 Kao et al.

  3. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    PubMed

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  4. Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    PubMed Central

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347

  5. Abnormalities in the WFU strain of Taenia crassiceps (Cyclophyllidea: Taeniidae) following years of propagation in mice.

    PubMed

    Aguilar-Vega, L; García-Prieto, L; Zurabian, R

    2016-09-01

    Asexually proliferating Taenia crassiceps (Zeder, 1800) metacestodes isolated within past decades have been successfully sub-cultured under experimental conditions using Mus musculus Linnaeus, 1758 mice. However, during their development, morphological irregularities of scolex structures have been reported in two of the three strains of this cestode species maintained in mice - ORF and KBS. The main goal of this work is to describe the abnormalities observed in a sample of 118 cysticerci of the third T. crassiceps strain used at present - WFU. Morphological abnormalities were detected in 39.8% of the evaginated scoleces; they consisted of supernumerary suckers (n= 2), duplicated (n= 2) or absent rostellum (n= 1), as well as absent or aberrant (n= 29) hooks, which were significantly shorter when compared to the large and short hook lengths referred to in the literature.

  6. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    PubMed

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.

  8. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: a malaria vector.

    PubMed

    Sanil, D; Shetty, V; Shetty, N J

    2014-06-01

    Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.

  9. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

    PubMed Central

    D’Apolito, Maria; Du, Xueliang; Zong, Haihong; Catucci, Alessandra; Maiuri, Luigi; Trivisano, Tiziana; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Raia, Valeria; Pessin, Jeffrey E.; Brownlee, Michael; Giardino, Ida

    2009-01-01

    Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease. PMID:19955654

  10. [Effect of Jinlida on DGAT1 in Skeletal Muscle in Fat-Induced Insulin Resistance ApoE -/- Mice].

    PubMed

    Jin, Xin; Zhang, Hui-xin; Cui, Wen-wen

    2015-06-01

    To investigate the effect of Jinlida on DGAT1 in skeletal muscle in fat-induced insulin resistance ApoE-/- mice. Eight male C57BL/6J mice were used as normal group. 40 male ApoE -/- mice were fed high-fat diet for 16 weeks and divided into five groups: control group, rosiglitazone group, and Jinlida low, middle and high dose groups. Then corresponding drugs were administrated intragastrically for eight weeks. TG content in skeletal muscle was measured by enzymic enzymatic, Glucose tolerance test (OGTT) was used to evaluate the degree of insulin resistance in mice. The mRNA and protein expression of insulin receptor substrate (IRS-1) and diacylglycerol acyltransferase 1 (DGAT1) in skeletal muscle were measured by real-time quantitative reverse transcription PCR (RT-PCR)and Western blot. Jinlida particles reduced fasting blood glucose (FBG) cholesterol (TC), triglyceride (TG), free fatty acid (FFA)and fasting insulin (FIns) levels, raised insulin sensitive index (ISI), improved glucose tolerance, and reduced skeletal muscle lipid deposition in ApoE -/- mice significantly. Jinlida particles increased the expression of IRS-1 mRNA and protein, and reduced DGAT1. Jinlida can alleviate the expression of DGAT in skeletal muscle in fat-induced insulin resistance ApoE-/- mice.

  11. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae)

    PubMed Central

    Lilly, David G.; Latham, Sharissa L.; Webb, Cameron E.; Doggett, Stephen L.

    2016-01-01

    Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest’s resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects. PMID:27073871

  12. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae).

    PubMed

    Lilly, David G; Latham, Sharissa L; Webb, Cameron E; Doggett, Stephen L

    2016-01-01

    Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest's resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects.

  13. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains.

    PubMed

    Raymond, Gregory J; Raymond, Lynne D; Meade-White, Kimberly D; Hughson, Andrew G; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S; Miller, Michael W; Race, Richard E; Caughey, Byron

    2007-04-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.

  14. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F

    2000-10-01

    To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.

  15. Proteinuria in mice expressing PKB/SGK-resistant GSK3.

    PubMed

    Boini, Krishna M; Amann, Kerstin; Kempe, Daniela; Alessi, Dario R; Lang, Florian

    2009-01-01

    SGK1 is critically important for mineralocorticoid/salt-induced glomerular injury. SGK1 inactivates GSK3, which downregulates Snail, a DNA-binding molecule repressing the transcription of nephrin, a protein critically important for the integrity of the glomerular slit membrane. PKB/SGK-dependent GSK regulation is disrupted in mice carrying a mutation, in which the serine in the SGK/PKB-phosphorylation consensus sequence is replaced by alanine. The present study explored whether PKB/SGK-dependent GSK3 regulation influences glomerular proteinuria. Gene-targeted knockin mice with mutated and thus PKB/SGK-resistant GSK3alpha,beta (gsk3(KI)) were compared with their wild-type littermates (gsk3(WT)). gsk3(KI) and gsk3(WT) mice were implanted with DOCA release pellets and offered 1% saline as drinking water for 21 days. Under standard diet, tap water intake and absence of DOCA, urinary flow rate, glomerular filtration rate, and urinary albumin excretion were significantly larger and blood pressure was significantly higher in gsk3(KI) than in gsk3(WT) mice. Within 18 days, DOCA/salt treatment significantly increased fluid intake and urinary flow rate, urinary protein and albumin excretion, and blood pressure in both genotypes but the respective values were significantly higher in gsk3(KI) than in gsk3(WT) mice. Plasma albumin concentration was significantly lower in gsk3(KI) than in gsk3(WT) mice. Proteinuria was abrogated by lowering of blood pressure with alpha(1)-blocker prazosin (1 microg/g body wt) in 8-mo-old mice. According to immunofluorescence, nephrin at 3 and 8 mo and podocin expression at 3 mo were significantly lower in gsk3(KI) than in gsk3(WT) mice. After 18 days, DOCA/salt treatment renal glomerular sclerosis and tubulointerstitial damage were significantly more pronounced in gsk3(KI) than in gsk3(WT) mice. The observations reveal that disruption of PKB/SGK-dependent regulation of GSK3 leads to glomerular injury with proteinuria, which may at least

  16. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    PubMed

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia.

  17. GPER Deficiency in Male Mice Results in Insulin Resistance, Dyslipidemia, and a Proinflammatory State

    PubMed Central

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L.; Zhu, Gang; Hathaway, Helen J.

    2013-01-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes. PMID:23970785

  18. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state.

    PubMed

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L; Zhu, Gang; Hathaway, Helen J; Prossnitz, Eric R

    2013-11-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.

  19. Reversal effect and mechanism of Ginkgo biloba exocarp extracts in multidrug resistance of mice S180 tumor cells

    PubMed Central

    Hu, Bi-Yuan; Gu, Yun-Hao; Cao, Chen-Jie; Wang, Jun; Han, Dong-Dong; Tang, Ying-Chao; Chen, Hua-Sheng; Xu, Aihua

    2016-01-01

    The aim of the present study was to investigate the reversal effect and its related mechanism of Ginkgo biloba exocarp extracts (GBEEs) in obtained multidrug resistance (MDR) of mice S180 tumor cells in vitro and in vivo. In order to simulate the clinical PFC [cis-dichlorodiamineplatinum, cisplatin (DDP) + fluorouracil (FU), FU+cyclophosphamide and cyclophosphamide] scheme, a gradually increasing dose was administered in a phased induction in order to induce S180 cells in vivo and to make them obtain multidrug resistance. The results in vitro demonstrated that GBEE could significantly increase the IC50 of DDP on S180 MDR cells, increase the accumulation of Adriamycin (ADR) and rhodamine 123 (Rho 123), and reduce the efflux of Rho 123 of S180 MDR cells. The results from the in vivo treatment with a combination of GBEE and DDP to S180 MDR ascites tumor in mice demonstrated that each dose of GBEE could effectively reverse the drug-resistance of S180 MDR cells to DDP in order to extend the survival time of mice with ascite tumors and inhibit tumor growth in solid tumor mice. In addition, GBEE effectively inhibited the expression of MDR-1 mRNA and multidrug resistance-associated protein-1 mRNA in S180 MDR cells of ascites tumor in mice and improved the expression levels of cytokines, including interleukin (IL)-3, IL-18 and interferon-γ in the blood serum of S180 MDR tumor-bearing mice. The present study showed that the mechanism of GBEE reversal of MDR may be associated with the inhibition of the functional activity of P-glycoprotein, the downregulation of drug resistance related gene expression of S180 MDR cells and the improvement of the production of related serum cytokines of S180 MDR tumor mice. PMID:27698692

  20. Draft genome sequence of carbapenem-resistant Shewanella algae strain AC isolated from small abalone (Haliotis diversicolor).

    PubMed

    Huang, Yao-Ting; Cheng, Jan-Fang; Chen, Shi-Yu; Hong, Yu-Kai; Wu, Zong-Yen; Liu, Po-Yu

    2018-06-19

    Shewanella algae is an environmental marine bacteria and an emerging opportunistic human pathogen. Moreover, there are increasing reports of strains showing multi-drug resistance, particularly carbapenem-resistant isolates. Although S. algae have been found in bivalve shellfish aquaculture, there is very little genome-wide data on resistant determinants in S. algae from shellfish. In the study, we aimed to determine the whole genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone in Taiwan. Genome DNA was sequenced using an Illumina MiSeq platform using 250bp paired-end reads. De novo genome assembly was performed using Velvet v1.2.07. The whole genome was annotated and several candidate genes for antimicrobial resistance were identified. The genome size was calculated at 4,751,156bp, with a mean G+C content of 53.09%. A total of 4,164 protein-coding sequences, 7 rRNAs, 85 tRNAs, and 5 non-coding RNAs were identified. The genome contains genes associated with resistance to β-lactams, trimethoprim, tetracycline, colistin, and quinolone resistance. Multiple efflux pump genes were also detected. Small abalone is a potential source of foodborne drug resistant S. algae. The genome sequence of a carbapenem-resistant S. algae strain AC isolated from small abalone will provide valuable information for further study of the dissemination of resistance genes at the human-animal interface. Copyright © 2018. Published by Elsevier Ltd.

  1. Polymorphisms and resistance mutations in the protease and reverse transcriptase genes of HIV-1 F subtype Romanian strains.

    PubMed

    Paraschiv, Simona; Otelea, Dan; Dinu, Magdalena; Maxim, Daniela; Tinischi, Mihaela

    2007-03-01

    To evaluate the prevalence of resistance mutations in the genome of HIV-1 F subtype strains isolated from Romanian antiretroviral (ARV) treatment-naïve patients and to assess the phylogenetic relatedness of these strains with other HIV-1 strains. Twenty-nine HIV-1 strains isolated from treatment-naïve adolescents (n=15) and adults (n=14) were included in this study. Resistance genotyping was performed by using Big Dye Terminator chemistry provided by the ViroSeq Genotyping System. The sequences of the protease and reverse transcriptase genes were aligned (ClustalW) and a phylogenetic tree was built (MEGA 3 software). For subtyping purposes, all the nucleotide sequences were submitted to the Stanford database. All the studied strains were found to harbor accessory mutations in the protease gene. The most frequent mutation was M36I (29 of 29 strains), followed by L63T, K20R, and L10V. The number of polymorphisms associated with protease inhibitor resistance was different for the two age groups. Intraphylogenetic divergence was greater for adults than for adolescents infected in childhood. All the strains were found to belong to the F1 subtype. The phylogenetic analysis revealed that Romanian strains clustered together, but distinctly from F1 HIV-1 strains isolated in other parts of the world (Brazil, Finland, and Belgium). Protease secondary mutations are present with high frequency in the HIV-1 F subtype strains isolated from Romanian ARV treatment-naïve patients, but no major resistance mutations were found.

  2. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. FIND Tuberculosis Strain Bank: a Resource for Researchers and Developers Working on Tests To Detect Mycobacterium tuberculosis and Related Drug Resistance.

    PubMed

    Tessema, Belay; Nabeta, Pamela; Valli, Eloise; Albertini, Audrey; Collantes, Jimena; Lan, Nguyen Huu; Romancenco, Elena; Tukavdze, Nestani; Denkinger, Claudia M; Dolinger, David L

    2017-04-01

    The spread of multidrug-resistant (MDR) tuberculosis (TB) and extensively drug-resistant (XDR) TB hampers global efforts in the fight against tuberculosis. To enhance the development and evaluation of diagnostic tests quickly and efficiently, well-characterized strains and samples from drug-resistant tuberculosis patients are necessary. In this project, the Foundation for Innovative New Diagnostics (FIND) has focused on the collection, characterization, and storage of such well-characterized reference materials and making them available to researchers and developers. The collection is being conducted at multiple centers in Southeast Asia, South America, Eastern Europe, and soon the sub-Saharan Africa regions. Strains are characterized for their phenotypic resistances and MICs to first-line drugs (FLDs) and second-line drugs (SLDs) using the automated MGIT 960 system following validated procedures and WHO criteria. Analysis of resistance-associated mutations is done by whole-genome sequencing (WGS) using the Illumina NextSeq system. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat analysis and WGS are used to determine strain lineages. All strains are maintained frozen at -80°C ± 10°C as distinct mother and daughter lots. All strains are extensively quality assured. The data presented here represent an analysis of the initial part of the collection. Currently, the bank contains 118 unique strains with extracted genomic DNA and matched sputum, serum, and plasma samples and will be expanded to a minimum of 1,000 unique strains over the next 3 years. Analysis of the current strains by phenotypic resistance testing shows 102 (86.4%), 10 (8.5%), and 6 (5.1%) MDR, XDR, and mono/poly resistant strains, respectively. Two of the strains are resistant to all 11 drugs that were phenotypically tested. WGS mutation analysis revealed FLD resistance-associated mutations in the rpoB , katG , inhA , embB , embA , and pncA genes; SLD resistance in the gyr

  4. Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice.

    PubMed

    Matsui, Mariko; Rouleau, Vincent; Bruyère-Ostells, Lilian; Goarant, Cyrille

    2011-11-01

    Leptospirosis is a widespread zoonosis characterized by multiple organ failure and variable host susceptibility toward pathogenic Leptospira strains. In this study, we put the role of inflammatory mediators in parallel with bacterial burdens and organ lesions by comparing a susceptible animal model, the hamster, and a resistant one, the Oncins France 1 (OF1) mouse, both infected with virulent Leptospira interrogans serovar Icterohaemorrhagiae strain Verdun. Histological observations evidenced edema, congestion, hemorrhage, and inflammatory infiltration in the organs of hamsters, in contrast to limited changes in mice. Using reverse transcription-quantitative PCR techniques, we showed that the relative Leptospira burden progressively increased in hamster tissues, while a rapid clearance was observed in mouse tissues. The early regulation of the proinflammatory mediators interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and cyclo-oxygenase-2 and the chemokines gamma interferon-inducible protein 10 kDa/CXCL10 and macrophage inflammatory protein-1α/CCL3 in mouse tissues contrasted with their delayed and massive overexpression in hamster tissues. Conversely, the induction of the anti-inflammatory cytokine IL-10 was faster in the resistant than in the susceptible animal model. The role of these cytokines in the pathophysiology of leptospirosis and the implications of their differential regulation in the development of this disease are discussed.

