Science.gov

Sample records for resistant mycobacterium tuberculosis

  1. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  2. Drug Resistance Mechanisms in Mycobacterium tuberculosis.

    PubMed

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  3. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.

    PubMed Central

    Rattan, A.; Kalia, A.; Ahmad, N.

    1998-01-01

    Multidrug-resistant strains of Mycobacterium tuberculosis seriously threaten tuberculosis (TB) control and prevention efforts. Molecular studies of the mechanism of action of antitubercular drugs have elucidated the genetic basis of drug resistance in M. tuberculosis. Drug resistance in M. tuberculosis is attributed primarily to the accumulation of mutations in the drug target genes; these mutations lead either to an altered target (e.g., RNA polymerase and catalase-peroxidase in rifampicin and isoniazid resistance, respectively) or to a change in titration of the drug (e.g., InhA in isoniazid resistance). Development of specific mechanism-based inhibitors and techniques to rapidly detect multidrug resistance will require further studies addressing the drug and drug-target interaction. PMID:9621190

  4. Pre-multidrug-resistant Mycobacterium tuberculosis Beijing strain associated with disseminated tuberculosis in a pet dog.

    PubMed

    Botelho, Ana; Perdigão, João; Canto, Ana; Albuquerque, Teresa; Leal, Nuno; Macedo, Rita; Portugal, Isabel; Cunha, Mónica V

    2014-01-01

    Resistance to isoniazid, ethambutol, and streptomycin was detected in a Mycobacterium tuberculosis strain, belonging to the Beijing family lineage, isolated from two nodule exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts medical practitioners to the risk of dissemination of pre-multidrug-resistant tuberculosis (preMDR-TB) through exposure to M. tuberculosis-shedding pets.

  5. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  6. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  7. Pyrazinamide resistance in Mycobacterium tuberculosis fails to bite?

    PubMed

    den Hertog, Alice L; Sengstake, Sarah; Anthony, Richard M

    2015-08-01

    In contrast to most other antimycobacterial drugs where--particularly in multidrug-resistant (MDR) strains--a limited number of resistance mutations dominate, pyrazinamide (PZA) resistance associated mutations remain highly diverse with limited clustering. This apparent lack of evolutionary selection for successful PZA resistance mechanisms deserves attention. A clear understanding of the epidemiology of PZA resistance acquisition and spread would be expected to result in important insights into how PZA might be better exploited in treatment regimens to minimize the amplification of Mycobacterium tuberculosis (MTB) drug resistance. We propose that PZA resistance typically induces a fitness cost that impairs MTB transmission. This would explain the lack of extensive clustering for PZA-resistant mutants. Our hypothesis also leads to a series of testable predictions which we outline that could confirm or refute our ideas.

  8. Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out.

    PubMed

    Eldholm, Vegard; Balloux, François

    2016-08-01

    Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs. PMID:27068531

  9. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lata, Manju; Sharma, Divakar; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-09-01

    Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India.

  10. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains.

    PubMed

    Haque, Md Fazlul; Boonhok, Rachasak; Prammananan, Therdsak; Chaiprasert, Angkana; Utaisincharoen, Pongsak; Sattabongkot, Jetsumon; Palittapongarnpim, Prasit; Ponpuak, Marisa

    2015-10-01

    Autophagy represents a key pathway in innate immune defense to restrict Mycobacterium tuberculosis growth inside host macrophages. Induction of autophagy has been shown to promote mycobacterial phagosome acidification and acquisition of lysosomal hydrolases, resulting in the elimination of intracellular M. tuberculosis reference strains such as H37Rv. The notorious Beijing genotype has been previously shown to be hyper-virulent and associated with increased survival in host cells and a high mortality rate in animal models, but the underlying mechanism that renders this family to have such advantages remains unclear. We hypothesize that autophagic control against M. tuberculosis Beijing strains may be altered. Here, we discovered that the Beijing strains can resist autophagic killing by host cells compared with that of the reference strain H37Rv and a strain belonging to the East African Indian genotype. Moreover, we have determined a possible underlying mechanism and found that the greater ability to evade autophagic elimination possessed by the Beijing strains stems from their higher capacity to inhibit autophagolysosome biogenesis upon autophagy induction. In summary, a previously unrecognized ability of the M. tuberculosis Beijing strains to evade host autophagy was identified, which may have important implications for tuberculosis treatment, especially in regions prevalent by the Beijing genotype. PMID:26160686

  11. Copper resistance is essential for virulence of Mycobacterium tuberculosis.

    PubMed

    Wolschendorf, Frank; Ackart, David; Shrestha, Tej B; Hascall-Dove, Laurel; Nolan, Scott; Lamichhane, Gyanu; Wang, Ying; Bossmann, Stefan H; Basaraba, Randall J; Niederweis, Michael

    2011-01-25

    Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy. PMID:21205886

  12. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains

    PubMed Central

    Song, Keum-Soo; Nimse, Satish Balasaheb; Kim, Hee Jin; Yang, Jeongseong; Kim, Taisun

    2016-01-01

    In 2013 alone, the death rate among the 9.0 million people infected with Mycobacterium tuberculosis (TB) worldwide was around 14%, which is unacceptably high. An empiric treatment of patients infected with TB or drug-resistant Mycobacterium tuberculosis (MDR-TB) strain can also result in the spread of MDR-TB. The diagnostic tools which are rapid, reliable, and have simple experimental protocols can significantly help in decreasing the prevalence rate of MDR-TB strain. We report the evaluation of the 9G technology based 9G DNAChips that allow accurate detection and discrimination of TB and MDR-TB-RIF. One hundred and thirteen known cultured samples were used to evaluate the ability of 9G DNAChip in the detection and discrimination of TB and MDR-TB-RIF strains. Hybridization of immobilized probes with the PCR products of TB and MDR-TB-RIF strains allow their detection and discrimination. The accuracy of 9G DNAChip was determined by comparing its results with sequencing analysis and drug susceptibility testing. Sequencing analysis showed 100% agreement with the results of 9G DNAChip. The 9G DNAChip showed very high sensitivity (95.4%) and specificity (100%). PMID:26999135

  13. Prevalence of drug resistant Mycobacterium tuberculosis among children in China.

    PubMed

    Jiao, Wei-wei; Liu, Zhi-guang; Han, Rui; Zhao, Xiu-qin; Dong, Fang; Dong, Hai-yan; Huang, Hai-rong; Li, Qin-jing; Lin, Nan; Song, Wen-qi; Wan, Kang-lin; Shen, A-dong

    2015-05-01

    The available data on the epidemic of drug resistant tuberculosis (TB) among children in China is limited. This study attempted to clarify the drug resistance profiles of clinical strains isolated from children and estimate risk factors related to acquisition of drug resistance. All Mycobacterium tuberculosis strains from children (age <15 years) and adolescent (age 15-18 years) TB patients received in the strain library of Chinese Center for Disease Control and Prevention between January 2005 and December 2012 were included in the study. A study collection included 450 clinical isolates (100 from children, 159 from adolescents, and 191 from adults) from all over China. Drug susceptibility testing was performed by a proportion method. As a result, the drug resistance and multi-drug resistance (MDR) rates in children were 55% (55/100) and 22% (22/100), respectively. In children with MDR-TB, new cases accounted for 40.9% (9/22). Compared with adults, the drug resistance rates were similar in all subgroups (new cases, previously treated cases and all cases) of children (P > 0.05), except for the lower resistance rate to isoniazid in total cases of children (P = 0.011). Patient related information was included in the MDR-TB association analysis. The treatment history was found to be strongly associated with MDR-TB in all three age groups (P < 0.05). Our results demonstrate that the prevalence of drug resistant TB in children in China is alarmingly high and similar to that seen in adults. In contrast, in adolescents, the drug resistance rate to most tested drugs was lower than in adults. Primary transmission and inadequate treatment are two equally important factors for the high MDR-TB rate in children. Thus, major efforts in the TB control in children should focus on decreasing the transmission of drug resistant TB and early testing of drug resistance.

  14. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  15. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  16. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study.

    PubMed

    Miotto, Paolo; Cabibbe, Andrea M; Feuerriegel, Silke; Casali, Nicola; Drobniewski, Francis; Rodionova, Yulia; Bakonyte, Daiva; Stakenas, Petras; Pimkina, Edita; Augustynowicz-Kopeć, Ewa; Degano, Massimo; Ambrosi, Alessandro; Hoffner, Sven; Mansjö, Mikael; Werngren, Jim; Rüsch-Gerdes, Sabine; Niemann, Stefan; Cirillo, Daniela M

    2014-10-21

    Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZA(r)). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZA(r) strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZA(r) strains, (iii) mutations with an unclear role found in less than 70% of PZA(r) strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZA(r); the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. Importance: Conventional phenotypic testing for pyrazinamide resistance in Mycobacterium tuberculosis is technically challenging and often unreliable. The development of a molecular assay for detecting pyrazinamide resistance would be a breakthrough, directly overcoming both the limitations of conventional testing and its related biosafety issues. Although the main mechanism of pyrazinamide resistance involves mutations inactivating the pncA enzyme, the highly diverse genetic variants scattered over the full length of the pncA gene and the lack of a reliable phenotypic gold standard hamper the development of molecular diagnostic

  17. Primary multidrug-resistant Mycobacterium tuberculosis in 2 regions, Eastern Siberia, Russian Federation.

    PubMed

    Zhdanova, Svetlana; Heysell, Scott K; Ogarkov, Oleg; Boyarinova, Galina; Alexeeva, Galina; Pholwat, Suporn; Zorkaltseva, Elena; Houpt, Eric R; Savilov, Eugeniy

    2013-10-01

    Of 235 Mycobacterium tuberculosis isolates from patients who had not received tuberculosis treatment in the Irkutsk oblast and the Sakha Republic (Yakutia), eastern Siberia, 61 (26%) were multidrug resistant. A novel strain, S 256, clustered among these isolates and carried eis-related kanamycin resistance, indicating a need for locally informed diagnosis and treatment strategies. PMID:24047678

  18. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia

    PubMed Central

    Biadglegne, Fantahun; Tessema, Belay; Sack, Ulrich; Rodloff, Arne C.

    2014-01-01

    Background & objectives: The emergence of drug resistance tuberculosis (TB) is a significant challenge for TB control and prevention programmes, and the major problem is multidrug resistant tuberculosis (MDR-TB). The present study was carried out to determine the frequency of drug resistant Mycobacterium tuberculosis isolates among newly and retreated TB lymphadenitis patients and risk factors for acquiring this infection. Methods: Two hundred twenty five M. tuberculosis isolates from TB lymphadenitis patients who were diagnosed as new and retreated tuberculosis cases between April 2012 and May 2012 were included in this study. Isolates were tested for susceptibility to isoniazed (INH), rifampicin (RMP), streptomycin (SM), ethambutol (EMB) and pyrazinamide (PZA) using the BacT/AlerT 3D system protocol. Results: Among 225 isolates, 15 (6.7%) were resistant to at least one first line anti-TB drug. Three (1.3%) were MDR-TB. Resistance to INH, RMP, SM, and EMB was found in 8 (3.6%), 4 (1.8%), 10 (4.4%), and 4 (1.8%) isolates, respectively. Of the 212 new TB lymphadenitis cases three (1.4%) were MDR-TB. A rifampicin resistant M. tuberculosis isolate was diagnosed from smear and culture negative newly treated cases. All isolates were susceptible to PZA. Matted cervical lymph nodes were the prominent sites involved. Newly treated TB lymphadenitis patients had a greater risk for presenting resistance to anti-TB drugs (P=0.046). Interpretation & conclusions: Our study showed that TB lymphadenitis patients harboured drug resistant TB and MDR-TB, although at a low rate. Resistance was not associated with age, sex, patients’ education and contact history. Further research is required to determine transmission dynamics of drug resistant strains. PMID:25222786

  19. MicroRNA signatures from multidrug‑resistant Mycobacterium tuberculosis.

    PubMed

    Ren, Na; Gao, Guiju; Sun, Yue; Zhang, Ling; Wang, Huizhu; Hua, Wenhao; Wan, Kanglin; Li, Xingwang

    2015-11-01

    Tuberculosis (TB) infections, caused by multidrug‑resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug‑resistance in MTB. PMID:26324150

  20. Multidrug resistance to Mycobacterium tuberculosis in a tertiary hospital.

    PubMed Central

    Kehinde, Aderemi Oludiran; Obaseki, Felix Ariebuwa; Ishola, Oluponle Christiana; Ibrahim, Kolo Doko

    2007-01-01

    OBJECTIVE: The magnitude of drug-resistant Mycobacterium tuberculosis infection (MDR-TB) in Nigeria, the most populous country in sub-Saharan Africa, is largely unknown. This information would assist policymakers to develop intervention strategies against tuberculosis (TB) in the country. MATERIALS AND METHODS: This is a one-year laboratory-based study. Specimens from suspected new TB patients sent to the TB laboratory of the Department of Medical Microbiology, University College Hospital Ibadan, Nigeria from May 1, 2005 to April 27, 2006 were processed and analyzed. The specimens were stained with Ziehl-Neelsen (Z-N) reagents and cultured on Lowenstein-Jensen medium, incubated at 37 degrees C for 6-8 weeks. Isolates were confirmed as MDR-TB by Z-N reactions and biochemical methods. Drug susceptibility to streptomycin, ethambutol, rifampicin and isoniazid was done using Bactec 460 TB radiometric method. RESULTS: Of the 1,120 specimens processed, 80 (7.1%) were smear positive, while 56 (5.0%) were culture positive, even though the association was not statistically significant (p > 0.05). Culture contamination rate was 8.8%. Thirty (53.6%) of the culture positive isolates were resistant to both isoniazid and rifampicin, while 26 (46.4%) were susceptible. About half--53.3%--of the resistant isolates were from the antiretroviral clinic, while 10 (33.4%) were from peripheral centers. CONCLUSION: This study shows that MDR-TB is emerging in Nigeria. Further studies on MDR-TB are urgently needed in the country to ascertain the magnitude of the problem and to proffer solutions to it. PMID:17987922

  1. Implication of the RD(Rio) Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal.

    PubMed

    David, Susana; Duarte, Elsa L; Leite, Clarice Queico Fugimura; Ribeiro, João-Nuno; Maio, José-Nuno; Paixão, Eleonora; Portugal, Clara; Sancho, Luísa; Germano de Sousa, José

    2012-10-01

    Multidrug and extensively drug resistant Mycobacterium tuberculosis are a threat to tuberculosis control programs. Genotyping methods, such as spoligotyping and MIRU-VNTR typing (Mycobacterial Interspersed Repetitive Units), are useful in monitoring potentially epidemic strains and estimating strain phylogenetic lineages and/or genotypic families. M. tuberculosis Latin American Mediterranean (LAM) family is a major worldwide contributor to tuberculosis (TB). LAM specific molecular markers, Ag85C(103) single nucleotide polymorphism (SNP) and RD(Rio) long-sequence polymorphism (LSP), were used to characterize spoligotype signatures from 859 patient isolates from Portugal. LAM strains were found responsible for 57.7% of all tuberculosis cases. Strains with the RD(Rio) deletion (referred to as RD(Rio)) were estimated to represent 1/3 of all the strains and over 60% of the multidrug resistant (MDR) strains. The major spoligotype signature SIT20 belonging to the LAM1 RD(Rio) sublineage, represented close to 1/5th of all the strains, over 20% of which were MDR. Analysis of published datasets according to stipulated 12loci MIRU-VNTR RD(Rio) signatures revealed that 96.3% (129/134) of MDR and extensively drug resistant (XDR) clusters were RD(Rio). This is the first report associating the LAM RD(Rio) sublineage with MDR. These results are an important contribution to the monitoring of these strains with heightened transmission for future endeavors to arrest MDR-TB and XDR-TB.

  2. Complex genetics of drug resistance in Mycobacterium tuberculosis.

    PubMed

    Warner, Digby F; Mizrahi, Valerie

    2013-10-01

    Three new studies have used whole-genome sequencing of M. tuberculosis to demonstrate unexpected complexity in the modern evolution of drug-resistant tuberculosis, and a fourth study suggests a close evolutionary relationship between the pathogen and its human host over a period of 70,000 years. Collectively, the observations in these studies suggest that future strategies to tackle drug-resistant tuberculosis must integrate host genetics with detailed strain epidemiology.

  3. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  4. Demonstrating a multi-drug resistant Mycobacterium tuberculosis amplification microarray.

    PubMed

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G; Chandler, Darrell P

    2014-04-25

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.

  5. Evolution of Mycobacterium tuberculosis.

    PubMed

    Behr, Marcel A

    2013-01-01

    Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.

  6. First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review

    PubMed Central

    Pourakbari, Babak; Mamishi, Setareh; Mohammadzadeh, Mona; Mahmoudi, Shima

    2016-01-01

    Background: The spread of drug-resistant tuberculosis (TB) is one of the major public health problems through the world. Surveillance of anti-TB drug resistance is essential for monitoring of TB control strategies. The occurrence of drug resistance, particularly multi-drug resistance Mycobacterium tuberculosis (MDR), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), has become a significant public health dilemma. The status of drug-resistance TB in Iran, one of the eastern Mediterranean countries locating between Azerbaijan and Armenia and high-TB burden countries (such as Afghanistan and Pakistan) has been reported inconsistently. Therefore, the aim of this study was to summarize reports of first-line anti-tubercular drug resistance in M. tuberculosis in Iran. Material and Methods: We systematically reviewed published studies on drug-resistant M. tuberculosis in Iran. The search terms were “Mycobacterium tuberculosis susceptibility” or “Mycobacterium tuberculosis resistant” and Iran. Results: Fifty-two eligible articles, published during 1998–2014, were included in this review. Most of the studies were conducted in Tehran. The most common used laboratory method for detecting M. tuberculosis drug resistant was Agar proportion. The highest resistance to first-line drugs was seen in Tehran, the capital city of Iran. The average prevalence of isoniazid (INH), rifampin (RIF), streptomycin (SM), and ethambotol (EMB) resistance via Agar proportion method in Tehran was 26, 23, 22.5, and 16%, respectively. In general, resistance to INH was more common than RIF, SM, and EMB in Tehran Conclusions: In conclusion, this systematic review summarized the prevalence and distribution of first-line anti-tubercular drug resistance of M. tuberculosis in Iran. Our results suggested that effective strategies to minimize the acquired drug resistance, to control the transmission of resistance and improve the diagnosis measures for TB control in Iran. PMID

  7. Pyrazinamide Resistance among South African Multidrug-Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Mphahlele, Matsie; Syre, Heidi; Valvatne, Håvard; Stavrum, Ruth; Mannsåker, Turid; Muthivhi, Tshilidzi; Weyer, Karin; Fourie, P. Bernard; Grewal, Harleen M. S.

    2008-01-01

    Pyrazinamide is important in tuberculosis treatment, as it is bactericidal to semidormant mycobacteria not killed by other antituberculosis drugs. Pyrazinamide is also one of the cornerstone drugs retained in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, due to technical difficulties, routine drug susceptibility testing of Mycobacterium tuberculosis for pyrazinamide is, in many laboratories, not performed. The objective of our study was to generate information on pyrazinamide susceptibility among South African MDR and susceptible M. tuberculosis isolates from pulmonary tuberculosis patients. Seventy-one MDR and 59 fully susceptible M. tuberculosis isolates collected during the national surveillance study (2001 to 2002, by the Medical Research Council, South Africa) were examined for pyrazinamide susceptibility by the radiometric Bactec 460 TB system, pyrazinamidase activity (by Wayne's assay), and sequencing of the pncA gene. The frequency of pyrazinamide resistance (by the Bactec system) among the MDR M. tuberculosis isolates was 37 of 71 (52.1%) and 6 of 59 (10.2%) among fully sensitive isolates. A total of 25 unique mutations in the pncA gene were detected. The majority of these were point mutations that resulted in amino acid substitutions. Twenty-eight isolates had identical mutations in the pncA gene, but could be differentiated from each other by a combination of the spoligotype patterns and 12 mycobacterial interspersed repetitive-unit loci. A high proportion of South African MDR M. tuberculosis isolates were resistant to pyrazinamide, suggesting an evaluation of its role in patients treated previously for tuberculosis as well as its role in the treatment of MDR-TB. PMID:18753350

  8. A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug Resistant Mycobacterium tuberculosis

    PubMed Central

    Bertholet, Sylvie; Ireton, Gregory C.; Ordway, Diane J.; Windish, Hillarie Plessner; Pine, Samuel O.; Kahn, Maria; Phan, Tony; Orme, Ian M.; Vedvick, Thomas S.; Baldwin, Susan L.; Coler, Rhea N.; Reed, Steven G.

    2011-01-01

    Despite the widespread use of Mycobacterium bovis bacillus Calmette-Guerin (BCG) childhood vaccine, tuberculosis (TB) remains a serious global health problem. A successful vaccine against TB that replaces or boosts BCG will include antigens that induce or recall appropriate T cell responses. Four Mycobacterium tuberculosis (Mtb) antigens, including members of the virulence factor families PE/PPE and EsX, or antigens associated with latency were produced as a single recombinant fusion protein. When administered with the adjuvant GLA-SE, a stable oil-in-water nanoemulsion, the fusion protein ID93 was immunogenic in mice, guinea pigs, and cynomolgus monkeys. In mice, ID93/GLA-SE combination induced polyfunctional CD4 TH1-cell responses characterized by antigen-specific IFN-gamma, tumor necrosis factor and interleukin-2, as well as a reduction in the number of bacteria in the lungs of animals subsequently infected with virulent or multidrug resistant Mtb strains. Furthermore, boosting BCG-vaccinated guinea pigs with ID93/GLA-SE resulted in reduced pathology and fewer bacilli, and prevented the death of animals challenged with virulent Mtb. Finally, ID93 elicited polyfunctional effector CD4 and CD8 T-cell responses in BCG-vaccinated or Mtb-exposed human peripheral blood mononuclear cells. This study establishes that the protein subunit vaccine ID93/GLA-SE protects against TB and MDR-TB in animals, and is a candidate for boosting the protective efficacy of the childhood BCG vaccine. PMID:20944089

  9. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].

    PubMed

    Wang, Shanshan; Feng, Yi; Zhang, Zhe

    2015-08-01

    Mycobacterium tuberculosis infection kills two million people every year, and the chemotherapy has led to significant amount of drug resistance. Signal transduction systems are used by bacteria to survive or adapt to their living environment, but the relationship to drug resistance is not well understood. In this article, we introduced the two-component signal transduction systems of M. tuberculosis and analyzed their relationship with drug resistance. We identified five two-component system pairs involved in the formation of drug resistance. Therefore, these two-component systems are good targeting sites for small biochemical drugs to target so as to reverse the drug resistance and virulence.

  10. Drug resistance to Mycobacterium tuberculosis: from the traditional Chinese view to modern systems biology.

    PubMed

    Xu, Yuhui; Zhang, Zongde; Sun, Zhaogang

    2015-01-01

    The pathogen, Mycobacterium tuberculosis (M. tuberculosis) is a well-evolved, organized pathogen that has developed drug resistance, specifically multidrug resistance (MDR) and extensive drug resistance (XDR). This review primarily summarizes the mechanisms of drug resistance by M. tuberculosis according to the traditional Chinese view. The traditional Chinese view of drug resistance includes: the physical barrier of the cell wall; mutations relating to current anti-TB agents; drug efflux pumps; and drug stress, including the SOS response systems, the mismatch repair systems and the toxin-antitoxin systems. In addition, this review addresses the integrated systems biology of genomics, transcriptomics, proteomics, metabolomics and interactomics. Development of the various levels of systems biology has enabled determination of the anatomy of bacteria. Finally, the current review proposes that further investigation regarding the population of individuals with a high drug metabolic speed is vital to further understand drug resistance in M. tuberculosis.

  11. A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rowland, Jennifer L.

    2013-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most important bacterial pathogens. Recent work has revealed that the natural bactericidal properties of copper are utilized by the host immune system to combat infections with bacteria, including M. tuberculosis. However, M. tuberculosis employs multiple mechanisms to reduce the internal copper amount by efflux and sequestration, which are required for virulence of M. tuberculosis. Here, we describe an alternative mechanism of copper resistance by M. tuberculosis. Deletion of the rv0846c gene increased the susceptibility of M. tuberculosis to copper at least 10-fold, establishing Rv0846c as a major component of copper resistance in M. tuberculosis. In vitro assays showed that Rv0846c oxidized organic substrates and Fe(II). Importantly, mutation of the predicted copper-coordinating cysteine 486 resulted in inactive Rv0846c protein which did not protect M. tuberculosis against copper stress. Hence, Rv0846c is a multicopper oxidase of M. tuberculosis and was renamed mycobacterial multicopper oxidase (MmcO). MmcO is membrane associated, probably by lipidation after export across the inner membrane by the twin-arginine translocation system. However, mutation of the lipidation site did not affect the oxidase activity or the copper protective function of MmcO. Our study revealed MmcO as an important copper resistance mechanism of M. tuberculosis, which possibly acts by oxidation of toxic Cu(I) in the periplasm. PMID:23772064

  12. Use of GeneXpert Mycobacterium tuberculosis/rifampicin for rapid detection of rifampicin resistant Mycobacterium tuberculosis strains of clinically suspected multi-drug resistance tuberculosis cases

    PubMed Central

    Guenaoui, Kheira; Ouardi, Aissa; Zeggai, Soumia; Sellam, Feriel; Bekri, Farid; Cherif Touil, Sakina

    2016-01-01

    Background Multi-drug resistance (MDR) TB is defined as tuberculosis (TB) disease caused by a strain of Mycobacterium tuberculosis (MTB) that was resistant to at least isoniazid and rifampicin (RIF). Emerging Multidrug-Resistant TB is one of the major concerns of health policy and rapid detection of M. tuberculosis and detection of RIF resistance in infected patients are essential for disease management. The aim of this study was to evaluate patterns of RIF resistance in cases of sputum positive pulmonary TB by using GeneXpert MTB/RIF and comparing between phenotypic and genotypic testing of RIF resistance in MTB strains of clinically suspected MDR-TB isolated cases in western Algeria. Methods In this study 50 sputum positive cases of pulmonary TB who were potential MDR suspect were included. Their sputum samples were collected and subjected to sputum smear microscopy, culture and conventional MTB/RIF test followed by GeneXpert MTB/RIF assay. Results Of total 50 cases included in this study, MTB was detected in all patients (100%) by GeneXpert MTB/RIF. However, RIF’s resistance was detected in only 21 cases (42%) by GeneXpert MTB/RIF. All RIF resistant strains detected by GeneXpert MTB/RIF were phenotypically confirmed as MDR strains. 42.85% of cases were retreatment failure cases, retreatment cases smear positive at 4 months were 23.82%. While 19.05% of cases were retreatment cases smear positive at diagnosis, and 14.28% patient had history of contact with MDR-TB. Sensitivity, specificity, positive predictive value and negative predictive value of Xpert MTB/RIF to detect RIF resistance in comparison to conventional phenotypic drug susceptibility technique were found equal to the rates of 100%, 100%, 100% and 100%, respectively. Conclusions GeneXpert MTB/RIF assay is efficient and reliable technique for the rapid diagnostic of TB. It’s simplicity, high sensitivity and specificity for RIF resistance detection make this technique a very attractive tool for

  13. [Drug resistance testing of Mycobacterium tuberculosis isolates from sputum in Chad].

    PubMed

    Abdelhadi, O; Ndokaïn, J; Ali, M Moussa; Friocourt, V; Mortier, E; Heym, B

    2012-02-01

    Culture and resistance testing of Mycobacterium tuberculosis are not regularly performed in Chad. Sputa were obtained from three different categories of hospitals (district, regional and national) in Chad. All examined sputa were smear-positive and were investigated by culture and drug resistance testing for first-line antituberculosis drugs. From 232 sputa positive for acid-fast bacilli, 135 isolates of M. tuberculosis from different patients (46 women, 89 men, mean age 34 years) were analyzed. All the patients except one corresponded to new cases of tuberculosis. In total, 27 out of 135 isolates (20%) were resistant to at least one major antituberculosis drug. Resistance to isoniazid was the most frequent resistance observed, with 18 isolates (13%) presenting at least this resistance. Three isolates (2.2%) were resistant to isoniazid and rifampicin (multidrug resistance MDR) including one isolate being concomitantly resistant to streptomycin and ethambutol. The resistance rate differed in relation to the category of the hospital; the most important resistance rate was observed in regional hospitals (33%), while it was 16% and 14% in the national and district hospitals, respectively. HIV serology was performed in 81 patients, among whom 20 (25%) were positive. This is the first study that shows that drug resistance of M. tuberculosis is present in Chad. Besides single drug-resistant isolates, multidrug-resistant strains of M. tuberculosis could also be identified. This result highlights the urgency of initiating actions to detect drug resistance and limit the spread of drug-resistant strains.

  14. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D; Sifuentes-Osornio, José; Cave, M Donald; Ponce de León, Alfredo; Alland, David

    2006-08-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  15. Integration of Published Information Into a Resistance-Associated Mutation Database for Mycobacterium tuberculosis

    PubMed Central

    Salamon, Hugh; Yamaguchi, Ken D.; Cirillo, Daniela M.; Miotto, Paolo; Schito, Marco; Posey, James; Starks, Angela M.; Niemann, Stefan; Alland, David; Hanna, Debra; Aviles, Enrique; Perkins, Mark D.; Dolinger, David L.

    2015-01-01

    Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings. PMID:25765106

  16. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain.

    PubMed

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-05-11

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally.

  17. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain

    PubMed Central

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-01-01

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally. PMID:25960343

  18. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates in Portugal.

    PubMed

    Portugal, Isabel; Barreiro, Luís; Moniz-Pereira, José; Brum, Laura

    2004-07-01

    The nucleotide sequences of the pncA genes within 55 multidrug-resistant pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates were determined. Fifty-three out of the 55 isolates were pyrazinamidase (PZase) negative. Four strains contained a wild-type pncA gene, and PZase activity was undetectable in two of these strains. Seven of the 18 identified pncA mutations found have not been described in previous studies.

  19. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  20. Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases.

    PubMed

    Jimenez-Arellanes, Adelina; Meckes, Mariana; Ramirez, Raquel; Torres, Javier; Luna-Herrera, Julieta

    2003-09-01

    The increase of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) demands the search for alternative antimycobacterial drugs. The aim of this study was to evaluate plants used in Mexican traditional medicine to treat respiratory diseases for activity against MDR-TB. A group of 22 plants was screened for activity against Mycobacterium tuberculosis H37Rv and Mycobacterium avium at concentrations from 50 to 200 microg/mL. The antimycobacterial effect was determined by a microcolorimetric assay with Alamar blue dye. None of the aqueous extracts had antimycobacterial activity. Hexane extracts from Artemisia ludoviciana, Chamaedora tepejilote, Lantana hispida, Juniperus communis and Malva parviflora, and methanol extracts from Artemisia ludoviciana and Juniperus communis inhibited the growth of Mycobacterium tuberculosis. Mycobacterium avium was inhibited by Juniperus communis hexane extract and by Malva parviflora methanol extract. The active extracts were tested against monoresistant variants of Mycobacterium tuberculosis H37Rv (isoniazid, rifampin, streptomycin and ethambutol resistant) and the hexane extract of Lantana hispida showed the best activity. Lantana hispida hexane extract was also active against a group of MDR-TB clinical isolates. In contrast, it did not inhibit the growth of non-tuberculous mycobacteria. The hexane extract of Lantana hispida was fractionated by column chromatography and one of its fractions (FVI) inhibited the growth of all the MDR-TB clinical isolates at concentrations up to 25 microg/mL. This study supports the fact that selecting plants by ethnobotanical criteria enhances the probability of finding species with activity against mycobacteria, and our results point to Lantana hispida as an important source of potential compounds against MDR-TB.

  1. [Analysis of genetic determinants of multidrug and extensively drug-resistant Mycobacterium tuberculosis using oligonucleotide microchip].

    PubMed

    Zimenkov, D V; Kulagina, E V; Antonova, O V; Surzhikov, S A; Bespiatykh, Iu A; Shitikov, E A; Il'ina, E N; Mikhaĭlovich, V M; Zasedatelev, A S; Griadunov, D A

    2014-01-01

    Steadily growing resistance of the tuberculosis causative agent towards a broad spectrum of anti-tuberculosis drugs calls for rapid and reliable methods for identifying the genetic determinants responsible for this resistance. In this study, we present a biochip-based method for simultaneous identification of mutations within rpoB gene associated with rifampin resistance, mutations in katG, inhA, ahpC genes responsible for isoniazid resistance, mutations within the regions of gyrA and gyrB genes leading to fluoroquinolones resistance, and mutations in the rrs gene and the eis promoter region associated with the resistance to kanamycin, capreomycin and amikacin. The oligonucleotide microchip, as the core element of this assay, provides simultaneous identification of 99 mutations in the format "one sample--one PCR--one microchip", and it makes it possible to complete analysis of multi-drug-resistant and extensively drug-resistant tuberculosis within a single day. The tests on 63 Mycobacterium tuberculosis clinical isolates with different resistance profiles using the developed approach allows us to reveal the spectrum of drug-resistance associated mutations, and to estimate the significance of the inclusion of extra genetic loci in the determination of M. tuberculosis drug resistance. PMID:25850294

  2. [Analysis of genetic determinants of multidrug and extensively drug-resistant Mycobacterium tuberculosis using oligonucleotide microchip].

    PubMed

    Zimenkov, D V; Kulagina, E V; Antonova, O V; Surzhikov, S A; Bespiatykh, Iu A; Shitikov, E A; Il'ina, E N; Mikhaĭlovich, V M; Zasedatelev, A S; Griadunov, D A

    2014-01-01

    Steadily growing resistance of the tuberculosis causative agent towards a broad spectrum of anti-tuberculosis drugs calls for rapid and reliable methods for identifying the genetic determinants responsible for this resistance. In this study, we present a biochip-based method for simultaneous identification of mutations within rpoB gene associated with rifampin resistance, mutations in katG, inhA, ahpC genes responsible for isoniazid resistance, mutations within the regions of gyrA and gyrB genes leading to fluoroquinolones resistance, and mutations in the rrs gene and the eis promoter region associated with the resistance to kanamycin, capreomycin and amikacin. The oligonucleotide microchip, as the core element of this assay, provides simultaneous identification of 99 mutations in the format "one sample--one PCR--one microchip", and it makes it possible to complete analysis of multi-drug-resistant and extensively drug-resistant tuberculosis within a single day. The tests on 63 Mycobacterium tuberculosis clinical isolates with different resistance profiles using the developed approach allows us to reveal the spectrum of drug-resistance associated mutations, and to estimate the significance of the inclusion of extra genetic loci in the determination of M. tuberculosis drug resistance.

  3. Meropenem-clavulanic acid has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Davies Forsman, L; Giske, C G; Bruchfeld, J; Schön, T; Juréen, P; Ängeby, K

    2015-01-01

    We investigated the activity of meropenem-clavulanic acid (MEM-CLA) against 68 Mycobacterium tuberculosis isolates. We included predominantly multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) isolates, since the activity of MEM-CLA for resistant isolates has previously not been studied extensively. Using Middlebrook 7H10 medium, all but four isolates showed an MIC distribution of 0.125 to 2 mg/liter for MEM-CLA, below the non-species-related breakpoint for MEM of 2 mg/liter defined by EUCAST. MEM-CLA is a potential treatment option for MDR/XDR-TB.

  4. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lee, A S; Teo, A S; Wong, S Y

    2001-07-01

    Novel mutations in NADH dehydrogenase (ndh) were detected in 8 of 84 (9.5%) isoniazid (INH)-resistant isolates (T110A [n = 1], R268H [n = 7]), but not in 22 INH-susceptible isolates of Mycobacterium tuberculosis. Significantly, all eight isolates with mutations at ndh did not have mutations at katG, kasA, or the promoter regions of inhA or ahpC, except for one isolate. Mutations in ndh appear to be an additional molecular mechanism for isoniazid resistance in M. tuberculosis. PMID:11408244

  5. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis

    PubMed Central

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  6. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  7. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis.

    PubMed

    Tonge, Peter J; Kisker, Caroline; Slayden, Richard A

    2007-01-01

    Strategies for the development of novel tuberculosis chemotherapeutics against existing drug resistant strains involve the identification and inhibition of novel drug targets as well as the design and synthesis of compounds against historical targets. InhA, the enoyl reductase from the mycobacterial type II fatty acid biosynthesis pathway, is a target of the frontline chemotherapeutic, isoniazid (INH). Importantly, the majority of INH-resistant clinical isolates arise from mutations in KatG, the enzyme responsible for activating isoniazid, into its active form. Thus compounds that inhibit InhA without first requiring KatG activation will be active against the majority of INH resistant strains of Mycobacterium tuberculosis. This review describes the role of InhA in cell wall biosynthesis and recent progress in the development of novel diphenyl ether-based InhA inhibitors that have activity against both sensitive and drug resistant strains of M. tuberculosis.

  8. Viability of stressed Mycobacterium tuberculosis and association with multidrug resistance

    PubMed Central

    Martins, Maria Conceição; Giampaglia, Carmen Maria Saraiva; Chimara, Erica; Oliveira, Rosângela Siqueira; Vedovello, Danielle; Sakamoto, Sidnei Miyoshi; Ferrazoli, Lucilaine

    2013-01-01

    This study investigated biological characteristics of recovered stressed M. tuberculosis isolates that failed to grow in differential culture media for phenotypic identification and in culture media containing anti-tuberculosis drugs for drug-susceptibility testing, despite of having grown in primary culture. It represents an improvement in the diagnosis of MDR tuberculosis and tuberculosis control. PMID:24294238

  9. Detection of First- and Second-Line Drug Resistance in Mycobacterium tuberculosis Clinical Isolates by Pyrosequencing

    PubMed Central

    Morcillo, Nora; Imperiale, Belen; Hoffner, Sven E.; Juréen, Pontus

    2012-01-01

    Conventional phenotypic drug susceptibility testing (DST) methods for Mycobacterium tuberculosis are laborious and very time-consuming. Early detection of drug-resistant tuberculosis (TB) is essential for prevention and control of TB transmission. We have developed a pyrosequencing method for simultaneous detection of mutations associated with resistance to rifampin, isoniazid, ethambutol, amikacin, kanamycin, capreomycin, and ofloxacin. Seven pyrosequencing assays were optimized for following loci: rpoB, katG, embB, rrs, gyrA, and the promoter regions of inhA and eis. The molecular method was evaluated on a panel of 290 clinical isolates of M. tuberculosis. In comparison to phenotypic DST, the pyrosequencing method demonstrated high specificity (100%) and sensitivity (94.6%) for detection of multidrug-resistant M. tuberculosis as well as high specificity (99.3%) and sensitivity (86.9%) for detection of extensively drug-resistant M. tuberculosis. The short turnaround time combined with multilocus sequencing of several isolates in parallel makes pyrosequencing an attractive method for drug resistance screening in M. tuberculosis. PMID:22461677

  10. Comparative genomics of archived pyrazinamide resistant Mycobacterium tuberculosis complex isolates from Uganda

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...

  11. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968.

  12. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain

    PubMed Central

    Halim, Mohd Zakihalani A.; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-01-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  13. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  14. Analysis of the role of Mycobacterium tuberculosis kasA gene mutations in isoniazid resistance.

    PubMed

    Sun, Y-J; Lee, A S G; Wong, S-Y; Paton, N I

    2007-08-01

    Previous studies have suggested that Mycobacterium tuberculosis kasA G312S and G269S gene mutations may represent sequence polymorphisms of the M. tuberculosis East-African-Indian (EAI) and T families, respectively, rather than relating to isoniazid resistance. The present study examined polymorphisms of these two codons in 98 drug-susceptible M. tuberculosis isolates (68 EAI and 30 T isolates). Twenty-eight isolates belonging to a sub-lineage of the EAI family had the kasA G312S mutation, but none of the 30 T isolates had the G269S mutation. The data suggest that the kasA G312S mutation is not related to isoniazid resistance, but represents a sequence polymorphism in a sub-lineage of the EAI family. PMID:17501974

  15. Draft Genome Sequences of Two Pyrazinamide-Resistant Clinical Isolates, Mycobacterium tuberculosis 13-4152 and 13-2459.

    PubMed

    Maslov, D A; Shur, K V; Bekker, O B; Zakharevich, N V; Zaichikova, M V; Klimina, K M; Smirnova, T G; Zhang, Y; Chernousova, L N; Danilenko, V N

    2015-01-01

    We report draft genome sequences of two pyrazinamide (PZA)-resistant isolates, Mycobacterium tuberculosis 13-4152 and 13-2459. Isolate 13-4152 is PZA resistant, though it lacks mutations in known genes of PZA resistance. The comparative analysis of these genomes with those stored in GenBank revealed unique mutations, which may elucidate new mechanisms of PZA resistance. PMID:26139726

  16. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    PubMed

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C

    2015-07-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs.

  17. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore.

    PubMed

    Lee, A S; Lim, I H; Tang, L L; Telenti, A; Wong, S Y

    1999-08-01

    Genotypic analysis of resistance to isoniazid (INH) in Mycobacterium tuberculosis is complex due to the various genes potentially involved. Mutations in ketoacyl acyl carrier protein synthase (encoded by kasA) were present in 16 of 160 (10%) INH-resistant isolates (R121K [n = 1], G269S [n = 3], G312S [n = 11], G387D [n = 1]). However, G312S was also present in 6 of 32 (19%) susceptible strains. kasA analysis contributed marginally to the performance of INH genotypic testing in Singapore. The significance of kasA polymorphisms in INH resistance should be carefully established. PMID:10428945

  18. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  19. Peptide nucleic acid probe detection of mutations in Mycobacterium tuberculosis genes associated with drug resistance.

    PubMed

    Bockstahler, L E; Li, Z; Nguyen, N Y; Van Houten, K A; Brennan, M J; Langone, J J; Morris, S L

    2002-03-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a serious public health problem. Many of the specific gene mutations that cause drug resistance in M. tuberculosis are point mutations. We are developing a PCR-peptide nucleic acid (PNA)-based ELISA as a diagnostic method to recognize point mutations in genes associated with isoniazid and rifampin resistance in M. tuberculosis. Specific point mutation-containing sequences and wild-type sequences of cloned mycobacterial genes were PCR-amplified, denatured, and hybridized with PNA probes bound to microplate wells. Using 15-base PNA probes, we established the hybridization temperatures (50 degrees C-55 degrees C) and other experimental conditions suitable for detecting clinically relevant point mutations in the katG and rpoB genes. Hybridization of PCR-amplified sequences that contained these point mutations with complementary mutation-specific PNAs resulted in significant increases in ELISA response compared with hybridization using wild-type-specific PNAs. Conversely, PCR-amplified wild-type sequences hybridized much more efficiently with wild-type PNAs than with the mutation-specific PNAs. Using the M. tuberculosis cloned genes and PCR-PNA-ELISA format developed here, M. tuberculosis sequences containing point mutations associated with drug resistance can be identified in less than 24 h. PMID:11926172

  20. Differential expression of putative drug resistance genes in Mycobacterium tuberculosis clinical isolates.

    PubMed

    González-Escalante, Laura; Peñuelas-Urquides, Katia; Said-Fernández, Salvador; Silva-Ramírez, Beatriz; Bermúdez de León, Mario

    2015-12-01

    Understanding drug resistance in Mycobacterium tuberculosis requires an integrated analysis of strain lineages, mutations and gene expression. Previously, we reported the differential expression of esxG, esxH, infA, groES, rpmI, rpsA and lipF genes in a sensitive M. tuberculosis strain and in a multidrug-resistant clinical isolate. Here, we have evaluated the expression of these genes in 24 clinical isolates that belong to different lineages and have different drug resistance profiles. In vitro, growth kinetics analysis showed no difference in the growth of the clinical isolates, and thus drug resistance occurred without a fitness cost. However, a quantitative reverse transcription PCR analysis of gene expression revealed high variability among the clinical isolates, including those with similar drug resistance profiles. Due to the complexity of gene regulation pathways and the wide diversity of M. tuberculosis lineages, the use of gene expression as a molecular signature for drug resistance is not straightforward. Therefore, we recommend that the expression of M. tuberculosis genes be performed individually, and baseline expression levels should be verified among several different clinical isolates, before any further applications of these findings.

  1. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China

    PubMed Central

    Cheng, Xian-feng; Jiang, Chao; Zhang, Min; Xia, Dan; Chu, Li-li; Wen, Yu-feng; Zhu, Ming; Jiang, Yue-gen

    2016-01-01

    Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration. PMID:27047485

  2. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase

    PubMed Central

    Aldred, Katie J.; Kerns, Robert J.; Berger, James M.; Osheroff, Neil

    2016-01-01

    Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations in the enzyme cause resistance. Therefore, we characterized interactions of fluoroquinolones and related drugs with WT gyrase and enzymes carrying mutations at GyrAA90 and GyrAD94. M. tuberculosis gyrase lacks a conserved serine that anchors a water–metal ion bridge that is critical for quinolone interactions with other bacterial type II topoisomerases. Despite the fact that the serine is replaced by an alanine (i.e., GyrAA90) in M. tuberculosis gyrase, the bridge still forms and plays a functional role in mediating quinolone–gyrase interactions. Clinically relevant mutations at GyrAA90 and GyrAD94 cause quinolone resistance by disrupting the bridge–enzyme interaction, thereby decreasing drug affinity. Fluoroquinolone activity against WT and resistant enzymes is enhanced by the introduction of specific groups at the C7 and C8 positions. By dissecting fluoroquinolone–enzyme interactions, we determined that an 8-methyl-moxifloxacin derivative induces high levels of stable cleavage complexes with WT gyrase and two common resistant enzymes, GyrAA90V and GyrAD94G. 8-Methyl-moxifloxacin was more potent than moxifloxacin against WT M. tuberculosis gyrase and displayed higher activity against the mutant enzymes than moxifloxacin did against WT gyrase. This chemical biology approach to defining drug–enzyme interactions has the potential to identify novel drugs with improved activity against tuberculosis. PMID:26792518

  3. Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation

    PubMed Central

    2013-01-01

    Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is the leading cause of bacterial infectious disease mortality. Biotin protein ligase (BirA) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases (ACCs) involved in lipid biosynthesis and is essential for Mtb survival. We previously developed a rationally designed bisubstrate inhibitor of BirA that displays potent enzyme inhibition and whole-cell activity against multidrug resistant and extensively drug resistant Mtb strains. Here we present the design, synthesis, and evaluation of a focused series of inhibitors, which are resistant to cyclonucleoside formation, a key decomposition pathway of our initial analogue. Improved chemical stability is realized through replacement of the adenosyl N-3 nitrogen and C-5′ oxygen atom with carbon as well as incorporation of a bulky group on the nucleobase to prevent the required syn-conformation necessary for proper alignment of N-3 with C-5′. PMID:24363833

  4. Microcolonies in fluoroquinolone agar proportion susceptibility testing of Mycobacterium tuberculosis: an indicator of drug resistance

    PubMed Central

    Blackman, A.; May, S.; Devasia, R. A.; Maruri, F.; Stratton, C.

    2014-01-01

    Microcolony growth of Mycobacterium tuberculosis on agar proportion susceptibility testing is neither well-defined nor previously reported with fluoroquinolone susceptibility testing. We describe here M. tuberculosis microcolony growth with fluoroquinolones, and assess its clinical significance. We screened 797M. tuberculosis isolates for ofloxacin resistance (2.0 µg/mL) by agar proportion; 19 ofloxacin-resistant and 38 ofloxacin-susceptible isolates were selected for more detailed susceptibility testing with ofloxacin, ciprofloxacin, levofloxacin (all at 2.0 µg/mL) and moxifloxacin (0.5 µg/mL). The 57 isolates were also tested at two concentrations both above and below the critical concentrations. Microcolonies were defined as colonies 0.2–0.4 mm in diameter; confirmed microcolonies were present on repeat testing. Of the 57 isolates tested in detail, 7 grew microcolonies, of which 2 (0.3% of all isolates tested) had confirmed microcolonies on repeat testing (6 tests performed, and microcolonies were present on at least 4). Both M. tuberculosis isolates were ofloxacin-resistant on screening, and had ofloxacin minimum inhibitory concentration (MIC) >8 µg/mL. The five other isolates were ofloxacin-susceptible on screening, but had regular colony growth (i.e., resistance) at the drug concentration that initially resulted in microcolonies (ofloxacin 0.5 or 1.0 µg/mL). Microcolonies were observed infrequently with fluoroquinolone susceptibility testing, but when confirmed, they were associated with drug resistance. PMID:22322359

  5. Resistance to pyrazinamide in Russian Mycobacterium tuberculosis isolates: pncA sequencing versus Bactec MGIT 960.

    PubMed

    Maslov, Dmitry A; Zaĭchikova, Marina V; Chernousova, Larisa N; Shur, Kirill V; Bekker, Olga B; Smirnova, Tatiana G; Larionova, Elena E; Andreevskaya, Sofya N; Zhang, Ying; Danilenko, Valery N

    2015-09-01

    Resistance to pyrazinamide (PZA) may impact clinical outcome of anti-tuberculosis chemotherapy. PZA susceptibility testing using MGIT 960 is not reliable and little information is available on the prevalence of PZA resistance in Russia. A collection of 64 clinical isolates of Mycobacterium tuberculosis, including 35 multidrug resistant and extensively drug-resistant (MDR/XDR), was analyzed for PZA resistance using MGIT 960, Wayne test, and sequencing of PZA resistance genes pncA, rpsA and panD. In addition, we analyzed 519 MDR-TB strains for susceptibility to PZA by MGIT 960. Sequencing of pncA revealed 17 of 25 (68%) MDR strains and all 10 XDR strains harboring pncA mutations. A correlation of φ = 0.81 between MGIT 960 and pncA sequencing was observed. Mutations in rpsA and panD not associated with PZA resistance as defined by MGIT 960 were identified. We found 1 PZA-resistant strain without mutations in known PZA resistance genes. Almost 73% of MDR-TB strains isolated in Moscow, Russia, were PZA-resistant by MGIT 960 testing of 519 MDR-TB clinical isolates. Further studies are needed to determine the role of rpsA and panD mutations in possible low-level PZA resistance and to identify the molecular basis of new PZA resistance in the isolate without known PZA resistance mutations. PMID:26071666

  6. Rapid Detection of rpoB Gene Mutations Conferring Rifampin Resistance in Mycobacterium tuberculosis

    PubMed Central

    Ao, Wanyuan; Aldous, Stephen; Woodruff, Evelyn; Hicke, Brian; Rea, Larry; Kreiswirth, Barry

    2012-01-01

    Multidrug-resistant Mycobacterium tuberculosis strains are widespread and present a challenge to effective treatment of this infection. The need for a low-cost and rapid detection method for clinically relevant mutations in Mycobacterium tuberculosis that confer multidrug resistance is urgent, particularly for developing countries. We report here a novel test that detects the majority of clinically relevant mutations in the beta subunit of the RNA polymerase (rpoB) gene that confer resistance to rifampin (RIF), the treatment of choice for tuberculosis (TB). The test, termed TB ID/R, combines a novel target and temperature-dependent RNase H2-mediated cleavage of blocked DNA primers to initiate isothermal helicase-dependent amplification of a rpoB gene target sequence. Amplified products are detected by probes arrayed on a modified silicon chip that permits visible detection of both RIF-sensitive and RIF-resistant strains of M. tuberculosis. DNA templates of clinically relevant single-nucleotide mutations in the rpoB gene were created to validate the performance of the TB ID/R test. Except for one rare mutation, all mutations were unambiguously detected. Additionally, 11 RIF-sensitive and 25 RIF-resistant clinical isolates were tested by the TB ID/R test, and 35/36 samples were classified correctly (96.2%). This test is being configured in a low-cost test platform to provide rapid diagnosis and drug susceptibility information for TB in the point-of-care setting in the developing world, where the need is acute. PMID:22518852

  7. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko

    2016-03-01

    The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar.

  8. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance.

