Science.gov

Sample records for resolution chromosomal cgh

  1. High Resolution X Chromosome-Specific Array-CGH Detects New CNVs in Infertile Males

    PubMed Central

    Krausz, Csilla; Giachini, Claudia; Lo Giacco, Deborah; Daguin, Fabrice; Chianese, Chiara; Ars, Elisabet; Ruiz-Castane, Eduard; Forti, Gianni; Rossi, Elena

    2012-01-01

    Context The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. Objectives In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. Results We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785×10−6) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435×10−4). Conclusions By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations. PMID:23056185

  2. Chromosomal Minimal Critical Regions in Therapy-Related Leukemia Appear Different from Those of De Novo Leukemia by High-Resolution aCGH

    PubMed Central

    Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain

    2011-01-01

    Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously “normal” karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML. PMID:21339820

  3. Supernumerary marker chromosomes derived from chromosome 6: cytogenetic, molecular cytogenetic, and array CGH characterization.

    PubMed

    Huang, Bing; Pearle, Phyllis; Rauen, Katherine A; Cotter, Philip D

    2012-07-01

    Supernumerary marker chromosomes (SMC) are relatively common in prenatal diagnosis. As the clinical outcomes vary greatly, a better understanding of the karyotype-phenotype correlation for different SMCs will be important for genetic counseling. We present two cases of prenatally detected de novo, small SMCs. The markers were present in 80% of amniocyte colonies in Case 1 and 38% of the colonies in Case 2. The SMCs were determined to be derived from chromosome 6 during postnatal confirmation studies. Although the sizes and the chromosomal origin of the SMCs in these two cases appeared to be similar, the clinical outcomes varied. The clinical manifestations observed in Case 1 included small for gestational age, feeding difficulty at birth, hydronephrosis, deviated septum and dysmorphic features, while the phenotype is apparently normal in Case 2. Array comparative genomic hybridization (CGH) was performed and showed increase in dosage for approximately 26 Mb of genetic material from the proximal short and long arms of chromosome 6 in Case 1. Results of array CGH were uninformative in Case 2, either due to mosaicism or lack of detectable euchromatin. The difference in the clinical presentation in these two patients may have resulted from the difference in the actual gene contents of the marker chromosomes and/or the differential distribution of the mosaicism.

  4. Interstitial deletions of chromosome 6q: genotype-phenotype correlation utilizing array CGH.

    PubMed

    Klein, O D; Cotter, P D; Moore, M W; Zanko, A; Gilats, M; Epstein, C J; Conte, F; Rauen, K A

    2007-03-01

    Interstitial deletions of the long arm of chromosome 6 are relatively rare, with fewer than 100 cases reported. Phenotypic variation is in large part due to differences in size and location of the segmental aneuploidy. We report three new patients with interstitial deletions of chromosome 6q defined at the molecular level by array comparative genomic hybridization (array CGH). In two of three cases, the molecular breakpoints differed from those indicated by conventional karyotyping, demonstrating the enhanced resolution of array CGH. Two patients had minimal deletions of 6 and 8.8 Mb involving 6q16.2-->q21, and the third patient had a deletion of 11.3 Mb spanning 6q15-->q21. All three had developmental delay, craniofacial dysmorphology, and functional eye disorders, suggesting that genes affecting brain and craniofacial development are located in 6q16.2-->q21, the deleted region common to all three patients. Furthermore, gene(s) for discordant phenotypic features, such as central diabetes insipidus, may reside at 6q15, the monosomic region unique to patient 3. All three cases described here showed loss of paternal alleles within the deleted segment, providing further evidence of the predominantly paternal origin for 6q deletions and rearrangements.

  5. The clinical application of array CGH for the detection of chromosomal defects in 20,126 unselected newborns

    PubMed Central

    2013-01-01

    Background Array comparative genomic hybridization (CGH) is a powerful tool for detecting unbalanced chromosomal alterations. To validate the usefulness of array CGH in newborn screening, we examined 20,126 unselected infants. In addition, the number of newborns analyzed with array CGH is the largest one ever reported. Findings A total of 20,126 unselected newborns were investigated with array CGH and cytogenetic analyses. The analyses revealed 87 cases with chromosome abnormalities. Of these, 53 cases had significant chromosome aneuploidies, including trisomy 13, trisomy 21, 47,XXY or 45,X, and the other 34 cases presented partial chromosomal deletions or duplications. Conclusions In this study, we show that array CGH is an appropriate tool for the screening of chromosomal abnormalities in newborns, especially for the infants without distinct clinical features. PMID:23725218

  6. Analysis of the evolution of chromosome abnormalities in human embryos from Day 3 to 5 using CGH and FISH.

    PubMed

    Daphnis, D D; Fragouli, E; Economou, K; Jerkovic, S; Craft, I L; Delhanty, J D A; Harper, J C

    2008-02-01

    The use of interphase fluorescent in situ hybridization (FISH) has shown that a large number of human embryos exhibit chromosomal abnormalities in vitro. The most common abnormality is mosaicism which is seen in up to 50% of preimplantation embryos at all stages of development. In this study, comparative genomic hybridization (CGH) was used to analyse 1-2 cells biopsied on Day 3 of development while the rest of the embryo was cultured until Day 5. Embryos were spread on Day 5 and analysed by FISH using probe combinations that varied depending on the CGH result, to investigate the progress of any abnormalities detected on Day 3. A total of 37 frozen-thawed embryos were analysed in this study. One gave no CGH or FISH results and was excluded from analysis. Six embryos failed to give any FISH result as they were degenerating on Day 5. Thirty embryos provided results from both techniques. According to the CGH results, the embryos were divided into two groups; Group 1 had a normal CGH result (13 embryos) and Group 2 an abnormal CGH result (17 embryos). For Group 1, three embryos showed normal CGH and FISH results, while 10 embryos were mosaic after FISH analysis, with various levels of abnormalities. For Group 2, FISH showed that all embryos were mosaic or completely chaotic. The combination of CGH and FISH enabled the thorough investigation of the evolution of mosaicism and of the mechanisms by which it is generated. The main two mechanisms identified were whole or partial chromosome loss and gain. These were observed in embryos examined on both Day 3 and 5.

  7. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype

    PubMed Central

    Pratte-Santos, Rodrigo; Ribeiro, Katyanne Heringer; Santos, Thainá Altoe; Cintra, Terezinha Sarquis

    2016-01-01

    ABSTRACT Objective To investigate chromosomal abnormalities by CGH-array in patients with dysmorphic features and intellectual disability with normal conventional karyotype. Methods Retrospective study, carried out from January 2012 to February 2014, analyzing the CGH-array results of 39 patients. Results Twenty-six (66.7%) patients had normal results and 13 (33.3%) showed abnormal results - in that, 6 (15.4%) had pathogenic variants, 6 (15.4%) variants designated as uncertain and 1 (2.5%) non-pathogenic variants. Conclusion The characterization of the genetic profile by CGH-array in patients with intellectual disability and dysmorphic features enabled making etiologic diagnosis, followed by genetic counseling for families and specific treatment. PMID:27074231

  8. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer

    PubMed Central

    Ali, Hamad; Bitar, Milad S.; Al Madhoun, Ashraf; Marafie, Makia; Al-Mulla, Fahd

    2017-01-01

    Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable. PMID:28231327

  9. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines.

    PubMed

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L; Park, Yoonsoo; Meltzer, Paul S; Kirsch, Ilan R; Kaye, Frederic J; Roschke, Anna V

    2013-05-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired.

  10. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines

    PubMed Central

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L.; Park, Yoonsoo; Meltzer, Paul S.; Kirsch, Ilan R.; Kaye, Frederic J.

    2014-01-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired. PMID:23830731

  11. Numerical and structural aberrations in advanced neuroblastoma tumours by CGH analysis; survival correlates with chromosome 17 status

    PubMed Central

    Cunsolo, C Lo; Bicocchi, M P; Petti, A R; Tonini, G P

    2000-01-01

    Rapid tumour progression in neuroblastoma is associated with MYCN amplification, deletion of the short arm of chromosome 1 and gain of 17q. However, patients with advanced disease without MYCN amplification and/or 1p deletion have a very poor outcome too, which suggests other genetic defects may predict an unfavourable prognosis. We employed CGH to study 22 tumours of patients at stages 3 and 4 over one year of age (6 and 16 cases respectively). Patients were divided in groups (A) long-term survivors and (B) short-term survivors. CGH showed a total of 226 chromosome imbalances (110 in group A and 116 in group B). The neuroblastoma cells of long-term survivors showed a preponderance of numerical aberrations (54%vs 43%); particularly gains of entire chromosomes 1 (P< 0.03), 7 (P< 0.04) and 19 (P< 0.05). An extra copy of 17 was detected in 6/8 (75%) samples of group A and only 1/14 (7%) samples of group B (P< 0.002). Conversely, tumours of patients who died from disease progression displayed a higher frequency of structural abnormalities (43%vs 35%), including loss of 1p, 9p, 11q, 15q and 18q and gain of 12q, although the difference was not significant (P= 0.24). Unbalanced gain of 17q was detected in 8/14 (57%) tumours of group B and only 1/8 (13%) tumours of group A (P< 0.05). The peculiar genetic difference observed in the tumours of long and short-term survivors may have prognostic relevance. © 2000 Cancer Research Campaign PMID:11044353

  12. Genetic characterization of dogs via chromosomal analysis and array-based comparative genomic hybridization (aCGH).

    PubMed

    Müller, M H; Reimann-Berg, N; Bullerdiek, J; Murua Escobar, H

    2012-01-01

    The results of cytogenetic and molecular cytogenetic investigations revealed similarities in genetic background and biological behaviour between tumours and genetic diseases of humans and dogs. These findings classify the dog a good and accepted model for human cancers such as osteosarcomas, mammary carcinomas, oral melanomas and others. With the appearance of new studies and advances in canine genome sequencing, the number of known homologies in diseases between these species raised and still is expected to increase. In this context, array-based comparative genomic hybridization (aCGH) provides a novel tool to rapidly characterize numerical aberrations in canine tumours or to detect copy number aberrations between different breeds. As it is possible to spot probes covering the whole genome on each chip to discover copy number aberrations of all chromosomes simultaneously, this method is time-saving and cost-effective - considering the relation of costs and the amount of data obtained. Complemented with traditional methods like karyotyping and fluorescence in situ hybridization (FISH) analyses, the aCGH is able to provide new insights into the underlying causes of canine carcinogenesis.