  5. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data

  6. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent

    PubMed Central

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data

  7. Chromium (D-phenylalanine)3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice.

    PubMed

    Dong, Feng; Kandadi, Machender Reddy; Ren, Jun; Sreejayan, Nair

    2008-10-01

    Chromium has gained popularity as a nutritional supplement for diabetic and insulin-resistant subjects. This study was designed to evaluate the effect of chronic administration of a novel chromium complex of d-phenylalanine [Cr(D-phe)(3)] in insulin-resistant, sucrose-fed mice. Whole-body insulin resistance was generated in FVB mice by 9 wk of sucrose feeding, following which they were randomly assigned to be unsupplemented (S group) or to receive oral Cr(D-phe)(3) in drinking water (SCr group) at a dose of 45 mug.kg(-1).d(-1) ( approximately 3.8 mug of elemental chromium.kg(-1).d(-1)). A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received Cr(D-phe)(3), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving Cr(D-phe)(3). Chromium supplementation significantly enhanced insulin-stimulated Akt phosphorylation and membrane-associated glucose transporter-4 in skeletal muscles of sucrose-fed mice. In cultured adipocytes rendered insulin resistant by chronic exposure to high concentrations of glucose and insulin, Cr(D-phe)(3) augmented Akt phosphorylation and glucose uptake. These results indicate that dietary supplementation with Cr(D-phe)(3) may have potential beneficial effects in insulin-resistant, prediabetic conditions.

  8. Sarcopenia in older mice is characterized by a decreased anabolic response to a protein meal.

    PubMed

    van Dijk, Miriam; Nagel, Jolanda; Dijk, Francina J; Salles, Jerôme; Verlaan, Sjors; Walrand, Stephane; van Norren, Klaske; Luiking, Yvette

    Ageing is associated with sarcopenia, a progressive decline of skeletal muscle mass, muscle quality and muscle function. Reduced sensitivity of older muscles to respond to anabolic stimuli, i.e. anabolic resistance, is part of the underlying mechanisms. Although, muscle parameters have been studied in mice of various ages/strains; the aim was to study if mice display similar deteriorating processes as human ageing. Therefore, 10,16,21 and 25 months-old C57BL6/6J male mice were studied to measure parameters of sarcopenia and factors contributing to its pathophysiology, with the aim of characterizing sarcopenia in old mice. Muscle mass of the hind limb was lower in 25 as compared to 10 month-old mice. A significant decrease in physical daily activity, muscle grip strength and ex vivo muscle maximal force production was observed in 25 compared to 10 month-old mice. The muscle anabolic response to a single protein meal showed increased muscle protein synthesis in young, but not in old mice, indicative to anabolic resistance. However, by increasing the protein content in meals, anabolic resistance could be overcome, similar as in human elderly. Additionally, aged mice showed higher fasted insulin and hepatic malondialdehyde (MDA) levels (=marker oxidative stress). This study shows clear characteristics of sarcopenia that coincide with anabolic resistance, insulin resistance and oxidative stress in 25 month-old C57/BL6 male mice, similar to human ageing. Furthermore, similar decline in muscle mass, strength and function was observed in this aged-mice-model. These observations offer potential for the future to explore in old mice the effects of interventions targeting sarcopenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. In Vitro Activity of Neomycin, Streptomycin, Paromomycin and Apramycin against Carbapenem-Resistant Enterobacteriaceae Clinical Strains

    PubMed Central

    Hu, Ya; Liu, Lu; Zhang, Xiaoxia; Feng, Yu; Zong, Zhiyong

    2017-01-01

    We determined the in vitro susceptibility of four aminoglycosides, which are not of the 4,6-disubstituted deoxystreptamine (DOS) subclass against a collection of carbapenem-resistant Enterobacteriaceae (CRE). CRE clinical strains (n = 134) were collected from multiple hospitals in China and carried blaNDM (blaNDM−1, blaNDM−5 or blaNDM−7; n = 66), blaKPC−2 (n = 62) or blaIMP−4 (n = 7; including one carrying blaNDM−1 and blaIMP−4). MICs of neomycin, paromomycin, streptomycin and apramycin as well as three 4,6-disubstituted DOS aminoglycosides (amikacin, gentamicin and tobramycin) were determined using the broth microdilution with breakpoints defined by the Clinical Laboratory Standards Institute (for amikacin, gentamicin and tobramycin), US Food and Drug Administration (streptomycin), the National Antimicrobial Resistance Monitoring System (apramycin) or la Société Française de Microbiologie (neomycin and paromomycin). Apramycin-resistant strains were subjected to whole genome sequencing using Illumina X10 platform. Among CRE strains, 65.7, 64.9, 79.1, and 95.5% were susceptible to neomycin (MIC50/MIC90, 8/256 μg/ml), paromomycin (4/>256 μg/ml), streptomycin (16/256 μg/ml) and apramycin (4/8 μg/ml), respectively, while only 55.2, 28.4, and 35.1% were susceptible to amikacin (32/>256 μg/ml), gentamicin (128/>256 μg/ml) and tobramycin (64/>256 μg/ml), respectively. Six CRE strains including five Escherichia coli of different sequence types and one Klebsiella pneumoniae were resistant to apramycin and the apramycin-resistant gene aac(3)-IVa was detected in all of these strains. In conclusion, neomycin, paromomycin, streptomycin and apramycin retain activity against most CRE strains. Although none of these non-4,6-disubstituted DOS aminoglycosides are suitable for intravenous use in human at present, these agents warrant further investigations to be used against CRE infections. PMID:29250040

  10. In Vitro Activity of Neomycin, Streptomycin, Paromomycin and Apramycin against Carbapenem-Resistant Enterobacteriaceae Clinical Strains.

    PubMed

    Hu, Ya; Liu, Lu; Zhang, Xiaoxia; Feng, Yu; Zong, Zhiyong

    2017-01-01

    We determined the in vitro susceptibility of four aminoglycosides, which are not of the 4,6-disubstituted deoxystreptamine (DOS) subclass against a collection of carbapenem-resistant Enterobacteriaceae (CRE). CRE clinical strains ( n = 134) were collected from multiple hospitals in China and carried bla NDM ( bla NDM-1 , bla NDM-5 or bla NDM-7 ; n = 66), bla KPC-2 ( n = 62) or bla IMP-4 ( n = 7; including one carrying bla NDM-1 and bla IMP-4 ). MICs of neomycin, paromomycin, streptomycin and apramycin as well as three 4,6-disubstituted DOS aminoglycosides (amikacin, gentamicin and tobramycin) were determined using the broth microdilution with breakpoints defined by the Clinical Laboratory Standards Institute (for amikacin, gentamicin and tobramycin), US Food and Drug Administration (streptomycin), the National Antimicrobial Resistance Monitoring System (apramycin) or la Société Française de Microbiologie (neomycin and paromomycin). Apramycin-resistant strains were subjected to whole genome sequencing using Illumina X10 platform. Among CRE strains, 65.7, 64.9, 79.1, and 95.5% were susceptible to neomycin (MIC 50 /MIC 90 , 8/256 μg/ml), paromomycin (4/>256 μg/ml), streptomycin (16/256 μg/ml) and apramycin (4/8 μg/ml), respectively, while only 55.2, 28.4, and 35.1% were susceptible to amikacin (32/>256 μg/ml), gentamicin (128/>256 μg/ml) and tobramycin (64/>256 μg/ml), respectively. Six CRE strains including five Escherichia coli of different sequence types and one Klebsiella pneumoniae were resistant to apramycin and the apramycin-resistant gene aac(3)-IVa was detected in all of these strains. In conclusion, neomycin, paromomycin, streptomycin and apramycin retain activity against most CRE strains. Although none of these non-4,6-disubstituted DOS aminoglycosides are suitable for intravenous use in human at present, these agents warrant further investigations to be used against CRE infections.

  11. Vaccination with Brucella abortus rough mutant RB51 protects BALB/c mice against virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis.

    PubMed Central

    Jiménez de Bagüés, M P; Elzer, P H; Jones, S M; Blasco, J M; Enright, F M; Schurig, G G; Winter, A J

    1994-01-01

    Vaccination of BALB/c mice with live Brucella abortus RB51, a stable rough mutant, produced protection against challenge with virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Passive-transfer experiments indicated that vaccinated mice were protected against B. abortus 2308 through cell-mediated immunity, against B. ovis PA through humoral immunity, and against B. melitensis 16M through both forms of immunity. Live bacteria were required for the induction of protective cell-mediated immunity; vaccination with whole killed cells of strain RB51 failed to protect mice against B. abortus 2308 despite development of good delayed-type hypersensitivity reactions. Protective antibodies against the heterologous species were generated in vaccinated mice primarily through anamnestic responses following challenge infections. Growth of the antigenically unrelated bacterium Listeria monocytogenes in the spleens of vaccinated mice indicated that nonspecific killing by residual activated macrophages contributed minimally to protection. These results encourage the continued investigation of strain RB51 as an alternative vaccine against heterologous Brucella species. However, its usefulness against B. ovis would be limited if, as suggested here, epitopes critical for protective cell-mediated immunity are not shared between B. abortus and B. ovis. Images PMID:7927779

  12. Inhibition of Hyphal Growth of Azole-Resistant Strains of Candida albicans by Triazole Antifungal Agents in the Presence of Lactoferrin-Related Compounds

    PubMed Central

    Wakabayashi, Hiroyuki; Abe, Shigeru; Teraguchi, Susumu; Hayasawa, Hirotoshi; Yamaguchi, Hideyo

    1998-01-01

    The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from >256 to 0.25 μg/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis. PMID:9660988

  13. Contribution of orosensory stimulation to strain differences in oil intake by mice.

    PubMed

    Glendinning, John I; Feld, Natalie; Goodman, Leora; Bayor, Rouane

    2008-10-20

    Little is known about why animals differ in daily intake of oils. Here, we tested the hypothesis that the oral acceptability of oil is a key determinant of daily intake. To this end, we examined short- and long-term ingestive responses of eight mouse strains (FVB/NJ, SWR/J, SM/J, C57BL/6J, BALB/cJ, 129P3/J, DBA/2J and AKR/J) to Intralipid, a stable emulsion of soybean oil. In Experiment 1, we compared orosensory responsiveness (as indicated by initial licking rates) of eight mouse strains to a range of concentrations of Intralipid and sucrose. We included sucrose because there are two natural alleles of Tas1r3 (the gene that encodes the T1R3 sweet taste receptor), and strains with the Tas1r3Sac-b allele exhibit higher daily intake of sucrose and oil than strains with the Tas1r3Sac-d allele. All strains exhibited concentration-dependent increases in lick rates for both sucrose and Intralipid, but the extent of these increases varied greatly across strains. The strains with the Tas1r3Sac-b allele licked more vigorously for sucrose at concentrations < or =0.3 M, but not for Intralipid at any concentration. In Experiment 2, we ran the mice through 24-h preference tests, in which they had a choice between water and each of four concentrations of Intralipid (1, 5, 10 and 20%). The strains differed greatly in daily intake of Intralipid, particularly at the 1 and 5% concentrations. Regression analyses revealed that strain differences in orosensory responsiveness reliably predicted strain differences in daily intake of 1 and 5% Intralipid, but not 10 or 20% Intralipid. These findings indicate (i) that Tas1r3 genotype does not modulate orosensory stimulation from oil, (ii) that orosensory stimulation contributes to strain differences in daily intake of dilute oil emulsions, but not concentrated ones, and (iii) that daily intake of concentrated oil emulsions is controlled primarily by post-oral satiety mechanisms.

  14. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  15. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, R.J.

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhancesmore » /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.« less

  16. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis.

    PubMed

    Anderson, G W; Leary, S E; Williamson, E D; Titball, R W; Welkos, S L; Worsham, P L; Friedlander, A M

    1996-11-01

    The purified recombinant V antigen from Yersinia pestis, expressed in Escherichia coli and adsorbed to aluminum hydroxide, an adjuvant approved for human use, was used to immunize outbred Hsd:ND4 mice subcutaneously. Immunization protected mice from lethal bubonic and pneumonic plague caused by CO92, a wild-type F1+ strain, or by the isogenic F1- strain C12. This work demonstrates that a subunit plague vaccine formulated for human use provides significant protection against bubonic plague caused by an F1- strain (C12) or against substantial aerosol challenges from either F1+ (CO92) or F1-(C12) Y. pestis.

  17. Comparison of infectivity and virulence of clones of Trypanosoma evansi and Ttrypanosoma equiperdum Venezuelan strains in mice.

    PubMed

    T, Perrone; P M, Aso; A, Mijares; P, Holzmuller; M, Gonzatti; N, Parra

    2018-04-15

    Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum are widely distributed and limit animal production throughout the world. The infectivity and virulence of clones derived from Trypanosoma evansi and Trypanosoma equiperdum Venezuelan strains were compared in an in vivo mouse model. Primary infectivity and virulence determinants such as survival rates, parasitemia levels, PCV, and changes in body weight and survival rates were monitored for up to 32 days. The T. equiperdum strain was the most virulent, with 100% mortality in mice, with the highest parasitemia levels (7.0 × 10 7 Tryps/ml) and loss of physical condition. The T. evansi strains induced 100% and 20% fatality in mice. Our results show that the homogeneous parasite populations maintain the virulent phenotype of the original T. equiperdum and T. evansi stocks. This is the first comparative study of infectivity and virulence determinants among clonal populations of T. equiperdum and T. evansi. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    PubMed

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  19. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus.

    PubMed

    Costa-Júnior, Livio M; Miller, Robert J; Alves, Péricles B; Blank, Arie F; Li, Andrew Y; Pérez de León, Adalberto A

    2016-09-15

    Plant-derived natural products can serve as an alternative to synthetic compounds for control of ticks of veterinary and medical importance. Lippia gracilis is an aromatic plant that produces essential oil with high content of carvacrol and thymol monoterpenes. These monoterpenes have high acaricidal activity against Rhipicephalus (Boophilus) microplus. However, there are no studies that show efficacy differences of essential oils between susceptible and organophosphate resistant strains of R. (B.) microplus. The aim of the present study was to compare acaricidal effects of essential oils extracted from two different genotypes of L. gracilis and the main monoterpenes on larvae of both susceptible and organophosphate resistant R. (B.) microplus larvae. The efficacy of the essential oil of two genotypes of L. gracilis (106 and 201) and their monoterpenes carvacrol and thymol was measured using the larval immersion test on coumaphos-resistant and susceptible strains of R. (B.) microplus. Lethal concentrations were calculated using GraphPad Prism 6.0. Chemical analysis was performed by GC-MS and FID. Thymol and carvacrol were observed to be major constituents in 106 and 201L. gracilis genotype essential oils, respectively. Essential oils of both genotypes were more effective against organophosphate-resistant tick strain than susceptible tick strain. Carvacrol was 3.2 times more toxic to organophosphate resistant strain than to susceptible strain. Thymol was equally toxic to resistant and susceptible tick strains. The significantly higher efficacy monoterpene carvacrol against resistant ticks may lead to development of new natural product acaricide formulations for use to control organophosphate resistant R. (B.) microplus populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    PubMed

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  1. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Baldwin, Patrick R.; Reeves, Analise Z.; Powell, Kimberly R.; Napier, Ruth J.; Swimm, Alyson I.; Sun, Aiming; Giesler, Kyle; Bommarius, Bettina; Shinnick, Thomas M.; Snyder, James P.; Liotta, Dennis C.; Kalman, Daniel

    2016-01-01

    Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs. PMID:25618016

  2. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins

    PubMed Central

    McNulty, Nathan P.; Yatsunenko, Tanya; Hsiao, Ansel; Faith, Jeremiah J.; Muegge, Brian D.; Goodman, Andrew L.; Henrissat, Bernard; Oozeer, Raish; Cools-Portier, Stéphanie; Gobert, Guillaume; Chervaux, Christian; Knights, Dan; Lozupone, Catherine A.; Knight, Rob; Duncan, Alexis E.; Bain, James R.; Muehlbauer, Michael J.; Newgard, Christopher B.; Heath, Andrew C.; Gordon, Jeffrey I.