    PubMed

    Minato, Yusuke; Thiede, Joshua M; Kordus, Shannon Lynn; McKlveen, Edward J; Turman, Breanna J; Baughn, Anthony D

    2015-09-01

    para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB.

  9. Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance

    PubMed Central

    Minato, Yusuke; Thiede, Joshua M.; Kordus, Shannon Lynn; McKlveen, Edward J.; Turman, Breanna J.

    2015-01-01

    para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB. PMID:26033719

  10. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Veigas, Bruno; Machado, Diana; Perdigão, João; Portugal, Isabel; Couto, Isabel; Viveiros, Miguel; Baptista, Pedro V.

    2010-10-01

    Tuberculosis (TB) is one of the leading causes of infection in humans, causing high morbility and mortality all over the world. The rate of new cases of multidrug resistant tuberculosis (MDRTB) continues to increase, and since these infections are very difficult to manage, they constitute a serious health problem. In most cases, drug resistance in Mycobacterium tuberculosis has been related to mutations in several loci within the pathogen's genome. The development of fast, cheap and simple screening methodologies would be of paramount relevance for the early detection of these mutations, essential for the timely and effective diagnosis and management of MDRTB patients. The use of gold nanoparticles derivatized with thiol-modified oligonucleotides (Au-nanoprobes) has led to new approaches in molecular diagnostics. Based on the differential non-cross-linking aggregation of Au-nanoprobes, we were able to develop a colorimetric method for the detection of specific sequences and to apply this approach to pathogen identification and single base mutations/single nucleotide polymorphisms (SNP) discrimination. Here we report on the development of Au-nanoprobes for the specific identification of SNPs within the beta subunit of the RNA polymerase (rpoB locus), responsible for resistance to rifampicin in over 95% of rifampicin resistant M. tuberculosis strains.

  11. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko

    2016-03-01

    The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar. PMID:26806152

  12. New Multiplex PCR for Rapid Detection of Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Herrera-León, Laura; Molina, Tamara; Saíz, Pilar; Sáez-Nieto, Juan Antonio; Soledad Jiménez, Maria

    2005-01-01

    In this study, we describe a multiplex PCR to detect a AGC→ACC (serine to threonine) mutation in the katG gene and a −15 C-to-T substitution (inhAC−15T) at the 5′ end of a presumed ribosome binding site in the promoter of the mabA-inhA operon. These mutations have been reported in the majority of previous studies as the most frequent mutations involved in the resistance to isoniazid (INH) of Mycobacterium tuberculosis clinical strains with high levels of resistance. The method was optimized and validated after an analysis of 30 M. tuberculosis clinical isolates with known sequences of the relevant part of the katG gene and the regulatory region of the mabA-inhA operon. We analyzed 297 INH-resistant M. tuberculosis isolates collected in Spain from 1996 to 2003 by PCR-restriction fragment length polymorphism (using the katG gene), DNA sequencing, and the newly developed multiplex PCR. The results were concordant for all 297 isolates tested. The analysis revealed that 204 (68.7%) of the isolates carried one or both of the mutations. This finding suggests that with further development this multiplex PCR will be able to detect the majority of the INH-resistant M. tuberculosis clinical isolates from Spain and other countries where a high frequency of similar mutations occur. PMID:15616288

  13. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay.

    PubMed

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-12-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  14. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    SciTech Connect

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  15. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    PubMed Central

    2011-01-01

    Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in

  16. Sequence analysis of the drug‑resistant rpoB gene in the Mycobacterium tuberculosis L‑form among patients with pneumoconiosis complicated by tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin

    2014-04-01

    The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.

  17. Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis.

    PubMed

    Weiss, Leslie A; Harrison, Phillip G; Nickels, Bryce E; Glickman, Michael S; Campbell, Elizabeth A; Darst, Seth A; Stallings, Christina L

    2012-10-01

    Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding.

  18. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green.

    PubMed

    Banaei, Niaz; Kincaid, Eleanor Z; Lin, S-Y Grace; Desmond, Edward; Jacobs, William R; Ernst, Joel D

    2009-09-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (DeltalspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 10(4)-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green.

  19. Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage, Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing Active Tuberculosis in South Brazil

    PubMed Central

    Vasconcelos, Sidra E. G.; Esteves, Leonardo S.; Gomes, Harrison M.; Almeida da Silva, Pedro; Perdigão, João; Portugal, Isabel; Viveiros, Miguel; McNerney, Ruth; Pain, Arnab; Clark, Taane G.; Rastogi, Nalin; Unis, Gisela; Rossetti, Maria Lucia R.

    2015-01-01

    We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RDRio, and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n = 8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C(−17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers. PMID:26400784

  20. Impact of isoniazid resistance on virulence of global and south Indian clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Ameeruddin, Nusrath Unissa; Luke Elizabeth, Hanna

    2014-12-01

    Isoniazid (INH) is the only anti-tuberculous drug for which a relationship has been noticed between acquisition of resistance and lack of virulence. Mutation in katG gene is the chief cause for INH resistance in Mycobacterium tuberculosis (MTB). Classical studies have demonstrated that INH-resistant (INH(r)) mutants with a defective katG gene were catalase deficient and markedly attenuated in guinea pigs. Also, earlier studies on south Indian INH(r) isolates were shown to have lower virulence and higher susceptibility to H2O2. However, later studies including that of our's suggest that INH resistance is not always accompanied by compromised virulence and/or survival. Therefore, this review focuses on the influence of INH resistance on virulence of MTB from global and south Indian isolates.

  1. Evaluation of the effect of Humulus lupulus alcoholic extract on rifampin-sensitive and resistant isolates of Mycobacterium tuberculosis

    PubMed Central

    Serkani, J. Esmi; Isfahani, B. Nasr; Safaei, H.Gh.; Kermanshahi, R. Kasra; Asghari, Gh.

    2012-01-01

    The increasing incidence of Multi Drug Resistance Tuberculosis (MDR-TB) and Extensively Drug Resistance TB (XDR-TB) worldwide highlight the urgent need to search for newer anti-tuberculosis compounds. It has been determined that pharmaceutical plant, hops (Humulus lupulus), possesses some antibacterial effect. In this study, the antimycobacterial effect of this plant on rifampin sensitive and resistant strains of Mycobacterium tuberculosis were examined. Sensitivity and resistance of 37 Iranian isolates of M. tuberculosis to rifampin was determined by proportion method. Ethanolic extract of hops was prepared using maceration method. PCR-SSCP and direct sequencing were used for confirming existence of mutations in 193-bp rpoB amplicons related to the rifampin resistance in Mycobacterium tuberculosis isolates. Two different concentrations of hops alcoholic extract (4 and 8 mg/ml) were prepared and its effects against 21 resistant and 15 sensitive isolates was determinate using proportion method. Six different mutations in the 193-bp amplified rpoB gene fragments and seven distinguishable PCR-SSCP patterns in 21 Iranian rifampin resistant isolates were recognized. This study showed that the percentage of resistance and the type of mutations were correlated with the PCR-SSCP patterns and the type of mutations in rpoB gene (P<0.05). The results of hops antimycobacterial effect showed that different concentrations of hops ethanolic extract (4 and 8 mg/ml) had a remarkable inhibitory effect on rifampin sensitive and resistant isolates of Mycobacterium tuberculosis. Identification of the effective fraction of hops against Mycobacterium tuberculosis is a further step to be studied. PMID:23248674

  2. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    PubMed

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages.

  3. Genomic epidemiology of multidrug-resistant Mycobacterium tuberculosis during transcontinental spread.

    PubMed

    Coscolla, Mireia; Barry, Pennan M; Oeltmann, John E; Koshinsky, Heather; Shaw, Tambi; Cilnis, Martin; Posey, Jamie; Rose, Jordan; Weber, Terry; Fofanov, Viacheslav Y; Gagneux, Sebastien; Kato-Maeda, Midori; Metcalfe, John Z

    2015-07-15

    The transcontinental spread of multidrug-resistant (MDR) tuberculosis is poorly characterized in molecular epidemiologic studies. We used genomic sequencing to understand the establishment and dispersion of MDR Mycobacterium tuberculosis within a group of immigrants to the United States. We used a genomic epidemiology approach to study a genotypically matched (by spoligotype, IS6110 restriction fragment length polymorphism, and mycobacterial interspersed repetitive units-variable number of tandem repeat signature) lineage 2/Beijing MDR strain implicated in an outbreak of tuberculosis among refugees in Thailand and consecutive cases within California. All 46 MDR M. tuberculosis genomes from both Thailand and California were highly related, with a median difference of 10 single-nucleotide polymorphisms (SNPs). The Wat Tham Krabok (WTK) strain is a new sequence type distinguished from all known Beijing strains by 55 SNPs and a genomic deletion (Rv1267c) associated with increased fitness. Sequence data revealed a highly prevalent MDR strain that included several closely related but distinct allelic variants within Thailand, rather than the occurrence of a single outbreak. In California, sequencing data supported multiple independent introductions of WTK with subsequent transmission and reactivation within the state, as well as a potential super spreader with a prolonged infectious period. Twenty-seven drug resistance-conferring mutations and 4 putative compensatory mutations were found within WTK strains. Genomic sequencing has substantial epidemiologic value in both low- and high-burden settings in understanding transmission chains of highly prevalent MDR strains. PMID:25601940

  4. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up. PMID:22204067

  5. Intra- and Extracellular Activities of Trimethoprim-Sulfamethoxazole against Susceptible and Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Schön, T.; Simonsson, U. S. H.; Bruchfeld, J.; Larsson, M.; Juréen, P.; Sturegård, E.; Giske, C. G.; Ängeby, K.

    2014-01-01

    We investigated the activity of trimethoprim-sulfamethoxazole (SXT) against Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB). The MIC distribution of SXT was 0.125/2.4 to 2/38 mg/liter for the 100 isolates tested, including multi- and extensively drug-resistant isolates (MDR/XDR-TB), whereas the intracellular MIC90 of sulfamethoxazole (SMX) for the pansusceptible strain H37Rv was 76 mg/liter. In an exploratory analysis using a ratio of the unbound area under the concentration-time curve from 0 to 24 h over MIC (fAUC0–24/MIC) using ≥25 as a potential target, the cumulative fraction response was ≥90% at doses of ≥2,400 mg of SMX. SXT is a potential treatment option for MDR/XDR-TB. PMID:25246405

  6. Drug Resistance Pattern of Mycobacterium tuberculosis Isolates From Patients Referred to TB Reference Laboratory in Ahvaz

    PubMed Central

    Badie, Fereshteh; Arshadi, Maniya; Mohsenpoor, Maryam; Gharibvand, Soodabeh S.

    2015-01-01

    Objectives Tuberculosis remains one of the top three infectious disease killers. The prevalence of multidrug-resistant tuberculosis (MDR-TB) has increased substantially in the past 20 years. When drug resistance is not detected, MDR-TB patients cannot access life-saving treatment; this puts their communities at risk of ongoing MDR-TB transmission. We aimed to determine the patterns of resistance to antituberculosis drugs among Mycobacterium tuberculosis isolates from Khuzestan province in Iran. Methods A total of 850 clinical specimens from patients suspected of active TB were cultured in 2015. Drug susceptibility testing to the first line antiTB drugs for culture positive MTB was performed on Lowenstein–Jensen medium using the proportion method. Results Of 850 cultured specimens, 272 (32%) were culture positive for mycobacteria. Of 64 MTB isolates that were analyzed by the proportion method, 62 (96.8%) were pan-susceptible and two (3.1%) were MDR. Conclusion An important way to prevent the emergence of MDR and XDR TB, and the principles of full implementation of the strategy is directly observed treatment, short-course (DOTS). The efficient diagnosis and timely treatment of MDR-TB patients can prevent disease transmission, reduce the risk of drug resistance developing, and avoid further lung damage. PMID:26981340

  7. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance.

    PubMed

    Desjardins, Christopher A; Cohen, Keira A; Munsamy, Vanisha; Abeel, Thomas; Maharaj, Kashmeel; Walker, Bruce J; Shea, Terrance P; Almeida, Deepak V; Manson, Abigail L; Salazar, Alex; Padayatchi, Nesri; O'Donnell, Max R; Mlisana, Koleka P; Wortman, Jennifer; Birren, Bruce W; Grosset, Jacques; Earl, Ashlee M; Pym, Alexander S

    2016-05-01

    A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs such as D-cycloserine. Here we used the whole-genome sequences from 498 strains of M. tuberculosis to identify new resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss of function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss of function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted use of this toxic drug among patients with susceptible infections. PMID:27064254

  8. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance

    PubMed Central

    Desjardins, Christopher A.; Cohen, Keira A.; Munsamy, Vanisha; Abeel, Thomas; Maharaj, Kashmeel; Walker, Bruce J.; Shea, Terrance P.; Almeida, Deepak V.; Manson, Abigail L.; Salazar, Alex; Padayatchi, Nesri; O’Donnell, Max R.; Mlisana, Koleka P.; Wortman, Jennifer; Birren, Bruce W.; Grosset, Jacques; Earl, Ashlee M.; Pym, Alexander S.

    2016-01-01

    A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs like D-cycloserine. Here, we used whole-genome sequences from 498 strains of M. tuberculosis to identify novel resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss-of-function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss-of-function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted utilization of this toxic drug among patients with susceptible infections. PMID:27064254

  9. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance.

    PubMed

    Desjardins, Christopher A; Cohen, Keira A; Munsamy, Vanisha; Abeel, Thomas; Maharaj, Kashmeel; Walker, Bruce J; Shea, Terrance P; Almeida, Deepak V; Manson, Abigail L; Salazar, Alex; Padayatchi, Nesri; O'Donnell, Max R; Mlisana, Koleka P; Wortman, Jennifer; Birren, Bruce W; Grosset, Jacques; Earl, Ashlee M; Pym, Alexander S

    2016-05-01

    A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs such as D-cycloserine. Here we used the whole-genome sequences from 498 strains of M. tuberculosis to identify new resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss of function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss of function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted use of this toxic drug among patients with susceptible infections.

  10. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. PMID:26784657

  11. Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia.

    PubMed

    Monteserin, Johana; Camacho, Mirtha; Barrera, Lucía; Palomino, Juan Carlos; Ritacco, Viviana; Martin, Anandi

    2013-07-01

    Bolivia ranks among the 10 Latin American countries with the highest rates of tuberculosis (TB) and multidrug resistant (MDR) TB. In view of this, and of the lacking information on the population structure of Mycobacterium tuberculosis in the country, we explored genotype associations with drug resistance and clustering by analyzing isolates collected in 2010 from 100 consecutive TB patients at risk of drug resistance in seven of the nine departments in which Bolivia is divided. Fourteen isolates were MDR, 29 had other drug resistance profiles, and 57 were pansusceptible. Spoligotype family distribution was: Haarlem 39.4%, LAM 26.3%, T 22.2%, S 2.0%, X 1.0%, orphan 9.1%, with very low intra-family diversity and absence of Beijing genotypes. We found 66 different MIRU-VNTR patterns; the most frequent corresponded to Multiple Locus Variable Analysis (MLVA) MtbC15 patterns 860, 372 and 873. Twelve clusters, each with identical MIRU-VNTR and spoligotypes, gathered 35 patients. We found no association of genotype with drug resistant or MDR-TB. Clustering associated with SIT 50 and the H3 subfamily to which it belongs (p<0.0001). The largest cluster involved isolates from three departments and displayed a genotype (SIT 50/MLVA 860) previously identified in Bolivian migrants into Spain and Argentina suggesting that this genotype is widespread among Bolivian patients. Our study presents a first overview of M. tuberculosis genotypes at risk of drug resistance circulating in Bolivia. However, results should be taken cautiously because the sample is small and includes a particular subset of M. tuberculosis population.

  12. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA.

  13. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis.

    PubMed

    Lahiri, Nivedita; Shah, Rupal R; Layre, Emilie; Young, David; Ford, Chris; Murray, Megan B; Fortune, Sarah M; Moody, D Branch

    2016-07-01

    Global control of tuberculosis has become increasingly complicated with the emergence of multidrug-resistant strains of Mycobacterium tuberculosis First-line treatments are anchored by two antibiotics, rifampin and isoniazid. Most rifampin resistance occurs through the acquisition of missense mutations in the rifampin resistance-determining region, an 81-base pair region encoding the rifampin binding site on the β subunit of RNA polymerase (rpoB). Although these mutations confer a survival advantage in the presence of rifampin, they may alter the normal process of transcription, thereby imposing significant fitness costs. Because the downstream biochemical consequences of the rpoB mutations are unknown, we used an organism-wide screen to identify the number and types of lipids changed after rpoB mutation. A new mass spectrometry-based profiling platform systematically compared ∼10,000 cell wall lipids in a panel of rifampin-resistant mutants within two genetically distinct strains, CDC1551and W-Beijing. This unbiased lipidomic survey detected quantitative alterations (>2-fold, p < 0.05) in more than 100 lipids in each mutant. By focusing on molecular events that change among most mutants and in both genetic backgrounds, we found that rifampin resistance mutations lead to altered concentrations of mycobactin siderophores and acylated sulfoglycolipids. These findings validate a new organism-wide lipidomic analysis platform for drug-resistant mycobacteria and provide direct evidence for characteristic remodeling of cell wall lipids in rifampin-resistant strains of M. tuberculosis The specific links between rifampin resistance and named lipid factors provide diagnostic and therapeutic targets that may be exploited to address the problem of drug resistance. PMID:27226566

  14. [Epidural abscess due to a Mycobacterium tuberculosis strain with primary resistance to isoniazid and ethambutol].

    PubMed

    Sener, Alper; Akçalı, Alper; Karatağ, Ozan; Koşar, Sule; Değirmenci, Yıldız; Akman, Tarık

    2012-10-01

    Tuberculosis is primarily characterized by pulmonary involvement, however, one third of the cases exhibit extrapulmonary tuberculosis. In this report, a case of epidural abscess due to Mycobacterium tuberculosis with primary resistance to isoniazid and ethambutol was presented. A 57-year-old male patient was admitted to emergency service with ten days history of weakness in legs, disability of walking and fever. Neurological examination revealed paraplegia of lower extremities, numbness distal to T2 disc level and hyperactivity of deep tendon reflexes indicating transverse myelitis. Laboratory findings were as follows; ESR: 74 mm/hour, CRP: 22 g/L, ALT: 42 IU/L, AST: 45 IU/L and white blood cell count 23.000/mm3 (45% polymorphonuclear leukocyte, 45% lymphocyte, 10% monocyte). Spinal magnetic resonance imaging showed a fusiform abscess localized at anterior epidural space and extending along levels of C5-6 and C6-7. The longitudinal dimension of the abscess was 3 cm. The lesion was hypointense on T1 and hyperintense on T2 weighted MRI images with prominent rim shaped contrast enhancement on contrast-enhanced T1-weighted images. At fourth day of hospitalization the patient underwent neurosurgical management. M.tuberculosis was isolated from the cultures of operation material by Mycobacteria Growth Incubator Tube system (MGIT, BBL; BD, USA) on the 12th day. The isolate was found susceptible to streptomycin and rifampisin, but resistant to isoniazid and ethambutol. The treatment was initiated with rifampicin 600 mg/day, pyrazinamid 2 g/day, ethambutol 1.5 g/day and levofloxacin 500 mg/day. At the end of second month levofloxacin 500 mg/day and rifampisin 600 mg/day combination was sustained and total treatment period was planned as nine months. As far as the national literature was considered, this was the first case of extrapulmonary tuberculosis with primary resistance to isoniazid and ethambutol. PMID:23188583

  15. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis.

    PubMed

    Fisher, Jed F; Mobashery, Shahriar

    2016-01-01

    The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections. PMID:27091943

  16. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis.

    PubMed

    Piatek, A S; Tyagi, S; Pol, A C; Telenti, A; Miller, L P; Kramer, F R; Alland, D

    1998-04-01

    We developed a new approach to DNA sequence analysis that uses fluorogenic reporter molecules--molecular beacons--and demonstrated their ability to discriminate alleles in real-time PCR assays of genomic DNA. A set of overlapping molecular beacons was used to analyze an 81-bp region of the Mycobacterium tuberculosis rpoB gene for mutations that confer resistance to the antibiotic rifampin. In a blinded study of 52 rifampin-resistant and 23 rifampin-susceptible clinical isolates, this method correctly detected mutations in all of the resistant strains and in none of the susceptible strains. The assay was carried out entirely in sealed PCR tubes and was simple to perform and interpret. This approach can be used to analyze any DNA sequence of moderate length with single base pair accuracy.

  17. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    van der Paardt, Anne-Fleur; Wilffert, Bob; Akkerman, Onno W; de Lange, Wiel C M; van Soolingen, Dick; Sinha, Bhanu; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2015-08-01

    Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs.Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis drug by the World Health Organization; however, its role or efficacy in the treatment of MDR-TB is unclear. A systematic review of the literature was conducted to summarise the evidence for the activity of macrolides against MDR-TB, by evaluating in vitro, in vivo and clinical studies. PubMed and Embase were searched for English language articles up to May 2014.Even though high minimum inhibitory concentration values are usually found, suggesting low activity against Mycobacterium tuberculosis, the potential benefits of macrolides are their accumulation in the relevant compartments and cells in the lungs, their immunomodulatory effects and their synergistic activity with other anti-TB drugs.A future perspective may be use of more potent macrolide analogues to enhance the activity of the treatment regimen.

  18. Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar.

    PubMed

    Aung, Htin Lin; Tun, Thanda; Moradigaravand, Danesh; Köser, Claudio U; Nyunt, Wint Wint; Aung, Si Thu; Lwin, Thandar; Thinn, Kyi Kyi; Crump, John A; Parkhill, Julian; Peacock, Sharon J; Cook, Gregory M; Hill, Philip C

    2016-09-01

    Drug-resistant tuberculosis (TB) is a major health threat in Myanmar. An initial study was conducted to explore the potential utility of whole-genome sequencing (WGS) for the diagnosis and management of drug-resistant TB in Myanmar. Fourteen multidrug-resistant Mycobacterium tuberculosis isolates were sequenced. Known resistance genes for a total of nine antibiotics commonly used in the treatment of drug-susceptible and multidrug-resistant TB (MDR-TB) in Myanmar were interrogated through WGS. All 14 isolates were MDR-TB, consistent with the results of phenotypic drug susceptibility testing (DST), and the Beijing lineage predominated. Based on the results of WGS, 9 of the 14 isolates were potentially resistant to at least one of the drugs used in the standard MDR-TB regimen but for which phenotypic DST is not conducted in Myanmar. This study highlights a need for the introduction of second-line DST as part of routine TB diagnosis in Myanmar as well as new classes of TB drugs to construct effective regimens. PMID:27530852

  19. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  20. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?

    PubMed Central

    Koch, Anastasia; Mizrahi, Valerie; Warner, Digby F

    2014-01-01

    The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIFR) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIFR on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIFR mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance. PMID:26038512

  1. Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Altamirano, M; Marostenmaki, J; Wong, A; FitzGerald, M; Black, W A; Smith, J A

    1994-05-01

    Isoniazid resistance in Mycobacterium tuberculosis has been associated with total deletion of the katG gene, which codes for catalase-peroxidase production. To determine whether this is a common mechanism of drug resistance, 9 isolates of isoniazid-resistant and 1 of isoniazid-sensitive M. tuberculosis were analyzed by polymerase chain reaction amplification of a 237-bp sequence of the katG gene. Amplification was observed in the isoniazid-sensitive isolate and in 8 resistant isolates; in only 1 isoniazid-resistant isolate was there no amplification of the expected band, suggesting gene deletion. DNA sequencing showed that 8 of the 9 isolates had point mutations, deletions, or insertions of 1-3 bases. Evidence corroborating the presence of mutations in the katG gene was obtained by single-strand conformation polymorphism analysis in these 8 isolates. Thus, mutations as well as insertions and deletions in the katG gene can account for inactive catalase peroxidase, leading to isoniazid resistance; gene deletion occurs only infrequently, in approximately 11% of cases.

  2. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities.

    PubMed

    Vilchèze, Catherine; Jacobs, William R

    2014-08-01

    Isoniazid (INH) is the cornerstone of tuberculosis (TB) chemotherapy, used for both treatment and prophylaxis of TB. The antimycobacterial activity of INH was discovered in 1952, and almost as soon as its activity was published, the first INH-resistant Mycobacterium tuberculosis strains were reported. INH and its structural analog and second-line anti-TB drug ethionamide (ETH) are pro-drugs. INH is activated by the catalase-peroxidase KatG, while ETH is activated by the monooxygenase EthA. The resulting active species reacts with NAD+ to form an INH-NAD or ETH-NAD adduct, which inhibits the enoyl ACP reductase InhA, leading to mycolic acid biosynthesis inhibition and mycobacterial cell death. The major mechanism of INH resistance is mutation in katG, encoding the activator of INH. One specific KatG variant, S315T, is found in 94% of INH-resistant clinical isolates. The second mechanism of INH resistance is a mutation in the promoter region of inhA (c-15t), which results in inhA overexpression and leads to titration of the drug. Mutations in the inhA open reading frame and promoter region are also the major mechanism of resistance to ETH, found more often in ETH-resistant clinical isolates than mutations in the activator of ETH. Other mechanisms of resistance to INH and ETH include expression changes of the drugs' activators, redox alteration, drug inactivation, and efflux pump activation. In this article, we describe each known mechanism of resistance to INH and ETH and its importance in M. tuberculosis clinical isolates.

  3. Ofloxacin resistance in Mycobacterium tuberculosis is associated with efflux pump activity independent of resistance pattern and genotype.

    PubMed

    Sun, Zhaogang; Xu, Yuhui; Sun, Yong; Liu, Yi; Zhang, Xuxia; Huang, Hairong; Li, Chuanyou

    2014-12-01

    Drug-resistance to ofloxacin (OFX) in Mycobacterium tuberculosis is due to missense mutations in gyrA and other factors, such as alterations in the activity of drug efflux pumps. In this study, we identified 8 extensively drug resistant tuberculosis (XDR-TB), 40 multidrug resistant TB (MDR-TB), 38 polydrug resistant TB (PDR-TB), and 16 single OFX-resistant TB from 102 clinical isolates. We tested the effect of three efflux inhibitors, reserpine, verapamil, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), on changes in the OFX minimum inhibitory concentration (MIC) using Resazurin microtitre assay. These three inhibitors changed the MICs from 2- to 32-fold, with CCCP having the strongest effect. A total of 55%, 74%, and 83% of the tested isolates had changes in MIC of more than two-fold by reserpine, verapamil, and CCCP, respectively. The inhibitors led to similar fold-changes of OFX MICs in the XDR, MDR, PDR, and single OFX-resistant isolates. For each inhibitor, a higher resistance to OFX was associated with the greater efflux pump activity. There were no significant differences in the effect of efflux pump inhibitors upon Beijing and non-Beijing M. tuberculosis genotypes. Taken together, these results indicate that the efflux pump activity was greater in the isolates higher resistant to OFX and had similar effects on isolates with different drug resistant pattern, and had similar effects on Beijing and non-Beijing genotypes.

  4. Acquisition of second-line drug resistance and extensive drug resistance during recent transmission of Mycobacterium tuberculosis in rural China.

    PubMed

    Hu, Y; Mathema, B; Zhao, Q; Chen, L; Lu, W; Wang, W; Kreiswirth, B; Xu, B

    2015-12-01

    Multidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB.

  5. Selection of in vitro mutants of pyrazinamide-resistant Mycobacterium tuberculosis.

    PubMed

    Bamaga, M; Wright, D J M; Zhang, H

    2002-10-01

    Mutations within the pncA gene coding for pyrazinamidase of Mycobacterium tuberculosis can cause pyrazinamide (PZA) resistance. The effect of drug concentrations on PZA resistance in a clinical isolate of M. tuberculosis was studied in vitro. Serial passage at gradually increased concentrations of PZA from 200 to 500 microg/ml was performed using BACTEC radiometric method. Thirteen in vitro-selected variant strains were assembled and sequence analysis showed that 12 of the 13 variants had a novel single point mutation within the pncA gene by deletion at nucleotide 381 (G), codon 127. This lead to a frameshift that affected the function of the pyrazinamidase resulting in PZA resistance regardless of different PZA concentrations used. One variant had a silent mutation at nucleotide 6 (G-->A) and remains PZA sensitive. We conclude that the mutation location found is an important position for full resistance, at least in this strain. The lack of further mutations even after exposure to higher PZA concentrations implies a critical value for development of resistance-a level exceeded in tissues in clinical treatment regimes.

  6. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis

    PubMed Central

    Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J.; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A.; Golubchik, Tanya; Wilson, Daniel J.; Wyllie, David H.; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A.; Ismail, Nazir; Omar, Shaheed V.; Smith, E. Grace; Buck, David; McVean, Gil; Walker, A. Sarah; Peto, Tim E. A.; Crook, Derrick W.; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  7. Predictive value of molecular drug resistance testing of Mycobacterium tuberculosis isolates in Valle del Cauca, Colombia.

    PubMed

    Ferro, Beatriz E; García, Pamela K; Nieto, Luisa Maria; van Soolingen, Dick

    2013-07-01

    Previous evaluations of the molecular GenoType tests have promoted their use to detect resistance to first- and second-line antituberculosis drugs in different geographical regions. However, there are known geographic variations in the mutations associated with drug resistance in Mycobacterium tuberculosis, and especially in South America, there is a paucity of information regarding the frequencies and types of mutations associated with resistance to first- and second-line antituberculosis drugs. We therefore evaluated the performance of the GenoType kits in this region by testing 228 M. tuberculosis isolates in Colombia, including 134 resistant and 94 pansusceptible strains. Overall, the sensitivity and specificity of the GenoType MTBDRplus test ranged from 92 to 96% and 97 to 100%, respectively; the agreement index was optimal (Cohen's kappa, >0.8). The sensitivity of the GenoType MTBDRsl test ranged from 84 to 100% and the specificity from 88 to 100%. The most common mutations were katG S315T1, rpoB S531L, embB M306V, gyrA D94G, and rrs A1401G. Our results reflect the utility of the GenoType tests in Colombia; however, as some discordance still exists between the conventional and molecular approaches in resistance testing, we adhere to the recommendation that the GenoType tests serve as early guides for therapy, followed by phenotypic drug susceptibility testing for all cases.

  8. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Bradley, Phelim; Gordon, N Claire; Walker, Timothy M; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A; Golubchik, Tanya; Wilson, Daniel J; Wyllie, David H; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A; Ismail, Nazir; Omar, Shaheed V; Smith, E Grace; Buck, David; McVean, Gil; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  9. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Bradley, Phelim; Gordon, N Claire; Walker, Timothy M; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A; Golubchik, Tanya; Wilson, Daniel J; Wyllie, David H; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A; Ismail, Nazir; Omar, Shaheed V; Smith, E Grace; Buck, David; McVean, Gil; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes.

  10. Predictive Value of Molecular Drug Resistance Testing of Mycobacterium tuberculosis Isolates in Valle del Cauca, Colombia

    PubMed Central

    García, Pamela K.; Nieto, Luisa Maria; van Soolingen, Dick

    2013-01-01

    Previous evaluations of the molecular GenoType tests have promoted their use to detect resistance to first- and second-line antituberculosis drugs in different geographical regions. However, there are known geographic variations in the mutations associated with drug resistance in Mycobacterium tuberculosis, and especially in South America, there is a paucity of information regarding the frequencies and types of mutations associated with resistance to first- and second-line antituberculosis drugs. We therefore evaluated the performance of the GenoType kits in this region by testing 228 M. tuberculosis isolates in Colombia, including 134 resistant and 94 pansusceptible strains. Overall, the sensitivity and specificity of the GenoType MTBDRplus test ranged from 92 to 96% and 97 to 100%, respectively; the agreement index was optimal (Cohen's kappa, >0.8). The sensitivity of the GenoType MTBDRsl test ranged from 84 to 100% and the specificity from 88 to 100%. The most common mutations were katG S315T1, rpoB S531L, embB M306V, gyrA D94G, and rrs A1401G. Our results reflect the utility of the GenoType tests in Colombia; however, as some discordance still exists between the conventional and molecular approaches in resistance testing, we adhere to the recommendation that the GenoType tests serve as early guides for therapy, followed by phenotypic drug susceptibility testing for all cases. PMID:23658272

  11. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    SciTech Connect

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  12. Epidemiologic Correlates of Pyrazinamide-Resistant Mycobacterium tuberculosis in New York City

    PubMed Central

    Verdugo, Dawn; Fallows, Dorothy; Ahuja, Shama; Schluger, Neil; Kreiswirth, Barry

    2015-01-01

    Pyrazinamide (PZA) has important sterilizing activity in tuberculosis (TB) chemotherapy. We describe trends, risk factors, and molecular epidemiology associated with PZA-resistant (PZAr) Mycobacterium tuberculosis in New York City (NYC). From 2001 to 2008, all incident culture-positive TB cases reported by the NYC Department of Health and Mental Hygiene (DOHMH) were genotyped by IS6110-based restriction fragment length polymorphism and spoligotype. Multidrug-resistant (MDR) isolates underwent DNA sequencing of resistance-determining regions of pncA, rpoB, katG, and fabG1. Demographic and clinical information were extracted from the NYC DOHMH TB registry. During this period, PZAr doubled (1.6% to 3.6%) overall, accounting for 44% (70/159) of the MDR population and 1.4% (75/5511) of the non-MDR population. Molecular genotyping revealed strong microbial phylogenetic associations with PZAr. Clustered isolates and those from acid-fast bacillus (AFB) smear-positive cases had 2.7 (95% confidence interval [CI] = 1.71 to 4.36) and 2.0 (95% CI = 1.19 to 3.43) times higher odds of being PZAr, respectively, indicating a strong likelihood of recent transmission. Among the MDR population, PZAr was acquired somewhat more frequently via primary transmission than by independent pathways. Our molecular analysis also revealed that several historic M. tuberculosis strains responsible for MDR TB outbreaks in the early 1990s were continuing to circulate in NYC. We conclude that the increasing incidence of PZAr, with clear microbial risk factors, underscores the importance of routine PZA drug susceptibility testing and M. tuberculosis genotyping for the identification, control, and prevention of increasingly resistant organisms. PMID:26195530

  13. A genome-wide analysis of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis Beijing genotype.

    PubMed

    Wu, Wei; Zheng, Huajun; Zhang, Lu; Wen, Zilu; Zhang, Shulin; Pei, Hao; Yu, Guohua; Zhu, Yongqiang; Cui, Zhenling; Hu, Zhongyi; Wang, Honghai; Li, Yao

    2013-09-01

    The Beijing genotype of Mycobacterium tuberculosis (MTB) is one of the most successful MTB lineages that has disseminated in the world. In China, the rate of multidrug-resistant (MDR) tuberculosis is significantly higher than the global average rate, and the Beijing genotype strains take the largest share of MDR strains. To study the genetic basis of the epidemiological findings that Beijing genotype has often been associated with tuberculosis outbreaks and drug resistance, we determined the genome sequences of four clinical isolates: two extensively drug resistant (XDR1219, XDR1221) and two multidrug resistant (WX1, WX3), using whole-genome sequencing. A large number of individual and shared SNPs of the four Beijing strains were identified. Our isolates harbored almost all classic drug resistance-associated mutations. The mutations responsible for drug resistance in the two XDR strains were consistent with the clinical quantitative drug resistance levels. COG analysis revealed that Beijing strains have significantly higher abundances of the mutations responsible for cell wall/membrane/envelope biogenesis (COG M), secondary metabolites biosynthesis, transport and catabolism (COG Q), lipid transport and metabolism (COG I) and defense mechanisms (COG V). The shared mutated genes of the four studied Beijing strains were significantly overrepresented in three DNA repair pathways. Our analyses promote the understanding of the genome polymorphism of the Beijing family strains and provide the molecular genetic basis for their wide dissemination capacity and drug resistance.

  14. Whole-Genome Sequencing of an Isoniazid-Resistant Clinical Isolate of Mycobacterium tuberculosis Strain MtURU-002 from Uruguay

    PubMed Central

    Berná, Luisa; Iraola, Gregorio; Greif, Gonzalo; Coitinho, Cecilia; Rivas, Carlos M.; Naya, Hugo

    2014-01-01

    The incidence of tuberculosis in Uruguay has been effectively reduced to <30 per 100,000 population, although an increase in nonrisk populations in the last few years is evident. Here, we present the genome sequence of Mycobacterium tuberculosis strain MtURU-002 isolated from a patient showing bilateral pulmonary tuberculosis that was resistant to isoniazid. PMID:25035326

  15. High Affinity Inha Inhibitors with Activity Against Drug-Resistant Strains of Mycobacterium Tuberculosis

    SciTech Connect

    Sullivan,T.; Truglio, J.; Boyne, M.; Novichenok, P.; Zhang, X.; Stratton, C.; Li, H.; Kaur, T.; Amin, A.; et al.

    2006-01-01

    Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki{prime} value of 1 nM for InhA and MIC{sub 99} values of 2-3 {micro}g mL{sup -1} (6-10 {micro}M) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC{sub 99}, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.

  16. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Sullivan, Todd J; Truglio, James J; Boyne, Melissa E; Novichenok, Polina; Zhang, Xujie; Stratton, Christopher F; Li, Huei-Jiun; Kaur, Tejinder; Amin, Amol; Johnson, Francis; Slayden, Richard A; Kisker, Caroline; Tonge, Peter J

    2006-02-17

    Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki' value of 1 nM for InhA and MIC99 values of 2-3 microg mL(-1) (6-10 microM) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC99, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.

  17. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  18. Spoligotyping and drug resistance patterns of Mycobacterium tuberculosis isolates from five provinces of Iran

    PubMed Central

    Haeili, Mehri; Darban-Sarokhalil, Davood; Fooladi, Abbas Ali Imani; Javadpour, Sedigheh; Hashemi, Abdorrazagh; Siavoshi, Farideh; Feizabadi, Mohammad Mehdi

    2013-01-01

    Tuberculosis (TB) persists as a public health problem in Iran. Characterization of Mycobacterium tuberculosis isolates circulating in this area will contribute to understand and control the spread of the strains. The aims of this study were to understand the genetic diversity and drug susceptibility of M. tuberculosis isolates circulating in Iran and to analyze the relationship between genotype and drug resistance. A total of 291 M. tuberculosis isolates collected from TB patients were genotyped by spoligotyping. Drug susceptibility testing was performed using proportion method. Spoligotyping resulted in 75 distinct patterns. 86.2% of isolates were grouped in 35 clusters while the remaining isolates were unique. Ural was found to be the most predominant lineage (34.3%) followed by Central Asian strain (CAS) (24%), T (18.2%), Manu2 (7.5%) and Latin American-Mediterranean (LAM) (6.1%). The five largest clusters were Ural/Spoligotype International Type (SIT)127 (15.8%), CAS1/SIT26 (9.2%), T1/SIT53 (6.1%), T1/SIT284 (5.4%), and CAS1/SIT25 (4.4%). About 5% of isolates had multidrug resistance (MDR) and 10% had other resistance. MDR was significantly associated with Beijing strains, but not with Ural family. This study highlights dominance of Ural, CAS, and T families in Iran. Biogeographic specificity of CAS and T families to border provinces of Iran including Sistan-Baluchestan and Kermanshah, respectively, suggested that this family strains might be transmitted from these regions to other provinces of the country. PMID:24311556

  19. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis.

    PubMed

    Ramaswamy, Srinivas V; Reich, Robert; Dou, Shu-Jun; Jasperse, Linda; Pan, Xi; Wanger, Audrey; Quitugua, Teresa; Graviss, Edward A

    2003-04-01

    Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide

  20. Pattern of Drug Resistance and Risk Factors Associated with Development of Drug Resistant Mycobacterium tuberculosis in Pakistan

    PubMed Central

    Ullah, Irfan; Javaid, Arshad; Tahir, Zarfishan; Ullah, Obaid; Shah, Aamer Ali; Hasan, Fariha; Ayub, Najma

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) is a major public health problem in developing countries such as Pakistan. Objective The current study was conducted to assess the frequency of drug resistant tuberculosis including multi drug resistance (MDR- TB) as well as risk factors for development of DR-TB, in Punjab, Pakistan. Methodology Drug susceptibility testing (DST) was performed, using proportion method, for 2367 culture positive Mycobacterium tuberculosis (MTB) cases that were enrolled from January 2012 to December 2013 in the province of Punjab, Pakistan, against first-line anti-tuberculosis drugs. The data was analyzed using statistical software; SPSS version 18. Results Out of 2367 isolates, 273 (11.5%) were resistant to at least one anti-TB drug, while 221 (9.3%) showed MDR- TB. Risk factors for development of MDR-TB were early age (ranges between 10–25 years) and previously treated TB patients. Conclusion DR-TB is a considerable problem in Pakistan. Major risk factors are previous history of TB treatment and younger age group. It emphasizes the need for effective TB control Program in the country. PMID:26809127

  1. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis.

    PubMed

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H; Valencia, Hugo J; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-09-01

    Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. PMID:23867321

  2. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis.

    PubMed

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H; Valencia, Hugo J; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-09-01

    Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance.

  3. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis

    PubMed Central

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H.; Valencia, Hugo J.; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-01-01

    Summary Background Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. Objective This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Methods Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Findings Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. PMID:23867321

  4. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Ho, Yu Min; Sun, Yong-Jiang; Wong, Sin-Yew; Lee, Ann S G

    2009-09-01

    Screening of 127 isoniazid (INH)-resistant Mycobacterium tuberculosis isolates from Singapore for mutations within the dfrA and inhA genes revealed mutations in 0 and 5 (3.9%) isolates respectively, implying that mutations in dfrA do not contribute to the detection of INH-resistant M. tuberculosis and that mutations within inhA are rare. Thirty-seven (29%) of the 127 isolates had no mutations in any of the genes implicated in INH resistance (katG, kasA, and ndh; inhA and ahpC promoters), suggesting that there are new INH targets yet to be discovered. PMID:19581462

  5. Meropenem-Clavulanate is Effective Against Extensive Drug-Resistant Mycobacterium Tuberculosis

    SciTech Connect

    Hugonnet, J.; Tremblay, L; Boshoff, H; Barry, C; Blanchard, J

    2009-01-01

    e-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of e-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the e-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the 'persistent' state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration-approved drugs and could potentially be used to treat patients with currently untreatable disease.

  6. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis.

    PubMed

    Ando, Hiroki; Miyoshi-Akiyama, Tohru; Watanabe, Shinya; Kirikae, Teruo

    2014-02-01

    Drug resistance in Mycobacterium tuberculosis (Mtb) is caused by mutations in restricted regions of the genome. Mutations in katG, the promoter region of the mabA-inhA operon, and inhA are those most frequently responsible for isoniazid (INH) resistance. Several INH-resistant (INH(r) ) Mtb clinical isolates without mutations in these regions have been described, however, indicating that there are as yet undetermined mechanisms of INH resistance. We identified the mabA(g609a) silent mutation in a significant number of INH(r)  Mtb clinical isolates without known INH resistance mutations. A laboratory strain, H37Rv, constructed with mabA(g609a) , was resistant to INH. We show here that the mabA(g609a) mutation resulted in the upregulation of inhA, a gene encoding a target for INH, converting the region adjacent to the mutation into an alternative promoter for inhA. The mabA(g609a) silent mutation results in a novel mechanism of INH resistance, filling in a missing piece of INH resistance in Mtb.

  7. Role of the Mmr Efflux Pump in Drug Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rodrigues, Liliana; Villellas, Cristina; Bailo, Rebeca; Viveiros, Miguel

    2013-01-01

    Efflux pumps are membrane proteins capable of actively transporting a broad range of substrates from the cytoplasm to the exterior of the cell. Increased efflux activity in response to drug treatment may be the first step in the development of bacterial drug resistance. Previous studies showed that the efflux pump Mmr was significantly overexpressed in strains exposed to isoniazid. In the work to be described, we constructed mutants lacking or overexpressing Mmr in order to clarify the role of this efflux pump in the development of resistance to isoniazid and other drugs in M. tuberculosis. The mmr knockout mutant showed an increased susceptibility to ethidium bromide, tetraphenylphosphonium, and cetyltrimethylammonium bromide (CTAB). Overexpression of mmr caused a decreased susceptibility to ethidium bromide, acriflavine, and safranin O that was obliterated in the presence of the efflux inhibitors verapamil and carbonyl cyanide m-chlorophenylhydrazone. Isoniazid susceptibility was not affected by the absence or overexpression of mmr. The fluorometric method allowed the detection of a decreased efflux of ethidium bromide in the knockout mutant, whereas the overexpressed strain showed increased efflux of this dye. This increased efflux activity was inhibited in the presence of efflux inhibitors. Under our experimental conditions, we have found that efflux pump Mmr is mainly involved in the susceptibility to quaternary compounds such as ethidium bromide and disinfectants such as CTAB. The contribution of this efflux pump to isoniazid resistance in Mycobacterium tuberculosis still needs to be further elucidated. PMID:23165464

  8. Pyrosequencing for rapid detection of Mycobacterium tuberculosis second-line drugs and ethambutol resistance.

    PubMed

    Lacoma, Alicia; Molina-Moya, Barbara; Prat, Cristina; Pimkina, Edita; Diaz, Jessica; Dudnyk, Andriy; García-Sierra, Nerea; Haba, Lucía; Maldonado, Jose; Samper, Sofia; Ruiz-Manzano, Juan; Ausina, Vicente; Dominguez, Jose

    2015-11-01

    The aim of this work was to study the diagnostic accuracy of pyrosequencing to detect resistance to fluoroquinolones, kanamycin, amikacin, capreomycin, and ethambutol (EMB) in Mycobacterium tuberculosis clinical strains. One hundred four clinical isolates previously characterized by BACTEC 460TB/MGIT 960 were included. Specific mutations were targeted in gyrA, rrs, eis promoter, and embB. When there was a discordant result between BACTEC and pyrosequencing, Genotype MTBDRsl (Hain Lifescience, Nehren, Germany) was performed. Sensitivity and specificity of pyrosequencing were 70.6% and 100%, respectively, for fluoroquinolones; 93.3% and 81.7%, respectively, for kanamycin; 94.1% and 95.9%, respectively, for amikacin; 90.0% and 100%, respectively, for capreomycin; and 64.8% and 87.8%, respectively, for EMB. This study shows that pyrosequencing may be a useful tool for making early decisions regarding second-line drugs and EMB resistance. However, for a correct management of patients with suspected extensively drug-resistant tuberculosis, susceptibility results obtained by molecular methods should be confirmed by a phenotypic method. PMID:26256417

  9. Genotypic and phenotypic characteristics of tunisian isoniazid-resistant Mycobacterium tuberculosis strains.

    PubMed

    Soudani, Alya; Hadjfredj, Sondess; Zribi, Meriem; Messaadi, Feriel; Messaoud, Taieb; Masmoudi, Afef; Zribi, Mohamed; Fendri, Chedlia

    2011-06-01

    Forty three isoniazid (INH)-resistant Mycobacterium tuberculosis isolates were characterized on the basis of the most common INH associated mutations, katG315 and mabA -15C→T, and phenotypic properties (i.e. MIC of INH, resistance associated pattern, and catalase activity). Typing for resistance mutations was performed by Multiplex Allele-Specific PCR and sequencing reaction. Mutations at either codon were detected in 67.5% of isolates: katG315 in 37.2, mabA -15C→T in 27.9 and both of them in 2.4%, respectively. katG sequencing showed a G insertion at codon 325 detected in 2 strains and leading to amino acid change T326D which has not been previously reported. Distribution of each mutation, among the investigated strains, showed that katG S315T was associated with multiple-drug profile, high-level INH resistance and loss or decreased catalase activity; whereas the mabA -15C→T was more prevalent in mono-INH resistant isolates, but it was not only associated with a low-level INH resistance. It seems that determination of catalase activity aids in the detection of isolates for which MICs are high and could, in conjunction with molecular methods, provide rapid detection of most clinical INH-resistant strains.

  10. Whole-Genome Sequence of a Beijing Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Buenaventura, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) has been reported to the WHO by 100 countries, including Colombia. An estimated 9.0% of people with multidrug-resistant TB have XDR-TB. We report the genome sequence of a Beijing XDR-TB clinical isolate from Buenaventura, Colombia. The genome sequence is composed of 4,298,162 bp with 4,359 genes. PMID:26769935

  11. Whole-Genome Sequence of a Beijing Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Buenaventura, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) has been reported to the WHO by 100 countries, including Colombia. An estimated 9.0% of people with multidrug-resistant TB have XDR-TB. We report the genome sequence of a Beijing XDR-TB clinical isolate from Buenaventura, Colombia. The genome sequence is composed of 4,298,162 bp with 4,359 genes. PMID:26769935

  12. Identification of ofloxacin-resistant Mycobacterium tuberculosis by PCR-RFLP and Sequencing.

    PubMed

    Javed, Irum; Mahmood, Zahed; Shahid, Muhammad; Khaliq, Tanweer

    2016-01-01

    This study was planned to verify the resistance frequency of Ofloxacin (OFX) against Mycobacterium tuberculosis by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique and sequencing. Total 366 clinical samples of suspected TB patients were collected from various localities of central Punjab. All of them were found positive by ZN (Zeihl-Nelsen) staining method. Among them, 108 (29.5%) were found negative and 258 (70.5%) positive on PCR based study. The cases not responding to ATT were further characterized by proportion method and by PCR-RFLP to establish the drug resistance. Selected drug resistant case were further sequenced to confirm the results of amplified RFLP. The results showed that out of 118 drug resistant cases, 06 (5.08%), 03 (2.54%) were found resistant to OFX by drug susceptibility testing and PCR-RFLP respectively. The two strains were selected for sequencing procedure. The strain-79 showed point mutation at four points, at codon 70, 71, 76 and 78. The sequence of strain- 81 showed mutation at codon 95.PCR-RFLP is a useful molecular technique for the rapid detection of mutations and may be used to diagnose drug resistance but it should be confirmed by sequencing before starting 2(nd) and 3(rd) generation treatment because the restriction site is the cornerstone of PCR-RFLP and mutation may be occurring elsewhere.

  13. In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid.

    PubMed Central

    Casal, M J; Rodriguez, F C; Luna, M D; Benavente, M C

    1987-01-01

    The in vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae (M. chelonei) to ticarcillin in combination with calvulanic acid (CA) was studied by the agar dilution method. All the M. tuberculosis, M. bovis, and M. africanum strains were inhibited at a ticarcillin concentration of 32 micrograms/ml or lower in combination with 5 micrograms of CA. M. chelonae and M. avium strains proved resistant to more than 128 micrograms of ticarcillin plus 5 micrograms of CA per ml. M. fortuitum strains needed 128 micrograms of ticarcillin plus 5 micrograms of CA to inhibit approximately 30% of the isolates. PMID:3105441

  14. Evidence of Clonal Expansion in the Genome of a Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolate from Peru.

    PubMed

    Galarza, M; Tarazona, D; Borda, V; Agapito, J C; Guio, H

    2014-01-01

    We report the genome sequence of Mycobacterium tuberculosis INS-MDR from Peru, a multidrug-resistant tuberculosis (MDR-TB) and Latin American-Mediterranean (LAM) lineage strain. Our analysis showed mutations related to drug resistance in the rpoB (D516V), katG (S315T), kasA (G269S), and pncA (Q10R) genes. Our evidence suggests that INS-MDR may be a clonal expansion related to the African strain KZN 1435. PMID:24578270

  15. Detecting Novel Genetic Variants Associated with Isoniazid-Resistant Mycobacterium tuberculosis

    PubMed Central

    Chan, Maurice K. L.; Ong, Danny C. T.; Tongyoo, Pumipat; Wong, Sin-Yew; Lee, Ann S. G.