  13. Array-CGH fine mapping of minor and cryptic HR-CGH detected genomic imbalances in 80 out of 590 patients with abnormal development.

    PubMed

    Lybaek, Helle; Meza-Zepeda, Leonardo A; Kresse, Stine H; Høysaeter, Trude; Steen, Vidar M; Houge, Gunnar

    2008-11-01

    During a 6-year period, 590 patients suspected of having a minor or cryptic genomic imbalance as the cause of mental retardation with dysmorphic signs +/- malformations have been investigated with high-resolution comparative genomic hybridisation (HR-CGH) in our diagnostic laboratory. Thirty-six patients had a small chromosomal aberration detected by routine karyotyping, and 554 patients had a normal G-banded karyotype. In the latter group, a genomic imbalance was detected by HR-CGH in 40 patients (7.2%): 29 deletions, 3 duplications, 4 unbalanced translocations, and 4 occult trisomy mosaicisms. When microarray-based comparative genomic hybridisation (array-CGH) became available, all HR-CGH-positive samples were also investigated by 1 Mb resolution array-CGH for more precise mapping. From the 514 patients with normal HR-CGH findings, a subset of 20 patients with particularly high suspicion of having a chromosomal imbalance was selected for array-CGH. In four of them (20%), an imbalance was detected: three deletions and one duplication. Of note, 73 out of the 80 array-CGH mapped patients had a de novo chromosomal rearrangement (91%). Taken together, this work provides phenotype-genotype information on 80 patients with minor and cryptic chromosomal imbalances.

  14. Chromosome 18p deletion syndrome presenting holoprosencephaly and premaxillary agenesis: prenatal diagnosis and aCGH characterization using uncultured amniocytes.

    PubMed

    Chen, Chih-Ping; Huang, Jian-Pei; Chen, Yi-Yung; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Pan, Chen-Wen; Wang, Wayseen

    2013-09-25

    We present prenatal diagnosis of a de novo distal 18p deletion involving 14.06Mb at 18p11.32-p11.21 by aCGH using uncultured amniocytes in a pregnancy with fetal holoprosencephaly and premaxillary agenesis. QF-PCR analysis showed that distal 18p deletion was from maternal origin. Metaphase FISH analysis confirmed haploinsufficiency of TGIF. We discuss the functions of the genes that are deleted within this region. The present case shows the usefulness of applying aCGH on uncultured amniocytes for rapid aneuploidy diagnosis in cases with prenatally detected fetal structural abnormalities.

  15. An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma.

    PubMed

    Lim, Gloria; Karaskova, Jana; Beheshti, Ben; Vukovic, Bisera; Bayani, Jane; Selvarajah, Shamini; Watson, Spencer K; Lam, Wan L; Zielenska, Maria; Squire, Jeremy A

    2005-04-01

    Osteosarcoma (OS) is characterized by chromosomal instability and high-copy-number gene amplification. The breakage-fusion-bridge (BFB) cycle is a well-established mechanism of genomic instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. However, until now, there have been no high-resolution cytogenetic or genomic array studies of BFB events in OS. In the present study, multicolor banding (mBAND) FISH and submegabase resolution tiling set (SMRT) array comparative genomic hybridization (CGH) were used to identify and map genomic signatures of BFB events in four OS cell lines and one patient tumor. The expected intermediates associated with BFB-dicentric chromosomes, inverted duplications, and intra- and interchromosomal amplifications-were identified. mBAND analysis provided detailed mapping of rearrangements in 1p, 6p, and 8q and showed that translocation junctions were often in close proximity to fragile sites. More detailed mBAND studies of OS cell line MG-63 revealed ladderlike FISH signals of equally spaced interchromosomal coamplifications of 6p21, 8q24, and 9p21-p22 in a homogeneously staining region (hsr). Focal amplifications that concordantly mapped to the hsr were localized to discrete genomic intervals by SMRT array CGH. The complex amplicon structure in this hsr suggests focal amplifications immediately adjacent to microdeletions. Moreover, the genomic regions in which there was deletion/amplification had a preponderance of fragile sites. In summary, this study has provided further support for the role of the BFB mechanism and fragile sites in facilitating gene amplification and chromosomal rearrangement in OS.

  16. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features

    PubMed Central

    Shaw-Smith, C; Redon, R; Rickman, L; Rio, M; Willatt, L; Fiegler, H; Firth, H; Sanlaville, D; Winter, R; Colleaux, L; Bobrow, M; Carter, N

    2004-01-01

    The underlying causes of learning disability and dysmorphic features in many patients remain unidentified despite extensive investigation. Routine karyotype analysis is not sensitive enough to detect subtle chromosome rearrangements (less than 5 Mb). The presence of subtle DNA copy number changes was investigated by array-CGH in 50 patients with learning disability and dysmorphism, employing a DNA microarray constructed from large insert clones spaced at approximately 1 Mb intervals across the genome. Twelve copy number abnormalities were identified in 12 patients (24% of the total): seven deletions (six apparently de novo and one inherited from a phenotypically normal parent) and five duplications (one de novo and four inherited from phenotypically normal parents). Altered segments ranged in size from those involving a single clone to regions as large as 14 Mb. No recurrent deletion or duplication was identified within this cohort of patients. On the basis of these results, we anticipate that array-CGH will become a routine method of genome-wide screening for imbalanced rearrangements in children with learning disability. PMID:15060094

  17. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma

    PubMed Central

    Yoshikawa, Yoshie; Emi, Mitsuru; Hashimoto-Tamaoki, Tomoko; Ohmuraya, Masaki; Sato, Ayuko; Tsujimura, Tohru; Hasegawa, Seiki; Nakano, Takashi; Nasu, Masaki; Pastorino, Sandra; Szymiczek, Agata; Bononi, Angela; Tanji, Mika; Pagano, Ian; Gaudino, Giovanni; Napolitano, Andrea; Goparaju, Chandra; Pass, Harvey I.; Yang, Haining; Carbone, Michele

    2016-01-01

    We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy. PMID:27834213

  18. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10 362 consecutive cases

    PubMed Central

    Pham, Justin; Shaw, Chad; Pursley, Amber; Hixson, Patricia; Sampath, Srirangan; Roney, Erin; Gambin, Tomasz; Kang, Sung-Hae L; Bi, Weimin; Lalani, Seema; Bacino, Carlos; Lupski, James R; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau-Wai

    2014-01-01

    Somatic chromosomal mosaicism arising from post-zygotic errors is known to cause several well-defined genetic syndromes as well as contribute to phenotypic variation in diseases. However, somatic mosaicism is often under-diagnosed due to challenges in detection. We evaluated 10 362 patients with a custom-designed, exon-targeted whole-genome oligonucleotide array and detected somatic mosaicism in a total of 57 cases (0.55%). The mosaicism was characterized and confirmed by fluorescence in situ hybridization (FISH) and/or chromosome analysis. Different categories of abnormal cell lines were detected: (1) aneuploidy, including sex chromosome abnormalities and isochromosomes (22 cases), (2) ring or marker chromosomes (12 cases), (3) single deletion/duplication copy number variations (CNVs) (11 cases), (4) multiple deletion/duplication CNVs (5 cases), (5) exonic CNVs (4 cases), and (6) unbalanced translocations (3 cases). Levels of mosaicism calculated based on the array data were in good concordance with those observed by FISH (10–93%). Of the 14 cases evaluated concurrently by chromosome analysis, mosaicism was detected solely by the array in 4 cases (29%). In summary, our exon-targeted array further expands the diagnostic capability of high-resolution array comparative genomic hybridization in detecting mosaicism for cytogenetic abnormalities as well as small CNVs in disease-causing genes. PMID:24398791

  19. High-resolution copy number profiling by array CGH using DNA isolated from formalin-fixed, paraffin-embedded tissues.

    PubMed

    van Essen, Hendrik F; Ylstra, Bauke

    2012-01-01

    We describe protocols to acquire high-quality DNA from formalin-fixed, paraffin-embedded (FFPE) tissues for the use in array comparative genome hybridization (CGH). Formalin fixation combined with paraffin embedding is routine procedure for solid malignancies in the diagnostic practice of the pathologist. As a consequence, large archives of FFPE tissues are available in pathology institutes across the globe. This archival material is for many research questions an invaluable resource, with long-term clinical follow-up and survival data available. FFPE is, thus, highly attractive for large genomics studies, including experiments requiring samples for test/learning and validation. Most larger array CGH studies have, therefore, made use of FFPE material and show that CNAs have tumor- and tissue-specific traits (Chin et al. Cancer Cell 10: 529-541, 2006; Fridlyand et al. BMC Cancer 6: 96, 2006; Weiss et al. Oncogene 22: 1872-1879, 2003; Jong et al. Oncogene 26: 1499-1506, 2007). The protocols described are tailored to array CGH of FFPE solid malignancies: from sectioning FFPE blocks to specific cynosures for pathological revisions of sections, DNA isolation, quality testing, and amplification. The protocols are technical in character and elaborate up to the labeling of isolated DNA while further processes and interpretation and data analysis are beyond the scope.