    2012-01-01

    Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice following single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, upregulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant

  3. The attenuated nine mile phase II clone 4/RSA439 strain of Coxiella burnetii is highly virulent for severe combined immunodeficient (SCID) mice.

    PubMed

    Islam, Aminul; Lockhart, Michelle; Stenos, John; Graves, Stephen

    2013-10-01

    The Nine Mile phase II clone 4 (NMIIC4) strain of Coxiella burnetii is an attenuated phase II strain that has lost the genes for virulence determinant type 1 lipopolysaccharide. These bacteria were very virulent for severe combined immunodeficient (SCID) mice. The lethal dose 50 (LD50) was ~10 bacteria. Infected SCID mice died between Day 28 and Day 53 post-infection. At termination of the experiment (Day 60) only 5 of 24 mice had survived. The degree of splenomegaly was directly related to the bacterial load in the SCID mice spleens. The NMIIC4 was avirulent in immunocompetent wild mice and bacterial DNA copies in splenic tissue were extremely low. The SCID mice that were inoculated with high doses of heat inactivated NMIIC4 C. burnetii were all alive at Day 60 and without splenomegaly. It appears that the phase I lipopolysaccharide present in virulent Nine Mile phase I but not in attenuated NMIIC4 is not the only virulence factor for C. burnetii.

  4. Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains.

    PubMed

    Alcolea, Pedro J; Tuñón, Gabriel I L; Alonso, Ana; García-Tabares, Francisco; Ciordia, Sergio; Mena, María C; Campos, Roseane N S; Almeida, Roque P; Larraga, Vicente

    2016-11-01

    Leishmania chagasi is the causative agent of zoonotic visceral leishmaniasis in Brazil. Domestic and stray dogs are the main reservoirs. The life cycle of the parasite involves two stages. Promastigotes are extracellular and develop within the sand fly gut. Amastigotes survive inside the harsh environment of the phagolysosome of mammalian host phagocytes, which display the nitric oxide defense mechanism. Surprisingly, we were able to isolate promastigotes that are also resistant to NO. This finding may be explained by the preadaptative hypothesis. An insight into the proteome of NO-sensitive and resistant promastigotes is presented herein. Total protein extracts were prepared from promastigote cultures of an NO-sensitive and a resistant strain at early-logarithmic, mid-logarithmic and stationary phase. A population enriched in metacyclic promastigotes was also isolated by Percoll gradient centrifugation. In vitro infectivity of both strains was compared. Differential protein abundance was analyzed by 2DE-MALDI-TOF/TOF. The most striking results were tested at the mRNA level by qRT-PCR. Three biological replicates were performed in all cases. NO-resistant L. chagasi promastigotes are more infective than NO-sensitive ones. Among the differentially abundant spots, 40 proteins could be successfully identified in the sensitive strain and 38 in resistant promastigotes. The increase of G6PD and the decrease of ARG and GPX transcripts and proteins contribute to NO resistance in L. chagasi promastigotes. These proteins may be studied as potential drug targets and/or vaccine candidates in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis.

    PubMed Central

    Chamberland, S; Bayer, A S; Schollaardt, T; Wong, S A; Bryan, L E

    1989-01-01

    Mechanisms of resistance to quinolones were characterized in Pseudomonas aeruginosa strains isolated after Tn5 insertional mutagenesis and in resistant strains that emerged during pefloxacin therapy of experimental aortic endocarditis. Quinolone resistance achieved in in vitro-selected mutants Qr-1 and Qr-2 was associated with cross-resistance to several groups of antimicrobial agents, including beta-lactams, tetracycline, and chloramphenicol. A significant reduction of norfloxacin uptake was also observed. After ether permeabilization of the cells, DNA synthesis of these two isolates was as susceptible to norfloxacin as DNA synthesis of the parent strain (PAO1). These results indicate that alteration of outer membrane permeability is the primary determinant of resistance in these isolates. This altered cell permeability was correlated with reduction of outer membrane protein G (25.5 kilodaltons) and loss of a 40-kilodalton outer membrane protein in strain Qr-1. Resistance to quinolones that emerged during experimental endocarditis therapy was associated with both modification of outer membrane permeability (decreased uptake of norfloxacin) and decreased susceptibility of DNA synthesis to norfloxacin. Resistance was limited to quinolones and chloramphenicol. For these strains, norfloxacin inhibitory doses (50%) for DNA synthesis were identical to the drug MICs, suggesting that despite the identification of a permeability change, perhaps due to changes of lipopolysaccharide, the alteration of the quinolone intracellular target(s) susceptibility constitutes the primary determinant of resistance. Also, two distinct levels of norfloxacin resistance of DNA synthesis were found in these isolates, indicating that at least two distinct alterations of the drug target(s) are possible in P. aeruginosa. Images PMID:2502066

  6. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  7. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  8. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume.

    PubMed

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-09-08

    Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 mug of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 mug soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.

  9. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  10. [Testicular testosterone production in male mice of inbred strains PT and CBA/Lac after a long-term period of stable social hierarchy].

    PubMed

    Osadchuk, L V; Gutorova, N V; Kleshchev, M A

    2014-04-01

    Social dominance can alter testicular testosterone production, although there is pronounced variability in the relationship between social status and pattern of the testosterone response. The study designed to investigate how a long-term period of stable social hierarchy effects on testicular testosterone production in male mice of inbred strains PT and CBA/Lac. Paired males of different genotypes were housed together for 32 days beginning 38 day of age. Dyadic interactions of males generated dominance-subordination relationships during the first day after a social group has been produced and the social rank of each opponent was assessed by asymmetry in agonistic behaviour. Serum level of testosterone and its testicular content were evaluated in male mice of both inbred strains at 70 day of age after pair housing. Control animals were age- and genotype-matched single males that were housed in conventional cages. After a long-term period of pair housing, the serum testosterone level and its testicular content in males of both PT and CBA/Lac strains were not significantly different from the control. There were no significant differences in androgenic parameters between social ranks in male mice of both strains. The results indicate that in laboratory mice the pattern of testicular testosterone response to social hierarchy determined by a social situation, for example, a stability of social interactions, when the importance of aggressive competition for rank is minimal.

  11. Tetracycline-resistant Escherichia coli strains are inherited from parents and persist in the infant's intestines in the absence of selective pressure.

    PubMed

    Prelog, Martina; Grif, Katharina; Decristoforo, Cornelia; Würzner, Reinhard; Kiechl-Kohlendorfer, Ursula; Brunner, Andrea; Zimmerhackl, Lothar Bernd; Orth, Dorothea

    2009-10-01

    The study investigated tetracycline (TC), ampicillin (AMP), cefazolin (CEF), and trimethoprim (TMP) resistance in Escherichia coli (E. coli) in the feces of 21 infants up to 6 months of age and in their parents in the absence of selective antimicrobial pressure. Clonality of strains was assessed by pulsed-field gel electrophoresis. Three infants had resistant E. coli strains in their feces identical to the mothers' from week 1 on, which persisted over weeks. From week 2 on, in another four infants, persisting resistant E. coli were found, two of them identical to the mothers'. All of these persisting E. coli strains (except one family) showed at least resistance to TC. In infants, resistant E. coli strains inherited from their mothers tended to persist over months. Therefore, the persistence of resistant E. coli and their possible capacity to cause symptomatic infection or transfer its resistance genes to other bacteria deserves more attention.

  12. Identification of Major Sequence Types among Multidrug-Resistant Staphylococcus epidermidis Strains Isolated from Infected Eyes and Healthy Conjunctiva

    PubMed Central

    Jena, Smrutiti; Panda, Sasmita; Nayak, Kinshuk C.; Singh, Durg V.

    2017-01-01

    We examined the presence of virulence and antibiotic resistance genes, SCCmec types and determined the genomic diversity among ocular S. epidermidis isolates (patients-23, healthy controls-29). PCR determined the presence of antibiotic resistance genes, virulence genes and SCCmec types among all isolates. MLST and PFGE determined the genomic relatedness among them. All isolates of S. epidermidis showed resistance to at least one class of antibiotics of which 48 isolates were multidrug resistant and carried ARGs. Thirty-five isolates were methicillin resistant and carried mecA gene. Majority of the isolates were resistant to fluoroquinolones and showed mutation in gyrA, parC, and parE genes, however, few isolates showed additional novel mutations in parC gene. Of the MRSE strains, 17 strains carried SCCmec type IV, four type V, two type II, and two UT4. Seven strains carried novel combination of ccr complex and SCCmercury element, not reported earlier. All the S. epidermidis strains harbored icaA and icaD genes, 47 carried ACME operon, and 50 contained IS256. A noteworthy finding was the presence of ST179 among 43% of infected eye isolates an observation rarely reported among S. epidermidis. PFGE and MLST analysis showed genomic diversity among them. Statistical analysis suggests that few healthy conjunctiva isolates had characteristics similar to infected eye isolates. S. epidermidis strains carrying mecA gene are multidrug resistant, virulent and diverse irrespective of sources of isolation. IS256 cannot be used as marker to differentiate isolates of infected eye from healthy conjunctiva. PMID:28824564

  13. Functional analysis of a novel hydrogen peroxide resistance gene in Lactobacillus casei strain Shirota.

    PubMed

    Serata, Masaki; Kiwaki, Mayumi; Iino, Tohru

    2016-11-01

    Lactic acid bacteria have a variety of mechanisms for tolerance to oxygen and reactive oxygen species, and these mechanisms differ among species. Lactobacillus casei strain Shirota grows well under aerobic conditions, indicating that the various systems involved in oxidative stress resistance function in this strain. To elucidate the mechanism of oxidative stress resistance in L. casei strain Shirota, we examined the transcriptome response to oxygen or hydrogen peroxide exposure. We then focused on an uncharacterized gene that was found to be up-regulated by both oxygen and hydrogen peroxide stress; we named the gene hprA1 (hydrogen peroxide resistance gene). This gene is widely distributed among lactobacilli. We investigated the involvement of this gene in oxidative stress resistance, as well as the mechanism of tolerance to hydrogen peroxide. Growth of L. casei MS105, an hprA1-disrupted mutant, was not affected by oxygen stress, whereas the survival rate of MS105 after hydrogen peroxide treatment was markedly reduced compared to that of the wild-type. However, the activity of MS105 in eliminating hydrogen peroxide was similar to that of the wild-type. We cloned hprA1 from L. caseiShirota and purified recombinant HprA1 protein from Escherichia coli. We demonstrated that the recombinant HprA1 protein bound to iron and prevented the formation of a hydroxyl radical in vitro. Thus, HprA1 protein probably contributes to hydrogen peroxide tolerance in L. casei strain Shirota by binding to iron in the cells and preventing the formation of a hydroxyl radical.

  14. Analyses of clinical, pathological and virological features of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice.

    PubMed

    Buragohain, Manika; Dhale, Ganesh S; Raut, Chandrashekhar G; Kang, Gagandeep; Chitambar, Shobha D

    2011-04-01

    Experimental studies of human rotavirus infections in mice are limited and there is lack of information on the quantitative assessment of rotaviral replication and its relationship with histological changes. In the present study, consequences of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice were analyzed for the occurrence of clinical symptoms, histopathology and virological events. The infected animals developed diarrhea and dehydration and showed accumulation of vacuolated enterocytes with lodging of the rotavirus antigens and shortening of villi in the intestine over a period of 5 days. The ileum was identified as the most susceptible and supportive part of small intestine for perpetuation of rotavirus infection in mice. Rotaviral antigen/RNA in stool and RNA in intestine were detected throughout the clinical disease period. At 48-72 h post inoculation, diarrhea was at the peak (90-95%) in the infected animals with increased load of viral RNA and intense pathological lesions suggesting it as the critical time point in the course of infection. The rising titers of antirotavirus neutralizing antibodies ascertained the replication of human rotavirus strain, YO in mice. These data may contribute to the understanding of pathophysiological, immunological and virological characteristics of rotavirus infections in mice. Copyright © 2010. Published by Elsevier SAS.

  15. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting.

    PubMed

    Nowakiewicz, A; Ziólkowska, G; Troscianczyk, A; Zieba, P; Gnat, S

    2017-04-01

    The aim of this study was to determine the antimicrobial resistance of E. faecalis and E. faecium strains isolated from poultry and to carry out genotypic characterization thereof with the ADSRRS-fingerprinting method (amplification of DNA fragments surrounding rare restriction sites) and analysis of the genetic relatedness between the isolates with different resistance and virulence determinants. Samples were collected from 70 4-week-old chickens and tested for Enterococcus. Minimum inhibitory concentrations of 11 antimicrobials were determined using the broth microdilution method. Detection of antibiotic resistance and virulence genes was performed using PCR, and molecular analysis was carried out using the ADSRRS-fingerprinting method. The highest percentage of strains was resistant to tetracycline (60.5%) and erythromycin (54.4%), and a large number exhibited high-level resistance to both kanamycin (42.1%) and streptomycin (34.2%). Among 8 genes encoding AME, the tested strains showed mainly the presence of [aph(3΄)-IIIa], [ant(6)-Ia], [aac(6΄)-Ie-aph(2΄΄)-Ia], and [ant(9)-Ia] genes. Phenotypic resistance to erythromycin was encoded in 98.4% strains by the ermB gene. Genotypic resistance to tetracycline in E. faecium was associated with the presence of tetM and tetL (respectively, in 95.5 and 57.7% of the isolates); in contrast, E. faecalis strains were characterized mainly by the presence of tetO (83.3%). The virulence profile was homogenous for all E. faecium strains and included only efaAfm and ccf genes. All E. faecalis strains exhibited efaAfs, gelE, and genes encoding sex pheromones. The strains tested exhibited 34 genotypic profiles. Comparative analysis of phenotypic and genotypic resistance and virulence profiles and confrontation thereof with the genotypes of the strains tested showed that strains assigned to a particular genotype have an identical phenotypic resistance profile and a panel of resistance and virulence genes. The results of this

  16. Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources.

