NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
Development of an all-in-one gamma camera/CCD system for safeguard verification
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo
2014-12-01
For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.
An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data
NASA Technical Reports Server (NTRS)
Chandler, Gyanesh
2007-01-01
CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).
PN-CCD camera for XMM: performance of high time resolution/bright source operating modes
NASA Astrophysics Data System (ADS)
Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph
1997-10-01
The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range
NASA Astrophysics Data System (ADS)
Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.
2013-12-01
The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.
Design principles and applications of a cooled CCD camera for electron microscopy.
Faruqi, A R
1998-01-01
Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.
Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy
NASA Astrophysics Data System (ADS)
Hewat, A. W.
We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.
NASA Astrophysics Data System (ADS)
Gonzaga, S.; et al.
2011-03-01
ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.
NASA Technical Reports Server (NTRS)
1996-01-01
PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
Electronic cameras for low-light microscopy.
Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith
2013-01-01
This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.
CCD imaging system for the EUV solar telescope
NASA Astrophysics Data System (ADS)
Gong, Yan; Song, Qian; Ye, Bing-Xun
2006-01-01
In order to develop the detector adapted to the space solar telescope, we have built a CCD camera system capable of working in the extra ultraviolet (EUV) band, which is composed of one phosphor screen, one intensified system using a photocathode/micro-channel plate(MCP)/ phosphor, one optical taper and one chip of front-illuminated (FI) CCD without screen windows. All of them were stuck one by one with optical glue. The working principle of the camera system is presented; moreover we have employed the mesh experiment to calibrate and test the CCD camera system in 15~24nm, the position resolution of about 19 μm is obtained at the wavelength of 17.1nm and 19.5nm.
NASA Astrophysics Data System (ADS)
Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.
2017-11-01
Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.
Measuring high-resolution sky luminance distributions with a CCD camera.
Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther
2013-03-10
We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.
Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera
NASA Technical Reports Server (NTRS)
Stanojev, B. J.; Houts, M.
2004-01-01
Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.
The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007
NASA Technical Reports Server (NTRS)
Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.;
2007-01-01
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD
NASA Astrophysics Data System (ADS)
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.
2006-02-01
We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.
High-resolution CCD imaging alternatives
NASA Astrophysics Data System (ADS)
Brown, D. L.; Acker, D. E.
1992-08-01
High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.
Hanada, Takashi; Katsuta, Shoichi; Yorozu, Atsunori; Maruyama, Koichi
2009-01-01
When using a HDR remote afterloading brachytherapy unit, results of treatment can be greatly influenced by both source position and treatment time. The purpose of this study is to obtain information on the source of the HDR remote afterloading unit, such as its position and time structure, with the use of a simple system consisting of a plastic scintillator block and a charge‐coupled device (CCD) camera. The CCD camera was used for recording images of scintillation luminescence at a fixed rate of 30 frames per second in real time. The source position and time structure were obtained by analyzing the recorded images. For a preset source‐step‐interval of 5 mm, the measured value of the source position was 5.0±1.0mm, with a pixel resolution of 0.07 mm in the recorded images. For a preset transit time of 30 s, the measured value was 30.0±0.6 s, when the time resolution of the CCD camera was 1/30 s. This system enabled us to obtain the source dwell time and movement time. Therefore, parameters such as I192r source position, transit time, dwell time, and movement time at each dwell position can be determined quantitatively using this plastic scintillator‐CCD camera system. PACS number: 87.53.Jw
Adjustment of multi-CCD-chip-color-camera heads
NASA Astrophysics Data System (ADS)
Guyenot, Volker; Tittelbach, Guenther; Palme, Martin
1999-09-01
The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.
Effect of camera resolution and bandwidth on facial affect recognition.
Cruz, Mario; Cruz, Robyn Flaum; Krupinski, Elizabeth A; Lopez, Ana Maria; McNeeley, Richard M; Weinstein, Ronald S
2004-01-01
This preliminary study explored the effect of camera resolution and bandwidth on facial affect recognition, an important process and clinical variable in mental health service delivery. Sixty medical students and mental health-care professionals were recruited and randomized to four different combinations of commonly used teleconferencing camera resolutions and bandwidths: (1) one chip charged coupling device (CCD) camera, commonly used for VHSgrade taping and in teleconferencing systems costing less than $4,000 with a resolution of 280 lines, and 128 kilobytes per second bandwidth (kbps); (2) VHS and 768 kbps; (3) three-chip CCD camera, commonly used for Betacam (Beta) grade taping and in teleconferencing systems costing more than $4,000 with a resolution of 480 lines, and 128 kbps; and (4) Betacam and 768 kbps. The subjects were asked to identify four facial affects dynamically presented on videotape by an actor and actress presented via a video monitor at 30 frames per second. Two-way analysis of variance (ANOVA) revealed a significant interaction effect for camera resolution and bandwidth (p = 0.02) and a significant main effect for camera resolution (p = 0.006), but no main effect for bandwidth was detected. Post hoc testing of interaction means, using the Tukey Honestly Significant Difference (HSD) test and the critical difference (CD) at the 0.05 alpha level = 1.71, revealed subjects in the VHS/768 kbps (M = 7.133) and VHS/128 kbps (M = 6.533) were significantly better at recognizing the displayed facial affects than those in the Betacam/768 kbps (M = 4.733) or Betacam/128 kbps (M = 6.333) conditions. Camera resolution and bandwidth combinations differ in their capacity to influence facial affect recognition. For service providers, this study's results support the use of VHS cameras with either 768 kbps or 128 kbps bandwidths for facial affect recognition compared to Betacam cameras. The authors argue that the results of this study are a consequence of the VHS camera resolution/bandwidth combinations' ability to improve signal detection (i.e., facial affect recognition) by subjects in comparison to Betacam camera resolution/bandwidth combinations.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer
NASA Technical Reports Server (NTRS)
Wattson, R. B.; Rappaport, S.
1977-01-01
An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles; ...
2016-05-16
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications
NASA Astrophysics Data System (ADS)
Olson, Gaylord G.; Walker, Jo N.
1997-09-01
Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.
3D digital image correlation using single color camera pseudo-stereo system
NASA Astrophysics Data System (ADS)
Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang
2017-10-01
Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhijit; Verma, Anurag
2016-05-01
The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.
A compact high-speed pnCCD camera for optical and x-ray applications
NASA Astrophysics Data System (ADS)
Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo
2012-07-01
We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1981-01-01
The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing
NASA Astrophysics Data System (ADS)
Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.
2018-01-01
Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.
NASA Astrophysics Data System (ADS)
Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng
2009-08-01
A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.
A High Resolution TDI CCD Camera forMicrosatellite (HRCM)
NASA Astrophysics Data System (ADS)
Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie
In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror
Design and realization of an AEC&AGC system for the CCD aerial camera
NASA Astrophysics Data System (ADS)
Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun
2015-08-01
An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.
Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application
2007-08-12
deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution
Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua
2017-03-01
Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.
A goggle navigation system for cancer resection surgery
NASA Astrophysics Data System (ADS)
Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald
2014-02-01
We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.
Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.
Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio
2009-01-01
3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.
New technology and techniques for x-ray mirror calibration at PANTER
NASA Astrophysics Data System (ADS)
Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin
2008-07-01
The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras
1990-04-01
poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital
Elemental mapping and microimaging by x-ray capillary optics.
Hampai, D; Dabagov, S B; Cappuccio, G; Longoni, A; Frizzi, T; Cibin, G; Guglielmotti, V; Sala, M
2008-12-01
Recently, many experiments have highlighted the advantage of using polycapillary optics for x-ray fluorescence studies. We have developed a special confocal scheme for micro x-ray fluorescence measurements that enables us to obtain not only elemental mapping of the sample but also simultaneously its own x-ray imaging. We have designed the prototype of a compact x-ray spectrometer characterized by a spatial resolution of less than 100 microm for fluorescence and less than 10 microm for imaging. A couple of polycapillary lenses in a confocal configuration together with a silicon drift detector allow elemental studies of extended samples (approximately 3 mm) to be performed, while a CCD camera makes it possible to record an image of the same samples with 6 microm spatial resolution, which is limited only by the pixel size of the camera. By inserting a compound refractive lens between the sample and the CCD camera, we hope to develop an x-ray microscope for more enlarged images of the samples under test.
CCD Camera Detection of HIV Infection.
Day, John R
2017-01-01
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
Modular Scanning Confocal Microscope with Digital Image Processing.
Ye, Xianjun; McCluskey, Matthew D
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.
Noise and sensitivity of x-ray framing cameras at Nike (abstract)
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Deniz, A. V.; Lehecka, T.
1999-01-01
X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.
Using a trichromatic CCD camera for spectral skylight estimation.
López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L
2008-12-01
In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conder, A.; Mummolo, F. J.
The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.
Multipurpose Hyperspectral Imaging System
NASA Technical Reports Server (NTRS)
Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon
2005-01-01
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
VizieR Online Data Catalog: AQ Boo VRI differential light curves (Wang+, 2016)
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Pi, Q.; Han, X. L.; Zhang, X.; Lu, H.; Wang, D.; Li, T.
2016-11-01
On March 22 and April 19 in 2014, we observed AQ Boo with the 60cm telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). The CCD camera on this telescope has a resolution of 1024 x 1024 pixels and its corresponding field of view is 17'x17' (Yang, 2013NewA...25..109Y). The other three days of data were obtained using the 1-m telescope at Yunnan Observatory of Chinese Academy of Sciences, on January 20, 21 and February 28 in 2015. The CCD camera on this telescope has a resolution of 2048x2048 pixels and its corresponding field of view is 7.3'x7.3'. Bessel VRI filters were used. The exposure times are 100-170s, 50-100s and 50-80s in the V, R, I bands, respectively. (1 data file).
Modular Scanning Confocal Microscope with Digital Image Processing
McCluskey, Matthew D.
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
Barnett, Patrick D; Angel, S Michael
2017-05-01
A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
Webb, Donna J.; Brown, Claire M.
2012-01-01
Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system
NASA Astrophysics Data System (ADS)
Nuster, Robert; Paltauf, Guenther
2017-07-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
The Development of the Spanish Fireball Network Using a New All-Sky CCD System
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte
2004-12-01
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.
1920x1080 pixel color camera with progressive scan at 50 to 60 frames per second
NASA Astrophysics Data System (ADS)
Glenn, William E.; Marcinka, John W.
1998-09-01
For over a decade, the broadcast industry, the film industry and the computer industry have had a long-range objective to originate high definition images with progressive scan. This produces images with better vertical resolution and much fewer artifacts than interlaced scan. Computers almost universally use progressive scan. The broadcast industry has resisted switching from interlace to progressive because no cameras were available in that format with the 1920 X 1080 resolution that had obtained international acceptance for high definition program production. The camera described in this paper produces an output in that format derived from two 1920 X 1080 CCD sensors produced by Eastman Kodak.
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-20
The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-01-01
The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017
Timing generator of scientific grade CCD camera and its implementation based on FPGA technology
NASA Astrophysics Data System (ADS)
Si, Guoliang; Li, Yunfei; Guo, Yongfei
2010-10-01
The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Control and protection of outdoor embedded camera for astronomy
NASA Astrophysics Data System (ADS)
Rigaud, F.; Jegouzo, I.; Gaudemard, J.; Vaubaillon, J.
2012-09-01
The purpose of CABERNET- Podet-Met (CAmera BEtter Resolution NETwork, Pole sur la Dynamique de l'Environnement Terrestre - Meteor) project is the automated observation, by triangulation with three cameras, of meteor showers to perform a calculation of meteoroids trajectory and velocity. The scientific goal is to search the parent body, comet or asteroid, for each observed meteor. To install outdoor cameras in order to perform astronomy measurements for several years with high reliability requires a very specific design for the box. For these cameras, this contribution shows how we fulfilled the various functions of their boxes, such as cooling of the CCD, heating to melt snow and ice, the protecting against moisture, lightning and Solar light. We present the principal and secondary functions, the product breakdown structure, the technical solutions evaluation grid of criteria, the adopted technology products and their implementation in multifunction subsets for miniaturization purpose. To manage this project, we aim to get the lowest manpower and development time for every part. In appendix, we present the measurements the image quality evolution during the CCD cooling, and some pictures of the prototype.
Illumination box and camera system
Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.
2002-01-01
A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.
New low noise CCD cameras for Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.
2006-10-01
Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.
Development of a CCD based solar speckle imaging system
NASA Astrophysics Data System (ADS)
Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.
1986-02-01
A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M
2006-02-01
Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.
Dynamic light scattering microscopy
NASA Astrophysics Data System (ADS)
Dzakpasu, Rhonda
An optical microscope technique, dynamic light scattering microscopy (DLSM) that images dynamically scattered light fluctuation decay rates is introduced. Using physical optics we show theoretically that within the optical resolution of the microscope, relative motions between scattering centers are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The time scale for these intensity fluctuations is predicted. The spatial coherence distance defining the average distance between constructive and destructive interference in the image plane is calculated and compared with the pixel size. We experimentally tested DLSM on polystyrene latex nanospheres and living macrophage cells. In order to record these rapid fluctuations, on a slow progressive scan CCD camera, we used a thin laser line of illumination on the sample such that only a single column of pixels in the CCD camera is illuminated. This allowed the use of the rate of the column-by-column readout transfer process as the acquisition rate of the camera. This manipulation increased the data acquisition rate by at least an order of magnitude in comparison to conventional CCD cameras rates defined by frames/s. Analysis of the observed fluctuations provides information regarding the rates of motion of the scattering centers. These rates, acquired from each position on the sample are used to create a spatial map of the fluctuation decay rates. Our experiments show that with this technique, we are able to achieve a good signal-to-noise ratio and can monitor fast intensity fluctuations, on the order of milliseconds. DLSM appears to provide dynamic information about fast motions within cells at a sub-optical resolution scale and provides a new kind of spatial contrast.
Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station
NASA Astrophysics Data System (ADS)
Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly
2013-09-01
We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.
Particle displacement tracking applied to air flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.
Performance measurement of commercial electronic still picture cameras
NASA Astrophysics Data System (ADS)
Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te
1998-06-01
Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.
Manned observations technology development, FY 1992 report
NASA Technical Reports Server (NTRS)
Israel, Steven
1992-01-01
This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras.
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
NASA Astrophysics Data System (ADS)
Garnavich, Peter; McClelland, Colin
2013-02-01
We observed the optical transient MASTER OT J065608.28+744455.2 (ATEL #4783) with the Vatican Advanced Technology Telescope (VATT) and VATT4K CCD camera. V-band imaging began at 2013 Feb. 5.15 (UT) and continued for 3.3 hours with a time resolution of 22 seconds.
Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware
NASA Astrophysics Data System (ADS)
Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.
2007-12-01
We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.
Tests of commercial colour CMOS cameras for astronomical applications
NASA Astrophysics Data System (ADS)
Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.
2013-12-01
We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.
Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System
NASA Astrophysics Data System (ADS)
Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.
2017-12-01
The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.
High-frame rate multiport CCD imager and camera
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.
1993-01-01
A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.
Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto
2014-11-01
The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Vacuum compatible miniature CCD camera head
Conder, Alan D.
2000-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
Coaxial fundus camera for opthalmology
NASA Astrophysics Data System (ADS)
de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.
2015-09-01
A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.
Development of a high spatial resolution neutron imaging system and performance evaluation
NASA Astrophysics Data System (ADS)
Cao, Lei
The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum efficiency (DQE) is calculated with above determined MTF and NPS.
High-resolution continuum observations of the Sun
NASA Technical Reports Server (NTRS)
Zirin, Harold
1987-01-01
The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
NASA Astrophysics Data System (ADS)
Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.
1990-10-01
Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
Event-Driven Random-Access-Windowing CCD Imaging System
NASA Technical Reports Server (NTRS)
Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William
2004-01-01
A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).
Printed circuit board for a CCD camera head
Conder, Alan D.
2002-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
Wide field/planetary camera optics study. [for the large space telescope
NASA Technical Reports Server (NTRS)
1979-01-01
Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.
Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J
2015-02-01
To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The ICCD with an intensifier better optimized for red wavelengths was found to provide the best potential for real-time display (at least 8.6 fps) of radiation dose on the skin during treatment at a resolution of 1024 × 1024.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
NASA Astrophysics Data System (ADS)
Nuster, Robert; Wurzinger, Gerhild; Paltauf, Guenther
2017-03-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
The development of large-aperture test system of infrared camera and visible CCD camera
NASA Astrophysics Data System (ADS)
Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying
2015-10-01
Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa
2000-04-01
A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3- dimensional CT image.
The imaging system design of three-line LMCCD mapping camera
NASA Astrophysics Data System (ADS)
Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da
2011-08-01
In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.
CCD TV focal plane guider development and comparison to SIRTF applications
NASA Technical Reports Server (NTRS)
Rank, David M.
1989-01-01
It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.
High-speed imaging using 3CCD camera and multi-color LED flashes
NASA Astrophysics Data System (ADS)
Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis
2017-11-01
This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.
Toolkit for testing scientific CCD cameras
NASA Astrophysics Data System (ADS)
Uzycki, Janusz; Mankiewicz, Lech; Molak, Marcin; Wrochna, Grzegorz
2006-03-01
The CCD Toolkit (1) is a software tool for testing CCD cameras which allows to measure important characteristics of a camera like readout noise, total gain, dark current, 'hot' pixels, useful area, etc. The application makes a statistical analysis of images saved in files with FITS format, commonly used in astronomy. A graphical interface is based on the ROOT package, which offers high functionality and flexibility. The program was developed in a way to ensure future compatibility with different operating systems: Windows and Linux. The CCD Toolkit was created for the "Pie of the Sky" project collaboration (2).
NASA Technical Reports Server (NTRS)
1998-01-01
Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.
Pi of the Sky full system and the new telescope
NASA Astrophysics Data System (ADS)
Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; Majczyna, A.; Malek, K.; Nawrocki, K.; Obara, L.; Opiela, R.; Piotrowski, L. W.; Siudek, M.; Sokolowski, M.; Wawrzaszek, R.; Wrochna, G.; Zaremba, M.; Żarnecki, A. F.
2014-12-01
The Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12(m}-13({m)) and with time resolution of the order of 1 - 10 seconds. The system design and observation strategy were successfully tested with a prototype detector operational at Las Campanas Observatory, Chile from 2004-2009 and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed at the INTA El Arenosillo Test Centre in Spain. In July 2013 three more units (12 CCD cameras) were commissioned and installed, together with the first one, on a new platform in INTA, extending sky coverage to about 6000 square degrees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, N; Furukawa, T; Mizushima, K
2016-06-15
Purpose: To investigate the time structure of the range, we have verified the rang shift due to the betatron tune shift with several synchrotron parameters. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. Using image processing, the range was determined the 80 percent of distal dose of the depth light distribution. The root mean square error of the range measurement using the scintillator and CCD system is about 0.2 mm. Range measurement was performed at interval of 170 msec. The chromaticity of the synchrotron was changed in the range of plus ormore » minus 1% from reference chromaticity in this study. All of the particle inside the synchrotron ring were extracted with the output beam intensity 1.8×10{sup 8} and 5.0×10{sub 7} particle per sec. Results: The time strictures of the range were changed by changing of the chromaticity. The reproducibility of the measurement was sufficient to observe the time structures of the range. The range shift was depending on the number of the residual particle inside the synchrotron ring. Conclusion: In slow beam extraction for scanned carbon-ion therapy, the range shift is undesirable because it causes the dose uncertainty in the target. We introduced the time-resolved range measurement using scintillator and CCD system. The scintillator and CCD system have enabled to verify the range shift with sufficient spatial resolution and reproducibility.« less
The HRSC on Mars Express: Mert Davies' Involvement in a Novel Planetary Cartography Experiment
NASA Astrophysics Data System (ADS)
Oberst, J.; Waehlisch, M.; Giese, B.; Scholten, F.; Hoffmann, H.; Jaumann, R.; Neukum, G.
2002-12-01
Mert Davies was a team member of the HRSC (High Resolution Stereo Camera) imaging experiment (PI: Gerhard Neukum) on ESA's Mars Express mission. This pushbroom camera is equipped with 9 forward- and backward-looking CCD lines, 5184 samples each, mounted in parallel, perpendicular to the spacecraft velocity vector. Flight image data with resolutions of up to 10m/pix (from an altitude of 250 km) will be acquired line by line as the spacecraft moves. This acquisition strategy will result in 9 separate almost completely overlapping image strips, each of them having more than 27,000 image lines, typically. [HRSC is also equipped with a superresolution channel for imaging of selected targets at up to 2.3 m/pixel]. The combined operation of the nadir and off-nadir CCD lines (+18.9°, 0°, -18.9°) gives HRSC a triple-stereo capability for precision mapping of surface topography and for modelling of spacecraft orbit- and camera pointing errors. The goals of the camera are to obtain accurate control point networks, Digital Elevation Models (DEMs) in Mars-fixed coordinates, and color orthoimages at global (100% of the surface will be covered with resolutions better than 30m/pixel) and local scales. With his long experience in all aspects of planetary geodesy and cartography, Mert Davies was involved in the preparations of this novel Mars imaging experiment which included: (a) development of a ground data system for the analysis of triple-stereo images, (b) camera testing during airborne imaging campaigns, (c) re-analysis of the Mars control point network, and generation of global topographic orthoimage maps on the basis of MOC images and MOLA data, (d) definition of the quadrangle scheme for a new topographic image map series 1:200K, (e) simulation of synthetic HRSC imaging sequences and their photogrammetric analysis. Mars Express is scheduled for launch in May of 2003. We miss Mert very much!
Towards fish-eye camera based in-home activity assessment.
Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha
2008-01-01
Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.
SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.
Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S
2012-06-01
To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.
Driving techniques for high frame rate CCD camera
NASA Astrophysics Data System (ADS)
Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu
2008-03-01
This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.
Solid state television camera (CCD-buried channel)
NASA Technical Reports Server (NTRS)
1976-01-01
The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state television camera (CCD-buried channel), revision 1
NASA Technical Reports Server (NTRS)
1977-01-01
An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state, CCD-buried channel, television camera study and design
NASA Technical Reports Server (NTRS)
Hoagland, K. A.; Balopole, H.
1976-01-01
An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.
Optimum color filters for CCD digital cameras
NASA Astrophysics Data System (ADS)
Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl
1993-12-01
As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.