  20. Inherited Xq13.2-q21.31 duplication in a boy with recurrent seizures and pubertal gynecomastia: Clinical, chromosomal and aCGH characterization.

    PubMed

    Linhares, Natália D; Valadares, Eugênia R; da Costa, Silvia S; Arantes, Rodrigo R; de Oliveira, Luiz Roberto; Rosenberg, Carla; Vianna-Morgante, Angela M; Svartman, Marta

    2016-09-01

    We report on a 16-year-old boy with a maternally inherited ~ 18.3 Mb Xq13.2-q21.31 duplication delimited by aCGH. As previously described in patients with similar duplications, his clinical features included intellectual disability, developmental delay, speech delay, generalized hypotonia, infantile feeding difficulties, self-injurious behavior, short stature and endocrine problems. As additional findings, he presented recurrent seizures and pubertal gynecomastia. His mother was phenotypically normal and had completely skewed inactivation of the duplicated X chromosome, as most female carriers of such duplications. Five previously reported patients with partial Xq duplications presented duplication breakpoints similar to those of our patient. One of them, a fetus with multiple congenital abnormalities, had the same cytogenetic duplication breakpoint. Three of the reported patients shared many features with our proband but the other had some clinical features of the Prader-Willi syndrome. It was suggested that ATRX overexpression could be involved in the major clinical features of patients with partial Xq duplications. We propose that this gene could also be involved with the obesity of the patient with the Prader-Willi-like phenotype. Additionally, we suggest that the PCDH11X gene could be a candidate for our patient's recurrent seizures. In males, the Xq13-q21 duplication should be considered in the differential diagnosis of Prader-Willi syndrome, as previously suggested, and neuromuscular diseases, particularly mitochondriopathies.

  1. aCGH-MAS: Analysis of aCGH by means of Multiagent System

    PubMed Central

    Benito, Rocío; Bajo, Javier; Rodríguez, Ana Eugenia; Abáigar, María

    2015-01-01

    There are currently different techniques, such as CGH arrays, to study genetic variations in patients. CGH arrays analyze gains and losses in different regions in the chromosome. Regions with gains or losses in pathologies are important for selecting relevant genes or CNVs (copy-number variations) associated with the variations detected within chromosomes. Information corresponding to mutations, genes, proteins, variations, CNVs, and diseases can be found in different databases and it would be of interest to incorporate information of different sources to extract relevant information. This work proposes a multiagent system to manage the information of aCGH arrays, with the aim of providing an intuitive and extensible system to analyze and interpret the results. The agent roles integrate statistical techniques to select relevant variations and visualization techniques for the interpretation of the final results and to extract relevant information from different sources of information by applying a CBR system. PMID:25874203

  2. [Familial presentation of microdeletion and inverted microduplication with array-CGH].

    PubMed

    Beseler-Soto, Beatriz; Jiménez-Candel, M Isabel; Pedrón-Marzal, Gema; Pérez-García, Begoña; Carpena-Lucas, Pedro J

    2014-12-16

    INTRODUCTION. Over the years the field of genetics has advanced significantly. Following the polymerase chain reaction and mass sequencing techniques, the array-CGH technique (comparative genomic hybridization) has helped to improve genetic procedures. A resolution of up to 200 kb is currently being accomplished in the human genome. CASE REPORTS. We report the case of two sisters with delays in developmental milestones and a characteristic phenotype with normal results from initial studies of the karyotype and subtelomeric regions. Array-CGH was later used to detect a deletion and duplication that were different in each of the sisters, this being the result of a balanced paternal translocation. In the two cases, despite being the result of the same translocation, the genetic and phenotype expression were different. CONCLUSIONS. The precision achieved by means of array-CGH is making it possible to establish a correlation between minimum gains or losses of the genome and the clinical features. Chromosome 3 codes for genes that play a fundamental role in neurological development (contactins, neurotransmitter modulator proteins, etc.) and chromosome 10 codes for proteins involved in apoptosis and proteins regulating transcription. In the literature there have been reports of chromosome 3 deletion syndrome and monosomy 10. Likewise, there are also descriptions of rearrangements between these chromosomes in individuals from the same family. Nevertheless, we describe two cases of a family with a micro-deletion and an inverted microduplication, detected by means of array-CGH, that have not been reported to date. This technique can provide a diagnostic and prognostic approximation as regards development and offer genetic counselling.

  3. Cytogenetic characterization of seven human cancer cell lines by combining G- and R-banding, M-FISH, CGH and chromosome- and locus-specific FISH.

    PubMed

    Cottier, Michèle; Tchirkov, Andrei; Perissel, Bernard; Giollant, Michel; Campos, Lydia; Vago, Philippe

    2004-10-01

    Leukemia cell lines K562, KG1a, U937, HL60, Jurkat and solid tumor cell lines A549 and M4Beu are widely used in studies of cell cycle, apoptosis and adhesion mechanisms in cancer cells. Although the K562 and U937 cell lines were previously subjected to a detailed cytogenetic characterization, only a few molecular cytogenetic investigations have been performed on the other five cell lines. We combined several molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH), multicolor FISH (M-FISH), and comparative genomic hybridization (CGH) to demonstrate the precise genetic aberrations in tumor genomes of these seven cell lines. This information may be useful for multiple studies on these cell lines, providing a genetic basis for the interpretations of experimental findings.

  4. Research on manufacturing method of CGH

    NASA Astrophysics Data System (ADS)

    Duan, Xueting

    2016-09-01

    Computer Generated Holograms (CGH) has shown strong application potential and broad application prospect as the more and more extensive application of CGH. With respect to manufacture an available CGH, design the CGH will be easier. Therefore, this paper mainly summarizes some current feasible CGH manufacturing processes, and in this paper, the manufacturing processes of different types of CGH are presented and analyzed.

  5. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes.

    PubMed

    Crozat, Estelle; Fournes, Florian; Cornet, François; Hallet, Bernard; Rousseau, Philippe

    2014-10-01

    One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.

  6. New BAC probe set to narrow down chromosomal breakpoints in small and large derivative chromosomes, especially suited for mosaic conditions.

    PubMed

    Hamid, Ahmed B; Fan, Xiaobo; Kosyakova, Nadezda; Radhakrishnan, Gopakumar; Liehr, Thomas; Karamysheva, Tatyana

    2015-01-01

    Fluorescence in situ hybridization (FISH) and/or array-comparative genomic hybridization (aCGH) performed after initial banding cytogenetics is still the gold standard for detection of chromosomal rearrangements. Although aCGH provides a higher resolution, FISH has two main advantages over the array-based approaches: (1) it can be applied to characterize balanced as well as unbalanced rearrangements, whereas aCGH is restricted to unbalanced ones, and (2) chromosomal aberrations present in low level or complex mosaics can be characterized by FISH without any problems, while aCGH requires presence of over 50 % of aberrant cells in the sample for detection. Recently, a new FISH-based probe set was presented: the so-called pericentric-ladder-FISH (PCL-FISH) that enables characterization of chromosomal breakpoints especially in mosaic small supernumerary marker chromosomes (sSMC). It can also be applied on large inborn or acquired derivative chromosomes. The main feature of this set is that the probes are applied in a chromosome-specific manner and they align along the chromosome in average intervals of ten megabasepairs. Hence PCL-FISH provides denser coverage and a more precise anchorage on the human DNA-sequence than most other FISH-banding approaches.

  7. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    PubMed

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  8. FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions.

    PubMed

    Dijkhuizen, Trijnie; van Essen, Ton; van der Vlies, Pieter; Verheij, Joke B G M; Sikkema-Raddatz, Birgit; van der Veen, Anneke Y; Gerssen-Schoorl, Klasien B J; Buys, Charles H C M; Kok, Klaas

    2006-11-15

    Imbalances of 3p telomeric sequences cause 3p- and trisomy 3p syndrome, respectively, showing distinct, but also shared clinical features. No causative genes have been identified in trisomy 3p patients, but for the 3p- syndrome, there is growing evidence that monosomy for one or more of four genes at 3pter, CHL1, CNTN4, CRBN, and MEGAP/srGAP3, may play a causative role. We describe here an analysis of a complex chromosome 3p aberration in a severely mentally retarded patient that revealed two adjacent segments with different copy number gains and a distal deletion. The deletion in this patient included the loci for CHL1, CNTN4, and CRBN, and narrowed the critical segment associated with the 3p- syndrome to 1.5 Mb, including the loci for CNTN4 and CRBN. We speculate that the deletion contributes more to this patient's phenotype than the gains that were observed. We suggest that 3p- syndrome associated features are primarily caused by loss of CNTN4 and CRBN, with loss of CHL1 probably having an additional detrimental effect on the cognitive functioning of the present patient.

  9. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed Central

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-01-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. Images Figure 5 PMID:2479266

  10. Array-CGH analysis of cutaneous anaplastic large cell lymphoma.

    PubMed

    Szuhai, K; van Doorn, R; Tensen, C P; Van Kester

    2013-01-01

    This chapter describes a study in which the pattern of numerical chromosomal alterations in cutaneous anaplastic large cell lymphoma (C-ALCL) tumor samples was defined using array-based comparative genomic hybridization (CGH). First, the array-based CGH technique applied is outlined in detail. Next, its application in the analysis of C-ALCL tumor specimens is described. This approach resulted in the identification of highly recurrent chromosomal alterations in C-ALCL that include gain of 7q31 and loss on 6q16-6q21 and 13q34, each affecting 45% of the patients. The pattern characteristic of C-ALCL differs markedly from chromosomal alterations observed in other CTCL such as mycosis fungoides and Sézary syndrome and yielded several candidate genes with potential relevance in the pathogenesis of C-ALCL.