    PubMed

    Ranjbar, Reza; Sami, Mehrdad

    2017-01-01

    Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli ( E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. The aim of this study was to investigate the prevalence of bla TEM , bla CTX , bla SHV , bla OXA and bla VEB associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla TEM , bla CTX , bla SHV , bla OXA and bla VEB in ESBL producing isolates were studied by PCR. One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla TEM , bla CTX , bla SHV , and bla OXA , respectively. The bla VEB wasn't found in any isolates. The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.

  17. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  18. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains.

    PubMed

    Uc-Cachón, Andrés Humberto; Borges-Argáez, Rocío; Said-Fernández, Salvador; Vargas-Villarreal, Javier; González-Salazar, Francisco; Méndez-González, Martha; Cáceres-Farfán, Mirbella; Molina-Salinas, Gloria María

    2014-02-01

    The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194

  19. Low expression of nicotinic acetylcholine receptor subunit Mdα2 in neonicotinoid-resistant strains of Musca domestica L.

    PubMed

    Markussen, Mette D K; Kristensen, Michael

    2010-11-01

    Neonicotinoid action as well as resistance involves interaction with nicotinic acetylcholine receptors (nAChRs). In the housefly, neonicotinoid resistance also involves cytochrome P450, as indicated by bioassay with synergist as well as altered expression. In bioassay, synergism was only partial and indicated possible target-site resistance. The nAChR α2 subunit is important in neonicotinoid toxicity to insects, and gene expression of the Mdα2 subunit was investigated in field populations and laboratory strains of neonicotinoid-resistant and insecticide-susceptible houseflies, Musca domestica L. The genomic sequence covering exon III-VII of Mdα2 was analysed for mutations. Gene expression profiling of Mdα2 revealed notable differences between neonicotinoid-resistant and insecticide-susceptible houseflies. On average, the neonicotinoid-resistant field population 766b and the imidacloprid selected strain 791imi had 60% lower copy numbers of Mdα2 compared with the susceptible reference strain. Sequencing of exon III-VII of the Mdα2, encoding acetylcholine binding-site regions and three out of four transmembrane domains, did not reveal any mutations explaining the increased neonicotinoid tolerance in the strains examined. Previous discoveries and the results of this study suggest that the neonicotinoid resistance mechanism in Danish houseflies involves both cytochrome P450 monooxygenase-mediated detoxification and reduced expression of the nAChR subunit α2. Copyright © 2010 Society of Chemical Industry.

  20. Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance

    USDA-ARS?s Scientific Manuscript database

    A field strain of Aedes aegypti was collected from Puerto Rico (PR) in October 2008. Based on LD50 values by topical application, the PR strain was 73-fold resistant to permethrin compared to a susceptible Orlando strain. In the presence of piperonyl butoxide (PBO), the resistance of Puerto Rico str...

  1. Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice.

    PubMed

    Jürgens, Hella S; Schürmann, Annette; Kluge, Reinhart; Ortmann, Sylvia; Klaus, Susanne; Joost, Hans-Georg; Tschöp, Matthias H

    2006-04-13

    Among polygenic mouse models of obesity, the New Zealand obese (NZO) mouse exhibits the most severe phenotype, with fat depots exceeding 40% of total body weight at the age of 6 mo. Here we dissected the components of energy balance including feeding behavior, locomotor activity, energy expenditure, and thermogenesis compared with the related lean New Zealand black (NZB) and obese B6.V-Lep(ob)/J (ob/ob) strains (11% and 65% fat at 23 wk, respectively). NZO mice exhibited a significant hyperphagia that, when food intake was expressed per metabolic body mass, was less pronounced than that of the ob/ob strain. Compared with NZB, NZO mice exhibited increased meal frequency, meal duration, and meal size. Body temperature as determined by telemetry with implanted sensors was reduced in NZO mice, but again to a lesser extent than in the ob/ob strain. In striking contrast to ob/ob mice, NZO mice were able to maintain a constant body temperature during a 20-h cold exposure, thus exhibiting a functioning cold-induced thermogenesis. No significant differences in spontaneous home cage activity were observed among NZO, NZB, and ob/ob strains. When mice had access to voluntary running wheels, however, running activity was significantly lower in NZO than NZB mice and even lower in ob/ob mice. These data indicate that obesity in NZO mice, just as in humans, is due to a combination of hyperphagia, reduced energy expenditure, and insufficient physical activity. Because NZO mice differ strikingly from the ob/ob strain in their resistance to cold stress, we suggest that the molecular defects causing hyperphagia in NZO mice are located distal from leptin and its receptor.

  2. Prevalence of metronidazole resistant Helicobacter pylori strains among Chinese peptic ulcer disease patients and normal controls in Hong Kong.

    PubMed

    Ching, C K; Leung, K P; Yung, R W; Lam, S K; Wong, B C; Lai, K C; Lai, C L

    1996-05-01

    A study was conducted to evaluate the prevalence of metronidazole resistant Helicobacter pylori strains among the Chinese in Hong Kong. The efficacy of the triple therapy that contains metronidazole as one of the anti-microbial agents in eradication of the metronidazole susceptible and the metronidazole resistant strains was also assessed. Culture for H pylori was attempted from antral biopsy specimens of 70 peptic ulcer and 51 control subjects. Successfully cultured H pylori strains were tested for metronidazole susceptibility. Twenty six peptic ulcer disease subjects who had received a course of triple therapy were also reassessed four to six weeks later for successful eradication of H pylori infection. H pylori was successfully cultured from antral biopsy specimens in 69 of 80 (86%) of the infected subjects. The overall metronidazole resistance rate was 53.5% (37 of 69). There was a significantly higher metronidazole resistance rate among H pylori isolates from the asymptomatic controls (20 of 25) than the peptic ulcer disease subjects (17 of 44) (p = 0.0007). Twenty three of 32 (73%) women and 14 of 37 (38%) men harboured the metronidazole resistant strains. There was no sex or age difference as far as the prevalence of metronidazole resistant strains were concerned within each study group. Pre-treatment metronidazole susceptible H pylori were significantly more likely to respond to the triple therapy used than those with the metronidazole resistant ones (14 of 15 v five of 10) (p = 0.021).

  3. Isolation of lead-resistant Arthrobactor strain GQ-9 and its biosorption mechanism.

    PubMed

    Wang, Tianqi; Yao, Jun; Yuan, Zhimin; Zhao, Yue; Wang, Fei; Chen, Huilun

    2018-02-01

    In this study, lead-resistant bacterium Arthrobacter sp. GQ-9 with a resistant capability to cadmium, zinc, and copper was isolated from a heavy metal polluted soil. Microcalorimetry analysis was applied to assess the strain's microbial activity under Pb(II) stress and suggested that GQ-9's microbial activities under Pb(II) stress were stronger than a non-resistant strain. Biosorption batch experiments revealed that the optimal condition for adsorption of Pb(II) by GQ-9 was pH 5.5, a biomass dosage of 1.2 g L -1 , and an initial Pb(II) concentration of 100 mg L -1 with a maximum biosorption capacity of 17.56 mg g -1 .Adsorption-desorption experiments and Fourier transform infrared spectroscopy (FTIR) analysis were applied to elucidate the biosorption mechanisms. Adsorption-desorption analysis showed that GQ-9 cells could sequester 56.60% of the adsorbed Pb(II) ions on the cell wall. FTIR analysis suggested that hydroxyl, carboxyl, amino, nitrile, and sulfhydryl groups and amide I, amide II bands on the GQ-9 cell wall participated in the complexation of Pb(II) ions. The present study illustrates that the lead-resistant bacteria GQ-9 has the potential for further development of an effective and ecofriendly adsorbent for heavy metal bioremediation.

  4. Oral Administration of Lactobacillus plantarum Strain AYA Enhances IgA Secretion and Provides Survival Protection against Influenza Virus Infection in Mice

    PubMed Central

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer’s patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer’s patch dendritic cells, with this production promoting IgA+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection. PMID:24466081

  5. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice.

    PubMed

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-Ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer's patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer's patch dendritic cells, with this production promoting IgA(+) B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.

  6. Occurrence of spvA Virulence Gene and Clinical Significance for Multidrug-Resistant Salmonella Strains

    PubMed Central

    Gebreyes, Wondwossen A.; Thakur, Siddhartha; Dorr, Paul; Tadesse, Daniel A.; Post, Karen; Wolf, Leslie

    2009-01-01

    Nontyphoidal Salmonella strains are important reservoirs of antimicrobial resistance. An important issue that has not been investigated is whether the multiresistant Salmonella strains are more virulent than their susceptible counterparts. Salmonella isolates collected from clinical human (n = 888) and porcine (n = 2,120) cases at the same time period and geographic location were investigated. Antimicrobial susceptibility, PCR analysis for the spvA virulence gene, and pulsed-field gel electrophoresis (PFGE) genotyping were done. Carriage of spvA was associated with multidrug-resistant (MDR) type ACSSuT strains (odds ratio, 7.1; P < 0.05), a type often implicated in bacteremic human cases. PFGE revealed that clinical isolates from pigs were more clonally related to those of human origin than the nonclinical porcine isolates. The findings suggest that MDR strains that also carry specific virulence factors are more likely to be of clinical significance. PMID:19116354

  7. Antischistosomal activity of ginger (Zingiber officinale) against Schistosoma mansoni harbored in C57 mice.

    PubMed

    Mostafa, Osama M S; Eid, Refaat A; Adly, Mohamed A

    2011-08-01

    The repeated chemotherapy of schistosomiasis has resulted in the emergence of drug-resistant schistosome strains. The development of such resistance has drawn the attention of many authors to alternative drugs. Many medicinal plants were studied to investigate their antischistosomal potency. The present work aimed to evaluate antischistosomal activity of crude aqueous extract of ginger against Schistosoma mansoni. Sixteen mice of C57 strain were exposed to 100 ± 10 cercariae per mouse by the tail immersion method; the mice were divided into two groups: untreated group and ginger-treated one. All mice were sacrificed at the end of 10th week post-infection. Worm recovery and egg counting in the hepatic tissues and faeces were determined. Surface topography of the recovered worms was studied by scanning electron microscopy. Histopathological examination of liver and intestine was done using routine histological procedures. The worm burden and the egg density in liver and faeces of mice treated with ginger were fewer than in non-treated ones. Scanning electron microscopical examination revealed that male worms recovered from mice treated with ginger lost their normal surface architecture, since its surface showed partial loss of tubercles' spines, extensive erosion in inter-tubercle tegumental regions and numerous small blebs around tubercles. Histopathological data indicated a reduction in the number and size of granulomatous inflammatory infiltrations in the liver and intestine of treated mice compared to non-treated mice. The results of the present work suggested that ginger has antischistosomal activities and provided a basis for subsequent experimental and clinical trials.

  8. Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China.

    PubMed

    Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong

    2016-09-01

    Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport.

    PubMed

    Behr, Jürgen; Gänzle, Michael G; Vogel, Rudi F

    2006-10-01

    Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.

  10. Sex and strain dependent differences in mucosal immunology and microbiota composition in mice.

    PubMed

    Elderman, Marlies; Hugenholtz, Floor; Belzer, Clara; Boekschoten, Mark; van Beek, Adriaan; de Haan, Bart; Savelkoul, Huub; de Vos, Paul; Faas, Marijke

    2018-06-18

    A dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological diseases. These diseases often show a sex bias, suggesting sex differences in immune responses and in the intestinal microbiome. We hypothesized that sex differences in immune responses are associated with sex differences in microbiota composition. Fecal microbiota composition (MITchip), mRNA expression in intestinal tissue (microarray), and immune cell populations in mesenteric lymph nodes (MLNs) were studied in male and female mice of two mouse strains (C57B1/6OlaHsd and Balb/cOlaHsd). Transcriptomics and microbiota data were combined to identify bacterial species which may potentially be related to sex-specific differences in intestinal immune related genes. We found clear sex differences in intestinal microbiota species, diversity, and richness in healthy mice. However, the nature of the sex effects appeared to be determined by the mouse strain as different bacterial species were enriched in males and females of the two strains. For example, Lactobacillus plantarum and Bacteroides distasonis were enriched in B6 females as compared to B6 males, while Bifidobacterium was enriched BALB/c females as compared to BALB/c males. The strain-dependent sex effects were also observed in the expression of immunological genes in the colon. We found that the abundance of various bacteria (e.g., Clostridium leptum et rel.) which were enriched in B6 females positively correlated with the expression of several genes (e.g., Il-2rb, Ccr3, and Cd80) which could be related to immunological functions, such as inflammatory responses and migration of leukocytes. The abundance of several bacteria (e.g., Faecalibacterium prausnitzii et rel. and Coprobacillus et rel.- Clostridium ramosum et rel.) which were enriched in BALB/c males positively correlated to the expression of several genes (e.g., Apoe, Il-1b, and Stat4) related to several immunological functions, such as proliferation and

  11. Serum resistance, gallium nitrate tolerance and extrapulmonary dissemination are linked to heme consumption in a bacteremic strain of Acinetobacter baumannii.

    PubMed

    de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Xu, H Howard; Chen, Wangxue

    2014-05-01

    Bacteremia caused by Acinetobacter baumannii is a highly lethal complication of hospital-acquired pneumonia. In the present study, we investigated the serum resistance, gallium nitrate tolerance and heme consumption of A. baumannii strain LAC-4 which was recently reported to display high virulence in a mouse pneumonia model with extrapulmonary dissemination leading to fatal bacteremia. This strain showed enhanced growth in mouse and fetal bovine serum that was independent of complement and was not observed with regular growth media. The LAC-4 strain was found to possess a high tolerance to gallium nitrate (GaN), whereas serum synergized with GaN in inhibiting A. baumannii strain ATCC 17978. We found that LAC-4 contains a heme oxygenase gene and expresses a highly efficient heme consumption system. This system can be fully blocked in vitro and in vivo by gallium protoporphyrin IX (GaPPIX). Inhibition of heme consumption by GaPPIX completely abrogated the growth advantage of LAC-4 in serum as well as its tolerance to GaN. More importantly, GaPPIX treatment of mice intranasally infected with LAC-4 prevented extrapulmonary dissemination and death. Thus, we propose that heme provides an additional source of iron for LAC-4 to bypass iron restriction caused by serum transferrin, lactoferrin or free gallium salts. Heme consumption systems in A. baumannii may constitute major virulence factors for lethal bacteremic isolates. Copyright © 2014 Crown Copyright and Elsevier Inc. Published by Elsevier GmbH.. All rights reserved.