NASA Astrophysics Data System (ADS)
Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.
2017-09-01
iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.
Miniature self-contained vacuum compatible electronic imaging microscope
Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.
2001-01-01
A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.
Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.
Elleaume, P; Fortgang, C; Penel, C; Tarazona, E
1995-09-01
A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.
Development and use of an L3CCD high-cadence imaging system for Optical Astronomy
NASA Astrophysics Data System (ADS)
Sheehan, Brendan J.; Butler, Raymond F.
2008-02-01
A high cadence imaging system, based on a Low Light Level CCD (L3CCD) camera, has been developed for photometric and polarimetric applications. The camera system is an iXon DV-887 from Andor Technology, which uses a CCD97 L3CCD detector from E2V technologies. This is a back illuminated device, giving it an extended blue response, and has an active area of 512×512 pixels. The camera system allows frame-rates ranging from 30 fps (full frame) to 425 fps (windowed & binned frame). We outline the system design, concentrating on the calibration and control of the L3CCD camera. The L3CCD detector can be either triggered directly by a GPS timeserver/frequency generator or be internally triggered. A central PC remotely controls the camera computer system and timeserver. The data is saved as standard `FITS' files. The large data loads associated with high frame rates, leads to issues with gathering and storing the data effectively. To overcome such problems, a specific data management approach is used, and a Python/PYRAF data reduction pipeline was written for the Linux environment. This uses calibration data collected either on-site, or from lab based measurements, and enables a fast and reliable method for reducing images. To date, the system has been used twice on the 1.5 m Cassini Telescope in Loiano (Italy) we present the reduction methods and observations made.
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
Portal imaging with flat-panel detector and CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.
1997-07-01
This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.
NASA Astrophysics Data System (ADS)
Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.
2016-08-01
SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI
Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing
NASA Technical Reports Server (NTRS)
Crooke, Julie A.
2003-01-01
The simple addition of a charge-coupled-device (CCD) camera to a theodolite makes it safe to measure the pointing direction of a laser beam. The present state of the art requires this to be a custom addition because theodolites are manufactured without CCD cameras as standard or even optional equipment. A theodolite is an alignment telescope equipped with mechanisms to measure the azimuth and elevation angles to the sub-arcsecond level. When measuring the angular pointing direction of a Class ll laser with a theodolite, one could place a calculated amount of neutral density (ND) filters in front of the theodolite s telescope. One could then safely view and measure the laser s boresight looking through the theodolite s telescope without great risk to one s eyes. This method for a Class ll visible wavelength laser is not acceptable to even consider tempting for a Class IV laser and not applicable for an infrared (IR) laser. If one chooses insufficient attenuation or forgets to use the filters, then looking at the laser beam through the theodolite could cause instant blindness. The CCD camera is already commercially available. It is a small, inexpensive, blackand- white CCD circuit-board-level camera. An interface adaptor was designed and fabricated to mount the camera onto the eyepiece of the specific theodolite s viewing telescope. Other equipment needed for operation of the camera are power supplies, cables, and a black-and-white television monitor. The picture displayed on the monitor is equivalent to what one would see when looking directly through the theodolite. Again, the additional advantage afforded by a cheap black-and-white CCD camera is that it is sensitive to infrared as well as to visible light. Hence, one can use the camera coupled to a theodolite to measure the pointing of an infrared as well as a visible laser.
Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.
1992-01-01
The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.
NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).
Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander
2017-10-26
The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software
NASA Astrophysics Data System (ADS)
Oh, S. H.; Kang, Y. W.; Byun, Y. I.
2007-12-01
We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.
NASA Astrophysics Data System (ADS)
Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi
2013-12-01
We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.
2007-06-01
cross flow are taken at finer resolution, down to 6.5 μm/pixel. For the flow mapping, both the CCD camera and part of the laser -sheet optics are...Control of Supersonic Impinging Jet Flows using Microjets . AIAA Journal. 41(7):1347-1355, 2001. [9] M.J. Stanek, G. Raman, V. Kibens, J.A. Ross, J. Odedra
Optical digital microscopy for cyto- and hematological studies in vitro
NASA Astrophysics Data System (ADS)
Ganilova, Yu. A.; Dolmashkin, A. A.; Doubrovski, V. A.; Yanina, I. Yu.; Tuchin, V. V.
2013-08-01
The dependence of the spatial resolution and field of view of an optical microscope equipped with a CCD camera on the objective magnification has been experimentally investigated. Measurement of these characteristics has shown that a spatial resolution of 20-25 px/μm at a field of view of about 110 μm is quite realistic; this resolution is acceptable for a detailed study of the processes occurring in cell. It is proposed to expand the dynamic range of digital camera by measuring and approximating its light characteristics with subsequent plotting of the corresponding calibration curve. The biological objects of study were human adipose tissue cells, as well as erythrocytes and their immune complexes in human blood; both objects have been investigated in vitro. Application of optical digital microscopy for solving specific problems of cytology and hematology can be useful in both biomedical studies in experiments with objects of nonbiological origin.
VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras
NASA Astrophysics Data System (ADS)
Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.
2015-08-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (<= 25 e- read noise and <= 10 e- /sec/pixel dark current), in addition to maintaining a stable gain of ≍ 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.
Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teruya, A. T.; Palmer, N. E.; Schneider, M. B.
2013-09-01
The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effortmore » was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.« less
Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Haugh and M. B. Schneider
2008-10-31
The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
NASA Astrophysics Data System (ADS)
Sato, M.; Takahashi, Y.; Kudo, T.; Yanagi, Y.; Kobayashi, N.; Yamada, T.; Project, N.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.; Kammae, T.; Cummer, S. A.; Yair, Y.; Lyons, W. A.; Ahrns, J.; Yukman, P.; Warner, T. A.; Sonnenfeld, R. G.; Li, J.; Lu, G.
2011-12-01
The time evolution and spatial distributions of transient luminous events (TLEs) are the key parameters to identify the relationship between TLEs and parent lightning discharges, roles of electromagnetic pulses (EMPs) emitted by horizontal and vertical lightning currents in the formation of TLEs, and the occurrence condition and mechanisms of TLEs. Since the time scales of TLEs is typically less than a few milliseconds, new imaging technique that enable us to capture images with a high time resolution of < 1ms is awaited. By courtesy of "Cosmic Shore" Project conducted by Japan Broadcasting Corporation (NHK), we have carried out optical observations using a high-speed Image-Intensified (II) CMOS camera and a high-vision three-CCD camera from a jet aircraft on November 28 and December 3, 2010 in winter Japan. Using the high-speed II-CMOS camera, it is possible to capture images with 8,300 frames per second (fps), which corresponds to the time resolution of 120 us. Using the high-vision three-CCD camera, it is possible to capture high quality, true color images of TLEs with a 1920x1080 pixel size and with a frame rate of 30 fps. During the two observation flights, we have succeeded to detect 28 sprite events, and 3 elves events totally. In response to this success, we have conducted a combined aircraft and ground-based campaign of TLE observations at the High Plains in summer US. We have installed same NHK high-speed and high-vision cameras in a jet aircraft. In the period from June 27 and July 10, 2011, we have operated aircraft observations in 8 nights, and we have succeeded to capture TLE images for over a hundred events by the high-vision camera and succeeded to acquire over 40 high-speed images simultaneously. At the presentation, we will introduce the outlines of the two aircraft campaigns, and will introduce the characteristics of the time evolution and spatial distributions of TLEs observed in winter Japan, and will show the initial results of high-speed image data analysis of TLEs in summer US.
pnCCD for photon detection from near-infrared to X-rays
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar
2006-09-01
A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical photons. A novel type of pnCCD is in preparation, which allows single optical photon counting. This feature is accomplished by implementation of an avalanche-type amplifier in the pnCCD concept.
Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji
2016-04-01
Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less
NASA Astrophysics Data System (ADS)
Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.
2017-01-01
Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.
Solar x ray astronomy rocket program
NASA Technical Reports Server (NTRS)
1990-01-01
The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.
NPS assessment of color medical displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-02-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired.
NPS assessment of color medical image displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired
A new compact, high sensitivity neutron imaging systema)
NASA Astrophysics Data System (ADS)
Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.
2012-10-01
We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (109-1010 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 1010. The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.
Structure Formation in Complex Plasma
2011-08-24
Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
NASA Astrophysics Data System (ADS)
Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy
2016-10-01
Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.
A Solar Aspect System for the HEROES Mission
NASA Technical Reports Server (NTRS)
Christe, Steven; Shih, Albert; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander
2014-01-01
A new Solar Aspect System (SAS) has been developed to provide the ability to observe the Sun on an existing balloon payload HERO (short for High Energy Replicated Optics). Developed under the HEROES program (High Energy Replicated Optics to Explore the Sun), the SAS aspect system provides solar pointing knowledge in pitch, yaw, and roll. The required precision of these measurements must be better than the HEROES X-ray resolution of approximately 20 arcsec Full Width at Half Maximum (FWHM) so as to not degrade the image resolution. The SAS consists of two separate systems: the Pitch-Yaw Aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS functions by projecting an image of the Sun onto a screen with precision fiducials. A CCD camera takes an image of these fiducials, and an automated algorithm determines the location of the Sun as well as the location of the fiducials. The spacing between fiducials is unique and allows each to be identified so that the location of the Sun on the screen can be precisely determined. The RAS functions by imaging the Earth's horizon in opposite directions using a silvered prism imaged by a CCD camera. The design and first results of the performance of these systems during the HEROES flight which occurred in September 2013 are presented here.
Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni
2017-01-01
To date, no emerging preclinical or clinical near-infrared fluorescence (NIRF) imaging devices for non-invasive and/or surgical guidance have their performances validated on working standards with SI units of radiance that enable comparison or quantitative quality assurance. In this work, we developed and deployed a methodology to calibrate a stable, solid phantom for emission radiance with units of mW · sr−1 · cm−2 for use in characterizing the measurement sensitivity of ICCD and IsCMOS detection, signal-to-noise ratio, and contrast. In addition, at calibrated radiances, we assess transverse and lateral resolution of ICCD and IsCMOS camera systems. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS camera system and superior resolution of the IsCMOS over the ICCD camera system. Contrast depended upon the camera settings (binning and integration time) and gain of intensifier. Finally, because of architecture of CMOS and CCD camera systems resulting in vastly different performance, we comment on the utility of these systems for small animal imaging as well as clinical applications for non-invasive and surgical guidance. PMID:26552078
Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera
Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing
2018-01-01
The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885
Scientific CCD technology at JPL
NASA Technical Reports Server (NTRS)
Janesick, J.; Collins, S. A.; Fossum, E. R.
1991-01-01
Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.
Study of Cryogenic Complex Plasma
2007-04-26
enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Advances in Heavy Ion Beam Probe Technology and Operation on MST
NASA Astrophysics Data System (ADS)
Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.
2003-10-01
A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.
NASA Astrophysics Data System (ADS)
Breitfelder, Stefan; Reichel, Frank R.; Gaertner, Ernst; Hacker, Erich J.; Cappellaro, Markus; Rudolf, Peter; Voelk, Ute
1998-04-01
Digital cameras are of increasing significance for professional applications in photo studios where fashion, portrait, product and catalog photographs or advertising photos of high quality have to be taken. The eyelike is a digital camera system which has been developed for such applications. It is capable of working online with high frame rates and images of full sensor size and it provides a resolution that can be varied between 2048 by 2048 and 6144 by 6144 pixel at a RGB color depth of 12 Bit per channel with an also variable exposure time of 1/60s to 1s. With an exposure time of 100 ms digitization takes approx. 2 seconds for an image of 2048 by 2048 pixels (12 Mbyte), 8 seconds for the image of 4096 by 4096 pixels (48 Mbyte) and 40 seconds for the image of 6144 by 6144 pixels (108 MByte). The eyelike can be used in various configurations. Used as a camera body most commercial lenses can be connected to the camera via existing lens adaptors. On the other hand the eyelike can be used as a back to most commercial 4' by 5' view cameras. This paper describes the eyelike camera concept with the essential system components. The article finishes with a description of the software, which is needed to bring the high quality of the camera to the user.
Ultrasound-modulated optical tomography with intense acoustic bursts.
Zemp, Roger J; Kim, Chulhong; Wang, Lihong V
2007-04-01
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Sun, B; Grantham, K
2016-06-15
Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less
Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples
Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.
2014-01-01
Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510
VizieR Online Data Catalog: IC 361 Vilnius photometry (Zdanavicius+, 2010)
NASA Astrophysics Data System (ADS)
Zdanavicius, J.; Bartasiute, S.; Boyle, R. P.; Vrba, F. J.; Zdanavicius, K.
2015-03-01
CCD observations in seven filters U,P,X,Y,Z,V,S of the Vilnius system plus the filter I of the Cousins system were carried out in December of 1999 with a 2K CCD camera on the 1m telescope of the USNO Flagstaff Station (Arizona), which gives a field of the diameter of 20'. Repeated observations in the Vilnius filters were done with the same telescope and a new 2Kx2K CCD camera in March of 2009. During the latter run we have obtained well-calibrated CCD data only for filters Y, Z, V, S, since observations through the remaining three filters on the succeeding night were curtailed by cirrus clouds. Additional frames in the Vilnius filters U,Y,V were taken for the central part of the field (12'x12') in December of 2008 with a 4K CCD camera on the 1.8m Vatican Advanced Technology Telescope (VATT) on Mt. Graham (Arizona). (1 data file).
Spectroscopic Study of a Pulsed High-Energy Plasma Deflagration Accelerator
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Mouratidis, Theodore; Cappelli, Mark
2015-11-01
Observations of broadened Balmer lines emitted by a highly-ionized transient plasma jet are presented. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged broadening data for a complete cross section of the plasma jet, and the data is Abel inverted to derive the radial plasma density distribution. This measurement is performed over narrow gate widths and at multiple axial positions to provide high spatial and temporal resolution. A streak camera coupled to a spectrometer is used to obtain continuous-time broadening data over the entire duration of the discharge event (10-50 microseconds). Analyses of discharge characteristics and comparisons with previous work are discussed. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program, as well as the National Defense Science Engineering Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.
Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R
2010-10-01
A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.
CTK: A new CCD Camera at the University Observatory Jena
NASA Astrophysics Data System (ADS)
Mugrauer, M.
2009-05-01
The Cassegrain-Teleskop-Kamera (CTK) is a new CCD imager which is operated at the University Observatory Jena since begin of 2006. This article describes the main characteristics of the new camera. The properties of the CCD detector, the CTK image quality, as well as its detection limits for all filters are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Hand portable thin-layer chromatography system
Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.
2000-01-01
A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.
Images of the laser entrance hole from the static x-ray imager at NIF.
Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K
2010-10-01
The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.
Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J.; Schneider, M. B.
2008-10-15
The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
VizieR Online Data Catalog: BVRI light curves of GR Boo (Wang+, 2017)
NASA Astrophysics Data System (ADS)
Wang, D.; Zhang, L.; Han, X. L.; Lu, H.
2017-11-01
We observed the eclipsing binary GR Boo on May 12, 22 and 24 in 2015 using the SARA 90-cm telescope located at Kitt Peak National Observatory, Arizona, USA. This telescope was equipped with an ARC CCD camera with a resolution of 2048x2048pixels but used at 2x2 binning, resulting in 1024x1024pixels. We used the Bessel BVRI filters. (1 data file).
Radiation imaging with a new scintillator and a CMOS camera
NASA Astrophysics Data System (ADS)
Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.
2014-07-01
A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America
Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng
2017-06-20
The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.
CCD image sensor induced error in PIV applications
NASA Astrophysics Data System (ADS)
Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.
2014-06-01
The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.
NASA Astrophysics Data System (ADS)
Mugrauer, M.
2016-03-01
The Cassegrain-Teleskop-Kamera (CTK-II) and the Refraktor-Teleskop-Kamera (RTK) are two CCD-imagers which are operated at the 25 cm Cassegrain and 20 cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD-detectors, the astrometry, the image quality, and the detection limits of both CCD-cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Compression of CCD raw images for digital still cameras
NASA Astrophysics Data System (ADS)
Sriram, Parthasarathy; Sudharsanan, Subramania
2005-03-01
Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.
Adding polarimetric imaging to depth map using improved light field camera 2.0 structure
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Yang, Yi; Du, Shaojun; Cao, Yu
2017-06-01
Polarization imaging plays an important role in various fields, especially for skylight navigation and target identification, whose imaging system is always required to be designed with high resolution, broad band, and single-lens structure. This paper describe such a imaging system based on light field 2.0 camera structure, which can calculate the polarization state and depth distance from reference plane for every objet point within a single shot. This structure, including a modified main lens, a multi-quadrants Polaroid, a honeycomb-liked micro lens array, and a high resolution CCD, is equal to an "eyes array", with 3 or more polarization imaging "glasses" in front of each "eye". Therefore, depth can be calculated by matching the relative offset of corresponding patch on neighboring "eyes", while polarization state by its relative intensity difference, and their resolution will be approximately equal to each other. An application on navigation under clear sky shows that this method has a high accuracy and strong robustness.
Measurement precision and noise analysis of CCD cameras
NASA Astrophysics Data System (ADS)
Wu, ZhenSen; Li, Zhiyang; Zhang, Ping
1993-09-01
CHINA The lirait precision of CCD camera with 1O. bit analogue to digital conversion is estimated in this paper . The noise effect on ineasurenent precision and the noise characteristics are analyzed in details. The noise process means are also discussed and the diagram of noise properties is given in this paper.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
NASA Astrophysics Data System (ADS)
Gherase, Radu Mihai; Popescu, Marcel; Sonka, Adrian Bruno; Paraschiv, Petre
2017-11-01
We report the installation of the Ritchey-Chretien -0.36m robotic telescope in the Astrolabe "roll-off roof" building belonging to the Astronomical Institute of the Romanian Academy. The calibration procedure performed in order to set up the telescope is shown. The test observations show a limiting magnitude of ≈ 18.6 (mostly due to the sky light pollution of Bucharest) and a seeing in the order of 2.0-3.5 arc seconds. The available instruments are a CCD camera SBIG STL 11000 M with a field of view of 44 x 30 arc minutes and an Alpy 600 spectrograph. The CCD camera has a standard UBVRI filter wheel. The astrometric observations allowed to confirm the discovery of 2017 RV1 (M.P.E.C. 2017-R57). The telescope was used to obtain photometric data for the near-Earth asteroids (326683) 2002 WP and 2016 LX48. These were reported to Minor Planet Bulletin (Sonka et al., 2017). Preliminary observations of (3122) Florence were performed with the Alpy 600 spectrograph. It allows covering the spectral interval 0.4-0.80 microns with a resolution of R≈600.
Imaging of transient surface acoustic waves by full-field photorefractive interferometry.
Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping
2015-05-01
A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.
An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories
NASA Astrophysics Data System (ADS)
Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji
2008-11-01
We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.
Resolution power in digital in-line holography
NASA Astrophysics Data System (ADS)
Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Klages, P.; Kreuzer, H. J.
2006-01-01
Digital in-line holographic microscopy (DIHM) can achieve wavelength resolution both laterally and in depth with the simple optical setup consisting of a laser illuminating a wavelength-sized pinhole and a CCD camera for recording the hologram. The reconstruction is done numerically on the basis of the Kirchhoff-Helmholtz transform which yields a three-dimensional image of the objects throughout the sample volume. Resolution in DIHM depends on several controllable factors or parameters: (1) pinhole size controlling spatial coherence, (2) numerical aperture given by the size and positioning of the recording CCD chip, (3) pixel density and dynamic range controlling fringe resolution and noise level in the hologram and (4) wavelength. We present a detailed study of the individual and combined effects of these factors by doing an analytical analysis coupled with numerical simulations of holograms and their reconstruction. The result of this analysis is a set of criteria, also in the form of graphs, which can be used for the optimum design of the DIHM setup. We will also present a series of experimental results that test and confirm our theoretical analysis. The ultimate resolution to date is the imaging of the motion of submicron spheres and bacteria, a few microns apart, with speeds of hundreds of microns per second.
CMOS Imaging Sensor Technology for Aerial Mapping Cameras
NASA Astrophysics Data System (ADS)
Neumann, Klaus; Welzenbach, Martin; Timm, Martin
2016-06-01
In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.
[Present and prospects of telepathology].
Takahashi, M; Mernyei, M; Shibuya, C; Toshima, S
1999-01-01
Nearly ten years have passed since telepathology was introduced and real-time pathology consultations were conducted. Long distance consultations in pathology, cytology, computed tomography and magnetic resonance imaging, which are referred to as telemedicine, clearly enhance the level of medical care in remote hospitals where no full-time specialists are employed. To transmit intraoperative frozen section images, we developed a unique hybrid system "Hi-SPEED". The imaging view through the CCD camera is controlled by a camera controller that provides NTSC composite video output for low resolution motion pictures and high resolution digital output for final interpretation on computer display. The results of intraoperative frozen section diagnosis between the Gihoku General Hospital 410 km from SRL showed a sensitivity of 97.6% for 82 cases of breast carcinoma and a false positive rate of 1.2%. This system can be used for second opinions as well as for consultations between cytologists and cytotechnologists.
Toward a digital camera to rival the human eye
NASA Astrophysics Data System (ADS)
Skorka, Orit; Joseph, Dileepan
2011-07-01
All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.
Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lu, Jian
Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.
Imaging Molecular Signatures of Breast Cancer With X-ray Activated Nano-Phosphors
2011-09-01
high resolution with a decrease in X-ray dose to healthy tissue. For the first-year training goals, this grant has provided for extensive study in...europium (red) were studied . The light emission was imaged in a clinical X-ray scanner with a cooled CCD camera and a spectrophotometer; dose...Indeed, in a preliminary study , these phosphor were targeted to the Folate receptor (commonly expressed in breast cancer), and uptaken by live cells
Progress On The Thomson Scattering Diagnostic For The Helicon Plasma Experiment (HPX)
NASA Astrophysics Data System (ADS)
Green, A.; Emami, T.; Davies, R.; Frank, J.; Hopson, J.; Karama, J.; James, R. W.; Hopson, J.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team
2017-10-01
A high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 has been assembled on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL). This spectrometer will collect doppler shifted photons, emitted from the plasma by the first harmonic (1064 nm) of a 2.5 J Nd:YAG laser. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) single spatial point diagnostic system. A zero order half wave plate rotates the polarization of the second harmonic TS laser beam when operating at a wavelength of 532 nm. A linear actuated periscope has been constructed to remotely redirect the beam so that 532 and 1064 nm wavelengths can both be used. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. Operating at both 532 and 1064 nm results in a self-consistent measurement and better use our existing spectrometer and soon to be constructed polychrometer. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. The current status of the diagnostic development, spectrometer, and collection optics system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.