  11. aCGHViewer: A Generic Visualization Tool For aCGH data

    PubMed Central

    Shankar, Ganesh; Rossi, Michael R.; McQuaid, Devin E.; Conroy, Jeffrey M.; Gaile, Daniel G.; Cowell, John K.; Nowak, Norma J.; Liang, Ping

    2006-01-01

    Array-Comparative Genomic Hybridization (aCGH) is a powerful high throughput technology for detecting chromosomal copy number aberrations (CNAs) in cancer, aiming at identifying related critical genes from the affected genomic regions. However, advancing from a dataset with thousands of tabular lines to a few candidate genes can be an onerous and time-consuming process. To expedite the aCGH data analysis process, we have developed a user-friendly aCGH data viewer (aCGHViewer) as a conduit between the aCGH data tables and a genome browser. The data from a given aCGH analysis are displayed in a genomic view comprised of individual chromosome panels which can be rapidly scanned for interesting features. A chromosome panel containing a feature of interest can be selected to launch a detail window for that single chromosome. Selecting a data point of interest in the detail window launches a query to the UCSC or NCBI genome browser to allow the user to explore the gene content in the chromosomal region. Additionally, aCGHViewer can display aCGH and expression array data concurrently to visually correlate the two. aCGHViewer is a stand alone Java visualization application that should be used in conjunction with separate statistical programs. It operates on all major computer platforms and is freely available at http://falcon.roswellpark.org/aCGHview/. PMID:17404607

  12. A t-statistic for objective interpretation of comparative genomic hybridization (CGH) profiles.

    PubMed

    Moore, D H; Pallavicini, M; Cher, M L; Gray, J W

    1997-07-01

    An objective method for interpreting comparative genomic hybridization (CGH) is described and compared with current methods of interpretation. The method is based on a two-sample t-statistic in which composite test:reference and reference:reference CGH profiles are compared at each point along the genome to detect regions of significant differences. Composite profiles are created by combining CGH profiles measured from several metaphase chromosomes for each type of chromosome in the normal human karyotype. Composites for both test:reference and reference:reference CGH analyses are used to generate mean CGH profiles and information about the variance therein. The utility of the method is demonstrated through analysis of aneusomies and partial gain and loss of DNA sequence in a myeloid leukemia specimen. Banding analyses of this specimen indicated inv (3)(q21q26), del (5)(q2?q35), -7, +8 and add (17)(p11.2). The t-statistic analyses of CGH data indicated rev ish enh (8) and rev ish dim (5q31.1q33.1,7q11.23qter). The undetected gain on 17p was small and confined to a single band (17p11.2). Thus, the t-statistic is an objective and effective method for defining significant differences between test and reference CGH profiles.

  13. A web server for mining Comparative Genomic Hybridization (CGH) data

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ranka, Sanjay; Kahveci, Tamer

    2007-11-01

    Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.

  14. Mechanisms for Complex Chromosomal Insertions

    PubMed Central

    Szafranski, Przemyslaw; Akdemir, Zeynep Coban; Yuan, Bo; Cooper, Mitchell L.; Magriñá, Maria A.; Bacino, Carlos A.; Lalani, Seema R.; Patel, Ankita; Song, Rodger H.; Bi, Weimin; Cheung, Sau Wai; Carvalho, Claudia M. B.; Lupski, James R.

    2016-01-01

    Chromosomal insertions are genomic rearrangements with a chromosome segment inserted into a non-homologous chromosome or a non-adjacent locus on the same chromosome or the other homologue, constituting ~2% of nonrecurrent copy-number gains. Little is known about the molecular mechanisms of their formation. We identified 16 individuals with complex insertions among 56,000 individuals tested at Baylor Genetics using clinical array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. We observed microhomologies and templated insertions at the breakpoint junctions, resembling the breakpoint junction signatures found in complex genomic rearrangements generated by replication-based mechanism(s) with iterative template switches. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs. PMID:27880765

  15. [Confirmation of a prenatal diagnosis of trisomy 13 with comparative genomic hybridization (CGH)].

    PubMed

    Marton, T; Thein, A; Bán, Z; Soothill, P; Oroszné, N J; Papp, Z

    2001-05-13

    Trisomy 13 was diagnosed with genetic amniocentesis in a fetus of a 50 years old patient. Fetopathologic examination has shown cyclopy, proboscis and semilobar holoprosencephaly of the fetus, which is consistent with Patau syndrome. DNA was extracted from frozen liver tissue. Result of comparative genomic hybridization (CGH) was consistent with trisomy 13. They processed the DNA according Kallioniemi's method with modifications. CGH was developed for cancer genetics in mid 90s and now it is widely used in prenatal diagnosis too. CGH allows global analysis to detect unbalanced chromosome gains and losses in the whole genome in a single experiment without the need for cell culture. Significant results can be expected in those cases where conventional cytogenetics is not able to provide an answer either because postmortem tissue is not appropriate for cytogenetics or because the chromosomal change is sub-microscopical. CGH is a fluorescent in situ hybridization on a healthy target metaphase, with equal amount of competitive hybridization of green labelled digested test DNA and red labelled digested control DNA. Red to green ratio is assessed with the help of an image analyser. Green dominance represents chromosome gain, while red shift chromosome loss. In the paper they present the fetopathologic report of a trisomy 13 fetus and illustrate the method being the first Hungarian obstetric case diagnosed by CGH.

  16. Cytogenetic and array CGH characterization of de novo 1p36 duplications and deletion in a patient with congenital cataracts, hearing loss, choanal atresia, and mental retardation.

    PubMed

    Chen, Emily; Obolensky, Elise; Rauen, Katherine A; Shaffer, Lisa G; Li, Xu

    2008-11-01

    We describe a 14-year-old boy with congenital bilateral cataracts, blepharophimosis, ptosis, choanal atresia, sensorineural hearing loss, short, webbed neck, poor esophageal motility, severe growth and mental retardation, skeletal anomalies, seizures, and no speech. As an infant, he had transient hypogammaglobulinemia requiring IVIG therapy. Cytogenetic studies show an apparently de novo visible duplication at 1p36.3. Fluorescence in situ hybridization (FISH) studies confirm that the common region for the 1p36 deletion syndrome (p58) is duplicated. Probes for D1Z2 at 1p36.3 and the subtelomeric region of 1p (TEL1p) are also duplicated. Array comparative genomic hybridization (aCGH) studies were done at three separate laboratories, each with somewhat different results. BAC whole genome array CGH suggests a single clone gain at the 1p terminus and a single clone deletion at 1p36.3. A targeted BAC array panel with higher resolution at the distal 1p36 region detects a telomeric duplication and an interstitial deletion. Oligonucleotide whole genomic aCGH shows the highest resolution and a more complex rearrangement: two duplications, an interstitial deletion, and a normal region. The MMP23A/B "matrix metalloproteinase 23A/B" genes are within the distal duplication region in our patient, and this patient does not have craniosynostosis. This is the first association of congenital cataracts, choanal atresia, and transient immune abnormalities with 1p36 duplication/deletion. This case illustrates the limitations of different cytogenetic technologies, and shows how three separate aCGH platforms allow for refined delineation and interpretation of the complex cytogenetic rearrangement which would not have been discovered by standard high-resolution chromosome analysis.

  17. Mosaic supernumerary ring chromosome 19 identified by comparative genomic hybridisation.

    PubMed Central

    Ghaffari, S R; Boyd, E; Connor, J M; Jones, A M; Tolmie, J L

    1998-01-01

    We report the use of comparative genomic hybridisation (CGH) to define the origin of a supernumerary ring chromosome which conventional cytogenetic banding and fluorescence in situ hybridisation (FISH) methods had failed to identify. Targeted FISH using whole chromosome 19 library arm and site specific probes then confirmed the CGH results. This study shows the feasibility of using CGH for the identification of supernumerary marker chromosomes, even in fewer than 50% of cells, where no clinical or cytogenetic clues are present. Images PMID:9783708

  18. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    PubMed Central

    Balcárková, Barbora; Frenkel, Zeev; Škopová, Monika; Abrouk, Michael; Kumar, Ajay; Chao, Shiaoman; Kianian, Shahryar F.; Akhunov, Eduard; Korol, Abraham B.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers. PMID:28119729

  19. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  20. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  1. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  2. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    SciTech Connect

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  3. HIGH-RESOLUTION GENOMIC ARRAYS FACILITATE DETECTION OF NOVEL CRYPTIC CHROMOSOMAL LESIONS IN MYELODYSPLASTIC SYNDROMES

    PubMed Central

    O’Keefe, Christine L.; Tiu, Ramon; Gondek, Lukasz P.; Powers, Jennifer; Theil, Karl S.; Kalaycio, Matt; Lichtin, Alan; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.