    2014-01-01

    Background Isoniazid (INH) is a highly effective antibiotic central for the treatment of Mycobacterium tuberculosis (MTB). INH-resistant MTB clinical isolates are frequently mutated in the katG gene and the inhA promoter region, but 10 to 37% of INH-resistant clinical isolates have no detectable alterations in currently known gene targets associated with INH-resistance. We aimed to identify novel genes associated with INH-resistance in these latter isolates. Methodology/Principal Findings INH-resistant clinical isolates of MTB were pre-screened for mutations in the katG, inhA, kasA and ndh genes and the regulatory regions of inhA and ahpC. Twelve INH-resistant isolates with no mutations, and 17 INH-susceptible MTB isolates were subjected to whole genome sequencing. Phylogenetically related variants and synonymous mutations were excluded and further analysis revealed mutations in 60 genes and 4 intergenic regions associated with INH-resistance. Sanger sequencing verification of 45 genes confirmed that mutations in 40 genes were observed only in INH-resistant isolates and not in INH-susceptible isolates. The ratios of non-synonymous to synonymous mutations (dN/dS ratio) for the INH-resistance associated mutations identified in this study were 1.234 for INH-resistant and 0.654 for INH-susceptible isolates, strongly suggesting that these mutations are indeed associated with INH-resistance. Conclusion The discovery of novel targets associated with INH-resistance described in this study may potentially be important for the development of improved molecular detection strategies. PMID:25025225

  16. Broad-range PCR coupled with mass-spectrometry for the detection of Mycobacterium tuberculosis drug resistance

    PubMed Central

    Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana

    2016-01-01

    Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827

  17. Molecular analysis of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.

    PubMed

    Nusrath Unissa, A; Selvakumar, N; Narayanan, Sujatha; Narayanan, P R

    2008-01-01

    The presence of mutations in specific regions of katG, inhA, oxyR-ahpC and kasA associated with isoniazid (INH)-resistant clinical isolates of Mycobacterium tuberculosis from India were analysed by DNA sequencing. Point mutations in the katG gene at codon 315 and a mutation at codon 138 were detected in 64.3% (45/70) and 4% (1/25) of isolates, respectively. Polymorphisms at codon 463 of the katG gene were found both in resistant and sensitive isolates. Mutation at the inhA and oxyR-ahpC promoter regions occurred in 11.4% (8/70) and 35.0% (14/40) of the isolates, respectively. No mutation was found to occur in kasA and inhA structural gene regions. Of the 70 resistant isolates studied, 55 (78.6%) showed mutation in the regions sequenced. This is the first comprehensive molecular analysis of INH resistance in India, which suggests that point mutation rather than deletion and insertion is the major cause of INH resistance. PMID:18006278

  18. Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations.

    PubMed

    Rodwell, Timothy C; Valafar, Faramarz; Douglas, James; Qian, Lishi; Garfein, Richard S; Chawla, Ashu; Torres, Jessica; Zadorozhny, Victoria; Kim, Min Soo; Hoshide, Matt; Catanzaro, Donald; Jackson, Lynn; Lin, Grace; Desmond, Edward; Rodrigues, Camilla; Eisenach, Kathy; Victor, Thomas C; Ismail, Nazir; Crudu, Valeru; Gler, Maria Tarcela; Catanzaro, Antonino

    2014-03-01

    Molecular diagnostic methods based on the detection of mutations conferring drug resistance are promising technologies for rapidly detecting multidrug-/extensively drug-resistant tuberculosis (M/XDR TB), but large studies of mutations as markers of resistance are rare. The Global Consortium for Drug-Resistant TB Diagnostics analyzed 417 Mycobacterium tuberculosis isolates from multinational sites with a high prevalence of drug resistance to determine the sensitivities and specificities of mutations associated with M/XDR TB to inform the development of rapid diagnostic methods. We collected M/XDR TB isolates from regions of high TB burden in India, Moldova, the Philippines, and South Africa. The isolates underwent standardized phenotypic drug susceptibility testing (DST) to isoniazid (INH), rifampin (RIF), moxifloxacin (MOX), ofloxacin (OFX), amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) using MGIT 960 and WHO-recommended critical concentrations. Eight genes (katG, inhA, rpoB, gyrA, gyrB, rrs, eis, and tlyA) were sequenced using Sanger sequencing. Three hundred seventy isolates were INHr, 356 were RIFr, 292 were MOXr/OFXr, 230 were AMKr, 219 were CAPr, and 286 were KANr. Four single nucleotide polymorphisms (SNPs) in katG/inhA had a combined sensitivity of 96% and specificities of 97 to 100% for the detection of INHr. Eleven SNPs in rpoB had a combined sensitivity of 98% for RIFr. Eight SNPs in gyrA codons 88 to 94 had sensitivities of 90% for MOXr/OFXr. The rrs 1401/1484 SNPs had 89 to 90% sensitivity for detecting AMKr/CAPr but 71% sensitivity for KANr. Adding eis promoter SNPs increased the sensitivity to 93% for detecting AMKr and to 91% for detecting KANr. Approximately 30 SNPs in six genes predicted clinically relevant XDR-TB phenotypes with 90 to 98% sensitivity and almost 100% specificity.

  19. Streptomycin Resistance and Lineage-Specific Polymorphisms in Mycobacterium tuberculosis gidB Gene ▿

    PubMed Central

    Spies, Fernanda S.; Ribeiro, Andrezza W.; Ramos, Daniela F.; Ribeiro, Marta O.; Martin, Anandi; Palomino, Juan Carlos; Rossetti, Maria Lucia R.; da Silva, Pedro Eduardo A.; Zaha, Arnaldo

    2011-01-01

    Mutations related to streptomycin resistance in the rpsL and rrs genes are well known and can explain about 70% of this phenotypic resistance. Recently, the gidB gene was found to be associated with low-level streptomycin resistance in Mycobacterium tuberculosis. Mutations in gidB have been reported with high frequency, and this gene appears to be very polymorphic, with frameshift and point mutations occurring in streptomycin-susceptible and streptomycin-resistant strains. In this study, mutations in gidB appeared in 27% of streptomycin-resistant strains that contained no mutations in the rpsL or rrs genes, and they were associated with low-level streptomycin resistance. However, the association of certain mutations in gidB with streptomycin resistance needs to be further investigated, as we also found mutations in gidB in streptomycin-susceptible strains. This occurred only when the strain was resistant to rifampin and isoniazid. Two specific mutations appeared very frequently in this and other studies of streptomycin-susceptible and -resistant strains; these mutations were not considered related to streptomycin resistance, but as a polymorphism. We stratified the strains according to the different phylogenetic lineages and showed that the gidB16 polymorphism (16G allele) was exclusively present in the Latin American-Mediterranean (LAM) genotype, while the gidB92 polymorphism (92C allele) was associated with the Beijing lineage in another population. In the sample studied, the two characterized single-nucleotide polymorphisms could distinguish LAM and Beijing lineages from the other lineages. PMID:21593257

  20. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China.

    PubMed

    Zhang, Min; Yue, Jun; Yang, Yan-Ping; Zhang, Hong-Mei; Lei, Jian-Qiang; Jin, Rui-Liang; Zhang, Xue-Lian; Wang, Hong-Hai

    2005-11-01

    Nine structural genes (furA, katG, inhA, kasA, Rv0340, iniB, iniA, iniC, and efpA) and two regulatory regions (the oxyR-ahpC intergenic region and the promoter of mabA-inhA) in 87 isoniazid (INH)-monoresistant and 50 INH-susceptible Mycobacterium tuberculosis isolates collected from five provinces of China were analyzed by sequencing. Eighty-two (94.3%) INH-resistant isolates had mutations in the katG gene, with the katG Ser315Thr mutation predominant (55.2%). No mutation at codon 463 of katG was detected among the 50 INH-susceptible isolates with different IS6110 fingerprints. In addition, there were 35 (40.2%) INH-resistant isolates that had a mutation at codon 463 of katG. Of the INH-resistant strains, 20 (23.0%) isolates harbored double mutations at two separate loci of katG. Mutations in the inhA promoter region occurred in 13 (14.9%) isolates; 4.6% of the isolates had inhA structural gene mutations, and 11.5% harbored mutations in the oxyR-ahpC intergenic region. Drug resistance-associated mutations were detected in the iniBAC region and efpA. PMID:16272473

  1. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil.

    PubMed

    Cardoso, Rosilene Fressatti; Cooksey, Robert C; Morlock, Glenn P; Barco, Patricia; Cecon, Leticia; Forestiero, Francisco; Leite, Clarice Q F; Sato, Daisy N; Shikama, Maria de Lourdes; Mamizuka, Elsa M; Hirata, Rosario D C; Hirata, Mario H

    2004-09-01

    We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Paraná. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide -48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G(269)A substitution. Although KatG(315) substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance. PMID:15328099

  2. Antibacterial Effects of Liposomes Containing Phospholipid Cardiolipin and Fluoroquinolone Levofloxacin on Mycobacterium tuberculosis with Extensive Drug Resistance.

    PubMed

    Gaidukevich, S K; Mikulovich, Yu L; Smirnova, T G; Andreevskaya, S N; Sorokoumova, G M; Chernousova, L N; Selishcheva, A A; Shvets, V I

    2016-03-01

    The effects of liposomes containing phospholipid cardiolipin without antibiotic and loaded with levofloxacin on the growth of Mycobacterium tuberculosis with extensive drug resistance were studied in vitro. Liposomes consisting of cardiolipin alone in a concentration of 335 μM completely suppressed the growth of M. tuberculosis. In order to reduce the minimum inhibitory concentration of cardiolipin, complex liposome preparation consisting of phosphatidylcholin/cholesterol/cardiolipin and loaded with levofloxacin was prepared. Due to this, the cardiolipin concentration was reduced to 33.5 μM (50 μg/ml) and concentration of levofloxacin - to 2 μg/ml. PMID:27021087

  3. Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Ioerger, Thomas R.; O’Malley, Theresa; Liao, Reiling; Guinn, Kristine M.; Hickey, Mark J.; Mohaideen, Nilofar; Murphy, Kenan C.; Boshoff, Helena I. M.; Mizrahi, Valerie; Rubin, Eric J.; Sassetti, Christopher M.; Barry, Clifton E.; Sherman, David R.; Parish, Tanya; Sacchettini, James C.

    2013-01-01

    Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery. PMID:24086479

  4. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis

    PubMed Central

    Warrier, Thulasi; Kapilashrami, Kanishk; Ioerger, Thomas R.; Little, David; Murphy, Kenan C.; Nandakumar, Madhumitha; Park, Suna; Gold, Ben; Mi, Jianjie; Zhang, Tuo; Meiler, Eugenia; Rees, Mike; Somersan-Karakaya, Selin; Porras-De Francisco, Esther; Martinez-Hoyos, Maria; Burns-Huang, Kristin; Roberts, Julia; Ling, Yan; Rhee, Kyu Y.; Mendoza-Losana, Alfonso; Luo, Minkui; Nathan, Carl F.

    2016-01-01

    The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR. PMID:27432954

  5. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis.

    PubMed

    Warrier, Thulasi; Kapilashrami, Kanishk; Argyrou, Argyrides; Ioerger, Thomas R; Little, David; Murphy, Kenan C; Nandakumar, Madhumitha; Park, Suna; Gold, Ben; Mi, Jianjie; Zhang, Tuo; Meiler, Eugenia; Rees, Mike; Somersan-Karakaya, Selin; Porras-De Francisco, Esther; Martinez-Hoyos, Maria; Burns-Huang, Kristin; Roberts, Julia; Ling, Yan; Rhee, Kyu Y; Mendoza-Losana, Alfonso; Luo, Minkui; Nathan, Carl F

    2016-08-01

    The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR. PMID:27432954

  6. Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis: A Systematic Review

    PubMed Central

    Seifert, Marva; Catanzaro, Donald; Catanzaro, Antonino; Rodwell, Timothy C.

    2015-01-01

    Background Tuberculosis (TB) incidence and mortality are declining worldwide; however, poor detection of drug-resistant disease threatens to reverse current progress toward global TB control. Multiple, rapid molecular diagnostic tests have recently been developed to detect genetic mutations in Mycobacterium tuberculosis (Mtb) genes known to confer first-line drug resistance. Their utility, though, depends on the frequency and distribution of the resistance associated mutations in the pathogen population. Mutations associated with rifampicin resistance, one of the two first-line drugs, are well understood and appear to occur in a single gene region in >95% of phenotypically resistant isolates. Mutations associated with isoniazid, the other first-line drug, are more complex and occur in multiple Mtb genes. Objectives/Methodology A systematic review of all published studies from January 2000 through August 2013 was conducted to quantify the frequency of the most common mutations associated with isoniazid resistance, to describe the frequency at which these mutations co-occur, and to identify the regional differences in the distribution of these mutations. Mutation data from 118 publications were extracted and analyzed for 11,411 Mtb isolates from 49 countries. Principal Findings/Conclusions Globally, 64% of all observed phenotypic isoniazid resistance was associated with the katG315 mutation. The second most frequently observed mutation, inhA-15, was reported among 19% of phenotypically resistant isolates. These two mutations, katG315 and inhA-15, combined with ten of the most commonly occurring mutations in the inhA promoter and the ahpC-oxyR intergenic region explain 84% of global phenotypic isoniazid resistance. Regional variation in the frequency of individual mutations may limit the sensitivity of molecular diagnostic tests. Well-designed systematic surveys and whole genome sequencing are needed to identify mutation frequencies in geographic regions where rapid

  7. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.

    PubMed

    Ramaswamy, S; Musser, J M

    1998-01-01

    Knowledge of the molecular genetic basis of resistance to antituberculous agents has advanced rapidly since we reviewed this topic 3 years ago. Virtually all isolates resistant to rifampin and related rifamycins have a mutation that alters the sequence of a 27-amino-acid region of the beta subunit of ribonucleic acid (RNA) polymerase. Resistance to isoniazid (INH) is more complex. Many resistant organisms have mutations in the katG gene encoding catalase-peroxidase that result in altered enzyme structure. These structural changes apparently result in decreased conversion of INH to a biologically active form. Some INH-resistant organisms also have mutations in the inhA locus or a recently characterized gene (kasA) encoding a beta-ketoacyl-acyl carrier protein synthase. Streptomycin resistance is due mainly to mutations in the 16S rRNA gene or the rpsL gene encoding ribosomal protein S12. Resistance to pyrazinamide in the great majority of organisms is caused by mutations in the gene (pncA) encoding pyrazinamidase that result in diminished enzyme activity. Ethambutol resistance in approximately 60% of organisms is due to amino acid replacements at position 306 of an arabinosyltransferase encoded by the embB gene. Amino acid changes in the A subunit of deoxyribonucleic acid gyrase cause fluoroquinolone resistance in most organisms. Kanamycin resistance is due to nucleotide substitutions in the rrs gene encoding 16S rRNA. Multidrug resistant strains arise by sequential accumulation of resistance mutations for individual drugs. Limited evidence exists indicating that some drug resistant strains with mutations that severely alter catalase-peroxidase activity are less virulent in animal models. A diverse array of strategies is available to assist in rapid detection of drug resistance-associated gene mutations. Although remarkable advances have been made, much remains to be learned about the molecular genetic basis of drug resistance in Mycobacterium tuberculosis. It is

  8. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2007. A report of the Australian Mycobacterium Reference Laboratory Network.

    PubMed

    Lumb, Richard; Bastion, Ivan; Carter, Robyn; Jelfs, Peter; Keehner, Terillee; Sievers, Aina

    2009-09-01

    The Australian Mycobacterium Reference Laboratory Network collects and analyses laboratory data on new cases of disease caused by the Mycobacterium tuberculosis complex. In 2007, a total of 872 cases were identified by bacteriology; an annual reporting rate of 4.1 cases per 100,000 population. Isolates were identified as M. tuberculosis (n=867), M. africanum (n=4) and M. bovis (n=1). Fifteen children aged under 10 years had bacteriologically-confirmed tuberculosis. Results of in vitro drug susceptibility testing were available for 871 of 872 isolates for isoniazid (H), rifampicin (R), ethambutol (E), and pyrazinamide (Z). A total of 98 (11.3%) isolates of M. tuberculosis were resistant to at least one of these anti-tuberculosis agents. Resistance to at least H and R (defined as multi-drug resistance, MDR) was detected in 24 (2.8%) isolates, all from overseas-born patients; 17 were from the respiratory tract (sputum n=16, endotracheal aspirate n=1). Thirteen patients with MDR-TB were from the Papua New Guinea-Torres Strait Islands zone. Of the 98 M. tuberculosis isolates resistant to at least one of the standard drugs, 54 (55.1%) were from new cases, 9 (9.2%) from previously treated cases, and no information was available on the remaining 35 cases. Seven were Australian-born, 90 were overseas- born, and the country of birth of 1 was unknown. Of the 90 overseas-born persons with drug resistant disease, 66 (73.3%) were from 5 countries: India (n=16); Papua New Guinea (n=15); the Philippines (n=12); Vietnam (n=12); and China (n=11). No XDR-TB was detected in 2007.

  9. Fitness of drug resistant Mycobacterium tuberculosis and the impact on the transmission among household contacts.

    PubMed

    Morcillo, Nora S; Imperiale, Belén R; Di Giulio, Ángela; Zumárraga, Martín J; Takiff, Howard; Cataldi, Ángel A

    2014-12-01

    There has been an on-going debate on whether the development of drug resistance in Mycobacterium tuberculosis reduces its relative fitness and its ability to cause disease. The aim of this study was to explore this relationship. For this purpose, we evaluated the in vitro growth of clinical isolates and the transmission of the strains within the patients' households. Clinical and epidemiological data from patients in households, drug-susceptibility and genetic patterns of the isolates were collected. BACTEC MGIT 960™ system with the Epicenter™ software was used to perform fitness experiments and calculate the relative fitness (RF) comparing with the H73Rv reference strain. From 39 households, 124 patients and 388 contacts were included. Concerning transmission, 20 Multi drug-resistant (MDR) and 16 drug sensitive (DS) index cases generated 23 and 28 secondary cases, respectively. An average RF drop of 16.7% was found for MDR strains, but only mutations in rpoB codons 531 were associated with reduced fitness. When the strains were transmitted, their RF tended to decrease, and strains with low RF were less frequently transmitted. Within the limitations of this study, the results showed that the decrease in RF was associated to a limited transmission among the households' contacts.

  10. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    PubMed Central

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  11. Rapid identification of mycobacteria and rapid detection of drug resistance in Mycobacterium tuberculosis in cultured isolates and in respiratory specimens.

    PubMed

    Yam, Wing-Cheong; Siu, Kit-Hang Gilman

    2013-01-01

    Recent advances in molecular biology and better understanding of the genetic basis of drug resistance have allowed rapid identification of mycobacteria and rapid detection of drug resistance of Mycobacterium tuberculosis present in cultured isolates or in respiratory specimens. In this chapter, several simple nucleic acid amplification-based techniques are introduced as molecular approach for clinical diagnosis of tuberculosis. A one-tube nested IS6110-based polymerase chain reaction (PCR) is used for M. tuberculosis complex identification; the use of a multiplex allele-specific PCR is demonstrated to detect the isoniazid resistance; PCR-sequencing assays are applied for rifampicin and ofloxacin resistance detection and 16S rDNA sequencing is utilized for identification of mycobacterial species from cultures of acid fast bacilli (AFB). Despite the high specificity and sensitivity of the molecular techniques, mycobacterial culture remains the "Gold Standard" for tuberculosis diagnosis. Negative results of molecular tests never preclude the infection or the presence of drug resistance. These technological advancements are, therefore, not intended to replace the conventional tests, but rather have major complementary roles in tuberculosis diagnosis.

  12. Copper Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    Shi, Xiaoshan; Darwin, K. Heran

    2015-01-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  13. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission.

    PubMed

    de Vos, M; Müller, B; Borrell, S; Black, P A; van Helden, P D; Warren, R M; Gagneux, S; Victor, T C

    2013-02-01

    Rifampin resistance in clinical isolates of Mycobacterium tuberculosis arises primarily through the selection of bacterial variants harboring mutations in the 81-bp rifampin resistance-determining region of the rpoB gene. While these mutations were shown to infer a fitness cost in the absence of antibiotic pressure, compensatory mutations in rpoA and rpoC were identified which restore the fitness of rifampin-resistant bacteria carrying mutations in rpoB. To investigate the epidemiological relevance of these compensatory mutations, we analyzed 286 drug-resistant and 54 drug-susceptible clinical M. tuberculosis isolates from the Western Cape, South Africa, a high-incidence setting of multidrug-resistant tuberculosis. Sequencing of a portion of the RpoA-RpoC interaction region of the rpoC gene revealed that 23.5% of all rifampin-resistant isolates tested carried a nonsynonymous mutation in this region. These putative compensatory mutations in rpoC were associated with transmission, as 30.8% of all rifampin-resistant isolates with an IS6110 restriction fragment length polymorphism (RFLP) pattern belonging to a recognized RFLP cluster harbored putative rpoC mutations. Such mutations were present in only 9.4% of rifampin-resistant isolates with unique RFLP patterns (P < 0.01). Moreover, these putative compensatory mutations were associated with specific strain genotypes and the rpoB S531L rifampin resistance mutation. Among isolates harboring this rpoB mutation, 44.1% also harbored rpoC mutations, while only 4.1% of the isolates with other rpoB mutations exhibited mutations in rpoC (P < 0.001). Our study supports a role for rpoC mutations in the transmission of multidrug-resistant tuberculosis and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.

  14. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis

    PubMed Central

    Nebenzahl-Guimaraes, Hanna; Jacobson, Karen R.; Farhat, Maha R.; Murray, Megan B.

    2014-01-01

    Background Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype. Methods We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. Results We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. Conclusions This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance. PMID:24055765

  15. Effect of Lagerstroemia tomentosa and Diospyros virginiana methanolic extracts on different drug-resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Esfahani, B. Nasr; Hozoorbakhsh, F.; Rashed, Kh.; Havaei, S.A.; Heidari, K.; Moghim, Sh.

    2014-01-01

    Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis. The increasing incidence of multi drug resistance tuberculosis (MDR-TB) and extensively drug resistance tuberculosis (XDR-TB) worldwide highlighted the urgent need to search for alternative antimycobacterial agents. More and more people in developing countries utilize traditional medicine for their major primary health care needs. It has been determined that pharmaceutical plant, Lagerstroemia tomentosa and Diospyros virginiana, possesses some antibacterial effect. In this study, the antimycobacterial effects of L. tomentosa and D. virginiana methanolic extracts on sensitive and resistant isolates of MTB were examined. Leaf methanolic extract was prepared using methanol 70%. Sensitivity and resistance of isolates was determined by proportion method. The effects of two different methonolic extract concentrations (20 and 40 μg/ml) of the plants were examined against 6 sensitive and resistant strains of MTB with different patterns of drug resistance. MTB H37Rv (ATCC 27294) was set as control in all culturing and sensitivity testing processes. The results showed that L. tomentosa and D. virginiana methanolic extracts had weak inhibitory effect on different strains of MTB. The highest percentage of inhibition for L. tomentosa and D. virginiana was observed 38% and 33.3%, respectively. PMID:25657789

  16. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2000: report of the Australian Mycobacterium Laboratory Reference Network.

    PubMed

    Lumb, Richard; Bastian, Ivan; Dawson, David; Gilpin, Chris; Havekort, Frank; Howard, Peter; Sievers, Aina

    2002-01-01

    The Australian Mycobacterium Reference Laboratory Network collected and analysed laboratory data on new diagnoses of disease caused by Mycobacterium tuberculosis complex in the year 2000. A total of 765 cases were identified, representing an annual reporting rate of 4.0 cases of laboratory-confirmed tuberculosis (TB) per 100,000 population. Pulmonary disease was diagnosed in 64.9 per cent of cases with a male:female ratio of 1.5:1. Smears were positive for 209/365 (57.3%) of sputum isolates and 39/117 (33.3%) bronchoscopy isolates. Sputum from males was more likely to be smear-positive (63.3%) than from females (47.5%). Isolates from lymph node accounted for 136 (17.7%) of all cases; only 28.7 per cent were smear-positive. Eighty-four (11.0%) isolates, comprising 82 M. tuberculosis and 2 M. bovis strains, demonstrated in vitro resistance to at least one of the standard anti-TB medications. Resistance to at least isoniazid and rifampicin (defined as multidrug-resistant TB) was observed for only 8 (1.0%) strains, a rate similar to previous years. Almost all (96.3%) of patients with drug resistant strains were classified as having initial resistance. The country of birth was known for 76 (92.7%) of 82 patients with a drug resistant strain of M. tuberculosis; 6 were Australian-born and 70 (92.1%) had migrated from a total of 17 countries. Of these 70 migrants with drug-resistant disease, 68.6 per cent had migrated from one of the following countries: Vietnam (n=15), China (n=11), Philippines (n=11), India (n=6), and Indonesia (n=5).

  17. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2000: report of the Australian Mycobacterium Laboratory Reference Network.

    PubMed

    Lumb, Richard; Bastian, Ivan; Dawson, David; Gilpin, Chris; Havekort, Frank; Howard, Peter; Sievers, Aina

    2002-01-01

    The Australian Mycobacterium Reference Laboratory Network collected and analysed laboratory data on new diagnoses of disease caused by Mycobacterium tuberculosis complex in the year 2000. A total of 765 cases were identified, representing an annual reporting rate of 4.0 cases of laboratory-confirmed tuberculosis (TB) per 100,000 population. Pulmonary disease was diagnosed in 64.9 per cent of cases with a male:female ratio of 1.5:1. Smears were positive for 209/365 (57.3%) of sputum isolates and 39/117 (33.3%) bronchoscopy isolates. Sputum from males was more likely to be smear-positive (63.3%) than from females (47.5%). Isolates from lymph node accounted for 136 (17.7%) of all cases; only 28.7 per cent were smear-positive. Eighty-four (11.0%) isolates, comprising 82 M. tuberculosis and 2 M. bovis strains, demonstrated in vitro resistance to at least one of the standard anti-TB medications. Resistance to at least isoniazid and rifampicin (defined as multidrug-resistant TB) was observed for only 8 (1.0%) strains, a rate similar to previous years. Almost all (96.3%) of patients with drug resistant strains were classified as having initial resistance. The country of birth was known for 76 (92.7%) of 82 patients with a drug resistant strain of M. tuberculosis; 6 were Australian-born and 70 (92.1%) had migrated from a total of 17 countries. Of these 70 migrants with drug-resistant disease, 68.6 per cent had migrated from one of the following countries: Vietnam (n=15), China (n=11), Philippines (n=11), India (n=6), and Indonesia (n=5). PMID:12206373

  18. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Brossier, F; Veziris, N; Truffot-Pernot, C; Jarlier, V; Sougakoff, W

    2011-01-01

    Ethionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active against Mycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded by ndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETH(r)) isolates, 24 ETH-susceptible (ETH(s)) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETH(Sip); defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETH(r) isolates, we found mutations in ethA, ethR, or inhA or its promoter, which mostly corresponded to new alterations in ethA and ethR. The 9 ETH(r) isolates without a mutation in these three genes (9/47, 19%) had no mutation in ndh, and a single isolate had a mutation in mshA. Of the 16 ETH(Sip) isolates, 7 had a mutation in ethA, 8 had no detectable mutation, and 1 had a mutation in mshA. Finally, of the 24 ETH(s) isolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in the inhA promoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETH(r) isolates, highlighting the complexity of the mechanisms of ETH resistance in M. tuberculosis.

  19. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype

    PubMed Central

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431

  20. Genetic diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and identification of a rare multidrug resistant Beijing genotype.

    PubMed

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.

  1. Rifoligotyping assay: an alternative method for rapid detection of rifampicin resistance in Mycobacterium tuberculosis isolates from Morocco

    PubMed Central

    Chaoui, Imane; Atalhi, Naima; Sabouni, Radia; Akrim, Mohammed; Abid, Mohammed; Amzazi, Saaid; ElMzibri, Mohammed

    2014-01-01

    One of the greatest threats to global tuberculosis (TB) control is the growing prevalence of drug resistant strains. In the past decades, considerable efforts have been made upon the development of new molecular technologies and methodologies for detection of drug resistance in Mycobacterium tuberculosis (MTB). A sensitive, specific reverse line blot assay, called rifoligotyping (RIFO), for the detection of genotypic resistance to rifampicin (RIF), was designed and evaluated. RIFO includes oligonucleotide probes specific for wild-type and mutant sequences, allowing specific and sensitive detection of both genotypes in a single assay. The RIFO was applied on 500 MTB isolates from Morocco. The results of the RIFO showed a good sensitivity (90.9%) and high specificity (100%); the positive and negative predictive values were 100% and 96.1%, respectively. This rapid, simple, economical assay provides a practical alternative for RIF genotyping, especially in low-income countries, to improve TB control and management. PMID:26740783

  2. Geographical profile of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates in Sri Lanka.

    PubMed

    Adikaram, Chamila Priyangani; Perera, Jennifer; Wijesundera, Sandhya Sulochana

    2012-10-01

    The nature and frequency of mutations in the rpoB gene of rifampicin (RIF) resistant Mycobacterium tuberculosis clinical isolates varies considerably between different geographical regions. The objective of the present study was the identification of rpoB gene mutations responsible for RIF resistance in M. tuberculosis isolates in Sri Lanka. Three regions of the rpoB gene of M. tuberculosis, one corresponding to a 437-bp region, including the rifampicin resistance-determining region (RRDR) and two other regions (1395 bp and 872 bp) spanning the RRDR, were polymerase chain reaction amplified, and were subjected to DNA sequencing. The two mutations found within the RRDR in the 31 RIF resistant strains isolated in this study were at codon 526 (n=15, 48.4%) CAC (His)→TAC (Tyr) and codon 531 (n=3, 9.7%) TCG (Ser)→TTG (Leu). A significant proportion (n=15, 48.3%) showed mutations spanning the RRDR, including two novel mutations at codon 626 (n=13, 41.9%) GAC (Asp)→GAG (Glu) and 184 (n=2, 6.4%) GAC (Asp)→GAT (Asp), a silent mutation. Two isolates revealed double mutations (codons 626+526 and 626+184). The presence of a high frequency of new mutations, and the different frequencies of the universally prevailing mutations, as reported here, emphasizes the need for expanding the geographical database of mutations for effective application of an rpoB-based diagnosis of multidrug resistant tuberculosis. PMID:22731859

  3. Recent transmission of drug-resistant Mycobacterium tuberculosis in a prison population in southern Brazil

    PubMed Central

    Reis, Ana Julia; de David, Simone Maria Martini; Nunes, Luciana de Souza; Valim, Andreia Rosane de Moura; Possuelo, Lia Gonçalves

    2016-01-01

    ABSTRACT We conducted a cross-sectional, retrospective study, characterized by classical and molecular epidemiology, involving M. tuberculosis isolates from a regional prison in southern Brazil. Between January of 2011 and August of 2014, 379 prisoners underwent sputum smear microscopy and culture; 53 (13.9%) were diagnosed with active tuberculosis. Of those, 8 (22.9%) presented with isoniazid-resistant tuberculosis. Strain genotyping was carried out by 15-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat analysis; 68.6% of the patients were distributed into five clusters, and 87.5% of the resistant cases were in the same cluster. The frequency of drug-resistant tuberculosis cases and the rate of recent transmission were high. Our data suggest the need to implement an effective tuberculosis control program within the prison system.

  4. Upregulation of the Phthiocerol Dimycocerosate Biosynthetic Pathway by Rifampin-Resistant, rpoB Mutant Mycobacterium tuberculosis

    PubMed Central

    Bisson, Gregory P.; Broeckling, Corey; Prenni, Jessica; Rifat, Dalin; Lun, Desmond S.; Burgos, Marcos; Weissman, Drew; Karakousis, Petros C.; Dobos, Karen

    2012-01-01

    Multidrug-resistant tuberculosis has emerged as a major threat to tuberculosis control. Phylogenetically related rifampin-resistant actinomycetes with mutations mapping to clinically dominant Mycobacterium tuberculosis mutations in the rpoB gene show upregulation of gene networks encoding secondary metabolites. We compared the expressed proteomes and metabolomes of two fully drug-susceptible clinical strains of M. tuberculosis (wild type) to those of their respective rifampin-resistant, rpoB mutant progeny strains with confirmed rifampin monoresistance following antitubercular therapy. Each of these strains was also used to infect gamma interferon- and lipopolysaccharide-activated murine J774A.1 macrophages to analyze transcriptional responses in a physiologically relevant model. Both rpoB mutants showed significant upregulation of the polyketide synthase genes ppsA-ppsE and drrA, which constitute an operon encoding multifunctional enzymes involved in the biosynthesis of phthiocerol dimycocerosate and other lipids in M. tuberculosis, but also of various secondary metabolites in related organisms, including antibiotics, such as erythromycin and rifamycins. ppsA (Rv2931), ppsB (Rv2932), and ppsC (Rv2933) were also found to be upregulated more than 10-fold in the Beijing rpoB mutant strain relative to its wild-type parent strain during infection of activated murine macrophages. In addition, metabolomics identified precursors of phthiocerol dimycocerosate, but not the intact molecule itself, in greater abundance in both rpoB mutant isolates. These data suggest that rpoB mutation in M. tuberculosis may trigger compensatory transcriptional changes in secondary metabolism genes analogous to those observed in related actinobacteria. These findings may assist in developing novel methods to diagnose and treat drug-resistant M. tuberculosis infections. PMID:23002228

  5. Rapid Detection of Rifampin Resistance in Mycobacterium tuberculosis Isolates from India and Mexico by a Molecular Beacon Assay

    PubMed Central

    Varma-Basil, Mandira; El-Hajj, Hiyam; Colangeli, Roberto; Hazbón, Manzour Hernando; Kumar, Sujeet; Bose, Mridula; Bobadilla-del-Valle, Miriam; García, Lourdes García; Hernández, Araceli; Kramer, Fred Russell; Osornio, Jose Sifuentes; Ponce-de-León, Alfredo; Alland, David

    2004-01-01

    We assessed the performance of a rapid, single-well, real-time PCR assay for the detection of rifampin-resistant Mycobacterium tuberculosis by using clinical isolates from north India and Mexico, regions with a high incidence of tuberculosis. The assay uses five differently colored molecular beacons to determine if a short region of the M. tuberculosis rpoB gene contains mutations that predict rifampin resistance in most isolates. Until now, the assay had not been sufficiently tested on samples from countries with a high incidence of tuberculosis. In the present study, the assay detected mutations in 16 out of 16 rifampin-resistant isolates from north India (100%) and in 55 of 64 rifampin-resistant isolates from Mexico (86%) compared to results with standard susceptibility testing. The assay did not detect mutations (a finding predictive of rifampin susceptibility) in 37 out of 37 rifampin-susceptible isolates from India (100%) and 125 out of 126 rifampin-susceptible isolates from Mexico (99%). DNA sequencing revealed that none of the nine rifampin-resistant isolates from Mexico, which were misidentified as rifampin susceptible by the molecular beacon assay, contained a mutation in the region targeted by the molecular beacons. The one rifampin-susceptible isolate from Mexico that appeared to be rifampin resistant by the molecular beacon assay contained an S531W mutation, which is usually associated with rifampin resistance. Of the rifampin-resistant isolates that were correctly identified in the molecular beacon assay, one contained a novel L530A mutation and another contained a novel deletion between codons 511 and 514. Overall, the molecular beacon assay appears to have sufficient sensitivity (89%) and specificity (99%) for use in countries with a high prevalence of tuberculosis. PMID:15583274

  6. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates from India and Mexico by a molecular beacon assay.

    PubMed

    Varma-Basil, Mandira; El-Hajj, Hiyam; Colangeli, Roberto; Hazbón, Manzour Hernando; Kumar, Sujeet; Bose, Mridula; Bobadilla-del-Valle, Miriam; García, Lourdes García; Hernández, Araceli; Kramer, Fred Russell; Osornio, Jose Sifuentes; Ponce-de-León, Alfredo; Alland, David

    2004-12-01

    We assessed the performance of a rapid, single-well, real-time PCR assay for the detection of rifampin-resistant Mycobacterium tuberculosis by using clinical isolates from north India and Mexico, regions with a high incidence of tuberculosis. The assay uses five differently colored molecular beacons to determine if a short region of the M. tuberculosis rpoB gene contains mutations that predict rifampin resistance in most isolates. Until now, the assay had not been sufficiently tested on samples from countries with a high incidence of tuberculosis. In the present study, the assay detected mutations in 16 out of 16 rifampin-resistant isolates from north India (100%) and in 55 of 64 rifampin-resistant isolates from Mexico (86%) compared to results with standard susceptibility testing. The assay did not detect mutations (a finding predictive of rifampin susceptibility) in 37 out of 37 rifampin-susceptible isolates from India (100%) and 125 out of 126 rifampin-susceptible isolates from Mexico (99%). DNA sequencing revealed that none of the nine rifampin-resistant isolates from Mexico, which were misidentified as rifampin susceptible by the molecular beacon assay, contained a mutation in the region targeted by the molecular beacons. The one rifampin-susceptible isolate from Mexico that appeared to be rifampin resistant by the molecular beacon assay contained an S531W mutation, which is usually associated with rifampin resistance. Of the rifampin-resistant isolates that were correctly identified in the molecular beacon assay, one contained a novel L530A mutation and another contained a novel deletion between codons 511 and 514. Overall, the molecular beacon assay appears to have sufficient sensitivity (89%) and specificity (99%) for use in countries with a high prevalence of tuberculosis.

  7. Allele-specific rpoB PCR assays for detection of rifampin-resistant Mycobacterium tuberculosis in sputum smears.

    PubMed

    Mokrousov, Igor; Otten, Tatiana; Vyshnevskiy, Boris; Narvskaya, Olga

    2003-07-01

    We describe an allele-specific PCR assay to detect mutations in three codons of the rpoB gene (516, 526, and 531) in Mycobacterium tuberculosis strains; mutations in these codons are reported to account for majority of M. tuberculosis clinical isolates resistant to rifampin (RIF), a marker of multidrug-resistant tuberculosis (MDR-TB). Three different allele-specific PCRs are carried out either directly with purified DNA (single-step multiplex allele-specific PCR), or with preamplified rpoB fragment (nested allele-specific PCR [NAS-PCR]). The method was optimized and validated following analysis of 36 strains with known rpoB sequence. A retrospective analysis of the 287 DNA preparations from epidemiologically unlinked RIF-resistant clinical strains from Russia, collected from 1996 to 2002, revealed that 247 (86.1%) of them harbored a mutation in one of the targeted rpoB codons. A prospective study of microscopy-positive consecutive sputum samples from new and chronic TB patients validated the method for direct analysis of DNA extracted from sputum smears. The potential of the NAS-PCR to control for false-negative results due to lack of amplification was proven especially useful in the study of these samples. The developed rpoB-PCR assay can be used in clinical laboratories to detect RIF-resistant and hence MDR M. tuberculosis in the regions with high burdens of the MDR-TB. PMID:12821473

  8. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. PMID:26341133

  9. Strong In Vitro Activities of Two New Rifabutin Analogs against Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    PubMed Central

    García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia

    2010-01-01

    Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731

  10. Testing susceptibility of multidrug-resistant Mycobacterium tuberculosis to second-line drugs by use of blood agar.

    PubMed

    Satana, Dilek; Coban, Ahmet Yilmaz; Uzun, Meltem

    2010-11-01

    In this study, the susceptibilities of 35 multidrug-resistant (MDR) Mycobacterium tuberculosis clinical isolates to second-line drugs, including kanamycin (KM), rifabutin (RBU), ofloxacin (OFX), p-aminosalicylic acid (PAS), capreomycin (CAP), clofazimine (CFM), and ethionamide (ETH), were investigated on blood agar according to CLSI recommendations. Compared with the results of the Bactec 460 TB system, agreement was 100, 100, 97, 100, 100, 100, and 86% for KM, RBU, OFX, PAS, CAP, CFM, and ETH, respectively. Compared with the results of the proportion method, agreement was 100, 100, 97, 100, 97, 100, and 77% for KM, RBU, OFX, PAS, CAP, CFM, and ETH, respectively.

  11. Evaluation of the GenoType MTBDR assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates.

    PubMed

    Saglik, I; Oz, Y; Kiraz, N

    2014-01-01

    Detection of drug resistance plays a critical role in tuberculosis treatment. The aim of this study was to evaluate the performance of GenoType Mycobacteria Drug Resistance (MTBDR) assay (Hain Lifescience, Germany) and to compare it with radiometric BACTEC 460 TB system (Becton Dickinson, USA) for the detection of rifampicin (RIF) and isoniazid (INH) resistance in 84 Mycobacterium tuberculosis complex (MTBC) isolates. RIF resistance was identified in 6 of 7 (85.7%) isolates and INH resistance was identified in 8 of 14 (57.1%) isolates by the GenoType MTBDR assay. Compared with BACTEC system, the sensitivity, specificity, positive predictive value and negative predictive values were 85.7%, 98.7%, 85.7% and 98.7% for RIF resistance; and 57.1%, 100%, 100% and 92.1% for INH resistance, respectively. GenoType MTBDR assay is reliable when tested specimen is resistant to the tested drugs. Although test was more successful in the detection of RIF resistance, it exhibited low sensitivity for the detection of INH resistance. PMID:25008829

  12. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR.

    PubMed Central

    Whelen, A C; Felmlee, T A; Hunt, J M; Williams, D L; Roberts, G D; Stockman, L; Persing, D H

    1995-01-01

    Recent analysis of the gene encoding the beta subunit of Mycobacterium tuberculosis RNA polymerase (rpoB) has demonstrated a small region that harbors the mutations most frequently associated with rifampin resistance. Earlier reports have described a high degree of sequence conservation of rpoB among mycobacteria other than M. tuberculosis and other GC-rich bacteria that can lead to false-positive amplification when applied directly to clinical specimens. We developed reagents for PCR amplification that are based on signature nucleotides discovered by comparative sequence analysis of the rpoB genes of organisms phylogenetically related to M. tuberculosis. The specificities of the reagents were challenged with 20 isolates of multiple-drug-resistant M. tuberculosis and more than 20 species of mycobacteria other than M. tuberculosis and other GC-rich organisms. A single-tube heminested PCR protocol was devised to obtain sensitivity equal to those of an IS6110-based PCR assay and culture in spiked sputum experiments. The assay correctly identified 21 of 24 (87.5%) culture-positive specimens, 13 of which were acid-fast smear-negative, in a panel of 51 clinical specimens. Three specimens that were false-positive initially were negative upon repeat testing when the assay was modified to eliminate the potential for aerosol carryover of the first-round amplification product during the open-tube addition of the second set of reaction reagents. This assay is the most sensitive and specific test to date for the direct detection of M. tuberculosis rpoB in clinical specimens. This rapid PCR-based assay can be used for the simultaneous identification of M. tuberculosis and its rifampin susceptibility genotype. PMID:7751357

  13. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR.

    PubMed

    Whelen, A C; Felmlee, T A; Hunt, J M; Williams, D L; Roberts, G D; Stockman, L; Persing, D H

    1995-03-01

    Recent analysis of the gene encoding the beta subunit of Mycobacterium tuberculosis RNA polymerase (rpoB) has demonstrated a small region that harbors the mutations most frequently associated with rifampin resistance. Earlier reports have described a high degree of sequence conservation of rpoB among mycobacteria other than M. tuberculosis and other GC-rich bacteria that can lead to false-positive amplification when applied directly to clinical specimens. We developed reagents for PCR amplification that are based on signature nucleotides discovered by comparative sequence analysis of the rpoB genes of organisms phylogenetically related to M. tuberculosis. The specificities of the reagents were challenged with 20 isolates of multiple-drug-resistant M. tuberculosis and more than 20 species of mycobacteria other than M. tuberculosis and other GC-rich organisms. A single-tube heminested PCR protocol was devised to obtain sensitivity equal to those of an IS6110-based PCR assay and culture in spiked sputum experiments. The assay correctly identified 21 of 24 (87.5%) culture-positive specimens, 13 of which were acid-fast smear-negative, in a panel of 51 clinical specimens. Three specimens that were false-positive initially were negative upon repeat testing when the assay was modified to eliminate the potential for aerosol carryover of the first-round amplification product during the open-tube addition of the second set of reaction reagents. This assay is the most sensitive and specific test to date for the direct detection of M. tuberculosis rpoB in clinical specimens. This rapid PCR-based assay can be used for the simultaneous identification of M. tuberculosis and its rifampin susceptibility genotype. PMID:7751357

  14. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    PubMed

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. PMID:26303802

  15. Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosis isolates from Ethiopia

    PubMed Central

    2012-01-01

    Background The emergence of drug resistance is one of the most important threats to tuberculosis control programs. This study was aimed to analyze the frequency of gene mutations associated with resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among Mycobacterium tuberculosis isolates from Northwest Ethiopia, and to assess the performance of the GenoType® MTBDRplus and GenoType® MTBDRsl assays as compared to the BacT/ALERT 3D system. Methods Two hundred sixty Mycobacterium tuberculosis isolates from smear positive tuberculosis patients diagnosed between March 2009 and July 2009 were included in this study. Drug susceptibility tests were performed in the Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Germany. Results Of 260 isolates, mutations conferring resistance to INH, RMP, or EMB were detected in 35, 15, and 8 isolates, respectively, while multidrug resistance (MDR) was present in 13 of the isolates. Of 35 INH resistant strains, 33 had mutations in the katG gene at Ser315Thr 1 and two strains had mutation in the inhA gene at C15T. Among 15 RMP resistant isolates, 11 had rpoB gene mutation at Ser531Leu, one at His526Asp, and three strains had mutations only at the wild type probes. Of 8 EMB resistant strains, two had mutations in the embB gene at Met306Ile, one at Met306Val, and five strains had mutations only at the wild type probes. The GenoType® MTBDRplus assay had a sensitivity of 92% and specificity of 99% for INH resistance, and 100% sensitivity and specificity to detect RMP resistance and MDR. The GenoType® MTBDRsl assay had a sensitivity of 42% and specificity of 100% for EMB resistance. Conclusion The dominance of single gene mutations associated with the resistance to INH and RMP was observed in the codon 315 of the katG gene and codon 531 of the rpoB gene, respectively. The GenoType® MTBDRplus assay is a sensitive and specific tool for diagnosis of resistance to INH

  16. Correlation between GyrA Substitutions and Ofloxacin, Levofloxacin, and Moxifloxacin Cross-Resistance in Mycobacterium tuberculosis

    PubMed Central

    Willby, Melisa; Sikes, R. David; Malik, Seidu; Metchock, Beverly

    2015-01-01

    The newer fluoroquinolones moxifloxacin (MXF) and levofloxacin (LVX) are becoming more common components of tuberculosis (TB) treatment regimens. However, the critical concentrations for testing susceptibility of Mycobacterium tuberculosis to MXF and LVX are not yet well established. Additionally, the degree of cross-resistance between ofloxacin (OFX) and these newer fluoroquinolones has not been thoroughly investigated. In this study, the MICs for MXF and LVX and susceptibility to the critical concentration of OFX were determined using the agar proportion method for 133 isolates of M. tuberculosis. Most isolates resistant to OFX had LVX MICs of >1 μg/ml and MXF MICs of >0.5 μg/ml. The presence of mutations within the gyrA quinolone resistance-determining regions (QRDR) correlated well with increased MICs, and the level of LVX and MXF resistance was dependent on the specific gyrA mutation present. Substitutions Ala90Val, Asp94Ala, and Asp94Tyr resulted in low-level MXF resistance (MICs were >0.5 but ≤2 μg/ml), while other mutations led to MXF MICs of >2 μg/ml. Based on these results, a critical concentration of 1 μg/ml is suggested for LVX and 0.5 μg/ml for MXF drug susceptibility testing by agar proportion with reflex testing for MXF at 2 μg/ml. PMID:26100699

  17. Cholesterol Analogs with Degradation-resistant Alkyl Side Chains Are Effective Mycobacterium tuberculosis Growth Inhibitors.

    PubMed

    Frank, Daniel J; Zhao, Yan; Wong, Siew Hoon; Basudhar, Debashree; De Voss, James J; Ortiz de Montellano, Paul R

    2016-04-01

    Cholest-4-en-3-one, whether added exogenously or generated intracellularly from cholesterol, inhibits the growth ofMycobacterium tuberculosiswhen CYP125A1 and CYP142A1, the cytochrome P450 enzymes that initiate degradation of the sterol side chain, are disabled. Here we demonstrate that a 16-hydroxy derivative of cholesterol, which was previously reported to inhibit growth ofM. tuberculosis, acts by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3β,16β,26-triol (1) (and its 3-keto metabolite) inhibit growth suggests that cholesterol analogs with non-degradable side chains represent a novel class of anti-mycobacterial agents. In accord with this, two cholesterol analogs with truncated, fluorinated side chains have been synthesized and shown to similarly block the growth in culture ofM. tuberculosis.

  18. 2-(Quinolin-4-yloxy)acetamides Are Active against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains.

    PubMed

    Pissinate, Kenia; Villela, Anne Drumond; Rodrigues-Junior, Valnês; Giacobbo, Bruno Couto; Grams, Estêvão Silveira; Abbadi, Bruno Lopes; Trindade, Rogério Valim; Roesler Nery, Laura; Bonan, Carla Denise; Back, Davi Fernando; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2016-03-10

    2-(Quinolin-4-yloxy)acetamides have been described as potent in vitro inhibitors of Mycobacterium tuberculosis growth. Herein, additional chemical modifications of lead compounds were carried out, yielding highly potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.05 μM. Further, the synthesized compounds were active against drug-resistant strains and were devoid of apparent toxicity to Vero and HaCat cells (IC50s ≥ 20 μM). In addition, the 2-(quinolin-4-yloxy)acetamides showed intracellular activity against the bacilli in infected macrophages with action similar to rifampin, low risk of drug-drug interactions, and no sign of cardiac toxicity in zebrafish (Danio rerio) at 1 and 5 μM. Therefore, these data indicate that this class of compounds may furnish candidates for future development to, hopefully, provide drug alternatives for tuberculosis treatment.

  19. A rapid detection of multidrug-resistant Mycobacterium tuberculosis by a nitrate reductase assay on blood agar.

    PubMed

    Coban, Ahmet Yilmaz; Cayci, Yeliz Tanriverdi; Deveci, Aydin; Akgunes, Alper; Uzun, Meltem; Durupinar, Belma

    2011-05-01

    The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.

  20. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.

    PubMed

    Rodrigues-Junior, Valnês S; Villela, Anne D; Gonçalves, Raoni S B; Abbadi, Bruno Lopes; Trindade, Rogério Valim; López-Gavín, Alexandre; Tudó, Griselda; González-Martín, Julian; Basso, Luiz Augusto; de Souza, Marcus V N; Campos, Maria Martha; Santos, Diógenes Santiago

    2016-08-01

    Repurposing of drugs to treat tuberculosis (TB) has been considered an alternative to overcome the global TB epidemic, especially to combat drug-resistant forms of the disease. Mefloquine has been reported as a potent drug to kill drug-resistant strains of Mycobacterium tuberculosis. In addition, mefloquine-derived molecules have been synthesised and their effectiveness against mycobacteria has been assessed. In this work, we demonstrate for the first time the activities of mefloquine and its oxazolidine derivative compound 1E in a murine model of TB infection following administration of both drugs by the oral route. The effects of associations between mefloquine or 1E with the clinically used antituberculosis drugs isoniazid, rifampicin, ethambutol, moxifloxacin and streptomycin were also investigated. Importantly, combination of mefloquine with isoniazid and of 1E with streptomycin showed a two-fold decrease in their minimum inhibitory concentrations (MICs). Moreover, no tested combinations demonstrated antagonist interactions. Here we describe novel evidence on the activity of mefloquine and 1E against a series of quinolone-resistant M. tuberculosis strains. These data show MICs against quinolone-resistant strains (0.5-8 µg/mL) similar to or lower than those previously reported for multidrug-resistant strains. Taking these results together, we can suggest the use of mefloquine or 1E in combination with clinically available drugs, especially in the case of resistant forms of TB. PMID:27364701

  1. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.