  12. CREG1 heterozygous mice are susceptible to high fat diet-induced obesity and insulin resistance.

    PubMed

    Tian, Xiaoxiang; Yan, Chenghui; Liu, Meili; Zhang, Quanyu; Liu, Dan; Liu, Yanxia; Li, Shaohua; Han, Yaling

    2017-01-01

    Cellular repressor of E1A-stimulated genes 1 (CREG1) is a small glycoprotein whose physiological function is unknown. In cell culture studies, CREG1 promotes cellular differentiation and maturation. To elucidate its physiological functions, we deleted the Creg1 gene in mice and found that loss of CREG1 leads to early embryonic death, suggesting that it is essential for early development. In the analysis of Creg1 heterozygous mice, we unexpectedly observed that they developed obesity as they get older. In this study, we further studied this phenotype by feeding wild type (WT) and Creg1 heterozygote (Creg1+/-) mice a high fat diet (HFD) for 16 weeks. Our data showed that Creg1+/- mice exhibited a more prominent obesity phenotype with no change in food intake compared with WT controls when challenged with HFD. Creg1 haploinsufficiency also exacerbated HFD-induced liver steatosis, dyslipidemia and insulin resistance. In addition, HFD markedly increased pro-inflammatory cytokines in plasma and epididymal adipose tissue in Creg1+/- mice as compared with WT controls. The activation level of NF-κB, a major regulator of inflammatory response, in epididymal adipose tissue was also elevated in parallel with the cytokines in Creg1+/- mice. These pro-inflammatory responses elicited by CREG1 reduction were confirmed in 3T3-L1-derived adipocytes with CREG1 depletion by siRNA transfection. Given that adipose tissue inflammation has been shown to play a key role in obesity-induced insulin resistance and metabolic syndrome, our results suggest that Creg1 haploinsufficiency confers increased susceptibility of adipose tissue to inflammation, leading to aggravated obesity and insulin resistance when challenged with HFD. This study uncovered a novel function of CREG1 in metabolic disorders.

  13. A Glycine Betaine Importer Limits Salmonella Stress Resistance and Tissue Colonization by Reducing Trehalose Production

    PubMed Central

    Pilonieta, M. Carolina; Nagy, Toni A.; Jorgensen, Dana R.; Detweiler, Corrella S.

    2012-01-01

    SUMMARY Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, S. enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high salt, low pH and hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets. PMID:22375627

  14. Selective breeding of mice for different susceptibilities to high fat diet-induced glucose intolerance: Development of two novel mouse lines, Selectively bred Diet-induced Glucose intolerance-Prone and -Resistant.

    PubMed

    Nagao, Mototsugu; Asai, Akira; Kawahara, Momoyo; Nakajima, Yasushi; Sato, Yuki; Tanimura, Kyoko; Okajima, Fumitaka; Takaya, Makiyo; Sudo, Mariko; Takemitsu, Shuji; Harada, Taro; Sugihara, Hitoshi; Oikawa, Shinichi

    2012-06-06

    Aims/Introduction:  The development of type 2 diabetes is primarily due to lifestyle and environmental factors, as well as genetics, as shown by familial clustering. To establish mouse lines for evaluating heritable factors determining susceptibility to diet-induced diabetes, we performed selective breeding for differences in high fat diet (HFD)-induced glucose intolerance.   Selective breeding was performed using hybrid mice of C57BL/6J, C3H/HeJ and AKR/N backgrounds. After 5-week HFD feeding, mice showing high and low 2-h blood glucose levels in an oral glucose tolerance test (OGTT) were selected and bred over 14 generations to produce lines prone and resistant to diet-induced glucose intolerance (designated Selectively bred Diet-induced Glucose intolerance-Prone [SDG-P] and -Resistant [SDG-R]).   At 5 weeks of age (pre HFD feeding), SDG-P mice showed higher blood glucose levels both in the OGTT and insulin tolerance test as compared to SDG-R mice. After receiving HFD, the glucose intolerance of SDG-P mice became more evident without hyper insulin secretion. In addition, SDG-P mice had greater body weight gain and lower HDL-cholesterol levels as compared to SDG-R mice. In comparison with C57BL/6J, a well-known strain prone to HFD-induced glucose intolerance, SDG-P mice showed significantly higher glucose levels in OGTT after the 5-week HFD feeding.   Susceptibility to HFD-induced glucose intolerance was transmitted over generations and was intensified by selective breeding. The newly established mouse lines, SDG-P and SDG-R, may be useful in investigating the pathophysiology of type 2 diabetes through elucidating the crucial factors for determining the susceptibility to HFD-induced glucose intolerance. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00175.x, 2011).

  15. Investigation of carbon storage regulation network (csr genes) and phenotypic differences between acid sensitive and resistant Escherichia coli O157:H7 strains

    USDA-ARS?s Scientific Manuscript database

    Background: Escherichia coli O157:H7 and related serotype strains have previously been shown to vary in acid resistance, however, little is known about strain specific mechanisms of acid resistance. We examined sensitive and resistant E. coli strains to determine the effects of growth in minimal and...

  16. Detection of drug-resistance mechanism of Pseudomonas aeruginosa developing from a sensitive strain to a persister during carbapenem treatment.

    PubMed

    Shen, J L; Fang, Y P

    2015-06-18

    We explored the mechanism of the development from sensitivity to resistance to carbapenem in Pseudomonas aeruginosa. Two P. aeruginosa strains were collected during treatment with carbapenem. Strain homology was investigated using pulsed-field gel electrophoresis. Porin oprD2 expression was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The minimum inhibitory concentrations (MICs) of imipenem and meropenem with or without MC207110 were determined using the agar dilution method. The expression level of efflux pump mRNA was tested using real-time polymerase chain reaction. Metallo-lactamases (MBLs) were screened using the EDTA-disk synergy test. Genes encoding MBLs were amplified and then analyzed by DNA sequencing. The two treated strains belonged to the same pulsed-field gel electrophoresis type. The SDS-PAGE profile of the P. aeruginosa strains revealed that the 46-kDa membrane protein OprD2 of IMP(R)MEM(R) type strains was lost, whereas OprD2 of 1 IMP(S)MEM(S) strain was normal. With or without MC207110 treatment, the MIC of carbapenem-resistant P. aeruginosa decreased by 4-fold, while the MIC of carbapenem-sensitive P. aeruginosa did not. Compared with the carbapenem-sensitive strain, MexX mRNA expression in the carbapenem-resistant strain increased by 102.5-fold, while the mRNA expression of other efflux pumps did not markedly increase. Neither carbapenem-resistant nor carbapenem-sensitive P. aeruginosa produced MBL. The mechanism of development from sensitivity to resistance of P. aeruginosa to carbapenem during carbapenem treatment is due to porin oprD2 loss and an increased expression level of MexXY-OprM.

  17. Concomitant Benznidazole and Suramin Chemotherapy in Mice Infected with a Virulent Strain of Trypanosoma cruzi

    PubMed Central

    Santos, Eliziária C.; Cupertino, Marli C.; Bastos, Daniel S. S.; Klein, Raphael C.; Silva, Eduardo A. M.; Fietto, Juliana L. R.; Talvani, André; Bahia, Maria T.

    2015-01-01

    Although suramin (Sur) is suggested as a potential drug candidate in the management of Chagas disease, this issue has not been objectively tested. In this study, we examined the applicability of concomitant treatment with benznidazole (Bz) and suramin in mice infected with a virulent strain of Trypanosoma cruzi. Eighty 12-week-old male C57BL/6 mice were equally randomized in eight groups: (i) noninfected mice (negative control) and mice infected with T. cruzi Y strain receiving (ii) no treatment (positive control), (iii) Bz, 100 mg/kg of body weight per day, (iv) Sur, 20 mg/kg/day, and (v to viii) Sur, 20 mg/kg/day, combined with Bz, 100, 50, 25, or 5 mg/kg/day. Bz was administered by gavage, and Sur was administered intraperitoneally. Sur dramatically increased the parasitemia, cardiac content of parasite DNA, inflammation, oxidative tissue damage, and mortality. In response to high parasitic load in cardiac tissue, Sur stimulated the immune system in a manner typical of the acute phase of Chagas disease, increasing tissue levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and inducing a preferential IgG2a anti-T. cruzi serum pattern. When Sur and Bz were combined, the infection severity was attenuated, showing a dose-dependent Bz response. Sur therapy had a more harmful effect on the host than on the parasite and reduced the efficacy of Bz against T. cruzi infection. Considering that Sur drastically reinforced the infection evolution, potentiating the inflammatory process and the severity of cardiac lesions, the in vivo findings contradicted the in vitro anti-T. cruzi potential described for this drug. PMID:26169419

  18. T cell cytokine synthesis at the single-cell level in BALB/c and C57BL/6 mice infected with ectromelia virus.

    PubMed

    Szulc, Lidia; Gieryńska, Małgorzata; Winnicka, Anna; Martyniszyn, Lech; Boratyńska-Jasińska, Anna; Niemiałtowski, Marek

    2012-04-20

    The purpose of the study was to evaluate synthesis of IFN-γ, IL-2, TNF-α (Th1/Tc1) and IL-4 (Th2/Tc2) at CD4+ T and CD8+ T cell level in BALB/c and C57BL/6 mice in the course of infection with ectromelia virus Moscow strain (ECTV-MOS). Synthesis of IFN-γ, IL-2, TNF-α and IL-4 in CD4+ T and CD8+ T cells in draining lymph nodes (DLNs) and spleens of BALB/c and C57BL/6 mice was detected by intracellular staining and flow cytometry analysis. Our results showed an increase in percentage of IFN-γ -synthesizing CD8+ T cells only in DLNs and spleens of C57BL/6 mice at the early stages of infection. Moreover, synthesis of IL-2 by CD4+ and CD8+ T cells occurred earlier and was stronger in C57BL/6 mice compared to BALB/c mice. The increase in TNF-α synthesis by CD4+ T and CD8+ T cells was detected mainly in DLNs of infected animals. We did not observe any changes in the percentage of IL-4-synthesizing T cells (Th2 and Tc2) during ECTV-MOS infection in both strains of mice. Results presented in this study confirmed that during the early phase of infection, C57BL/6 mice mounted a strong Th1 and Tc1 immune response against ECTV-MOS. BALB/c mice that survived the acute stage of mousepox, were able to mount an adequate cellular response to ECTV-MOS, however successful elimination of the virus in susceptible mice may occur more slowly compared to resistant strains of mice. Intracellular detection of IL-4 by flow cytometry was not sensitive enough to distinguish the differences in IL-4-synthesizing Th2 and Tc2 cells between susceptible and resistant strains of mice during ECTV-MOS infection.

  19. Chromosomally mediated intrinsic resistance to penicillin of penicillinase producing strains of Neisseria gonorrhoeae isolated in Sydney: guide to treatment with Augmentin.

    PubMed Central

    Tapsall, J W; Phillips, E A; Morris, L M

    1987-01-01

    Single dose Augmentin treatment fails to cure an appreciable proportion of patients infected with penicillinase producing Neisseria gonorrhoeae (PPNG) strains in parts of the world where high levels of chromosomally mediated intrinsic resistance are also present in gonococci. The levels of intrinsic resistance to penicillin of 31 PPNG strains isolated in Sydney were assessed by obtaining beta lactamase negative variants of these strains and measuring the minimum inhibitory concentration of penicillin by agar plate dilution techniques. The levels of intrinsic resistance found in these imported PPNG strains were higher than those recorded for local isolates of non-PPNG strains, which indicates that caution should be exercised in the use of single dose Augmentin treatment of infections with PPNG strains in Sydney. PMID:3119461

  20. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B.

    PubMed

    Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2012-09-01

    A lead resistant bacterial strain isolated from effluent of lead battery manufacturing company of Goa, India has been identified as Enterobacter cloacae strain P2B based on morphological, biochemical characters, FAME profile and 16S rDNA sequence data. This bacterial strain could resist lead nitrate up to 1.6 mM. Significant increase in exopolysaccharide (EPS) production was observed as the production increased from 28 to 108 mg/L dry weight when exposed to 1.6 mM lead nitrate in Tris buffered minimal medium. Fourier-transformed infrared spectroscopy of this EPS revealed presence of several functional groups involved in metal binding viz. carboxyl, hydroxyl and amide groups along with glucuronic acid. Gas chromatography coupled with mass spectrometry analysis of alditol-acetate derivatives of acid hydrolysed EPS produced in presence of 1.6 mM lead nitrate demonstrated presence of several neutral sugars such as rhamnose, arabinose, xylose, mannose, galactose and glucose, which contribute to lead binding hydroxyl groups. Scanning electron microscope coupled with energy dispersive X-ray spectrometric analysis of this lead resistant strain exposed to 1.6 mM lead nitrate interestingly revealed mucous EPS surrounding bacterial cells which sequestered 17 % lead (as weight %) extracellularly and protected the bacterial cells from toxic effects of lead. This lead resistant strain also showed multidrug resistance. Thus these results significantly contribute to better understanding of structure, function and environmental application of lead-enhanced EPSs produced by bacteria. This lead-enhanced biopolymer can play a very important role in bioremediation of several heavy metals including lead.

  1. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model.

    PubMed Central

    Garrison, M W; Anderson, D E; Campbell, D M; Carroll, K C; Malone, C L; Anderson, J D; Hollis, R J; Pfaller, M A

    1996-01-01

    Emergence of Stenotrophomonas maltophilia as a nosocomial pathogen is becoming increasingly apparent. Pleiotropic resistance characterizes S. maltophilia. Furthermore, a slow growth rate and an increased mutation rate generate discordance between in vitro susceptibility testing and clinical outcome. Despite original susceptibility, drug-resistant strains of S. maltophilia are often recovered from patients receiving beta-lactams, quinolones, or aminoglycosides. Given the disparity among various in vitro susceptibility methods, this study incorporated a unique pharmacodynamic model to more accurately characterize the bacterial time-kill curves and mutation rates of four clinical isolates of S. maltophilia following exposure to simulated multidose regimens of ceftazidime, ciprofloxacin, gentamicin, and ticarcillin-clavulanate. Time-kill data demonstrated regrowth of S. maltophilia with all four agents. With the exception of ticarcillin-clavulanate, viable bacterial counts at the end of 24 h exceeded the starting inoculum. Ciprofloxacin only reduced bacterial counts by less than 1.0 log prior to rapid bacterial regrowth. Resistant mutant strains, identical to their parent strain by pulsed-field gel electrophoresis, were observed following exposure to each class of antibiotic. Mutant strains also had distinct susceptibility patterns. These data are consistent with previous reports which suggest that S. maltophilia, despite susceptibility data that imply that the organism is sensitive, develops multiple forms of resistance quickly and against several classes of antimicrobial agents. Standard in vitro susceptibility methods are not completely reliable for detecting resistant S. maltophilia strains; and therefore, interpretation of these results should be done with caution. In vivo studies are needed to determine optimal therapy against S. maltophilia infections. PMID:9124855

  2. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance

    PubMed Central

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-01-01

    Background: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. Methods: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Results: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Conclusions: Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to

  3. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    PubMed

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  4. Strain-specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice

    PubMed Central

    Neal, Kathleen B; Parry, Laura J; Bornstein, Joel C

    2009-01-01

    Serotonin (5-HT) powerfully affects small intestinal motility and 5-HT-immunoreactive (IR) neurones are highly conserved between species. 5-HT synthesis in central neurones and gastrointestinal mucosa depends on tissue-specific isoforms of the enzyme tryptophan hydroxylase (TPH). RT-PCR identified strain-specific expression of a polymorphism (1473C/G) of the tph2 gene in longitudinal muscle–myenteric plexus preparations of C57Bl/6 and Balb/c mice. The former expressed the high-activity C allele, the latter the low-activity G allele. Confocal microscopy was used to examine close contacts between 5-HT-IR varicosities and myenteric neurones immunoreactive for neuronal nitric oxide synthase (NOS) or calretinin in these two strains. Significantly more close contacts were identified to NOS- (P < 0.05) and calretinin-IR (P < 0.01) neurones in C57Bl/6 jejunum (NOS 1.6 ± 0.3, n= 52; calretinin 5.2 ± 0.4, n= 54), than Balb/c jejunum (NOS 0.9 ± 0.2, n= 78; calretinin 3.5 ± 0.3, n= 98). Propagating contractile complexes (PCCs) were identified in the isolated jejunum by constructing spatiotemporal maps from video recordings of cannulated segments in vitro. These clusters of contractions usually arose towards the anal end and propagated orally. Regular PCCs were initiated at intraluminal pressures of 6 cmH2O, and abolished by tetrodotoxin (1 μm). Jejunal PCCs from C57Bl/6 mice were suppressed by a combination of granisetron (1 μm, 5-HT3 antagonist) and SB207266 (10 nm, 5-HT4 antagonist), but PCCs from Balb/c mice were unaffected. There were, however, no strain-specific differences in sensitivity of longitudinal muscle contractions to exogenous 5-HT or blockade of 5-HT3 and 5-HT4 receptors. These data associate a genetic difference with significant structural and functional consequences for enteric neural serotonergic pathways in the jejunum. PMID:19064621

  5. Resistant and sensitive strains of Mycobacterium tuberculosis found in repeated surveys among a South Indian rural population*

    PubMed Central

    Narain, Raj; Chandrasekhar, P.; Satyanarayanachar, R. A.; Lal, Pyare

    1968-01-01

    The findings in a highly selected group of patients, such as those attending clinics or sanatoria, cannot be used as the basis for assessing the true prevalence of strains of Mycobacterium tuberculosis with acquired or primary resistance or of sensitive strains in a community. The present report describes the prevalence of such strains as found in 3 successive surveys in a sizeable random sample of villages in a South Indian district. Changes in the status of cases with such strains from an earlier survey to a later one and the status at an earlier round of cases found at a later one are also described. The prevalence of tuberculous infection among household contacts of cases with acquired resistance to isoniazid was significantly higher than that among contacts of cases with primary resistance or of those with sensitive cultures. This is probably due to the longer duration of sputum positivity of the former at the time of diagnosis. But infectivity, as judged by the incidence of new infections among household contacts, was generally less for cases with acquired or primary resistance than for cases with sensitive cultures, though the difference was not statistically significant. A large number of culture-positive cases, especially those with primary resistance, had no radiological evidence of active pulmonary tuberculosis. The prevalence of primary resistance was very high among certain categories of cases, and the differences between cases with primary resistance and those with acquired resistance were many and large. It is suggested that this could be due to some of the primary resistant cultures being those of atypical mycobacteria, despite positivity in the niacin test. There was a significant increase in the number of cases with acquired resistance to isoniazid at the third survey round owing to irregular treatment with that drug after the second round. The prevalence of primary resistance at the 3 rounds was almost the same. PMID:4978410

  6. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones

    PubMed Central

    Norris, Andrew W.; Chen, Lihong; Fisher, Simon J.; Szanto, Ildiko; Ristow, Michael; Jozsi, Alison C.; Hirshman, Michael F.; Rosen, Evan D.; Goodyear, Laurie J.; Gonzalez, Frank J.; Spiegelman, Bruce M.; Kahn, C. Ronald

    2003-01-01

    Activation of peroxisome proliferator-activated receptor γ (PPARγ) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARγ knockout (MuPPARγKO) using Cre/loxP recombination. Interestingly, MuPPARγKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARγKO mice had whole-body insulin resistance with a 36% reduction (P < 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARγKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat–induced defects in MuPPARγKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARγKO mice. Thus, muscle PPARγ is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle. PMID:12925701

  7. Female Scent Signals Enhance the Resistance of Male Mice to Influenza

    PubMed Central

    Litvinova, Ekaterina A.; Goncharova, Elena P.; Zaydman, Alla M.; Zenkova, Marina A.; Moshkin, Mikhail P.

    2010-01-01

    Background The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. Methods and Findings We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. Conclusions Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract. PMID:20208997

  8. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  9. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin.

    PubMed

    Hu, B; Tian, F; Wang, G; Zhang, Q; Zhao, J; Zhang, H; Chen, W

    2015-07-01

    This study evaluated the effect of soy lecithin on the bile resistance of Lactobacillus plantarum. Six strains were cultured in MRS broth supplemented with soy lecithin at different concentrations. The strains incubated in MRS broth with 1·0% soy lecithin showed no inhibitory effect on cell growth. After culturing in MRS broth with 0·2-1·0% soy lecithin, the survival rate of harvested cells increased significantly (P < 0·05) in the 0·3% bile challenge compared with the no added soy lecithin group. The cells incubated with 0·6% soy lecithin were able to grow in an MRS broth with a higher bile salt content. The surface hydrophobicity and cell leakage in the bile challenge were assessed to reveal the physical changes caused by the addition of soy lecithin. The cell surface hydrophobicity was enhanced and the membrane integrity in the bile challenge increased after culturing with soy lecithin. A shift in the fatty acid composition was also observed, illustrating the cell membrane change in the soy lecithin culture. In this study, we report for the first time the beneficial effect of adding soy lecithin to an MRS broth on subsequent bile tolerance of Lactobacillus plantarum. Soy lecithin had no inhibitory effect on strain viability but significantly enhanced bile resistance. Surface hydrophobicity and cell integrity increased in strains cultured with soy lecithin. The observed shift in the cell fatty acid composition indicated changes to the cell membrane. As soy lecithin is safe for use in the food industry, its protective effects can be harnessed for the development of bile-sensitive strains with health-benefit functions for use in probiotic products. © 2015 The Society for Applied Microbiology.

  10. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    PubMed

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  11. Strain-Specific Properties and T Cells Regulate the Susceptibility to Papilloma Induction by Mus musculus Papillomavirus 1

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Bonelli, Michael; Lowy, Douglas R.; Schiller, John T.

    2014-01-01

    The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific

  12. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  13. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype.

    PubMed

    Farrell, Geoffrey C; Mridha, Auvro R; Yeh, Matthew M; Arsov, Todor; Van Rooyen, Derrick M; Brooling, John; Nguyen, Tori; Heydet, Deborah; Delghingaro-Augusto, Viviane; Nolan, Christopher J; Shackel, Nicholas A; McLennan, Susan V; Teoh, Narci C; Larter, Claire Z

    2014-08-01

    Obese Alms1 mutant (foz/foz) NOD.B10 mice develop diabetes and fibrotic NASH when fed high-fat(HF) diet. To establish whether diabetes or obesity is more closely associated with NASH fibrosis, we compared diabetic foz/foz C57BL6/J with non-diabetic foz/foz BALB/c mice. We also determined hepatic cytokines, growth factors and related profibrotic pathways. Male and female foz/foz BALB/c and C57BL6/J mice were fed HF or chow for 24 weeks before determining metabolic indices, liver injury, cytokines, growth factors, pathology/fibrosis and matrix deposition pathways. All foz/foz mice were obese. Hepatomegaly, hyperinsulinemia, hyperglycaemia and hypoadiponectinaemia occurred only in foz/foz C57BL6/J mice, whereas foz/foz BALB/c formed more adipose. Serum ALT, steatosis, ballooning, liver inflammation and NAFLD activity score were worse in C57BL6/J mice. In HF-fed mice, fibrosis was severe in foz/foz C57BL6/J, appreciable in WT C57BL6/J, but absent in foz/foz BALB/c mice. Hepatic mRNA expression of TNF-α, IL-12, IL-4, IL-10 was increased (but not IFN-γ, IL-1β, IL-17A), and IL-4:IFN-γ ratio (indicating Th-2 predominance) was higher in HF-fed foz/foz C57BL6/J than BALB/c mice. In livers of HF-fed foz/foz C57BL6/J mice, TGF-β was unaltered but PDGFα and CTGF were increased in association with enhanced α-SMA, CD147and MMP activity. In mice with equivalent genetic/dietary obesity, NASH development is linked to strain differences in hyperinsulinaemia and hyperglycaemia inversely related to lipid partitioning between adipose and liver. Diabetes-mediated CTGF-regulation of MMPs as well as cytokines/growth factors (Th-2 cytokine predominant, PDGFα, not TGF-β) mobilized in the resultant hepatic necroinflammatory change may contribute to strain differences in NASH fibrosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Antibiotic resistance patterns and occurrence of mecA gene in Staphylococcus intermedius strains of canine origin.

    PubMed

    Kizerwetter-Swida, M; Chrobak, D; Rzewuska, M; Binek, M

    2009-01-01

    We have evaluated 102 Staphylococcus intermedius isolates of canine origin for susceptibility to antimicrobial primary agents, i.e. penicillin, amoxicillin, amoxicillin with clavulanic acid, cefuroxime, trimethoprim/sulfonamides, neomycin, streptomycin, gentamicin, norfloxacin, tetracycline, vancomycin, erythromycin and secondary agents, i.e., chloramphenicol, ciprofloxacin, lincomycin, teicoplanin, rifampicin, imipenem, mupirocin. Antimicrobial sensitivity was examined using the disk diffusion method and performed according to NCCLS quidelines. Methicillin resistance was detected using the disk diffusion method with oxacillin, and the occurrence of mecA gene was detected by PCR. Resistance to streptomycin, penicillin, amoxicillin, neomycin, followed by tetracycline was predominant. From 14 mecA-positive strains, 12 were multidrug-resitant, and the remaining two showed atypical susceptibility. One strain resistant to oxacillin in the disc diffusion method was mecA-negative, suggesting a different mechanism of resistance. Our results indicate that the emergence of S. intermedius resistance to methicillin may be underestimated. In case of clinical multidrug-resitant S. intermedius isolates, resistance to methicillin should be considered.

  15. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus

  16. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase Negative Staphylococcus spp. Strains from Healthcare Facilities in Southern Poland.

    PubMed

    Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej

    2016-10-01

    This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.

  17. The Attenuated Nine Mile Phase II Clone 4/RSA439 Strain of Coxiella burnetii Is Highly Virulent for Severe Combined Immunodeficient (SCID) Mice

    PubMed Central

    Islam, Aminul; Lockhart, Michelle; Stenos, John; Graves, Stephen

    2013-01-01

    The Nine Mile phase II clone 4 (NMIIC4) strain of Coxiella burnetii is an attenuated phase II strain that has lost the genes for virulence determinant type 1 lipopolysaccharide. These bacteria were very virulent for severe combined immunodeficient (SCID) mice. The lethal dose 50 (LD50) was ∼10 bacteria. Infected SCID mice died between Day 28 and Day 53 post-infection. At termination of the experiment (Day 60) only 5 of 24 mice had survived. The degree of splenomegaly was directly related to the bacterial load in the SCID mice spleens. The NMIIC4 was avirulent in immunocompetent wild mice and bacterial DNA copies in splenic tissue were extremely low. The SCID mice that were inoculated with high doses of heat inactivated NMIIC4 C. burnetii were all alive at Day 60 and without splenomegaly. It appears that the phase I lipopolysaccharide present in virulent Nine Mile phase I but not in attenuated NMIIC4 is not the only virulence factor for C. burnetii. PMID:23958905

  18. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-08-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was observed were: penicillin, erythromycin, dicloxacillin, ampicillin, cephalothin, and chloramphenicol. We therefore conclude that MDR is common among Salmonella isolates originating from wild animals in captivity in Sinaloa.

  19. A nucleotide substitution responsible for the tawny coat color mutation carried by the MSKR inbred strain of mice.

    PubMed

    Wada, A; Kunieda, T; Nishimura, M; Kakizoe-Ishida, Y; Watanabe, N; Ohkawa, K; Tsudzuki, M

    2005-01-01

    "Tawny" is an autosomal recessive coat color mutation found in a wild population of Mus musculus molossinus. The inbred strain MSKR carries the mutation. The causative gene Mc1r(taw) of the tawny phenotype is the second recessive allele at the melanocortin 1 receptor locus and is dominant to the first recessive allele, "recessive yellow" (Mc1r(e)). The Mc1r(taw) gene has six nucleotide substitutions, and its forecasted transcript has three amino acid substitutions (i.e., V101A, V216A, W252C). Though the nucleotide substitutions leading to V101A and V216A exist in various mouse strains, the nucleotide substitution leading to W252C exists in only tawny-colored mice. Thus this substitution is considered to be responsible for the expression of the tawny coat color. The frequency of the allele having this nucleotide substitution was 9.21% in the wild M. m. molossinus population inhabiting Sakai City, Osaka Prefecture, Japan, where the ancestral mice of the MSKR strain were captured.

  20. Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs.

    PubMed

    Lister, Philip D; Wolter, Daniel J; Wickman, Paul A; Reisbig, Mark D

    2006-05-01

    Previous studies have demonstrated that a combination of levofloxacin with imipenem could prevent the emergence of resistance during the treatment of susceptible Pseudomonas aeruginosa isolates in a two-compartment pharmacodynamic model of infection. In this study, the efficacy of levofloxacin/imipenem was further evaluated against a panel of characterized P. aeruginosa strains that lacked susceptibility to one or both drugs in the combination. Five P. aeruginosa strains with characterized resistance mechanisms were evaluated. Log-phase cultures were inoculated into the peripheral compartment of the in vitro pharmacokinetic model and treated using simulated doses of 750 mg levofloxacin (dosed every 24 h) and 250 mg or 1 g doses of imipenem (dosed every 12 h). Peak levels were adjusted for protein binding. Pharmacodynamic interactions were evaluated by measuring the changes in viable counts over 30 h. To evaluate the emergence of resistance, samples removed at 30 h were plated onto agar containing the drug at 4x MIC, and potential mutants were evaluated for changes in susceptibility. Against strains overexpressing MexAB-OprM, MexCD-OprJ and MexEF-OprN efflux pumps, levofloxacin/imipenem prevented the emergence of resistance and achieved a 5 log total kill of one strain and eradication of two strains. Levofloxacin/imipenem also eradicated an imipenem-resistant strain lacking OprD. Although the combination initially killed 6-7 logs of a dual-resistant strain lacking OprD and overexpressing MexXY, it could not prevent the emergence of resistance when the 250 mg dose of imipenem was simulated in the combination. However, when the 1 g dose of imipenem was simulated with the combination, resistance was suppressed. These data suggest that levofloxacin/imipenem may be an effective combination for preventing the emergence of resistance among P. aeruginosa, even with strains already lacking susceptibility to one or both drugs in the combination. Clinical evaluation of this

  1. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into emergence and spread of multidrug resistance

    PubMed Central

    Manson, Abigail L.; Cohen, Keira A.; Abeel, Thomas; Desjardins, Christopher A.; Armstrong, Derek T.; Barry, Clifton E.; Brand, Jeannette; Chapman, Sinéad B.; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M.; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A. A.; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E.; Cassell, Gail H.; Dorman, Susan E.; Ellner, Jerrold; Farnia, Parissa; Galagan, James E.; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S.; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R.; Cohen, Ted; Hoffner, Sven; Birren, Bruce W.; Earl, Ashlee M.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB. PMID:28092681

  2. Characterization of Multidrug Resistant E. faecalis Strains from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI -TOF MS; Evaluation of the Compatibility of Methods Employed for Multidrug Resistance Analysis

    PubMed Central

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Gnat, Sebastian; Trościańczyk, Aleksandra; Adaszek, Łukasz

    2017-01-01

    The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS). From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson’s index of diversity, Rand and Wallace coefficients). Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the clustering pattern of

  3. Strain-induced tunable negative differential resistance in triangle graphene spirals

    NASA Astrophysics Data System (ADS)

    Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen

    2018-05-01

    Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.