A design of driving circuit for star sensor imaging camera
NASA Astrophysics Data System (ADS)
Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui
2016-01-01
The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.
Digital readout for image converter cameras
NASA Astrophysics Data System (ADS)
Honour, Joseph
1991-04-01
There is an increasing need for fast and reliable analysis of recorded sequences from image converter cameras so that experimental information can be readily evaluated without recourse to more time consuming photographic procedures. A digital readout system has been developed using a randomly triggerable high resolution CCD camera, the output of which is suitable for use with IBM AT compatible PC. Within half a second from receipt of trigger pulse, the frame reformatter displays the image and transfer to storage media can be readily achieved via the PC and dedicated software. Two software programmes offer different levels of image manipulation which includes enhancement routines and parameter calculations with accuracy down to pixel levels. Hard copy prints can be acquired using a specially adapted Polaroid printer, outputs for laser and video printer extend the overall versatility of the system.
Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schächner, Gabriele; Schopper, Florian; Soltau, Heike; Strüder, Lothar; Weidenspointner, Georg
2010-12-01
A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the ‘MPI semiconductor laboratory’ for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384×384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious ‘Dark Energy’. The eROSITA space telescope, which is developed under the responsibility of the ‘Max-Planck-Institute for extraterrestrial physics’, is a scientific payload on the new Russian satellite ‘Spectrum-Roentgen-Gamma’ (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.
High-performance dual-speed CCD camera system for scientific imaging
NASA Astrophysics Data System (ADS)
Simpson, Raymond W.
1996-03-01
Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.
Advanced X-ray Astrophysics Facility (AXAF) science instruments
NASA Technical Reports Server (NTRS)
Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.
1991-01-01
The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.
VizieR Online Data Catalog: GSC04778-00152 photometry and spectroscopy (Tuvikene+, 2008)
NASA Astrophysics Data System (ADS)
Tuvikene, T.; Sterken, C.; Eenmae, T.; Hinojosa-Goni, R.; Brogt, E.; Longa Pena, P.; Liimets, T.; Ahumada, M.; Troncoso, P.; Vogt, N.
2012-04-01
CCD photometry of GSC04778-00152 was carried out on 54 nights during 9 observing runs. In January 2006 the observations were made with the 41-cm Meade telescope at Observatorio Cerro Armazones (OCA), Chile, using an SBIG STL-6303E CCD camera (3072x2048 pixels, FOV 23.0'x15.4') and Johnson V filter. On 3 nights in December 2006 and on 2 nights in October 2007 we used the 2.4-m Hiltner telescope at the MDM Observatory, Arizona, USA, equipped with the 8kx8k Mosaic imager (FOV 23.6'x23.6'). In December 2006 and January 2007, we also used the 41-cm Meade telescope at OCA, using an SBIG ST-7XME CCD camera (FOV 5.9'x3.9') with no filter. Figure 3 shows all OCA light curves obtained with this configuration. At Tartu Observatory the observations were carried out in December 2006 and January 2007, using the 60-cm telescope with a SpectraSource Instruments HPC-1 camera (1024x1024 pixels, FOV 11.2'x11.2') and V filter. >From January to March 2007 the system was observed using the 1.0-m telescope at SAAO, Sutherland, South Africa with an STE4 CCD camera (1024x1024 pixels, FOV 5.3'x5.3') and UBVRI filters. Spectroscopic observations were carried out at the Tartu Observatory, Estonia, using the 1.5-m telescope with the Cassegrain spectrograph ASP-32 and an Andor Newton CCD camera. (3 data files).
Next generation of pnCCDs for X-ray spectroscopy and imaging
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Kimmel, Nils; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Strüder, Lothar
2006-11-01
A special type of charge-coupled device, the pnCCD, has been developed in the nineties as focal-plane detector for the X-ray astronomy mission XMM-Newton of the European Space Agency. The pnCCD detector has been in operation since the satellite launch in 1999. It is performing up to date spectroscopy of X-rays in combination with imaging and high time resolution. The excellent performance of the flight camera is still maintained; in particular, the energy resolution has been nearly constant since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. The ‘frame store pnCCD’ shows various optimizations in device design and fabrication process. Devices with up to 256×512 pixels have been fabricated in 2004 and recently tested. Simultaneously, a programmable analog signal processor for the readout of the CCD signals, the DUO CAMEX, has been developed. The readout noise of the new detector has a value of 2 electrons ENC which is less than half of the figure of the XMM-Newton pnCCD. We measured an energy resolution that is close to the theoretical limit given by the Fano noise. In particular the low-energy response of the new devices was substantially improved. The quantum efficiency for X-rays is at least 90% in the entire energy band from 0.3 keV up to 11 keV. This is due to the ultra-thin photon entrance window as well as the full depletion of the 450 μm thick back-illuminated pnCCD. The position resolution is better than the pixel sizes of 75 μm×75 μm or 51 μm×51 μm because the signal charge is spread over up to four pixels which allows a more accurate event position determination. ‘Out of time’ events are substantially reduced to the order of 0.1% by operating the pnCCD in frame store mode. Higher operating temperatures, e.g. -20 °C, are possible due to the smaller thermally generated dark-current level of the new devices and the operation at higher frame rates. Low power consumption applications like for the ROSITA X-ray astronomy mission with low frame rates of, e.g. 20 images/s, as well as high frame rate applications, e.g. 200 images/s, are possible with the same device.
VizieR Online Data Catalog: Observation of six NSVS eclipsing binaries (Dimitrov+, 2015)
NASA Astrophysics Data System (ADS)
Dimitrov, D. P.; Kjurkchieva, D. P.
2017-11-01
We managed to separate a sample of about 40 ultrashort-period candidates from the Northern Sky Variability Survey (NSVS, Wozniak et al. 2004AJ....127.2436W) appropriate for follow-up observations at Rozhen observatory (δ>-10°). Follow-up CCD photometry of the targets in the VRI bands was carried out with the three telescopes of the Rozhen National Astronomical Observatory. The 2-m RCC telescope is equipped with a VersArray CCD camera (1340x1300 pixels, 20 μm/pixel, field of 5.35x5.25 arcmin2). The 60-cm Cassegrain telescope is equipped with a FLI PL09000 CCD camera (3056x3056 pixels, 12 μm/pixel, field of 17.1x17.1 arcmin2). The 50/70 cm Schmidt telescope has a field of view (FoV) of around 1° and is equipped with a FLI PL 16803 CCD camera, 4096x4096 pixels, 9 μm/pixel size. (4 data files).
Novel low-cost vision-sensing technology with controllable of exposal time for welding
NASA Astrophysics Data System (ADS)
Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng
2005-02-01
In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.
Camera for Quasars in the Early Universe (CQUEAN)
NASA Astrophysics Data System (ADS)
Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.
2010-05-01
The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.
NASA Astrophysics Data System (ADS)
Abdullayev, B. I.; Gulmaliyev, N. I.; Majidova, S. O.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Basic technical characteristics of CCD matrix U-47 made by the Apogee Alta Instruments Inc. are provided. Short description and features of various noises introduced by optical system and CCD camera are presented. The technique of getting calibration frames: bias, dark, flat field and main stages of processing of results CCD photometry are described.
NASA Astrophysics Data System (ADS)
Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.
2017-11-01
The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
NASA Technical Reports Server (NTRS)
Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.
1989-01-01
SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.
NASA Astrophysics Data System (ADS)
Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.
SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.
NASA Astrophysics Data System (ADS)
Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.
2003-01-01
The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.
Low-cost digital dynamic visualization system
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
1995-05-01
High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.
Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A
2004-01-01
The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.
NASA Astrophysics Data System (ADS)
Anton, Rainer
2011-04-01
Using a 50cm Cassegrain in Namibia, recordings of double and multiple stars were made with a fast CCD camera and a notebook computer. From superpositions of "lucky images", measurements of 149 systems were obtained and compared with literature data. B/W and color images of some remarkable systems are also presented.
NASA Astrophysics Data System (ADS)
Anton, Rainer
2010-07-01
Using a 10" Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of "lucky images", measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented.
VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2015-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.
NASA Astrophysics Data System (ADS)
Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.
2017-07-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfield, B.R.; Rendell, J.T.
1991-01-01
The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less
NASA Astrophysics Data System (ADS)
Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.
2018-03-01
We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.
Securing quality of camera-based biomedical optics
NASA Astrophysics Data System (ADS)
Guse, Frank; Kasper, Axel; Zinter, Bob
2009-02-01
As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.
Fabry-Perot observations of comet Austin
NASA Technical Reports Server (NTRS)
Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.
1990-01-01
Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Camera sensor arrangement for crop/weed detection accuracy in agronomic images.
Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo
2013-04-02
In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.
Geometric Calibration and Validation of Kompsat-3A AEISS-A Camera
Seo, Doocheon; Oh, Jaehong; Lee, Changno; Lee, Donghan; Choi, Haejin
2016-01-01
Kompsat-3A, which was launched on 25 March 2015, is a sister spacecraft of the Kompsat-3 developed by the Korea Aerospace Research Institute (KARI). Kompsat-3A’s AEISS-A (Advanced Electronic Image Scanning System-A) camera is similar to Kompsat-3’s AEISS but it was designed to provide PAN (Panchromatic) resolution of 0.55 m, MS (multispectral) resolution of 2.20 m, and TIR (thermal infrared) at 5.5 m resolution. In this paper we present the geometric calibration and validation work of Kompsat-3A that was completed last year. A set of images over the test sites was taken for two months and was utilized for the work. The workflow includes the boresight calibration, CCDs (charge-coupled devices) alignment and focal length determination, the merge of two CCD lines, and the band-to-band registration. Then, the positional accuracies without any GCPs (ground control points) were validated for hundreds of test sites across the world using various image acquisition modes. In addition, we checked the planimetric accuracy by bundle adjustments with GCPs. PMID:27783054
NASA Astrophysics Data System (ADS)
Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.
1995-06-01
The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.
Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko
2006-01-01
The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be
2005-10-01
The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less
The CTIO Acquisition CCD-TV camera design
NASA Astrophysics Data System (ADS)
Schmidt, Ricardo E.
1990-07-01
A CCD-based Acquisition TV Camera has been developed at CTIO to replace the existing ISIT units. In a 60 second exposure, the new Camera shows a sixfold improvement in sensitivity over an ISIT used with a Leaky Memory. Integration times can be varied over a 0.5 to 64 second range. The CCD, contained in an evacuated enclosure, is operated at -45 C. Only the image section, an area of 8.5 mm x 6.4 mm, gets exposed to light. Pixel size is 22 microns and either no binning or 2 x 2 binning can be selected. The typical readout rates used vary between 3.5 and 9 microseconds/pixel. Images are stored in a PC/XT/AT, which generates RS-170 video. The contrast in the RS-170 frames is automatically enhanced by the software.
VizieR Online Data Catalog: New minima timings and RVs for 3 eclipsing binaries (Zasche+, 2017)
NASA Astrophysics Data System (ADS)
Zasche, P.; Jurysek, J.; Nemravova, J.; Uhlar, R.; Svoboda, P.; Wolf, M.; Honkova, K.; Masek, M.; Prouza, M.; Cechura, J.; Korcakova, D.; Slechta, M.
2018-04-01
Spectroscopy was obtained in two observatories. Most of the data points for these systems came from the Ondrejov observatory and its 2 m telescope (resolution R~12500). Additionally, data on BR Ind and some data on QS Aql were obtained with the FEROS instrument mounted on the 2.2 m MPG telescope located in La Silla Observatory in Chile (R~48000). Photometry for these three systems was collected over the time span of 2008 to 2016. Owing to the relatively high brightness of the targets, only rather small telescopes were used for these photometric observations. The system V773 Cas was observed (by one of the authors, PS) with a 34 mm refractor at a private observatory in Brno, Czech Republic, using an SBIG ST-7XME CCD camera. The star QS Aql was monitored (by one of the authors, RU) with a similar instrument at a private observatory in Jilove u Prahy, Czech Republic, using a G2-0402 CCD camera. The only southern star, BR Ind, was observed with the FRAM telescope (Prouza et al. 2010AdAst2010E..31P), installed and operated at the Pierre Auger Observatory at Malargue, Argentina. (2 data files).
Development of proton CT imaging system using plastic scintillator and CCD camera
NASA Astrophysics Data System (ADS)
Tanaka, Sodai; Nishio, Teiji; Matsushita, Keiichiro; Tsuneda, Masato; Kabuki, Shigeto; Uesaka, Mitsuru
2016-06-01
A proton computed tomography (pCT) imaging system was constructed for evaluation of the error of an x-ray CT (xCT)-to-WEL (water-equivalent length) conversion in treatment planning for proton therapy. In this system, the scintillation light integrated along the beam direction is obtained by photography using the CCD camera, which enables fast and easy data acquisition. The light intensity is converted to the range of the proton beam using a light-to-range conversion table made beforehand, and a pCT image is reconstructed. An experiment for demonstration of the pCT system was performed using a 70 MeV proton beam provided by the AVF930 cyclotron at the National Institute of Radiological Sciences. Three-dimensional pCT images were reconstructed from the experimental data. A thin structure of approximately 1 mm was clearly observed, with spatial resolution of pCT images at the same level as that of xCT images. The pCT images of various substances were reconstructed to evaluate the pixel value of pCT images. The image quality was investigated with regard to deterioration including multiple Coulomb scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradere, P.; Perol, A.
The requirements for the design of an XRII can be quite different depending on the application: medical; industrial; low or high energy. A specific need for industrial applications is to reduce image burn-in, a permanent marking of the tube related to the inspection of sharp contrast objects with high X-ray doses. Burn-in is mainly related to the darkening of the output screen which depends on the electron beam density in the tube. A first way to reduce burn-in is to reduce the tube gain. A more efficient solution now proposed by Thomson Tubes Electroniques is to use a non browning,more » radiation hard glass for the tube output window together with a more adapted screen process that will limit the darkening of the output phosphor itself. The new industrial tube will be proposed in 9 in. (215 mm useful) or 12 in. (290 mm) format and could be ideally combined with a new high resolution (1024 x 1024 pixels) 12 bits real time CCD camera. This camera includes a new interline CCD developed to avoid image smear and blooming. Integrated image heads with power supply and folded optics are available. Low energy, beryllium windowed 9 in. XRII is already available in industrial version.« less
MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera
NASA Astrophysics Data System (ADS)
Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.
2017-10-01
An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).
Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope
NASA Technical Reports Server (NTRS)
Scott, Nic J.; Howell, Steve; Horch, Elliott
2016-01-01
Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.
Dynamic photoelasticity by TDI imaging
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
2001-06-01
High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.
Double Star Measurements at the Southern Sky with 50 cm Reflectors and Fast CCD Cameras in 2012
NASA Astrophysics Data System (ADS)
Anton, Rainer
2014-07-01
A Cassegrain and a Ritchey-Chrétien reflector, both with 50 cm aperture, were used in Namibia for recordings of double stars with fast CCD cameras and a notebook computer. From superposition of "lucky images", measurements of 39 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Images of some remarkable systems are also presented.
Extreme Faint Flux Imaging with an EMCCD
NASA Astrophysics Data System (ADS)
Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien
2009-08-01
An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.
Typical effects of laser dazzling CCD camera
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin
2015-05-01
In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.
Taking the Observatory to the Astronomer
NASA Astrophysics Data System (ADS)
Bisque, T. M.
1997-05-01
Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.
Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors
NASA Astrophysics Data System (ADS)
Han, Ling
Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.
A USB 2.0 computer interface for the UCO/Lick CCD cameras
NASA Astrophysics Data System (ADS)
Wei, Mingzhi; Stover, Richard J.
2004-09-01
The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.
High-speed line-scan camera with digital time delay integration
NASA Astrophysics Data System (ADS)
Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2012-03-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2011-12-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014
NASA Astrophysics Data System (ADS)
Anton, Rainer
2015-04-01
A Ritchey-Chrétien reflector with 50 cm aperture was used in Namibia for recordings of double stars with a fast CCD camera and a notebook computer. From superposition of "lucky images", measurements of 91 pairings in 79 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Some images of noteworthy systems are also presented.
Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras
NASA Astrophysics Data System (ADS)
Quinn, Mark Kenneth
2018-05-01
Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.
2004-04-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.
Realization of Vilnius UPXYZVS photometric system for AltaU42 CCD camera at the MAO NAS of Ukraine
NASA Astrophysics Data System (ADS)
Vid'Machenko, A. P.; Andruk, V. M.; Samoylov, V. S.; Delets, O. S.; Nevodovsky, P. V.; Ivashchenko, Yu. M.; Kovalchuk, G. U.
2005-06-01
The description of two-inch glass filters of the Vilnius UPXYZVS photometric system, which are made at the Main Astronomical Observatory of NAS of Ukraine for AltaU42 CCD camera with format of 2048×2048 pixels, is presented in the paper. Reaction curves of instrumental system are shown. Estimations of minimal star's magnitudes for each filter's band in comparison with the visual V one are obtained. New software for automation of CCD frames processing is developed in program shell of LINUX/MIDAS/ROMAFOT. It is planned to carry out observations with the purpose to create the catalogue of primary UPXYZVS CCD standards in selected field of the sky for some radio-sources, globular and open clusters, etc. Numerical estimations of astrometric and photometric accuracy are obtained.
The Speckle Toolbox: A Powerful Data Reduction Tool for CCD Astrometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Rowe, David; Genet, Russell
2017-01-01
Recent advances in high-speed low-noise CCD and CMOS cameras, coupled with breakthroughs in data reduction software that runs on desktop PCs, has opened the domain of speckle interferometry and high-accuracy CCD measurements of double stars to amateurs, allowing them to do useful science of high quality. This paper describes how to use a speckle interferometry reduction program, the Speckle Tool Box (STB), to achieve this level of result. For over a year the author (Harshaw) has been using STB (and its predecessor, Plate Solve 3) to obtain measurements of double stars based on CCD camera technology for pairs that are either too wide (the stars not sharing the same isoplanatic patch, roughly 5 arc-seconds in diameter) or too faint to image in the coherence time required for speckle (usually under 40ms). This same approach - using speckle reduction software to measure CCD pairs with greater accuracy than possible with lucky imaging - has been used, it turns out, for several years by the U. S. Naval Observatory.
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1999-01-01
An absolute optical linear or rotary encoder which encodes the motion of an object (3) with increased resolution and encoding range and decreased sensitivity to damage to the scale includes a scale (5), which moves with the object and is illuminated by a light source (11). The scale carries a pattern (9) which is imaged by a microscope optical system (13) on a CCD array (17) in a camera head (15). The pattern includes both fiducial markings (31) which are identical for each period of the pattern and code areas (33) which include binary codings of numbers identifying the individual periods of the pattern. The image of the pattern formed on the CCD array is analyzed by an image processor (23) to locate the fiducial marking, decode the information encoded in the code area, and thereby determine the position of the object.
Example-based super-resolution for single-image analysis from the Chang'e-1 Mission
NASA Astrophysics Data System (ADS)
Wu, Fan-Lu; Wang, Xiang-Jun
2016-11-01
Due to the low spatial resolution of images taken from the Chang'e-1 (CE-1) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.
The design and development of low- and high-voltage ASICs for space-borne CCD cameras
NASA Astrophysics Data System (ADS)
Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.
2017-12-01
The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.
Optics design of laser spotter camera for ex-CCD sensor
NASA Astrophysics Data System (ADS)
Nautiyal, R. P.; Mishra, V. K.; Sharma, P. K.
2015-06-01
Development of Laser based instruments like laser range finder and laser ranger designator has received prominence in modern day military application. Aiming the laser on the target is done with the help of a bore sighted graticule as human eye cannot see the laser beam directly. To view Laser spot there are two types of detectors available, InGaAs detector and Ex-CCD detector, the latter being a cost effective solution. In this paper optics design for Ex-CCD based camera is discussed. The designed system is light weight and compact and has the ability to see the 1064nm pulsed laser spot upto a range of 5 km.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
Environmental performance evaluation of an advanced-design solid-state television camera
NASA Technical Reports Server (NTRS)
1979-01-01
The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.
Linear CCD attitude measurement system based on the identification of the auxiliary array CCD
NASA Astrophysics Data System (ADS)
Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan
2015-10-01
Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.
Circuit design of an EMCCD camera
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun
2012-07-01
EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.
Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf
2011-03-01
We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.
NASA Astrophysics Data System (ADS)
Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.
2016-05-01
Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high-quality restored measurements about every 2 s.
Development of two-framing camera with large format and ultrahigh speed
NASA Astrophysics Data System (ADS)
Jiang, Xiaoguo; Wang, Yuan; Wang, Yi
2012-10-01
High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.
1991-04-03
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
1995-08-29
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
Optical registration of spaceborne low light remote sensing camera
NASA Astrophysics Data System (ADS)
Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long
2018-02-01
For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.
SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, S; Uesaka, M; Nishio, T
2016-06-15
Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value ofmore » the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.« less
VizieR Online Data Catalog: Observed light curve of (3200) Phaethon (Ansdell+, 2014)
NASA Astrophysics Data System (ADS)
Ansdell, M.; Meech, K. J.; Hainaut, O.; Buie, M. W.; Kaluna, H.; Bauer, J.; Dundon, L.
2017-04-01
We obtained time series photometry over 15 nights from 1994 to 2013. All but three nights used the Tektronix 2048x2048 pixel CCD camera on the University of Hawaii 2.2 m telescope on Mauna Kea. Two nights used the PRISM 2048x2048 pixel CCD camera on the Perkins 72 inch telescope at the Lowell Observatory in Flagstaff, Arizona, while one night used the Optic 2048x4096 CCD camera also on the University of Hawaii 2.2 m telescope. All observations used the standard Kron-Cousins R filter with the telescope guiding on (3200) Phaethon at non-sidereal rates. Raw images were processed with standard IRAF routines for bias subtraction, flat-fielding, and cosmic ray removal (Tody, 1986SPIE..627..733T). We constructed reference flat fields by median combining dithered images of either twilight or the object field (in both cases, flattening reduced gradients to <1% across the CCD). We performed photometry using the IRAF phot routine with circular apertures typically 5'' in radius, although aperture sizes changed depending on the night and/or exposure as they were chosen to consistently include 99.5% of the object's light. (1 data file).