    PubMed

    Rodrigues-Junior, Valnês S; Villela, Anne D; Gonçalves, Raoni S B; Abbadi, Bruno Lopes; Trindade, Rogério Valim; López-Gavín, Alexandre; Tudó, Griselda; González-Martín, Julian; Basso, Luiz Augusto; de Souza, Marcus V N; Campos, Maria Martha; Santos, Diógenes Santiago

    2016-08-01

    Repurposing of drugs to treat tuberculosis (TB) has been considered an alternative to overcome the global TB epidemic, especially to combat drug-resistant forms of the disease. Mefloquine has been reported as a potent drug to kill drug-resistant strains of Mycobacterium tuberculosis. In addition, mefloquine-derived molecules have been synthesised and their effectiveness against mycobacteria has been assessed. In this work, we demonstrate for the first time the activities of mefloquine and its oxazolidine derivative compound 1E in a murine model of TB infection following administration of both drugs by the oral route. The effects of associations between mefloquine or 1E with the clinically used antituberculosis drugs isoniazid, rifampicin, ethambutol, moxifloxacin and streptomycin were also investigated. Importantly, combination of mefloquine with isoniazid and of 1E with streptomycin showed a two-fold decrease in their minimum inhibitory concentrations (MICs). Moreover, no tested combinations demonstrated antagonist interactions. Here we describe novel evidence on the activity of mefloquine and 1E against a series of quinolone-resistant M. tuberculosis strains. These data show MICs against quinolone-resistant strains (0.5-8 µg/mL) similar to or lower than those previously reported for multidrug-resistant strains. Taking these results together, we can suggest the use of mefloquine or 1E in combination with clinically available drugs, especially in the case of resistant forms of TB.

  2. Detection of drug resistance in Mycobacterium tuberculosis: Methods, principles and applications.

    PubMed

    Gupta, Anamika; Anupurba, Shampa

    2015-01-01

    The growing emergence of multidrug resistant tuberculosis (MDR-TB) strains is obstructing efforts for the control and management of TB. Proper management of MDR-TB relies on early recognition of drug resistance followed by timely treatment initiation. Several diagnostic methods, both phenotypic and molecular, have been developed in last few years for rapid identification of drug resistant (DR)-TB. Revised national tuberculosis control programmes (RNTPs) may find it tough to choose from the puzzling variety of rapid tests. Here, we present an outline of the available methods, discussing their basis, advantages and deficiencies. PMID:25857561

  3. Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis from Iran.

    PubMed

    Kardan Yamchi, Jalil; Haeili, Mehri; Gizaw Feyisa, Seifu; Kazemian, Hossein; Hashemi Shahraki, Abdolrazagh; Zahednamazi, Fatemeh; Imani Fooladi, Abbas Ali; Feizabadi, Mohammad Mehdi

    2015-12-01

    Absence of mutations within the genes encoding drug targets in some phenotypically drug resistant strains of Mycobacterium tuberculosis suggests possible involvement of alternative mechanisms such as over-expression of efflux pumps. We investigated the expression level of Rv1410c, Rv2459, Rv1218c and Rv1273c efflux pumps gene by real-time quantitative reverse transcription PCR (qRT-PCR) in 31 clinical isolates of M. tuberculosis. Susceptibility to first-line drugs was performed using the proportion method. Twenty one isolates were characterized with drug resistance (DR), and among them 12 showed a significantly elevated level of expression (>4 fold) for at least one of the studied genes encoding for efflux pumps. Point mutations in the katG (codons 315 or 335) and rpoB (codons 456 and 441) genes were found in 42.85% and 66.6% of drug resistant isolates, respectively. Only one isolate showed mutation at position -15 of the inhA promoter region. Among the 7 isolates (33.33%) which had no mutation in the studied regions of drug target genes, 5 isolates showed over-expression for efflux pumps. Our results demonstrated that over-expression of efflux pumps can contribute to drug resistance in M. tuberculosis.

  4. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis.

    PubMed

    Mathys, Vanessa; Wintjens, René; Lefevre, Philippe; Bertout, Julie; Singhal, Amit; Kiass, Mehdi; Kurepina, Natalia; Wang, Xiao-Ming; Mathema, Barun; Baulard, Alain; Kreiswirth, Barry N; Bifani, Pablo

    2009-05-01

    The emergence of Mycobacterium tuberculosis resistant to first-line antibiotics has renewed interest in second-line antitubercular agents. Here, we aimed to extend our understanding of the mechanisms underlying para-aminosalicylic acid (PAS) resistance by analysis of six genes of the folate metabolic pathway and biosynthesis of thymine nucleotides (thyA, dfrA, folC, folP1, folP2, and thyX) and three N-acetyltransferase genes [nhoA, aac(1), and aac(2)] among PAS-resistant clinical isolates and spontaneous mutants. Mutations in thyA were identified in only 37% of the clinical isolates and spontaneous mutants. Overall, 24 distinct mutations were identified in the thyA gene and 3 in the dfrA coding region. Based on structural bioinformatics techniques, the altered ThyA proteins were predicted to generate an unfolded or dysfunctional polypeptide. The MIC was determined by Bactec/Alert and dilution assay. Sixty-three percent of the PAS-resistant isolates had no mutations in the nine genes considered in this study, revealing that PAS resistance in M. tuberculosis involves mechanisms or targets other than those pertaining to the biosynthesis of thymine nucleotides. The alternative mechanism(s) or pathway(s) associated with PAS resistance appears to be PAS concentration dependent, in marked contrast to thyA-mutated PAS-resistant isolates.

  5. 2-[4-(4-Methoxyphenylcarbonyloxy)benzylidene]-6-dimethylaminomethyl cyclohexanone hydrochloride: a Mannich base which inhibits the growth of some drug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Das, S; Das, U; Bandy, B; Gorecki, D K J; Dimmock, J R

    2010-11-01

    2-[4-(4-Methoxyphenylcarbonyloxy)benzylidene]-6-dime-thylaminomethyl cyclohexanone hydrochloride 1 has a MIC value of 0.78 microg/mL towards Mycobacterium tuberculosis H37Rv and displays similar or identical MIC figures towards various drug-resistant strains of this microorganism. The enone 1 along with a partial structure 2-dimethylaminomethylcyclohexanone hydrochloride 3 affected respiration in isolated rat liver mitochondria differently which may contribute to the variation in toxicity to both normal cells and M. tuberculosis.

  6. Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Medellín, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The Mycobacterium tuberculosis Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes. PMID:27313305

  7. Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Medellín, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The Mycobacterium tuberculosis Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes. PMID:27313305

  8. Whole-Genome Sequencing of Two Latin American-Mediterranean Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates from Medellín, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Colombia, with a tuberculosis incidence of 33 cases per 100,000 population, is one of the countries that have reported extensively drug-resistant Mycobacterium tuberculosis (XDR-TB). We report the high-quality draft genome sequences of two Latin American-Mediterranean XDR-TB clinical isolates (TBR-152 and TBR-175), comprising 4,303,775 bp and 4,330,115 bp, respectively. PMID:27034498

  9. Whole-Genome Sequencing of Two Latin American–Mediterranean Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates from Medellín, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Colombia, with a tuberculosis incidence of 33 cases per 100,000 population, is one of the countries that have reported extensively drug-resistant Mycobacterium tuberculosis (XDR-TB). We report the high-quality draft genome sequences of two Latin American–Mediterranean XDR-TB clinical isolates (TBR-152 and TBR-175), comprising 4,303,775 bp and 4,330,115 bp, respectively. PMID:27034498

  10. A First Assessment of Mycobacterium tuberculosis Genetic Diversity and Drug-Resistance Patterns in Twelve Caribbean Territories

    PubMed Central

    Millet, Julie; Baboolal, Shirematee; Akpaka, Patrick E.

    2014-01-01

    With the exception of some French-speaking islands, data on tuberculosis (TB) in the Caribbean are scarce. In this study, we report a first assessment of genetic diversity of a convenience sample of Mycobacterium tuberculosis strains received from twelve Caribbean territories by spoligotyping and describe their drug-resistance patterns. Of the 480 isolates, 40 (8.3%) isolates showed resistance to at least one anti-TB drug. The proportion of drug-resistant strains was significantly higher in The Bahamas (21.4%; P = 0.02), and Guyana (27.5%; P < 0.0001), while it was significantly lower in Jamaica (2.4%; P = 0.03) than in other countries of the present study. Regarding genetic diversity, 104 distinct spoligotype patterns were observed: 49 corresponded to clustered strains (2 to 93 strains per cluster), while 55 remained unclustered among which 16 patterns were not reported previously. Combining the study results with regional data retrieved from the international SITVIT2 database underlined a connection between frequency of certain M. tuberculosis phylogenetic lineages and the language spoken, suggesting historical (colonial) and ongoing links (trade, tourism, and migratory flows) with European countries with which they shared a common past. PMID:24795893

  11. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Hajian, Behnoush; Keshipeddy, Santosh; Shoen, Carolyn; Krucinska, Jolanta; Cynamon, Michael; Anderson, Amy C.; Wright, Dennis L.

    2016-01-01

    Mycobacterium tuberculosis continues to cause widespread, life-threatening disease. In the last decade, this threat has grown dramatically as multi- and extensively-drug resistant (MDR and XDR) bacteria have spread globally and the number of agents that effectively treat these infections is significantly reduced. We have been developing the propargyl-linked antifolates (PLAs) as potent inhibitors of the essential enzyme dihydrofolate reductase (DHFR) from bacteria and recently found that charged PLAs with partial zwitterionic character showed improved mycobacterial cell permeability. Building on a hypothesis that these PLAs may penetrate the outer membrane of M. tuberculosis and inhibit the essential cytoplasmic DHFR, we screened a group of PLAs for antitubercular activity. In this work, we identified several PLAs as potent inhibitors of the growth of M. tuberculosis with several of the compounds exhibiting minimum inhibition concentrations equal to or less than 1 μg/mL. Furthermore, two of the compounds were very potent inhibitors of MDR and XDR strains. A high resolution crystal structure of one PLA bound to DHFR from M. tuberculosis reveals the interactions of the ligands with the target enzyme. PMID:27580226

  12. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis.

    PubMed

    Hajian, Behnoush; Scocchera, Eric; Keshipeddy, Santosh; G-Dayanandan, Narendran; Shoen, Carolyn; Krucinska, Jolanta; Reeve, Stephanie; Cynamon, Michael; Anderson, Amy C; Wright, Dennis L

    2016-01-01

    Mycobacterium tuberculosis continues to cause widespread, life-threatening disease. In the last decade, this threat has grown dramatically as multi- and extensively-drug resistant (MDR and XDR) bacteria have spread globally and the number of agents that effectively treat these infections is significantly reduced. We have been developing the propargyl-linked antifolates (PLAs) as potent inhibitors of the essential enzyme dihydrofolate reductase (DHFR) from bacteria and recently found that charged PLAs with partial zwitterionic character showed improved mycobacterial cell permeability. Building on a hypothesis that these PLAs may penetrate the outer membrane of M. tuberculosis and inhibit the essential cytoplasmic DHFR, we screened a group of PLAs for antitubercular activity. In this work, we identified several PLAs as potent inhibitors of the growth of M. tuberculosis with several of the compounds exhibiting minimum inhibition concentrations equal to or less than 1 μg/mL. Furthermore, two of the compounds were very potent inhibitors of MDR and XDR strains. A high resolution crystal structure of one PLA bound to DHFR from M. tuberculosis reveals the interactions of the ligands with the target enzyme. PMID:27580226

  13. Molecular and Growth-Based Drug Susceptibility Testing of Mycobacterium tuberculosis Complex for Ethambutol Resistance in the United States.

    PubMed

    Yakrus, Mitchell A; Driscoll, Jeffrey; McAlister, Allison; Sikes, David; Hartline, Denise; Metchock, Beverly; Starks, Angela M

    2016-01-01

    Ethambutol (EMB) is used as a part of drug regimens for treatment of tuberculosis (TB). Susceptibility of Mycobacterium tuberculosis complex (MTBC) isolates to EMB can be discerned by DNA sequencing to detect mutations in the embB gene associated with resistance. US Public Health Laboratories (PHL) primarily use growth-based drug susceptibility test (DST) methods to determine EMB resistance. The Centers for Disease Control and Prevention (CDC) provides a service for molecular detection of drug resistance (MDDR) by DNA sequencing and concurrent growth-based DST using agar proportion. PHL and CDC test results were compared for 211 MTBC samples submitted to CDC from September 2009 through February 2011. Concordance between growth-based DST results from PHL and CDC was 88.2%. A growth-based comparison of 39 samples, where an embB mutation associated with EMB resistance was detected, revealed a higher percentage of EMB resistance by CDC (84.6%) than by PHL (59.0%) which was significant (P value = 0.002). Discordance between all growth-based test results from PHL and CDC was also significant (P value = 0.003). Most discordance was linked to false susceptibility using the BACTEC™ MGIT™ 960 (MGIT) growth-based system. Our analysis supports coalescing growth-based and molecular results for an informed interpretation of potential EMB resistance. PMID:27375902

  14. Mycobacterium tuberculosis pncA Polymorphisms That Do Not Confer Pyrazinamide Resistance at a Breakpoint Concentration of 100 Micrograms per Milliliter in MGIT

    PubMed Central

    Whitfield, Michael G.; Streicher, Elizabeth M.; Sampson, Samantha L.; Sirgel, Frik A.; van Helden, Paul D.; Mercante, Alexandra; Willby, Melisa; Hughes, Kelsey; Birkness, Kris; Morlock, Glenn; van Rie, Annelies; Posey, James E.

    2015-01-01

    Sequencing of the Mycobacterium tuberculosis pncA gene allows for pyrazinamide susceptibility testing. We summarize data on pncA polymorphisms that do not confer resistance at a susceptibility breakpoint of 100 μg/ml pyrazinamide in MGIT within a cohort of isolates from South Africa and the U.S. Centers for Disease Control and Prevention. PMID:26292310

  15. The Multifunctional PE_PGRS11 Protein from Mycobacterium tuberculosis Plays a Role in Regulating Resistance to Oxidative Stress*

    PubMed Central

    Chaturvedi, Rashmi; Bansal, Kushagra; Narayana, Yeddula; Kapoor, Nisha; Sukumar, Namineni; Togarsimalemath, Shambhuprasad Kotresh; Chandra, Nagasuma; Mishra, Saurabh; Ajitkumar, Parthasarathi; Joshi, Beenu; Katoch, Vishwa Mohan; Patil, Shripad A.; Balaji, Kithiganahalli N.

    2010-01-01

    Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress. PMID:20558725

  16. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  17. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis

    PubMed Central

    Egesborg, Philippe; Carlettini, Hélène; Volpato, Jordan P; Doucet, Nicolas

    2015-01-01

    Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam–BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam–BlaC inhibitor combination treatments against M. tuberculosis. PMID:25492589

  18. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    PubMed

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates.

  19. Magnitude of Gene Mutations Conferring Drug Resistance in Mycobacterium Tuberculosis Isolates from Lymph Node Aspirates in Ethiopia

    PubMed Central

    Biadglegne, Fantahun; Tessema, Belay; Rodloff, Arne C.; Sack, Ulrich

    2013-01-01

    Objective: Resistance to drugs is due to particular genomic mutations in the specific genes of Mycobacterium tuberculosis. Timely genetic characterization will allow identification of resistance mutations that will optimize an effective antibiotic treatment regimen. We determine the magnitude of gene mutations conferring resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among tuberculosis (TB) lymphadenitis patients. Methods: A cross sectional prospective study was conducted among 226 M.tuberculosis isolates from culture positive lymph node aspirates collected from TB lymphadenitis patients between April 2012 and May 2012. Detection of mutations conferring resistance to drugs was carried out using GenoType® MTBDRplus and GenoType® MTBDRsl assay. Results: Out of the 226 strains, mutations conferring resistance to INH, RMP, multidrug resistance tuberculosis (MDR-TB) and EMB were 8, 3, 2 and 2 isolates, respectively. There was no isolated strain that showed mutation in the inhA promoter region gene. All INH resistant strains had mutations in the katG gene at codon 315 with amino acid change of S315T1. Among rifampicin resistant strains, two isolates displayed mutations at codon 531 in the rpoB gene with amino acid change of S531L and one isolate was by omission of wild type probes at Q513L. According to mutations associated with ethambutol resistance, all of the isolates had mutations in the embB gene with aminoacid change of M306I. All isolates resistant to INH, RMP and MDR using BacT/AlerT 3D system were correctly identified by GenoType® MTBDRplus assay. Conclusion: We observed mutations conferring resistance to INH at S315T1 of the katG gene, RMP at S531L and Q513L in the rpoB genes and EMB at M306I of the embB gene. In the absence of conventional drug susceptibility testing, the effort to develop easy, rapid and cost effective molecular assays for drug resistance TB monitoring is definitely desirable and the GenoType® MTBDRplus assay was

  20. Esters of Pyrazinoic Acid Are Active against Pyrazinamide-Resistant Strains of Mycobacterium tuberculosis and Other Naturally Resistant Mycobacteria In Vitro and Ex Vivo within Macrophages.

    PubMed

    Pires, David; Valente, Emília; Simões, Marta Filipa; Carmo, Nuno; Testa, Bernard; Constantino, Luís; Anes, Elsa

    2015-12-01

    Pyrazinamide (PZA) is active against major Mycobacterium tuberculosis species (M. tuberculosis, M. africanum, and M. microti) but not against M. bovis and M. avium. The latter two are mycobacterial species involved in human and cattle tuberculosis and in HIV coinfections, respectively. PZA is a first-line agent for the treatment of human tuberculosis and requires activation by a mycobacterial pyrazinamidase to form the active metabolite pyrazinoic acid (POA). As a result of this mechanism, resistance to PZA, as is often found in tuberculosis patients, is caused by point mutations in pyrazinamidase. In previous work, we have shown that POA esters and amides synthesized in our laboratory were stable in plasma (M. F. Simões, E. Valente, M. J. Gómez, E. Anes, and L. Constantino, Eur J Pharm Sci 37:257-263, 2009, http://dx.doi.org/10.1016/j.ejps.2009.02.012). Although the amides did not present significant activity, the esters were active against sensitive mycobacteria at concentrations 5- to 10-fold lower than those of PZA. Here, we report that these POA derivatives possess antibacterial efficacy in vitro and ex vivo against several species and strains of Mycobacterium with natural or acquired resistance to PZA, including M. bovis and M. avium. Our results indicate that the resistance probably was overcome by cleavage of the prodrugs into POA and a long-chain alcohol. Although it is not possible to rule out that the esters have intrinsic activity per se, we bring evidence here that long-chain fatty alcohols possess a significant antimycobacterial effect against PZA-resistant species and strains and are not mere inactive promoieties. These findings may lead to candidate dual drugs having enhanced activity against both PZA-susceptible and PZA-resistant isolates and being suitable for clinical development. PMID:26438493

  1. Disparities in Capreomycin Resistance Levels Associated with the rrs A1401G Mutation in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Reeves, Analise Z.; Campbell, Patricia J.; Willby, Melisa J.

    2014-01-01

    As the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. The rrs A1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between the rrs A1401G mutation and CAP resistance, with up to 40% of rrs A1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring the rrs A1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenic Mycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome. PMID:25385119

  2. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    PubMed

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.

  3. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    PubMed

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  4. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis.

    PubMed

    Luo, Tao; Jiang, Lili; Sun, Weiming; Fu, G; Mei, Jian; Gao, Qian

    2011-09-01

    Early diagnosis of drug-resistant Mycobacterium tuberculosis is urgently needed to optimize treatment regimens and to prevent the transmission of resistant strains. Real-time PCR assays have been developed to detect drug resistance rapidly, but none of them have been widely applied due to their complexity, high cost, or requirement for advanced instruments. In this study, we developed a real-time PCR method based on melting curve analysis of dually labeled probes. Six probes targeting the rpoB 81-bp core region, katG315, the inhA promoter, the ahpC promoter, and embB306 were designed and validated with clinical isolates. First, 10 multidrug-resistant (MDR) strains with a wide mutation spectrum were used to analyze the melting temperature (T(m)) deviations of different mutations by single real-time PCR. All mutations can be detected by significant T(m) reductions compared to the wild type. Then, three duplex real-time PCRs, with two probes in each, were developed to detect mutations in 158 MDR isolates. Comparison of the results with the sequencing data showed that all mutations covered by the six probes were detected with 100% sensitivity and 100% specificity. Our method provided a new way to rapidly detect drug-resistant mutations in M. tuberculosis. Compared to other real-time PCR methods, we use fewer probes, which are labeled with the same fluorophore, guaranteeing that this assay can be used for detection in a single fluorescent channel or can be run on single-channel instruments. In conclusion, we have developed a widely applicable real-time PCR assay to detect drug-resistant mutations in M. tuberculosis.

  5. Rifampin-Isoniazid Oligonucleotide Typing: an Alternative Format for Rapid Detection of Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    PubMed Central

    Hernández-Neuta, Iván; Varela, Andrés; Martin, Anandi; von Groll, Andrea; Jureen, Pontus; López, Beatriz; Imperiale, Belén; Šķenders, Ģirts; Ritacco, Viviana; Hoffner, Sven; Morcillo, Nora; Palomino, Juan Carlos; Del Portillo, Patricia

    2010-01-01

    A reverse line blot DNA hybridization format for rapid detection of multidrug-resistant tuberculosis was developed. Simultaneous detection of rifampin and isoniazid resistance in clinical isolates of Mycobacterium tuberculosis was based on the same amplification/reverse hybridization principle of the widely used spoligotyping. The test involved probing nine DNA regions that are targets of common drug resistance-associated mutations in the genes rpoB, katG, and inhA. Addition of quaternary amine tetramethyl ammonium chloride to the hybridization buffer promoted multiple hybrid formations at a single annealing temperature irrespective of the different GC contents of probes. The assay was standardized using 20 well-documented strains from the Institute of Tropical Medicine (Belgium) and evaluated blindly in a central laboratory with 100 DNA samples that were obtained from cultured clinical isolates and shipped dried from three other countries. Compared with drug susceptibility testing, both sensitivity and specificity for rifampin resistance detection were 93.0% while for isoniazid the values were 87.7% and 97.7%, respectively. Compared with sequencing and GenoType MTBDRplus methods, sensitivity and specificity reached 96.4% and 95.5% for rifampin and 92.7% and 100% for isoniazid. Altogether, 40/45 (89%) multidrug-resistant isolates were correctly identified. Advantages of this in-house development include versatility, capacity to run up to 41 samples by triplicate in a single run, and reuse of the membrane at least 10 times. These features substantially reduce cost per reaction and make the assay an attractive tool for use in reference laboratories of countries that have a high burden of multidrug-resistant tuberculosis but that cannot afford expensive commercial tests because of limited resources. PMID:20881173

  6. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

    PubMed Central

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  7. Development of a single multiplex amplification refractory mutation system PCR for the detection of rifampin-resistant Mycobacterium tuberculosis.

    PubMed

    Shi, Xiaodan; Zhang, Chen; Shi, Ming; Yang, Mengjie; Zhang, Yi; Wang, Ji; Shen, Hongwei; Zhao, Gang; Ma, Xuejun

    2013-11-01

    A rapid and simple method for the detection of drug-resistant Mycobacterium tuberculosis is critical for the efficient treatment and control of this pathogen in developing country. Here we developed a single multiplex amplification refractory mutation system (M-ARMS) PCR, in which chimeric-primer and temperature switch PCR (TSP) strategy were included. Using this method, we detected rifampin resistance-associated mutations at codons 511, 516, 526 and 531 in the rifampin resistance-determining region of rpoB gene. The performance of M-ARMS-PCR assay was evaluated with 135 cultured isolates of M. tuberculosis. The sensitivity and specificity were 94.2% and 100%, respectively, compared with direct DNA sequencing, and 86.67% and 89.71%, respectively, compared with culture-based phenotypic drug susceptibility testing. Therefore, this newly-developed M-ARMS-PCR method is useful and efficient with an intended application in provincial Centers for Disease Control and Prevention for rapid detection of rifampin resistance-associated mutations.

  8. Porins increase copper susceptibility of Mycobacterium tuberculosis.

    PubMed

    Speer, Alexander; Rowland, Jennifer L; Haeili, Mehri; Niederweis, Michael; Wolschendorf, Frank

    2013-11-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.

  9. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.

    PubMed

    Woodworth, Joshua S; Aagaard, Claus Sindbjerg; Hansen, Paul R; Cassidy, Joseph P; Agger, Else Marie; Andersen, Peter

    2014-04-01

    CD4 T cells are crucial to the control of Mycobacterium tuberculosis infection and are a key component of current vaccine strategies. Conversely, immune-mediated pathology drives disease, and recent evidence suggests that adaptive and innate responses are evolutionarily beneficial to M. tuberculosis. We compare the functionality of CD4 T cell responses mounted against dominant and cryptic epitopes of the M. tuberculosis 6-kDa early secreted Ag (ESAT-6) before and postinfection. Protective T cells against cryptic epitopes not targeted during natural infection were induced by vaccinating mice with a truncated ESAT-6 protein, lacking the dominant epitope. The ability to generate T cells that recognize multiple cryptic epitopes was MHC-haplotype dependent, including increased potential via heterologous MHC class II dimers. Before infection, cryptic epitope-specific T cells displayed enhanced proliferative capacity and delayed cytokine kinetics. After aerosol M. tuberculosis challenge, vaccine-elicited CD4 T cells expanded and recruited to the lung. In chronic infection, dominant epitope-specific T cells developed a terminal differentiated KLRG1(+)/PD-1(lo) surface phenotype that was significantly reduced in the cryptic epitope-specific T cell populations. Dominant epitope-specific T cells in vaccinated animals developed into IFN-γ- and IFN-γ,TNF-α-coproducing effector cells, characteristic of the endogenous response. In contrast, cryptic epitope-specific CD4 T cells maintained significantly greater IFN-γ(+)TNF-α(+)IL-2(+) and TNF-α(+)IL-2(+) memory-associated polyfunctionality and enhanced proliferative capacity. Vaccine-associated IL-17A production by cryptic CD4 T cells was also enhanced, but without increased neutrophilia/pathology. Direct comparison of dominant/cryptic epitope-specific CD4 T cells within covaccinated mice confirmed the superior ability of protective cryptic epitope-specific T cells to resist M. tuberculosis infection-driven T cell

  10. Consequences of noncompliance for therapy efficacy and emergence of resistance in murine tuberculosis caused by the Beijing genotype of Mycobacterium tuberculosis.

    PubMed

    de Steenwinkel, Jurriaan E M; ten Kate, Marian T; de Knegt, Gerjo J; Verbrugh, Henri A; Aarnoutse, Rob E; Boeree, Martin J; den Bakker, Michael A; van Soolingen, Dick; Bakker-Woudenberg, Irma A J M

    2012-09-01

    Despite great effort by health organizations worldwide in fighting tuberculosis (TB), morbidity and mortality are not declining as expected. One of the reasons is related to the evolutionary development of Mycobacterium tuberculosis, in particular the Beijing genotype strains. In a previous study, we showed the association between the Beijing genotype and an increased mutation frequency for rifampin resistance. In this study, we use a Beijing genotype strain and an East-African/Indian genotype strain to investigate with our mouse TB model whether the higher mutation frequency observed in a Beijing genotype strain is associated with treatment failure particularly during noncompliance therapy. Both genotype strains showed high virulence in comparison to that of M. tuberculosis strain H37Rv, resulting in a highly progressive infection with a rapid lethal outcome in untreated mice. Compliance treatment was effective without relapse of TB irrespective of the infecting strain, showing similar decreases in the mycobacterial load in infected organs and similar histopathological changes. Noncompliance treatment, simulated by a reduced duration and dosing frequency, resulted in a relapse of infection. Relapse rates were correlated with the level of noncompliance and were identical for Beijing infection and East African/Indian infection. However, only in Beijing-infected mice, isoniazid-resistant mutants were selected at the highest level of noncompliance. This is in line with the substantial selection of isoniazid-resistant mutants in vitro in a wide isoniazid concentration window observed for the Beijing strain and not for the EAI strain. These results suggest that genotype diversity of M. tuberculosis may be involved in emergence of resistance and indicates that genotype-tailor-made treatment should be investigated. PMID:22802244

  11. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis

    PubMed Central

    Jacobson, Karen R.; Franke, Molly F.; Kaur, Devinder; Sloutsky, Alex; Mitnick, Carole D.; Murray, Megan

    2016-01-01

    Molecular diagnostics that rapidly and accurately predict resistance to fluoroquinolone drugs and especially later-generation agents promise to improve treatment outcomes for patients with multidrug-resistant tuberculosis and prevent the spread of disease. Mutations in the gyr genes are known to confer most fluoroquinolone resistance, but knowledge about the effects of gyr mutations on susceptibility to early- versus later-generation fluoroquinolones and about the role of mutation-mutation interactions is limited. Here, we sequenced the full gyrA and gyrB open reading frames in 240 multidrug-resistant and extensively drug-resistant tuberculosis strains and quantified their ofloxacin and moxifloxacin MIC by testing growth at six concentrations for each drug. We constructed a multivariate regression model to assess both the individual mutation effects and interactions on the drug MICs. We found that gyrB mutations contribute to fluoroquinolone resistance both individually and through interactions with gyrA mutations. These effects were statistically significant. In these clinical isolates, several gyrA and gyrB mutations conferred different levels of resistance to ofloxacin and moxifloxacin. Consideration of gyr mutation combinations during the interpretation of molecular test results may improve the accuracy of predicting the fluoroquinolone resistance phenotype. Further, the differential effects of gyr mutations on the activity of early- and later-generation fluoroquinolones requires further investigation and could inform the selection of a fluoroquinolone for treatment. PMID:26763957

  12. Prevalence of pyrazinamide resistance across the spectrum of drug resistant phenotypes of Mycobacterium tuberculosis.

    PubMed

    Whitfield, Michael G; Streicher, Elizabeth M; Dolby, Tania; Simpson, John A; Sampson, Samantha L; Van Helden, Paul D; Van Rie, Annelies; Warren, Robin M

    2016-07-01

    Pyrazinamide resistance is largely unknown in the spectrum of drug resistant phenotypes. We summarize data on PZA resistance in clinical isolates from South Africa. PZA DST should be performed when considering its inclusion in treatment of patients with rifampicin-resistant TB or MDR-TB. PMID:27450014

  13. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

    PubMed Central

    Walker, Timothy M; Kohl, Thomas A; Omar, Shaheed V; Hedge, Jessica; Del Ojo Elias, Carlos; Bradley, Phelim; Iqbal, Zamin; Feuerriegel, Silke; Niehaus, Katherine E; Wilson, Daniel J; Clifton, David A; Kapatai, Georgia; Ip, Camilla L C; Bowden, Rory; Drobniewski, Francis A; Allix-Béguec, Caroline; Gaudin, Cyril; Parkhill, Julian; Diel, Roland; Supply, Philip; Crook, Derrick W; Smith, E Grace; Walker, A Sarah; Ismail, Nazir; Niemann, Stefan; Peto, Tim E A

    2015-01-01

    Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically

  14. Tuberculous spondylitis in Russia and prominent role of multidrug-resistant clone Mycobacterium tuberculosis Beijing B0/W148.

    PubMed

    Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Mushkin, Alexander; Manicheva, Olga; Vishnevsky, Boris; Zhuravlev, Viacheslav; Narvskaya, Olga

    2015-04-01

    Extrapulmonary and, in particular, spinal tuberculosis (TB) constitutes a minor but significant part of the total TB incidence. In spite of this, almost no studies on the genetic diversity and drug resistance of Mycobacterium tuberculosis isolates from spinal TB patients have been published to date. Here, we report results of the first Russian and globally largest molecular study of M. tuberculosis isolates recovered from patients with tuberculous spondylitis (TBS). The majority of 107 isolates were assigned to the Beijing genotype (n = 80); the other main families were T (n = 11), Ural (n = 7), and LAM (n = 4). Multidrug resistance (MDR) was more frequently found among Beijing (90.5%) and, intriguingly, Ural (71.4%) isolates than other genotypes (5%; P < 0.001). The extremely drug-resistant (XDR) phenotype was exclusively found in the Beijing isolates (n = 7). A notable prevalence of the rpoB531 and katG315 mutations in Beijing strains that were similarly high in both TBS (this study) and published pulmonary TB (PTB) samples from Russia shows that TBS and PTB Beijing strains follow the same paradigm of acquisition of rifampin (RIF) and isoniazid (INH) resistance. The 24-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) subtyping of 80 Beijing isolates further discriminated them into 24 types (Hunter Gaston index [HGI] = 0.83); types 100-32 and 94-32 represented the largest groups. A genotype of Russian successful clone B0/W148 was identified in 30 of 80 Beijing isolates. In conclusion, this study highlighted a crucial impact of the Beijing genotype and the especially prominent role of its MDR-associated successful clone B0/W148 cluster in the development of spinal MDR-TB in Russian patients. PMID:25645851

  15. Haarlem 3 is the predominant genotype family in multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in the capital of Iran: A 5-year survey.

    PubMed

    Khanipour, Sharereh; Ebrahimzadeh, Nayereh; Masoumi, Morteza; Sakhaei, Fatemeh; Alinezhad, Farhad; Safarpour, Elham; Fateh, Abolfazl; Nour Nematollahi, Ali; Hadizadeh Tasbiti, Alireza; Zolfaghari, Mohammad Reza; Bahrmand, Ahmad Reza; Mirsaeidi, Mehdi; Rahimi Jamnani, Fatemeh; Vaziri, Farzam; Siadat, Seyed Davar

    2016-06-01

    The objective of this study was to further understand the genetic diversity of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis isolates prevalent in Tehran, the capital city of Iran. From January 2010 to March 2015, a total of 723 M. tuberculosis strains were isolated from patients with pulmonary tuberculosis (TB). A total of 23 MDR, pre-XDR and XDR M. tuberculosis isolates were genotyped by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing. The results showed that the MDR, pre-XDR and XDR M. tuberculosis strains mainly belonged to the Haarlem 3 genotype (11/23; 47.8%), followed by the Beijing family (9/23; 39.1%). In addition, the 23 strains were clustered into 21 genotypes using a 24-loci MIRU-VNTR. In conclusion, Haarlem 3 genotype was the predominant genotype among the isolates from MDR-TB cases in this study, which could be of special concern. PMID:27436458

  16. Molecular Epidemiology and Clinical Characteristics of Drug-Resistant Mycobacterium tuberculosis in a Tuberculosis Referral Hospital in China

    PubMed Central

    Zhao, Yanlin; Li, Hong Min; Li, Bing Xi; Hu, Yong Liang; Woo, Patrick C. Y.; Liu, Cui Hua

    2014-01-01

    Background Despite the large number of drug-resistant tuberculosis (TB) cases in China, few studies have comprehensively analyzed the drug resistance-associated gene mutations and genotypes in relation to the clinical characteristics of M. tuberculosis (Mtb) isolates. Methodology/Principal Findings We thus analyzed the phenotypic and genotypic drug resistance profiles of 115 Mtb clinical isolates recovered from a tuberculosis referral hospital in Beijing, China. We also performed genotyping by 28 loci MIRU-VNTR analysis. Socio-demographic and clinical data were retrieved from medical records and analyzed. In total, 78 types of mutations (including 42 previously reported and 36 newly identified ones) were identified in 115 Mtb clinical isolates. There was significant correlation between phenotypic and genotypic drug resistance rates for first-line anti-TB drugs (P<0.001). Genotyping revealed 101 MIRU-VNTR types, with 20 isolates (17.4%) being clustered and 95 isolates (82.6%) having unique genotypes. Higher proportion of re-treatment cases was observed among patients with clustered isolates than those with unique MIRU-VNTR genotypes (75.0% vs. 41.1%). Moreover, clinical epidemiological links were identified among patients infected by Mtb strains belonging to the same clusters, suggesting a potential of transmission among patients. Conclusions/Significance Our study provided information on novel potential drug resistance-associated mutations in Mtb. In addition, the genotyping data from our study suggested that enforcement of the implementation of genotyping in diagnostic routines would provide important information for better monitor and control of TB transmission. PMID:25302501

  17. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH-NADH adduct formation activities

    PubMed Central

    Cade, Christine E; Dlouhy, Adrienne C; Medzihradszky, Katalin F; Salas-Castillo, Saida Patricia; Ghiladi, Reza A

    2010-01-01

    Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H2O2), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct. PMID:20054829

  18. Whole Genome Sequencing Reveals Complex Evolution Patterns of Multidrug-Resistant Mycobacterium tuberculosis Beijing Strains in Patients

    PubMed Central

    Merker, Matthias; Kohl, Thomas A.; Roetzer, Andreas; Truebe, Leona; Richter, Elvira; Rüsch-Gerdes, Sabine; Fattorini, Lanfranco; Oggioni, Marco R.; Cox, Helen; Varaine, Francis; Niemann, Stefan

    2013-01-01

    Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains represent a major threat for tuberculosis (TB) control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR) variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS) to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A) and nine (Patient B) polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and molecular drug

  19. An important role of prostanoid receptor EP2 in host resistance to Mycobacterium tuberculosis infection in mice.

    PubMed

    Kaul, Vandana; Bhattacharya, Debapriya; Singh, Yogesh; Van Kaer, Luc; Peters-Golden, Marc; Bishai, William R; Das, Gobardhan

    2012-12-15

    Mycobacterium tuberculosis, the causative agent of tuberculosis, resides and replicates within susceptible hosts by inhibiting host antimicrobial mechanisms. Prostaglandin E(2) (PGE(2)), produced by M. tuberculosis-infected macrophages, exerts a variety of immunomodulatory functions via 4 receptors (EP1-EP4), each mediating distinct PGE(2) functions. Here, we show that M. tuberculosis infection selectively upregulates EP2 messenger RNA expression in CD4(+) T cells. We found that EP2 deficiency in mice increases susceptibility to M. tuberculosis infection, which correlated with reduced antigen-specific T-cell responses and increased levels of CD4(+)CD25(+)Foxp3(+) T-regulatory cells. These findings have revealed an important role for EP2 in host immune defense against tuberculosis. As a G protein-coupled receptor, EP2 could serve as a target for immunotherapy of tuberculosis.

  20. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Uzun, Meltem; Durupinar, Belma

    2015-08-01

    The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA), malachite green decolourisation assay (MGDA), microplate nitrate reductase assay (MNRA) and crystal violet decolourisation assay (CVDA), for the rapid detection of multidrug-resistant (MDR) tuberculosis. Fifty Mycobacterium tuberculosis isolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH) and the remaining isolates were susceptible to both INH and rifampicin (RIF). INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF). In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%). The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment.

  1. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Uzun, Meltem; Durupinar, Belma

    2015-08-01

    The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA), malachite green decolourisation assay (MGDA), microplate nitrate reductase assay (MNRA) and crystal violet decolourisation assay (CVDA), for the rapid detection of multidrug-resistant (MDR) tuberculosis. Fifty Mycobacterium tuberculosis isolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH) and the remaining isolates were susceptible to both INH and rifampicin (RIF). INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF). In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%). The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment. PMID:26222021

  2. Mycobacterium tuberculosis Complex Genotype Diversity and Drug Resistance Profiles in a Pediatric Population in Mexico

    PubMed Central

    Macías Parra, Mercedes; Kumate Rodríguez, Jesús; Arredondo García, José Luís; López-Vidal, Yolanda; Castañón-Arreola, Mauricio; Balandrano, Susana; Rastogi, Nalin; Gutiérrez Castrellón, Pedro

    2011-01-01

    The aim of this study was to determine the frequency of drug resistance and the clonality of genotype patterns in M. tuberculosis clinical isolates from pediatric patients in Mexico (n = 90 patients from 19 states; time period—January 2002 to December 2003). Pulmonary disease was the most frequent clinical manifestation (71%). Children with systemic tuberculosis (TB) were significantly younger compared to patients with localized TB infections (mean 7.7 ± 6.2 years versus 15 ± 3.4 years P = 0.001). Resistance to any anti-TB drug was detected in 24/90 (26.7%) of the isolates; 21/90 (23.3%) and 10/90 (11.1%) were resistant to Isoniazid and Rifampicin, respectively, and 10/90 (11.1%) strains were multidrug-resistant (MDR). Spoligotyping produced a total of 55 different patterns; 12/55 corresponded to clustered isolates (n = 47, clustering rate of 52.2%), and 43/55 to unclustered isolates (19 patterns were designated as orphan by the SITVIT2 database). Database comparison led to designation of 36 shared types (SITs); 32 SITs (n = 65 isolates) matched a preexisting shared type in SITVIT2, whereas 4 SITs (n = 6 isolates) were newly created. Lineage classification based on principal genetic groups (PGG) revealed that 10% of the strains belonged to PGG1 (Bovis and Manu lineages). Among PGG2/3 group, the most predominant clade was the Latin-American and Mediterranean (LAM) in 27.8% of isolates, followed by Haarlem and T lineages. The number of single drug-resistant (DR) and multidrug-resistant (MDR-TB) isolates in this study was similar to previously reported in studies from adult population with risk factors. No association between the spoligotype, age, region, or resistance pattern was observed. However, contrary to a study on M. tuberculosis spoligotyping in Acapulco city that characterized a single cluster of SIT19 corresponding to the EAI2-Manila lineage in 70 (26%) of patients, not a single SIT19 isolate was found in our pediatric patient population. Neither did we

  3. Evidence of Clonal Expansion in the Genome of a Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolate from Peru

    PubMed Central

    Galarza, M.; Tarazona, D.; Borda, V.; Agapito, J. C.

    2014-01-01

    We report the genome sequence of Mycobacterium tuberculosis INS-MDR from Peru, a multidrug-resistant tuberculosis (MDR-TB) and Latin American-Mediterranean (LAM) lineage strain. Our analysis showed mutations related to drug resistance in the rpoB (D516V), katG (S315T), kasA (G269S), and pncA (Q10R) genes. Our evidence suggests that INS-MDR may be a clonal expansion related to the African strain KZN 1435. PMID:24578270

  4. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients

    PubMed Central

    Faksri, Kiatichai; Tan, Jun Hao; Disratthakit, Areeya; Xia, Eryu; Prammananan, Therdsak; Suriyaphol, Prapat; Khor, Chiea Chuen; Teo, Yik-Ying; Ong, Rick Twee-Hee; Chaiprasert, Angkana

    2016-01-01

    Multi-drug and extensively drug-resistant tuberculosis (MDR and XDR-TB) are problems that threaten public health worldwide. Only some genetic markers associated with drug-resistant TB are known. Whole-genome sequencing (WGS) is a promising tool for distinguishing between re-infection and persistent infection in isolates taken at different times from a single patient, but has not yet been applied in MDR and XDR-TB. We aim to detect genetic markers associated with drug resistance and distinguish between reinfection and persistent infection from MDR and XDR-TB patients based on WGS analysis. Samples of Mycobacterium tuberculosis (n = 7), serially isolated from 2 MDR cases and 1 XDR-TB case, were retrieved from Siriraj Hospital, Bangkok. The WGS analysis used an Illumina Miseq sequencer. In cases of persistent infection, MDR-TB isolates differed at an average of 2 SNPs across the span of 2–9 months whereas in the case of reinfection, isolates differed at 61 SNPs across 2 years. Known genetic markers associated with resistance were detected from strains susceptible to streptomycin (2/7 isolates), p-aminosalicylic acid (3/7 isolates) and fluoroquinolone drugs. Among fluoroquinolone drugs, ofloxacin had the highest phenotype-genotype concordance (6/7 isolates), whereas gatifloxcain had the lowest (3/7 isolates). A putative candidate SNP in Rv2477c associated with kanamycin and amikacin resistance was suggested for further validation. WGS provided comprehensive results regarding molecular epidemiology, distinguishing between persistent infection and reinfection in M/XDR-TB and potentially can be used for detection of novel mutations associated with drug resistance. PMID:27518818

  5. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients.

    PubMed

    Faksri, Kiatichai; Tan, Jun Hao; Disratthakit, Areeya; Xia, Eryu; Prammananan, Therdsak; Suriyaphol, Prapat; Khor, Chiea Chuen; Teo, Yik-Ying; Ong, Rick Twee-Hee; Chaiprasert, Angkana

    2016-01-01

    Multi-drug and extensively drug-resistant tuberculosis (MDR and XDR-TB) are problems that threaten public health worldwide. Only some genetic markers associated with drug-resistant TB are known. Whole-genome sequencing (WGS) is a promising tool for distinguishing between re-infection and persistent infection in isolates taken at different times from a single patient, but has not yet been applied in MDR and XDR-TB. We aim to detect genetic markers associated with drug resistance and distinguish between reinfection and persistent infection from MDR and XDR-TB patients based on WGS analysis. Samples of Mycobacterium tuberculosis (n = 7), serially isolated from 2 MDR cases and 1 XDR-TB case, were retrieved from Siriraj Hospital, Bangkok. The WGS analysis used an Illumina Miseq sequencer. In cases of persistent infection, MDR-TB isolates differed at an average of 2 SNPs across the span of 2-9 months whereas in the case of reinfection, isolates differed at 61 SNPs across 2 years. Known genetic markers associated with resistance were detected from strains susceptible to streptomycin (2/7 isolates), p-aminosalicylic acid (3/7 isolates) and fluoroquinolone drugs. Among fluoroquinolone drugs, ofloxacin had the highest phenotype-genotype concordance (6/7 isolates), whereas gatifloxcain had the lowest (3/7 isolates). A putative candidate SNP in Rv2477c associated with kanamycin and amikacin resistance was suggested for further validation. WGS provided comprehensive results regarding molecular epidemiology, distinguishing between persistent infection and reinfection in M/XDR-TB and potentially can be used for detection of novel mutations associated with drug resistance. PMID:27518818

  6. Phenotypic and genotypic characterization of drug-resistant Mycobacterium tuberculosis strains.

    PubMed

    Clemente, Wanessa Trindade; Soares Lima, Stella Sala; Palaci, Moises; Silva, Márcia S N; Sumnienski Rodrigues, Vivian F; Dalla Costa, Elis R; Possuelo, Lia; Cafrune, Patrícia Izquierdo; Ribeiro, Fabíola Karla; Gomes, Harisson M; Serufo, José Carlos

    2008-10-01

    Of 142 pulmonary tuberculosis patients, 76 were considered high risk for the development of resistance, and 24 were confirmed as resistant strain carriers. Resistant isoniazid strains presented a high frequency of katG and ahpC mutations (90%) correlated with an MIC >4 microg/mL (94%). inhA mutations were not seen. rpoB mutations were identified in 78.6% of rifampicin-resistant strains, usually in codon 531 (72.7%), and 75% had an MIC >16 microg/mL. katG and rpoB mutations recognized 88.2% of multidrug-resistant strains and proved more efficient than the katG and rpoB mutations alone. Seventy percent of resistant pyrazinamide strains had pncA mutations between genes 136 and 188, 62.5% of them with an MIC >900 microg/mL. Pyrazinamidase inactivity was not an efficient resistance marker because 60% of pncA-mutated strains maintained enzymatic activity despite displaying good correlation with high resistance levels. Resistant ethambutol strains had embB mutations in codon 306, with MIC >16 microg/mL.

  7. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  8. New agents for the treatment of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Hoagland, Daniel T; Liu, Jiuyu; Lee, Robin B; Lee, Richard E

    2016-07-01

    Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens. PMID:27151308

  9. Molecular Characterization of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China

    PubMed Central

    Zhao, Li-Li; Chen, Yan; Liu, Hai-Can; Xia, Qiang; Wu, Xiao-Cui; Sun, Qing; Zhao, Xiu-Qin; Li, Gui-Lian; Liu, Zhi-Guang

    2014-01-01

    To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China. PMID:24419342

  10. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology

    PubMed Central

    Chandra, Pallavi; Rajmani, R. S.; Verma, Garima; Bhavesh, Neel Sarovar

    2016-01-01

    ABSTRACT In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase

  11. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  12. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis.

    PubMed

    Ramirez, Melissa V; Cowart, Kelley C; Campbell, Patricia J; Morlock, Glenn P; Sikes, David; Winchell, Jonas M; Posey, James E

    2010-11-01

    The current study describes the development of a unique real-time PCR assay for the detection of mutations conferring drug resistance in Mycobacterium tuberculosis. The rifampicin resistance determinant region (RRDR) of rpoB and specific regions of katG and the inhA promoter were targeted for the detection of rifampin (RIF) and isoniazid (INH) resistance, respectively. Additionally, this assay was multiplexed to discriminate Mycobacterium tuberculosis complex (MTC) strains from nontuberculous Mycobacteria (NTM) strains by targeting the IS6110 insertion element. High-resolution melting (HRM) analysis following real-time PCR was used to identify M. tuberculosis strains containing mutations at the targeted loci, and locked nucleic acid (LNA) probes were used to enhance the detection of strains containing specific single-nucleotide polymorphism (SNP) transversion mutations. This method was used to screen 252 M. tuberculosis clinical isolates, including 154 RIF-resistant strains and 174 INH-resistant strains based on the agar proportion method of drug susceptibility testing (DST). Of the 154 RIF-resistant strains, 148 were also resistant to INH and therefore classified as multidrug resistant (MDR). The assay demonstrated sensitivity and specificity of 91% and 98%, respectively, for the detection of RIF resistance and 87% and 100% for the detection of INH resistance. Overall, this assay showed a sensitivity of 85% and a specificity of 98% for the detection of MDR strains. This method provides a rapid, robust, and inexpensive way to detect the dominant mutations known to confer MDR in M. tuberculosis strains and offers several advantages over current molecular and culture-based techniques.

  13. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin.

    PubMed

    Nosova, Elena Yu; Bukatina, Anastasia A; Isaeva, Yulia D; Makarova, Marina V; Galkina, Ksenia Yu; Moroz, Arkadyi M

    2013-01-01

    The purpose of the present study was to analyse mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis and define the possible correlation between these mutations and resistance to levofloxacin (LVX), moxifloxacin (MFX) and gatifloxacin (GAT), based on their MICs. One hundred and forty-two M. tuberculosis clinical isolates were collected from pulmonary tuberculosis patients in the Moscow region. All M. tuberculosis strains were tested for drug susceptibility to rifampicin and isoniazid using the BACTEC MGIT 960 System and to ofloxacin (OFX) using the absolute concentration method on solid Lowenstein-Jensen slants. All in all, 68 strains were selected at random (38 strains were resistant and 30 were susceptible to OFX) for further analysis using the TB-BIOCHIP-2 test system and DNA sequence analysis. The MICs of LVX, MFX and GAT for selected strains were determined using the BACTEC MGIT 960 System. Mutations in the gyrA gene were observed in 36 out of 38 (94.7 %) OFX-resistant M. tuberculosis strains. Asn538Asp and Asp500His substitutions in the gyrB gene only were found in two (5.3 %) strains. Twenty-nine out of 30 OFX-sensitive M. tuberculosis strains had no mutations in either gene. One (3.3 %) OFX-sensitive M. tuberculosis strain carried an Arg485His substitution in gyrB. The results of our investigation showed that there is no clear correlation between the type of mutation in the genes gyrA and gyrB, and the MIC levels of LVX, MFX and GAT for resistant strains. Mutations in gyrA and Asn538Asp, and Asp500His substitutions in gyrB were associated with cross-resistance of M. tuberculosis to fluoroquinolones. The substitution Arg485His in gyrB does not confer resistance to LVX, MFX and GAT in M. tuberculosis.