    2008-01-01

    Objective Unbalanced chromosomal aberrations are common in myelodysplastic syndromes, and have prognostic implications. An increased frequency of cytogenetic changes may reflect an inherent chromosomal instability due to failure of DNA repair. Therefore, it is likely that chromosomal defects in myelodysplastic syndromes may be more frequent than predicted by metaphase cytogenetics and new cryptic lesions may be revealed by precise analysis methods. Methods We used a novel high-resolution karyotyping technique, array-based comparative genomic hybridization, to investigate the frequency of cryptic chromosomal lesions in a cohort of 38 well-characterized myelodysplastic syndromes patients; results were confirmed by microsatellite quantitative PCR or single nucleotide polymorphism analysis. Results As compared to metaphase karyotyping, chromosomal abnormalities detected by array-based analysis were encountered more frequently and in a higher proportion of patients. For example, chromosomal defects were found in patients with a normal karyotype by traditional cytogenetics. In addition to verifying common abnormalities, previously cryptic defects were found in new regions of the genome. Cryptic changes often overlapped chromosomes and regions frequently identified as abnormal by metaphase cytogenetics. Conclusion The results underscore the instability of the myelodysplastic syndromes genome and highlight the utility of array-based karyotyping to study cryptic chromosomal changes which may provide new diagnostic information. PMID:17258073

  4. Super-resolution fluorescence imaging of chromosomal DNA.

    PubMed

    Zessin, Patrick J M; Finan, Kieran; Heilemann, Mike

    2012-02-01

    Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.

  5. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: a new piece in the puzzle of sex chromosome evolution in turtles.

    PubMed

    Martinez, Pedro Alonzo; Ezaz, Tariq; Valenzuela, Nicole; Georges, Arthur; Marshall Graves, Jennifer A

    2008-01-01

    Chromosomal sex determination is the prevalent system found in animals but is rare among turtles. In fact, heteromorphic sex chromosomes are known in only seven of the turtles possessing genotypic sex determination (GSD), two of which correspond to cryptic sex microchromosomes detectable only with high-resolution cytogenetic techniques. Sex chromosomes were undetected in previous studies of Emydura macquarii, a GSD side-necked turtle. Using comparative genomic hybridization (CGH) and GTG-banding, a heteromorphic XX/XY sex chromosome system was detected in E. macquarii. The Y chromosome appears submetacentric and somewhat larger than the metacentric X, the first such report for turtles. CGH revealed a male-specific chromosomal region, which appeared heteromorphic using GTG-banding, and was restricted to the telomeric region of the p arm. Based on our observations and the current phylogeny of chelid turtles, we hypothesize that the sex chromosomes of E. macquarii might be the result of a translocation of an ancestral Y microchromosome as found in a turtle belonging to a sister clade, Chelodina longicollis, onto the tip of an autosome. However, in the absence of data from an outgroup, the opposite (fission of a large XY into an autosome and a micro-XY) is theoretically equally likely. Alternatively, the sex chromosome systems of E. macquarii and C. longicollis may have evolved independently. We discuss the potential causes and consequences of such putative chromosome rearrangements in the evolution of sex chromosomes and sex-determining systems of turtles in general.

  6. Programmable CGH on photochromic material using DMD

    NASA Astrophysics Data System (ADS)

    Alata, Romain; Pariani, Giorgio; Zamkotsian, Frederic; Lanzoni, Patrick; Bianco, Andrea; Bertarelli, Chiara

    2016-07-01

    Computer Generated Holograms (CGHs) are useful for wavefront shaping and complex optics testing, including aspherical and free-form optics. Today, CGHs are recorded directly with a laser or intermediates masks but allows only recording binary CGHs; binary CGHs are efficient but can reconstruct only pixilated images. We propose to use a Digital Micro-mirror Device (DMD) for writing binary CGHs as well as grayscale CGHs, able to reconstruct fulfilled images. DMD is actually studied at LAM, for generating programmable slit masks in multi-object spectrographs. It is composed of 2048x1080 individually controllable micro-mirrors, with a pitch of 13.68 μm. This is a real-time reconfigurable mask, perfect for recording CGHs. A first setup has been developed for hologram recording, where the DMD is enlightened with a collimated beam and illuminates a photosensible plate through an Offner relay, with a magnification of 1:1. Our set up resolution is 2-3 μm, leading to a CGH resolution equal to the DMD micro mirror size. In order to write and erase CGHs during test procedure or on request, we use a photochromic plate called PUR-GD71-50-ST developed at Politecnico di Milano. It is opaque at rest, and becomes transparent when it is illuminated with visible light, between 500 and 700 nm; then it can be erased by a UV flash. We choose to code the CGHs in equally spaced levels, so called stepped CGH. We recorded up to 1000x1000 pixels CGHs with a contrast greater than 50, knowing that the material is able to reach an ultimate contrast of 1000. A second bench has also been developed, dedicated to the reconstruction of the recorded images with a 632.8nm He-Ne laser beam. Very faithful reconstructions have been obtained. Thanks to our recording and reconstruction set-ups, we have been able to successfully record binary and stepped CGHs, and reconstruct them with a high fidelity, revealing the potential of this method for generating programmable/rewritable stepped CGHs on

  7. Chromosome

    MedlinePlus

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  8. Findings from aCGH in patients with congenital diaphragmatic hernia (CDH): a possible locus for Fryns syndrome.

    PubMed

    Kantarci, S; Casavant, D; Prada, C; Russell, M; Byrne, J; Haug, L Wilkins; Jennings, R; Manning, S; Blaise, F; Boyd, T K; Fryns, J P; Holmes, L B; Donahoe, P K; Lee, C; Kimonis, V; Pober, B R

    2006-01-01

    Congenital diaphragmatic hernia (CDH) is a common and often devastating birth defect that can occur in isolation or as part of a malformation complex. Considerable progress is being made in the identification of genetic causes of CDH. We applied array-based comparative genomic hybridization (aCGH) of approximately 1Mb resolution to 29 CDH patients with prior normal karyotypes who had been recruited into our multi-site study. One patient, clinically diagnosed with Fryns syndrome, demonstrated a de novo 5Mb deletion at chromosome region 1q41-q42.12 that was confirmed by FISH. Given prior reports of CDH in association with cytogenetic abnormalities in this region, we propose that this represents a locus for Fryns syndrome, a Fryns syndrome phenocopy, or CDH.

  9. High resolution mapping of interstitial long arm deletions of chromosome 16: relationship to phenotype.

    PubMed Central

    Callen, D F; Eyre, H; Lane, S; Shen, Y; Hansmann, I; Spinner, N; Zackai, E; McDonald-McGinn, D; Schuffenhauer, S; Wauters, J

    1993-01-01

    The breakpoints of seven interstitial deletions of the long arm of chromosome 16 and two ring chromosomes of this chromosome were mapped by in situ hybridisation or by analysis of mouse/human somatic cell hybrids containing the deleted chromosome 16. Use of a high resolution cytogenetic based physical map of chromosome 16 enabled breakpoints to be assigned to an average resolution of at least 1.6 Mb. In general, interstitial deletions involving q12 or q22.1 have broadly similar phenotypes though there are differences in specific abnormalities. Deletions involving regions more distal, from 16q22.1 to 16q24.1, were associated with relatively mild dysmorphism. One region of the long arm, q24.2 to q24.3, was not involved in any deletion, either in this study or in any previous report. Presumably, monosomy for this region is lethal. In contrast, patients with deletions of 16q21 have a normal phenotype. These results are consistent with the proposed distribution of genes, frequent in telomeric Giesma light band regions but infrequent in G positive bands. Images PMID:8230159

  10. Significance of genome-wide analysis of copy number alterations and UPD in myelodysplastic syndromes using combined CGH - SNP arrays.

    PubMed

    Ahmad, Ausaf; Iqbal, M Anwar

    2012-01-01

    Genetic information is an extremely valuable data source in characterizing the personal nature of cancer. Chromosome instability is a hallmark of most cancer cells. Chromosomal abnormalities are correlated with poor prognosis, disease classification, risk stratification, and treatment selection. Copy number alterations (CNAs) are an important molecular signature in cancer initiation, development, and progression. Recent application of whole-genome tools to characterize normal and cancer genomes provides the powerful molecular cytogenetic means to enumerate the multiple somatic, genetic and epigenetic alterations that occur in cancer. Combined array comparative genomic hybridization (aCGH) with single nucleotide polymorphism (SNP) array is a useful technique allowing detection of CNAs and loss of heterozygosity (LOH) or uni-parental disomy (UPD) together in a single experiment. It also provides allelic information on deletions, duplications, and amplifications. UPD can result in an abnormal phenotype when the chromosomes involved are imprinted. Myelodysplastic syndromes (MDS) are the most common clonal stem cell hematologic malignancy characterized by ineffective hematopoiesis, which leads to rapid progression into acute myeloid leukemia. UPD that occurs without concurrent changes in the gene copy number is a common chromosomal defect in hematologic malignancies, especially in MDS. Approximately 40-50% of MDS patients do not have karyotypic abnormalities that are detectable using classical metaphase cytogenetic techniques (MC) because of inherent limitations of MC, low resolution and the requirement of having dividing cells. In this review, we highlight advances in the clinical application of microarray technology in MDS and discuss the clinical potential of microarray.

  11. Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies

    PubMed Central

    2012-01-01

    Background Array comparative genomic hybridization (CGH) has been repeatedly shown to be a successful tool for the identification of genomic variations in a clinical population. During the last decade, the implementation of array CGH has resulted in the identification of new causative submicroscopic chromosome imbalances and copy number variations (CNVs) in neuropsychiatric (neurobehavioral) diseases. Currently, array-CGH-based technologies have become an integral part of molecular diagnosis and research in individuals with neuropsychiatric disorders and children with intellectual disability (mental retardation) and congenital anomalies. Here, we introduce the Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies analyzed by BAC array CGH and a novel bioinformatic strategy. Results Among 54 individuals highly selected according to clinical criteria and molecular and cytogenetic data (from 2426 patients evaluated cytogenetically and molecularly between November 2007 and May 2012), chromosomal imbalances were detected in 26 individuals (48%). In two patients (4%), a previously undescribed condition was observed. The latter has been designated as meiotic (constitutional) genomic instability resulted in multiple submicroscopic rearrangements (including CNVs). Using bioinformatic strategy, we were able to identify clinically relevant CNVs in 15 individuals (28%). Selected cases were confirmed by molecular cytogenetic and molecular genetic methods. Eight out of 26 chromosomal imbalances (31%) have not been previously reported. Among them, three cases were co-occurrence of subtle chromosome 9 and 21 deletions. Conclusions We conducted an array CGH study of Russian patients suffering from intellectual disability, autism, epilepsy and congenital anomalies. In total, phenotypic manifestations of clinically relevant genomic variations were found to result from genomic rearrangements affecting 1247 disease-causing and pathway

  12. Improvement of high-resolution fluorescence in situ hybridisation mapping on chromosomes of Brassica oleracea var. capitata.