Cryostat and CCD for MEGARA at GTC
NASA Astrophysics Data System (ADS)
Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.
2012-09-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.
NASA Technical Reports Server (NTRS)
Scott, Nic J.; Howell, Steve; Horch, Elliott
2016-01-01
Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.
NASA Astrophysics Data System (ADS)
Baruch, Daniel; Abookasis, David
2017-04-01
The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and research applications.
NASA Astrophysics Data System (ADS)
Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji
2012-03-01
We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.
30-lens interferometer for high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G.
2016-07-27
We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined frommore » the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.« less
Explosive Transient Camera (ETC) Program
1991-10-01
VOLTAGES 4.- VIDEO OUT CCD CLOCKING UNIT UUPSTAIRS" ELECTRONICS AND ANALOG TO DIGITAL IPR OCECSSER I COMMANDS TO DATA AND STATUS INSTRUMENT INFORMATION I...and transmits digital video and status information to the "downstairs" system. The clocking unit and regulator/driver board are the only CCD dependent...A. 1001, " Video Cam-era’CC’" tandari Piells" (1(P’ll m-norartlum, unpublished). Condon,, J.J., Puckpan, M.A., and Vachalski, J. 1970, A. J., 9U, 1149
NASA Astrophysics Data System (ADS)
Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki
2012-09-01
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
NASA Technical Reports Server (NTRS)
Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)
1998-01-01
A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.
The design and performance of high resolution échelle spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Barnes, Stuart
The design and performance of several high resolution spectrographs for use in astronomy will be described. After a basic outline of the required theory, the design and performance of HERCULES will be presented. HERCULES is an R2 spectrograph fibre-fed from the MJUO 1-m telescope. The échelle grating has 31.6 grooves/mm and it uses a BK7 prism with a 50° apex angle in double-pass for cross-dispersion. A folded Schmidt camera is used for imaging. With a detector having an area 50 x 50 mm, and pixels less than 25 µm, HERCULES is capable of resolving powers of 40,000 to 80,000 and wavelength coverage from 380 to 880 nm. The total throughput (from the fibre entrance to the CCD) is expected to be nearly 20% (in 1" seeing). Measured efficiencies are only slightly less than this. HERCULES is also shown to be capable of excellent radial velocity precision with no apparent difference between long-term and short-term stability. Several significant upgrade options are also described. As part of the evolution of the design of a high resolution spectrograph for SALT, several instruments were developed for 10-metre class telescopes. Early designs, based in part on the successful HERCULES design, did not meet the requirements of a number of potential users, due in particular to the limited ability to inter-leave object and sky orders. This resulted in the design of SALT HRS R2 which uses a mosaic of two 308 x 413 mm R2 échelle gratings with 87 grooves/mm. Cross-dispersion is achieved with a pair of large 40° apex angle BK7 prisms used in double-pass. The échelle grating accepts a 365-mm collimated beam. The camera is a catadioptric system having a 1.2-m primary mirror and three lenses made of BK7 each around 850 mm in diameter. Complete unvignetted (except by the CCD obstruction) wavelength coverage from 370nm to 890nm is possible on a mosaic of three 2k by 4k CCDS with 15 µm pixels. A maximum resolving power of R ≈ 80,000 is possible. For immunity to atmospheric pressure and temperature changes the entire spectrograph is designed to be housed inside either a helium atmosphere or a light vacuum. The spectrograph chamber is nearly seven metres long. An alternative to the R2 SALT HRS is also described. This instrument is an R4 dual beam spectrograph based on a white pupil layout. The design is based on suggestions by B. Delabre and follows closely this authors SOAR HRS instrument. SALT HRS R4 uses volume-phased holographic gratings for cross-dispersion and a 836 x 204 mm échelle grating with 41.6 grooves/mm. The grating will be replicated from two smaller gratings onto a single Zerodur blank. The spectrograph is split into blue and red arms by a dichroic located near the white pupil relay intermediate focus. Wavelengths from 370 nm to 890 nm are covered by two fixed format blue and red dedicated dioptric cameras. The detectors will be a single 2k by 4k CCD with 15 µm pixels for the blue camera and a 4k by 4k CCD with 15 µm pixels for the red. The size of the cameras is reduced significantly by white pupil demagnification from an initial 200-mm diameter collimated beam incident on the échelle grating to around 100 mm (in undispersed light) on the VPH gratings. The final SALT HRS R4 instrument is also designed to be immersed in a vacuum vessel which is considerably smaller than that proposed for the R2 spectrograph. SALT HRS R4 is currently being developed in detail and will be presented for a critical design review in 2005 April.
Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H
2009-09-15
We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.
Flexcam Image Capture Viewing and Spot Tracking
NASA Technical Reports Server (NTRS)
Rao, Shanti
2008-01-01
Flexcam software was designed to allow continuous monitoring of the mechanical deformation of the telescope structure at Palomar Observatory. Flexcam allows the user to watch the motion of a star with a low-cost astronomical camera, to measure the motion of the star on the image plane, and to feed this data back into the telescope s control system. This automatic interaction between the camera and a user interface facilitates integration and testing. Flexcam is a CCD image capture and analysis tool for the ST-402 camera from Santa Barbara Instruments Group (SBIG). This program will automatically take a dark exposure and then continuously display corrected images. The image size, bit depth, magnification, exposure time, resolution, and filter are always displayed on the title bar. Flexcam locates the brightest pixel and then computes the centroid position of the pixels falling in a box around that pixel. This tool continuously writes the centroid position to a network file that can be used by other instruments.
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
NASA Technical Reports Server (NTRS)
Jones, J. A.
1983-01-01
In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.
Wide field NEO survey 1.0-m telescope with 10 2k×4k mosaic CCD camera
NASA Astrophysics Data System (ADS)
Isobe, Syuzo; Asami, Atsuo; Asher, David J.; Hashimoto, Toshiyasu; Nakano, Shi-ichi; Nishiyama, Kota; Ohshima, Yoshiaki; Terazono, Junya; Umehara, Hiroaki; Yoshikawa, Makoto
2002-12-01
We developed a new 1.0 m telescope with a 3 degree flat focal plane to which a mosaic CCD camera with 10 2k×4k chips is fixed. The system was set up in February 2002, and is now undergoing the final fine adjustments. Since the telescope has a focal length of 3 m, a field of 7.5 square degrees is covered in one image. In good seeing conditions, 1.5 arc seconds, at the site located in Bisei town, Okayama prefecture in Japan, we can expect to detect down to 20th magnitude stars with an exposure time of 60 seconds. Considering a read-out time, 46 seconds, of the CCD camera, one image is taken in every two minutes, and about 2,100 square degrees of field is expected to be covered in one clear night. This system is very effective for survey work, especially for Near-Earth-Asteroid detection.
Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.
2014-01-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060
Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W
2009-12-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.
WIYN bench upgrade: a revitalized spectrograph
NASA Astrophysics Data System (ADS)
Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.
2008-07-01
We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.
Overview of Athena Microscopic Imager Results
NASA Technical Reports Server (NTRS)
Herkenhoff, K.; Squyres, S.; Arvidson, R.; Bass, D.; Bell, J., III; Bertelsen, P.; Cabrol, N.; Ehlmann, B.; Farrand, W.; Gaddis, L.
2005-01-01
The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on an extendable arm, the Instrument Deployment Device (IDD). The MI acquires images at a spatial resolution of 31 microns/pixel over a broad spectral range (400 - 700 nm). The MI uses the same electronics design as the other MER cameras but its optics yield a field of view of 32 32 mm across a 1024 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. The MI science objectives, instrument design and calibration, operation, and data processing were described by Herkenhoff et al. Initial results of the MI experiment on both MER rovers (Spirit and Opportunity) have been published previously. Highlights of these and more recent results are described.
Full-field OCT: applications in ophthalmology
NASA Astrophysics Data System (ADS)
Grieve, Kate; Dubois, Arnaud; Paques, Michel; Le Gargasson, Jean-Francois; Boccara, Albert C.
2005-04-01
We present images of ocular tissues obtained using ultrahigh resolution full-field OCT. The experimental setup is based on the Linnik interferometer, illuminated by a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. A spatial resolution of 0.7 μm × 0.9 μm (axial × transverse) is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of 90 dB is obtained by means of image averaging and pixel binning. Whole unfixed eyes and unstained tissue samples (cornea, lens, retina, choroid and sclera) of ex vivo rat, mouse, rabbit and porcine ocular tissues were examined. The unprecedented resolution of our instrument allows cellular-level resolution in the cornea and retina, and visualization of individual fibers in the lens. Transcorneal lens imaging was possible in all animals, and in albino animals, transscleral retinal imaging was achieved. We also introduce our rapid acquisition full-field optical coherence tomography system designed to accommodate in vivo ophthalmologic imaging. The variations on the original system technology include the introduction of a xenon arc lamp as source, and rapid image acquisition performed by a high-speed CMOS camera, reducing acquisition time to 5 ms per frame.
Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.
2017-01-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration
High-precision gauging of metal rings
NASA Astrophysics Data System (ADS)
Carlin, Mats; Lillekjendlie, Bjorn
1994-11-01
Raufoss AS designs and produces air brake fittings for trucks and buses on the international market. One of the critical components in the fittings is a small, circular metal ring, which is going through 100% dimension control. This article describes a low-price, high accuracy solution developed at SINTEF Instrumentation based on image metrology and a subpixel resolution algorithm. The measurement system consists of a PC-plugg-in transputer video board, a CCD camera, telecentric optics and a machine vision strobe. We describe the measurement technique in some detail, as well as the robust statistical techniques found to be essential in the real life environment.
DMD-based LED-illumination super-resolution and optical sectioning microscopy.
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.
DMD-based LED-illumination Super-resolution and optical sectioning microscopy
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373
Development of an imaging method for quantifying a large digital PCR droplet
NASA Astrophysics Data System (ADS)
Huang, Jen-Yu; Lee, Shu-Sheng; Hsu, Yu-Hsiang
2017-02-01
Portable devices have been recognized as the future linkage between end-users and lab-on-a-chip devices. It has a user friendly interface and provides apps to interface headphones, cameras, and communication duct, etc. In particular, the digital resolution of cameras installed in smartphones or pads already has a high imaging resolution with a high number of pixels. This unique feature has triggered researches to integrate optical fixtures with smartphone to provide microscopic imaging capabilities. In this paper, we report our study on developing a portable diagnostic tool based on the imaging system of a smartphone and a digital PCR biochip. A computational algorithm is developed to processing optical images taken from a digital PCR biochip with a smartphone in a black box. Each reaction droplet is recorded in pixels and is analyzed in a sRGB (red, green, and blue) color space. Multistep filtering algorithm and auto-threshold algorithm are adopted to minimize background noise contributed from ccd cameras and rule out false positive droplets, respectively. Finally, a size-filtering method is applied to identify the number of positive droplets to quantify target's concentration. Statistical analysis is then performed for diagnostic purpose. This process can be integrated in an app and can provide a user friendly interface without professional training.
Analysis of crystalline lens coloration using a black and white charge-coupled device camera.
Sakamoto, Y; Sasaki, K; Kojima, M
1994-01-01
To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Digital holographic interferometry applied to the investigation of ignition process.
Pérez-Huerta, J S; Saucedo-Anaya, Tonatiuh; Moreno, I; Ariza-Flores, D; Saucedo-Orozco, B
2017-06-12
We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.
Upwelling Radiance at 976 nm Measured from Space Using a CCD Camera
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Kovalik, Joseph M.; Oaida, Bogdan V.; Abrahamson, Matthew J.; Wright, Malcolm W.
2015-01-01
The Optical Payload for Lasercomm Science (OPALS) Flight System on-board the International Space Station uses a charge coupled device (CCD) camera for receiving a beacon laser from Earth. Relative measurements of the background contributed by upwelling radiance under diverse illumination conditions and varying terrain is presented. In some cases clouds in the field-of-view allowed a comparison of terrestrial and cloud-top upwelling radiance. In this paper we will report these measurements and examine the extent of agreement with atmospheric model predictions.
STK: A new CCD camera at the University Observatory Jena
NASA Astrophysics Data System (ADS)
Mugrauer, M.; Berthold, T.
2010-04-01
The Schmidt-Teleskop-Kamera (STK) is a new CCD-imager, which is operated since begin of 2009 at the University Observatory Jena. This article describes the main characteristics of the new camera. The properties of the STK detector, the astrometry and image quality of the STK, as well as its detection limits at the 0.9 m telescope of the University Observatory Jena are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Computerized lateral-shear interferometer
NASA Astrophysics Data System (ADS)
Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.
1998-07-01
A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.
Periodicity analysis on cat-eye reflected beam profiles of optical detectors
NASA Astrophysics Data System (ADS)
Gong, Mali; He, Sifeng
2017-05-01
The cat-eye effect reflected beam profiles of most optical detectors have a certain characteristic of periodicity, which is caused by array arrangement of sensors at their optical focal planes. It is the first time to find and prove that the reflected beam profile becomes several periodic spots at the reflected propagation distance corresponding to half the imaging distance of a CCD camera. Furthermore, the spatial cycle of these spots is approximately constant, independent of the CCD camera's imaging distance, which is related only to the focal length and pixel size of the CCD sensor. Thus, we can obtain the imaging distance and intrinsic parameters of the optical detector by analyzing its cat-eye reflected beam profiles. This conclusion can be applied in the field of non-cooperative cat-eye target recognition.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
X-Ray Computed Tomography Monitors Damage in Composites
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1997-01-01
The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.
NASA Technical Reports Server (NTRS)
Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.
1995-01-01
A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.
LAMOST CCD camera-control system based on RTS2
NASA Astrophysics Data System (ADS)
Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng
2018-05-01
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
A compact multichannel spectrometer for Thomson scatteringa)
NASA Astrophysics Data System (ADS)
Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
A compact multichannel spectrometer for Thomson scattering.
Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
CCDs in the Mechanics Lab--A Competitive Alternative? (Part I).
ERIC Educational Resources Information Center
Pinto, Fabrizio
1995-01-01
Reports on the implementation of a relatively low-cost, versatile, and intuitive system to teach basic mechanics based on the use of a Charge-Coupled Device (CCD) camera and inexpensive image-processing and analysis software. Discusses strengths and limitations of CCD imaging technologies. (JRH)
Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie
2010-10-10
The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.
A Flight Photon Counting Camera for the WFIRST Coronagraph
NASA Astrophysics Data System (ADS)
Morrissey, Patrick
2018-01-01
A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.
CCD Astrometry with Robotic Telescopes
NASA Astrophysics Data System (ADS)
AlZaben, Faisal; Li, Dewei; Li, Yongyao; Dennis, Aren Fene, Michael; Boyce, Grady; Boyce, Pat
2016-01-01
CCD images were acquired of three binary star systems: WDS06145+1148, WDS06206+1803, and WDS06224+2640. The astrometric solution, position angle, and separation of each system were calculated with MaximDL v6 and Mira Pro x64 software suites. The results were consistent with historical measurements in the Washington Double Star Catalog. Our analysis found some differences in measurements between single-shot color CCD cameras and traditional monochrome CCDs using a filter wheel.
Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.
NASA Astrophysics Data System (ADS)
Coakley, Monica Marie
1995-01-01
This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements of bright neutral species in the daysky as well as the potential for twenty-four hour coverage.
Hayashi, T; Kurokawa, M; Miyakawa, M; Aizawa, T; Kanaki, A; Saitoh, A; Ishioka, K
1994-01-01
Photostereometry has widely been applied to the measurement of mandibular movements in 6 degrees of freedom. In order to improve the accuracy of this measurement, we developed a system utilizing small LEDs mounted on the jaws in redundant numbers and a 5000 pixel linear charge-coupled device (CCD) as a photo-sensor. A total of eight LEDs are mounted on the jaws, in two sets of four, by means of connecting facebows, each weighing approximately 55 g. The position of the LEDs are detected in three-dimensions by two sets of three CCD cameras, located bilaterally. The position and orientation of the mandible are estimated from the positions of all LEDs measured in the sense of least-squares, thereby effectively reducing the measurement errors. The static overall accuracy at all tooth and condylar points was considered to lie within 0.19 and 0.34 mm, respectively, from various accuracy verification tests.
Choice and maintenance of equipment for electron crystallography.
Mills, Deryck J; Vonck, Janet
2013-01-01
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
NASA Technical Reports Server (NTRS)
1994-01-01
Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-07-08
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).
The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars
NASA Astrophysics Data System (ADS)
Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.
2017-05-01
This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.
NASA Astrophysics Data System (ADS)
Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.
2001-08-01
The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.
Design and fabrication of a CCD camera for use with relay optics in solar X-ray astronomy
NASA Technical Reports Server (NTRS)
1984-01-01
Configured as a subsystem of a sounding rocket experiment, a camera system was designed to record and transmit an X-ray image focused on a charge coupled device. The camera consists of a X-ray sensitive detector and the electronics for processing and transmitting image data. The design and operation of the camera are described. Schematics are included.
Research-grade CMOS image sensors for remote sensing applications
NASA Astrophysics Data System (ADS)
Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali
2004-11-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.
Soft X-ray and XUV imaging with a charge-coupled device /CCD/-based detector
NASA Technical Reports Server (NTRS)
Loter, N. G.; Burstein, P.; Krieger, A.; Ross, D.; Harrison, D.; Michels, D. J.
1981-01-01
A soft X-ray/XUV imaging camera which uses a thinned, back-illuminated, all-buried channel RCA CCD for radiation sensing has been built and tested. The camera is a slow-scan device which makes possible frame integration if necessary. The detection characteristics of the device have been tested over the 15-1500 eV range. The response was linear with exposure up to 0.2-0.4 erg/sq cm; saturation occurred at greater exposures. Attention is given to attempts to resolve single photons with energies of 1.5 keV.
Sensory Interactive Teleoperator Robotic Grasping
NASA Technical Reports Server (NTRS)
Alark, Keli; Lumia, Ron
1997-01-01
As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.
An Investigation into the Spectral Imaging of Hall Thruster Plumes
2015-07-01
imaging experiment. It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus...19 mml 14c--7_0_m_m_~•... ,. ,. 50 mm I· ·I ,. 41 mm I Kodak KAF- 3200E ceo 2184 x 1472 px 14.9 x 10.0 mm 6.8 x 6.8J..Lm pixel size SBIG ST...It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus long exposure
Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs
NASA Astrophysics Data System (ADS)
Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.
2014-02-01
This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.
De, Abhijit; Gambhir, Sanjiv Sam
2005-12-01
This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.
NASA Astrophysics Data System (ADS)
Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal
2018-06-01
We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo
2015-07-01
A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less
Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.
Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus
2014-09-22
An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.
Stellar Oscillations Network Group
NASA Astrophysics Data System (ADS)
Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Arentoft, T.; Frandsen, S.
2007-06-01
Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V < 6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.
2010-01-01
Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.
Insect Wing Displacement Measurement Using Digital Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la
2008-04-15
Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame ratemore » digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.« less
NASA Astrophysics Data System (ADS)
Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi
2011-03-01
Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish
2018-01-01
Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133
Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish
2018-01-01
The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.
NASA Astrophysics Data System (ADS)
Fernández-Lajús, E.; Gamen, R.; Sánchez, M.; Scalia, M. C.; Baume, G. L.
2016-08-01
From observations made with the ``Jorge Sahade'' telescope of the Complejo Astronomico El Leoncito, the UBVRI-band extinction coeficients were measured, and some parameters and characteristics of the direct-image CCD camera ROPER 2048B were determined.
VizieR Online Data Catalog: Photometry of multiple stars at NAOR&ASV in 2015 (Cvetkovic+, 2017)
NASA Astrophysics Data System (ADS)
Cvetkovic, Z.; Pavlovic, R.; Boeva, S.
2018-05-01
This is the ninth series of CCD observations of double and multiple stars, obtained at the Bulgarian National Astronomical Observatory at Rozhen (NAOR) over five nights. As previously, the CCD camera VersArray 1300B was used, which was attached to the 2 m telescope. For each double or multiple star, five CCD frames in the Johnson B filter and five frames in the Johnson V filter were taken, which enabled us to determine the magnitude difference for these filters. In 2015 at the Astronomical Station at Vidojevica (ASV), over a total of 23 nights, observations were carried out by using the 60 cm telescope with a Cassegrain optical system. This is the fourth observational series at ASV since the work started there in 2011. In the observations we used the Apogee Alta U42 CCD camera whose characteristics can be found in the paper by Cvetkovic et al. (2016, J/AJ/151/58). Every pair was observed five times in the Cousins/Bessel B filter and five times in the Cousins/Bessel V one. (3 data files).
The Soft X-ray Imager (SXI) for the ASTRO-H Mission
NASA Astrophysics Data System (ADS)
Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.
2015-09-01
The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.
Mapping of the Moon by Clementine
McEwen, A.S.; Robinson, M.S.
1997-01-01
The "faster, cheaper, better" Clementine spacecraft mission mapped the Moon from February 19 to May 3, 1994. Global coverage was acquired in 11 spectral bandpasses from 415 to 2792 nm and at resolutions of 80-330 m/pixel; a thermal-infrared camera sampled ???20% of the surface; a high-resolution camera sampled selected areas (especially the polar regions); and a lidar altimeter mapped the large-scale topography up to latitudes of ??75??. The spacecraft was in a polar, elliptical orbit, 400-450 km periselene altitude. Periselene latitude was -28.5?? for the first month of mapping, then moved to +28.5??. NASA is supporting the archiving, systematic processing, and analysis of the ???1.8 million lunar images and other datasets. A new global positional network has been constructed from 43,000 images and ???0.5 million match points; new digital maps will facilitate future lunar exploration. In-flight calibrations now enable photometry to a high level of precision for the uv-visible CCD camera. Early science results include: (1) global models of topography, gravity, and crustal thicknesses; (2) new information on the topography and structure of multiring impact basins; (3) evidence suggestive of water ice in large permanent shadows near the south pole; (4) global mapping of iron abundances; and (5) new constraints on the Phanerozoic cratering rate of the Earth. Many additional results are expected following completion of calibration and systematic processing efforts. ?? 1997 COSPAR. Published by Elsevier Science Ltd.