  14. Role of embB Codon 306 Mutations in Mycobacterium tuberculosis Revisited: a Novel Association with Broad Drug Resistance and IS6110 Clustering Rather than Ethambutol Resistance

    PubMed Central

    Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Guerrero, Marta Inírida; Varma-Basil, Mandira; Filliol, Ingrid; Cavatore, Magali; Colangeli, Roberto; Safi, Hassan; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; Davidow, Amy; Brimacombe, Michael; León, Clara Inés; Porras, Tania; Bose, Mridula; Chaves, Fernando; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Alland, David

    2005-01-01

    Mutations at position 306 of embB (embB306) have been proposed as a marker for ethambutol resistance in Mycobacterium tuberculosis; however, recent reports of embB306 mutations in ethambutol-susceptible isolates caused us to question the biological role of this mutation. We tested 1,020 clinical M. tuberculosis isolates with different drug susceptibility patterns and of different geographical origins for associations between embB306 mutations, drug resistance patterns, and major genetic group. One hundred isolates (10%) contained a mutation in embB306; however, only 55 of these mutants were ethambutol resistant. Mutations in embB306 could not be uniquely associated with any particular type of drug resistance and were found in all three major genetic groups. A striking association was observed between these mutations and resistance to any drug (P < 0.001), and the association between embB306 mutations and resistance to increasing numbers of drugs was highly significant (P < 0.001 for trend). We examined the association between embB306 mutations and IS6110 clustering (as a proxy for transmission) among all drug-resistant isolates. Mutations in embB306 were significantly associated with clustering by univariate analysis (odds ratio, 2.44; P = 0.004). In a multivariate model that also included mutations in katG315, katG463, gyrA95, and kasA269, only mutations in embB306 (odds ratio, 2.14; P = 0.008) and katG315 (odds ratio, 1.99; P = 0.015) were found to be independently associated with clustering. In conclusion, embB306 mutations do not cause classical ethambutol resistance but may predispose M. tuberculosis isolates to the development of resistance to increasing numbers of antibiotics and may increase the ability of drug-resistant isolates to be transmitted between subjects. PMID:16127055

  15. Targeting the histidine pathway in Mycobacterium tuberculosis.

    PubMed

    Lunardi, Juleane; Nunes, José Eduardo S; Bizarro, Cristiano V; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2013-01-01

    Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins. PMID:24111909

  16. Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal

    PubMed Central

    Manson McGuire, Abigail; Desjardins, Christopher A.; Munsamy, Vanisha; Shea, Terrance P.; Walker, Bruce J.; Bantubani, Nonkqubela; Almeida, Deepak V.; Alvarado, Lucia; Chapman, Sinéad B.; Mvelase, Nomonde R.; Duffy, Eamon Y.; Fitzgerald, Michael G.; Govender, Pamla; Gujja, Sharvari; Hamilton, Susanna; Howarth, Clinton; Larimer, Jeffrey D.; Maharaj, Kashmeel; Pearson, Matthew D.; Priest, Margaret E.; Zeng, Qiandong; Padayatchi, Nesri; Grosset, Jacques; Young, Sarah K.; Wortman, Jennifer; Mlisana, Koleka P.; O'Donnell, Max R.; Birren, Bruce W.; Bishai, William R.; Pym, Alexander S.; Earl, Ashlee M.

    2015-01-01

    Background The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. Methods and Findings We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452

  17. Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method.

    PubMed

    Moure, Raquel; Muñoz, Laura; Torres, Miriam; Santin, Miguel; Martín, Rogelio; Alcaide, Fernando

    2011-03-01

    Sixty-four of 85 (75.3%) smear-negative respiratory (n = 78) and nonrespiratory (n = 7) samples with positive cultures of Mycobacterium tuberculosis complex (MTC) were detected by the GeneXpert system using the Xpert MTB/RIF assay (GX). In addition, GX found rpoB mutations in all six of the rifampin-resistant strains detected. The test was negative in 20 culture-negative and 20 nontuberculous culture-positive samples (100% specificity). GX offers high potential for the diagnosis of tuberculosis due to its capacity for direct detection of MTC, its rapidity, and its simplicity.

  18. Multicenter Evaluation of Genechip for Detection of Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Pang, Yu; Xia, Hui; Zhang, Zhiying; Li, Junchen; Dong, Yi; Li, Qiang; Ou, Xichao; Song, Yuanyuan; Wang, Yufeng; O'Brien, Richard; Kam, Kai Man; Chi, Junying; Huan, Shitong; Chin, Daniel P.

    2013-01-01

    Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China. PMID:23515537

  19. gyrA and gyrB mutations in ofloxacin-resistant Mycobacterium tuberculosis clinical isolates in Thailand.

    PubMed

    Pitaksajjakul, Pannamthip; Worakhunpiset, Suwalee; Chaiprasert, Angkana; Boonyasopun, Jirakarn; Ramasoota, Pongrama

    2011-09-01

    In order to identify mutations in gyrA and gyrB genes in 92 ofloxacin-resistant Mycobacterium tuberculosis (OFXr-MTB) clinical isolates collected from Siriraj Hospital, Mahidol University and Chest Disease Institute, Thailand. The quinolone resistance-determining regions (QRDR) of gyrA and gyrB in all 92 OFXr-MTB isolates were amplified using polymerase chain reaction and sequenced. There were 70 isolates with point mutations associated with ofloxacin resistance. In gyrA QRDR, 69 isolates had mutations in gyrA Gly88 (Ala/(75), Ala90 (Val), Ser91 (Pro) and Asp94 (Gly/Ala/His/Asn), the latter being the most common (42%). Only one isolate was found with mutation at position Asp495 (Asn). The other 22 isolates had no mutations in both gyrA and gyrB QRDR. Thus, point mutations in gyrA and gyrB QRDR were responsible for OFXr-MTB clinical isolates in Thailand. PMID:22299442

  20. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis.

    PubMed

    Zhao, Yong; Li, Guilian; Sun, Chongyun; Li, Chao; Wang, Xiaochen; Liu, Haican; Zhang, Pingping; Zhao, Xiuqin; Wang, Xinrui; Jiang, Yi; Yang, Ruifu; Wan, Kanglin; Zhou, Lei

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a "probe dropout" manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.

  1. Characterization of mutations causing rifampicin and isoniazid resistance of Mycobacterium tuberculosis in Syria.

    PubMed

    Madania, Ammar; Habous, Maya; Zarzour, Hana; Ghoury, Ifad; Hebbo, Barea

    2012-01-01

    In order to characterize mutations causing rifampicin and isoniazid resistance of M. tuberculosis in Syria, 69 rifampicin resistant (Rif(r)) and 72 isoniazid resistant (Inh(r)) isolates were screened for point mutations in hot spots of the rpoB, katG and inhA genes by DNA sequencing and real time PCR. Of 69 Rif(r) isolates, 62 (90%) had mutations in the rifampin resistance determining region (RRDR) of the rpoB gene, with codons 531 (61%), 526 (13%), and 516 (8.7%) being the most commonly mutated. We found two new mutations (Asp516Thr and Ser531Gly) described for the first time in the rpoB-RRDR in association with rifampicin resistance. Only one mutation (Ile572Phe) was found outside the rpoB-RRDR. Of 72 Inh(r) strains, 30 (41.6%) had a mutation in katGcodon315 (with Ser315Thr being the predominant alteration), and 23 (32%) harbored the inhA(-15C-->T) mutation. While the general pattern of rpoB-RRDR and katG mutations reflected those found worldwide, the prevalence of the inhA(-15C-->T mutation was above the value found in most other countries, emphasizing the great importance of testing the inhA(-15C-->T) mutation for prediction of isoniazid resistance in Syria. Sensitivity of a rapid test using real time PCR and 3'-Minor groove binder (MGB) probes in detecting Rif(r) and Inh(r) isolates was 90% and 69.4%, respectively. This demonstrates that a small set of MGB-probes can be used in real time PCR in order to detect most mutations causing resistance to rifampicin and isoniazid.

  2. Systematic Review of Mutations in Pyrazinamidase Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Ramirez-Busby, Sarah M.

    2015-01-01

    Pyrazinamide (PZA) is an important first-line drug in the treatment of tuberculosis (TB) and of significant interest to the HIV-infected community due to the prevalence of TB-HIV coinfection in some regions of the world. The mechanism of resistance to PZA is unlike that of any other anti-TB drug. The gene pncA, encoding pyrazinamidase (PZase), is associated with resistance to PZA. However, because single mutations in PZase have a low prevalence, the individual sensitivities are low. Hundreds of distinct mutations in the enzyme have been associated with resistance, while some only appear in susceptible isolates. This makes interpretation of molecular testing difficult and often leads to the simplification that any PZase mutation causes resistance. This systematic review reports a comprehensive global list of mutations observed in PZase and its promoter region in clinical strains, their phenotypic association, their global frequencies and diversity, the method of phenotypic determination, their MIC values when given, and the method of MIC determination and assesses the strength of the association between mutations and phenotypic resistance to PZA. In this systematic review, we report global statistics for 641 mutations in 171 (of 187) codons from 2,760 resistant strains and 96 mutations from 3,329 susceptible strains reported in 61 studies. For diagnostics, individual mutations (or any subset) were not sufficiently sensitive. Assuming similar error profiles of the 5 phenotyping platforms included in this study, the entire enzyme and its promoter provide a combined estimated sensitivity of 83%. This review highlights the need for identification of an alternative mechanism(s) of resistance, at least for the unexplained 17% of cases. PMID:26077261

  3. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates.

    PubMed

    Rueda, Johana; Realpe, Teresa; Mejia, Gloria Isabel; Zapata, Elsa; Rozo, Juan Carlos; Ferro, Beatriz Eugenia; Robledo, Jaime

    2015-12-01

    Ethionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in the Mycobacterium tuberculosis population. ETH resistance in M. tuberculosis is phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in the inhA promoter and in the following genes: katG, ethA, ethR, mshA, ndh, and inhA. We sequenced the above genes in 64 M. tuberculosis isolates (n = 57 ETH-resistant MDR-TB isolates; n = 3 ETH-susceptible MDR-TB isolates; and n = 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% in katG, 72% in ethA, 45.6% in mshA, 8.7% in ndh, and 33.3% in inhA or its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations in katG; one had a mutation in ethA, and another, in mshA and inhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations in mshA gene unrelated to the resistance. Mutations not previously reported were found in the ethA, mshA, katG, and ndh genes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in the M. tuberculosis isolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB.

  4. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Realpe, Teresa; Mejia, Gloria Isabel; Zapata, Elsa; Rozo, Juan Carlos; Ferro, Beatriz Eugenia; Robledo, Jaime

    2015-01-01

    Ethionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in the Mycobacterium tuberculosis population. ETH resistance in M. tuberculosis is phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in the inhA promoter and in the following genes: katG, ethA, ethR, mshA, ndh, and inhA. We sequenced the above genes in 64 M. tuberculosis isolates (n = 57 ETH-resistant MDR-TB isolates; n = 3 ETH-susceptible MDR-TB isolates; and n = 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% in katG, 72% in ethA, 45.6% in mshA, 8.7% in ndh, and 33.3% in inhA or its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations in katG; one had a mutation in ethA, and another, in mshA and inhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations in mshA gene unrelated to the resistance. Mutations not previously reported were found in the ethA, mshA, katG, and ndh genes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in the M. tuberculosis isolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB. PMID:26369965

  5. Prevalence of Drug Resistance Mycobacterium Tuberculosis among Patients Seen in Coast Provincial General Hospital, Mombasa, Kenya

    PubMed Central

    Ombura, Ida Pam; Onyango, Noel; Odera, Susan; Mutua, Florence; Nyagol, Joshua

    2016-01-01

    Background Although prevention and control of spread of multi-drug resistant tuberculosis strains is a global challenge, there is paucity of data on the prevalence of DR-TB in patients diagnosed with TB in referral hospitals in Kenya. The present study assessed patients’ characteristics and prevalence of drug resistant TB in sputa smear positive TB patients presenting to Coast Provincial General Hospital (CPGH) in Mombasa, Kenya. Methods Drug resistance was evaluated in 258 randomly selected sputa smear TB positive cases between the periods of November 2011 to February 2012 at the CPGH-Mombasa. Basic demographic data was obtained using administered questionnaires, and clinical history extracted from the files. For laboratory analyses, 2mls of sputum was obtained, decontaminated and subjected to mycobacteria DNA analyses. Detection of first line drug resistance genes was done using MDRTDR plus kit. This was followed with random selection of 83 cases for second line drug resistance genes testing using Genotype MDRTBsl probe assay kit (HAINS Lifesciences, GmbH, Germany), in which ethambutol mutation probes were included. The data was then analyzed using SPSS statistical package version 19.0. Results Male to female ratio was 1:2. Age range was 9 to 75 years, with median of 30 years. New treatment cases constituted 253(98%), among which seven turned out to be PTB negative, and further grouped as 4 (1.6%) PTB negative and 3(1.1%) NTM. 237(91.7%) new cases were fully susceptible to INH and RIF. The remaining, 8 (3.1%) and 1(0.4%) had mono- resistance to INH and RIF, respectively. All the retreatment cases were fully susceptible to the first line drugs. HIV positivity was found in 48 (18.6%) cases, of which 46(17.8%) were co-infected with TB. Of these, 44 (17.1%) showed full susceptibility to TB drugs, while 2 (0.8%) were INH resistant. For the second line drugs, one case each showed mono resistance to both and FQ. Also, one case each showed drug cross poly resistance to

  6. Rifampin resistance, Beijing-W clade-single nucleotide polymorphism cluster group 2 phylogeny, and the Rv2629 191-C allele in Mycobacterium tuberculosis strains.

    PubMed

    Chakravorty, Soumitesh; Aladegbami, Bola; Motiwala, Alifiya S; Dai, Yang; Safi, Hassan; Brimacombe, Michael; Helb, Danica; Alland, David

    2008-08-01

    Rifampin resistance is a key prognostic marker for treatment success in tuberculosis patients. Recently, Wang et al. demonstrated that Rv2629 A191C mutations were present in 99.1% of rifampin-resistant and 0% of rifampin-susceptible clinical Mycobacterium tuberculosis isolates and that overexpression of the Rv2629 191C allele in Mycobacterium smegmatis produced an eightfold increase in rifampin resistance. These results suggested that Rv2629 could be a cause of rifampin resistance and a valuable target for rifampin resistance detection assays. We developed a molecular-beacon assay to study the association between Rv2629 191 alleles and rifampin resistance in 246 geographically and phylogenetically diverse clinical M. tuberculosis isolates. The 191C allele was present in 30/98 (30.6%) rifampin-resistant isolates and 25/148 (16.9%) rifampin-susceptible isolates and was more common in isolates from Asia. Phylogenetic analysis demonstrated complete overlap between the 191C allele and single nucleotide polymorphism cluster group 2 (SCG-2), a phylogenetic lineage that corresponds to the Beijing-W clade of M. tuberculosis. All 55 (100%) 191C isolates were SCG-2, while none of the 191 191A isolates were SCG-2 (P < 0.001). No association was found between the 191C allele and rifampin resistance in an analysis that included the SCG type (P = 1.0). Also, in contrast to the findings of Wang et al., we found that overexpression of either Rv2629 191 allele in M. smegmatis did not produce an increase in rifampin resistance. We conclude that the Rv2629 191C allele is not associated with rifampin resistance and that the allele cannot be used as a molecular target to detect rifampin resistance. The allele appears to be an excellent marker for the Beijing-W clade/SCG-2 phylogenetic group.

  7. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA

    PubMed Central

    Kumar, Vivek; Sobhia, M. Elizabeth

    2015-01-01

    Examination of InhA mutants I16T, I21V, I47T, S94A, and I95P showed that direct and water mediated H-bond interactions between NADH and binding site residues reduced drastically. It allowed conformational flexibility to NADH, particularly at the pyrophosphate region, leading to weakening of its binding at dinucleotide binding site. The highly scattered distribution of pyrophosphate dihedral angles and chi1 side chain dihedral angles of corresponding active site residues therein confirmed weak bonding between InhA and NADH. The average direct and water mediated bridged H-bond interactions between NADH and mutants were observed weaker as compared to wild type. Further, estimated NADH binding free energy in mutants supported the observed weakening of InhA-NADH interactions. Similarly, per residue contribution to NADH binding was also found little less as compared to corresponding residues in wild type. This investigation clearly depicted and supported the effect of mutations on NADH binding and can be accounted for isoniazid resistance as suggested by previous biochemical and mutagenic studies. Further, structural analysis of InhA provided the crucial points to enhance the NADH binding affinity towards InhA mutants in the presence of direct InhA inhibitors to combat isoniazid drug resistance. This combination could be a potential alternative for treatment of drug resistant tuberculosis. PMID:26658674

  8. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA.

    PubMed

    Kumar, Vivek; Sobhia, M Elizabeth

    2015-01-01

    Examination of InhA mutants I16T, I21V, I47T, S94A, and I95P showed that direct and water mediated H-bond interactions between NADH and binding site residues reduced drastically. It allowed conformational flexibility to NADH, particularly at the pyrophosphate region, leading to weakening of its binding at dinucleotide binding site. The highly scattered distribution of pyrophosphate dihedral angles and chi1 side chain dihedral angles of corresponding active site residues therein confirmed weak bonding between InhA and NADH. The average direct and water mediated bridged H-bond interactions between NADH and mutants were observed weaker as compared to wild type. Further, estimated NADH binding free energy in mutants supported the observed weakening of InhA-NADH interactions. Similarly, per residue contribution to NADH binding was also found little less as compared to corresponding residues in wild type. This investigation clearly depicted and supported the effect of mutations on NADH binding and can be accounted for isoniazid resistance as suggested by previous biochemical and mutagenic studies. Further, structural analysis of InhA provided the crucial points to enhance the NADH binding affinity towards InhA mutants in the presence of direct InhA inhibitors to combat isoniazid drug resistance. This combination could be a potential alternative for treatment of drug resistant tuberculosis. PMID:26658674

  9. Label-free DNA-based detection of Mycobacterium tuberculosis and rifampicin resistance through hydration induced stress in microcantilevers.

    PubMed

    Domínguez, Carmen M; Kosaka, Priscila M; Sotillo, Alma; Mingorance, Jesús; Tamayo, Javier; Calleja, Montserrat

    2015-02-01

    We have developed a label-free assay for the genomic detection of Mycobacterium tuberculosis and rifampicin resistance. The method relies on the quantification of the hydration induced stress on microcantilever biosensors functionalized with oligonucleotide probes, before and after hybridization with specific targets. We have found a limit of detection of 10 fg/mL for PCR amplified products of 122 bp. Furthermore, the technique can successfully target genomic DNA (gDNA) fragments of length >500 bp, and it can successfully discriminate single mismatches. We have used both loci IS6110 and rpoB as targets to detect the mycobacteria and the rifampicin resistance from gDNA directly extracted from bacterial culture and without PCR amplification. We have been able to detect 2 pg/mL target concentration in samples with an excess of interfering DNA and in a total analysis time of 1 h and 30 min. The detection limit found demonstrates the capability to develop direct assays without the need for long culture steps or PCR amplification. The methodology can be easily translated to different microbial targets, and it is suitable for further development of miniaturized devices and multiplexed detection. PMID:25599922

  10. Label-free DNA-based detection of Mycobacterium tuberculosis and rifampicin resistance through hydration induced stress in microcantilevers.

    PubMed

    Domínguez, Carmen M; Kosaka, Priscila M; Sotillo, Alma; Mingorance, Jesús; Tamayo, Javier; Calleja, Montserrat

    2015-02-01

    We have developed a label-free assay for the genomic detection of Mycobacterium tuberculosis and rifampicin resistance. The method relies on the quantification of the hydration induced stress on microcantilever biosensors functionalized with oligonucleotide probes, before and after hybridization with specific targets. We have found a limit of detection of 10 fg/mL for PCR amplified products of 122 bp. Furthermore, the technique can successfully target genomic DNA (gDNA) fragments of length >500 bp, and it can successfully discriminate single mismatches. We have used both loci IS6110 and rpoB as targets to detect the mycobacteria and the rifampicin resistance from gDNA directly extracted from bacterial culture and without PCR amplification. We have been able to detect 2 pg/mL target concentration in samples with an excess of interfering DNA and in a total analysis time of 1 h and 30 min. The detection limit found demonstrates the capability to develop direct assays without the need for long culture steps or PCR amplification. The methodology can be easily translated to different microbial targets, and it is suitable for further development of miniaturized devices and multiplexed detection.

  11. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations.

    PubMed

    Takiff, H E; Salazar, L; Guerrero, C; Philipp, W; Huang, W M; Kreiswirth, B; Cole, S T; Jacobs, W R; Telenti, A

    1994-04-01

    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis has resulted in increased interest in the fluoroquinolones (FQs) as antituberculosis agents. To investigate the frequency and mechanisms of FQ resistance in M. tuberculosis, we cloned and sequenced the wild-type gyrA and gyrB genes, which encode the A and B subunits of the DNA gyrase, respectively; DNA gyrase is the main target of the FQs. On the basis of the sequence information, we performed DNA amplification for sequencing and single-strand conformation polymorphism analysis to examine the presumed quinolone resistance regions of gyrA and gyrB from reference strains (n = 4) and clinical isolates (n = 55). Mutations in codons of gyrA analogous to those described in other FQ-resistant bacteria were identified in all isolates (n = 14) for which the ciprofloxacin MIC was > 2 micrograms/ml. In addition, we selected ciprofloxacin-resistant mutants of Mycobacterium bovis BCG and M. tuberculosis Erdman and H37ra. Spontaneously resistant mutants developed at a frequency of 1 in 10(7) to 10(8) at ciprofloxacin concentrations of 2 micrograms/ml, but no primary resistant colonies were selected at higher ciprofloxacin concentrations. Replating of those first-step mutants selected for mutants with high levels of resistance which harbored gyrA mutations similar to those found among clinical FQ-resistant isolates. The gyrA and gyrB sequence information will facilitate analysis of the mechanisms of resistance to drugs which target the gyrase and the implementation of rapid strategies for the estimation of FQ susceptibility in clinical M. tuberculosis isolates.

  12. A molecular platform for the diagnosis of multidrug-resistant and pre-extensively drug-resistant tuberculosis based on single nucleotide polymorphism mutations present in Colombian isolates of Mycobacterium tuberculosis

    PubMed Central

    Martínez, Luz Maira Wintaco; Castro, Gloria Puerto; Guerrero, Martha Inírida

    2016-01-01

    Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours. PMID:26841047

  13. Pyrimidine salvage pathway in Mycobacterium tuberculosis.

    PubMed

    Villela, A D; Sánchez-Quitian, Z A; Ducati, R G; Santos, D S; Basso, L A

    2011-01-01

    The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, infects one-third of the world population. TB remains the leading cause of mortality due to a single bacterial pathogen. The worldwide increase in incidence of M. tuberculosis has been attributed to the high proliferation rates of multi and extensively drug-resistant strains, and to co-infection with the human immunodeficiency virus. There is thus a continuous requirement for studies on mycobacterial metabolism to identify promising targets for the development of new agents to combat TB. Singular characteristics of this pathogen, such as functional and structural features of enzymes involved in fundamental metabolic pathways, can be evaluated to identify possible targets for drug development. Enzymes involved in the pyrimidine salvage pathway might be attractive targets for rational drug design against TB, since this pathway is vital for all bacterial cells, and is composed of enzymes considerably different from those present in humans. Moreover, the enzymes of the pyrimidine salvage pathway might have an important role in the mycobacterial latent state, since M. tuberculosis has to recycle bases and/or nucleosides to survive in the hostile environment imposed by the host. The present review describes the enzymes of M. tuberculosis pyrimidine salvage pathway as attractive targets for the development of new antimycobacterial agents. Enzyme functional and structural data have been included to provide a broader knowledge on which to base the search for compounds with selective biological activity.

  14. Prevalence of mutations conferring resistance among multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in China.

    PubMed

    Chen, Yan; Zhao, Bing; Liu, Hai-can; Sun, Qing; Zhao, Xiu-qin; Liu, Zhi-guang; Wan, Kang-lin; Zhao, Li-li

    2016-03-01

    To identify the mutations in multi- and extensively drug-resistant tuberculosis isolates and to evaluate the use of molecular markers of resistance, we analyzed 257 multi- and extensively drug-resistant isolates and 64 pan-sensitive isolates from 23 provinces in China. Seven loci associated with drug resistance, including rpoB for rifampin (RIF), katG, inhA and oxyR-ahpC for isoniazid (INH), gyrA and gyrB for ofloxacin (OFX), and rrs for kanmycin (KAN), were examined by DNA sequencing. Compared with the phenotypic data, the sensitivity and specificity for DNA sequencing were 91.1% and 98.4% for RIF, 80.2% and 98.4% for INH, 72.2% and 98.3% for OFX and 40% and 98.2% for KAN, respectively. The most common mutations found in RIF, INH, OFX and KAN resistance were Ser531Leu (48.2%) in rpoB, Ser315Thr (49.8%) in katG, C(-15)T (10.5%) in inhA, Asp94Gly (20.3%), Asp94Ala (12.7%) and Ala90Val (21.5%) in gyrA, and A1401G (40%) in rrs. This molecular information will be helpful to establish new molecular biology-based methods for diagnosing multi- and extensively drug-resistant tuberculosis in China.

  15. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis

    PubMed Central

    Ramazanzadeh, Rashid; Roshani, Daem; Shakib, Pegah; Rouhi, Samaneh

    2015-01-01

    Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family. PMID:25767526

  16. Simplified microarray system for simultaneously detecting rifampin, isoniazid, ethambutol, and streptomycin resistance markers in Mycobacterium tuberculosis.

    PubMed

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Lambarqui, Amine; Bryant, Lexi; Rudy, George B; Dionne, Kim; Fisher, Stefanie L; Parrish, Nicole; Chandler, Darrell P

    2014-06-01

    We developed a simplified microarray test for detecting and identifying mutations in rpoB, katG, inhA, embB, and rpsL and compared the analytical performance of the test to that of phenotypic drug susceptibility testing (DST). The analytical sensitivity was estimated to be at least 110 genome copies per amplification reaction. The microarray test correctly detected 95.2% of mutations for which there was a sequence-specific probe on the microarray and 100% of 96 wild-type sequences. In a blinded analysis of 153 clinical isolates, microarray sensitivity for first-line drugs relative to phenotypic DST (true resistance) was 100% for rifampin (RIF) (14/14), 90.0% for isoniazid (INH) (36/40), 70% for ethambutol (EMB) (7/10), and 89.1% (57/64) combined. Microarray specificity (true susceptibility) for first-line agents was 95.0% for RIF (132/139), 98.2% for INH (111/113), and 98.6% for EMB (141/143). Overall microarray specificity for RIF, INH, and EMB combined was 97.2% (384/395). The overall positive and negative predictive values for RIF, INH, and EMB combined were 84.9% and 98.3%, respectively. For the second-line drug streptomycin (STR), overall concordance between the agar proportion method and microarray analysis was 89.5% (137/153). Sensitivity was 34.8% (8/23) because of limited microarray coverage for STR-conferring mutations, and specificity was 99.2% (129/130). All false-susceptible discrepant results were a consequence of DNA mutations that are not represented by a specific microarray probe. There were zero invalid results from 220 total tests. The simplified microarray system is suitable for detecting resistance-conferring mutations in clinical M. tuberculosis isolates and can now be used for prospective trials or integrated into an all-in-one, closed-amplicon consumable.

  17. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis

    PubMed Central

    Manjunatha, Ujjini H.; Boshoff, Helena; Dowd, Cynthia S.; Zhang, Liang; Albert, Thomas J.; Norton, Jason E.; Daniels, Lacy; Dick, Thomas; Pang, Siew Siew; Barry, Clifton E.

    2006-01-01

    PA-824 is a promising new compound for the treatment of tuberculosis that is currently undergoing human trials. Like its progenitors metronidazole and CGI-17341, PA-824 is a prodrug of the nitroimidazole class, requiring bioreductive activation of an aromatic nitro group to exert an antitubercular effect. We have confirmed that resistance to PA-824 (a nitroimidazo-oxazine) and CGI-17341 (a nitroimidazo-oxazole) is most commonly mediated by loss of a specific glucose-6-phosphate dehydrogenase (FGD1) or its deazaflavin cofactor F420, which together provide electrons for the reductive activation of this class of molecules. Although FGD1 and F420 are necessary for sensitivity to these compounds, they are not sufficient and require additional accessory proteins that directly interact with the nitroimidazole. To understand more proximal events in the reductive activation of PA-824, we examined mutants that were wild-type for both FGD1 and F420 and found that, although these mutants had acquired high-level resistance to PA-824 (and another nitroimidazo-oxazine), they retained sensitivity to CGI-17341 (and a related nitroimidazo-oxazole). Microarray-based comparative genome sequencing of these mutants identified lesions in Rv3547, a conserved hypothetical protein with no known function. Complementation with intact Rv3547 fully restored sensitivity to nitroimidazo-oxazines and restored the ability of Mtb to metabolize PA-824. These results suggest that the sensitivity of Mtb to PA-824 and related compounds is mediated by a protein that is highly specific for subtle structural variations in these bicyclic nitroimidazoles. PMID:16387854

  18. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB.

    PubMed

    Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun

    2016-01-01

    Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype.

  19. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants.

    PubMed

    Lall, N; Meyer, J J

    1999-09-01

    Twenty South African medicinal plants used to treat pulmonary diseases were screened for activity against drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis. A preliminary screening of acetone and water plant extracts against a drug-sensitive strain of Mycobacterium tuberculosis, H37Rv, was done by the agar plate method. Fourteen of the 20 acetone extracts showed inhibitory activity at a concentration of 0.5 mg/ml against this strain. Acetone as well as water extracts of Cryptocarya latifolia, Euclea natalensis, Helichrysum melanacme, Nidorella anomala and Thymus vulgaris inhibited the growth of M. tuberculosis. Given the activity of 14 acetone extracts at 0.5 mg/ml against the drug-sensitive strain by the agar plate method, a further study was done employing a rapid radiometric method to confirm the inhibitory activity. These active acetone extracts were screened against the H37Rv strain as well as a strain resistant to the drugs isoniazid and rifampin. The minimal inhibitory concentration of Croton pseudopulchellus, Ekebergia capensis, Euclea natalensis, Nidorella anomala and Polygala myrtifolia was 0.1 mg/ml against the H37Rv strain by the radiometric method. Extracts of Chenopodium ambrosioides, Ekebergia capensis, Euclea natalensis, Helichrysum melanacme, Nidorella anomala and Polygala myrtifolia were active against the resistant strain at 0.1 mg/ml. Eight plants showed activity against both strains at a concentration of 1.0 mg/ml.

  20. Rapid detection of isoniazid resistance in Mycobacterium tuberculosis isolates by use of real-time-PCR-based melting curve analysis.

    PubMed

    Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Quan, Shengmao; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2014-05-01

    The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions -17 to -8), inhA position 94, and the ahpC promoter (positions -44 to -30 and -15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2×10(3) to 2×10(4) bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA -15C→T, katG S315N (AGC→AAC), and ahpC promoter -10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates.

  1. Non-human sources of Mycobacterium tuberculosis.

    PubMed

    Ghodbane, Ramzi; Drancourt, Michel

    2013-11-01

    Mycobacterium tuberculosis is a successful pathogen responsible for the vast majority of deadly tuberculosis cases in humans. It rests in a dormant form in contaminated people who constitute the reservoir with airborne interhuman transmission during pulmonary tuberculosis. M. tuberculosis is therefore regarded majoritary as a human pathogen. Here, we review the evidence for anthroponotic M. tuberculosis infection in non-human primates, other mammals and psittacines. Some infected animals may be sources for zoonotic tuberculosis caused by M. tuberculosis, with wild life trade and zoos being amplifying factors. Moreover, living animals and cadavers can scatter M. tuberculosis in the environment where it could survive for extended periods of time in soil where amoebae could play a role. Although marginal in the epidemiology of human tuberculosis, these data indicate that M. tuberculosis is not uniquely adapted to humans.

  2. Rapid direct detection of multiple rifampin and isoniazid resistance mutations in Mycobacterium tuberculosis in respiratory samples by real-time PCR.

    PubMed

    Marín, Mercedes; García de Viedma, Darío; Ruíz-Serrano, María Jesús; Bouza, Emilio

    2004-11-01

    Rapid detection of resistance in Mycobacterium tuberculosis can optimize the efficacy of antituberculous therapy and control the transmission of resistant M. tuberculosis strains. Real-time PCR has minimized the time required to obtain the susceptibility pattern of M. tuberculosis strains, but little effort has been made to adapt this rapid technique to the direct detection of resistance from clinical samples. In this study, we adapted and evaluated a real-time PCR design for direct detection of resistance mutations in clinical respiratory samples. The real-time PCR was evaluated with (i) 11 clinical respiratory samples harboring bacilli resistant to isoniazid (INH) and/or rifampin (RIF), (ii) 10 culture-negative sputa spiked with a set of strains encoding 14 different resistance mutations in 10 independent codons, and (iii) 16 sputa harboring susceptible strains. The results obtained with this real-time PCR design completely agreed with DNA sequencing data. In all sputa harboring resistant M. tuberculosis strains, the mutation encoding resistance was successfully detected. No mutation was detected in any of the susceptible sputa. The test was applied only to smear-positive specimens and succeeded in detecting a bacterial load equivalent to 10(3) CFU/ml in sputum samples (10 acid-fast bacilli/line). The analytical specificity of this method was proved with a set of 14 different non-M. tuberculosis bacteria. This real-time PCR design is an adequate method for the specific and rapid detection of RIF and INH resistance in smear-positive clinical respiratory samples.

  3. Purine Salvage Pathway in Mycobacterium tuberculosis.

    PubMed

    Ducati, R G; Breda, A; Basso, L A; Santos, D S

    2011-01-01

    Millions of deaths worldwide are caused by the aetiological agent of tuberculosis, Mycobacterium tuberculosis. The increasing prevalence of this disease, the emergence of drug-resistant strains, and the devastating effect of human immunodeficiency virus coinfection have led to an urgent need for the development of new and more efficient antimycobacterial drugs. The modern approach to the development of new chemical compounds against complex diseases, especially the neglected endemic ones, such as tuberculosis, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a specific target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, and (iii) the development of compounds with selective toxicity. The present review describes the enzymes of the purine salvage pathway in M. tuberculosis as attractive targets for the development of new antimycobacterial agents. Enzyme kinetics and structural data have been included to provide a thorough knowledge on which to base the search for compounds with biological activity. We have focused on the mycobacterial homologues of this pathway as potential targets for the development of new antitubercular agents.

  4. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis.

    PubMed

    Larsen, Michelle H; Vilchèze, Catherine; Kremer, Laurent; Besra, Gurdyal S; Parsons, Linda; Salfinger, Max; Heifets, Leonid; Hazbon, Manzour H; Alland, David; Sacchettini, James C; Jacobs, William R

    2002-10-01

    The inhA and kasA genes of Mycobacterium tuberculosis have each been proposed to encode the primary target of the antibiotic isoniazid (INH). Previous studies investigating whether overexpressed inhA or kasA could confer resistance to INH yielded disparate results. In this work, multicopy plasmids expressing either inhA or kasA genes were transformed into M. smegmatis, M. bovis BCG and three different M. tuberculosis strains. The resulting transformants, as well as previously published M. tuberculosis strains with multicopy inhA or kasAB plasmids, were tested for their resistance to INH, ethionamide (ETH) or thiolactomycin (TLM). Mycobacteria containing inhA plasmids uniformly exhibited 20-fold or greater increased resistance to INH and 10-fold or greater increased resistance to ETH. In contrast, the kasA plasmid conferred no increased resistance to INH or ETH in any of the five strains, but it did confer resistance to thiolactomycin, a known KasA inhibitor. INH is known to increase the expression of kasA in INH-susceptible M. tuberculosis strains. Using molecular beacons, quantified inhA and kasA mRNA levels showed that increased inhA mRNA levels corre--lated with INH resistance, whereas kasA mRNA levels did not. In summary, analysis of strains harbouring inhA or kasA plasmids yielded the same conclusion: overexpressed inhA, but not kasA, confers INH and ETH resistance to M. smegmatis, M. bovis BCG and M. tuberculosis. Therefore, InhA is the primary target of action of INH and ETH in all three species. PMID:12406221

  5. Polymorphisms of twenty regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...

  6. Strength in Diversity: Hidden Genetic Depths of Mycobacterium tuberculosis.

    PubMed

    Sampson, Samantha L

    2016-02-01

    Next-generation whole genome sequencing data is currently being utilised to explore Mycobacterium tuberculosis genetic diversity. Studies have focused in particular on the evolution of drug resistance, and have revealed a surprising degree of dynamic population heterogeneity, with implications for transmission studies, treatment regimens and new drug target development.

  7. Prevalence of gyrA and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of Mycobacterium tuberculosis and their relationship with MIC of ofloxacin.

    PubMed

    Singh, Pooja; Jain, Amita; Dixit, Pratima; Prakash, Shantanu; Jaiswal, Indu; Venkatesh, Vimala; Singh, Mastan

    2015-01-01

    The study was done to know the prevalent mutations of gyrA and gyrB genes, and their significance with drug resistance in clinical isolates of Mycobacterium tuberculosis. A total of 100 ofloxacin- (OFX) resistant and 100 OFX-sensitive isolates of M. tuberculosis were consecutively selected from routine Tuberculosis laboratory. Drug resistance pattern of these isolates was recorded. MIC of OFX was tested in all these isolates by absolute concentration method. Quinolone resistance determining region (QRDR) of gyrA and gyrB genes of 320 and 428 bp, respectively, were amplified and sequenced. Sequencing data were analyzed by BLAST on NCBI with reference strain H37Rv. Of 100 OFX-sensitive isolates, 30 were pansusceptible, 28 were monoresistant, 10 were polyresistant and 32 were multidrug resistant (MDR). Among 100 OFX-resistant isolates, 19 were OFX monoresistant, 16 were polyresistant and 65 were MDR. Mutations in gyrA and gyrB genes were observed in 79% and 5% of OFX-resistant isolates, respectively. Most prevalent mutation was found at codon 94 in QRDR of gyrA gene. Double mutations found in gyrA gene and in both gyrA and gyrB genes signifies higher levels of OFX resistance. In one isolate, a substitution at codon 592 (Pro592Ser) was found as a novel mutation outside the QRDR of gyrB gene. Our findings support previous studies that the OFX resistance to M. tuberculosis is associated with mutations in the QRDR of gyrA gene; however, the level of OFX resistance may not be predicted based on the mutation patterns in the gyrA gene.

  8. [Use of molecular-biological microchip TB-BIOCHIP-2 for detecting of Mycobacterium tuberculosis with multidrug resistance to fluoroquinolones in patients with new detected and chronic tuberculosis].

    PubMed

    Nosova, E Iu; Galkina, K Iu; Antonova, O V; Garmash, Iu Iu; Skotnikova, O I; Moroz, A M

    2008-01-01

    At present the left-handed "respiratory" quinolones such as moxifloxacin and levofloxacin are the most promising drugs for therapy of multidrug resistant tuberculosis (MDR). Fast and specific diagnostics of sensitivity of M. tuberculosis (MBT) with MDR to this group of drugs is required for timely prescription of adequate chemotherapy and its correction in case of MBT resistance to fluoroquinolones. A new generation of biological microchips - TB-BIOCHIP-2 makes possible to detect 9 mutation types in quinolones resistant determination region (QRDR) of gene. About 800 samples from 169 patients in Antituberculosis center were studied. In patients with new detected tuberculosis 23.5% MBT resistant to isoniazid and rifampicin (MDR) and sensitive to fluoroquinolones were revealed. In patients with chronic tuberculosis 65.5% MBT-MDR were revealed. Our results were confirmed with detecting ofloxacin resistance on Lowenstein - Jensen. In addition efficiency of TB-BIOCHIP-2 to control drug testing sensitivity of MBT-MDR on fluoroquinolones was confirmed.

  9. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal.

    PubMed

    Perdigão, J; Macedo, R; Machado, D; Silva, C; Jordão, L; Couto, I; Viveiros, M; Portugal, I

    2014-05-01

    Development of streptomycin resistance in Mycobacterium tuberculosis is usually associated with mutations in rpsL and rrs genes, although up to 50% of clinical streptomycin-resistant isolates may present no mutation in either of these genes. In the present report we investigate the role of gidB gene mutations in streptomycin resistance. We have analyzed 52 streptomycin-resistant and 30 streptomycin-susceptible Mycobacterium tuberculosis clinical isolates by sequencing and endonuclease analysis of the gidB and rpsL genes. All clinical isolates were genotyped by 12-loci MIRU-VNTR. The gidB gene of 18 streptomycin-resistant isolates was sequenced and four missense mutations were found: F12L (1/18), L16R (18/18), A80P (4/18) and S100F (18/18). The remaining isolates were screened by endonuclease analysis for mutations A80P in the gidB gene and K43R in the rpsL gene. Overall, mutation A80P in the gidB gene was found in eight streptomycin-resistant isolates and 11 streptomycin-susceptible multidrug-resistant isolates. Also noteworthy, is the fact that gidB mutations were only present in isolates without rpsL and rrs mutations, all from genetic cluster Q1. Streptomycin quantitative drug susceptibility testing showed that isolates carrying the gidB A80P mutation were streptomycin intermediate-level resistant and that standard drug susceptibility testing yielded inconsistent results, probably due to borderline resistance. We conclude that gidB mutations may explain the high number of streptomycin-resistant strains with no mutation in rpsL or rrs. These mutations might occasionally confer low-level streptomycin resistance that will go undetected in standard susceptibility testing.

  10. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy.

    PubMed

    Mieras, Liesbeth; Anthony, Richard; van Brakel, Wim; Bratschi, Martin W; van den Broek, Jacques; Cambau, Emmanuelle; Cavaliero, Arielle; Kasang, Christa; Perera, Geethal; Reichman, Lee; Richardus, Jan Hendrik; Saunderson, Paul; Steinmann, Peter; Yew, Wing Wai

    2016-01-01

    Post-exposure prophylaxis (PEP) for leprosy is administered as one single dose of rifampicin (SDR) to the contacts of newly diagnosed leprosy patients. SDR reduces the risk of developing leprosy among contacts by around 60 % in the first 2-3 years after receiving SDR. In countries where SDR is currently being implemented under routine programme conditions in defined areas, questions were raised by health authorities and professional bodies about the possible risk of inducing rifampicin resistance among the M. tuberculosis strains circulating in these areas. This issue has not been addressed in scientific literature to date. To produce an authoritative consensus statement about the risk that SDR would induce rifampicin-resistant tuberculosis, a meeting was convened with tuberculosis (TB) and leprosy experts. The experts carefully reviewed and discussed the available evidence regarding the mechanisms and risk factors for the development of (multi) drug-resistance in M. tuberculosis with a view to the special situation of the use of SDR as PEP for leprosy. They concluded that SDR given to contacts of leprosy patients, in the absence of symptoms of active TB, poses a negligible risk of generating resistance in M. tuberculosis in individuals and at the population level. Thus, the benefits of SDR prophylaxis in reducing the risk of developing leprosy in contacts of new leprosy patients far outweigh the risks of generating drug resistance in M. tuberculosis. PMID:27268059

  11. Multidrug Resistant Mycobacterium tuberculosis: A Retrospective katG and rpoB Mutation Profile Analysis in Isolates from a Reference Center in Brazil

    PubMed Central

    de Freitas, Flávia A. D.; Bernardo, Vagner; Gomgnimbou, Michel K.; Sola, Christophe; Siqueira, Hélio R.; Pereira, Márcia A. S.; Fandinho, Fátima C. O.; Gomes, Harrison M.; Araújo, Marcelo E. I.; Suffys, Philip N.; Marques, Elizabeth A.; Albano, Rodolpho M.

    2014-01-01

    Background Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center. Methods and Findings Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates. Conclusions Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment. PMID:25093512

  12. Pathway Profiling in Mycobacterium tuberculosis

    PubMed Central

    Thomas, Suzanne T.; VanderVen, Brian C.; Sherman, David R.; Russell, David G.; Sampson, Nicole S.

    2011-01-01

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, imports and metabolizes host cholesterol during infection. This ability is important in the chronic phase of infection. Here we investigate the role of the intracellular growth operon (igr), which has previously been identified as having a cholesterol-sensitive phenotype in vitro and which is important for intracellular growth of the mycobacteria. We have employed isotopically labeled low density lipoproteins containing either [1,7,15,22,26-14C]cholesterol or [1,7,15,22,26-13C]cholesterol and high resolution LC/MS as tools to profile the cholesterol-derived metabolome of an igr operon-disrupted mutant (Δigr) of M. tuberculosis. A partially metabolized cholesterol species accumulated in the Δigr knock-out strain that was absent in the complemented and parental wild-type strains. Structural elucidation by multidimensional 1H and 13C NMR spectroscopy revealed the accumulated metabolite to be methyl 1β-(2′-propanoate)-3aα-H-4α-(3′-propanoic acid)-7aβ-methylhexahydro-5-indanone. Heterologously expressed and purified FadE28-FadE29, an acyl-CoA dehydrogenase encoded by the igr operon, catalyzes the dehydrogenation of 2′-propanoyl-CoA ester side chains in substrates with structures analogous to the characterized metabolite. Based on the structure of the isolated metabolite, enzyme activity, and bioinformatic annotations, we assign the primary function of the igr operon to be degradation of the 2′-propanoate side chain. Therefore, the igr operon is necessary to completely metabolize the side chain of cholesterol metabolites. PMID:22045806

  13. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance

    PubMed Central

    Zimic, Mirko; Sheen, Patricia; Quiliano, Miguel; Gutierrez, Andrés; Gilman, Robert H.

    2010-01-01

    Resistance to pyrazinamide in Mycobacterium tuberculosis is usually associated with a reduction of pyrazinamidase activity caused by mutations in pncA, the pyrazinamidase coding gene. Pyrazinamidase is a hydrolase that converts pyrazinamide, the antituberculous drug against the latent stage, to the active compound, pyrazinoic acid. To better understand the relationship between pncA mutations and pyrazinamide-resistance, it is necessary to analyze the distribution of pncA mutations from pyrazinamide resistant strains. We determined the distribution of Peruvian and globally reported pncA missense mutations from M. tuberculosis clinical isolates resistant to pyrazinamide. The distributions of the single amino acid substitutions were compared at the secondary-structure-domains level. The distribution of the Peruvian mutations followed a similar pattern as the mutations reported globally. A consensus clustering of mutations was observed in hot-spot regions located in the metal coordination site and to a lesser extent in the active site of the enzyme. The data was not able to reject the null hypothesis that both distributions are similar, suggesting that pncA mutations associated to pyrazinamide resistance in M. tuberculosis, follow a conserved pattern responsible to impair the pyrazinamidase activity. PMID:19963078

  14. Inhibiting Mycobacterium tuberculosis within and without.

    PubMed

    Cole, Stewart T

    2016-11-01

    Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors.This article is

  15. Mycobacterium tuberculosis Mutations Associated with Reduced Susceptibility to Linezolid.

    PubMed

    Zhang, Shuo; Chen, Jiazhen; Cui, Peng; Shi, Wanliang; Shi, Xiaohong; Niu, Hongxia; Chan, Denise; Yew, Wing Wai; Zhang, Wenhong; Zhang, Ying

    2016-04-01

    Linezolid (LZD) has become increasingly important for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its mechanisms of resistance are not well characterized. We isolated 32 mutants ofMycobacterium tuberculosiswith reduced susceptibility to LZD, which was accounted for byrrlandrplCmutations in almost equal proportions, causing lower and higher MICs, respectively. Our findings provide useful information for the rapid detection of LZD resistance for improved treatment of MDR-TB.

  16. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target

    PubMed Central

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  17. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    PubMed

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. PMID:27649868

  18. Mutations in the rpoB Gene of Rifampin-Resistant Mycobacterium tuberculosis Isolates in Spain and Their Rapid Detection by PCR–Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Garcia, Lucia; Alonso-Sanz, Mercedes; Rebollo, Maria J.; Tercero, Juan C.; Chaves, Fernando

    2001-01-01

    Genetic alterations in the rpoB gene were characterized in 50 rifampin-resistant (Rifr) clinical isolates of Mycobacterium tuberculosis complex from Spain. A rapid PCR–enzyme-linked immunosorbent assay (ELISA) technique for the identification of rpoB mutations was evaluated with isolates of the M. tuberculosis complex and clinical specimens from tuberculosis patients that were positive for acid-fast bacilli (AFB). Sequence analysis demonstrated 11 different rpoB mutations among the Rifr isolates in the study. The most frequent mutations were those associated with codon 531 (24 of 50; 48%) and codon 526 (11 of 50; 22%). Although the PCR-ELISA does not permit characterization of the specific Rifr allele within each strain, 10 of the 11 Rifr genotypes were correctly identified by this method. We used the PCR-ELISA to predict the rifampin susceptibility of M. tuberculosis complex organisms from 30 AFB-positive sputum specimens. For 28 samples, of which 9 contained Rifr organisms and 19 contained susceptible strains, results were concordant with those based on culture-based drug susceptibility testing and sequencing. Results from the remaining two samples could not be interpreted because of low bacillary load (microscopy score of 1+ for 1 to 9 microorganisms/100 fields). Our results suggest that the PCR-ELISA is an easy technique to implement and could be used as a rapid procedure for detecting rifampin resistance to complement conventional culture-based methods. PMID:11325996

  19. Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug- and extensively drug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Horita, Yasuhiro; Takii, Takemasa; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, Yoosa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-08-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  20. Antitubercular Activity of Disulfiram, an Antialcoholism Drug, against Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates

    PubMed Central

    Horita, Yasuhiro; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, YooSa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-01-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  1. Investigation of Ser315 Substitutions within katG Gene in Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis from South India

    PubMed Central

    Unissa, A. Nusrath; Selvakumar, N.; Narayanan, Sujatha; Suganthi, C.; Hanna, L. E.