    PubMed

    Yang, K; Zhang, Y; Converse, R; Lv, J; Shi, M; Zhang, H; Zhu, L

    2016-03-01

    The low resolution of chromosome-based Fluorescence in situ hybridisation (FISH) mapping is primarily due to the structure of the plant cell wall and cytoplasm and the compactness of regular chromosomes, which represent a significant obstacle to FISH. In order to improve spatial resolution and signal detection sensitivity, we provide a reproducible method to generate high-quality extended chromosomes that are ~13 times as long as their pachytene counterparts. We demonstrate that proteinase K used in this procedure is crucial for stretching pachytene chromosomes of Brassica oleracea in the context of a modified Carnoy's II fixative (6:1:3, ethanol:chloroform:acetic acid). The quality of super-stretched chromosomes was assessed in several FISH experiments. FISH signals from both repetitive 5S rDNA and single-copy ARC1 on super-stretched chromosomes are brighter than those on other different types of chromosome due to enhanced accessibility to targets on stretched pachytene chromosomes. In conclusion, the resulting extended chromosomes are suitable for FISH mapping for repetitive DNA sequences and the localisation of a single-copy locus, and FISH performed on super-stretched chromosomes can achieve significantly higher sensitivity and spatial resolution than other chromosome-based FISH mapping techniques.

  13. Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta.

    PubMed

    Valenzuela, Nicole; Badenhorst, Daleen; Montiel, Eugenia E; Literman, Robert

    2014-01-01

    Sex determination is triggered by factors ranging from genotypic (GSD) to environmental (ESD), or both GSD + EE (GSD susceptible to environmental effects), and its evolution remains enigmatic. The presence/absence of sex chromosomes purportedly separates species at the ESD end of the continuum from the rest (GSD and GSD + EE) because the evolutionary dynamics of sex chromosomes and autosomes differ. However, studies suggest that turtles with temperature-dependent sex determination (TSD) are cryptically GSD and possess sex chromosomes. Here, we test this hypothesis in painted turtles Chrysemys picta (TSD), using comparative-genome-hybridization (CGH), a technique known to detect morphologically indistinguishable sex chromosomes in other turtles and reptiles. Our results show no evidence for the existence of sex chromosomes in painted turtles. While it remains plausible that cryptic sex chromosomes may exist in TSD turtles that are characterized by minor genetic differences that cannot be detected at the resolution of CGH, previous attempts have failed to identify sex-specific markers. Genomic sequencing should prove useful in providing conclusive evidence in this regard. If such efforts uncover sex chromosomes in TSD turtles, it may reveal the existence of a fundamental constraint for the evolution of a full spectrum of sex determination (from pure GSD to pure TSD) that is predicted theoretically. Finding sex chromosomes in ESD organisms would question whether pure ESD mechanisms exist at all in nature, or whether those systems currently considered pure ESD simply await the characterization of an underlying GSD architecture.

  14. High Resolution Analysis of Meiotic Chromosome Structure and Behaviour in Barley (Hordeum vulgare L.)

    PubMed Central

    Phillips, Dylan; Nibau, Candida; Wnetrzak, Joanna; Jenkins, Glyn

    2012-01-01

    Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM). PMID:22761818

  15. A high-resolution comparative radiation hybrid map of equine chromosome 4q12-q22.

    PubMed

    Dierks, C; Mömke, S; Drögemüller, C; Leeb, T; Chowdhary, B P; Distl, O

    2006-10-01

    In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.

  16. Transient congenital hypoparathyroidism: resolution and recurrence in chromosome 22q11 deletion.

    PubMed

    Greig, F; Paul, E; DiMartino-Nardi, J; Saenger, P

    1996-04-01

    Transient congenital hypoparathyroidism (TCHP), with spontaneous resolution in infancy and subsequent recurrence in childhood, has not been associated with a specific cause. We report three patients with TCHP, initially with severe but transient neonatal hypocalcemia. During childhood, recurrence of hypoparathyroidism and recognition of phenotypic features suggested a diagnosis of velocardiofacial syndrome (VCFS). Features specific for the DiGeorge syndrome, with known clinical and genetic overlap with VCFS, were not present except for hypoparathyroidism. Genetic analysis confirmed chromosome 22q11 deletion in each patient. TCHP may be the earliest specific finding in 22q11 deletion/VCFS subgroup, with other diagnostic features emerging in later childhood. Infants with resolved TCHP need continued observation of parathyroid sufficiency, genetic analysis, and examination for anomalies associated with chromosome 22q11 deletion.

  17. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies

    PubMed Central

    Lue, YanHe; Probst, Frank; Greenstein, Deanna; Giedd, Jay; Wang, Christina; Lerch, Jason; Swerdloff, Ronald

    2016-01-01

    Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be colocalized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study—XO, XX, XY and XXY—to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males (“forebrain cholinergic” and “cerebelo-pontine-thalamo-cortical”), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA. PMID:25146308

  18. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies.

    PubMed

    Raznahan, Armin; Lue, YanHe; Probst, Frank; Greenstein, Deanna; Giedd, Jay; Wang, Christina; Lerch, Jason; Swerdloff, Ronald

    2015-11-01

    Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be co-localized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study--XO, XX, XY and XXY--to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males ("forebrain cholinergic" and "cerebelo-pontine-thalamo-cortical"), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA.

  19. Congenital generalized hypertrichosis (CGH) maps to Xq26-q27

    SciTech Connect

    Figuera, L.E.; Dunne, P.W.; Pandolfo, M.

    1994-09-01

    CGH is a rare, X-linked dominant trait previously described by one of us in a large, five-generational Mexican family with 28 affected individuals. Family history and clinical examination reveal that excessive hair is present at the patient`s birth becoming more dense during the first year of life. In males the hair eventually covers the face and upper portion of the trunk. The affected women have transmitted the trait to both male and female offspring, while one affected male has transmitted the trait to all three female offspring but not to his nine sons. In addition, manifestations are more severe in males than females, who show an uneven pattern of excessive hair distribution, possibly due to the random nature of X-inactivation. The rarity of this trait and the apparently extremely low rate of mutation of the gene led the authors to hypothesize that this condition was the result of a {open_quotes}back{close_quotes} mutation, leading to reactivation of an {open_quotes}atavistic{close_quotes} gene. Clinical examination, blood collection, and establishment of lymphoblastoid cell lines have been completed for the majority of the members of the family available, including affected and unaffected males and females. Sixteen meioses were screened using several polymorphic microsatellite markers distributed along the X-chromosome. The locus DXS1211 did not show recombination events. Two-point linkage analysis yielded a maximum LOD score of 3.08 at theta of zero. An updated map of the X chromosome localizes this marker at Xq16-q27. The identification of the CGH gene will provide insight into development of hair and allow testing of the hypothesis of {open_quotes}atavism{close_quotes}.

  20. Array CGH reveals genomic aberrations in human emphysema.

    PubMed

    Choi, Jin Soo; Lee, Woon Jeong; Baik, Seung Ho; Yoon, Hyoung Kyu; Lee, Kweon-Haeng; Kim, Yeul Hong; Lim, Young; Wang, Young-Pil

    2009-01-01

    Emphysema is the major component of chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of death in the world. Several epidemiologic studies suggest that genetic factors may have an important role in the pathogenesis of emphysema. We analyzed the gene expression profiles of chromosomal aberrations using array comparative genomic hybridization (array CGH) in 32 patients with emphysema to identify the candidate genes that might be causally involved in the pathogenesis of emphysema. Copy number gains and losses were detected in chromosomal regions, and the corresponding genes were confirmed by real-time polymerase chain reaction. Several frequently altered loci were found, including a gain at 5p15.33 (60% of the study subjects), and a loss at 7q22.1 (31% of the study subjects). DNA gains were identified at a high frequency at 1p, 5p, 11p, 12p, 15q, 17p, 18q, 21q, and 22q, whereas DNA losses were frequently found at 7q and 22q. We found that the fold change levels were highest at the CYP4B1 (1p33), JUN (1p32.1), NOTCH2 (1p12-p11.2), SDHA (5p15.33), KCNQ1 (11p15.5-p15.4), NINJ2 (12p13.33), PCSK6 (15q26.3), ABR (17p13.3), CTDP1 (18q23), RUNX1 (21q22.12) and HDAC10 (22q13.33) gene loci. We also observed losses in the MUC17 (7q22.1), COMT (22q11.21) and GSTT1 (22q11.2) genes. These studies show that array CGH is a useful tool for the identification of gene alterations in cases of emphysema and that the aforementioned genes might represent potential candidate genes involved in the pathogenesis of emphysema.