Applications of optical fibers and miniature photonic elements in medical diagnostics
NASA Astrophysics Data System (ADS)
Blaszczak, Urszula; Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej; Kukwa, Andrzej; Kukwa, Wojciech
2014-05-01
Construction of endoscopes which are known for decades, in particular in small devices with the diameter of few millimetres, are based on the application of fibre optic imaging bundles or bundles of fibers in the illumination systems (usually with a halogen source). Cameras - CCD and CMOS - with the sensor size of less than 5 mm emerging commercially and high power LED solutions allow to design and construct modern endoscopes characterized by many innovative properties. These constructions offer higher resolution. They are also relatively cheaper especially in the context of the integration of the majority of the functions on a single chip. Mentioned features of the CMOS sensors reduce the cycle of introducing the newly developed instruments to the market. The paper includes a description of the concept of the endoscope with a miniature camera built on the basis of CMOS detector manufactured by Omni Vision. The set of LEDs located at the operator side works as the illuminating system. Fibre optic system and the lens of the camera are used in shaping the beam illuminating the observed tissue. Furthermore, to broaden the range of applications of the endoscope, the illuminator allows to control the spectral characteristics of emitted light. The paper presents the analysis of the basic parameters of the light-and-optical system of the endoscope. The possibility of adjusting the magnifications of the lens, the field of view of the camera and its spatial resolution is discussed. Special attention was drawn to the issues related to the selection of the light sources used for the illumination in terms of energy efficiency and the possibility of providing adjusting the colour of the emitted light in order to improve the quality of the image obtained by the camera.
NASA Astrophysics Data System (ADS)
Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.
2017-02-01
In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.
Design of a CCD Camera for Space Surveillance
2016-03-05
Laboratory fabricated CCID-51M, a 2048x1024 pixel Charge Couple Device (CCD) imager. [1] The mission objective is to observe and detect satellites in...phased to transfer the charge to the outputs. An electronic shutter is created by having an equal area of pixels covered by an opaque metal mask. The...Figure 4 CDS Timing Diagram By design the CCD readout rate is 400 KHz. This rate was chosen so reading the 2E6 pixels from one output is less than
NASA Astrophysics Data System (ADS)
Lyuty, V. M.; Abdullayev, B. I.; Alekberov, I. A.; Gulmaliyev, N. I.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Short description of optical and electric scheme of CCD photometer with camera U-47 installed on the Cassegrain focus of ZEISS-600 telescope of the ShAO NAS Azerbaijan is provided. The reducer of focus with factor of reduction 1.7 is applied. It is calculated equivalent focal distances of a telescope with a focus reducer. General calculations of optimum distance from focal plane and t sizes of optical filters of photometer are presented.
A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection
NASA Astrophysics Data System (ADS)
Tomono, Akira; Iida, Muneo; Kobayashi, Yukio
1990-04-01
This paper proposes a highly efficient camera system which extracts, irrespective of background, feature points such as the pupil, corneal reflection image and dot-marks pasted on a human face in order to detect human eye movement by image processing. Two eye movement detection methods are sugested: One utilizing face orientation as well as pupil position, The other utilizing pupil and corneal reflection images. A method of extracting these feature points using LEDs as illumination devices and a new TV camera system designed to record eye movement are proposed. Two kinds of infra-red LEDs are used. These LEDs are set up a short distance apart and emit polarized light of different wavelengths. One light source beams from near the optical axis of the lens and the other is some distance from the optical axis. The LEDs are operated in synchronization with the camera. The camera includes 3 CCD image pick-up sensors and a prism system with 2 boundary layers. Incident rays are separated into 2 wavelengths by the first boundary layer of the prism. One set of rays forms an image on CCD-3. The other set is split by the half-mirror layer of the prism and forms an image including the regularly reflected component by placing a polarizing filter in front of CCD-1 or another image not including the component by not placing a polarizing filter in front of CCD-2. Thus, three images with different reflection characteristics are obtained by three CCDs. Through the experiment, it is shown that two kinds of subtraction operations between the three images output from CCDs accentuate three kinds of feature points: the pupil and corneal reflection images and the dot-marks. Since the S/N ratio of the subtracted image is extremely high, the thresholding process is simple and allows reducting the intensity of the infra-red illumination. A high speed image processing apparatus using this camera system is decribed. Realtime processing of the subtraction, thresholding and gravity position calculation of the feature points is possible.
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Ellefsen, Kyle L; Settle, Brett; Parker, Ian; Smith, Ian F
2014-09-01
Local Ca(2+) transients such as puffs and sparks form the building blocks of cellular Ca(2+) signaling in numerous cell types. They have traditionally been studied by linescan confocal microscopy, but advances in TIRF microscopy together with improved electron-multiplied CCD (EMCCD) cameras now enable rapid (>500 frames s(-1)) imaging of subcellular Ca(2+) signals with high spatial resolution in two dimensions. This approach yields vastly more information (ca. 1 Gb min(-1)) than linescan imaging, rendering visual identification and analysis of local events imaged both laborious and subject to user bias. Here we describe a routine to rapidly automate identification and analysis of local Ca(2+) events. This features an intuitive graphical user-interfaces and runs under Matlab and the open-source Python software. The underlying algorithm features spatial and temporal noise filtering to reliably detect even small events in the presence of noisy and fluctuating baselines; localizes sites of Ca(2+) release with sub-pixel resolution; facilitates user review and editing of data; and outputs time-sequences of fluorescence ratio signals for identified event sites along with Excel-compatible tables listing amplitudes and kinetics of events. Copyright © 2014 Elsevier Ltd. All rights reserved.
General Model of Photon-Pair Detection with an Image Sensor
NASA Astrophysics Data System (ADS)
Defienne, Hugo; Reichert, Matthew; Fleischer, Jason W.
2018-05-01
We develop an analytic model that relates intensity correlation measurements performed by an image sensor to the properties of photon pairs illuminating it. Experiments using an effective single-photon counting camera, a linear electron-multiplying charge-coupled device camera, and a standard CCD camera confirm the model. The results open the field of quantum optical sensing using conventional detectors.
Imagers for digital still photography
NASA Astrophysics Data System (ADS)
Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge
2006-04-01
This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.
NASA Astrophysics Data System (ADS)
Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John
2007-11-01
This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.
Transient full-field vibration measurement using spectroscopical stereo photogrammetry.
Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan
2010-12-20
Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.
On the development of new SPMN diurnal video systems for daylight fireball monitoring
NASA Astrophysics Data System (ADS)
Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.
2008-09-01
Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM, University of Huelva), in the environment of Doñana Natural Park (Huelva province). In this way, both stations, which are separated by a distance of 75 km, will work as a double video station system in order to provide trajectory and orbit information of mayor bolides and, thus, increase the chance of meteorite recovery in the Iberian Peninsula. The new diurnal SPMN video stations are endowed with different models of Mintron cameras (Mintron Enterprise Co., LTD). These are high-sensitivity devices that employ a colour 1/2" Sony interline transfer CCD image sensor. Aspherical lenses are attached to the video cameras in order to maximize image quality. However, the use of fast lenses is not a priority here: while most of our nocturnal cameras use f0.8 or f1.0 lenses in order to detect meteors as faint as magnitude +3, diurnal systems employ in most cases f1.4 to f2.0 lenses. Their focal length ranges from 3.8 to 12 mm to cover different atmospheric volumes. The cameras are arranged in such a way that the whole sky is monitored from every observing station. Figure 1. A daylight event recorded from Sevilla on May 26, 2008 at 4h30m05.4 +-0.1s UT. The way our diurnal video cameras work is similar to the operation of our nocturnal systems [1]. Thus, diurnal stations are automatically switched on and off at sunrise and sunset, respectively. The images taken at 25 fps and with a resolution of 720x576 pixels are continuously sent to PC computers through a video capture device. The computers run a software (UFOCapture, by SonotaCo, Japan) that automatically registers meteor trails and stores the corresponding video frames on hard disk. Besides, before the signal from the cameras reaches the computers, a video time inserter that employs a GPS device (KIWI-OSD, by PFD Systems) inserts time information on every video frame. This allows us to measure time in a precise way (about 0.01 sec.) along the whole fireball path. EPSC Abstracts, Vol. 3, EPSC2008-A-00319, 2008 European Planetary Science Congress, Author(s) 2008 However, one of the issues with respect to nocturnal observing stations is the high number of false detections as a consequence of several factors: higher activity of birds and insects, reflection of sunlight on planes and helicopters, etc. Sometimes some of these false events follow a pattern which is very similar to fireball trails, which makes absolutely necessary the use of a second station in order to discriminate between them. Other key issue is related to the passage of the Sun before the field of view of some of the cameras. In fact, special care is necessary with this to avoid any damage to the CCD sensor. Besides, depending on atmospheric conditions (dust or moisture, for instance), the Sun may saturate most of the video frame. To solve this, our automated system determines which camera is pointing towards the Sun at a given moment and disconnects it. As the cameras are endowed with autoiris lenses, its disconnection means that the optics is fully closed and, so, the CCD sensor is protected. This, of course, means that when this happens the atmospheric volume covered by the corresponding camera is not monitored. It must be also taken into account that, in general, operation temperatures are higher for diurnal cameras. This results in higher thermal noise and, so, poses some difficulties to the detection software. To minimize this effect, it is necessary to employ CCD video cameras with proper signal to noise ratio. Refrigeration of the CCD sensor with, for instance, a Peltier system, can also be considered. The astrometric reduction procedure is also somewhat different for daytime events: it requires that reference objects are located within the field of view of every camera in order to calibrate the corresponding images. This is done by allowing every camera to capture distant buildings that, by means of said calibration, would allow us to obtain the equatorial coordinates of the fireball along its path by measuring its corresponding X and Y positions on every video frame. Such calibration can be performed from stars positions measured from nocturnal images taken with the same cameras. Once made, if the cameras are not moved it is possible to estimate the equatorial coordinates of any future fireball event. We don't use any software for automatic astrometry of the images. This crucial step is made via direct measurements of the pixel position as in all our previous work. Then, from these astrometric measurements, our software estimates the atmospheric trajectory and radiant for each fireball ([10] to [13]). During 2007 and 2008 the SPMN has also setup other diurnal stations based on 1/3' progressive-scan CMOS sensors attached to modified wide-field lenses covering a 120x80 degrees FOV. They are placed in Andalusia: El Arenosillo (Huelva), La Mayora (Málaga) and Murtas (Granada). They have also night sensitivity thanks to a infrared cut filter (ICR) which enables the camera to perform well in both high and low light condition in colour as well as provide IR sensitive Black/White video at night. Conclusions First detections of daylight fireballs by CCD video camera are being achieved in the SPMN framework. Future expansion and set up of new observing stations is currently being planned. The future establishment of additional diurnal SPMN stations will allow an increase in the number of daytime fireballs detected. This will also increase our chance of meteorite recovery.
First Results of Digital Topography Applied to Macromolecular Crystals
NASA Technical Reports Server (NTRS)
Lovelace, J.; Soares, A. S.; Bellamy, H.; Sweet, R. M.; Snell, E. H.; Borgstahl, G.
2004-01-01
An inexpensive digital CCD camera was used to record X-ray topographs directly from large imperfect crystals of cubic insulin. The topographs recorded were not as detailed as those which can be measured with film or emulsion plates but do show great promise. Six reflections were recorded using a set of finely spaced stills encompassing the rocking curve of each reflection. A complete topographic reflection profile could be digitally imaged in minutes. Interesting and complex internal structure was observed by this technique.The CCD chip used in the camera has anti-blooming circuitry and produced good data quality even when pixels became overloaded.
Cat-eye effect reflected beam profiles of an optical system with sensor array.
Gong, Mali; He, Sifeng; Guo, Rui; Wang, Wei
2016-06-01
In this paper, we propose an applicable propagation model for Gaussian beams passing through any cat-eye target instead of traditional simplification consisting of only a mirror placed at the focal plane of a lens. According to the model, the cat-eye effect of CCD cameras affected by defocus is numerically simulated. An excellent agreement of experiment results with theoretical analysis is obtained. It is found that the reflectivity distribution at the focal plane of the cat-eye optical lens has great influence on the results, while the cat-eye effect reflected beam profiles of CCD cameras show obvious periodicity.
Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements
NASA Astrophysics Data System (ADS)
Piccone, A. N.; Lautenbach, J.
2017-12-01
Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.
Time-resolved imaging of the plasma development in a triggered vacuum switch
NASA Astrophysics Data System (ADS)
Park, Wung-Hoa; Kim, Moo-Sang; Son, Yoon-Kyoo; Frank, Klaus; Lee, Byung-Joon; Ackerman, Thilo; Iberler, Marcus
2017-12-01
Triggered vacuum switches (TVS) are particularly used in pulsed power technology as closing switches for high voltages and high charge transfer. A non-sealed-off prototype was designed with a side-on quartz window to investigate the evolution of the trigger discharge into the main discharge. The image acquisition was done with a fast CCD camera PI-MAX2 from Princeton Instruments. The CCD camera has a maximum exposure time of 2 ns. The electrode configuration of the prototype is a conventional six-rod gap type, a capacitor bank with C = 16.63 μF, which corresponds at 20 kV charging voltage to a total stored charge of 0.3 C or a total energy of 3.3 kJ. The peak current is 88 kA. According to the tremendously highly different light intensities during the trigger and main discharge, the complete discharge is split into three phases: a trigger breakdown phase, an intermediate phase and a main discharge phase. The CCD camera images of the first phase show instabilities of the trigger breakdown, in phase 2 three different discharge modes are observed. After the first current maximum the discharge behavior is reproducible.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-01-01
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Feipeng; Shi Hongjian; Bai Pengxiang
In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less
Fourier Theory Explanation for the Sampling Theorem Demonstrated by a Laboratory Experiment.
ERIC Educational Resources Information Center
Sharma, A.; And Others
1996-01-01
Describes a simple experiment that uses a CCD video camera, a display monitor, and a laser-printed bar pattern to illustrate signal sampling problems that produce aliasing or moiri fringes in images. Uses the Fourier transform to provide an appropriate and elegant means to explain the sampling theorem and the aliasing phenomenon in CCD-based…
Low-cost laser speckle contrast imaging of blood flow using a webcam.
Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.
Low-cost laser speckle contrast imaging of blood flow using a webcam
Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082
[Virtual reality in ophthalmological education].
Wagner, C; Schill, M; Hennen, M; Männer, R; Jendritza, B; Knorz, M C; Bender, H J
2001-04-01
We present a computer-based medical training workstation for the simulation of intraocular eye surgery. The surgeon manipulates two original instruments inside a mechanical model of the eye. The instrument positions are tracked by CCD cameras and monitored by a PC which renders the scenery using a computer-graphic model of the eye and the instruments. The simulator incorporates a model of the operation table, a mechanical eye, three CCD cameras for the position tracking, the stereo display, and a computer. The three cameras are mounted under the operation table from where they can observe the interior of the mechanical eye. Using small markers the cameras recognize the instruments and the eye. Their position and orientation in space is determined by stereoscopic back projection. The simulation runs with more than 20 frames per second and provides a realistic impression of the surgery. It includes the cold light source which can be moved inside the eye and the shadow of the instruments on the retina which is important for navigational purposes.
Plane development of lateral surfaces for inspection systems
NASA Astrophysics Data System (ADS)
Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.
2006-08-01
The problem of developing the lateral surfaces of a 3D object can arise in item inspection using automated imaging systems. In an industrial environment, these control systems typically work at high rate and they have to assure a reliable inspection of the single item. For compactness requirements it is not convenient to utilise three or four CCD cameras to control all the lateral surfaces of an object. Moreover it is impossible to mount optical components near the object if it is placed on a conveyor belt. The paper presents a system that integrates on a single CCD picture the images of both the frontal surface and the lateral surface of an object. It consists of a freeform lens mounted in front of a CCD camera with a commercial lens. The aim is to have a good magnification of the lateral surface, maintaining a low aberration level for exploiting the pictures in an image processing software. The freeform lens, made in plastics, redirects the light coming from the object to the camera lens. The final result is to obtain on the CCD: - the frontal and lateral surface images, with a selected magnification (even with two different values for the two images); - a gap between these two images, so an automatic method to analyse the images can be easily applied. A simple method to design the freeform lens is illustrated. The procedure also allows to obtain the imaging system modifying a current inspection system reducing the cost.
High Resolution Spectrograph for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Tull, R. G.; MacQueen, P. J.; Good, J.; Epps, H. W.; HET HRS Team
1998-12-01
A fiber fed high-resolution spectrograph (HRS) is under construction for the Hobby-Eberly Telescope (HET). The primary resolving power originally specified, from astrophysical considerations, was R = 60,000 with a fiber of diameter at least 1 arc-second, with full spectral coverage limited only by the combined band-pass of the HET, the optical fiber, and the image detector. This was achieved in the final design with a high blaze angle R-4 echelle mosaic, white pupil design, image slicing, and a large area CCD mosaic illuminated by an eight element refractive camera. Two back-to-back, user selectable first-order diffraction gratings are employed for cross dispersion, to separate echelle spectral orders; the entire spectral range (420 - 1,000 nm) can be covered in as few as two exposures. Critical issues addressed in the design are cross dispersion and order spacing, sky subtraction, echelle and CCD selection, fiber optic feed and scrambling, and image or pupil slicing. In the final design meeting the requirements we exploited the large-area 4096 square CCD, image slicing, and the optical performance of the white-pupil design to acquire a range of 30,000 < R < 120,000 with fibers of diameter 2 and 3 arc-seconds, without sacrificing full spectral coverage. Design details will be presented. Limiting magnitude is projected to be about V = 19 (for S/N = 10) at the nominal R = 60,000 resolving power. The poster display will outline performance characteristics expected in relation to projected astrophysical research capabilities outlined by Sneden et al., in this conference. HRS is supported by generous grants from NSF, NASA, the State of Texas, and private philanthropy, with matching funds granted by the University of Texas and by McDonald Observatory.
NASA Astrophysics Data System (ADS)
Kluttz, K. A.; Gray, R. O.
2003-12-01
We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.
Ultrahigh-speed X-ray imaging of hypervelocity projectiles
NASA Astrophysics Data System (ADS)
Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.
2011-08-01
High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.
High-frame-rate infrared and visible cameras for test range instrumentation
NASA Astrophysics Data System (ADS)
Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.
1995-09-01
Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.
Evaluation of the ImmerVision IMV1-1/3NI Panomorph Lens on a Small Unmanned Ground Vehicle (SUGV)
2013-07-01
360°. For the above reason, a 1.3-MP Chameleon color universal serial bus (USB) camera with a 1/3-in CCD from PGR was selected instead of...recommended qualified cameras to host the panomorph lens. Having the advantage of a small footprint, the Chameleon camera with the IMV1 lens can be easily
Onboard TDI stage estimation and calibration using SNR analysis
NASA Astrophysics Data System (ADS)
Haghshenas, Javad
2017-09-01
Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2004-06-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2017-11-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale.
Shastry, M C; Luck, S D; Roder, H
1998-01-01
A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction. PMID:9591695
Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors
NASA Technical Reports Server (NTRS)
Opal, Chet B.; Carruthers, George R.
1989-01-01
In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude
2003-03-01
We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.
Optical head tracking for functional magnetic resonance imaging using structured light.
Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D
2008-07-01
An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.
Application of PLZT electro-optical shutter to diaphragm of visible and mid-infrared cameras
NASA Astrophysics Data System (ADS)
Fukuyama, Yoshiyuki; Nishioka, Shunji; Chonan, Takao; Sugii, Masakatsu; Shirahata, Hiromichi
1997-04-01
Pb0.9La0.09(Zr0.65,Ti0.35)0.9775O3 9/65/35) commonly used as an electro-optical shutter exhibits large phase retardation with low applied voltage. This shutter features as follows; (1) high shutter speed, (2) wide optical transmittance, and (3) high optical density in 'OFF'-state. If the shutter is applied to a diaphragm of video-camera, it could protect its sensor from intense lights. We have tested the basic characteristics of the PLZT electro-optical shutter and resolved power of imaging. The ratio of optical transmittance at 'ON' and 'OFF'-states was 1.1 X 103. The response time of the PLZT shutter from 'ON'-state to 'OFF'-state was 10 micro second. MTF reduction when putting the PLZT shutter in from of the visible video- camera lens has been observed only with 12 percent at a spatial frequency of 38 cycles/mm which are sensor resolution of the video-camera. Moreover, we took the visible image of the Si-CCD video-camera. The He-Ne laser ghost image was observed at 'ON'-state. On the contrary, the ghost image was totally shut out at 'OFF'-state. From these teste, it has been found that the PLZT shutter is useful for the diaphragm of the visible video-camera. The measured optical transmittance of PLZT wafer with no antireflection coating was 78 percent over the range from 2 to 6 microns.
Intercomparison of SO2 camera systems for imaging volcanic gas plumes
Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred
2015-01-01
SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.
Intercomparison of SO2 camera systems for imaging volcanic gas plumes
NASA Astrophysics Data System (ADS)
Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-François; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred
2015-07-01
SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.
Single-Pulse Dual-Energy Mammography Using a Binary Screen Coupled to Dual CCD Cameras
1999-08-01
Fossum, "Active pixel sensors—Are CCD’s Dinosaurs ?," Proc. SPIE 1900, 2-14 (1993). "S. Mendis, S. E. Kemeny, R. Gee, B. Pain, and E. R. Fossum, "Progress...Clin Oncol 13:1470-1477, 1995 12. Wahl RL, Zasadny K, Helvie M, et al: Metabolic monitoring of breast cancer chemohormonotherapy using posi- tron
NASA Technical Reports Server (NTRS)
Mottola, Stefano; Dimartino, M.; Gonano-Beurer, M.; Hoffmann, H.; Neukum, G.
1992-01-01
This paper reports the observations of 951 Gaspra carried out at the European Southern Observatory (La Silla, Chile) during the 1991 apparition, using the DLR CCD Camera equipped with a spare set of the Galileo SSI filters. Time-resolved spectrophotometric measurements are presented. The occurrence of spectral variations with rotation suggests the presence of surface variegation.
NASA Astrophysics Data System (ADS)
Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris
2016-07-01
World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.