    2015-01-01

    Mutation at codon 315 of katG gene is the major cause for isoniazid (INH) resistance in Mycobacterium tuberculosis (M. tuberculosis). Substitution at codon 315 of katG gene was analyzed in 85 phenotypically resistant isolates collected from various parts of southern India by direct sequencing method. The obtained results were interpreted in the context of minimum inhibitory concentration (MIC) of INH. Of the 85 phenotypically resistant isolates, 56 (66%) were also correlated by the presence of resistance mutations in the katG gene; 47 of these isolates had ACC, 6 had AAC, 2 had ATC, and one had CGC codon. The frequency of Ser315 substitution in katG gene was found to be higher (70%) amongst multidrug-resistant (MDR) strains than among non-MDR (61%) INH-resistant isolates. Further, the frequency of mutations was found to be greater (74%) in isolates with higher MIC values in contrast to those isolates with low MIC values (58%). Therefore, the study identified high prevalence of Ser315Thr substitution in katG gene of INH-resistant isolates from south India. Also, isolates harboring this substitution were found to be associated with multidrug and high level INH resistance. PMID:25699262

  2. Performance Assessment of the BluePoint MycoID Plus Kit for Identification of Mycobacterium tuberculosis, Including Rifampin- and Isoniazid-resistant Isolates, and Nontuberculous Mycobacteria

    PubMed Central

    Chien, Jung-Yien; Chang, Tsung-Chain; Chiu, Wei-Yih; Yu, Chong-Jen; Hsueh, Po-Ren

    2015-01-01

    The performance of the BluePoint MycoID plus kit (Bio Concept Corporation, Taichung, Taiwan), which was designed to simultaneously detect Mycobacterium tuberculosis (MTB), rifampin- and isoniazid-resistant MTB, and nontuberculous mycobacteria (NTM) was first evaluated with 950 consecutive positive cultures in Mycobacterium Growth Indicator Tube (MGIT) system (BACTEC, MGIT 960 system, Becton-Dickinson, Sparks) from clinical respiratory specimens. The discrepant results between kit and culture-based identification were finally assessed by 16S rRNA gene sequencing and clinical diagnosis. The accuracy rate of this kit for identification of all Mycobacterium species was 96.3% (905/940). For MTB identification, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the kit were 99.7%, 99.3%, 99.0% and 99.8%, respectively. For rifampicin-resistant MTB identification, the sensitivity, specificity, PPV, and NPV of the kit were 100.0%, 99.4%, 91.3%, and 100.0%, respectively, while the corresponding values of isoniazid-resistant MTB identification were 82.6%, 99.4%, 95.0%, and 97.6%, respectively. In identifying specific NTM species, the kit correctly identified 99.3% of M. abscessus (147/148) complex, 100% of M. fortuitum (32/32), M. gordonae (38/38), M. avium (39/39), M. intracellulare (90/90), M. kansasii (36/36), and M. avium complex species other than M. avium and M. intracellulare (94/94). In conclusions, the diagnostic value of the BluePoint MycoID plus kit was superior to culture method for recoveries and identification of NTM to species level. In addition, the diagnostic accuracy of BluePoint MycoID plus kit in MTB identification was similar to conventional culture method with high accuracy rate of rifampicin-resistant M. tuberculosis identification. PMID:25938668

  3. Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis

    PubMed Central

    Gomez, Andromeda; Andreu, Núria; Ferrer-Navarro, Mario; Yero, Daniel; Gibert, Isidre

    2016-01-01

    A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested. PMID:27193696

  4. Population structure and circulating genotypes of drug-sensitive and drug-resistant Mycobacterium tuberculosis clinical isolates in São Paulo state, Brazil

    PubMed Central

    Martins, Maria Conceição; Saraiva Giampaglia, Carmen M.; Oliveira, Rosângela S.; Simonsen, Vera; Latrilha, Fábio Oliveira; Moniz, Letícia Lisboa; Couvin, David; Rastogi, Nalin; Ferrazoli, Lucilaine

    2013-01-01

    São Paulo is the most populous Brazilian state and reports the largest number of tuberculosis cases in the country annually (over 18,500). This study included 193 isolates obtained during the 2nd Nationwide Survey on Mycobacterium tuberculosis Drug Resistance that was conducted in São Paulo state and 547 isolates from a laboratory based study of drug resistance that were analyzed by the Mycobacteria Reference Laboratory at the Institute Adolfo Lutz. Both studies were conducted from 2006 to 2008 and sought to determine the genetic diversity and pattern of drug resistance of M. tuberculosis isolates (MTC) circulating in São Paulo. The patterns obtained from the spoligotyping analysis demonstrated that 51/740 (6.9%) of the isolates corresponded to orphan patterns and that 689 (93.1%) of the isolates distributed into 144 shared types, including 119 that matched a preexisting shared type in the SITVIT2 database and 25 that were new isolates. A total of 77/144 patterns corresponded to unique isolates, while the remaining 67 corresponded to clustered patterns (n = 612 isolates clustered into groups of 2–84 isolates each). The evolutionarily ancient PGG1 lineages (Beijing, CAS1-DEL, EAI3-IND, and PINI2) were rarely detected in São Paulo and comprised only 13/740, or 1.76%, of the total isolates; all of the remaining 727/740, or 98.24%, of the MTC isolates from São Paulo state were from the recent PGG2/3 evolutionary isolates belonging to the LAM, T, S, X, and Haarlem lineages, i.e., the Euro-American group. This study provides the first overview of circulating genotypes of M. tuberculosis in São Paulo state and demonstrates that the clustered shared types containing seven or more M. tuberculosis isolates that are spread in São Paulo state included both resistant and susceptible isolates. PMID:23201043

  5. Population structure and circulating genotypes of drug-sensitive and drug-resistant Mycobacterium tuberculosis clinical isolates in São Paulo state, Brazil.

    PubMed

    Martins, Maria Conceição; Giampaglia, Carmen M Saraiva; Oliveira, Rosângela S; Simonsen, Vera; Latrilha, Fábio Oliveira; Moniz, Letícia Lisboa; Couvin, David; Rastogi, Nalin; Ferrazoli, Lucilaine

    2013-03-01

    São Paulo is the most populous Brazilian state and reports the largest number of tuberculosis cases in the country annually (over 18,500). This study included 193 isolates obtained during the 2nd Nationwide Survey on Mycobacterium tuberculosis Drug Resistance that was conducted in São Paulo state and 547 isolates from a laboratory based study of drug resistance that were analyzed by the Mycobacteria Reference Laboratory at the Institute Adolfo Lutz. Both studies were conducted from 2006 to 2008 and sought to determine the genetic diversity and pattern of drug resistance of M. tuberculosis isolates (MTC) circulating in São Paulo. The patterns obtained from the spoligotyping analysis demonstrated that 51/740 (6.9%) of the isolates corresponded to orphan patterns and that 689 (93.1%) of the isolates distributed into 144 shared types, including 119 that matched a preexisting shared type in the SITVIT2 database and 25 that were new isolates. A total of 77/144 patterns corresponded to unique isolates, while the remaining 67 corresponded to clustered patterns (n=612 isolates clustered into groups of 2-84 isolates each). The evolutionarily ancient PGG1 lineages (Beijing, CAS1-DEL, EAI3-IND, and PINI2) were rarely detected in São Paulo and comprised only 13/740, or 1.76%, of the total isolates; all of the remaining 727/740, or 98.24%, of the MTC isolates from São Paulo state were from the recent PGG2/3 evolutionary isolates belonging to the LAM, T, S, X, and Haarlem lineages, i.e., the Euro-American group. This study provides the first overview of circulating genotypes of M. tuberculosis in São Paulo state and demonstrates that the clustered shared types containing seven or more M. tuberculosis isolates that are spread in São Paulo state included both resistant and susceptible isolates.

  6. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  7. Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan)

    PubMed Central

    Ismail, Nurul-Ain; Ismail, Mohd Fazli; Noor, Siti Suraiya MD; Camalxaman, Siti Nazrina

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) remains a public health issue that is of major concern on a global scale. The characterisation of clinical isolates may provide key information regarding the underlying mechanisms of drug resistance, and helps to augment therapeutic options. This study aims to evaluate the frequency of gene mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance among nine clinical isolates. Methods A total of nine drug resistant Mycobacterium tuberculosis clinical isolates were screened for genetic mutations in rpoB and katusing polymerase chain reaction (PCR) amplification and DNA sequencing. Genotypic analysis was performed to detect the mutations in the sequence of the target genes. Results Our findings reveal that 80% of the isolates possess mutations at codon 119 (His119Tyr) and 135 (Arg135Trp and Ser135Leu) within the rpoB gene; and 70% possess mutations in the katG gene at codon 238 with amino acid change (Leu238Arg). Conclusion Findings from this study provide an overview of the current situation of RIF and INH resistance in a hospital Universiti Sains Malaysia (HUSM) located in Kelantan, Malaysia, which could facilitate molecular-based detection methods of drug-resistant strains. Further information regarding the molecular mechanisms involved in resistance in RR-/MDR-TB should be addressed in the near future. PMID:27540322

  8. Patients with Multidrug-Resistant Tuberculosis Display Impaired Th1 Responses and Enhanced Regulatory T-Cell Levels in Response to an Outbreak of Multidrug-Resistant Mycobacterium tuberculosis M and Ra Strains▿

    PubMed Central

    Geffner, Laura; Yokobori, Noemí; Basile, Juan; Schierloh, Pablo; Balboa, Luciana; Romero, María Mercedes; Ritacco, Viviana; Vescovo, Marisa; González Montaner, Pablo; Lopez, Beatriz; Barrera, Lucía; Alemán, Mercedes; Abatte, Eduardo; Sasiain, María C.; de la Barrera, Silvia

    2009-01-01

    In Argentina, multidrug-resistant tuberculosis (MDR-TB) outbreaks emerged among hospitalized patients with AIDS in the early 1990s and thereafter disseminated to the immunocompetent community. Epidemiological, bacteriological, and genotyping data allowed the identification of certain MDR Mycobacterium tuberculosis outbreak strains, such as the so-called strain M of the Haarlem lineage and strain Ra of the Latin America and Mediterranean lineage. In the current study, we evaluated the immune responses induced by strains M and Ra in peripheral blood mononuclear cells from patients with active MDR-TB or fully drug-susceptible tuberculosis (S-TB) and in purified protein derivative-positive healthy controls (group N). Our results demonstrated that strain M was a weaker gamma interferon (IFN-γ) inducer than H37Rv for group N. Strain M induced the highest interleukin-4 expression in CD4+ and CD8+ T cells from MDR- and S-TB patients, along with the lowest cytotoxic T-lymphocyte (CTL) activity in patients and controls. Hence, impairment of CTL activity is a hallmark of strain M and could be an evasion mechanism employed by this strain to avoid the killing of macrophages by M-specific CTL effectors. In addition, MDR-TB patients had an increased proportion of circulating regulatory T cells (Treg cells), and these cells were further expanded upon in vitro M. tuberculosis stimulation. Experimental Treg cell depletion increased IFN-γ expression and CTL activity in TB patients, with M- and Ra-induced CTL responses remaining low in MDR-TB patients. Altogether, these results suggest that immunity to MDR strains might depend upon a balance between the individual host response and the ability of different M. tuberculosis genotypes to drive Th1 or Th2 profiles. PMID:19720756

  9. Sequence Analysis of Fluoroquinolone Resistance-Associated Genes gyrA and gyrB in Clinical Mycobacterium tuberculosis Isolates from Patients Suspected of Having Multidrug-Resistant Tuberculosis in New Delhi, India.

    PubMed

    Singhal, Ritu; Reynolds, Paul R; Marola, Jamie L; Epperson, L Elaine; Arora, Jyoti; Sarin, Rohit; Myneedu, Vithal Prasad; Strong, Michael; Salfinger, Max

    2016-09-01

    Fluoroquinolones (FQs) are broad-spectrum antibiotics recommended for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients. FQ resistance, caused by mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis, is increasingly reported worldwide; however, information on mutations occurring in strains from the Indian subcontinent is scarce. Hence, in this study, we aimed to characterize mutations in the gyrA and gyrB genes of acid-fast bacillus (AFB) smear-positive sediments or of M. tuberculosis isolates from AFB smear-negative samples from patients in India suspected of having MDR-TB. A total of 152 samples from patients suspected of having MDR-TB were included in the study. One hundred forty-six strains detected in these samples were characterized by sequencing of the gyrA and gyrB genes. The extracted DNA was subjected to successive amplifications using a nested PCR protocol, followed by sequencing. A total of 27 mutations were observed in the gyrA genes of 25 strains, while no mutations were observed in the gyrB genes. The most common mutations occurred at amino acid position 94 (13/27 [48.1%]); of these, the D94G mutation was the most prevalent. The gyrA mutations were significantly associated with patients with rifampin (RIF)-resistant TB. Heterozygosity was seen in 4/27 (14.8%) mutations, suggesting the occurrence of mixed populations with different antimicrobial susceptibilities. A high rate of FQ-resistant mutations (17.1%) was obtained among the isolates of TB patients suspected of having MDR-TB. These observations emphasize the need for accurate and rapid molecular tests for the detection of FQ-resistant mutations at the time of MDR-TB diagnosis. PMID:27335153

  10. Dormancy models for Mycobacterium tuberculosis: A minireview

    PubMed Central

    Alnimr, Amani M.

    2015-01-01

    Dormancy models for Mycobacterium tuberculosis play important roles in understanding various aspects of tuberculosis pathogenesis and in the testing of novel therapeutic regimens. By simulating the latent tuberculosis infection, in which the bacteria exist in a non-replicative state, the models demonstrate reduced susceptibility to antimycobacterial agents. This minireview outlines the models available for simulating latent tuberculosis both in vitro and in several animal species. Additionally, this minireview discusses the advantages and disadvantages of these models for investigating the bacterial subpopulations and susceptibilities to sterilization by various antituberculosis drugs. PMID:26413043

  11. Post-exposure vaccination against Mycobacterium tuberculosis

    PubMed Central

    Henao-Tamayo, Marcela; Palaniswamy, Gopinath S.; Smith, Erin E.; Shanley, Crystal A.; Wang, Baolin; Orme, Ian M.; Basaraba, Randall J.; DuTeau, Nancy M.; Ordway, Diane

    2009-01-01

    Summary Enhancing immunity to tuberculosis in animal models after exposure to the infection has proved difficult. In this study we used a newly described flow cytometric technique to monitor changes in cell populations accumulating in the lungs of guinea pigs challenged by low dose aerosol infection with Mycobacterium tuberculosis and vaccinated ten days later. On day forty after infection the fusion protein F36 and a pool of Ag85A and ESAT-6 vaccines had significant effects on the bacterial load, showed increased expression of the activation marker CD45+ on CD4+ T cells, and reduced numbers of heterophils. Lung pathology and pathology scores were marginally improved in animals given these vaccines, but lymph node pathology was not influenced. Despite early effects no changes in long term survival were seen. These results suggest that a single post-exposure vaccination can initially slow the disease process. However, this effect is transient, but this could be of use in an multidrug resistant/extremely drug resistant outbreak situation because it could potentially slow the infection long enough to complete drug susceptibility testing and initiate effective chemotherapy. PMID:19264552

  12. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance

    PubMed Central

    Lee, Jong Seok; Via, Laura E.; Barry, Clifton E.; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  13. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    PubMed

    Roh, Sandy S; Smith, Laura E; Lee, Jong Seok; Via, Laura E; Barry, Clifton E; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition.

  14. Co-infection of long-standing extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) and non-tuberculosis mycobacteria: A case report.

    PubMed

    Izadi, Nafiseh; Derakhshan, Mohammad; Samiei, Amin; Ghazvini, Kiarash

    2015-01-01

    We report a 69-years-old Iranian HIV negative male patient, with long-standing pulmonary tuberculosis (eleven years) co-infected with non-tuberculosis mycobacteria. Despite of initiation of first line anti-tuberculosis therapy after diagnosis the patient poorly respond because of low compliance with anti-TB treatment. After several incomplete treatments the smear was still positive and thus drug susceptibility tests were performed on isolated organism which revealed that the organisms was resistant not only against isoniazid and rifampin but also against Ofloxacin (OFX), Capreomycin (CAP), p-aminosalicylic acid (PAS), ethionamide (ETH), Kanamycin (KAN), ciprofloxacin (Cip), amikacin (AMK) and cycloserine (CYC). Persistence and resistance of infection had led us to do more investigation using molecular methods, which revealed co-infection with Non-tuberculosis mycobacteria (NTM). The patient is still alive with cough and shortness of breath. PMID:26236585

  15. Analysis of mutational characteristics of the drug-resistant gene katG in multi-drug resistant Mycobacterium tuberculosis L-form among patients with pneumoconiosis complicated with tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Liu, Qian-Ying; Ma, Shuai; Li, Ying; Li, Chao-Pin

    2014-05-01

    The aim of the present study was to investigate the mutational characteristics of drug‑resistant genetic mutations in the katG gene to isoniazid (INH) in multi‑drug resistant Mycobacterium tuberculosis (MTB) L‑form among patients with pneumoconiosis complicated with tuberculosis (TB), in order to reduce the occurrence of drug resistance in patients, and gain further insight into the mechanisms underlying drug resistance in MDR‑TB L‑form. A total of 114 clinically isolated strains of MTB L‑forms were collected. The MDR‑TB L‑forms were identified using a conventional antimicrobial susceptibility test (AST). The DNA genomes were extracted, the target genes were amplified by polymerase chain reaction technology and the hotspot mutational regions in the katG gene were analyzed by direct sequencing. The results of AST analysis demonstrated that there were 31 strains of MDR‑TB L‑forms in 114 clinical isolates. The mutation rate of katG was 61.29% (19/31) in INH‑resistant isolates, mainly concentrated in codon 315 (Ser315Thr, 48.39% and Ser315Asn, 9.68%) and 431 (Ala431Val, 3.23%). Base substitutions were identified, however, no multisite mutations were found. No mutations in katG were identified in 10 INH‑sensitive strains that were randomly selected. INH‑resistance was more severe in MDR‑TB L‑form isolates among patients with pneumoconiosis complicated with TB. The substitution of highly conserved amino acids encoded by the katG gene resulted in the molecular mechanisms responsible for INH resistance in MDR‑TB L‑form isolates. It was also verified that the katG gene was in diversiform. The katG Ser315Thr mutation is one of the main causes of resistance to INH in MDR‑TB L-form isolates.

  16. Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding.

    PubMed

    Chakravorty, Soumitesh; Kothari, Harsheel; Aladegbami, Bola; Cho, Eun Jin; Lee, Jong Seok; Roh, Sandy S; Kim, Hyunchul; Kwak, Hyungkyung; Lee, Eun Gae; Hwang, Soo Hee; Banada, Padmapriya P; Safi, Hassan; Via, Laura E; Cho, Sang-Nae; Barry, Clifton E; Alland, David

    2012-07-01

    Rifampin resistance in Mycobacterium tuberculosis is largely determined by mutations in an 80-bp rifampin resistance determining region (RRDR) of the rpoB gene. We developed a rapid single-well PCR assay to identify RRDR mutations. The assay uses sloppy molecular beacons to probe an asymmetric PCR of the M. tuberculosis RRDR by melting temperature (T(m)) analysis. A three-point T(m) code is generated which distinguishes wild-type from mutant RRDR DNA sequences in approximately 2 h. The assay was validated on synthetic oligonucleotide targets containing the 44 most common RRDR mutations. It was then tested on a panel of DNA extracted from 589 geographically diverse clinical M. tuberculosis cultures, including isolates with wild-type RRDR sequences and 25 different RRDR mutations. The assay detected 236/236 RRDR mutant sequences as mutant (sensitivity, 100%; 95% confidence interval [CI], 98 to 100%) and 353/353 RRDR wild-type sequences as wild type (specificity, 100%; 95% CI, 98.7 to 100%). The assay identified 222/225 rifampin-resistant isolates as rifampin resistant (sensitivity, 98.7%; 95% CI, 95.8 to 99.6%) and 335/336 rifampin-susceptible isolates as rifampin susceptible (specificity, 99.7%; 95% CI, 95.8 to 99.6%). All mutations were either individually identified or clustered into small mutation groups using the triple T(m) code. The assay accurately identified mixed (heteroresistant) samples and was shown analytically to detect RRDR mutations when present in at least 40% of the total M. tuberculosis DNA. This was at least as accurate as Sanger DNA sequencing. The assay was easy to use and well suited for high-throughput applications. This new sloppy molecular beacon assay should greatly simplify rifampin resistance testing in clinical laboratories.

  17. Evaluation of molecular-Beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts.

    PubMed

    Yesilkaya, Hasan; Meacci, Francesca; Niemann, Stefan; Hillemann, Doris; Rüsch-Gerdes, Sabine; Barer, Michael R; Andrew, Peter W; Oggioni, Marco R

    2006-10-01

    The ability of fluorescence resonance energy transfer, molecular-beacon, and TaqMan probes to detect single nucleotide polymorphism (SNP) in the presence of a wild-type allele was evaluated using drug resistance-conferring SNPs in mixed Mycobacterium tuberculosis DNA. It was found that both the absolute quantity and the ratio of alleles determine the detection sensitivity of the probe systems.

  18. Tuberculosis-resistant transgenic cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...

  19. Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra.

    PubMed Central

    Hackbarth, C J; Unsal, I; Chambers, H F

    1997-01-01

    A cosmid library from Mycobacterium tuberculosis H37Ra was introduced into Mycobacterium smegmatis, and eight recombinant clones with increased resistance to cefoxitin were identified. Isoelectric focusing detected an M. tuberculosis-derived beta-lactamase in one of these recombinant clones. A sequence analysis identified it as a class A beta-lactamase whose expression correlated with the increased resistance phenotype. PMID:9145897

  20. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis

    PubMed Central

    Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  1. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  2. Rapid and sensitive identification of Mycobacterium tuberculosis.

    PubMed Central

    Knisley, C V; Damato, J J; McClatchy, J K; Brennan, P J

    1985-01-01

    The fatty acid constituents of 14 species of Mycobacterium (14 isolates) and one isolate each of Corynebacterium xerosis, Nocardia asteroides, and Streptomyces albus were examined with the purpose of distinguishing Mycobacterium tuberculosis from other acid-fast bacilli. Combined thin-layer chromatography (TLC) of methyl mycolates and gas-liquid chromatography (GLC) of shorter-chain fatty acid esters provided an unequivocal identification of M. tuberculosis in a matter of 2 to 3 days. The methodology included rapid and simplified procedures for methanolysis and extraction of bacterial lipids with equally facilitated GLC and TLC analyses. These studies were performed with 0.5 to 1.0 mg of dry bacterial cells (approximately 2.5 X 10(7) CFU). When applied to 100 unknown cultures, the methodology with combined TLC-GLC correctly identified all 49 of the M. tuberculosis-Mycobacterium bovis cultures and a variety of other mycobacterium taxa. It was also interesting to note that 28 of 39 (72%) of the nontuberculous mycobacteria were correctly identified. An additional five species were tentatively identified as belonging to either of two species (Mycobacterium malmoense, Mycobacterium terrae), but in all cases, the two species belonged to the same Runyon group. All six nonmycobacterial species were differentiated from the mycobacteria studied. Images PMID:3932458

  3. Use of Real-Time PCR and Fluorimetry for Rapid Detection of Rifampin and Isoniazid Resistance-Associated Mutations in Mycobacterium tuberculosis

    PubMed Central

    Torres, Maria J.; Criado, Antonio; Palomares, Jose C.; Aznar, Javier

    2000-01-01

    Very fast amplification of DNA in small volumes can be continuously monitored with a rapid cycler that incorporates fluorimetric detection. Primers were designed to amplify a 157-bp fragment of the rpoB gene spanning codons 526 and 531 and a 209-bp fragment of the katG gene spanning codon 315 of Mycobacterium tuberculosis. Most mutations associated with resistance to rifampin (RMP) and isoniazid (INH) in clinical isolates occur in these codons. Two pairs of hybridization probes were synthesized; one in each pair was 3′ labeled with fluorescein and hybridized upstream of the codon with the mutation; the other two probes were 5′ labeled with LightCycler-Red 640. Each pair of probes recognized adjacent sequences in the amplicon. After DNA amplification was finished by using a LightCycler, the temperature at which the Red 640 probe melted from the product was determined in a 3-min melt program. Twenty M. tuberculosis clinical isolates susceptible to streptomycin, INH, RMP, and ethambutol and 36 antibiotic-resistant clinical M. tuberculosis isolates (16 resistant to RMP, 16 to INH, and 4 to both antimicrobial agents) were amplified, and the presence of mutations was determined using single-strand conformation polymorphism analysis, the LiQor automated sequencer, and the LightCycler system. Concordant results were obtained in all cases. Within 30 min, the LightCycler method correctly genotyped all the strains without the need of any post-PCR sample manipulation. Overall, this pilot study demonstrated that real-time PCR coupled to fluorescence detection is the fastest available method for the detection of RMP and INH resistance-associated mutations in M. tuberculosis clinical isolates. PMID:10970356

  4. Analysis of Mutations in Streptomycin-Resistant Strains Reveals a Simple and Reliable Genetic Marker for Identification of the Mycobacterium tuberculosis Beijing Genotype

    PubMed Central

    Villellas, Cristina; Aristimuño, Liselotte; Vitoria, María-Asunción; Prat, Cristina; Blanco, Silvia; García de Viedma, Darío; Domínguez, José; Samper, Sofía

    2013-01-01

    The Mycobacterium tuberculosis pandemic is a major health problem, further complicated by an increasing incidence of drug-resistant isolates and the existence of highly transmissible strains, such as those in the Beijing family. Streptomycin (STR)-resistant M. tuberculosis clinical isolates have been analyzed to look for mutations in the rpsL, rrs, and gidB genes. In addition, the Rv1258c gene, which encodes Tap, an efflux pump that transports STR, has been sequenced. Mutations affecting codons 43 and 88 of the rpsL gene were found in 44.4% of the strains, and 16.7% of the strains carried mutations in the rrs gene, both of which probably contribute to STR resistance. Many strains presented with mutations in the gidB gene, but the implication of those mutations in STR resistance remains unclear. Interestingly, a cytosine nucleotide insertion between positions 580 and 581 (denominated Tap580) in the Rv1258c gene has been found in all Beijing isolates included in this study, suggesting that it might be a novel polymorphism specific to the Beijing family of M. tuberculosis. A simple and fast restriction fragment length polymorphism (RFLP)-PCR method for detecting the Tap580 insertion has been developed and used to screen a collection of 220 DNA samples obtained from cultures of M. tuberculosis isolates and 30 respiratory specimens. In all cases, the Beijing and non-Beijing representative samples were identified correctly. Tap580 is a novel polymorphism specific to the highly transmissible Beijing family, which allows for fast detection of these strains even at the very early stages of infection. PMID:23616454

  5. Evaluation of two line probe assays for rapid detection of Mycobacterium tuberculosis, tuberculosis (TB) drug resistance, and non-TB Mycobacteria in HIV-infected individuals with suspected TB.

    PubMed

    Luetkemeyer, Anne F; Kendall, Michelle A; Wu, Xingye; Lourenço, Maria Cristina; Jentsch, Ute; Swindells, Susan; Qasba, Sarojini S; Sanchez, Jorge; Havlir, Diane V; Grinsztejn, Beatriz; Sanne, Ian M; Firnhaber, Cynthia

    2014-04-01

    Limited performance data from line probe assays (LPAs), nucleic acid tests used for the rapid diagnosis of tuberculosis (TB), nontuberculosis mycobacteria (NTM), and Mycobacterium tuberculosis drug resistance are available for HIV-infected individuals, in whom paucibacillary TB is common. In this study, the strategy of testing sputum with GenoType MTBDRplus (MTBDR-Plus) and GenoType Direct LPA (Direct LPA) was compared to a gold standard of one mycobacterial growth indicator tube (MGIT) liquid culture. HIV-positive (HIV(+)) individuals with suspected TB from southern Africa and South America with <7 days of TB treatment had 1 sputum specimen tested with Direct LPA, MTBDR-Plus LPA, smear microscopy, MGIT, biochemical identification of mycobacterial species, and culture-based drug-susceptibility testing (DST). Of 639 participants, 59.3% were MGIT M. tuberculosis culture positive, of which 276 (72.8%) were acid-fast bacillus (AFB) smear positive. MTBDR-Plus had a sensitivity of 81.0% and a specificity of 100%, with sensitivities of 44.1% in AFB smear-negative versus 94.6% in AFB smear-positive specimens. For specimens that were positive for M. tuberculosis by MTBDR-Plus, the sensitivity and specificity for rifampin resistance were 91.7% and 96.6%, respectively, and for isoniazid (INH) they were 70.6% and 99.1%. The Direct LPA had a sensitivity of 88.4% and a specificity of 94.6% for M. tuberculosis detection, with a sensitivity of 72.5% in smear-negative specimens. Ten of 639 MGIT cultures grew Mycobacterium avium complex or Mycobacterium kansasii, half of which were detected by Direct LPA. Both LPA assays performed well in specimens from HIV-infected individuals, including in AFB smear-negative specimens, with 72.5% sensitivity for M. tuberculosis identification with the Direct LPA and 44.1% sensitivity with MTBDR-Plus. LPAs have a continued role for use in settings where rapid identification of INH resistance and clinically relevant NTM are priorities.

  6. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    PubMed Central

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  7. [Resistance to first-line drugs and major genotypic lineages of Mycobacterium tuberculosis in the 3 French Department of the Americas: Profiles, evolution, and trends (1995-2011)].

    PubMed

    Millet, J; Berchel, M; Prudenté, F; Streit, E; Bomer, A-G; Schuster, F; Vanhomwegen, J; Paasch, D; Galbert, I; Valery, E; Aga, R; Rastogi, N

    2014-05-01

    This is the first overview on resistant and multidrug resistant isolates of Mycobacterium tuberculosis circulating in the French Department of the Americas (Guadeloupe, Martinique, and French Guiana) over 17 years (January 1995-December 2011). A total of 1,239 cases were studied: 1,199 new cases (primary and multidrug resistance of 11.8 and 1.6% respectively), and 40 persistent (defined as cases with a previous history of positive culture over 6 months interval and whose spoligotypes remain unchanged), in which significantly higher proportions of resistance to at least isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), and multidrug resistance (17.5%, P < 0.001) were observed as compared to new cases. The 281 spoligotypes obtained showed the presence of five major lineages, T (29.9%), LAM (23.9%), Haarlem (22.1%), EAI (7.1%), and X (6.7%). Two of these lineages, X and LAM, predominate among resistant and multidrug resistant isolates respectively (X: 10.5% of resistant isolates, P = 0.04; LAM: 42.3% of multidrug resistant isolates, P = 0.02). Four of the 19 major spoligo-profiles, corresponding to SIT 20, 64, 45, and 46, were significantly associated with drug resistance. Among them, genotype SIT 20, associated with monoresistance to isoniazid and multidrug resistance, would be actively and persistently in circulation, since 1999, in French Guiana, department in which one may also observe the presence of strains of M. tuberculosis phylogeographically associated to Guiana and Suriname (SIT 131 and SIT 1340).

  8. Discordance across Phenotypic and Molecular Methods for Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates in a Low TB Incidence Country.

    PubMed

    Ahmad, Suhail; Mokaddas, Eiman; Al-Mutairi, Noura; Eldeen, Hanaa S; Mohammadi, Shirin

    2016-01-01

    With increasing incidence of multidrug-resistant tuberculosis (MDR-TB), accurate drug susceptibility testing (DST) of Mycobacterium tuberculosis to first-line drugs has become crucial for proper patient management. We evaluated concordance of DST results for 70 M. tuberculosis isolates across two phenotypic and two molecular methods: BACTEC 460TB, MGIT 960 system, GenoType MTBDRplus and DNA sequencing of gene segments most commonly implicated in conferring resistance to anti-TB drugs. Most (84%) M. tuberculosis isolates were multidrug-resistant. Twenty-four isolates yielded discrepant DST results. For rifampicin, isoniazid and streptomycin, 96%, 97% and 93% of isolates, respectively, were susceptible or resistant by all four methods, whereas for ethambutol, this agreement was observed for only 76% of isolates (P<0.05 for rifampicin or isoniazid or streptomycin versus ethambutol). Occurrence of rare mutations in three isolates that confer low-level resistance caused lower agreement for rifampicin among the four methods (kappa coefficient (κ) range, 0.84 to 0.95). For isoniazid, there was perfect agreement among phenotypic methods and molecular methods (κ, 1.00) but lower agreement between phenotypic and molecular methods. Three isolates were detected as polydrug-resistant by MGIT 960 system but as multidrug-resistant by DNA sequence-based method. The agreement was higher for streptomycin among the two phenotypic methods (κ, 0.97) while targeted sequencing yielded lower agreement (κ range, 0.86 to 0.89). The discrepancy for ethambutol resulted largely due to lower concordance of MGIT 960 results (κ range, 0.53 to 0.64). The MGIT 960 system is an accurate method for DST of M. tuberculosis against isoniazid and streptomycin while the results of rifampicin susceptibility should be complemented with DNA sequencing-based method when the suspicion for resistance is high. The possibility of false susceptibility to ethambutol with MGIT 960 system suggests that molecular

  9. Discordance across Phenotypic and Molecular Methods for Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates in a Low TB Incidence Country

    PubMed Central

    Ahmad, Suhail; Mokaddas, Eiman; Al-Mutairi, Noura; Eldeen, Hanaa S.; Mohammadi, Shirin

    2016-01-01

    With increasing incidence of multidrug-resistant tuberculosis (MDR-TB), accurate drug susceptibility testing (DST) of Mycobacterium tuberculosis to first-line drugs has become crucial for proper patient management. We evaluated concordance of DST results for 70 M. tuberculosis isolates across two phenotypic and two molecular methods: BACTEC 460TB, MGIT 960 system, GenoType MTBDRplus and DNA sequencing of gene segments most commonly implicated in conferring resistance to anti-TB drugs. Most (84%) M. tuberculosis isolates were multidrug-resistant. Twenty-four isolates yielded discrepant DST results. For rifampicin, isoniazid and streptomycin, 96%, 97% and 93% of isolates, respectively, were susceptible or resistant by all four methods, whereas for ethambutol, this agreement was observed for only 76% of isolates (P <0.05 for rifampicin or isoniazid or streptomycin versus ethambutol). Occurrence of rare mutations in three isolates that confer low-level resistance caused lower agreement for rifampicin among the four methods (kappa coefficient (κ) range, 0.84 to 0.95). For isoniazid, there was perfect agreement among phenotypic methods and molecular methods (κ, 1.00) but lower agreement between phenotypic and molecular methods. Three isolates were detected as polydrug-resistant by MGIT 960 system but as multidrug-resistant by DNA sequence-based method. The agreement was higher for streptomycin among the two phenotypic methods (κ, 0.97) while targeted sequencing yielded lower agreement (κ range, 0.86 to 0.89). The discrepancy for ethambutol resulted largely due to lower concordance of MGIT 960 results (κ range, 0.53 to 0.64). The MGIT 960 system is an accurate method for DST of M. tuberculosis against isoniazid and streptomycin while the results of rifampicin susceptibility should be complemented with DNA sequencing-based method when the suspicion for resistance is high. The possibility of false susceptibility to ethambutol with MGIT 960 system suggests that

  10. Diterpene production in Mycobacterium tuberculosis

    PubMed Central

    Prach, Lisa; Kirby, James; Keasling, Jay D.; Alber, Tom

    2011-01-01

    Diterpenes are a structurally diverse class of molecules common in plants, although they are very rarely found in bacteria. We report the identification in Mycobacterium tuberculosis (Mtb) of three diterpenes proposed to promote phagolysosome maturation arrest. MS analysis reveals that these diterpenes are novel compounds not previously identified in other organisms. The diterpene with highest abundance in Mtb has a mass fragmentation pattern identical to edaxadiene, which is produced in vitro from geranylgeranyl diphosphate by the enzymes Rv3377c and Rv3378c [Mann FM et al. (2009) J Am Chem Soc 131, 17526–17527]. A second diterpene found in Mtb has a similar mass spectrum, and is always observed in the same proportion relative to edaxadiene, indicating that it is a side product of the Rv3378c reaction in vivo. We name this second diterpene olefin edaxadiene B. The least abundant of the three diterpenes in Mtb extracts is tuberculosinol, a dephosphorylated side-product of the edaxadiene pathway intermediate produced by Rv3377c [Nakano C et al. (2009) Chembiochem 10, 2060–2071; Nakano C et al. (2005) Chem Commun (Camb) 8, 1016–1018]. A frameshift in Rv3377c in Mtb completely eliminates diterpene production, whereas expression of Rv3377c and Rv3378c in the nonpathogenic M. smegmatis is sufficient to produce edaxadiene and edaxadiene B. These studies define the pathway of edaxadiene and edaxadiene B biosynthesis in vivo. Rv3377c and Rv3378c are unique to Mtb and M. bovis, making them candidates for selective therapeutics and diagnostics. PMID:20670276

  11. The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis.

    PubMed

    Slayden, R A; Barry, C E

    2002-01-01

    Mycobacterium tuberculosis has two discrete beta-ketoacyl synthases encoded by kasA and kasB that are located in tandem within a five-gene operon that has been implicated in isoniazid-sensitivity and mycolic acid synthesis. We have developed an in vitro meromycolic acid synthase assay to elucidate the anabolic role of these enzymes. Overproduction of KasA and KasB individually and together in M. smegmatis enabled cell-free incorporation of [(14)C]malonyl-CoA into lipids whose chain length was dependent upon the M. tuberculosis elongating enzyme used. KasA specifically elongated palmitoyl-CoA to monounsaturated fatty acids that averaged 40 carbons in length. KasB hyperproduction in the presence of KasA produced longer chain multiunsaturated hydrocarbons averaging 54 carbons in length. These products comigrated with a synthetic standard of meromycolic acid and their production was sensitive to isoniazid, thiolactomycin, and triclosan. KasA mutations associated with isoniazid resistance produced an enzyme that had a diminished overall catalytic activity but conferred enhanced resistance to isoniazid. In vivo analysis confirmed that overexpression of each of the four mutant KasAs enhanced isoniazid resistance when compared to overexpression of wild-type KasA. These results suggest discrete anabolic roles for both KasA and KasB in mycolic acid synthesis and substantiate the involvement of KasA mutations in isoniazid resistance. PMID:12464486

  12. Correlates between Models of Virulence for Mycobacterium tuberculosis among Isolates of the Central Asian Lineage: a Case for Lysozyme Resistance Testing?

    PubMed Central

    Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena

    2015-01-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  13. Correlates between models of virulence for Mycobacterium tuberculosis among isolates of the Central Asian lineage: a case for lysozyme resistance testing?

    PubMed

    Pardieu, Claire; Casali, Nicola; Clark, Simon O; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena; Drobniewski, Francis

    2015-06-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  14. Correlates between models of virulence for Mycobacterium tuberculosis among isolates of the Central Asian lineage: a case for lysozyme resistance testing?

    PubMed

    Pardieu, Claire; Casali, Nicola; Clark, Simon O; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena; Drobniewski, Francis

    2015-06-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established.

  15. Concordance between molecular and phenotypic testing of Mycobacterium tuberculosis complex isolates for resistance to rifampin and isoniazid in the United States.

    PubMed

    Yakrus, Mitchell A; Driscoll, Jeffrey; Lentz, Allison J; Sikes, David; Hartline, Denise; Metchock, Beverly; Starks, Angela M

    2014-06-01

    Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis complex (MTBC) are defined by resistance to at least rifampin (RMP) and isoniazid (INH). Rapid and accurate detection of multidrug resistance is essential for effective treatment and interruption of disease transmission of tuberculosis (TB). Overdiagnosis of MDR TB may result in treatment with second-line drugs that are more costly, less effective, and more poorly tolerated than first-line drugs. CDC offers rapid confirmation of MDR TB by the molecular detection of drug resistance (MDDR) for mutations associated with resistance to RMP and INH along with analysis for resistance to other first-line and second-line drugs. Simultaneously, CDC does growth-based phenotypic drug susceptibility testing (DST) by the indirect agar proportion method for a panel of first-line and second-line antituberculosis drugs. We reviewed discordance between molecular and phenotypic DST for INH and RMP for 285 isolates submitted as MTBC to CDC from September 2009 to February 2011. We compared CDC's results with those from the submitting public health laboratories (PHL). Concordances between molecular and phenotypic testing at CDC were 97.4% for RMP and 92.5% for INH resistance. Concordances between CDC's molecular testing and PHL DST results were 93.9% for RMP and 90.0% for INH. Overall concordance between CDC molecular and PHL DST results was 91.7% for RMP and INH collectively. Discordance was primarily attributable to the absence of known INH resistance mutations in isolates found to be INH resistant by DST and detection of mutations associated with low-level RMP resistance in isolates that were RMP susceptible by phenotypic DST. Both molecular and phenotypic test results should be considered for the diagnosis of MDR TB.

  16. Direct Detection of Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis in Auramine-Rhodamine-Positive Sputum Specimens by Real-Time PCR

    PubMed Central

    Ruiz, Maite; Torres, Maria J.; Llanos, Ana C.; Arroyo, Aurelio; Palomares, Jose C.; Aznar, Javier

    2004-01-01

    Our objective was to evaluate the feasibility of a molecular assay based on a real-time PCR technique, carried out with a LightCycler instrument (Roche Biochemicals), to identify Mycobacterium tuberculosis bacilli and to detect rifampin and isoniazid resistance in DNA extracts from sputum samples. We studied three genes: rpoB, which is associated with rifampin resistance, and katG and inhA, which are associated with isoniazid resistance. A total of 205 sputum samples collected from 108 patients diagnosed with pulmonary tuberculosis with positive auramine-rhodamine-staining (AR) sputum samples, were tested. The sensitivities of the LightCycler PCR assay for the positive AR specimens was 97.5% (200 of 205) for rpoB and inhA genes and 96.5% (198 of 205) for the katG gene. For the total number of patients tested, the sensitivity was 100% (108 of 108 patients) for rifampin, whereas the sensitivity was 98.1% (106 of 108 patients) for isoniazid. Full agreement was found with the Bactec MGIT 960 method and the genotype inferred from the LightCycler data for rifampin. The phenotypic method for isoniazid reported 13 resistant strains (≥0.1 μg/ml). In seven (53.8%) strains there was a concordance between both methods, but we found that six (46.2%) strains reported as resistant by the phenotypic method were determined to be susceptible by real-time PCR. For the 75 strains reported as susceptible by the phenotypic method, the concordance with the LightCycler data was 100%. Our results demonstrate that rifampin-resistant M. tuberculosis could be detected in DNA extracted from auramine-rhodamine-positive sputum samples in a single-tube assay that took less than 3 h to perform for a collection of auramine-rhodamine-positive specimens obtained from patients with culture-documented pulmonary tuberculosis. Similarly, this occurs in half of the isoniazid-resistant M. tuberculosis DNA extracted from auramine-rhodamine-positive specimens. PMID:15071008

  17. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus

    PubMed Central

    Kaushik, Amit; Makkar, Nayani; Pandey, Pooja; Parrish, Nicole; Singh, Urvashi

    2015-01-01

    An effective regimen for treatment of tuberculosis (TB) is comprised of multiple drugs that inhibit a range of essential cellular activities in Mycobacterium tuberculosis. The effectiveness of a regimen is further enhanced if constituent drugs act with synergy. Here, we report that faropenem (a penem) or biapenem, doripenem, or meropenem (carbapenems), which belong to the β-lactam class of antibiotics, and rifampin, one of the drugs that forms the backbone of TB treatment, act with synergy when combined. One of the reasons (carba)penems are seldom used for treatment of TB is the high dosage levels required, often at the therapeutic limits. The synergistic combination of rifampin and these (carba)penems indicates that (carba)penems can be administered at dosages that are therapeutically relevant. The combination of faropenem and rifampin also limits the frequency of resistant mutants, as we were unable to obtain spontaneous mutants in the presence of these two drugs. The combinations of rifampin and (carba)penems were effective not only against drug-sensitive Mycobacterium tuberculosis but also against drug-resistant clinical isolates that are otherwise resistant to rifampin. A combination of doripenem or biapenem and rifampin also exhibited synergistic activity against Mycobacterium abscessus. Although the MICs of these three drugs alone against M. abscessus are too high to be of clinical relevance, their concentrations in combinations are therapeutically relevant; therefore, they warrant further evaluation for clinical utility to treat Mycobacterium abscessus infection, especially in cystic fibrosis patients. PMID:26259792

  18. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus.

    PubMed

    Kaushik, Amit; Makkar, Nayani; Pandey, Pooja; Parrish, Nicole; Singh, Urvashi; Lamichhane, Gyanu

    2015-10-01

    An effective regimen for treatment of tuberculosis (TB) is comprised of multiple drugs that inhibit a range of essential cellular activities in Mycobacterium tuberculosis. The effectiveness of a regimen is further enhanced if constituent drugs act with synergy. Here, we report that faropenem (a penem) or biapenem, doripenem, or meropenem (carbapenems), which belong to the β-lactam class of antibiotics, and rifampin, one of the drugs that forms the backbone of TB treatment, act with synergy when combined. One of the reasons (carba)penems are seldom used for treatment of TB is the high dosage levels required, often at the therapeutic limits. The synergistic combination of rifampin and these (carba)penems indicates that (carba)penems can be administered at dosages that are therapeutically relevant. The combination of faropenem and rifampin also limits the frequency of resistant mutants, as we were unable to obtain spontaneous mutants in the presence of these two drugs. The combinations of rifampin and (carba)penems were effective not only against drug-sensitive Mycobacterium tuberculosis but also against drug-resistant clinical isolates that are otherwise resistant to rifampin. A combination of doripenem or biapenem and rifampin also exhibited synergistic activity against Mycobacterium abscessus. Although the MICs of these three drugs alone against M. abscessus are too high to be of clinical relevance, their concentrations in combinations are therapeutically relevant; therefore, they warrant further evaluation for clinical utility to treat Mycobacterium abscessus infection, especially in cystic fibrosis patients. PMID:26259792

  19. Radioimmunoassay of tuberculoprotein derived from Mycobacterium tuberculosis.

    PubMed Central

    Straus, E; Wu, N

    1980-01-01

    A radioimmunoassay was developed for constituent of the purified-protein derivative obtained from cultures of Mycobacterium tuberculosis. Crossreacting immunoreactive material was detected in cultures of other mycobacterial species, but no immunoreactivity was present in cultures of various fungal and bacterial species. The development of specific radioimmunoassays for tuberculoproteins offers a new research and diagnostic approach. Images PMID:6933481

  20. Impaired NK cells' activity and increased numbers of CD4 + CD25+ regulatory T cells in multidrug-resistant Mycobacterium tuberculosis patients.

    PubMed

    Fan, Renhua; Xiang, Yangen; Yang, Li; Liu, Yanke; Chen, Pingsheng; Wang, Lei; Feng, Wenjun; Yin, Ke; Fu, Manjiao; Xu, Yixin; Wu, Jialin

    2016-05-01

    Multidrug-resistant tuberculosis (MDR-TB) often causes persistent infection and chemotherapy failure, which brings heavy burden of society and family. Many immune cell subsets and regulatory mechanisms may operate throughout the various stages of infection. The presence of regulatory T cells (Tregs) is thought to be an important mechanism that TB successfully evades the immune system. Tregs play a central role in the prevention of autoimmunity and in the control of immune responses. The role of Tregs in MDR-TB infection and persistence is inadequately documented. The current study was designed to determine whether CD4 + CD25+ regulatory T cells may modulate innate immunity (such as NK cells) against human tuberculosis. Our results indicated that the numbers of CD4 + CD25+ Treg cells increased in MDR-TB patients' blood, and the cytokine production of IL-10 increased from MDR-patients compared with healthy subjects, along with the lower activity and low CD69 expression of NK cells in patients. These results suggested that immunity to MDR-TB patients induced circulating CD4 + CD25+ T regulatory cells expansion, which may be related to the persistence of Mycobacterium tuberculosis (M. tb) infection, and to the balance between effectors immune responses and suppression immune responses. PMID:27156613

  1. Human immune response to Mycobacterium tuberculosis antigens.

    PubMed Central

    Havlir, D V; Wallis, R S; Boom, W H; Daniel, T M; Chervenak, K; Ellner, J J

    1991-01-01

    Little is known about the immunodominant or protective antigens of Mycobacterium tuberculosis in humans. Cell-mediated immunity is necessary for protection, and healthy tuberculin-positive individuals are relatively resistant to exogenous reinfection. We compared the targets of the cell-mediated immune response in healthy tuberculin-positive individuals to those of tuberculosis patients and tuberculin-negative persons. By using T-cell Western blotting (immunoblotting) of nitrocellulose-bound M. tuberculosis culture filtrate, peaks of T-cell blastogenic activity were identified in the healthy tuberculin reactors at 30, 37, 44, 57, 64, 71 and 88 kDa. Three of these fractions (30, 64, and 71 kDa) coincided with previously characterized proteins: antigen 6/alpha antigen, HSP60, and HSP70, respectively. The blastogenic responses to purified M. tuberculosis antigen 6/alpha antigen and BCG HSP60 were assessed. When cultured with purified antigen 6/alpha antigen, lymphocytes of healthy tuberculin reactors demonstrated greater [3H]thymidine incorporation than either healthy tuberculin-negative controls or tuberculous patients (8,113 +/- 1,939 delta cpm versus 645 +/- 425 delta cpm and 1,019 +/- 710 delta cpm, respectively; P less than 0.01). Healthy reactors also responded to HSP60, although to a lesser degree than antigen 6/alpha antigen (4,276 +/- 1,095 delta cpm; P less than 0.05). Partially purified HSP70 bound to nitrocellulose paper elicited a significant lymphocyte blastogenic response in two of six of the tuberculous patients but in none of the eight healthy tuberculin reactors. Lymphocytes of none of five tuberculin-negative controls responded to recombinant antigens at 14 or 19 kDa or to HSP70. Antibody reactivity generally was inversely correlated with blastogenic response: tuberculous sera had high titer antibody to M. tuberculosis culture filtrate in a range from 35 to 180 kDa. This is the first systematic evaluation of the human response to a panel of native

  2. Hypoxia: a window into Mycobacterium tuberculosis latency.

    PubMed

    Rustad, Tige R; Sherrid, Ashley M; Minch, Kyle J; Sherman, David R

    2009-08-01

    Tuberculosis is a massive public health problem on a global scale and the success of Mycobacterium tuberculosis is linked to its ability to persist within humans for long periods without causing any overt disease symptoms. Hypoxia is predicted to be a key host-induced stress limiting growth of the pathogen in vivo. However, multiple studies in vitro and in vivo indicate that M. tuberculosis adapts to oxygen limitation by entering into a metabolically altered state, while awaiting the opportunity to reactivate. Molecular signatures of bacteria adapted to hypoxia in vitro are accumulating, although correlations to human disease are only now being established. Similarly, defining the mechanisms that control this adaptation is an active area of research. In this review we discuss the historical precedents linking hypoxia and latency, and the gathering knowledge of M. tuberculosis hypoxic responses. We also examine the role of these responses in tuberculosis latency, and identify promising avenues for future studies.

  3. Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains.

    PubMed

    Kim, Hyoun Sook; Kim, Jieun; Im, Ha Na; Yoon, Ji Young; An, Doo Ri; Yoon, Hye Jin; Kim, Jin Young; Min, Hye Kyeoung; Kim, Soon-Jong; Lee, Jae Young; Han, Byung Woo; Suh, Se Won

    2013-03-01

    Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131-Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb L,D-transpeptidase. The structures revealed that the catalytic L,D-transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the `active-site lid' undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb. PMID:23519417

  4. The rpoB gene of Mycobacterium tuberculosis.

    PubMed Central

    Miller, L P; Crawford, J T; Shinnick, T M

    1994-01-01

    A portion of the Mycobacterium tuberculosis gene encoding the beta subunit of RNA polymerase (rpoB) was amplified by PCR using degenerate oligonucleotides and used as a hybridization probe to isolate plasmid clones carrying the entire rpoB gene of M. tuberculosis H37Rv, a virulent, rifampin-susceptible strain. Sequence analysis of a 5,084-bp SacI genomic DNA fragment revealed a 3,534-bp open reading frame encoding an 1,178-amino-acid protein with 57% identity with the Escherichia coli beta subunit. This SacI fragment also carried a portion of the rpoC gene located 43 bp downstream from the 3' end of the rpoB open reading frame; this organization is similar to that of the rpoBC operon of E. coli. The M. tuberculosis rpoB gene was cloned into the shuttle plasmid pMV261 and electroporated into the LR223 strain of Mycobacterium smegmatis, which is highly resistant to rifampin (MIC > 200 micrograms/ml). The resulting transformants were relatively rifampin susceptible (MIC = 50 micrograms/ml). Using PCR mutagenesis techniques, we introduced a specific rpoB point mutation (associated with clinical strains of rifampin-resistant M. tuberculosis) into the cloned M. tuberculosis rpoB gene and expressed this altered gene in the LR222 strain of M. smegmatis, which is susceptible to rifampin (MIC = 25 micrograms/ml). The resulting transformants were rifampin resistant (MIC = 200 micrograms/ml). The mutagenesis and expression strategy of the cloned M. tuberculosis rpoB gene that we have employed in this study will allow us to determine the rpoB mutations that are responsible for rifampin resistance in M. tuberculosis. PMID:8031050

  5. Rapid drug susceptibility test of mycobacterium tuberculosis by bioluminescence sensor

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Xu, Shunqing; Chen, Zifei; Zhou, Yikai

    2001-09-01

    With the persisting increase of drug-resistant stains of M. Tuberculosis around the world, rapid and sensitive detection of antibiotic of M. Tuberculosis is becoming more and more important. In the present study, drug susceptibility of M. tuberculosis were detected by recombination mycobacteriophage combined with bioluminescence sensor. It is based on the use of recombination mycobacteriophage which can express firefly luciferase when it infects viable mycobacteria, and can effectively produce quantifiable photon. Meanwhile, in mycobacterium cells treated with active antibiotic, no light is observed. The emitted light is recorded by a bioluminscence sensor, so the result of drug-resistant test can be determined by the naked eye. 159 stains of M. tuberculosis were applied to this test on their resistant to rifampin, streptomycin and isoniazid. It is found that the agreement of this assay with Liewenstein- Jensen slat is: rifampin 95.60 percent, isoniazid 91.82 percent, streptomycin 88.68 percent, which showed that it is a fast and practical method to scene and detect drug resistant of mycobacterium stains.