  1. A CGH array procedure to detect PAX6 gene structural defects.

    PubMed

    Franzoni, Alessandra; Russo, Patrizia Dello; Baldan, Federica; D'Elia, Angela Valentina; Puppin, Cinzia; Penco, Silvana; Damante, Giuseppe

    2016-12-02

    Aniridia is a rare congenital disease characterized by eye development defects, in which the more evident clinical manifestation is iris absence or malformation. In most of the patients, aniridia is associated to PAX6 gene point mutations or deletions. When these deletions are large and involve other genes, a more complex disease, named WAGR syndrome, arises. In order to develop a new tool to analyze aniridia and WAGR subjects, a CGH array (CGHa) of the PAX6 genomic region was set up. We generated a custom microarray kit using an oligonucleotide-based platform that allows high resolution molecular profiling of genomic aberrations in 20 Mb of the 11p13 chromosomal region, centered on the PAX6 gene. The average probe spacing was 100 bp. Thirty-five subjects have been analyzed. The major advantage of CGHa compared to MLPA was the knowledge of the deletions borders. Our approach identifies patients harboring deletions including the WT1 gene and, therefore, at risk for kidney tumors. The CGHa assay confirmed that several aniridia patients show a deletion at the level of ELP4 gene, without involvement of the PAX6 exonic regions. In all these patients, deletions include the PAX6 transcriptional enhancer SIMO. This finding further highlights the role of mutation/deletion of long-range enhancers in monogenic human pathology.

  2. Objective aneuploidy detection for fetal and neonatal screening using comparative genomic hybridization (CGH).

    PubMed

    Yu, L C; Moore, D H; Magrane, G; Cronin, J; Pinkel, D; Lebo, R V; Gray, J W

    1997-07-01

    Comparative genomic hybridization (CGH) allows entire genomes to be scanned for whole and segmental aneuploidy and thus may be an appropriate tool for the detection of clinically important abnormalities during fetal and neonatal screening. Criteria to distinguish between significant aberrations and experimental artifacts are essential for these applications. This report describes the use of a t-statistic to detect changes in CGH profiles that differ significantly from variations that occur in CGH profiles of normal samples. Eleven cell lines derived from fetal or neonatal patients were analyzed in this study. Aneuploidies in these lines included trisomies for chromosomes 13, 16, 18, and 21 and monosomy for distal 5p and tetrasomy 18p. Aneuploidy was detected in all samples by using the t-statistic, although the extent of the aneuploid region was not correctly estimated in some cases. A detailed description of the t-statistic fused for making these CGH comparisons is described in a companion paper (Moore et al., Cytometry 28:183-190, 1997.

  3. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes

    PubMed Central

    Tucker, Tracy; Zahir, Farah R; Griffith, Malachi; Delaney, Allen; Chai, David; Tsang, Erica; Lemyre, Emmanuelle; Dobrzeniecka, Sylvia; Marra, Marco; Eydoux, Patrice; Langlois, Sylvie; Hamdan, Fadi F; Michaud, Jacques L; Friedman, Jan M

    2014-01-01

    Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis. PMID:24253858

  4. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes.

    PubMed

    Tucker, Tracy; Zahir, Farah R; Griffith, Malachi; Delaney, Allen; Chai, David; Tsang, Erica; Lemyre, Emmanuelle; Dobrzeniecka, Sylvia; Marra, Marco; Eydoux, Patrice; Langlois, Sylvie; Hamdan, Fadi F; Michaud, Jacques L; Friedman, Jan M

    2014-06-01

    Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis.

  5. Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    PubMed Central

    Matsuda, Atsushi; Shao, Lin; Boulanger, Jerome; Kervrann, Charles; Carlton, Peter M.; Kner, Peter; Agard, David; Sedat, John W.

    2010-01-01

    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples. PMID:20856676

  6. How to narrow down chromosomal breakpoints in small and large derivative chromosomes--a new probe set.

    PubMed

    Hamid, Ahmed B; Kreskowski, Katharina; Weise, Anja; Kosayakova, Nadezda; Mrasek, Kristin; Voigt, Martin; Guilherme, Roberta Santos; Wagner, Rebecca; Hardekopf, David; Pekova, Sona; Karamysheva, Tatyana; Liehr, Thomas; Klein, Elisabeth

    2012-08-01

    Here a new fluorescence in situ hybridization (FISH-) based probe set is presented and its possible applications are highlighted in 34 exemplary clinical cases. The so-called pericentric-ladder-FISH (PCL-FISH) probe set enables a characterization of chromosomal breakpoints especially in small supernumerary marker chromosomes (sSMC), but can also be applied successfully in large inborn or acquired derivative chromosomes. PCL-FISH was established as 24 different chromosome-specific probe sets and can be used in two- up multicolor-FISH approaches. PCL-FISH enables the determination of a chromosomal breakpoint with a resolution between 1 and ∼10 megabasepairs and is based on locus-specific bacterial artificial chromosome (BAC) probes. Results obtained on 29 sSMC cases and five larger derivative chromosomes are presented and discussed. To confirm the reliability of PCL-FISH, eight of the 29 sSMC cases were studied by array-comparative genomic hybridization (aCGH); the used sSMC-specific DNA was obtained by glass-needle based microdissection and DOP-PCR-amplification. Overall, PCL-FISH leads to a better resolution than most FISH-banding approaches and is a good tool to narrow down chromosomal breakpoints.

  7. CGH Supports World Cancer Day Every Day

    Cancer.gov

    We celebrate World Cancer Day every year on February 4th. This year the theme “We can. I can.” invites us to think not only about how we can work with one another to reduce the global burden of cancer, but how we as individuals can make a difference. Every day the staff at CGH work to establish and build upon programs that are aimed at improving the lives of people affected by cancer.

  8. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping.

    PubMed

    Raudsepp, Terje; Lee, Eun-Joon; Kata, Srinivas R; Brinkmeyer, Candice; Mickelson, James R; Skow, Loren C; Womack, James E; Chowdhary, Bhanu P

    2004-02-24

    Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.

  9. Toriello-Carey syndrome with a 6Mb interstitial deletion at 22q12 detected by array CGH.

    PubMed

    Said, Edith; Cuschieri, Alfred; Vermeesch, Joris; Fryns, Jean Pierre

    2011-06-01

    Toriello-Carey syndrome is a rare multiple congenital anomaly syndrome comprising agenesis of the corpus callosum, telecanthus, short palpebral fissures, abnormal ears, Pierre Robin sequence, and cardiac anomaly. Autosomal recessive inheritance has been hypothesized and chromosome abnormalities have been reported. The present case is a girl with agenesis of the corpus callosum, a large cleft palate, telecanthus, hypertelorism, atrial septal defect, ventricular septal defect, and patent ductus arteriosus. A routine karyotype and fluorescence in situ hybridization subtelomeric analysis were normal. Array comparative genomic hybridization (CGH) identified a de novo 6 Mb interstitial deletion at 22q12.1→22q12.2. These findings support recent findings of chromosomal abnormalities in patients with the Toriello-Carey phenotype. We suggest that the clinical features described in some cases with Toriello-Carey syndrome might be due to cryptic chromosomal rearrangements and that array CGH should be considered in any case presenting with clinical features of Toriello-Carey.

  10. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  11. Supernumerary ring chromosome: an etiology for Pallister-Killian syndrome?

    PubMed

    Lloveras, E; Canellas, A; Cirigliano, V; Català, V; Cerdan, C; Plaja, A

    2013-01-01

    Characterization of marker chromosomes before the introduction of array CGH (aCGH) assays was only based on their banding patterns (G, C, and NOR staining) and fluorescent in situ hybridization techniques. The use of aCGH greatly improves the identification of marker chromosomes in some cases. We describe an atypical case of Pallister-Killian syndrome (PKS) detected at prenatal diagnosis with a very unusual cytogenetic presentation: a supernumerary ring chromosome including two copies of 12p. A similar anomaly described in a postnatal patient suggests ring chromosome as a possible cause of PKS. Extra ring chromosomes might be a more common etiology for PKS than previously thought, given the difficulty in their characterization before the advent of aCGH.

  12. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    PubMed Central

    Butler, Merlin G.; Rafi, Syed K.; Manzardo, Ann M.

    2015-01-01

    Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families. PMID:25803107

  13. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis.

    PubMed

    Akiyama, Yukio; Conner, Joann A; Goel, Shailendra; Morishige, Daryl T; Mullet, John E; Hanna, Wayne W; Ozias-Akins, Peggy

    2004-04-01

    Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.

  14. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3.

    PubMed

    Lim, G T T; Wang, G-P; Hemming, M N; McGrath, D J; Jones, D A

    2008-12-01

    The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 x IL7-2 F2 and (IL7-2 x IL7-4) x M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 x IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 x IL7-4) x M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.

  15. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    PubMed

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families.

  16. High-resolution mapping of the spatial organization of a bacterial chromosome.

    PubMed

    Le, Tung B K; Imakaev, Maxim V; Mirny, Leonid A; Laub, Michael T

    2013-11-08

    Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.

  17. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes.

    PubMed

    Mignon-Ravix, Cécile; Cacciagli, Pierre; Choucair, Nancy; Popovici, Cornel; Missirian, Chantal; Milh, Mathieu; Mégarbané, André; Busa, Tiffany; Julia, Sophie; Girard, Nadine; Badens, Catherine; Sigaudy, Sabine; Philip, Nicole; Villard, Laurent

    2014-08-01

    High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed.

  18. Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders.

    PubMed

    Ho, Karen S; Twede, Hope; Vanzo, Rena; Harward, Erin; Hensel, Charles H; Martin, Megan M; Page, Stephanie; Peiffer, Andreas; Mowery-Rushton, Patricia; Serrano, Moises; Wassman, E Robert

    2016-01-01

    Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.