Development of an optical inspection platform for surface defect detection in touch panel glass
NASA Astrophysics Data System (ADS)
Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu
2016-04-01
An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.
Ultrafast Imaging using Spectral Resonance Modulation
NASA Astrophysics Data System (ADS)
Huang, Eric; Ma, Qian; Liu, Zhaowei
2016-04-01
CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.
NASA Astrophysics Data System (ADS)
Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.
2017-11-01
The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.
Development of Residual Gas Profile Monitors at GSI
NASA Astrophysics Data System (ADS)
Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.
2004-11-01
Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.
Optical Transient Monitor (OTM) for BOOTES Project
NASA Astrophysics Data System (ADS)
Páta, P.; Bernas, M.; Castro-Tirado, A. J.; Hudec, R.
2003-04-01
The Optical Transient Monitor (OTM) is a software for control of three wide and ultra-wide filed cameras of BOOTES (Burst Observer and Optical Transient Exploring System) station. The OTM is a PC based and it is powerful tool for taking images from two SBIG CCD cameras in same time or from one camera only. The control program for BOOTES cameras is Windows 98 or MSDOS based. Now the version for Windows 2000 is prepared. There are five main supported modes of work. The OTM program could control cameras and evaluate image data without human interaction.
VizieR Online Data Catalog: Solar-type stars from SDSS-III MARVELS. VI. HD 87646 (Ma+, 2016)
NASA Astrophysics Data System (ADS)
Ma, B.; Ge, J.; Wolszczan, A.; Muterspaugh, M. W.; Lee, B.; Henry, G. W.; Schneider, D. P.; Martin, E. L.; Niedzielski, A.; Xie, J.; Fleming, S. W.; Thomas, N.; Williamson, M.; Zhu, Z.; Agol, E.; Bizyaev, D.; da Costa, L. N.; Jiang, P.; Fiorenzano, A. F. M.; Hernandez, J. I. G.; Guo, P.; Grieves, N.; Li, R.; Liu, J.; Mahadevan, S.; Mazeh, T.; Nguyen, D. C.; Paegert, M.; Sithajan, S.; Stassun, K.; Thirupathi, S.; van Eyken, J. C.; Wan, X.; Wang, J.; Wisniewski, J. P.; Zhao, B.; Zucker, S.
2016-11-01
We have obtained a total of 16 observations of HD87646 using the W.M. Keck Exoplanet Tracker (KeckET) from 2006 December to 2007 June. The radial velocities obtained are listed in Table1. The KeckET instrument was constructed in 2005 August-2006 February with support from the Keck Foundation. It was coupled with a wide field Sloan Digital Sky Survey telescope (SDSS) and used for the pilot Multi-Object APO RV Exoplanet Large-Area Survey (MARVELS). This is the sixth paper in this series, examining the low-mass companions around solar-type stars from the SDSS-III MARVELS survey (Wisniewski et al. 2012, Cat. J/AJ/143/107; Fleming et al. 2012AJ....144...72F; Ma et al. 2013AJ....145...20M; Jiang et al. 2013AJ....146...65J; De Lee et al. 2013AJ....145..155D). The KeckET instrument consists of eight subsystems-a multi-object fiber feed, an iodine cell, a fixed-delay interferometer system, a slit, a collimator, a grating, a camera, and a 4k*4k CCD detector. In addition, it contains four auxiliary subsystems: the interferometer control, an instrument calibration system, a photon flux monitoring system, and a thermal probe and control system. The instrument is fed with 60 fibers with 200μm core diameters, which are coupled to 180μm core diameter short fibers from the SDSS telescope, corresponding to 3arcsec on the sky at f/5. The resolving power for the spectrograph is R=5100, and the wavelength coverage is ~900Å, centered at 5400Å. KeckET has one spectrograph and one 4k*4k CCD camera that captures one of the two interferometer outputs, and has a 5.5% detection efficiency from the telescope to the detector without the iodine cell under the typical APO seeing conditions (~1.5arcsec seeing). The CCD camera records fringing spectra from 59 objects in a single exposure. Subsequent observations were performed using the Exoplanet Tracker (ET) instrument at Kitt Peak National Observatory (KPNO). Initial follow-up was performed in 2007 November. Additional data points were obtained at KPNO in 2008 January, February, and May. The integration time was 35-40 minutes in 2007 November and 20 minutes in 2008 January, February, and May. A total of 40 data points were obtained from 2007 November to 2008 May and are also listed in Table1. Follow-up observations of HD87646 were conducted with the fiber-fed High Resolution Spectrograph (HRS) of the Hobby Eberley telescope (HET). The observations were executed in queue scheduled mode and used a 2 arcsec fiber, with the HRS slit set, to yield a spectral resolution of R~60000. A total of 29 data points were obtained between 2007 December and 2008 March. The HRS spectra consisted of 46 echelle orders recorded on the blue CCD (407-592nm) and 24 orders on the red one (602-784nm). The spectral data used for RV measurements were extracted from the 17 orders (505-592nm) in which the I2 cell superimposed strong absorption lines. The radial velocities obtained are also provided in Table1. HD87646 was selected as an radial velocity survey target by the Multi-object APO RV Exoplanet Large-area Survey (MARVELS) preselection criterion. The star has been monitored at 23 epochs using the MARVELS instrument mounted on the SDSS 2.5m Telescope at APO between 2009 May and 2011 December. The MARVELS instrument is a fiber-fed dispersed fixed-delay interferometer instrument capable of observing 60 objects simultaneously and covers a wavelength range of 5000-5700Å with a resolution of R~12000. The final differential radial velocity products are included in the SDSS Data Release 12 (Alam et al. 2015ApJS..219...12A) and are presented in Table1. We have obtained additional observations of HD87646 with a fiber-fed echelle spectrograph situated at the 2m Automatic Spectroscopic Telescope (AST) in the Fairborn Observatory. Through 2011 June, the detector was a 2048*4096 SITe ST-002A CCD with 15μm pixels. The AST echelle spectrograph has 21 orders that cover the wavelength range of 4920-7100Å, and has an average resolution of 0.17Å. In the summer of 2011, the SITe CCD detector and dewar were replaced with a Fairchild 486 CCD having 4K*4K 15μm pixels, which required a new readout electronics package, and a new dewar with a Cryotiger refrigeration system. The echelle spectrograms that were obtained with this new detector have 48 orders, covering the wavelength range of 3800-8260Å. A total of 135 data points were obtained from 2009 March through 2013 October and are listed in Table1. (1 data file).
Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype
NASA Astrophysics Data System (ADS)
Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille
2012-06-01
The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.
ARGon{sup 3}: ''3D appearance robot-based gonioreflectometer'' at PTB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoepe, A.; Atamas, T.; Huenerhoff, D.
At the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany, a new facility for measuring visual appearance-related quantities has been built up. The acronym ARGon{sup 3} stands for ''3D appearance robot-based gonioreflectometer''. Compared to standard gonioreflectometers, there are two main new features within this setup. First, a photometric luminance camera with a spatial resolution of 28 {mu}m on the device under test (DUT) enables spatially high-resolved measurements of luminance and color coordinates. Second, a line-scan CCD-camera mounted to a spectrometer provides measurements of the radiance factor, respectively the bidirectional reflectance distribution function, in full V({lambda})-range (360 nm-830 nm) with arbitrarymore » angles of irradiation and detection relative to the surface normal, on a time scale of about 2 min. First goniometric measurements of diffuse reflection within 3D-space above the DUT with subsequent colorimetric representation of the obtained data of special effect pigments based on the interference effect are presented.« less
Design of a portable imager for near-infrared visualization of cutaneous wounds
Peng, Zhaoqiang; Zhou, Jun; Dacy, Ashley; Zhao, Deyin; Kearney, Vasant; Zhou, Weidong; Tang, Liping; Hu, Wenjing
2017-01-01
Abstract. A portable imager developed for real-time imaging of cutaneous wounds in research settings is described. The imager consists of a high-resolution near-infrared CCD camera capable of detecting both bioluminescence and fluorescence illuminated by an LED ring with a rotatable filter wheel. All external components are integrated into a compact camera attachment. The device is demonstrated to have competitive performance with a commercial animal imaging enclosure box setup in beam uniformity and sensitivity. Specifically, the device was used to visualize the bioluminescence associated with increased reactive oxygen species activity during the wound healing process in a cutaneous wound inflammation model. In addition, this device was employed to observe the fluorescence associated with the activity of matrix metalloproteinases in a mouse lipopolysaccharide-induced infection model. Our results support the use of the portable imager design as a noninvasive and real-time imaging tool to assess the extent of wound inflammation and infection. PMID:28114448
Live event reconstruction in an optically read out GEM-based TPC
NASA Astrophysics Data System (ADS)
Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.
2018-04-01
Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.
Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments
NASA Astrophysics Data System (ADS)
Prele, D.
2015-08-01
As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Zhang, Wei; Luo, Yi; Yang, Weimin; Chen, Liang
2013-01-01
In assembly of miniature devices, the position and orientation of the parts to be assembled should be guaranteed during or after assembly. In some cases, the relative position or orientation errors among the parts can not be measured from only one direction using visual method, because of visual occlusion or for the features of parts located in a three-dimensional way. An automatic assembly system for precise miniature devices is introduced. In the modular assembly system, two machine vision systems were employed for measurement of the three-dimensionally distributed assembly errors. High resolution CCD cameras and high position repeatability precision stages were integrated to realize high precision measurement in large work space. The two cameras worked in collaboration in measurement procedure to eliminate the influence of movement errors of the rotational or translational stages. A set of templates were designed for calibration of the vision systems and evaluation of the system's measurement accuracy.
NASA Astrophysics Data System (ADS)
Tamura, K.; Jansen, R. A.; Eskridge, P. B.; Cohen, S. H.; Windhorst, R. A.
2010-06-01
We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.
Visualization and void-fraction measurements in a molten metal bath
NASA Astrophysics Data System (ADS)
Baker, Michael Charles
In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift-flux correlation.
One-Meter Telescope in Kolonica Saddle - 4 Years of Operation
NASA Astrophysics Data System (ADS)
Kudzej, I.; Dubovsky, P. A.
2010-12-01
The actual technical status of 1 meter Vihorlat National Telescope (VNT) at Astronomical Observatory at Kolonica Saddle is presented. Cassegrain and Nasmyth focus, autoguiding system, computer controlled focusing and fine movements and other improvements achieved recently. For two channel photoelectric photometer the system of channels calibration based on artificial light source is described. For CCD camera FLI PL1001E actually installed in Cassegrain focus we presents transformation coefficients from our instrumental to international photometric BVRI system. The measurements were done during regular observations when good photometry of the constant field stars was available. Before FLI camera acquisition we used SBIG ST9 camera. Transformation coefficients for this instrument are presented as well. In the second part of the paper we presents results of variable stars observations with 1 meter telescope in recent four years. The first experimental electronic measurements were done in 2006. Both with CCD cameras and with two channel photoelectric photometer. Starting in 2007 the regular observing program is in operation. There are only few stars suitable for two channel photoelectric photometer observation. Generally the photometer is better when fast brightness changes (time scale of seconds) must be recorded. Thus the majority of observations is done with CCD detectors. We presents an brief overview of most important observing programs: long term monitoring of selected intermediate polars, eclipse observations of SW Sex stars. Occasional observing campaigns were performed on several interesting objects: OT J071126.0+440405, V603 Aql, V471 Tau eclipse timings, Z And in outburst.
OPTOTRAK: at last a system with resolution of 10 μm (Abstract Only)
NASA Astrophysics Data System (ADS)
Crouch, David G.; Kehl, L.; Krist, J. R.
1990-08-01
Northern Digital's first active marker point measurement system, the WATSMART, was begun in 1983. Development ended in 1985 with the manufacture of a highly accurate system, which achieved .15 to .25 mm accuracies in three dimensions within a .75-meter cube. Further improvements in accuracy were rendered meaningless, and a great obstacle to usability was presented by a surplus light problem somewhat incorrectly known as "the reflection problem". In 1985, development of a new system to overcome "the reflection problem" was begun. The advantages and disadvantages involved in the use of active versus passive markers were considered. The implications of using a CCD device as the imaging element in a precision measurement device were analyzed, as were device characteristics such as dynamic range, peak readout noise and charge transfer efficiency. A new type of lens was also designed The end result, in 1988, was the first OPTOTRAK system. This system produces three-dimensional data in real-time and is not at all affected by reflections. Accuracies of 30 microns have been achieved in a 1-meter volume. Each two-dimensional camera actually has two separate, one-dimensional, CCD elements and two separate anamorphic lenses. It can locate a point from 1-8 meters away with a resolution of 1 part in 64,000 and an accuracy of 1 part in 20,000 over the field of view.
Kim, Chulhong; Zemp, Roger J; Wang, Lihong V
2006-08-15
Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.
2014-01-01
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu
2014-02-15
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less
A Three-Line Stereo Camera Concept for Planetary Exploration
NASA Technical Reports Server (NTRS)
Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon
1997-01-01
This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.
Design of a Day/Night Star Camera System
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Swift, Wesley; Ghosh, Kajal; Ramsey, Brian
1999-01-01
This paper describes the design of a camera system capable of acquiring stars during both the day and night cycles of a high altitude balloon flight (35-42 km). The camera system will be filtered to operate in the R band (590-810 nm). Simulations have been run using MODTRAN atmospheric code to determine the worse case sky brightness at 35 km. With a daytime sky brightness of 2(exp -05) W/sq cm/str/um in the R band, the sensitivity of the camera system will allow acquisition of at least 1-2 stars/sq degree at star magnitude limits of 8.25-9.00. The system will have an F2.8, 64.3 mm diameter lens and a 1340X1037 CCD array digitized to 12 bits. The CCD array is comprised of 6.8 X 6.8 micron pixels with a well depth of 45,000 electrons and a quantum efficiency of 0.525 at 700 nm. The camera's field of view will be 6.33 sq degree and provide attitude knowledge to 8 arcsec or better. A test flight of the system is scheduled for fall 1999.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
A 2.5m astronomical telescope project
NASA Astrophysics Data System (ADS)
Phaichith, Oudomsanith
2008-07-01
The paper reports a recently started project for a 2,5 meter diameter robotic telescope dedicated to astronomy and education for the University of Moscow's Sternberg Institute. As a prime contractor Sagem Defense Securite's REOSC department will take on the program design as well as the production of the optical components. The project includes the Alt-Az mount, the dome and its cooling and air stabilization system, the weather station, the high-resolution camera and realization, transport and installation on-site at the Kislovodsk solar station located in the Caucasus mountains as well as the initial training for the operators. The telescope will provide a wide field of view of 40 arcmin at the Cassegrain F/8 focus. An escapable and rotating tertiary mirror will allow to direct the light to the two Nasmyth foci and two student ports located at 90° from the Nasmyth foci. A 4k x 4k CCD camera cryogenically cooled to 140 K will be provided as a first light camera. All will be delivered by end 2009. Remotely controlled via the internet, the telescope will allow Russia to train doctors in astronomy, participate in international research projects and draw up the future specifications of a larger and more advanced telescope.
The Global Coronal Structure Investigation
NASA Technical Reports Server (NTRS)
Golub, Leon
1998-01-01
During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).
NASA Astrophysics Data System (ADS)
Cabib, Dario; Lavi, Moshe; Gil, Amir; Milman, Uri
2011-06-01
Since the early '90's CI has been involved in the development of FTIR hyperspectral imagers based on a Sagnac or similar type of interferometer. CI also pioneered the commercialization of such hyperspectral imagers in those years. After having developed a visible version based on a CCD in the early '90's (taken on by a spin-off company for biomedical applications) and a 3 to 5 micron infrared version based on a cooled InSb camera in 2008, it is now developing an LWIR version based on an uncooled camera for the 8 to 14 microns range. In this paper we will present design features and expected performance of the system. The instrument is designed to be rugged for field use, yield a relatively high spectral resolution of 8 cm-1, an IFOV of 0.5 mrad., a 640x480 pixel spectral cube in less than a minute and a noise equivalent spectral radiance of 40 nW/cm2/sr/cm-1 at 10μ. The actually measured performance will be presented in a future paper.
An Efficient Image Compressor for Charge Coupled Devices Camera
Li, Jin; Xing, Fei; You, Zheng
2014-01-01
Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977
Measurements of 42 Wide CPM Pairs with a CCD
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2015-11-01
This paper addresses the use of a Skyris 618C color CCD camera as a means of obtaining data for analysis in the measurement of wide common proper motion stars. The equipment setup is described and data collection procedure outlined. Results of the measures of 42 CPM stars are presented, showing the Skyris is a reliable device for the measurement of double stars.
Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)
NASA Astrophysics Data System (ADS)
Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.
The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera (WAC) to acquire images at about 100 m/pixel in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). Each NAC has a 700-mm-focal-length optic that images onto a 5000-pixel CCD line-array, providing a cross-track field-of-view (FOV) of 2.86 degree. The NAC readout noise is better than 100 e- , and the data are sampled at 12 bits. Its internal buffer holds 256 MB of uncompressed data, enough for a full-swath image 25-km long or a 2x2 binned image 100-km long. The WAC has two 6-mm- focal-length lenses imaging onto the same 1000 x 1000 pixel, electronically shuttered CCD area-array, one imaging in the visible/near IR, and the other in the UV. Each has a cross-track FOV of 90 degree. From the nominal 50-km orbit, the WAC will have a resolution of 100 m/pixel in the visible, and a swath width of ˜100 km. The seven-band color capability of the WAC is achieved by color filters mounted directly 1 over the detector, providing different sections of the CCD with different filters [1]. The readout noise is less than 40 e- , and, as with the NAC, pixel values are digitized to 12-bits and may be subsequently converted to 8-bit values. The total mass of the LROC system is about 12 kg; the total LROC power consumption averages at 22 W (30 W peak). Assuming a downlink with lossless compression, LRO will produce a total of 20 TeraBytes (TB) of raw data. Production of higher-level data products will result in a total of 70 TB for Planetary Data System (PDS) archiving, 100 times larger than any previous missions. [1] Malin et al., JGR, 106, 17651-17672, 2001. 2
Science Observations of Deep Space One
NASA Technical Reports Server (NTRS)
Nelson, Robert M.; Baganal, Fran; Boice, Daniel C.; Britt, Daniel T.; Brown, Robert H.; Buratti, Bonnie J.; Creary, Frank; Ip, Wing-Huan; Meier, Roland; Oberst, Juergen
1999-01-01
During the Deep Space One (DS1) primary mission, the spacecraft will fly by asteroid 1992 KD and possibly comet Borrelly. There are two technologies being validated on DS1 that will provide science observations of these targets, the Miniature Integrated Camera Spectrometer (MICAS) and the Plasma Experiment for Planetary Exploration (PEPE). MICAS encompasses a camera, an ultraviolet imaging spectrometer and an infrared imaging spectrometer. PEPE combines an ion and electron analyzer designed to determine the three-dimensional distribution of plasma over its field of view. MICAS includes two visible wavelength imaging channels, an ultraviolet imaging spectrometer, and an infrared imaging spectrometer all of which share a single 10-cm diameter telescope. Two types of visible wavelength detectors, both operating between about 500 and 1000 nm are used: a CCD with 13-microrad pixels and an 18-microrad-per-pixel, metal-on-silicon active pixel sensor (APS). Unlike the CCD the APS includes the timing and control electronics on the chip along with the detector. The UV spectrometer spans 80 to 185 nm with 0.64-nm spectral resolution and 316-microrad pixels. The IR spectrometer covers the range from 1200 to 2400 nm with 6.6-nm resolution and 54-microrad pixels PEPE includes a very low-power, low-mass micro-calorimeter to help understand plasma-surface interactions and a plasma analyzer to identify de individual molecules and atoms in the immediate vicinity of the spacecraft that have been eroded off the surface of asteroid 1992 KD. It employs common apertures with separate electrostatic energy analyzers. It measures electron and ion energies spanning a range of 3 eV to 30 keV, with a resolution of five percent. and measures ion mass from one to 135 atomic mass units with 5 percent resolution. It electrostatically sweeps its field of view both in elevation and azimuth. Both MICAS and PEPE represent a new direction for the evolution of science instruments for interplanetary spacecraft. These two instruments incorporate a large fraction of the capability of five instruments that had typically flown on NASA's deep space missions The Deep Space One science team acknowledges the support of Philip Varghese, David H. Lehman, Leslie Livesay, and Marc Rayman for providing invaluable assistance in making the science observations possible.
A Three-Year Program of Micro- and Nano-System Technology Development for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Canizares, Claude R.
1997-01-01
For many years the work at MIT aimed at the development of new concepts and technologies for space experiments in high-energy astrophysics, but not explicitly supported by flight programs, has been supported. This work has yielded new devices and techniques for X-ray astronomy, primarily low-noise, deep-depletion charge-coupled devices (CCDS) for spectrally-resolved X-ray imaging, and high-performance transmission gratings for high-resolution X-ray spectroscopy. Among the most significant recent achievements have been the development by G. Ricker and associates of the X-ray CCD camera flying on ASCA, and currently in development for AXAF and Astro-E, and the development by C. Canizares and associates of thick, 200 nm-period transmission gratings employing the phenomenon of phase shifting for high-resolution X-ray spectroscopy up to energies of 8- 1 0 keV that is essential for the operation of the AXAF High Energy Transmission Grating Spectrometer (HETGS). Through the current SR&T grant, the latter technology is now being extended successfully to the fabrication of 100 nm-period transmission gratings, which have twice the dispersion of the AXAF gratings. We note that, among other outcomes, the modest investments of past SR&T Grants at MIT resulted in the development of the key technologies for fully one-half of the scientific instrumentation on AXAF. In addition, NASA flight programs that have benefited from previous SR&T support at MIT include the SAS 3 X-ray Observatory, which carried the first rotation modulation collimator, the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory, the CCD cameras on ASCA and planned for Astro-E, the High Energy Transient Experiment (HETE), the Solar EUV Monitor on the Solar and Heliospheric Observatory (SOHO), the Medium Energy Neutral Atom imager (MENA) on the Image for Magnetopause-to-aurora Global Exploration (IMAGE) mission, and the recently-approved Two Wide-Angle Imaging Neutral-atom Spectrometers (TWINS) Mission of Opportunity.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
NASA Imaging for Safety, Science, and History
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)
2002-01-01
Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.