  6. Molecular Analysis of the embCAB Locus and embR Gene Involved in Ethambutol Resistance in Clinical Isolates of Mycobacterium tuberculosis in France

    PubMed Central

    Sougakoff, Wladimir; Bernard, Christine; Petrou, Matthieu; Adeyema, Karine; Pham, Anne; Amy de la Breteque, Diane; Vallet, Marine; Jarlier, Vincent; Sola, Christophe; Veziris, Nicolas

    2015-01-01

    Modification of codon 306 in embB is regarded as the main mechanism leading to ethambutol (ETB) resistance in clinical isolates of Mycobacterium tuberculosis. However, numerous mutations elsewhere in the embCAB locus and in embR, a putative transcriptional activator of this locus, have been reported to be involved in ETB resistance. Here, we investigated the diversity of nucleotide variations observed in embCAB and embR in M. tuberculosis complex isolates from France. These regions were sequenced in 71 ETB-resistant (ETB-R) and 60 ETB-susceptible (ETB-S) clinical isolates of known phylogenetic lineages. The 131 isolates had 12 mutations corresponding to phylogenetic markers. Among the 60 ETB-S isolates, only 3 (5%) had nonsynonymous mutations that were not phylogenetic markers. Among the 71 ETB-R isolates, 98% had mutations in embCAB that likely contribute to ETB resistance: 70% had mutations located in embB codon 306, 406, or 497; 13% had mutations located outside these three positions between codons 296 and 426; and 15% had mutations corresponding to mutations in the embC-embA intergenic region. We found a strong association between resistance to ETB and the presence of mutations in embB and the embC-embA intergenic region (P < 0.001). In contrast, the mutations detected in embC and embA were not involved in ETB resistance, and no mutation was detected in embR. These results strongly suggest that the sensitivity of diagnostic assays for detecting ETB resistance based on testing of embB codon 306 can be increased by testing of the embB region between codons 296 and 497 and by including the embC-embA intergenic region between positions −8 and −21. PMID:26033726

  7. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field.

  8. Geographical differences associated with single-nucleotide polymorphisms (SNPs) in nine gene targets among resistant clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Hoshide, Matt; Qian, Lishi; Rodrigues, Camilla; Warren, Rob; Victor, Tommie; Evasco, Henry B; Tupasi, Thelma; Crudu, Valeriu; Douglas, James T

    2014-05-01

    Alternative diagnostic methods, such as sequence-based techniques, are necessary for increasing the proportion of tuberculosis cases tested for drug resistance. Despite the abundance of data on drug resistance, isolates can display phenotypic resistance but lack any distinguishable markers. Furthermore, because resistance-conferring mutations develop under antibiotic pressure, different drug regimens could favor unique single-nucleotide polymorphisms (SNPs) in different geographical regions. A total of 407 isolates were collected from four geographical regions with a high prevalence of drug-resistant tuberculosis (India, Moldova, the Philippines, and South Africa). The "hot spot" or promoter sequences of nine genes (rpoB, gyrA, gyrB, katG, inhA promoter, ahpC promoter, eis promoter, rrs, and tlyA) associated with resistance to four types of antibiotics (rifampin, isoniazid, fluoroquinolones, and aminoglycosides) were analyzed for markers. Four genes contributed largely to resistance (rpoB, gyrA, rrs, and katG), two genes contributed moderately to resistance (the eis and inhA promoters), and three genes contributed little or no resistance (gyrB, tlyA, and the ahpC promoter) in clinical isolates. Several geographical differences were found, including a double mutation in rpoB found in 37.1% of isolates from South Africa, the C→T mutation at position -12 of the eis promoter found exclusively in 60.6% of isolates from Moldova, and the G→A mutation at position -46 of the ahpC promoter found only in India. These differences in polymorphism frequencies emphasize the uniqueness of isolates found in different geographical regions. The inclusion of several genes provided a moderate increase in sensitivity, and elimination of the examination of other genes might increase efficiency.

  9. Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study.

    PubMed

    Colman, Rebecca E; Anderson, Julia; Lemmer, Darrin; Lehmkuhl, Erik; Georghiou, Sophia B; Heaton, Hannah; Wiggins, Kristin; Gillece, John D; Schupp, James M; Catanzaro, Donald G; Crudu, Valeriu; Cohen, Ted; Rodwell, Timothy C; Engelthaler, David M

    2016-08-01

    Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool. PMID:27225403

  10. Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study

    PubMed Central

    Anderson, Julia; Lemmer, Darrin; Lehmkuhl, Erik; Georghiou, Sophia B.; Heaton, Hannah; Wiggins, Kristin; Gillece, John D.; Schupp, James M.; Catanzaro, Donald G.; Crudu, Valeriu; Cohen, Ted; Rodwell, Timothy C.; Engelthaler, David M.

    2016-01-01

    Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool. PMID:27225403

  11. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  12. An Upstream Truncation of the furA-katG Operon Confers High-Level Isoniazid Resistance in a Mycobacterium tuberculosis Clinical Isolate with No Known Resistance-Associated Mutations

    PubMed Central

    Yam, Wing Cheong; Zhang, Ying; Kao, Richard Y. T.

    2014-01-01

    Although the major causes of isoniazid (INH) resistance in Mycobacterium tuberculosis are confined to structural mutations in katG and promoter mutations in the mabA-inhA operon, a significant proportion of INH-resistant strains have unknown resistance mechanisms. Recently, we identified a high-level INH-resistant M. tuberculosis clinical isolate, GB005, with no known resistance-associated mutations. A comprehensive study was performed to investigate the molecular basis of drug resistance in this strain. Although no mutations were found throughout the katG and furA-katG intergenic region, the katG expression and the catalase activity were greatly diminished compared to those in H37Rv (P < 0.01). Northern blotting revealed that the katG transcript from the isolate was smaller than that of H37Rv. Sequencing analysis of furA and upstream genes discovered a 7.2-kb truncation extended from the 96th base preceding the initiation codon of katG. Complementation of the M. tuberculosis Δ(furA-katG) strain with katG and different portions of the truncated region identified a 134-bp upstream fragment of furA that was essential for full catalase activity and INH susceptibility in M. tuberculosis. The promoter activity of this fragment was also shown to be stronger than that of the furA-katG intergenic region (P < 0.01). Collectively, these findings demonstrate that deletion of the 134-bp furA upstream fragment is responsible for the reduction in katG expression, resulting in INH resistance in GB005. To our knowledge, this is the first report showing that deletion of the upstream region preceding the furA-katG operon causes high-level INH resistance in a clinical isolate of M. tuberculosis. PMID:25092698

  13. Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay.

    PubMed

    Riahi, F; Derakhshan, M; Mosavat, A; Soleimanpour, S; Rezaee, S A

    2015-03-01

    Rapid methods for diagnosis of Mycobacterium tuberculosis (Mtb) drug resistance and choosing appropriate antibiotic treatment are pivotal. Thirty isoniazid (INH)-resistant and 30 INH-susceptible Mtb isolates were evaluated using minimum inhibitory concentration (MIC) method followed by multiplex real-time PCR (RT-PCR). Amplification refractory mutation system (ARMS) for detection of mutation in 315 codon of katG gene and single-nucleotide polymorphism (SNP) for detection of mutation in -15 (C>T) in the regulatory zone of mabA-inhA were carried out using the TaqMan method. Primers and probe were used for IS6110 region of Mtb as an internal amplification control. The sensitivity and specificity of the RT-PCR TaqMan probe for detection of Mtb complex were 100 %. Detection of INH-resistant Mtb using the ARMS method for KatG had 69 % sensitivity and 100 % specificity. The sensitivity and specificity of SNP in mabA-inhA fragment for detection of INH-resistant Mtb were 53 and 100 %, respectively. Furthermore, considering both regions, the sensitivity of RT-PCR has increased to 75 %. This study revealed that the qPCR-TaqMan method can be used as a standard tool for diagnosis of Mtb. Moreover, ARMS and SNP RT-PCR TaqMan methods can be used as rapid screening methods for detection of INH-resistant Mtb.

  14. Diversity of Mycobacterium tuberculosis across Evolutionary Scales.

    PubMed

    O'Neill, Mary B; Mortimer, Tatum D; Pepperell, Caitlin S

    2015-01-01

    Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on 'between-host' samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host.

  15. Diversity of Mycobacterium tuberculosis across Evolutionary Scales

    PubMed Central

    O’Neill, Mary B.; Mortimer, Tatum D.; Pepperell, Caitlin S.

    2015-01-01

    Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on ‘between-host’ samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host. PMID:26562841

  16. Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification.

    PubMed

    Banerjee, Rajdeep; Rudra, Paulami; Prajapati, Ranjit Kumar; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2014-07-01

    Mycobacterium tuberculosis, the human pathogen that causes tuberculosis, warrants enormous attention due to the emergence of multi drug resistant and extremely drug resistant strains. RNA polymerase (RNAP), the key enzyme in gene regulation, is an attractive target for anti-TB drugs. Understanding the structure-function relationship of M. tuberculosis RNAP and the mechanism of gene regulation by RNAP in conjunction with different σ factors and transcriptional regulators would provide significant information for anti-tuberculosis drug development targeting RNAP. Studies with M. tuberculosis RNAP remain tedious because of the extremely slow-growing nature of the bacteria and requirement of special laboratory facility. Here, we have developed and optimized recombinant methods to prepare M. tuberculosis RNAP core and RNAP holo enzymes assembled in vivo in Escherichia coli. These methods yield high amounts of transcriptionally active enzymes, free of E. coli RNAP contamination. The recombinant M. tuberculosis RNAP is used to develop a highly sensitive fluorescence based in vitro transcription assay that could be easily adopted in a high-throughput format to screen RNAP inhibitors. These recombinant methods would be useful to set a platform for M. tuberculosis RNAP targeted anti TB drug development, to analyse the structure/function of M. tuberculosis RNAP and to analyse the interactions among promoter DNA, RNAP, σ factors, and transcription regulators of M. tuberculosis in vitro, avoiding the hazard of handling of pathogenic bacteria.

  17. Structural measurements and cell line studies of the copper– PEG–Amikacin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Patel, Hatel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie

    2015-12-15

    The bacterium responsible for causing tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) strains. In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, and LC–MS are used to study different aspects of the Copper–polyethylene glycol (PEG)–Amikacin complex. The Cu(II) cation and the aggregate formed by PEG serve as a carrier for the antibiotic. Several Cu–PEG–Amikacin complex variations were tested against NIH-NIAID cell lines containing both resistant and nonresistant strains of M. tuberculosis.

  18. PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data

    PubMed Central

    Feuerriegel, Silke; Schleusener, Viola; Beckert, Patrick; Kohl, Thomas A.; Miotto, Paolo; Cirillo, Daniela M.; Cabibbe, Andrea M.

    2015-01-01

    Antibiotic-resistant tuberculosis poses a global threat, causing the deaths of hundreds of thousands of people annually. While whole-genome sequencing (WGS), with its unprecedented level of detail, promises to play an increasingly important role in diagnosis, data analysis is a daunting challenge. Here, we present a simple-to-use web service (free for academic use at http://phyresse.org). Delineating both lineage and resistance, it provides state-of-the-art methodology to life scientists and physicians untrained in bioinformatics. It combines elaborate data processing and quality control, as befits human diagnostics, with a treasure trove of validated resistance data collected from well-characterized samples in-house and worldwide. PMID:25854485

  19. Mycobacterium tuberculosis produces pili during human infection

    PubMed Central

    Alteri, Christopher J.; Xicohténcatl-Cortes, Juan; Hess, Sonja; Caballero-Olín, Guillermo; Girón, Jorge A.; Friedman, Richard L.

    2007-01-01

    Mycobacterium tuberculosis is responsible for nearly 3 million human deaths worldwide every year. Understanding the mechanisms and bacterial factors responsible for the ability of M. tuberculosis to cause disease in humans is critical for the development of improved treatment strategies. Many bacterial pathogens use pili as adherence factors to colonize the host. We discovered that M. tuberculosis produces fine (2- to 3-nm-wide), aggregative, flexible pili that are recognized by IgG antibodies contained in sera obtained from patients with active tuberculosis, indicating that the bacilli produce pili or pili-associated antigen during human infection. Purified M. tuberculosis pili (MTP) are composed of low-molecular-weight protein subunits encoded by the predicted M. tuberculosis H37Rv ORF, designated Rv3312A. MTP bind to the extracellular matrix protein laminin in vitro, suggesting that MTP possess adhesive properties. Isogenic mtp mutants lost the ability to produce Mtp in vitro and demonstrated decreased laminin-binding capabilities. MTP shares morphological, biochemical, and functional properties attributed to bacterial pili, especially with curli amyloid fibers. Thus, we propose that MTP are previously unidentified host-colonization factors of M. tuberculosis. PMID:17360408

  20. Suitability of IS6110-RFLP and MIRU-VNTR for differentiating spoligotyped drug-resistant mycobacterium tuberculosis clinical isolates from Sichuan in China.

    PubMed

    Zheng, Chao; Zhao, Yuding; Zhu, Guoqiang; Li, Song; Sun, Honghu; Feng, Qin; Luo, Mei; Wu, Fanzi; Li, Xuefeng; Hill, Véronique; Rastogi, Nalin; Sun, Qun

    2014-01-01

    Genotypes of Mycobacterium tuberculosis complex (MTBC) vary with the geographic origin of the patients and can affect tuberculosis (TB) transmission. This study was aimed to further differentiate spoligotype-defined clusters of drug-resistant MTBC clinical isolates split in Beijing (n = 190) versus non-Beijing isolates (n = 84) from Sichuan region, the second high-burden province in China, by IS6110-restriction fragment length polymorphism (RFLP) and 24-locus MIRU-VNTRs. Among 274 spoligotyped isolates, the clustering ratio of Beijing family was 5.3% by 24-locus MIRU-VNTRs versus 2.1% by IS6110-RFLP, while none of the non-Beijing isolates were clustered by 24-locus MIRU-VNTRs versus 9.5% by IS6110-RFLP. Hence, neither the 24-locus MIRU-VNTR was sufficient enough to fully discriminate the Beijing family, nor the IS6110-RFLP for the non-Beijing isolates. A region adjusted scheme combining 12 highly discriminatory VNTR loci with IS6110-RFLP was a better alternative for typing Beijing strains in Sichuan than 24-locus MIRU-VNTRs alone. IS6110-RFLP was for the first time introduced to systematically genotype MTBC in Sichuan and we conclude that the region-adjusted scheme of 12 highly discriminative VNTRs might be a suitable alternative to 24-locus MIRU-VNTR scheme for non-Beijing strains, while the clusters of the Beijing isolates should be further subtyped using IS6110-RFLP for optimal discrimination.

  1. Comparative Mycobacterium tuberculosis Spoligotype Distribution in Mexico

    PubMed Central

    Ramos-Alvarez, Jessica; Molina-Torres, Carmen A.; Rivera-Morales, Lydia Guadalupe; Rendón, Adrian; Quiñones-Falconi, Francisco; Ocampo-Candiani, Jorge

    2014-01-01

    In the present work, we studied the genetic diversity of Mycobacterium tuberculosis clinical isolates from patients according to their gender, age, and geographic location in Mexico. We did not observe any statistically significant differences in regard to age or gender. We found that spoligo international type 53 (SIT53) is more frequent in the northern states and that SIT119 predominates in central Mexico. PMID:24850349

  2. Mycobacterium tuberculosis: Manipulator of Protective Immunity

    PubMed Central

    Korb, Vanessa C.; Chuturgoon, Anil A.; Moodley, Devapregasan

    2016-01-01

    Mycobacterium tuberculosis (MTB) is one of the most successful pathogens in human history and remains a global health challenge. MTB has evolved a plethora of strategies to evade the immune response sufficiently to survive within the macrophage in a bacterial-immunological equilibrium, yet causes sufficient immunopathology to facilitate its transmission. This review highlights MTB as the driver of disease pathogenesis and presents evidence of the mechanisms by which MTB manipulates the protective immune response into a pathological productive infection. PMID:26927066

  3. Systematic interpretation of molecular beacon polymerase chain reaction for identifying rpoB mutations in Mycobacterium tuberculosis isolates with mixed resistant and susceptible bacteria.

    PubMed

    Gomez, Diana I; Fisher-Hoch, Susan P; Bordt, Andrea S; Quitugua, Teresa N; Robledo, Jaime; Alvarez, Nataly; Correa, Nidia; McCormick, Joseph B; Restrepo, Blanca I

    2010-05-01

    Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. Rifampicin (RIF) resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas-Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings

  4. High rates of ofloxacin resistance in Mycobacterium tuberculosis among both new and previously treated patients in Tamil Nadu, South India.

    PubMed

    Selvakumar, N; Kumar, Vanaja; Balaji, S; Prabuseenivasan, S; Radhakrishnan, R; Sekar, Gomathi; Chandrasekaran, V; Kannan, T; Thomas, Aleyamma; Arunagiri, S; Dewan, Puneet; Swaminathan, Soumya

    2015-01-01

    Periodic drug resistance surveillance provides useful information on trends of drug resistance and effectiveness of tuberculosis (TB) control measures. The present study determines the prevalence of drug resistance among new sputum smear positive (NSP) and previously treated (PT) pulmonary TB patients, diagnosed at public sector designated microscopy centers (DMCs) in the state of Tamil Nadu, India. In this single-stage cluster-sampling prevalence survey, 70 of 700 DMCs were randomly selected using a probability-proportional to size method. A cluster size of 24 for NSP and a varying size of 0 to 99 for PT cases were fixed for each selected DMC. Culture and drug susceptibility testing was done on Lowenstein-Jensen medium using the economic variant of proportion sensitivity test for isoniazid (INH), rifampicin (RMP), ofloxacin (OFX) and kanamycin (KAN). Human Immunodeficiency Virus (HIV) status was collected from patient records. From June 2011 to August 2012, 1524 NSP and 901 PT patients were enrolled. Any RMP resistance and any INH resistance were observed in 2.6% and 15.1%, and in 10.4% and 30% respectively in NSP and PT cases. Among PT patients, multi drug resistant TB (MDR-TB) was highest in the treatment failure (35%) group, followed by relapse (13%) and treatment after default (10%) groups. Extensively drug resistant TB (XDRTB) was seen in 4.3% of MDR-TB cases. Any OFX resistance was seen in 10.4% of NSP, 13.9% of PT and 29% of PT MDR-TB patients. The HIV status of the patient had no impact on drug resistance levels. RMP resistance was present in 2.6% of new and 15.1% of previously treated patients in Tamil Nadu. Rates of OFX resistance were high among NSP and PT patients, especially among those with MDR-TB, a matter of concern for development of new treatment regimens for TB.

  5. Combined real-time PCR and rpoB gene pyrosequencing for rapid identification of Mycobacterium tuberculosis and determination of rifampin resistance directly in clinical specimens.

    PubMed

    Halse, Tanya A; Edwards, Justine; Cunningham, Phyllis L; Wolfgang, William J; Dumas, Nellie B; Escuyer, Vincent E; Musser, Kimberlee A

    2010-04-01

    Our laboratory has developed a rapid, sensitive, and specific molecular approach for detection in clinical specimens, within 48 h of receipt, of both Mycobacterium tuberculosis complex (MTBC) DNA and mutations within the 81-bp core region of the rpoB gene that are associated with rifampin (RIF) resistance. This approach, which combines an initial real-time PCR with internal inhibition assessment and a pyrosequencing assay, was validated for direct use with clinical specimens. To assess the suitability of real-time PCR for use with respiratory, nonrespiratory, acid-fast bacillus (AFB)-positive and AFB-negative specimens, we evaluated specimens received in our laboratory between 11 October 2007 and 30 June 2009. With culture used as the "gold standard," the sensitivity, specificity, and positive and negative predictive values were determined for 1,316 specimens to be as follows: for respiratory specimens, 94.7%, 99.9%, 99.6%, and 98.6%, respectively; for nonrespiratory specimens, 88.5%, 100.0%, 100.0%, and 96.9%, respectively; for AFB-positive specimens, 99.6%, 100.0%, 100.0%, and 97.7%, respectively; and for AFB-negative specimens, 75.4%, 99.9%, 98.0%, and 98.4%, respectively. PCR inhibition was determined to be minimal in this assay, occurring in 0.2% of tests. The rpoB gene pyrosequencing assay was evaluated in a similar prospective study, in which 148 clinical specimens positive for MTBC DNA by real-time PCR were tested. The final results revealed that the results of direct testing of clinical specimens by the pyrosequencing assay were 98.6% concordant with the results of conventional testing for susceptibility to RIF in liquid culture and that our assay displayed adequate sensitivity for 96.6% of the clinical specimens tested. Used together, these assays provide reliable results that aid with the initial management of patients with suspected tuberculosis prior to the availability of the results for cultured material, and they also provide the ability to predict

  6. GenoType MTBDRplus Assay for Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Meta-Analysis

    PubMed Central

    Bai, Yuanyuan; Wang, Yueling; Shao, Chunhong; Hao, Yingying; Jin, Yan

    2016-01-01

    Background There is an urgent demand for rapid and accurate drug-susceptibility testing for the detection of multidrug-resistant tuberculosis. The GenoType MTBDRplus assay is a promising molecular kit designed for rapid identification of resistance to first-line anti-tuberculosis drugs, isoniazid and rifampicin. The aim of this meta-analysis was to evaluate the diagnostic accuracy of GenoType MTBDRplus in detecting drug resistance to isoniazid and rifampicin in comparison with the conventional drug susceptibility tests. Methods We searched PubMed, EMBASE, and Cochrane Library databases to identify studies according to predetermined criteria. A total of 40 studies were included in the meta-analysis. QUADAS-2 was used to assess the quality of included studies with RevMan 5.2. STATA 13.0 software was used to analyze the tests for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curves. Heterogeneity in accuracy measures was tested with Spearman correlation coefficient and Chi-square. Results Patient selection bias was observed in most studies. The pooled sensitivity (95% confidence intervals were 0.91 (0.88–0.94) for isoniazid, 0.96 (0.95–0.97) for rifampicin, and 0.91(0.86–0.94) for multidrug-resistance. The pooled specificity (95% CI) was 0.99 (0.98–0.99) for isoniazid, 0.98 (0.97–0.99) for rifampicin and 0.99 (0.99–1.00) for multidrug-resistance, respectively. The area under the summary receiver operating characteristic curves ranged from 0.99 to 1.00. Conclusion This meta-analysis determined that GenoType MTBDRplus had good accuracy for rapid detection of drug resistance to isoniazid and/or rifampicin of M. tuberculosis. MTBDRplus method might be a good alternative to conventional drug susceptibility tests in clinical practice. PMID:26934724

  7. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  8. Medical devices; immunology and microbiology devices; classification of nucleic acid-based devices for the detection of Mycobacterium tuberculosis complex and the genetic mutations associated with antibiotic resistance. Final order.

    PubMed

    2014-10-22

    The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.

  9. MDR-TB Antibody Response (Western Blot) to Fractions of Isoniazid and Rifampicin Resistant Antigens of Mycobacterium tuberculosis.

    PubMed

    Hadizadeh Tasbiti, Alireza; Yari, Shamsi; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Bahrmand, Ahmadreza

    2015-12-01

    Drug-resistant TB poses a major threat to control of TB worldwide. Despite progress in the detection of Multidrug-resistant TB (MDR-TB) cases, a major diagnostic gap remains: 55% of reported TB patients estimated to have MDR-TB were not detected in 2013. MDR-TB antigens were conjugated to CNBr-activated Sepharose 4B. Specific polyclonal antibodies against MDR-TB Ags were prepared in rabbits using two boosted injections of the MDR-TB antigen. The antibodies were purified and treated with susceptible TB to remove any non-specific and cross-reactive antibodies. In the present study, comparative analysis of electrophoretic pattern of different antigens of INH/RIF-resistant TB were studied for identifying protein profiles. A RIF-resistant TB antigen was shown here to have different protein profiles from INH-resistant TB isolate. The results of Western blotting analysis showed that in the RIF- and INH-resistant antigenic fractions some bands of 14.4 and 45 kDa as immunogenic were common. Moreover, four bands of RIF-resistant TB antigen fractions (16, 19, 21, and 45 KDa) and one band of INH-resistant TB (about 26 KDa) were detected as diagnostic antigens. This study suggests that the Western blot is an accurate test to survey INH- and RIF-resistant TB antigens of M. tuberculosis infection. These findings indicate that MDR-TB diagnosis (based on Ag detection) could be useful in the identification of disease stages that precede symptomatic and microbiologically positive TB, such as subclinical and incipient TB.

  10. Efficacies of selected disinfectants against Mycobacterium tuberculosis.

    PubMed

    Best, M; Sattar, S A; Springthorpe, V S; Kennedy, M E

    1990-10-01

    The activities of 10 formulations as mycobactericidal agents in Mycobacterium tuberculosis-contaminated suspensions (suspension test) and stainless steel surfaces (carrier test) were investigated with sputum as the organic load. The quaternary ammonium compound, chlorhexidine gluconate, and an iodophor were ineffective in all tests. Ethanol (70%) was effective against M. tuberculosis only in suspension in the absence of sputum. Povidone-iodine was not as efficacious when the test organism was dried on a surface as it was in suspension, and its activity was further reduced in the presence of sputum. Sodium hypochlorite required a higher concentration of available chlorine to achieve an effective level of disinfection than did sodium dichloroisocyanurate. Phenol (5%) was effective under all test conditions, producing at least a 4-log10 reduction in CFU. The undiluted glutaraldehyde-phenate solution was effective against M. tuberculosis and a second test organism, Mycobacterium smegmatis, even in the presence of dried sputum, whereas the diluted solution (1:16) was only effective against M. smegmatis in the suspension test. A solution of 2% glutaraldehyde was effective against M. tuberculosis. This investigation presents tuberculocidal efficacy data generated by methods simulating actual practices of routine disinfection. PMID:2121783

  11. Early detection of multidrug resistant (MDR) Mycobacterium tuberculosis in a single tube with in-house designed fluorescence resonance energy transfer (FRET) probes using real-time PCR.

    PubMed

    Chauhan, Devendra Singh; Sharma, Rahul; Parashar, Deepti; Sharma, Pragya; Das, Ram; Chahar, Madhvi; Singh, Ajay Vir; Singh, Pravin Kumar; Katoch, Kiran; Katoch, Vishwa Mohan

    2016-04-01

    Rapid and correct diagnosis is crucial for the management of multidrug resistance (MDR) in Mycobacterium tuberculosis (MTB). The present study aims at rapid diagnosis for identification of multidrug resistance tuberculosis (MDR-TB) using real-time PCR. FRET hybridization probes targeting most prominent four selected codons for rpoB526 and 531 and for katG314 and 315 genes were designed and evaluated on 143 clinical MTB isolates and paired sputa for rapid detection of MDR-TB. The results of real-time PCR were compared with gold standard L-J proportion method and further validated by DNA sequencing. Of the 143 MTB positive cultures, 85 and 58 isolates were found to be 'MDR' and 'pan susceptible', respectively by proportion L-J method. The sensitivity of real-time PCR for the detection of rifampicin (RIF) and isoniazid (INH) were 85.88 and 94.11%, respectively, and the specificity of method was found to be 98.27%. DNA sequencing of 31 MTB isolates having distinct melting temperature (Tm) as compared to the standard drug susceptible H37Rv strain showed 100% concordance with real-time PCR results. DNA sequencing revealed the mutations at Ser531Leu, His526Asp of rpoB gene and Ser315Thr, Thr314Pro of katG gene in RIF and INH resistance cases. This real-time PCR assay that targets limited number of loci in a selected range ensures direct and rapid detection of MDR-TB in Indian settings. However, future studies for revalidation as well as refinement are required to break the limitations of MDR-TB detection.

  12. Nitrate Reductase Assay for Rapid Detection of Isoniazid, Rifampin, Ethambutol, and Streptomycin Resistance in Mycobacterium tuberculosis: a Systematic Review and Meta-Analysis

    PubMed Central

    Deveci, Aydin; Sunter, Ahmet Tevfik; Martin, Anandi

    2014-01-01

    Colorimetric phenotypic tests recently gained interest because traditional primary drug susceptibility testing of Mycobacterium tuberculosis isolates takes a long time. We used meta-analysis techniques to review the reliability and accuracy of the nitrate reductase assay (NRA), which is one of the most popular colorimetric methods to detect resistance to first-line drugs. Medline, PubMed, ISI Web, Web of Science, and Google Scholar were used to search for studies enrolled in the meta-analysis. The analysis included 35 studies for isoniazid (INH), 38 for rifampin (RIF), and 22 for ethambutol (EMB) and streptomycin (STR). Summary receiver operating characteristic (SROC) curves were applied to summarize diagnostic accuracy. The meta-analyses were performed by the use of Meta-DiSc software (version 1.4) and were focused on sensitivity and specificity values for measurements of accuracy. The pooled sensitivities were 96% for INH, 97% for RIF, 90% for EMB, and 82% for STR. The pooled specificities for INH, RIF, EMB, and STR were 99%, 100%, 98%, and 96%, respectively. The times required to obtain results were between 5 and 28 days by the direct NRA and between 5 and 14 days by the indirect test. In conclusion, the present meta-analysis showed that the NRA is a reliable low-cost rapid colorimetric susceptibility test that can be used for the detection of multidrug-resistant (MDR) tuberculosis, including detection of EMB resistance. However, the test appears to have a relatively low sensitivity for STR and needs further improvement. PMID:24131684

  13. Structural basis for the inhibition of Mycobacterium tuberculosis l,d-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains

    PubMed Central

    Kim, Hyoun Sook; Kim, Jieun; Im, Ha Na; Yoon, Ji Young; An, Doo Ri; Yoon, Hye Jin; Kim, Jin Young; Min, Hye Kyeoung; Kim, Soon-Jong; Lee, Jae Young; Han, Byung Woo; Suh, Se Won

    2013-01-01

    Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate l,d-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional l,d-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131–Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb l,d-transpeptidase. The structures revealed that the catalytic l,d-­transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the ‘active-site lid’ undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of l,d-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb. PMID:23519417

  14. Early detection of multidrug resistant (MDR) Mycobacterium tuberculosis in a single tube with in-house designed fluorescence resonance energy transfer (FRET) probes using real-time PCR.

    PubMed

    Chauhan, Devendra Singh; Sharma, Rahul; Parashar, Deepti; Sharma, Pragya; Das, Ram; Chahar, Madhvi; Singh, Ajay Vir; Singh, Pravin Kumar; Katoch, Kiran; Katoch, Vishwa Mohan

    2016-04-01

    Rapid and correct diagnosis is crucial for the management of multidrug resistance (MDR) in Mycobacterium tuberculosis (MTB). The present study aims at rapid diagnosis for identification of multidrug resistance tuberculosis (MDR-TB) using real-time PCR. FRET hybridization probes targeting most prominent four selected codons for rpoB526 and 531 and for katG314 and 315 genes were designed and evaluated on 143 clinical MTB isolates and paired sputa for rapid detection of MDR-TB. The results of real-time PCR were compared with gold standard L-J proportion method and further validated by DNA sequencing. Of the 143 MTB positive cultures, 85 and 58 isolates were found to be 'MDR' and 'pan susceptible', respectively by proportion L-J method. The sensitivity of real-time PCR for the detection of rifampicin (RIF) and isoniazid (INH) were 85.88 and 94.11%, respectively, and the specificity of method was found to be 98.27%. DNA sequencing of 31 MTB isolates having distinct melting temperature (Tm) as compared to the standard drug susceptible H37Rv strain showed 100% concordance with real-time PCR results. DNA sequencing revealed the mutations at Ser531Leu, His526Asp of rpoB gene and Ser315Thr, Thr314Pro of katG gene in RIF and INH resistance cases. This real-time PCR assay that targets limited number of loci in a selected range ensures direct and rapid detection of MDR-TB in Indian settings. However, future studies for revalidation as well as refinement are required to break the limitations of MDR-TB detection. PMID:27295919

  15. Iron Acquisition Mechanisms: Promising Target Against Mycobacterium tuberculosis

    PubMed Central

    Hameed, Saif; Pal, Rahul; Fatima, Zeeshan

    2015-01-01

    Continuous deployment of antitubercular drugs in treating Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed as Multi-Drug Resistance (MDR-TB). Despite reasonable documentation of major factors which contribute to MDR mechanisms, it appears unavoidable to consider novel mechanisms combating MDR. The ability of pathogenic MTB, to sense and become accustomed to changes in the host environment is essential for its survival and confers the basis of their success as dreadful pathogen. One such significant environmental factor that MTB must surmount is iron limitation, since they encounter diverse anatomical sites during the establishment of infection within the host. Considering the importance of MTB, being the second most common cause of mortality, this review focuses on gaining insights of iron acquisition mechanisms in MTB and how it can be exploited as efficient anti-mycobacterial drug target. PMID:26464608

  16. High Persister Mutants in Mycobacterium tuberculosis

    PubMed Central

    Torrey, Heather L.; Keren, Iris; Via, Laura E.; Lee, Jong Seok; Lewis, Kim

    2016-01-01

    Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip) mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection. PMID:27176494

  17. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  18. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants.

    PubMed

    Gevorkian, Goar; Segura, Erika; Acero, Gonzalo; Palma, José P; Espitia, Clara; Manoutcharian, Karen; López-Marín, Luz M

    2005-04-15

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed.

  19. Drug-Resistant Tuberculosis: Challenges and Progress.

    PubMed

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  20. Epidemiology of Rifampicin Resistant Tuberculosis and Common Mutations in rpoB Gene of Mycobacterium tuberculosis: A Retrospective Study from Six Districts of Punjab (India) Using Xpert MTB/RIF Assay

    PubMed Central

    Kaur, Ramandeep; Jindal, Neerja; Arora, Shilpa; Kataria, Shajla

    2016-01-01

    Background: Xpert MTB/RIF assay has revolutionized the diagnosis of tuberculosis (TB) by simultaneously detecting the bacteria and resistance to rifampicin (RIF), a surrogate marker for multidrug-resistant TB (MDR-TB) in <2 h. The RIF resistance pattern in Malwa region of Punjab, India, is not documented. Here, we report the epidemiology of RIF-resistant TB and mutations in rpoB gene of Mycobacterium tuberculosis (MTB). Materials and Methods: A total of 1612 specimens received between October 2013 and February 2015 were tested by Xpert MTB/RIF assay following manufacturer's instructions. The results thus obtained were analyzed using SPSS version 20.0.0 (SPSS Inc., Chicago, IL, USA) statistical software. Result: RIF resistance was statistically higher in previously treated patients in comparison to the new patients (P = 0.006) and in patients with acid fast-Bacilli (AFB) positive smears to AFB-negative smears (P = 0.048). RIF resistance mutations in 130 specimens revealed frequency of E 73/130 (56%), B 28/130 (21.5%), D 18/130 (13.8%), A 11/130 (8.4%), and C 1/130 (0.7%) while in one specimen, mutation combination, i.e., mutations associated with more than one probe (A and B both) was present. Conclusion: Xpert MTB/RIF assay is a user-friendly screening tool for detection of MTB and RIF resistance from suspected TB/MDR cases in a shorter period of time. It could also serve as a useful technique to have simultaneous preliminary information regarding the mutation pattern of RIF resistance in MTB isolates. PMID:27365918

  1. Genomic signal analysis of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan; Banica, Dorina; Tuduce, Rodica

    2007-02-01

    As previously shown the conversion of nucleotide sequences into digital signals offers the possibility to apply signal processing methods for the analysis of genomic data. Genomic Signal Analysis (GSA) has been used to analyze large scale features of DNA sequences, at the scale of whole chromosomes, including both coding and non-coding regions. The striking regularities of genomic signals reveal restrictions in the way nucleotides and pairs of nucleotides are distributed along nucleotide sequences. Structurally, a chromosome appears to be less of a "plain text", corresponding to certain semantic and grammar rules, but more of a "poem", satisfying additional symmetry restrictions that evoke the "rhythm" and "rhyme". Recurrent patterns in nucleotide sequences are reflected in simple mathematical regularities observed in genomic signals. GSA has also been used to track pathogen variability, especially concerning their resistance to drugs. Previous work has been dedicated to the study of HIV-1, Clade F and Avian Flu. The present paper applies GSA methodology to study Mycobacterium tuberculosis (MT) rpoB gene variability, relevant to its resistance to antibiotics. Isolates from 50 Romanian patients have been studied both by rapid LightCycler PCR and by sequencing of a segment of 190-250 nucleotides covering the region of interest. The variability is caused by SNPs occurring at specific sites along the gene strand, as well as by inclusions. Because of the mentioned symmetry restrictions, the GS variations tend to compensate. An important result is that MT can act as a vector for HIV virus, which is able to retrotranscribe its specific genes both into human and MT genomes.

  2. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    PubMed

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  3. Epidemiological models of Mycobacterium tuberculosis complex infections.

    PubMed

    Ozcaglar, Cagri; Shabbeer, Amina; Vandenberg, Scott L; Yener, Bülent; Bennett, Kristin P

    2012-04-01

    The resurgence of tuberculosis in the 1990s and the emergence of drug-resistant tuberculosis in the first decade of the 21st century increased the importance of epidemiological models for the disease. Due to slow progression of tuberculosis, the transmission dynamics and its long-term effects can often be better observed and predicted using simulations of epidemiological models. This study provides a review of earlier study on modeling different aspects of tuberculosis dynamics. The models simulate tuberculosis transmission dynamics, treatment, drug resistance, control strategies for increasing compliance to treatment, HIV/TB co-infection, and patient groups. The models are based on various mathematical systems, such as systems of ordinary differential equations, simulation models, and Markov Chain Monte Carlo methods. The inferences from the models are justified by case studies and statistical analysis of TB patient datasets. PMID:22387570

  4. Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping

    PubMed Central

    Djelouadji, Zoheira; Arnold, Catherine; Gharbia, Saheer; Raoult, Didier; Drancourt, Michel

    2008-01-01

    Background Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing <8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts ≤ 42 cycles in internal transcribed spacer-real time PCR. Conclusions These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available

  5. Impact of β-Lactamase Inhibition on the Activity of Ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus

    PubMed Central

    Dubée, Vincent; Soroka, Daria; Cortes, Mélanie; Lefebvre, Anne-Laure; Gutmann, Laurent; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2015-01-01

    The production of β-lactamases BlaMab and BlaC contributes to β-lactam resistance in Mycobacterium abscessus and Mycobacterium tuberculosis, respectively. Ceftaroline was efficiently hydrolyzed by these enzymes. Inhibition of M. tuberculosis BlaC by clavulanate decreased the ceftaroline MIC from ≥256 to 16 to 64 μg/ml, but these values are clinically irrelevant. In contrast, the ceftaroline-avibactam combination should be evaluated against M. abscessus since it inhibited growth at lower and potentially achievable drug concentrations. PMID:25733512

  6. [Susceptibilities of Mycobacterium tuberculosis strains collected from regional tuberculosis laboratories to major antituberculous drugs].

    PubMed

    Sayğan, M Bakir; Ocak, Fatih; Cesur, Salih; Tarhan, Gülnur; Ceyhan, Ismail; Gümüişlü, Feyzullah; Beker, Gülşan; Güner, Uğur; Coşkun, Erol

    2007-07-01

    The aim of this study was to investigate the susceptibility rates of Mycobacterium tuberculosis strains sent to Refik Saydam Hygiene Center, Tuberculosis Reference and Research Laboratory, Ankara, from seven different regional tuberculosis laboratories between the 1999-2002 period against major antituberculous drugs. The sensitivities of a total 505 M. tuberculosis strains to isoniazid (INAH), rifampicin (RIF), streptomycin (SM) and ethambutol (EMB) were determined by using proportion method in Lowenstein-Jensen medium. Of the strains, 385 (76.2%) were found sensitive to all of the tested drugs, while 120 strains were resistant to at least one of the antituberculous drugs. The resistant strains showed 14 different resistance patterns. The resistance rates were detected as 13.3% for INAH and RIF (67 strains of each), 9.1% for SM (46 strains), and 3.4% (17 strains) for EMB. Multidrug resistant (INAH+RIF) M. tuberculosis was 7.9% (40 strains). The highest resistance rate to INAH, RIF and EMB (21.2%, 21.2% and 10.6%, respectively) was detected in the isolates which were sent from Bursa province (located in northwestern Turkey); the highest SM (18.8%) and multidrug resistance (INAH+RIF) rates (18.8% and 10.6%, respectively) were detected in the strains sent from Elazig and Van provinces (both located in eastern Turkey). Since the inappropriate use of the first and second line antituberculous drugs leads to the development and spread of the resistant strains, "Directly Observed Therapy Shortcourse (DOTS)" is a very important practice. Therefore regional tuberculosis laboratories should be worth considering as the chains of a well-organized national laboratory network, in order to detect the antituberculous drug resistance patterns of the M. tuberculosis strains over the country.

  7. Isoniazid (INH) treatment of INH-resistant Mycobacterium tuberculosis inhibits infected macrophage to produce TNF-alpha.

    PubMed

    Wibawa, Tri; Pangemanan, Lisa; Rachmawaty, Farida J; Rintiswati, Ning; Mustofa; Soesatyo, Marsetyawan H N E

    2014-09-01

    Macrophages undergo apoptosis after infected by Mycobacterium tuber- culosis (M.tb), which is regulated by tumor necrosis factor alpha (TNF-alpha) and has a direct correlation with killing of intracellular bacilli. In order to clarify the role of isoniazid (INH) in the modulation of macrophages apoptosis and intracellular bacilli replication, we performed the following studies using an INH-resistant clinical M.tb isolate (INHres). Macrophages derived from peripheral blood were infected with INHres and treated or not treated with INH. Apoptosis was measured using an Ag-capture ELISA for histone and fragmented DNA. Production of TNF-alpha by INHres infected was assayed using ELISA and viability of intracellular M.tb was determined using bacterial culture of macrophage lysates on Lowenstein-Jensen (LJ) medium. INH pre-treatment to INHres reduced macrophages apoptosis, production of TNF-alpha and intracellular INHres viability. This study indicated that INH affected TNF-alpha release resulting in reduction of the extent macrophages apoptosis and of intracellular INH-resistant M.tb viability.

  8. Predominant Mycobacterium tuberculosis Families and High Rates of Recent Transmission among New Cases Are Not Associated with Primary Multidrug Resistance in Lima, Peru.

    PubMed

    Barletta, Francesca; Otero, Larissa; de Jong, Bouke C; Iwamoto, Tomotada; Arikawa, Kentaro; Van der Stuyft, Patrick; Niemann, Stefan; Merker, Matthias; Uwizeye, Cécile; Seas, Carlos; Rigouts, Leen

    2015-06-01

    Sputum samples from new tuberculosis (TB) cases were collected over 2 years as part of a prospective study in the northeastern part of Lima, Peru. To measure the contribution of recent transmission to the high rates of multidrug resistance (MDR) in this area, Mycobacterium tuberculosis complex (MTBc) isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and 15-locus mycobacterial interspersed repetitive-unit (MIRU-15)-variable-number tandem repeat (VNTR) analysis. MDR was found in 6.8% of 844 isolates, of which 593 (70.3%) were identified as belonging to a known MTBc lineage, whereas 198 isolates (23.5%) could not be assigned to these lineages and 12 (1.4%) represented mixed infections. Lineage 4 accounted for 54.9% (n = 463) of the isolates, most of which belonged to the Haarlem family (n = 279). MIRU-15 analysis grouped 551/791 isolates (69.7%) in 102 clusters, with sizes ranging from 2 to 46 strains. The overall high clustering rate suggests a high level of recent transmission in this population, especially among younger patients (odds ratio [OR], 1.6; P = 0.01). Haarlem strains were more prone to cluster, compared to the other families taken together (OR, 2.0; P < 0.0001), while Beijing (OR, 0.6; P = 0.006) and LAM (OR, 0.7; P = 0.07) strains clustered less. Whereas streptomycin-resistant strains were more commonly found in clusters (OR, 1.8; P = 0.03), clustering rates did not differ between MDR and non-MDR strains (OR, 1.8; P = 0.1). Furthermore, only 16/51 MDR strains clustered with other MDR strains, suggesting that patients with primary MDR infections acquired the infections mostly from index cases outside the study population, such as retreated cases.

  9. Predominant Mycobacterium tuberculosis Families and High Rates of Recent Transmission among New Cases Are Not Associated with Primary Multidrug Resistance in Lima, Peru

    PubMed Central

    Otero, Larissa; de Jong, Bouke C.; Iwamoto, Tomotada; Arikawa, Kentaro; Van der Stuyft, Patrick; Niemann, Stefan; Merker, Matthias; Uwizeye, Cécile; Seas, Carlos; Rigouts, Leen

    2015-01-01

    Sputum samples from new tuberculosis (TB) cases were collected over 2 years as part of a prospective study in the northeastern part of Lima, Peru. To measure the contribution of recent transmission to the high rates of multidrug resistance (MDR) in this area, Mycobacterium tuberculosis complex (MTBc) isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and 15-locus mycobacterial interspersed repetitive-unit (MIRU-15)-variable-number tandem repeat (VNTR) analysis. MDR was found in 6.8% of 844 isolates, of which 593 (70.3%) were identified as belonging to a known MTBc lineage, whereas 198 isolates (23.5%) could not be assigned to these lineages and 12 (1.4%) represented mixed infections. Lineage 4 accounted for 54.9% (n = 463) of the isolates, most of which belonged to the Haarlem family (n = 279). MIRU-15 analysis grouped 551/791 isolates (69.7%) in 102 clusters, with sizes ranging from 2 to 46 strains. The overall high clustering rate suggests a high level of recent transmission in this population, especially among younger patients (odds ratio [OR], 1.6; P = 0.01). Haarlem strains were more prone to cluster, compared to the other families taken together (OR, 2.0; P < 0.0001), while Beijing (OR, 0.6; P = 0.006) and LAM (OR, 0.7; P = 0.07) strains clustered less. Whereas streptomycin-resistant strains were more commonly found in clusters (OR, 1.8; P = 0.03), clustering rates did not differ between MDR and non-MDR strains (OR, 1.8; P = 0.1). Furthermore, only 16/51 MDR strains clustered with other MDR strains, suggesting that patients with primary MDR infections acquired the infections mostly from index cases outside the study population, such as retreated cases. PMID:25809979

  10. The contribution of hydrogen peroxide resistance to virulence of Mycobacterium tuberculosis during the first six days after intravenous infection of normal and BCG-vaccinated guinea-pigs.

    PubMed Central

    Jackett, P. S.; Aber, V. R.; Mitchison, D. A.; Lowrie, D. B.

    1981-01-01

    The course of infection with Mycobacterium tuberculosis strains H37Rv, H37Ra and their isoniazid-resistant, hydrogen peroxide-susceptible mutants in guinea-pig spleen and lung were assessed by measuring changes in number of viable bacteria during the first and second 3-day intervals after i.v. infection of normal and BCG-vaccinated animals. Vaccination had no effect on bacterial survival in the first 3 days of infection. The peroxide-susceptible mutants were killed or inhibited more than their parent strains; in normal animals this enhanced susceptibility was expressed equally during the first and second 3-day intervals while in vaccinated animals the effect was greater in the second 3-day interval. The results suggest that hydrogen peroxide is generated in significant amounts in the environment of tubercle bacilli lodged in normal tissues and in enhanced amounts when acquired immunity becomes expressed after a few days' lodgement in the tissues of vaccinated animals. Thus hydrogen peroxide resistance may contribute to virulence by protecting against both normal resident and immunologically activated macrophages. PMID:6784743

  11. Disseminated Mycobacterium tuberculosis infection in a dog.

    PubMed

    Martinho, Anna Paula Vitirito; Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Perrotti, Isabella Belletti Mutt; Mangia, Simone Henriques; Megid, Jane; Vulcano, Luiz Carlos; Lara, Gustavo Henrique Batista; Santos, Adolfo Carlos Barreto; Leite, Clarice Queico Fujimura; de Carvalho Sanches, Osimar; Paes, Antonio Carlos

    2013-03-01

    An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. PMID:23339199

  12. Multi-drug resistant Mycobacterium tuberculosis complex genetic diversity and clues on recent transmission in Punjab, Pakistan.

    PubMed

    Yasmin, Memona; Gomgnimbou, Michel K; Siddiqui, Rubina T; Refrégier, Guislaine; Sola, Christophe

    2014-10-01

    Multi-Drug Resistant Tuberculosis (MDR-TB), i.e. bacilli resistant to rifampicin (RIF) and isoniazid (INH), is a major Public Health concern in Pakistan according to WHO estimates (3.5% and 32% of new and retreated cases, respectively). Previous Pakistanis reports identified a correlation between being MDR and belonging to Beijing or EAI lineages in one study, and belonging to "H4"-Ural Euro-American sublineage in another study. In addition, MDR-TB transmission was suspected in Karachi. We tested MDR characteristics on a Punjab sample of 278 clinical isolates (without selection for Multi-Drug Resistance) including new and retreated cases collected from 2008 to 2012. All samples were characterized by a new, microbead-based method named "TB-SPRINT" (molecular diagnostic including spoligotype identification, and genetic resistance determinants to first-line anti-TB drugs RIF and INH). Isolates from 2011 to 2012 (n=100) were further analyzed using 24-loci MIRU-VNTR. We detected 8.7% MDR isolates (CI95%=[5.0; 12.5]), mainly among CAS lineage that predominates in this central-East region of Pakistan. Out of 20 MDR-TB cases, 12 different TB-SPRINT profiles were identified, limiting the suspicion of MDR-TB transmission. 24 MIRU-VNTR confirmed the unrelatedness of isolates with different TB-SPRINT profiles and discriminated 3 isolates with identical TB-SPRINT profiles. In conclusion, our study did not confirm any of the correlations between Multi-Drug Resistance and lineage or sublineage in Punjab, Pakistan. MDR-TB isolates were diverse indicating that transmission is not pervasive. TB-SPRINT proved useful as a first step for detecting MDR-TB likely transmission events, before more extensive genotyping such as 15 or 24 MIRU-VNTR and thorough epidemiological investigation.

  13. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  14. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials.

    PubMed

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  15. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis

    PubMed Central

    Jackson, Mary; McNeil, Michael R; Brennan, Patrick J

    2013-01-01

    Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed. PMID:23841633

  16. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.

    PubMed Central

    Balasubramanian, V; Pavelka, M S; Bardarov, S S; Martin, J; Weisbrod, T R; McAdam, R A; Bloom, B R; Jacobs, W R

    1996-01-01

    Genetic studies of Mycobacterium tuberculosis have been greatly hampered by the inability to introduce specific chromosomal mutations. Whereas the ability to perform allelic exchanges has provided a useful method of gene disruption in other organisms, in the clinically important species of mycobacteria, such as M. tuberculosis and Mycobacterium bovis, similar approaches have thus far been unsuccessful. In this communication, we report the development of a shuttle mutagenesis strategy that involves the use of long linear recombination substrates to reproducibly obtain recombinants by allelic exchange in M. tuberculosis. Long linear recombination substrates, approximately 40 to 50 kb in length, were generated by constructing libraries in the excisable cosmid vector pYUB328. The cosmid vector could be readily excised from the recombinant cosmids by digestion with PacI, a restriction endonuclease for which there exist few, if any, sites in mycobacterial genomes. A cosmid containing the mycobacterial leuD gene was isolated, and a selectable marker conferring resistance to kanamycin was inserted into the leuD gene in the recombinant cosmid by interplasmid recombination in Escherichia coli. A long linear recombination substrate containing the insertionally mutated leuD gene was generated by PacI digestion. Electroporation of this recombination substrate containing the insertionally mutated leuD allele resulted in the generation of leucine auxotrophic mutants by homologous recombination in 6% of the kanamycin-resistant transformants for both the Erdman and H37Rv strains of M. tuberculosis. The ability to perform allelic exchanges provides an important approach for investigating the biology of this pathogen as well as developing new live-cell M. tuberculosis-based vaccines. PMID:8550428

  17. Structural measurements and cell line studies of the copper-PEG-Rifampicin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli

    2015-02-01

    The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations.

  18. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  19. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana

    2016-08-01

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis.

  20. An Unconventional Hexacoordinated Flavohemoglobin from Mycobacterium tuberculosis*

    PubMed Central

    Gupta, Sanjay; Pawaria, Sudesh; Lu, Changyuan; Hade, Mangesh Dattu; Singh, Chaahat; Yeh, Syun-Ru; Dikshit, Kanak L.