  4. Strain-induced tunable negative differential resistance in triangle graphene spirals.

    PubMed

    Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen

    2018-05-18

    Using non-equilibrium Green's function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.

  5. Derivatives of a Vancomycin-Resistant Staphylococcus aureus Strain Isolated at Hershey Medical Center

    PubMed Central

    Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C.

    2004-01-01

    Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 μg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 μg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 μg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance. PMID:15561854

  6. Derivatives of a vancomycin-resistant Staphylococcus aureus strain isolated at Hershey Medical Center.

    PubMed

    Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C

    2004-12-01

    Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 microg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 microg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 microg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance.

  7. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains.

    PubMed

    Xia, Jinping; Qian, Fang; Xu, Wenqian; Zhang, Zhenzhen; Wei, Xin

    2017-04-01

    Antifungal resistance is a serious problem in clinical infections. Farnesol, which is a potential antifungal agent against biofilms formed by Candida albicans resistant strains (a fluconazole-resistant isolate derived from SC5314 and two clinical Candida resistant isolates), was investigated in this study. The inhibitory effects of farnesol on biofilms were examined by XTT assay. The morphological changes and biofilm thicknesses were analyzed by scanning electron microscopy and confocal laser scanning microscopy, respectively. Additionally, the checkerboard microdilution method was used to investigate the interactions between farnesol and antifungals (fluconazole, amphotericin B, caspofungin, itraconazole, terbinafine and 5-flurocytosine) against biofilms. The results showed decreased SMICs of farnesol and thinner biofilms in the farnesol-treated groups, indicating that farnesol inhibited the development of biofilms formed by the resistant strain. Furthermore, there were synergistic effects between farnesol and fluconazole/5-flurocytosine, while there were antagonistic effects between farnesol and terbinafine/itraconazole, respectively, on the biofilms formed by the resistant strains.

  8. Probiotic yeasts: Anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice

    PubMed Central

    Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno

    2010-01-01

    AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854

  9. Resistance to papaya ringspot virus-watermelon strain (PRSV-W) in the desert watermelon Citrullus colocynthis

    USDA-ARS?s Scientific Manuscript database

    The bitter desert watermelon (Citrullus colocynthis) is a valuable source for improving disease or pest resistance in watermelon cultivars. The objective of this study was to identify C. colocynthis accessions displaying resistance to the papaya ringspot virus-watermelon strain (PRSV-W) that could ...

  10. TRANSFER OF DRUG RESISTANCE BETWEEN ENTERIC BACTERIA INDUCED IN THE MOUSE INTESTINE

    PubMed Central

    Kasuya, Morimasa

    1964-01-01

    Kasuya, Morimasa (Nagoya University School of Medicine, Nagoya, Japan). Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J. Bacteriol. 88:322–328. 1964.—Transfer of multiple drug resistance in the intestines of germ-free and conventional mice was studied with strains of Shigella, Escherichia, and Klebsiella. The transfer experiment was carried out under antibiotic-free conditions to eliminate the production of drug-resistant bacteria by antibiotics. All resistance factors (chloramphenicol, streptomycin, tetracycline, and sulfathiazole) were transferred with ease in the intestinal tracts of mice, when donors and recipients multiplied freely, and acquired resistance was further transferred to other sensitive enteric bacteria in the intestinal tract. Bacteria to which resistance factors were transferred showed, in most of the experiments, exactly the same level and pattern of resistance as the donors. Based on the above, a hypothesis that the same process may possibly occur in the human intestine is presented. PMID:14203347

  11. RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection.

    PubMed

    Xing, Dongxu; Yang, Qiong; Jiang, Liang; Li, Qingrong; Xiao, Yang; Ye, Mingqiang; Xia, Qingyou

    2017-02-10

    The silkworm Bombyx mori is an economically important species. White muscardine caused by Beauveria bassiana is the main fungal disease in sericulture, and understanding the silkworm responses to B. bassiana infection is of particular interest. Herein, we investigated the molecular mechanisms underlying these responses in two silkworm strains Haoyue (HY, sensitive to B. bassiana ) and Kang 8 (K8, resistant to B. bassiana ) using an RNA-seq approach. For each strain, three biological replicates for immersion treatment, two replicates for injection treatment and three untreated controls were collected to generate 16 libraries for sequencing. Differentially expressed genes (DEGs) between treated samples and untreated controls, and between the two silkworm strains, were identified. DEGs and the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the two strains exhibited an obvious difference. Several genes encoding cuticle proteins, serine proteinase inhibitors (SPI) and antimicrobial peptides (AMP) and the drug metabolism pathway involved in toxin detoxification were considered to be related to the resistance of K8 to B. bassiana. These results revealed insight into the resistance and susceptibility of two silkworm strains against B. bassiana infection and provided a roadmap for silkworm molecular breeding to enhance its resistance to B. bassiana .

  12. RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection

    PubMed Central

    Xing, Dongxu; Yang, Qiong; Jiang, Liang; Li, Qingrong; Xiao, Yang; Ye, Mingqiang; Xia, Qingyou

    2017-01-01

    The silkworm Bombyx mori is an economically important species. White muscardine caused by Beauveria bassiana is the main fungal disease in sericulture, and understanding the silkworm responses to B. bassiana infection is of particular interest. Herein, we investigated the molecular mechanisms underlying these responses in two silkworm strains Haoyue (HY, sensitive to B. bassiana) and Kang 8 (K8, resistant to B. bassiana) using an RNA-seq approach. For each strain, three biological replicates for immersion treatment, two replicates for injection treatment and three untreated controls were collected to generate 16 libraries for sequencing. Differentially expressed genes (DEGs) between treated samples and untreated controls, and between the two silkworm strains, were identified. DEGs and the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the two strains exhibited an obvious difference. Several genes encoding cuticle proteins, serine proteinase inhibitors (SPI) and antimicrobial peptides (AMP) and the drug metabolism pathway involved in toxin detoxification were considered to be related to the resistance of K8 to B. bassiana. These results revealed insight into the resistance and susceptibility of two silkworm strains against B. bassiana infection and provided a roadmap for silkworm molecular breeding to enhance its resistance to B. bassiana. PMID:28208575

  13. Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice.

    PubMed

    Haggerty, Christopher M; Kramer, Sage P; Binkley, Cassi M; Powell, David K; Mattingly, Andrea C; Charnigo, Richard; Epstein, Frederick H; Fornwalt, Brandon K

    2013-08-27

    Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent

  14. Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV.

    PubMed

    Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J

    2012-06-01

    Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.

  15. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction.

    PubMed

    Walker, Michael; Fureix, Carole; Palme, Rupert; Newman, Jonathan A; Ahloy Dallaire, Jamie; Mason, Georgia

    2016-01-27

    Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80%. Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the

  16. The efficacy and tolerability of azilsartan in obese insulin-resistant mice with left ventricular pressure overload.

    PubMed

    Tarikuz Zaman, A K M; McLean, Danielle L; Sobel, Burton E

    2013-10-01

    Angiotensin II receptor blockers (ARBs) are used widely for the treatment of heart failure. However, their use in obese and insulin-resistant patients remains controversial. To clarify their potential efficacy in these conditions, we administered azilsartan medoxomil (azilsartan), a prodrug of an angiotensin II receptor blocker to mice fed a high-fat diet (HFD) with left ventricular (LV) pressure overload (aortic banding). LV fibrosis (hydroxyproline), cardiac plasminogen activator inhibitor-1 (PAI-1; a marker of profibrosis), and creatine kinase (a marker of myocardial viability and energetics) were assessed. LV wall thickness and cardiac function were assessed echocardiographically. Mice given a HFD were obese and insulin resistant. Their LV hypertrophy was accompanied by greater LV PAI-1 and reduced LV creatine kinase compared with normal diet controls. Drug treatment reduced LV wall thickness, hypertrophy, and PAI-1 and increased cardiac output after aortic banding compared with results in HFD vehicle controls. Thus, azilsartan exerted favorable biological effects on the hearts of obese insulin-resistant mice subjected to LV pressure overload consistent with its potential utility in patients with analogous conditions.

  17. Three unsuccessful treatments of Helicobacter pylori infection by a highly virulent strain with quadruple antibiotic resistance.

    PubMed

    Boyanova, Lyudmila; Evstatiev, Ivailo; Yordanov, Daniel; Markovska, Rumyana; Mitov, Ivan

    2016-07-01

    We report a case of an adult patient undergoing three unsuccessful Helicobacter pylori treatments, including proton pump inhibitor (PPI), bismuth subcitrate, metronidazole and tetracycline in 2012, PPI, amoxicillin and clarithromycin in 2013, and PPI, amoxicillin and rifampin in 2014. Following the first treatment, the isolate was metronidazole and ciprofloxacin/levofloxacin resistant. After the second treatment, the isolate was resistant to metronidazole, ciprofloxacin/levofloxacin and rifampin, developing secondary clarithromycin resistance by A2143G mutation and was susceptible only to tetracycline. After the third treatment, the patient still remained H. pylori positive. Patient's strain was highly virulent (cagA (+) , cagE (+) and vacA s1a/m1/i1). The evolution of the patient's disease was from gastroesophageal reflux disease in 2012 to two duodenal ulcers in 2015. Briefly, the infecting strain showed quadruple antibiotic resistance and a transient amoxicillin resistance. Triple clarithromycin-based treatment induced secondary clarithromycin resistance by A2143G mutation, while rifampin resistance caused the third treatment failure. Several options for the next treatment regimens are discussed.

  18. Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains.

    PubMed

    Sabaté, Daniela C; Audisio, M Carina

    2013-03-30

    Three surfactin-producing Bacillus subtilis strains, C4, M1 and G2III, previously isolated from honey and intestines from the Apis mellifera L. bee, were phylogenetically characterized at sub-species level as B. subtilis subsp. subtilis using gyrA gene sequencing. The antagonistic effect of surfactin was studied against seven different Listeria monocytogenes strains, 6 of which were resistant to bacteriocins. Surfactin showed anti-Listeria activity against all 7 strains and a dose of 0.125 mg/mL of surfactin was enough to inhibit this pathogen. Surfactin sintetized by B. subtilis subsp. subtilis C4 inhibited the pathogen in lower concentrations, 0.125 mg/mL, followed by G2III and M1 with 0.25 and 1mg/mL, respectively. In particular, a dose of 0.125 mg/mL reduced the viability of L. monocytogenes 99/287 RB6, a bacteriocin-resistant strain, to 5 log orders. Surfactin assayed maintained anti-Listeria activity within a pH range of between 2 and 10, after heat treatment (boiling for 10 min and autoclaving at 121 °C for 15 min) and after treatment with proteolytic enzymes. These results suggest that surfactin can be used as a new tool for prevention and the control of L. monocytogenes in different environments, for example, in the food industry. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae

    PubMed Central

    Mezzetti, Francesco; Fay, Justin C.; Giudici, Paolo

    2017-01-01

    Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains. PMID:28683117

  20. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume

    PubMed Central

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-01-01

    Background Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 μg of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 μg soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. Results BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. Conclusion The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain. PMID:18778475

  1. Experimental Shigella Infections in Laboratory Animals I. Antagonism by Human Normal Flora Components in Gnotobiotic Mice 12

    PubMed Central

    Maier, Bruce R.; Hentges, David J.

    1972-01-01

    Germfree mice were associated with selected species of human intestinal bacteria and then challenged with a streptomycin-resistant Shigella flexneri strain. Antagonism against Shigella was most pronounced in mice associated with Escherichia coli and least pronounced in mice associated with Bacteroides fragilis. A moderate degree of antagonism could be demonstrated in mice associated with either Streptococcus faecalis or Bifidobacterium adolescentis. Shigella persisted in the cecal contents of E. coli-associated mice at very low, stable levels. Shigella populations were reduced to levels below detection in the ceca of mice diassociated with E. coli and Bacteroides. Upon subsequent administration of streptomycin, Bacteroides disappeared from the ceca. The E. coli population was greatly reduced, and Shigella reappeared at very high population levels as an apparent recombinant which resembled E. coli biochemically. A streptomycin-resistant E. coli population subsequently emerged and became dominant in the ceca. Shigella concomitantly declined to levels below detection. PMID:4631914

  2. Strain and sex differences in anxiety-like and social behaviors in C57BL/6J and BALB/cJ mice.

    PubMed

    An, Xiao-Lei; Zou, Jun-Xian; Wu, Rui-Yong; Yang, Ying; Tai, Fa-Dao; Zeng, Shuang-Yan; Jia, Rui; Zhang, Xia; Liu, En-Qi; Broders, Hugh

    2011-01-01

    Mood disorders are more frequent in women than men, however, the majority of research has focused on male rodents as animal models. We used a variety of common behavioral tests to look for differences in anxiety-like and social behaviors between and within C57BL/6J and BALB/cJ mice. Our results show that female C57BL/6J mice exhibited lower levels of anxiety-like behavior and higher levels of activity than female BALB/cJ during the open field and elevated plus maze tests. Principal component analysis generated more factors in the behavioral variables of males than females. In the open field, a sex difference was also found and factor 1 emerged as anxiety in males, and motor activity in females. While C57BL/6J mice were found to have higher levels of social exploration and social contacts, differences were found between the sexes (females were more social) in both strains for this measure and also for anxiety-like behaviors. When interacting with animals of the same sex, levels of sniffing body and huddling in both male and female C57BL/6J mice were higher than those in male and female BALB/cJ mice. However, in the between-sex interactions, male C57BL/6J mice sniffed the stimulus mouse less, and female C57BL/6J mice sniffed the stimulus more compared to BALB/cJ mice. This study provides important behavioral phenotypes and confirms the multidimensional behavioral structure of two widely used mice strains.

  3. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen.