Determination of the resolution of the x-ray microscope XM-1 at beamline 6.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heck, J.M.; Meyer-Ilse, W.; Attwood, D.T.
1997-04-01
Resolution determination in x-ray microscopy is a complex issue which depends on many factors. Many different criteria and experimental setups are used to characterize resolution. Some of the important factors affecting resolution include the partial coherence and spectrum of the illumination. The purpose of this research has been to measure the resolution of XM-1 at beamline 6.1 taking into account these factors, and to compare the measurements to theoretical calculations. The x-ray microscope XM-1, built by the Center for X-ray Optics (CXRO), has been operational since 1994 at the Advanced Light Source at E.O. Lawrence Berkeley National Laboratory. It ismore » of the conventional (i.e. full-field) type, utilizing zone plate optics. ALS bending magnet radiation is focused by a condenser zone plate onto a monochromator pinhole immediately in front of the sample. X-rays transmitted through the sample are focused by a micro-zone plate onto a CCD camera. The pinhole and the condenser with a central stop constitute a linear monochromator. The spectral distribution of the light illuminating the sample has been calculated assuming geometrical optics.« less
CCD BVI c observations of Cepheids
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.
2014-02-01
In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.
High Resolution Airborne Digital Imagery for Precision Agriculture
NASA Technical Reports Server (NTRS)
Herwitz, Stanley R.
1998-01-01
The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).
NASA Technical Reports Server (NTRS)
1992-01-01
This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.
NASA Astrophysics Data System (ADS)
Nara, Shunsuke; Takahashi, Satoru
In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.
First Light for USNO 1.3-meter Telescope
NASA Astrophysics Data System (ADS)
Monet, A. K. B.; Harris, F. H.; Harris, H. C.; Monet, D. G.; Stone, R. C.
2001-11-01
The US Naval Observatory Flagstaff Station has recently achieved first light with its newest telescope -- a 1.3--meter, f/4 modified Ritchey-Chretien,located on the grounds of the station. The instrument was designed to produce a well-corrected field 1.7--degrees in diameter, and is expected to provide wide-field imaging with excellent astrometric properties. A number of test images have been obtained, using a temporary CCD camera in both drift and stare mode, and the results have been quite encouraging. Several astrometric projects are planned for this instrument, which will be operated in fully automated fashion. This paper will describe the telescope and its planned large-format mosaic CCD camera, and will preview some of the research for which it will be employed.
Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.
1992-11-24
A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Technical note: Signal resolution increase and noise reduction in a CCD digitizer.
González, A; Martínez, J A; Tobarra, B
2004-03-01
Increasing output resolution is assumed to improve noise characteristics of a CCD digitizer. In this work, however, we have found that as the quantization step becomes lower than the analog noise (present in the signal before its conversion to digital) the noise reduction becomes significantly lower than expected. That is the case for values of sigma(an)/delta larger than 0.6, where sigma(an) is the standard deviation of the analog noise and delta is the quantization step. The procedure is applied to a commercially available CCD digitizer, and noise reduction by means of signal resolution increase is compared to that obtained by low pass filtering.
NASA Technical Reports Server (NTRS)
1997-01-01
This research grant supported an active sounding rocket program at Penn State University over a period of over 10 years. During this period, the grant supported at least 8 graduate students in Astronomy & Astrophysics for at least a portion of their research. During the same period, our group was involved in seven sounding rocket flights, launched from White Sands, New Mexico, and from Woomera, Australia. Most of these rocket flights, and most of the work supported by this grant, involved the use of X-ray CCD cameras. The first X-ray CCD camera ever flown in space was our sounding rocket observation of SN1987A (flight 36.030 in 1987). Subsequent flights utilized improved CCD detectors, culminating in the'state-of-the-art EEV detector developed for our CUBIC mission, which was flown on 36.093 last May. Data from the last three flights, which observed the diffuse X-ray background with CCDS, include detection of the OVII He(alpha) line in the high latitude diffuse background and detection of the Mg XI He(alpha) line in the North Polar Spur. These results have been reported at meetings of the American Astronomical Society and the SPIE. The analysis of flights 36.092 and 36.106 is part of Jeff Mendenhall's PhD thesis and will be published in the Astrophysical Journal next year. The 36.093 data are currently being analyzed by PhD student Laura Cawley. From 1990 to 1996 this grant supported our development and launch of the CUBIC instrument on the SAC-B satellite, which was designed to measure the spectrum of the soft X-ray diffuse background with moderate energy resolution and high S/N ratio. Unfortunately, this mission terminated shortly after launch due to a failure of the Pegasus XL launch vehicle. This work resulted in publication of 4 papers in the SPIE Proceedings and four others in refereed journals, in addition to several other conference proceedings and contributed papers. In addition to the CCD flights described above, this grant has supported preliminary development of a new sounding rocket payload utilizing a replicated Ni mirror that is being developed at PSU in collaboration with MSFC. Initial testing of the coating technology has produced promising results.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
X-ray transmission microscope development
NASA Astrophysics Data System (ADS)
Kaukler, William F.; Rosenberger, Franz E.
1995-08-01
This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.
X-ray transmission microscope development
NASA Technical Reports Server (NTRS)
Kaukler, William F.; Rosenberger, Franz E.
1995-01-01
This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.
Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong
2009-01-01
A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483
NASA Astrophysics Data System (ADS)
Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.
2014-02-01
A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.
Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam
NASA Astrophysics Data System (ADS)
Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.
2005-04-01
When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.
Experimental research on femto-second laser damaging array CCD cameras
NASA Astrophysics Data System (ADS)
Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming
2013-05-01
Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.
Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system
NASA Astrophysics Data System (ADS)
Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.
2004-01-01
This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).
Hyper Suprime-Cam: Camera dewar design
NASA Astrophysics Data System (ADS)
Komiyama, Yutaka; Obuchi, Yoshiyuki; Nakaya, Hidehiko; Kamata, Yukiko; Kawanomoto, Satoshi; Utsumi, Yousuke; Miyazaki, Satoshi; Uraguchi, Fumihiro; Furusawa, Hisanori; Morokuma, Tomoki; Uchida, Tomohisa; Miyatake, Hironao; Mineo, Sogo; Fujimori, Hiroki; Aihara, Hiroaki; Karoji, Hiroshi; Gunn, James E.; Wang, Shiang-Yu
2018-01-01
This paper describes the detailed design of the CCD dewar and the camera system which is a part of the wide-field imager Hyper Suprime-Cam (HSC) on the 8.2 m Subaru Telescope. On the 1.°5 diameter focal plane (497 mm in physical size), 116 four-side buttable 2 k × 4 k fully depleted CCDs are tiled with 0.3 mm gaps between adjacent chips, which are cooled down to -100°C by two pulse tube coolers with a capability to exhaust 100 W heat at -100°C. The design of the dewar is basically a natural extension of Suprime-Cam, incorporating some improvements such as (1) a detailed CCD positioning strategy to avoid any collision between CCDs while maximizing the filling factor of the focal plane, (2) a spherical washers mechanism adopted for the interface points to avoid any deformation caused by the tilt of the interface surface to be transferred to the focal plane, (3) the employment of a truncated-cone-shaped window, made of synthetic silica, to save the back focal space, and (4) a passive heat transfer mechanism to exhaust efficiently the heat generated from the CCD readout electronics which are accommodated inside the dewar. Extensive simulations using a finite-element analysis (FEA) method are carried out to verify that the design of the dewar is sufficient to satisfy the assigned errors. We also perform verification tests using the actually assembled CCD dewar to supplement the FEA and demonstrate that the design is adequate to ensure an excellent image quality which is key to the HSC. The details of the camera system, including the control computer system, are described as well as the assembling process of the dewar and the process of installation on the telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. L. Winston
2007-09-01
The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Huang, W.; Heaps, W. S.
2012-01-01
A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.
VizieR Online Data Catalog: Imaging observations of iPTF 13ajg (Vreeswijk+, 2014)
NASA Astrophysics Data System (ADS)
Vreeswijk, P. M.; Savaglio, S.; Gal-Yam, A.; De Cia, A.; Quimby, R. M.; Sullivan, M.; Cenko, S. B.; Perley, D. A.; Filippenko, A. V.; Clubb, K. I.; Taddia, F.; Sollerman, J.; Leloudas, G.; Arcavi, I.; Rubin, A.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Ofek, E. O.; Capone, J.; Kutyrev, A. S.; Toy, V.; Nugent, P. E.; Laher, R.; Surace, J.; Kulkarni, S. R.
2017-08-01
iPTF 13ajg was imaged with the Palomar 48 inch (P48) Oschin iPTF survey telescope equipped with a 12kx8k CCD mosaic camera (Rahmer et al. 2008SPIE.7014E..4YR) in the Mould R filter, the Palomar 60 inch and CCD camera (Cenko et al. 2006PASP..118.1396C) in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the 2.56 m Nordic Optical Telescope (on La Palma, Canary Islands) with the Andalucia Faint Object Spectrograph and Camera (ALFOSC) in SDSS ugriz, the 4.3 m Discovery Channel Telescope (at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS r, and with LRIS (Oke et al. 1995PASP..107..375O) and the Multi-Object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012SPIE.8446E..0JM), both mounted on the 10 m Keck-I telescope (on Mauna Kea, Hawaii), in g and Rs with LRIS and J and Ks with MOSFIRE. (1 data file).
Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan
2015-04-01
Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.
NASA Astrophysics Data System (ADS)
Mikhalev, Aleksandr; Podlesny, Stepan; Stoeva, Penka
2016-09-01
To study dynamics of the upper atmosphere, we consider results of the night sky photometry, using a color CCD camera and taking into account the night airglow and features of its spectral composition. We use night airglow observations for 2010-2015, which have been obtained at the ISTP SB RAS Geophysical Observatory (52° N, 103° E) by the camera with KODAK KAI-11002 CCD sensor. We estimate the average brightness of the night sky in R, G, B channels of the color camera for eastern Siberia with typical values ranging from ~0.008 to 0.01 erg*cm-2*s-1. Besides, we determine seasonal variations in the night sky luminosities in R, G, B channels of the color camera. In these channels, luminosities decrease in spring, increase in autumn, and have a pronounced summer maximum, which can be explained by scattered light and is associated with the location of the Geophysical Observatory. We consider geophysical phenomena with their optical effects in R, G, B channels of the color camera. For some geophysical phenomena (geomagnetic storms, sudden stratospheric warmings), we demonstrate the possibility of the quantitative relationship between enhanced signals in R and G channels and increases in intensities of discrete 557.7 and 630 nm emissions, which are predominant in the airglow spectrum.
3D digital image correlation using a single 3CCD colour camera and dichroic filter
NASA Astrophysics Data System (ADS)
Zhong, F. Q.; Shao, X. X.; Quan, C.
2018-04-01
In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.
NASA Astrophysics Data System (ADS)
Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.
2008-02-01
We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.
Software and hardware complex for observation of star occultations by asteroids
NASA Astrophysics Data System (ADS)
Karbovsky, V.; Kleshchonok, V.; Buromsky, M.
2017-12-01
The preparation to the program for observation of star occultations by asteroids on the AZT-2 telescope was started in 2016. A new method for registration of occultation with a CCD camera in the synchronous transfer mode was proposed and developed. The special program was written to control the CCD camera and record images during such observations. The speed of image transfer can vary within wide limits, which makes it possible to carry out observations in a wide range of stellar magnitudes. The telescope AZT-2 is used, which has the largest mirror diameter in Kiev (D = 0.7 m. F = 10.5 m). A 3-fold optical reducer was produced, which providing a field of view with a CCD camera Apogee Alta U47 10 arcminutes and the equivalent focal length of the telescope 3.2 meters. The results of test observations are presented. The program is implemented jointly by the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. Regular observations of star occultation by asteroids are planned with the help of this complex. % Z https://occultations.org Kleshchonok,V.V.,Buromsky,M. I. 2005, Kinematics and Physics of Celestial Bodies, 21, 5, 405 Kleshchonok, V.V., Buromskii, N. I., Khat’ko,I.V.2008, Kinematics and Physics of Celestial Bodies, 24, 2, 114
Research on automatic Hartmann test of membrane mirror
NASA Astrophysics Data System (ADS)
Zhong, Xing; Jin, Guang; Liu, Chunyu; Zhang, Peng
2010-10-01
Electrostatic membrane mirror is ultra-lightweight and easy to acquire a large diameter comparing with traditional optical elements, so its development and usage is the trend of future large mirrors. In order to research the control method of the static stretching membrane mirror, the surface configuration must be tested. However, membrane mirror's shape is always changed by variable voltages on the electrodes, and the optical properties of membrane materials using in our experiment are poor, so it is difficult to test membrane mirror by interferometer and null compensator method. To solve this problem, an automatic optical test procedure for membrane mirror is designed based on Hartmann screen method. The optical path includes point light source, CCD camera, splitter and diffuse transmittance screen. The spots' positions on the diffuse transmittance screen are pictured by CCD camera connected with computer, and image segmentation and centroid solving is auto processed. The CCD camera's lens distortion is measured, and fixing coefficients are given to eliminate the spots' positions recording error caused by lens distortion. To process the low sampling Hartmann test results, Zernike polynomial fitting method is applied to smooth the wave front. So low frequency error of the membrane mirror can be measured then. Errors affecting the test accuracy are also analyzed in this paper. The method proposed in this paper provides a reference for surface shape detection in membrane mirror research.
Measurement of an Evaporating Drop on a Reflective Substrate
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Nengli
2004-01-01
A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Parallel robot for micro assembly with integrated innovative optical 3D-sensor
NASA Astrophysics Data System (ADS)
Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer
2002-10-01
Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.
Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana
2010-01-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.
Into the blue: AO science with MagAO in the visible
NASA Astrophysics Data System (ADS)
Close, Laird M.; Males, Jared R.; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Wu, Ya-Lin; Kopon, Derek; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando
2014-08-01
We review astronomical results in the visible (λ<1μm) with adaptive optics. Other than a brief period in the early 1990s, there has been little astronomical science done in the visible with AO until recently. The most productive visible AO system to date is our 6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary system at the Magellan 6.5m in Chile. This secondary has 585 actuators with < 1 msec response times (0.7 ms typically). We use a pyramid wavefront sensor. The relatively small actuator pitch (~23 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We use a CCD AO science camera called "VisAO". On-sky long exposures (60s) achieve <30mas resolutions, 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R < 8 mag stars. These relatively high visible wavelength Strehls are made possible by our powerful combination of a next generation ASM and a Pyramid WFS with 378 controlled modes and 1000 Hz loop frequency. We'll review the key steps to having good performance in the visible and review the exciting new AO visible science opportunities and refereed publications in both broad-band (r,i,z,Y) and at Halpha for exoplanets, protoplanetary disks, young stars, and emission line jets. These examples highlight the power of visible AO to probe circumstellar regions/spatial resolutions that would otherwise require much larger diameter telescopes with classical infrared AO cameras.
Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.
2016-10-09
We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.
Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming
2011-11-01
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
Digital holographic microscopy combined with optical tweezers
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.
2011-02-01
While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.
Measurement of the Radial Velocity of Vega and SAO 104807 by high resolution spectrometry
NASA Astrophysics Data System (ADS)
Rosas, F.; Ordoñez, J.; Suarez, W.; Quijano, A.
2017-07-01
The radial velocity is the component of the velocity with which a celestial object approaches (blueshift) or go away (redshift) of the observer. The precise measurement of the redshift allowed to Humason and Hubble discover the expansion of the Universe. In 1998 two research teams simultaneously discovered that this expansion is accelerated, for that reason the hypothesis of the dark energy has been raised to explain the existing repulsion. The present work shows the measurement of the radial velocity of Vega and SAO104807 by high resolution spectrometry. Using the instruments of the Astronomical Observatory of the University of Nariño, located in the south of Colombia, was measured the displacement that the spectral lines of both celestial objects suffer due to the Doppler effect. The results obtained were quite close to those recorded in databases such as SIMBAD, according to the used equipment. The instruments used were: Celestron CGE Pro 1400 Telescope, Shelyak LHIRES III High Resolution Spectrometer and SBIG ST-8300 CCD Camera. The characteristics of the spectrometer are: Diffraction grating: 2400 lines/mm, Spectral dispersion (H alpha): 0:012 nm/pixel, Radial velocity resolution: 5 km/s.
A complex noise reduction method for improving visualization of SD-OCT skin biomedical images
NASA Astrophysics Data System (ADS)
Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Khramov, Alexander G.
2014-05-01
In this paper we consider the original method of solving noise reduction problem for visualization's quality improvement of SD-OCT skin and tumors biomedical images. The principal advantages of OCT are high resolution and possibility of in vivo analysis. We propose a two-stage algorithm: 1) process of raw one-dimensional A-scans of SD-OCT and 2) remove a noise from the resulting B(C)-scans. The general mathematical methods of SD-OCT are unstable: if the noise of the CCD is 1.6% of the dynamic range then result distortions are already 25-40% of the dynamic range. We use at the first stage a resampling of A-scans and simple linear filters to reduce the amount of data and remove the noise of the CCD camera. The efficiency, improving productivity and conservation of the axial resolution when using this approach are showed. At the second stage we use an effective algorithms based on Hilbert-Huang Transform for more accurately noise peaks removal. The effectiveness of the proposed approach for visualization of malignant and benign skin tumors (melanoma, BCC etc.) and a significant improvement of SNR level for different methods of noise reduction are showed. Also in this study we consider a modification of this method depending of a specific hardware and software features of used OCT setup. The basic version does not require any hardware modifications of existing equipment. The effectiveness of proposed method for 3D visualization of tissues can simplify medical diagnosis in oncology.
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.
2010-01-01
Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.
NASA Astrophysics Data System (ADS)
Dani, Tiar; Rachman, Abdul; Priyatikanto, Rhorom; Religia, Bahar
2015-09-01
An increasing number of space junk in orbit has raised their chances to fall in Indonesian region. So far, three debris of rocket bodies have been found in Bengkulu, Gorontalo and Lampung. LAPAN has successfully developed software for monitoring space debris that passes over Indonesia with an altitude below 200 km. To support the software-based system, the hardware-based system has been developed based on optical instruments. The system has been under development in early 2014 which consist of two systems: the telescopic system and wide field system. The telescopic system uses CCD cameras and a reflecting telescope with relatively high sensitivity. Wide field system uses DSLR cameras, binoculars and a combination of CCD with DSLR Lens. Methods and preliminary results of the systems will be presented.
Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka
2018-06-01
The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.
Opto-mechanical design of the G-CLEF flexure control camera system
NASA Astrophysics Data System (ADS)
Oh, Jae Sok; Park, Chan; Kim, Jihun; Kim, Kang-Min; Chun, Moo-Young; Yu, Young Sam; Lee, Sungho; Nah, Jakyoung; Park, Sung-Joon; Szentgyorgyi, Andrew; McMuldroch, Stuart; Norton, Timothy; Podgorski, William; Evans, Ian; Mueller, Mark; Uomoto, Alan; Crane, Jeffrey; Hare, Tyson
2016-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.
1990-07-01
electrohtic dissociation of the electrode mate- pedo applications seem to be still somewhat rial, and to provide a good gas evolution wlhich out of the...rod cathode. A unique feature of this preliminary experiment was the use of a prototype gated, intensified video camera. This camera is based on a...microprocessor controlled microchannel plate intensifier tube. The intensifier tube image is focused on a standard CCD video camera so that the object
High resolution Cerenkov light imaging of induced positron distribution in proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki
2014-11-01
Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less
Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2017-02-01
A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.
VizieR Online Data Catalog: Follow-up photometry and spectroscopy of KELT-17 (Zhou+, 2016)
NASA Astrophysics Data System (ADS)
Zhou, G.; Rodriguez, J. E.; Collins, K. A.; Beatty, T.; Oberst, T.; Heintz, T. M.; Stassun, K. G.; Latham, D. W.; Kuhn, R. B.; Bieryla, A.; Lund, M. B.; Labadie-Bartz, J.; Siverd, R. J.; Stevens, D. J.; Gaudi, B. S.; Pepper, J.; Buchhave, L. A.; Eastman, J.; Colon, K.; Cargile, P.; James, D.; Gregorio, J.; Reed, P. A.; Jensen, E. L. N.; Cohen, D. H.; McLeod, K. K.; Tan, T. G.; Zambelli, R.; Bayliss, D.; Bento, J.; Esquerdo, G. A.; Berlind, P.; Calkins, M. L.; Blancato, K.; Manner, M.; Samulski, C.; Stockdale, C.; Nelson, P.; Stephens, D.; Curtis, I.; Kielkopf, J.; Fulton, B. J.; Depoy, D. L.; Marshall, J. L.; Pogge, R.; Gould, A.; Trueblood, M.; Trueblood, P.