    2012-01-01

    Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of d-lactate dehydrogenase (d-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited d-lactate:phenazine methosulfate reductase activity and oxidized d-lactate into pyruvate by converting the heme iron from Fe3+ to Fe2+ in a FAD-dependent manner, indicating electron transfer from d-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that d-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding d-LDH, we propose that the novel d-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe3+/Fe2+ redox states. PMID:22437825

  1. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    SciTech Connect

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.; Pegan, Scott D.

    2012-04-18

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for future therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.

  2. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    PubMed

    Jacobs, William R

    2014-04-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  3. The progress made in determining the Mycobacterium tuberculosis structural proteome

    PubMed Central

    Hecker, Michael

    2011-01-01

    Mycobacterium tuberculosis is a highly infectious pathogen that is still responsible for millions of deaths annually. Effectively treating this disease typically requires a course of antibiotics, most of which were developed decades ago. These drugs are, however, not effective against persistent tubercle bacilli and the emergence of drug-resistant stains threatens to make many of them obsolete. The identification of new drug targets, allowing the development of new potential drugs, is therefore imperative. Both proteomics and structural biology have important roles to play in this process, the former as a means of identifying promising drug targets and the latter allowing understanding of protein function and protein–drug interactions at atomic resolution. The determination of M. tuberculosis protein structures has been a goal of the scientific community for the last decade, who have aimed to supply a large amount of structural data that can be used in structure-based approaches for drug discovery and design. Only since the genome sequence of M. tuberculosis has been available has the determination of large numbers of tuberculosis protein structures been possible. Currently, the molecular structures of 8.5% of all the pathogen's protein-encoding ORFs have been determined. In this review, we look at the progress made in determining the M. tuberculosis structural proteome and the impact this has had on the development of potential new drugs, as well as the discovery of the function of crucial mycobaterial proteins. PMID:21674801

  4. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment

    PubMed Central

    JACOBS, WILLIAM R.

    2016-01-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819

  5. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  6. A New Approach for Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis

    PubMed Central

    Loli, Sebastian; Gilman, Robert H.; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Background: Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. Objective: To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. Methods: The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. Result: POA efflux rate predicted PZA resistance with 70.83%–92.85% sensitivity and 100% specificity compared with BACTEC 460. Conclusion: POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance. PMID:22372927

  7. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    PubMed

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  8. Mycobacterium tuberculosis: ecology and evolution of a human bacterium.

    PubMed

    Bañuls, Anne-Laure; Sanou, Adama; Anh, Nguyen Thi Van; Godreuil, Sylvain

    2015-11-01

    Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.

  9. EVOLUTION OF MYCOBACTERIUM TUBERCULOSIS AND IMPLICATIONS FOR VACCINE DEVELOPMENT.

    PubMed

    Gagneux, Sebastien

    2016-04-01

    Tuberculosis (TB) is a growing public health threat, particularly in the face of the global epidemics of multidrug resistance. Given the limited efficacy of the current TB vaccine and the recent clinical failure of the most advanced new TB vaccine candidate, novel concepts for vaccine design should be explored. Most T cell antigens in the human-adapted Mycobacterium tuberculosis complex (MTBC) are evolutionarily conserved and under strong purifying selection, indicating that host immune responses targeting these antigens might not be protective. By contrast, a few highly variable T cell epitopes have recently been discovered, which could serve as alternative vaccine antigens. Moreover, there is increasing evidence that the human-adapted MTBC has been co-evolving with the human host for a long time. Hence, studying the interaction between bacterial and human genetic diversity might help identify additional targets that could be exploited for TB vaccine development.

  10. The transmission of Mycobacterium tuberculosis in high burden settings.

    PubMed

    Yates, Tom A; Khan, Palwasha Y; Knight, Gwenan M; Taylor, Jonathon G; McHugh, Timothy D; Lipman, Marc; White, Richard G; Cohen, Ted; Cobelens, Frank G; Wood, Robin; Moore, David A J; Abubakar, Ibrahim

    2016-02-01

    Unacceptable levels of Mycobacterium tuberculosis transmission are noted in high burden settings and a renewed focus on reducing person-to-person transmission in these communities is needed. We review recent developments in the understanding of airborne transmission. We outline approaches to measure transmission in populations and trials and describe the Wells-Riley equation, which is used to estimate transmission risk in indoor spaces. Present research priorities include the identification of effective strategies for tuberculosis infection control, improved understanding of where transmission occurs and the transmissibility of drug-resistant strains, and estimates of the effect of HIV and antiretroviral therapy on transmission dynamics. When research is planned and interventions are designed to interrupt transmission, resource constraints that are common in high burden settings-including shortages of health-care workers-must be considered.

  11. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic Lowenstein-Jensen testing.

    PubMed

    Chakravorty, Soumitesh; Lee, Jong Seok; Cho, Eun Jin; Roh, Sandy S; Smith, Laura E; Lee, Jiim; Kim, Cheon Tae; Via, Laura E; Cho, Sang-Nae; Barry, Clifton E; Alland, David

    2015-01-01

    Resistance to amikacin (AMK) and kanamycin (KAN) in clinical Mycobacterium tuberculosis strains is largely determined by specific mutations in the rrs gene and eis gene promoter. We developed a rapid, multiplexed sloppy molecular beacon (SMB) assay to identify these mutations and then evaluated assay performance on 603 clinical M. tuberculosis DNA samples collected in South Korea. Assay performance was compared to gold-standard phenotypic drug susceptibility tests, including Lowenstein-Jensen (LJ) absolute concentration, mycobacterial growth indicator tubes (MGIT), and TREK Sensititre MycoTB MIC plate (MycoTB) methods. Target amplicons were also tested for mutations by Sanger sequencing. The SMB assay correctly detected 115/116 mutant and mixed sequences and 487/487 wild-type sequences (sensitivity and specificity of 99.1 and 100%, respectively). Using the LJ method as the reference, sensitivity and specificity for AMK resistance were 92.2% and 100%, respectively, and sensitivity and specificity for KAN resistance were 87.7% and 95.6%, respectively. Mutations in the rrs gene were unequivocally associated with high-level cross-resistance to AMK and KAN in all three conventional drug susceptibility testing methods. However, eis promoter mutations were associated with KAN resistance using the MGIT or MycoTB methods but not the LJ method. No testing method associated eis promoter mutations with AMK resistance. Among the discordant samples with AMK and/or KAN resistance but wild-type sequence at the target genes, we discovered four new mutations in the whiB7 5' untranslated region (UTR) in 6/22 samples. All six samples were resistant only to KAN, suggesting the possible role of these whiB7 5' UTR mutations in KAN resistance.

  12. Rifampicin Mono-Resistance in Mycobacterium tuberculosis in KwaZulu-Natal, South Africa: A Significant Phenomenon in a High Prevalence TB-HIV Region

    PubMed Central

    Coovadia, Yacoob Mahomed; Mahomed, Sharana; Pillay, Melendhran; Werner, Lise; Mlisana, Koleka

    2013-01-01

    Setting The dual epidemics of HIV-TB including MDR-TB are major contributors to high morbidity and mortality rates in South Africa. Rifampicin (RIF) resistance is regarded as a proxy for MDR-TB. Currently available molecular assays have the advantage of rapidly detecting resistant strains of MTB, but the GeneXpert does not detect isoniazid (INH) resistance and the GenoTypeMTBDRplus(LPA) assay may underestimate resistance to INH. Increasing proportions of rifampicin mono-resistance resistance (RMR) have recently been reported from South Africa and other countries. Objective This laboratory based study was conducted at NHLS TB Laboratory, Durban, which is the reference laboratory for culture and susceptibility testing in KwaZulu-Natal. We retrospectively determined, for the period 2007 to 2009, the proportion of RMR amongst Mycobacterium tuberculosis (MTB) isolates, that were tested for both RIF and INH, using the gold standard of culture based phenotypic drug susceptibility testing (DST). Gender and age were also analysed to identify possible risk factors for RMR. Design MTB culture positive sputum samples from 16,748 patients were analysed for susceptibility to RIF and INH during the period 2007 to 2009. RMR was defined as MTB resistant to RIF and susceptible to INH. For the purposes of this study, only the first specimen from each patient was included in the analysis. Results RMR was observed throughout the study period. The proportion of RMR varied from a low of 7.3% to a high of 10.0% [overall 8.8%]. Overall, males had a 42% increased odds of being RMR as compared to females. In comparison to the 50 plus age group, RMR was 37% more likely to occur in the 25–29 year age category. Conclusion We report higher proportions of RMR ranging from 7.3% to 10% [overall 8.8%] than previously reported in the literature. To avoid misclassification of RMR, detected by the GeneXpert, as MDR-TB, culture based phenotypic DST must be performed on a second specimen, as

  13. Protective efficacy of piperine against Mycobacterium tuberculosis.

    PubMed

    Sharma, Sandeep; Kalia, Nitin Pal; Suden, Pankaj; Chauhan, Prashant Singh; Kumar, Manoj; Ram, Anshu Beulah; Khajuria, Anamika; Bani, Sarang; Khan, Inshad Ali

    2014-07-01

    Piperine a trans-trans isomer of 1-piperoyl-piperidine was evaluated for its immunomodulatory activity to enhance the efficacy of rifampicin in a murine model of Mycobacterium tuberculosis infection. In-vitro immunomodulation of piperine was tested on mouse splenocytes for lymphocyte proliferation, cytokine production and macrophage activation. Protective efficacy of piperine was tested in a mice infection model of M. tuberculosis for the activation of Th-1 response and synergistic combination efficacy with rifampicin. Murine splenocytes exposed to piperine exhibited proliferation of T and B cell, increased Th-1 cytokines and enhanced macrophage activation. Piperine (1 mg/kg) in mice infected with M. tuberculosis activated the differentiation of T cells into Th-1 sub-population (CD4+ / CD8+ subsets). There was an increase in secretion of Th-1 cytokines (IFN-γ and IL-2) by these cells. The qRT-PCR studies revealed corresponding increases in the mRNA transcripts of IFN-γ and IL-2 in the infected lung tissues. Combination of piperine and rifampicin (1 mg/kg) exhibited better efficacy of and resulted in additional 1.4 to 0.8 log reduction in lung cfu as compared to rifampicin alone. The up-regulation of Th1 immunity by piperine can be synergistically combined with rifampicin to improve its therapeutic efficacy in immune-compromised TB patients.

  14. Multicenter Evaluation of Anyplex Plus MTB/NTM MDR-TB Assay for Rapid Detection of Mycobacterium tuberculosis Complex and Multidrug-Resistant Isolates in Pulmonary and Extrapulmonary Specimens.

    PubMed

    Sali, Michela; De Maio, Flavio; Caccuri, Francesca; Campilongo, Federica; Sanguinetti, Maurizio; Fiorentini, Simona; Delogu, Giovanni; Giagulli, Cinzia

    2016-01-01

    The rapid diagnosis of tuberculosis (TB) and the detection of drug-resistant Mycobacterium tuberculosis strains are critical for successful public health interventions. Therefore, TB diagnosis requires the availability of diagnostic tools that allow the rapid detection of M. tuberculosis and drug resistance in clinical samples. Here, we performed a multicenter study to evaluate the performance of the Seegene Anyplex MTB/NTM MDR-TB assay, a new molecular method based on a multiplex real-time PCR system, for detection of Mycobacterium tuberculosis complex (MTBC), nontuberculous mycobacteria (NTM), and genetic determinants of drug resistance. In total, the results for 755 samples (534 pulmonary and 221 extrapulmonary samples) were compared with the results of smears and cultures. For pulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 86.4% and 75.0%, respectively, and the specificities were 99% and 99.4%. For extrapulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 83.3% and 50.0%, respectively, and the specificities of both were 100%. The negative and positive predictive values of the Anyplex assay for pulmonary specimens were 97% and 100%, respectively, and those for extrapulmonary specimens were 84.6% and 100%. The sensitivities of the Anyplex assay for detecting isoniazid resistance in MTBC strains from pulmonary and extrapulmonary specimens were 83.3% and 50%, respectively, while the specificities were 100% for both specimen types. These results demonstrate that the Anyplex MTB/NTM MDR-TB assay is an efficient and rapid method for the diagnosis of pulmonary and extrapulmonary TB and the detection of isoniazid resistance.

  15. Multicenter Evaluation of Anyplex Plus MTB/NTM MDR-TB Assay for Rapid Detection of Mycobacterium tuberculosis Complex and Multidrug-Resistant Isolates in Pulmonary and Extrapulmonary Specimens

    PubMed Central

    De Maio, Flavio; Caccuri, Francesca; Campilongo, Federica; Sanguinetti, Maurizio; Fiorentini, Simona; Giagulli, Cinzia

    2015-01-01

    The rapid diagnosis of tuberculosis (TB) and the detection of drug-resistant Mycobacterium tuberculosis strains are critical for successful public health interventions. Therefore, TB diagnosis requires the availability of diagnostic tools that allow the rapid detection of M. tuberculosis and drug resistance in clinical samples. Here, we performed a multicenter study to evaluate the performance of the Seegene Anyplex MTB/NTM MDR-TB assay, a new molecular method based on a multiplex real-time PCR system, for detection of Mycobacterium tuberculosis complex (MTBC), nontuberculous mycobacteria (NTM), and genetic determinants of drug resistance. In total, the results for 755 samples (534 pulmonary and 221 extrapulmonary samples) were compared with the results of smears and cultures. For pulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 86.4% and 75.0%, respectively, and the specificities were 99% and 99.4%. For extrapulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 83.3% and 50.0%, respectively, and the specificities of both were 100%. The negative and positive predictive values of the Anyplex assay for pulmonary specimens were 97% and 100%, respectively, and those for extrapulmonary specimens were 84.6% and 100%. The sensitivities of the Anyplex assay for detecting isoniazid resistance in MTBC strains from pulmonary and extrapulmonary specimens were 83.3% and 50%, respectively, while the specificities were 100% for both specimen types. These results demonstrate that the Anyplex MTB/NTM MDR-TB assay is an efficient and rapid method for the diagnosis of pulmonary and extrapulmonary TB and the detection of isoniazid resistance. PMID:26491178

  16. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery.

    PubMed

    Lou, Zhiyong; Zhang, Xiaoxue

    2010-05-01

    Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.

  17. Draft Genome Sequences of Two Extensively Drug-Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro-American S Lineage.

    PubMed

    Malinga, Lesibana A; Abeel, Thomas; Desjardins, Christopher A; Dlamini, Talent C; Cassell, Gail; Chapman, Sinéad B; Birren, Bruce W; Earl, Ashlee M; van der Walt, Martie

    2016-01-01

    We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity. PMID:26941159

  18. Draft Genome Sequences of Two Extensively Drug-Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro-American S Lineage

    PubMed Central

    Abeel, Thomas; Desjardins, Christopher A.; Dlamini, Talent C.; Cassell, Gail; Chapman, Sinéad B.; Birren, Bruce W.; Earl, Ashlee M.; van der Walt, Martie

    2016-01-01

    We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity. PMID:26941159

  19. Spoligotype-based comparative population structure analysis of multidrug-resistant and isoniazid-monoresistant Mycobacterium tuberculosis complex clinical isolates in Poland.

    PubMed

    Jagielski, Tomasz; Augustynowicz-Kopec, Ewa; Zozio, Thierry; Rastogi, Nalin; Zwolska, Zofia

    2010-11-01

    The spoligotyping-based population structure of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated in Poland (n = 46), representing all culture-positive MDR tuberculosis (MDR-TB) cases, was compared to that of isoniazid (INH)-monoresistant strains (n = 71) isolated in 2004. The latter data set from a previous study (E. Augustynowicz-Kopeć, T. Jagielski, and Z. Zwolska, J. Clin. Microbiol. 2008, 46:4041-4044) represented 87% of all INH-monoresistant strains. The clustering rates and genotypic-diversity indexes for the 2 subpopulations were not significantly different (P = 0.05). The results were entered in the SITVIT2 database to assign specific shared type designations, corresponding genotypic lineages, and geographical distributions and compared to available data from neighboring countries (Germany, n = 704; Czech Republic, n = 530; Sweden, n = 379; Kaliningrad, Russia, n = 90) and strains from previous studies in Poland (n = 317). MDR strains resulted in 27 patterns (20 unique strains within the study and 7 clusters containing 2 to 6 isolates per cluster with a clustering rate of 56.5%) and belonged to the following genotypic lineages: ill-defined T family (28.3%), Haarlem (17.4%), Latin American and Mediterranean (LAM) (13%), Beijing (8.7%), S family (4.35%), and the X clade (2.17%). Comparison of the genetic structure of the MDR strains with that of INH-monoresistant strains showed that a total of 9 patterns were shared by both groups; these represented 1/3 of the MDR strains and 2/3 of the INH-monoresistant strains. Interestingly, 76.1% of the MDR isolates and 71.8% of the INH-resistant isolates yielded spoligotypes that were previously reported from Poland. The observation that nearly half of the spoligotypes identified among both MDR (48.1%) and INH-monoresistant (43.3%) M. tuberculosis isolates were present in Poland's neighboring countries suggested that a significant proportion of MDR and INH-resistant TB cases in Poland were caused by

  20. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance

    PubMed Central

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia. PMID:26110649

  1. [Pyrazinamide monoresistant Mycobacterium tuberculosis in Manisa region, Turkey].

    PubMed

    Ozkütük, Nuri; Ecemiş, Talat; Sürücüoğlu, Süheyla

    2008-10-01

    Pyrazinamide (PZA) is a primary antituberculous drug. BACTEC 460TB is the recommended reference method for the detection of PZA resistance in Mycobacterium tuberculosis. This method is more expensive than the conventional susceptibility methods and therefore, it is recommended that each laboratory should establish their own protocol for the inclusion of PZA in the panel of primary drugs tested. One of the most important factors that help this decision is the prevalence of PZA resistance, particularly PZA monoresistance in the related community. The aim of the present study was to determine the extent of PZA monoresistance in M. tuberculosis complex (MTBC) isolates in our region. In this study, PZA susceptibility testing of 109 MTBC strains (susceptible to isoniazid, rifampicin, ethambutol and streptomycin) isolated from Manisa province in the Aegean region of Turkey was performed by using the BACTEC 460TB radiometric system (Becton Dickinson, MD). Two (1.8%) of the 109 isolates which were susceptible to all primary drugs revealed monoresistance against PZA. One of the PZA-monoresistant isolates has been identified as M. bovis and the other as M. tuberculosis by molecular method (Genotype MTBC, Hain Lifescience, Germany). The results of our study indicated that since the rate of PZA monoresistance was low, susceptibility testing of a panel of primary drugs without PZA may be an economical alternative in our region.

  2. Direct inhibitors of InhA active against Mycobacterium tuberculosis

    PubMed Central

    Manjunatha, Ujjini H.; Rao, Srinivasa P. S.; Kondreddi, Ravinder Reddy; Noble, Christian G.; Camacho, Luis R.; Tan, Bee H.; Ng, Seow H.; Ng, Pearly Shuyi; Ma, N. L.; Lakshminarayana, Suresh B.; Herve, Maxime; Barnes, S. Whitney; Yu, Weixuan; Kuhen, Kelli; Blasco, Francesca; Beer, David; Walker, John R.; Tonge, Peter J.; Glynne, Richard; Smith, Paul W.; Diagana, Thierry T.

    2015-01-01

    New chemotherapeutic agents are urgently required to combat the global spread of multi-drug resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase, InhA, is one of the few clinically-validated targets in tuberculosis drug discovery. Here, we report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally-active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH-dependent manner and blocked the enoyl-substrate binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of infection by Mycobacterium tuberculosis. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB. PMID:25568071

  3. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302.

    PubMed

    Chou, Tsung-Han; Delmar, Jared A; Wright, Catherine C; Kumar, Nitin; Radhakrishnan, Abhijith; Doh, Julia K; Licon, Meredith H; Bolla, Jani Reddy; Lei, Hsiang-Ting; Rajashankar, Kanagalaghatta R; Su, Chih-Chia; Purdy, Georgiana E; Yu, Edward W

    2015-12-01

    Mycobacterium tuberculosis is a pathogenic bacterial species, which is neither Gram positive nor Gram negative. It has a unique cell wall, making it difficult to kill and conferring resistance to antibiotics that disrupt cell wall biosynthesis. Thus, the mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the mycobacterial membrane protein large (MmpL) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complicated regulatory network system. Here we report crystallographic structures of two forms of the TetR-family transcriptional regulator Rv0302, which participates in regulating the expression of MmpL proteins. The structures reveal a dimeric, two-domain molecule with architecture consistent with the TetR family of regulators. Comparison of the two Rv0302 crystal structures suggests that the conformational changes leading to derepression may be due to a rigid body rotational motion within the dimer interface of the regulator. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by this protein. In addition, our isothermal titration calorimetry and electrophoretic mobility shift experiments indicate that fatty acids may be the natural ligand of this regulator. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters. PMID:26362239

  4. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies.

    PubMed

    van Ingen, Jakko; Rahim, Zeaur; Mulder, Arnout; Boeree, Martin J; Simeone, Roxane; Brosch, Roland; van Soolingen, Dick

    2012-04-01

    The oryx bacilli are Mycobacterium tuberculosis complex organisms for which phylogenetic position and host range are unsettled. We characterized 22 isolates by molecular methods and propose elevation to subspecies status as M. orygis. M. orygis is a causative agent of tuberculosis in animals and humans from Africa and South Asia. PMID:22469053

  5. Micrococcin P1 - A bactericidal thiopeptide active against Mycobacterium tuberculosis.

    PubMed

    Degiacomi, Giulia; Personne, Yoann; Mondésert, Guillaume; Ge, Xueliang; Mandava, Chandra Sekhar; Hartkoorn, Ruben C; Boldrin, Francesca; Goel, Pavitra; Peisker, Kristin; Benjak, Andrej; Barrio, Maria Belén; Ventura, Marcello; Brown, Amanda C; Leblanc, Véronique; Bauer, Armin; Sanyal, Suparna; Cole, Stewart T; Lagrange, Sophie; Parish, Tanya; Manganelli, Riccardo

    2016-09-01

    The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation. PMID:27553416

  6. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay.

    PubMed

    Chakravorty, Soumitesh; Aladegbami, Bola; Thoms, Kimberley; Lee, Jong Seok; Lee, Eun Gae; Rajan, Vignesh; Cho, Eun-Jin; Kim, Hyunchul; Kwak, Hyunkyung; Kurepina, Natalia; Cho, Sang-Nae; Kreiswirth, Barry; Via, Laura E; Barry, Clifton E; Alland, David

    2011-03-01

    Fluoroquinolones (FQ) are important second-line drugs to treat tuberculosis; however, FQ resistance is an emerging problem. Resistance has been mainly attributed to mutations in a 21-bp region of the Mycobacterium tuberculosis gyrA gene, often called the quinolone resistance-determining region (QRDR). We have developed a simple, rapid, and specific assay to detect FQ resistance-determining QRDR mutations. The assay amplifies the M. tuberculosis gyrA QRDR in an asymmetrical PCR followed by probing with two sloppy molecular beacons (SMBs) spanning the entire QRDR. Mutations are detected by melting temperature (T(m)) shifts that occur when the SMBs bind to mismatched sequences. By testing DNA targets corresponding to all known QRDR mutations, we found that one or both of the SMBs produced a T(m) shift of at least 3.6°C for each mutation, making mutation detection very robust. The assay was also able to identify mixtures of wild-type and mutant DNA, with QRDR mutants identified in samples containing as little as 5 to 10% mutant DNA. The assay was blindly validated for its ability to identify the QRDR mutations on DNA extracted from clinical M. tuberculosis strains. Fifty QRDR wild-type samples, 34 QRDR mutant samples, and 8 heteroresistant samples containing mixtures of wild-type and mutant DNA were analyzed. The results showed 100% concordance to conventional DNA sequencing, including a complete identification of all of the mixtures. This SMB T(m) shift assay will be a valuable molecular tool to rapidly detect FQ resistance and to detect the emergence of FQ heteroresistance in clinical samples from tuberculosis patients.

  7. Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis

    PubMed Central

    2009-01-01

    Mycobacterium tuberculosis remains a widespread and devastating human pathogen. Presented here is the characterization of an atypical class I diterpene cyclase from M. tuberculosis that catalyzes an unusual cyclization reaction in converting the known M. tuberculosis metabolite halimadienyl diphosphate to a further cyclized novel diterpene, which we have termed edaxadiene, as it directly inhibits maturation of the phagosomal compartment in which the bacterium is taken up during infection. PMID:19583202

  8. First insight into genetic diversity of the Mycobacterium tuberculosis complex in Albania obtained by multilocus variable-number tandem-repeat analysis and spoligotyping reveals the presence of beijing multidrug-resistant isolates.

    PubMed

    Tafaj, Silva; Zhang, Jian; Hauck, Yolande; Pourcel, Christine; Hafizi, Hasan; Zoraqi, Grigor; Sola, Christophe

    2009-05-01

    We characterized a set of 100 Mycobacterium tuberculosis complex clinical isolates from tuberculosis (TB) patients in Albania, typing them with a 24-locus variable-number tandem-repeat-spoligotyping scheme. Depending on the cluster definition, 43 to 49 patients were distributed into 15 to 16 clusters which were likely to be epidemiologically linked, indicative of a recent transmission rate of 28 to 34%. This result suggests that TB is under control in Albania. However, two multidrug-resistant (MDR) Beijing genotypes harboring the same S531A mutation on the rpoB gene were also found, suggesting a potential recent transmission of MDR TB. Three brand new genotypes, Albania-1 to Albania-3, are also described.

  9. Pulmonary Tuberculosis Caused by Mycobacterium bovis in China

    PubMed Central

    Jiang, Guanglu; Wang, Guirong; Chen, Suting; Yu, Xia; Wang, Xiaobo; Zhao, Liping; Ma, Yifeng; Dong, Lingling; Huang, Hairong

    2015-01-01

    The epidemiology of Mycobacterium bovis infection in humans in China is unknown. In this study, pulmonary tuberculosis caused by M. bovis in China was studied. A total of 4069 clinical strains isolated from sputa during the 2007–2009 nationwide surveillance of drug-resistant tuberculosis in China were analyzed. M. bovis was identified by para-nitrobenzoic acid and thiophen-2-carboxylic acid hydrazide growth tests, spoligotyping and multiplex PCR amplification. In addition, a total of 1828 clinical specimens were recruited from Beijing Chest Hospital (Beijing, China) for Löwenstein-Jensen (LJ) culture, both on standard LJ medium and LJ medium containing 4.5 mg/ml(W/V) sodium pyruvate, the latter being the preferred medium for M. bovis growth. The isolates which demonstrated more vigorous on pyruvate containing medium than on standard LJ medium were then identified by multiplex PCR amplification. Only 1 isolate from the nationwide surveillance was confirmed as M. bovis-BCG. The isolate belonged to a predominant spoligotype SB0120 (ST482). In addition, no M. bovis isolate was acquired by the continuous screening step in Beijing Chest Hospital. M. bovis has a negligible contribution to pulmonary tuberculosis in China, so neither laboratory identification nor clinical treatment of M. bovis infection need be considered in routine work. PMID:25736338

  10. Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis

    PubMed Central

    Keeton, Roanne; Allie, Nasiema; Dambuza, Ivy; Abel, Brian; Hsu, Nai-Jen; Sebesho, Boipelo; Randall, Philippa; Burger, Patricia; Fick, Elizabeth; Quesniaux, Valerie F.J.; Ryffel, Bernhard; Jacobs, Muazzam

    2014-01-01

    Development of host protective immunity against Mycobacterium tuberculosis infection is critically dependent on the inflammatory cytokine TNF. TNF signals through 2 receptors, TNFRp55 and TNFRp75; however, the role of TNFRp75-dependent signaling in immune regulation is poorly defined. Here we found that mice lacking TNFRp75 exhibit greater control of M. tuberculosis infection compared with WT mice. TNFRp75–/– mice developed effective bactericidal granulomas and demonstrated increased pulmonary recruitment of activated DCs. Moreover, IL-12p40–dependent migration of DCs to lung draining LNs of infected TNFRp75–/– mice was substantially higher than that observed in WT M. tuberculosis–infected animals and was associated with enhanced frequencies of activated M. tuberculosis–specific IFN-γ–expressing CD4+ T cells. In WT mice, TNFRp75 shedding correlated with markedly reduced bioactive TNF levels and IL-12p40 expression. Neutralization of TNFRp75 in M. tuberculosis–infected WT BM-derived DCs (BMDCs) increased production of bioactive TNF and IL-12p40 to a level equivalent to that produced by TNFRp75–/– BMDCs. Addition of exogenous TNFRp75 to TNFRp75–/– BMDCs infected with M. tuberculosis decreased IL-12p40 synthesis, demonstrating that TNFRp75 shedding regulates DC activation. These data indicate that TNFRp75 shedding downmodulates protective immune function and reduces host resistance and survival; therefore, targeting TNFRp75 may be beneficial for improving disease outcome. PMID:24569452

  11. Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Youm, Jiwon; Saier, Milton H.

    2012-01-01

    The co-emergence of multidrug resistant pathogenic bacterial strains and the HIV pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life were identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth. PMID:22179038

  12. Molecular characterization of multiple-drug-resistant Mycobacterium tuberculosis isolates from northwestern Russia and analysis of rifampin resistance using RNA/RNA mismatch analysis as compared to the line probe assay and sequencing of the rpoB gene.

    PubMed

    Mokrousov, Igor; Filliol, Ingrid; Legrand, Eric; Sola, Christophe; Otten, Tatiana; Vyshnevskaya, Elena; Limeschenko, Elena; Vyshnevskiy, Boris; Narvskaya, Olga; Rastogi, Nalin

    2002-05-01

    This investigation evaluated the potential of RNA/RNA mismatch analysis for the detection of rifampin resistance among 38 multiple-drug-resistant (MDR) isolates of Mycobacterium tuberculosis from northwestern Russia. The results obtained were compared with a commercialized line probe assay and rpoB sequencing, and the genetic diversity of the isolates was also investigated in parallel using spoligotyping and variable number of tandem DNA repeats (VNTR). The mismatch analysis revealed 3 distinct RNA cleavage profiles permitting the subdivision of the strains into mutation groups 1 to 3, the most common being group 1 (28 of 38 isolates) that contained a majority of strains with a TCG531>TTG (Ser->Leu) mutation, followed by group 2 (6 of 38 isolates) characterized by different mutations in the codon CAC526 (His), and group 3 (4 of 38 isolates), all characterized by a GAC516(Asp) mutation. Spoligotyping revealed the Beijing type to be the most prevalent among mismatch group 1 (24 out of 28 strains), suggesting that the most frequent rpoB mutation among the Beijing family in our setting was TCG531 >TTG (Ser->Leu). All the Beijing type isolates were also characterized by a unique VNTR pattern made up of exact tandem repeats (ETR)-A to E of 42435. We conclude that the Beijing genotype constitutes the major family of MDR-TB isolates currently circulating in northwestern Russia, and that the in-house RNA/RNA mismatch analysis may be successfully used for rapid and reliable diagnosis of rifampin-resistant tuberculosis in this setting. PMID:12066892

  13. Pulmonary disease due to Mycobacterium tuberculosis in a horse: zoonotic concerns and limitations of antemortem testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A case of pulmonary tuberculosis caused by Mycobacterium tuberculosis was diagnosed in a horse. Clinical evaluation performed prior to euthanasia did not suggest tuberculosis, but postmortem examination provided pathological and bacteriological evidence of disease. In the lungs, multiple tuberculoid...

  14. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen

    PubMed Central

    Favrot, Lorenza; Grzegorzewicz, Anna E.; Lajiness, Daniel H.; Marvin, Rachel K.; Boucau, Julie; Isailovic, Dragan; Jackson, Mary; Ronning, Donald R.

    2014-01-01

    The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that ebselen binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of ebselen shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance. PMID:24193546

  15. Mycobacterial diversity causing multi- and extensively drug-resistant tuberculosis in Djibouti, Horn of Africa.

    PubMed

    Millán-Lou, M I; Ollé-Goig, J E; Tortola, M T; Martin, C; Samper, S

    2016-02-01

    On detecting a high prevalence of multidrug-resistant tuberculosis (TB) in Djibouti, 32 Mycobacterium tuberculosis isolates of patients hospitalised in the TB referral centre of the capital were genotyped. A high variety of M. tuberculosis lineages, including lineage 1, Indo-Oceanic, lineage 2, East-Asian, lineage 3, East-African Indian and lineage 4, Euro-American, were detected. PMID:26792464

  16. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis.

    PubMed

    Piccaro, Giovanni; Pietraforte, Donatella; Giannoni, Federico; Mustazzolu, Alessandro; Fattorini, Lanfranco

    2014-12-01

    The antituberculosis (anti-TB) drug rifampin (RIF) binds to the beta subunit of the RNA polymerase (RpoB) of Mycobacterium tuberculosis, but the bactericidal responses triggered after target interaction are not known. To evaluate whether RIF induced an oxidative burst, lysates of RIF-treated M. tuberculosis were tested for determination of reactive oxygen species (ROS) by the electron paramagnetic resonance (EPR) technique using 1-hydroxy-3-carboxy-pyrrolidine (CPH) and 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as spin traps. M. tuberculosis killing by RIF stimulated an increase in the rate of formation of the CPH radical (CP·). Lysate pretreatment with the O2·(-) and ·OH scavengers superoxide dismutase (SOD) and thiourea (THIO), respectively, or with the metal chelator diethylene triamine pentaacetic acid (DTPA) inhibited CP· formation, arguing in favor of a metal-catalyzed ROS response. Formation of CP· did not increase following treatment of RIF-resistant strains with RIF, indicating that the ROS were induced after RpoB binding. To identify the ROS formed, lysates of RIF-treated bacilli were incubated with DMPO, a spin trap specific for ·OH and O2·(-), with or without pretreatment with SOD, catalase, THIO, or DTPA. Superoxide dismutase, catalase, and THIO decreased formation of the DMPO-OH adduct, and SOD plus DTPA completely suppressed it, suggesting that RIF activated metal-dependent O2·(-)-mediated mechanisms producing ·OH inside tubercle bacilli. The finding that the metal chelator DTPA reduced the bactericidal activity of RIF supported the possibility that ·OH was generated through these mechanisms and that it participated at least in part in M. tuberculosis killing by the drug. PMID:25288092

  17. Rifampin Induces Hydroxyl Radical Formation in Mycobacterium tuberculosis

    PubMed Central

    Piccaro, Giovanni; Pietraforte, Donatella; Giannoni, Federico; Mustazzolu, Alessandro

    2014-01-01

    The antituberculosis (anti-TB) drug rifampin (RIF) binds to the beta subunit of the RNA polymerase (RpoB) of Mycobacterium tuberculosis, but the bactericidal responses triggered after target interaction are not known. To evaluate whether RIF induced an oxidative burst, lysates of RIF-treated M. tuberculosis were tested for determination of reactive oxygen species (ROS) by the electron paramagnetic resonance (EPR) technique using 1-hydroxy-3-carboxy-pyrrolidine (CPH) and 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as spin traps. M. tuberculosis killing by RIF stimulated an increase in the rate of formation of the CPH radical (CP·). Lysate pretreatment with the O2·− and ·OH scavengers superoxide dismutase (SOD) and thiourea (THIO), respectively, or with the metal chelator diethylene triamine pentaacetic acid (DTPA) inhibited CP· formation, arguing in favor of a metal-catalyzed ROS response. Formation of CP· did not increase following treatment of RIF-resistant strains with RIF, indicating that the ROS were induced after RpoB binding. To identify the ROS formed, lysates of RIF-treated bacilli were incubated with DMPO, a spin trap specific for ·OH and O2·−, with or without pretreatment with SOD, catalase, THIO, or DTPA. Superoxide dismutase, catalase, and THIO decreased formation of the DMPO-OH adduct, and SOD plus DTPA completely suppressed it, suggesting that RIF activated metal-dependent O2·−-mediated mechanisms producing ·OH inside tubercle bacilli. The finding that the metal chelator DTPA reduced the bactericidal activity of RIF supported the possibility that ·OH was generated through these mechanisms and that it participated at least in part in M. tuberculosis killing by the drug. PMID:25288092

  18. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages

    PubMed Central

    Schnappinger, Dirk; Ehrt, Sabine; Voskuil, Martin I.; Liu, Yang; Mangan, Joseph A.; Monahan, Irene M.; Dolganov, Gregory; Efron, Brad; Butcher, Philip D.; Nathan, Carl; Schoolnik, Gary K.

    2003-01-01

    Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope. PMID:12953091

  19. In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 against Mycobacterium tuberculosis

    PubMed Central

    Cho, S.; Yang, T. J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S. G.

    2014-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7. In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. PMID:25331696

  20. The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis

    SciTech Connect

    Card, G L; Peterson, N A; Smith, C A; Rupp, B; Schick, B M; Baker, E N

    2005-02-15

    Mycobacterium tuberculosis, the cause of TB, is a devastating human pathogen. The emergence of multi-drug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structure of Rv1347c was determined by MAD phasing from selenomethionine-substituted protein and refined at 2.2 {angstrom} resolution (R = 0.227, R{sub free} = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acylCoA binding site that is shared with other GNAT family members, and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the N{sup {var_epsilon}}-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.

  1. DNA fragment length polymorphism analysis of Mycobacterium tuberculosis isolates by arbitrarily primed polymerase chain reaction.

    PubMed

    Palittapongarnpim, P; Chomyc, S; Fanning, A; Kunimoto, D

    1993-04-01

    Strain identification of Mycobacterium tuberculosis would prove whether transmission had occurred between individuals. A method to characterize strains of M. tuberculosis has been developed utilizing polymerase chain reaction (PCR). Purified chromosomal DNA of cultured clinical samples of M. tuberculosis were subjected to PCR using short (10-12 nucleotide) oligonucleotide primers. PCR products visualized after agarose gel electrophoresis and ethidium bromide staining demonstrated that different strains of M. tuberculosis give different banding patterns. This technique was used to confirm the relationship between cases of tuberculosis in several clusters, prove the lack of relationship between 2 isolates with the same antibiotic-resistance pattern, confirm a suspected mislabeling event, and suggest the source of infection in a case of tuberculous meningitis. This method is rapid and simple and does not require radioactive probes.

  2. Evaluation of GenoFlow DR-MTB Array Test for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis

    PubMed Central

    Molina-Moya, B.; Kazdaglis, G.; Lacoma, A.; Prat, C.; Gómez, A.; Villar-Hernández, R.; García-García, E.; Haba, L.; Maldonado, J.; Samper, S.; Ruiz-Manzano, J.; Ausina, V.

    2016-01-01

    The aim of this study was to evaluate the GenoFlow DR-MTB array test (DiagCor Bioscience, Hong Kong) on 70 cultured isolates and 50 sputum specimens. The GenoFlow array test showed good sensitivity and specificity compared to the phenotypic Bactec 460TB. This array accurately detected mutations in rpoB, katG, and inhA associated with resistance to rifampin and isoniazid. PMID:26865688

  3. Evaluation of GenoFlow DR-MTB Array Test for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis.

    PubMed

    Molina-Moya, B; Kazdaglis, G; Lacoma, A; Prat, C; Gómez, A; Villar-Hernández, R; García-García, E; Haba, L; Maldonado, J; Samper, S; Ruiz-Manzano, J; Ausina, V; Domínguez, J

    2016-04-01

    The aim of this study was to evaluate the GenoFlow DR-MTB array test (DiagCor Bioscience, Hong Kong) on 70 cultured isolates and 50 sputum specimens. The GenoFlow array test showed good sensitivity and specificity compared to the phenotypic Bactec 460TB. This array accurately detected mutations inrpoB,katG, andinhAassociated with resistance to rifampin and isoniazid. PMID:26865688

  4. MTBreg: The Database of Conditionally Regulated Proteins in Mycobacterium Tuberculosis

    DOE Data Explorer

    Kaufman, Markus; Pal, Debnath; Eisenberg, David

    Proteins up- and down- regulated in Mycobacterium tuberculosis grown under conditions mimicking infection are included in this database. It also includes information on proteins that are regulated by selected transcription factors or other regulatory proteins. The literature data provided here is complimentary to the databases provided by Michael Strong that include recent TB computational functional linkages and the Prolinks Database by Peter Bowers. The experimental condition, the experimental dataset and a literature reference will be displayed, including links to the computationally linked proteins in the Prolinks Database and the entry in the Mycobacterium tuberculosis Structural Genomics Database.[Copied from information at http://www.doe-mbi.ucla.edu/Services/MTBreg/

  5. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.

    PubMed

    Le Chevalier, Fabien; Cascioferro, Alessandro; Majlessi, Laleh; Herrmann, Jean Louis; Brosch, Roland

    2014-01-01

    Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.

  6. Determination of MICs of levofloxacin for Mycobacterium tuberculosis with gyrA mutations.

    PubMed

    Kambli, P; Ajbani, K; Nikam, C; Khillari, A; Shetty, A; Udwadia, Z; Georghiou, S B; Rodwell, T C; Catanzaro, A; Rodrigues, C

    2015-10-01

    The purpose of the present study was to correlate gyrA mutations found in Mycobacterium tuberculosis isolates using the GenoType(®) MTBDRsl assay with minimum inhibitory concentrations of the fluoroquinolone levofloxacin (LVX). Of 123 archived clinical M. tuberculosis isolates evaluated, 93 isolates had an Ala90Val, Ser91Pro, Asp94Ala, Asn/Tyr, Gly or His mutation and 30 were wild-type. Phenotypically, gyrA mutations Ala90Val, Ser91Pro or Asp94Ala showed a low level of resistance to LVX, while Asp94Asn/Tyr, Asp94Gly or Asp94His mutations had high-level resistance. PMID:26459538

  7. [New technologies in the determination of drug susceptibility in Mycobacterium tuberculosis].

    PubMed

    Skotnikova, O I; Mikhaĭlovich, V M; Nosova, E Iu; Lapa, S A; Griadunov, D A; Donnikov, M Iu; Badleeva, M V; Galkina, K Iu; Dorozhkova, I R; Litvinov, V I; Zasedatelev, A S; Moroz, A M; Mirzabekov, A D

    2004-01-01

    A variety of mutations in the genes rpoB, katG, inhA, ahpC, kasA was studied by using different molecular biological methods (conformational polymorphism of single-chain fragments, heteroduplex analysis, biochips) in rifampicin- and isoniazid-resistant Mycobacterium tuberculosis (MBT) strains isolated from patients with pulmonary tuberculosis. Twenty-nine mutation combinations were identified in the MBT strains. The use of biochips is the most promising method for identifying the type of mutations responsible for the simultaneous resistance to rifampicin and isoniazid. Detection of several MBT strains in one patient requires the use a combination of molecular biological and microbiological studies. PMID:15315132

  8. Sub-speciation of Mycobacterium tuberculosis complex from tuberculosis patients in Japan.

    PubMed

    Ueyama, Masako; Chikamatsu, Kinuyo; Aono, Akio; Murase, Yoshiro; Kuse, Naoyuki; Morimoto, Kozo; Okumura, Masao; Yoshiyama, Takashi; Ogata, Hideo; Yoshimori, Kozo; Kudoh, Shoji; Azuma, Arata; Gemma, Akihiko; Mitarai, Satoshi

    2014-01-01

    Mycobacterium tuberculosis is the major causative agent of tuberculosis in humans. It is well known that Mycobacterium bovis and other species in the M. tuberculosis complex (MTC) can cause respiratory diseases as zoonosis. We analyzed the MTC isolates collected from tuberculosis patients from Japan in 2002 using a multiplex PCR system that detected cfp32, RD9 and RD12. A total of 970 MTC isolates that were representative of the tuberculosis cases throughout Japan, were examined using this method. As a result, 966 (99.6%) M. tuberculosis, two Mycobacterium africanum and two Mycobacterium canettii were identified using a multiplex PCR system, while no M. bovis was detected. Two isolates that lacked RD9 were initially considered to be M. canettii, but further analysis of the hsp65 sequence revealed them to be M. tuberculosis. Also two M. africanum were identified as M. tuberculosis using the -215 narG nucleotide polymorphism. Though PCR-linked methods have been used for a rapid differentiation of MTC and NTM, from our cases we suggest careful interpretation of RD based identification.

  9. DNA fingerprinting of Mycobacterium tuberculosis strains from patients with pulmonary tuberculosis in Honduras.

    PubMed Central

    Pineda-Garcia, L; Ferrera, A; Hoffner, S E

    1997-01-01

    Mycobacterium tuberculosis isolates from 84 patients with pulmonary tuberculosis in Honduras were characterized by restriction fragment length polymorphism analysis. Seventy-three different IS6110 patterns were found; 63 of these were unique and 10 were shared by two to three strains each. Thus, no ongoing spread of any specific clone of bacteria could be demonstrated. PMID:9276422

  10. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  11. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology

    PubMed Central

    2014-01-01

    Background Tuberculosis (TB) poses a worldwide threat due to advancing multidrug-resistant strains and deadly co-infections with Human immunodeficiency virus. Today large amounts of Mycobacterium tuberculosis whole genome sequencing data are being assessed broadly and yet there exists no comprehensive online resource that connects M. tuberculosis genome variants with geographic origin, with drug resistance or with clinical outcome. Description Here we describe a broadly inclusive unifying Genome-wide Mycobacterium tuberculosis Variation (GMTV) database, (http://mtb.dobzhanskycenter.org) that catalogues genome variations of M. tuberculosis strains collected across Russia. GMTV contains a broad spectrum of data derived from different sources and related to M. tuberculosis molecular biology, epidemiology, TB clinical outcome, year and place of isolation, drug resistance profiles and displays the variants across the genome using a dedicated genome browser. GMTV database, which includes 1084 genomes and over 69,000 SNP or Indel variants, can be queried about M. tuberculosis genome variation and putative associations with drug resistance, geographical origin, and clinical stages and outcomes. Conclusions Implementation of GMTV tracks the pattern of changes of M. tuberculosis strains in different geographical areas, facilitates disease gene discoveries associated with drug resistance or different clinical sequelae, and automates comparative genomic analyses among M. tuberculosis strains. PMID:24767249

  12. Dramatic reduction of culture time of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Ghodbane, Ramzi; Raoult, Didier; Drancourt, Michel

    2014-02-01

    Mycobacterium tuberculosis culture, a critical technique for routine diagnosis of tuberculosis, takes more than two weeks. Here, step-by-step improvements in the protocol including a new medium, microaerophlic atmosphere or ascorbic-acid supplement and autofluorescence detection dramatically shortened this delay. In the best case, primary culture and rifampicin susceptibility testing were achieved in 72 hours when specimens were inoculated directly on the medium supplemented by antibiotic at the beginning of the culture.

  13. Atypical presentation of Mycobacterium tuberculosis in an infant.

    PubMed

    Gayathri Devi, D R; Gowri, Mangala; Padmalatha, S; Sreeja, S; Babu, Sreenivasa

    2010-12-01

    Tuberculosis of the skeletal muscle is very rare which is often missed in the early stages. This leads to delay in treatment resulting in irreversible limb deformity and loss of function. The authors describe a case of healthy child with an intramuscular cystic swelling above the elbow joint. The pus showing acid fast bacilli morphologically resembling Mycobacterium tuberculosis was also isolated in culture. Following the diagnosis and confirmation, the child was treated successfully with anti tubercular drugs. PMID:20890682

  14. Direct detection of Mycobacterium tuberculosis complex in nonrespiratory specimens by Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test.

    PubMed Central

    Gamboa, F; Manterola, J M; Viñado, B; Matas, L; Giménez, M; Lonca, J; Manzano, J R; Rodrigo, C; Cardona, P J; Padilla, E; Domínguez, J; Ausina, V

    1997-01-01

    The Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test (AMTDT) was adapted for the detection of Mycobacterium tuberculosis complex in 224 nonrespiratory specimens from 188 patients. The sensitivity and specificity of the AMTDT for such specimens, after resolution of discrepant results, were 85.7 and 100%, respectively. Pretreatment of nonrespiratory specimens with sodium dodecyl (lauryl) sulfate is mandatory to obtain consistent and reproducible AMTDT results. The use of 500 microliters of decontaminated specimen improves the sensitivity of the test. Because the AMTDT detects stable rRNA from noncultivable bacilli, it is not useful for monitoring patients receiving treatment. PMID:8968935

  15. Tuberculosis in Sudan: a study of Mycobacterium tuberculosis strain genotype and susceptibility to anti-tuberculosis drugs

    PubMed Central

    2011-01-01

    Background Sudan is a large country with a diverse population and history of civil conflict. Poverty levels are high with a gross national income per capita of less than two thousand dollars. The country has a high burden of tuberculosis (TB) with an estimated 50,000 incident cases during 2009, when the estimated prevalence was 209 cases per 100,000 of the population. Few studies have been undertaken on TB in Sudan and the prevalence of drug resistant disease is not known. Methods In this study Mycobacterium tuberculosis isolates from 235 patients attending three treatment centers in Sudan were screened for susceptibility to isoniazid, rifampicin, ethambutol and streptomycin by the proportion method on Lowenstein Jensen media. 232 isolates were also genotyped by spoligotyping. Demographic details of patients were recorded using a structured questionnaire. Statistical analyses were conducted to examine the associations between drug resistance with risk ratios computed for a set of risk factors (gender, age, case status - new or relapse, geographic origin of the patient, spoligotype, number of people per room, marital status and type of housing). Results Multi drug-resistant tuberculosis (MDR-TB), being resistance to at least rifampicin and isoniazid, was found in 5% (95% CI: 2,8) of new cases and 24% (95% CI: 14,34) of previously treated patients. Drug resistance was associated with previous treatment with risk ratios of 3.51 (95% CI: 2.69-4.60; p < 0.001) for resistance to any drug and 5.23 (95% CI: 2.30-11.90; p < 0.001) for MDR-TB. Resistance was also associated with the geographic region of origin of the patient, being most frequently observed in patients from the Northern region and least in the Eastern region with risk ratios of 7.43 (95%CI:3.42,16.18; p: < 0.001) and 14.09 (95%CI:1.80,110.53; p:0.026) for resistance to any drug and MDR-TB. The major genotype observed was of the Central Asia spoligotype family (CAS1_Delhi), representing 49% of the 232 isolates

  16. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells. PMID:27144688

  17. Development of an automated MODS plate reader to detect early growth of Mycobacterium tuberculosis.

    PubMed

    Comina, G; Mendoza, D; Velazco, A; Coronel, J; Sheen, P; Gilman, R H; Moore, D A J; Zimic, M

    2011-06-01

    In this work, an automated microscopic observation drug susceptibility (MODS) plate reader has been developed. The reader automatically handles MODS plates and after autofocussing digital images are acquired of the characteristic microscopic cording structures of Mycobacterium tuberculosis, which are the identification method utilized in the MODS technique to detect tuberculosis and multidrug resistant tuberculosis. In conventional MODS, trained technicians manually move the MODS plate on the stage of an inverted microscope while trying to locate and focus upon the characteristic microscopic cording colonies. In centres with high tuberculosis diagnostic demand, sufficient time may not be available to adequately examine all cultures. An automated reader would reduce labour time and the handling of M. tuberculosis cultures by laboratory personnel. Two hundred MODS culture images (100 from tuberculosis positive and 100 from tuberculosis negative sputum samples confirmed by a standard MODS reading using a commercial microscope) were acquired randomly using the automated MODS plate reader. A specialist analysed these digital images with the help of a personal computer and designated them as M. tuberculosis present or absent. The specialist considered four images insufficiently clear to permit a definitive reading. The readings from the 196 valid images resulted in a 100% agreement with the conventional nonautomated standard reading. The automated MODS plate reader combined with open-source MODS pattern recognition software provides a novel platform for high throughput automated tuberculosis diagnosis.

  18. Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿

    PubMed Central

    García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.

    2010-01-01

    We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097

  19. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  20. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...