    PubMed

    Mansour, Nahla M; Abdelaziz, Sahar A

    2016-08-01

    The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 μL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  4. Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: A mathematical modeling study

    PubMed Central

    Leung, Kathy; Lipsitch, Marc; Yuen, Kwok Yung; Wu, Joseph T

    2017-01-01

    Summary Background Antivirals (e.g. oseltamivir) are important for mitigating influenza epidemics. In 2007, an oseltamivir-resistant seasonal A(H1N1) strain emerged and spread to global fixation within one year. This showed that antiviral-resistant (AVR) strains can be intrinsically more transmissible than their contemporaneous antiviral-sensitive (AVS) counterpart. Surveillance of AVR fitness is therefore essential. Methods We define the fitness of AVR strains as their reproductive number relative to their co-circulating AVS counterparts. We develop a simple method for real-time estimation of AVR fitness from surveillance data. This method requires only information on generation time without other specific details regarding transmission dynamics. We first use simulations to validate this method by showing that it yields unbiased and robust fitness estimates in most epidemic scenarios. We then apply this method to two retrospective case studies and one hypothetical case study. Findings We estimate that (i) the oseltamivir-resistant A(H1N1) strain that emerged in 2007 was 4% (3–5%) more transmissible than its oseltamivir-sensitive predecessor and (ii) the oseltamivir-resistant pandemic A(H1N1) strain that emerged and circulated in Japan during 2013–2014 was 24% (17–30%) less transmissible than its oseltamivir-sensitive counterpart. We show that in the event of large-scale antiviral interventions during a pandemic with co-circulation of AVS and AVR strains, our method can be used to inform optimal use of antivirals by monitoring intrinsic AVR fitness and drug pressure on the AVS strain. Conclusions We have developed a simple method that can be easily integrated into contemporary influenza surveillance systems to provide reliable estimates of AVR fitness in real time. Funding Research Fund for the Control of Infectious Disease (09080792) and a commissioned grant from the Health and Medical Research Fund from the Government of the Hong Kong Special Administrative

  5. Induction of TNF-alfa and CXCL-2 mRNAs in different organs of mice infected with pathogenic Leptospira.

    PubMed

    da Silva, Josefa B; Carvalho, Enéas; Covarrubias, Ambart E; Ching, Ana Tung C; Mattaraia, Vania G M; Paiva, Delhi; de Franco, Marcelo; Fávaro, Regiane Degan; Pereira, Martha M; Vasconcellos, Silvio; Zorn, Telma T M; Ho, Paulo Lee; Martins, Elizabeth A L

    2012-04-01

    The role of innate immune response in protection against leptospirosis is poorly understood. We examined the expression of the chemokine CXCL2/MIP-2 and the cytokine TNF-α in experimental resistant and susceptible mice models, C3H/HeJ, C3H/HePas and BALB/c strains, using a virulent strain of Leptospira interrogans serovar Copenhageni. Animals were infected intraperitoneally with 10(7) cells and the development of the disease was followed. Mortality of C3H/HeJ mice was observed whereas C3H/HePas presented jaundice and BALB/c mice remained asymptomatic. The infection was confirmed by the presence of leptospiral DNA in the organs of the animals, demonstrated by PCR. Sections of the organs were analyzed, after H&E stain. The relative expression of mRNA of chemokine CXCL2/MIP-2 and cytokine TNF-α was measured in lung, kidney and liver of the mice by qPCR. The concentrations of these proteins were measured in extracts of tissues and in serum of the animals, by ELISA. Increasing levels of transcripts and protein CXCL2/MIP-2 were detected since the first day of infection. The highest expression was observed at third day of infection in kidney, liver and lung of BALB/c mice. In C3H/HeJ the expression of CXCL2/MIP-2 was delayed, showing highest protein concentration in lung and kidney at the 5th day. Increasing in TNF-α transcripts were detected after infection, in kidney and liver of animals from the three mice strains. The expression of TNF-α protein in C3H/HeJ was also delayed, being detected in kidney and lung. Our data demonstrated that Leptospira infection stimulates early expression of CXCL2/MIP-2 and TNF-α in the resistant strain of mice. Histological analysis suggests that the expression of those molecules may be related to the influx of distinct immune cells and plays a role in the naturally acquired protective immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Production of large numbers of hybridomas producing monoclonal antibodies against rat IgE using mast cell-deficient w/wv and sl/sld strains of mice.

    PubMed

    Rup, B J

    1989-08-15

    A number of different mouse strains and immunization protocols were used to attempt to make monoclonal antibodies against rat IgE for use in studies of the structure, biological activities and regulation of this class of antibody. Successful production of large numbers of monoclonal antibodies was achieved when mast cell deficient (w/wv and sl/sld) but not conventional (BALB/c, CAF1 or SJL) mice were used. These results suggest that the poor response of conventional strains of mice to rat IgE may be due to the presence of mast cells bearing high affinity receptors for IgE in these mice.

  7. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance

    PubMed Central

    Wang, Yanfei; Zhou, Zhiling; Wu, Weijie; Gong, Jianming

    2017-01-01

    Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increased the HE susceptibility of the steel, since α′ martensite was induced by the pre-strain, causing the pre-existence of α′ martensite, which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain, they retained the HE resistance of the steel. This is because the higher temperatures, particularly 80 and 100 °C, suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance. PMID:29160830

  8. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  9. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  10. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092.

    PubMed

    Pramanik, Krishnendu; Mitra, Soumik; Sarkar, Anumita; Maiti, Tushar Kanti

    2018-06-05

    Heavy metal resistant PGPR mediated bioremediation, phytostimulation and stress alleviation is an eco-friendly method for sustainable agriculture in the metal contaminated soil. The isolation of such PGPR is highly demanding to reduce heavy metals in contaminated cultivated fields for agricultural benefit. The present study was successful to isolate a potent multi-heavy metal resistant PGPR strain, identified as Enterobacter aerogenes strain K6 based on MALDI-TOF MS, FAME analysis and 16S rDNA sequence homology, from rice rhizosphere contaminated with a variety of heavy metals/metalloid near industrial area. The strain exhibited high degree of resistance to Cd 2+ , Pb 2+ and As 3+ upto 4000 μg/mL, 3800 μg/mL and 1500 μg/mL respectively. Intracellular Cd accumulation of this strain was evidenced by AAS-SEM-TEM-EDX-XRF studies. Moreover, it showed several important PGP traits like IAA production, nitrogen fixation, phosphate solubilization, ACC deaminase activity even under high Cd stress (upto 3000 μg/mL). The combined effect of Cd resistance and PGP activities of this strain was manifested to the significant (p < 0.05) growth promotion of rice seedling under Cd stress by reducing oxidative stress (through antioxidants), stress ethylene and Cd uptake in seedlings. Thus K6 strain conferred Cd-tolerance in rice seedlings and could be applied as PGPR in contaminated fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections.

    PubMed

    Warnke, Patrick H; Becker, Stephan T; Podschun, Rainer; Sivananthan, Sureshan; Springer, Ingo N; Russo, Paul A J; Wiltfang, Joerg; Fickenscher, Helmut; Sherry, Eugene

    2009-10-01

    Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species.

  12. A quantitative analysis of the effects of qualitatively different reinforcers on fixed ratio responding in inbred strains of mice

    PubMed Central

    Hutsell, Blake A.; Newland, M. Christopher

    2013-01-01

    Previous studies of inbred mouse strains have shown reinforcer-strain interactions that may potentially mask differences among strains in memory performance. The present research examined the effects of two qualitatively different reinforcers (heterogeneous mix of flavored pellets and sweetened-condensed milk) on responding maintained by fixed-ratio schedules of reinforcement in three inbred strains of mice (BALB/c, C57BL/6, & DBA/2). Responses rates for all strains were a bitonic (inverted U) function of the size of the fixed-ratio schedule and were generally higher when responding was maintained by milk. For the DBA/2 and C57BL/6 and to a lesser extent the BALB/c, milk primarily increased response rates at moderate fixed ratios, but not at the largest fixed ratios tested. A formal model of ratio-schedule performance, Mathematical Principles of Reinforcement (MPR), was applied to the response rate functions of individual mice. According to MPR, the differences in response rates maintained by pellets and milk were mostly due to changes in motoric processes as indicated by changes in the minimum response time (δ) produced by each reinforcer type and not specific activation (a), a model term that represents value and is correlated with reinforcer magnitude and the break point obtained under progressive ratio schedules. In addition, MPR also revealed that, although affected by reinforcer type, a parameter interpreted as the rate of saturation of working memory (λ), differed among the strains. PMID:23357283

  13. Detection of Resistance to Beta-Lactamase Inhibitors in Strains with CTX-M Beta-Lactamases: a Multicenter External Proficiency Study Using a Well-Defined Collection of Escherichia coli Strains

    PubMed Central

    Ripoll, Aida; Rodríguez, Cristina; Tormo, Nuria; Gimeno, Concepción; Baquero, Fernando; Martínez-Martínez, Luis; Cantón, Rafael

    2014-01-01

    Under the auspices of the Spanish Society for Infectious Diseases and Clinical Microbiology Quality Control program, 14 Escherichia coli strains masked as blood culture isolates were sent to 68 clinical microbiology laboratories for antimicrobial susceptibility testing to β-lactam antibiotics. This collection included three control strains (E. coli ATCC 25922, an IRT-2 producer, and a CMY-2 producer), six isogenic strains with or without the OmpF porin and expressing CTX-M β-lactamases (CTX-M-1, CTX-M-15, and CTX-M-14), one strain carrying a double mechanism for β-lactam resistance (i.e., carrying CTX-M-15 and OXA-1 enzymes), and four strains carrying CTX-M variants with different levels of resistance to β-lactams and β-lactam–β-lactamase inhibitor (BLBLI) combinations. The main objective of the study was to ascertain how these variants with reduced susceptibilities to BLBLIs are identified in clinical microbiology laboratories. CTX-M variants with high resistance to BLBLIs were mainly identified as inhibitor-resistant TEM (IRT) enzymes (68.0%); however, isogenic CTX-M mutant strains with reduced susceptibilities to BLBLIs and cephalosporins were mainly associated with extended-spectrum β-lactamase production alone (51 to 80%) or in combination with other mechanisms (14 to 31%). Concerning all β-lactams tested, the overall interpretative discrepancy rate was 11.5%, of which 38.1% were the consequence of postreading changes in the clinical categories when a resistance mechanism was inferred. Therefore, failure to recognize these complex phenotypes might contribute to an explanation of their apparent absence in the clinical setting and might lead to inadequate drug treatment selection. A proposal for improving recognition is to adhere strictly to the current CLSI or EUCAST guidelines for detecting reduced susceptibility to BLBLI combinations, without any interpretative modification. PMID:24153133

  14. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  15. Curcumin modifies Apc(min) apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apc(min) mice.

    PubMed

    Collett, G P; Robson, C N; Mathers, J C; Campbell, F C

    2001-05-01

    Curcumin, the active ingredient of the rhizome of Curcuma longa, promotes apoptosis and may have chemopreventive properties. This study investigates the effects of curcumin on apoptosis and tumorigenesis in male Apc(min) mice treated with the human dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Intestinal epithelial apoptotic index in response to PhIP treatment was approximately twice as great in the wild-type C57BL/6 APC(+/+) strain than in Apc(min) mice (3.7% Apc(+/+) versus 1.9% Apc(min); P < 0.001). PhIP promoted tumour formation in Apc(min) proximal small intestine (4.6 tumours per mouse, PhIP treated versus 2.1 tumours per mouse, control untreated; P < 0.05). Curcumin enhanced PhIP-induced apoptosis (4.0% curcumin + PhIP versus 2.1% PhIP alone; P < 0.01) and inhibited PhIP-induced tumorigenesis in the proximal small intestine of Apc(min) mice (2.2 tumours per mouse, curcumin + PhIP versus 4.6 tumours per mouse PhIP alone; P < 0.05). This study shows that the Apc(min) genotype is associated with resistance to PhIP-induced apoptosis in intestinal epithelium. Curcumin attenuates Apc(min) resistance to PhIP-induced apoptosis and inhibits PhIP-induced tumorigenesis in proximal Apc(min) mouse small intestine.

  16. Impact of primary antibiotic resistance on the effectiveness of sequential therapy for Helicobacter pylori infection: lessons from a 5-year study on a large number of strains.

    PubMed

    Gatta, L; Scarpignato, C; Fiorini, G; Belsey, J; Saracino, I M; Ricci, C; Vaira, D

    2018-05-01

    The increasing prevalence of strains resistant to antimicrobial agents is a critical issue in the management of Helicobacter pylori (H. pylori) infection. (1) To evaluate the prevalence of primary resistance to clarithromycin, metronidazole and levofloxacin (2) to assess the effectiveness of sequential therapy on resistant strains (3) to identify the minimum number of subjects to enrol for evaluating the effectiveness of an eradication regimen in patients harbouring resistant strains. Consecutive 1682 treatment naïve H. pylori-positive patients referred for upper GI endoscopy between 2010 and 2015 were studied and resistances assessed by E-test. Sequential therapy was offered, effectiveness evaluated and analysed. H. pylori-primary resistance to antimicrobials tested was high, and increased between 2010 and 2015. Eradication rates were (estimates and 95% CIs): 97.3% (95.6-98.4) in strains susceptible to clarithromycin and metronidazole; 96.1% (91.7-98.2) in strains resistant to metronidazole but susceptible to clarithromycin; 93.4% (88.2-96.4) in strains resistant to clarithromycin but susceptible to metronidazole; 83.1% (77.7-87.3) in strains resistant to clarithromycin and metronidazole. For any treatment with a 75%-85% eradication rate, some 98-144 patients with resistant strains need to be studied to get reliable information on effectiveness in these patients. H. pylori-primary resistance is increasing and represents the most critical factor affecting effectiveness. Sequential therapy eradicated 83% of strains resistant to clarithromycin and metronidazole. Reliable estimates of the effectiveness of a given regimen in patients harbouring resistant strains can be obtained only by assessing a large number of strains. © 2018 John Wiley & Sons Ltd.

  17. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    PubMed

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  18. Mice lacking mPGES-1 are resistant to lithium-induced polyuria

    PubMed Central

    Jia, Zhanjun; Wang, Haiping

    2009-01-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol·kg−1·day−1 ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE2 excretion. In contrast, mPGES-1 −/− mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE2 and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the −/− mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the −/− mice. We conclude that mPGES-1-derived PGE2 mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression. PMID:19692487

  19. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    PubMed

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  20. Assessing Autism-like Behavior in Mice: Variations in Social Interactions Among Inbred Strains.

    PubMed Central

    Bolivar, Valerie J.; Walters, Samantha R.; Phoenix, Jennifer L.

    2007-01-01

    Autism is a pervasive developmental disorder, with characteristics including impairments in reciprocal social interaction, impaired communication, and repetitive/stereotyped behaviors. Despite decades of research, the etiology of autism remains elusive. Thus, it is important that we pursue all avenues, in attempting to understand this complicated disorder. One such avenue is the development of animal models. While autism may be uniquely human, there are behavioral characteristics of the disorder that can be established in animal models. Evidence supports a genetic component for this disorder, and over the past few decades the mouse has been a highly valuable tool for the elucidation of pathways involved in many human disorders (e.g., Huntington’s disease). As a first step toward establishing a mouse model of autism, we studied same-sex social behavior in a number of inbred mouse strains. In Study 1, we examined intra-strain social behavior of male pairs after one mouse had 15 minutes prior exposure to the testing chamber. In Study 2, we evaluated intra-strain and inter-strain social behavior when both mice were naive to the testing chamber. The amount and type of social behavior seen differed between these studies, but overall there were general inbred strain differences in social behavior. Some strains were highly social (e.g., FVB/NJ, while others displayed low levels of social behavior (e.g., A/J, BTBR T+ tf/J). These strains may be useful in future genetic studies to determine specific genes involved in mouse social behavior, the findings of which should in turn help us to determine some of the genes involved in human social behavior and its disorders (e.g., autism). PMID:17097158