2017-05-01
KELT-17, the first exoplanet host discovered through the combined observations of both the Kilodegree Extremely Little Telescope (KELT)-North and KELT-South, is located in KELT-South field 06 (KS06) and KELT-North field 14 (KN14), which are both centered on α=07h39m36s δ=+03°00'00'' (J2000). At the time of identification, the post-processed KELT data set included 2092 images from KN14, taken between UT 2011 October 11 and UT 2013 March 26 and 2636 images from KS06 taken between UT 2010 March 02 and 2013 May 10. The discovery light curves from both KELT-North and KELT-South are shown in Figure1. We obtained higher spatial resolution and precision photometric follow-up observations of KELT-17b in multiple filters. An I-band transit was observed on UT 2015 March 05 at the Canela's Robotic Observatory (CROW) with the 0.3m SCT12 telescope, remotely operated from Portalegre, Portugal. Observations were acquired with the ST10XME CCD camera, with a 30'*20' field of view and a 0.86'' pixel scale. A full multi-color (V and I) transit of KELT-17b was observed on UT 2015 March 12 at Kutztown University Observatory (KUO), located on the campus of Kutztown University in Kutztown, Pennsylvania. KUO's main instrument is the 0.6 m Ritchey-Chretien optical telescope with a focal ratio of f/8. The imaging CCD (KAF-6303E) camera has an array of 3K*2K (9μm) pixels and covers a field of view of 19.5'*13.0'. The Peter van de Kamp Observatory (PvdK) at Swarthmore College (near Philadelphia) houses a 0.62m Ritchey-Chretien reflector with a 4K*4K pixel Apogee CCD. The telescope and camera together have a 26'*26' field of view and a 0.61'' pixel scale. PvdK observed KELT-17b on UT 2015 March 12 in the SDSS z' filter. KELT-17b was observed in both g' and i' on UT 2015 March 12 at Wellesley College's Whitin Observatory in Massachusetts. The telescope is a 0.6m Boller and Chivens with a DFM focal reducer yielding an effective focal ratio of f/9.6. We used an Apogee U230 2K*2K camera with a 0.58''/pixel scale and a 20'*20' field of view. One full transit of KELT-17b was observed from the Westminster College Observatory (WCO), PA, on UT 2015 November 4 in the z' filter. The observations employed a 0.35m f/11 Celestron C14 Schmidt-Cassegrain telescope and SBIG STL-6303E CCD with a ~3K*2K array of 9μm pixels, yielding a 24'*16' field of view and 1.4''/pixel image scale at 3*3 pixel binning. The stellar FWHM was seeing-limited with a typical value of ~3.2''. Three full transits of KELT-17b were observed on UT 2016 February 26 (g' and i') and UT 2016 March 31 (r') using the Manner-Vanderbilt Ritchie-Chrtien (MVRC) telescope located at the Mt. Lemmon summit of Steward Observatory, AZ. The observations employed a 0.6m f/8 RC Optical Systems Ritchie-Chretien telescope and SBIG STX-16803 CCD with a 4K*4K array of 9μm pixels, yielding a 26'*26' field of view and 0.39''/pixel image scale. The telescope was heavily defocused for all three observations resulting in a typical stellar FWHM of ~17''. The Perth Exoplanet Survey Telescope (PEST) observatory is a backyard observatory owned and operated by ThiamGuan (TG) Tan, located in Perth, Australia. It is equipped with a 0.3m Meade LX200 SCT f/10 telescope with focal reducer yielding f/5 and an SBIG ST-8XME CCD camera. The telescope and camera combine to have a 31'*21' field of view and a 1.2'' pixel scale. PEST observed KELT-17b on UT 2016 March 06 in the B band. A series of spectroscopic follow-up observations were performed to characterize the KELT-17 system. We performed low-resolution, high-signal-to-noise reconnaissance spectroscopic follow-up of KELT-17 using the Wide Field Spectrograph (WiFeS) on the Australian National University (ANU) 2.3m telescope at Siding Spring Observatory, Australia in 2015 February. In-depth spectroscopic characterization of KELT-17 was performed by the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5m telescope at the Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, USA. TRES has a wavelength coverage of 3900-9100Å over 51 echelle orders, with a resolving power of λ/Δλ R=44000. A total of 12 out-of-transit observations were taken to characterize the radial velocity orbital variations exhibited by KELT-17. In addition, we also observed spectroscopic transits of KELT-17b with TRES on 2016 February 23 and 2016 February 26 UT, gathering 33 and 29 sets of spectra, respectively. (4 data files).
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
NASA Astrophysics Data System (ADS)
Scaduto, L. C. N.; Carvalho, E. G.; Modugno, R. G.; Cartolano, R.; Evangelista, S. H.; Segoria, D.; Santos, A. G.; Stefani, M. A.; Castro Neto, J. C.
2017-11-01
The purpose of this paper is to present the optical system developed for the Wide Field imaging Camera - WFI that will be integrated to the CBERS 3 and 4 satellites (China Brazil Earth resources Satellite). This camera will be used for remote sensing of the Earth and it is aimed to work at an altitude of 778 km. The optical system is designed for four spectral bands covering the range of wavelengths from blue to near infrared and its field of view is +/-28.63°, which covers 866 km, with a ground resolution of 64 m at nadir. WFI has been developed through a consortium formed by Opto Electrônica S. A. and Equatorial Sistemas. In particular, we will present the optical analysis based on the Modulation Transfer Function (MTF) obtained during the Engineering Model phase (EM) and the optical tests performed to evaluate the requirements. Measurements of the optical system MTF have been performed using an interferometer at the wavelength of 632.8nm and global MTF tests (including the CCD and signal processing electronic) have been performed by using a collimator with a slit target. The obtained results showed that the performance of the optical system meets the requirements of project.
A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA
NASA Astrophysics Data System (ADS)
Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred
2016-08-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.
Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell
NASA Astrophysics Data System (ADS)
Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.
2015-08-01
Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.
NASA Astrophysics Data System (ADS)
Kredzinski, Lukasz; Connelly, Michael J.
2012-06-01
Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.
A comparison of imaging methods for use in an array biosensor
NASA Technical Reports Server (NTRS)
Golden, Joel P.; Ligler, Frances S.
2002-01-01
An array biosensor has been developed which uses an actively-cooled, charge-coupled device (CCD) imager. In an effort to save money and space, a complementary metal-oxide semiconductor (CMOS) camera and photodiode were tested as replacements for the cooled CCD imager. Different concentrations of CY5 fluorescent dye in glycerol were imaged using the three different detection systems with the same imaging optics. Signal discrimination above noise was compared for each of the three systems.
Automatic vision system for analysis of microscopic behavior of flow and transport in porous media
NASA Astrophysics Data System (ADS)
Rashidi, Mehdi; Dehmeshki, Jamshid; Dickenson, Eric; Daemi, M. Farhang
1997-10-01
This paper describes the development of a novel automated and efficient vision system to obtain velocity and concentration measurement within a porous medium. An aqueous fluid lace with a fluorescent dye to microspheres flows through a transparent, refractive-index-matched column packed with transparent crystals. For illumination purposes, a planar sheet of laser passes through the column as a CCD camera records all the laser illuminated planes. Detailed microscopic velocity and concentration fields have been computed within a 3D volume of the column. For measuring velocities, while the aqueous fluid, laced with fluorescent microspheres, flows through the transparent medium, a CCD camera records the motions of the fluorescing particles by a video cassette recorder. The recorded images are acquired automatically frame by frame and transferred to the computer for processing, by using a frame grabber an written relevant algorithms through an RS-232 interface. Since the grabbed image is poor in this stage, some preprocessings are used to enhance particles within images. Finally, these enhanced particles are monitored to calculate velocity vectors in the plane of the beam. For concentration measurements, while the aqueous fluid, laced with a fluorescent organic dye, flows through the transparent medium, a CCD camera sweeps back and forth across the column and records concentration slices on the planes illuminated by the laser beam traveling simultaneously with the camera. Subsequently, these recorded images are transferred to the computer for processing in similar fashion to the velocity measurement. In order to have a fully automatic vision system, several detailed image processing techniques are developed to match exact images that have different intensities values but the same topological characteristics. This results in normalized interstitial chemical concentrations as a function of time within the porous column.
On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras
NASA Astrophysics Data System (ADS)
Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.
2017-11-01
PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.
Back-illuminate fiber system research for multi-object fiber spectroscopic telescope
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Liu, Zhigang; Hu, Hongzhuan; Wang, Jianping; Zhai, Chao; Chu, Jiaru
2016-07-01
In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. A set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare with the integrating sphere, meet the conditions of fiber position measurement.Using parallel controlled fiber positioner as the spectroscopic receiver is an efficiency observation system for spectra survey, has been used in LAMOST recently, and will be proposed in CFHT and rebuilt telescope Mayall. In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. After many years on these research, the back illuminated fiber measurement was the best method to acquire the precision position of fibers. In LAMOST, a set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement and was controlled by high-level observation system which could shut down during the telescope observation. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare the integrating sphere, meet the conditions of fiber position measurement.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres
NASA Technical Reports Server (NTRS)
Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.
1992-01-01
On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.
NASA Astrophysics Data System (ADS)
Nakamura, M.; Sugimoto, K.; Asano, H.; Murakawa, H.; Takenaka, N.; Mochiki, K.
2009-06-01
Neutron radiography is suitable for the visualization of liquid behavior in a metallic machine. Observation of oil behavior in a small 4-cycle engine on operating was carried out by using the neutron radiography facility at JRR-3 in JAEA. The engine was not fired but operated by an electrical motor. Movies were taken by a neutron image intensifier with a color CCD camera of 8-bit resolution, 30 frames/s and 640×480 pixels developed by Toshiba Corp. The engine was placed on a turn table and was rotated, so the movie could be taken from any angle. Numbers of revolution of the engine were changed from 260 to 1200 rpm. Visualized images of the mechanism and the oil behavior in the engine were obtained.
[Digital thoracic radiology: devices, image processing, limits].
Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E
2001-09-01
In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.
Development of OCR system for portable passport and visa reader
NASA Astrophysics Data System (ADS)
Visilter, Yury V.; Zheltov, Sergey Y.; Lukin, Anton A.
1999-01-01
The modern passport and visa documents include special machine-readable zones satisfied the ICAO standards. This allows to develop the special passport and visa automatic readers. However, there are some special problems in such OCR systems: low resolution of character images captured by CCD-camera (down to 150 dpi), essential shifts and slopes (up to 10 degrees), rich paper texture under the character symbols, non-homogeneous illumination. This paper presents the structure and some special aspects of OCR system for portable passport and visa reader. In our approach the binarization procedure is performed after the segmentation step, and it is applied to the each character site separately. Character recognition procedure uses the structural information of machine-readable zone. Special algorithms are developed for machine-readable zone extraction and character segmentation.
NASA Technical Reports Server (NTRS)
Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.
1992-01-01
A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
A computational approach to real-time image processing for serial time-encoded amplified microscopy
NASA Astrophysics Data System (ADS)
Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi
2016-03-01
High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.
Quasi-Speckle Measurements of Close Double Stars With a CCD Camera
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2017-01-01
CCD measurements of visual double stars have been an active area of amateur observing for several years now. However, most CCD measurements rely on “lucky imaging” (selecting a very small percentage of the best frames of a larger frame set so as to get the best “frozen” atmosphere for the image), a technique that has limitations with regards to how close the stars can be and still be cleanly resolved in the lucky image. In this paper, the author reports how using deconvolution stars in the analysis of close double stars can greatly enhance the quality of the autocorellogram, leading to a more precise solution using speckle reduction software rather than lucky imaging.
SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile
NASA Astrophysics Data System (ADS)
Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich
2015-04-01
The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt to investigate the degassing behavior of the individual fumaroles. Lascar volcano only had a very weak plume originating from the active central crater with maximum SO2 column densities of only up to 5 × 1017[molecules/cm2] during our measurements. These low SO2 column densities in combination with the almost ideal measurements conditions will be used to assess the detection limit of our current SO2 camera system.
NASA Astrophysics Data System (ADS)
Wählisch, M.; Niedermaier, G.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.
We present a new digital orthoimage map of Mars using data obtained from the CCD line scanner Mars Orbiter Camera (MOC) of the Mars Global Surveyor Mis- sion (MGS) [1,2]. The map covers the Mars surface from 0 to 180 West and from 60 South to 60 North with the MDIM2 resolution of 256 pixel/degree and size. Image data processing has been performed using multiple programs, developed by DLR, Technical University of Berlin [3], JPL, and the USGS. 4,339 Context and 183 Geodesy images [2] were included. After radiometric corrections, the images were Mars referenced [4], geometrically corrected [5] and orthoprojected using a global Martian Digital Terrain Model (DTM) with a resolution of 64 pixel/degree, developed at DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) data [6]. To elim- inate major differences in brightness between the individual images of the mosaics, high- and low-pass filter processing techniques were applied for each image. After filtering, the images were mosaicked without registering or using block adjustment techniques in order to improve the geometric quality. It turns out that the accuracy of the navigation data has such a good quality that the orthoimages fit very well to each other. When merging the MOC mosaic with the MOLA data using IHS- trans- formation, we recognized very good correspondence between these two datasets. We create a topographic image map of the Coprates region (MC18) adding contour lines derived from the global DTM to the mosaic. These maps are used for geological and morphological interpretations in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.mssss.com, [2] Caplinger, M. and M. Malin, "The Mars Or- biter Camera Geodesy Campaign, JGR, in press, [3] Scholten, F., Vol XXXI, Part B2, Wien 1996, p.351-356, [4] naïf.jpl.nasa.gov, [5] R.L.Kirk. et al. (2001), "Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter", LPSC XXXII, [6] wufs.wustl.edu
NASA Technical Reports Server (NTRS)
Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick
2014-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Viles, C L; Sieracki, M E
1992-01-01
Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183
Gallegos, Cenobio H.; Ogle, James W.; Stokes, John L.
1992-01-01
A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.
CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models
NASA Astrophysics Data System (ADS)
Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli
2011-02-01
Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.
A CCD Spectrometer for One Dollar
NASA Astrophysics Data System (ADS)
Beaver, J.; Robert, D.
2011-09-01
We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.
NASA Technical Reports Server (NTRS)
Buratti, B. J.; Dunbar, R. S.; Tedesco, E. F.; Gibson, J.; Marcialis, R. L.; Wong, F.; Bennett, S.; Dobrovolskis, A.
1995-01-01
We present observations of 15 Pluto-Charon mutual events which were obtained with the 60 in. telescope at Palomar Mountain Observatory. A CCD camera and Johnson V filter were used for the observations, except for one event that was observed with a Johnson B filter, and another event that was observed with a Gunn R filter. We observed two events in their entirety, and three pairs of complementary mutual occultation-transit events.
NASA Astrophysics Data System (ADS)
Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.
2016-06-01
We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).
A small CCD zenith camera (ZC-G1) - developed for rapid geoid monitoring in difficult projects
NASA Astrophysics Data System (ADS)
Gerstbach, G.; Pichler, H.
2003-10-01
Modern Geodesy by terrestrial or space methods is accurate to millimetres or even better. This requires very exact system definitions, together with Astronomy & Physics - and a geoid of cm level. To reach this precision, astrogeodetic vertical deflections are more effective than gravimetry or other methods - as shown by the 1st author 1996 at many projects in different European countries and landscapes. While classical Astrogeodesy is rather complicated (time consuming, heavy instruments and observer's experience) new electro-optical methods are semi-automatic and fill our "geoid gap" between satellite resolution (150 km) and local requirements (2-10 km): With CCD we can speed up and achieve high accuracy almost without observer's experience. In Vienna we construct a mobile zenith camera guided by notebook and GPS: made of Dur-Al, f=20 cm with a Starlite MX-sensor (752×580 pixels à 11μm). Accuracy ±1" within 10 min, mounted at a usual survey tripod. Weight only 4 kg for a special vertical axis, controlled by springs (4×90°) and 2 levels (2002) or sensor (2003). Applications 2003: Improving parts of Austrian geoid (±4 cm→2 cm); automatic astro-points in alpine surveys (vertical deflection effects 3-15 cm per km). Transform of GPS heights to ±1 cm. Tunneling study: heighting up to ±0.1 mm without external control; combining astro-topographic and geological data. Plans 2004: Astro control of polygons and networks - to raise accuracy and economy by ~40% (Sun azimuths of ±3"; additional effort only 10-20%). Planned with servo theodolites and open co-operation groups.
The kinelite project. A new powerful motion analyser for spacelab and space station
NASA Astrophysics Data System (ADS)
Venet, M.; Pinard, H.; McIntyre, J.; Berthoz, A.; Lacquaniti, F.
The goal of the Kinelite Project is to develop a space qualified motion analysis system to be used in space by the scientific community, mainly to support neuroscience protocols. The measurement principle of the Kinelite is to determine, by triangulation mean, the 3D position of small, lightweight, reflective markers positionned at the different points of interest. The scene is illuminated by Infra Red flashes and the reflected light is acquired by up to 8 precalibrated and synchronized CCD cameras. The main characteristics of the system are: - Camera field of view: 45 °, - Number of cameras: 2 to 8, - Acquisition frequency: 25, 50, 100 or 200 Hz, - CCD format: 256 × 256, - Number of markers: up to 64, - 3D accuracy: 2 mm, - Main dimensions: 45 cm × 45 cm × 30 cm, - Mass: 23 kg, - Power consumption: less than 200 W. The Kinelite will first fly aboard the NASA Spacelab; it will be used, during the NEUROLAB mission (4/98), to support the "Frames of References and Internal Models" (Principal Investigator: Pr. A.BERTHOZ, Co Investigators: J. Mc INTYRE, F. LACQUANITI).
Method for eliminating artifacts in CCD imagers
Turko, B.T.; Yates, G.J.
1992-06-09
An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.
NASA Astrophysics Data System (ADS)
Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon
2012-09-01
A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2006-06-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2004-09-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2008-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
The HRSC Experiment on Mars Express: First Imaging Results from the Commissioning Phase
NASA Astrophysics Data System (ADS)
Oberst, J.; Neukum, G.; Hoffmann, H.; Jaumann, R.; Hauber, E.; Albertz, J.; McCord, T. B.; Markiewicz, W. J.
2004-12-01
The ESA Mars Express spacecraft was launched from Baikonur on June 2, 2003, entered Mars orbit on December 25, 2003, and reached the nominal mapping orbit on January 28, 2004. Observing conditions were favorable early on for the HRSC (High Resolution Stereo Camera), designed for the mapping of the Martian surface in 3-D. The HRSC is a pushbroom scanner with 9 CCD line detectors mounted in parallel and perpendicular to the direction of flight on the focal plane. The camera can obtain images at high resolution (10 m/pix), in triple stereo (20 m/pix), in four colors, and at five different phase angles near-simultaneously. An additional Super-Resolution Channel (SRC) yields nested-in images at 2.3 m/pix for detailed photogeologic studies. Even for nominal spacecraft trajectory and camera pointing data from the commissioning phase, solid stereo image reconstructions are feasible. More yet, the three-line stereo data allow us to identify and correct errors in navigation data. We find that > 99% of the stereo rays intersect within a sphere of radius < 20m after orbit and pointing data correction. From the HRSC images we have produced Digital Terrain Models (DTMs) with pixel sizes of 200 m, some of them better. HRSC stereo models and data obtained by the MOLA (Mars Orbiting Laser Altimeter) show good qualitative agreement. Differences in absolute elevations are within 50 m, but may reach several 100 m in lateral positioning (mostly in the spacecraft along-track direction). After correction of these offsets, the HRSC topographic data conveniently fill the gaps between the MOLA tracks and reveal hitherto unrecognized morphologic detail. At the time of writing, the HRSC has covered approx. 22.5 million square kilometers of the Martian surface. In addition, data from 5 Phobos flybys from May through August 2004 were obtained. The HRSC is beginning to make major contributions to geoscience, atmospheric science, photogrammetry, and cartography of Mars (papers submitted to Nature).
Soft x-ray imager (SXI) onboard the NeXT satellite
NASA Astrophysics Data System (ADS)
Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu
2006-06-01
We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.
A new method to calibrate the absolute sensitivity of a soft X-ray streak camera
NASA Astrophysics Data System (ADS)
Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali
2016-12-01
In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.
Precise Determination of the Orientation of the Solar Image
NASA Astrophysics Data System (ADS)
Győri, L.
2010-12-01
Accurate heliographic coordinates of objects on the Sun have to be known in several fields of solar physics. One of the factors that affect the accuracy of the measurements of the heliographic coordinates is the accuracy of the orientation of a solar image. In this paper the well-known drift method for determining the orientation of the solar image is applied to data taken with a solar telescope equipped with a CCD camera. The factors that influence the accuracy of the method are systematically discussed, and the necessary corrections are determined. These factors are as follows: the trajectory of the center of the solar disk on the CCD with the telescope drive turned off, the astronomical refraction, the change of the declination of the Sun, and the optical distortion of the telescope. The method can be used on any solar telescope that is equipped with a CCD camera and is capable of taking solar full-disk images. As an example to illustrate the method and its application, the orientation of solar images taken with the Gyula heliograph is determined. As a byproduct, a new method to determine the optical distortion of a solar telescope is proposed.
SONTRAC: A High Efficiency Solar Neutron Telescope
NASA Astrophysics Data System (ADS)
Wunderer, C. B.; Macri, J.; McConnell, M. L.; Ryan, J. M.; Baltgalvis, J.; Holslin, D.; Polichar, A.; Jenkins, T.
1997-05-01
Solar flare neutron emission between 20 and 100 MeV comes from a portion of the energetic proton spectrum that is poorly sampled by both nuclear-line and pion- decay gamma rays. SONTRAC is a new generation solar neutron telescope/spectrometer consisting of densely packed, alternating orthogonal layers of scintillating plastic fibers. The fibers in both dimensions are viewed by image intensifiers and CCD cameras. Incident neutrons scatter off hydrogen in the plastic scintillator. The resulting ionizing proton tracks can be reconstructed in three dimensions using the two planar CCD track images. Two neutron-proton scatters provide sufficient information to reconstruct the energy and direction of the incident neutron. Photomultiplier tubes view the other sides of the fiber scintillator array. The signals from the PMTs are used to give an additional measure of the proton energies and to provide a trigger for the CCD cameras. Recent technological advances have allowed us to construct an affordable working prototype instrument that consists of all the essential technical elements mentioned above. We will present images of tracks produced by minimum ionizing muons and energetic neutrons. We will also present efficiency estimates for SONTRAC's ability to detect and measure gamma rays above 10 MeV.
2004-04-15
Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.
Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav
2014-12-04
A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.
A protection system for the JET ITER-like wall based on imaging diagnostics.
Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D
2012-10-01
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.
The research on calibration methods of dual-CCD laser three-dimensional human face scanning system
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong
2013-09-01
In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.
A protection system for the JET ITER-like wall based on imaging diagnosticsa)
NASA Astrophysics Data System (ADS)
Arnoux, G.; Devaux, S.; Alves, D.; Balboa, I.; Balorin, C.; Balshaw, N.; Beldishevski, M.; Carvalho, P.; Clever, M.; Cramp, S.; de Pablos, J.-L.; de la Cal, E.; Falie, D.; Garcia-Sanchez, P.; Felton, R.; Gervaise, V.; Goodyear, A.; Horton, A.; Jachmich, S.; Huber, A.; Jouve, M.; Kinna, D.; Kruezi, U.; Manzanares, A.; Martin, V.; McCullen, P.; Moncada, V.; Obrejan, K.; Patel, K.; Lomas, P. J.; Neto, A.; Rimini, F.; Ruset, C.; Schweer, B.; Sergienko, G.; Sieglin, B.; Soleto, A.; Stamp, M.; Stephen, A.; Thomas, P. D.; Valcárcel, D. F.; Williams, J.; Wilson, J.; Zastrow, K.-D.; JET-EFDA Contributors
2012-10-01
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.