  19. High resolution chromosome analysis and fluorescence in situ hybridization in patients referred for Prader-Willi or Angelman syndrome

    SciTech Connect

    1995-05-08

    Laboratory testing is helpful in the evaluation of patients suspected to have either Prader-Willi syndrome (PWS) or Angelman syndrome (AS) because most of the patients have recognizable cytogenetic deletions of 15q11q13. Maternal uniparental disomy of chromosome 15, identified by molecular genetic techniques, is found in about 20 to 25% of PWS patients. Paternal uniparental disomy of chromosome 15 is seen in 2 to 3% of AS patients. Thus, PWS and AS represent the first examples in humans of genetic imprinting or the differential expression of genetic information depending on the parental origin. Herein, I report our experience with FISH and high resolution chromosome analysis in patients referred to confirm or rule out PWS or AS. 10 refs., 1 tab.

  20. Smc5/6 Coordinates Formation and Resolution of Joint Molecules with Chromosome Morphology to Ensure Meiotic Divisions

    PubMed Central

    Blitzblau, Hannah G.; Newcombe, Sonya; Chan, Andrew Chi-ho; Newnham, Louise; Li, Zhaobo; Gray, Stephen; Herbert, Alex D.; Arumugam, Prakash; Hochwagen, Andreas; Hunter, Neil; Hoffmann, Eva

    2013-01-01

    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe. PMID:24385939

  1. Imaging of chromosomes at nano-meter scale resolution using scanning near-field optical/atomic force microscopy.

    PubMed

    Ohtani, Toshio; Shichirii, Motoharu; Fukushi, Daisuke; Sugiyama, Shigeru; Yoshino, Tomoyuki; Kobori, Toshiro; Hagiwara, Shoji; Ushiki, Tatsuo

    2002-12-01

    Topographic and fluorescent images of whole barley chromosomes stained with YOYO-1 were observed simultaneously by scanning near-field optical/ atomic force microscopy (SNOM/AFM). The chromosome was relatively smooth and flat in the topographic images and no significant difference in height was present between regions of high fluorescent and low fluorescent intensity in the chromosomes. The telomeric region, labeled by fluorescence in situ hybridization (FISH) method, was also observed by SNOM/AFM at high resolution, and fluorescent signals of the telomeric region were clearly defined on the topographic image of chromatin fibers on the chromosome at the nano-meter scale level. Although the telomeric signals were usually visualized as a single fluorescent region at the end of sister chromatids by conventional light microscopy, they were observed separately as two fluorescent regions, less than 100-200 nm distance, using the SNOM/AFM. The SNOM/AFM offers great potential in identifying particular single gene location on chromosomes in the near future.

  2. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6.

    PubMed

    Szinay, Dóra; Chang, Song-Bin; Khrustaleva, Ludmila; Peters, Sander; Schijlen, Elio; Bai, Yuling; Stiekema, Willem J; van Ham, Roeland C H J; de Jong, Hans; Klein Lankhorst, René M

    2008-11-01

    Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a 'BAC-by-BAC' approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various libraries of the tomato genome on the basis of markers from the F2.2000 linkage map. Prior to sequencing, we validated the precise physical location of the selected BACs on the chromosomes by five-colour high-resolution fluorescent in situ hybridization (FISH) mapping. This paper describes the strategies and results of cytogenetic mapping for chromosome 6 using 75 seed BACs for FISH on pachytene complements. The cytogenetic map obtained showed discrepancies between the actual chromosomal positions of these BACs and their markers on the linkage group. These discrepancies were most notable in the pericentromere heterochromatin, thus confirming previously described suppression of cross-over recombination in that region. In a so called pooled-BAC FISH, we hybridized all seed BACs simultaneously and found a few large gaps in the euchromatin parts of the long arm that are still devoid of seed BACs and are too large for coverage by expanding BAC contigs. Combining FISH with pooled BACs and newly recruited seed BACs will thus aid in efficient targeting of novel seed BACs into these areas. Finally, we established the occurrence of repetitive DNA in heterochromatin/euchromatin borders by combining BAC FISH with hybridization of a labelled repetitive DNA fraction (Cot-100). This strategy provides an excellent means to establish the borders between euchromatin and heterochromatin in this chromosome.

  3. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree

    PubMed Central

    Karafet, Tatiana M.; Mendez, Fernando L.; Meilerman, Monica B.; Underhill, Peter A.; Zegura, Stephen L.; Hammer, Michael F.

    2008-01-01

    Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree. PMID:18385274

  4. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree.

    PubMed

    Karafet, Tatiana M; Mendez, Fernando L; Meilerman, Monica B; Underhill, Peter A; Zegura, Stephen L; Hammer, Michael F

    2008-05-01

    Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.

  5. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    PubMed

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives.

  6. A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications.

    PubMed

    Buckley, Patrick G; Mantripragada, Kiran K; Benetkiewicz, Magdalena; Tapia-Páez, Isabel; Diaz De Ståhl, Teresita; Rosenquist, Magnus; Ali, Haider; Jarbo, Caroline; De Bustos, Cecilía; Hirvelä, Carina; Sinder Wilén, Birgitta; Fransson, Ingegerd; Thyr, Charlotte; Johnsson, Britt-Inger; Bruder, Carl E G; Menzel, Uwe; Hergersberg, Martin; Mandahl, Nils; Blennow, Elisabeth; Wedell, Anna; Beare, David M; Collins, John E; Dunham, Ian; Albertson, Donna; Pinkel, Daniel; Bastian, Boris C; Faruqi, A Fawad; Lasken, Roger S; Ichimura, Koichi; Collins, V Peter; Dumanski, Jan P

    2002-12-01

    We have constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number variation. This chromosome 22 array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb. To demonstrate the utility of the array, we have applied it to profile acral melanoma, dermatofibrosarcoma, DiGeorge syndrome and neurofibromatosis 2. We accurately diagnosed homozygous/heterozygous deletions, amplifications/gains, IGLV/IGLC locus instability, and breakpoints of an imbalanced translocation. We further identified the 14-3-3 eta isoform as a candidate tumor suppressor in glioblastoma. Two significant methodological advances in array construction were also developed and validated. These include a strictly sequence defined, repeat-free, and non-redundant strategy for array preparation. This approach allows an increase in array resolution and analysis of any locus; disregarding common repeats, genomic clone availability and sequence redundancy. In addition, we report that the application of phi29 DNA polymerase is advantageous in microarray preparation. A broad spectrum of issues in medical research and diagnostics can be approached using the array. This well annotated and gene-rich autosome contains numerous uncharacterized disease genes. It is therefore crucial to associate these genes to specific 22q-related conditions and this array will be instrumental towards this goal. Furthermore, comprehensive epigenetic profiling of 22q-located genes and high-resolution analysis of replication timing across the entire chromosome can be studied using our array.

  7. First systematic CGH-based analyses of ancient DNA samples of malformed fetuses preserved in the Meckel Anatomical Collection in Halle/Saale (Germany).

    PubMed

    Tönnies, H; Gerlach, A; Klunker, R; Schultka, R; Göbbel, L

    2005-03-01

    We present the first data on our comparative genomic hybridization (CGH)-based strategy for the analysis of ancient DNA (aDNA) samples extracted from fetuses preserved in the Meckel Anatomical Collection in Halle, Germany. The collection contains numerous differently fixed ancient samples of fetal malformations collected from the middle of the 18th to the early 19th century. The main objective of this study is to establish a "standard" aDNA extraction and amplification protocol as a prerequisite for successful CGH analyses to detect or exclude chromosomal imbalances possibly causative for the malformations described for the fetuses.

  8. A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution.

    PubMed

    Everts-van der Wind, Annelie; Larkin, Denis M; Green, Cheryl A; Elliott, Janice S; Olmstead, Colleen A; Chiu, Readman; Schein, Jacqueline E; Marra, Marco A; Womack, James E; Lewin, Harris A

    2005-12-20

    Approximately 3,000 cattle bacterial artificial chromosome (BAC)-end sequences were added to the Illinois-Texas 5,000-rad RH (RH, radiation hybrid) map. The BAC-end sequences selected for mapping are approximately 1 Mbp apart on the human chromosomes as determined by blastn analysis. The map has 3,484 ordered markers, of which 3,204 are anchored in the human genome. Two hundred-and-one homologous synteny blocks (HSBs) were identified, of which 27 are previously undiscovered, 79 are extended, 26 were formed by previously unrecognized breakpoints in 18 previously defined HSBs, and 23 are the result of fusions. The comparative coverage relative to the human genome is approximately 91%, or 97% of the theoretical maximum. The positions of 64% of all cattle centromeres and telomeres were reassigned relative to their positions on the previous map, thus facilitating a more detailed comparative analysis of centromere and telomere evolution. As an example of the utility of the high-resolution map, 22 cattle BAC fingerprint contigs were directly anchored to cattle chromosome 19 [Bos taurus, (BTA) 19]. The order of markers on the cattle RH and fingerprint maps of BTA19 and the sequence-based map of human chromosome 17 [Homo sapiens, (HSA) 17] were found to be highly consistent, with only two minor ordering discrepancies between the RH map and fingerprint contigs. The high-resolution Illinois-Texas 5,000-rad RH and comparative maps will facilitate identification of candidate genes for economically important traits, the phylogenomic analysis of mammalian chromosomes, proofing of the BAC fingerprint map and, ultimately, aid the assembly of cattle whole-genome sequence.

  9. High-Resolution Mapping of the Drosophila Fourth Chromosome Using Site-Directed Terminal Deficiencies

    PubMed Central

    Sousa-Neves, Rui; Lukacsovich, Tamas; Mizutani, Claudia Mieko; Locke, John; Podemski, Lynn; Marsh, J. Lawrence

    2005-01-01

    For more than 80 years, the euchromatic right arm of the Drosophila fourth chromosome (101F-102F) has been one of the least genetically accessible regions of the fly genome despite the fact that many important genes reside there. To improve the mapping of genes on the fourth chromosome, we describe a strategy to generate targeted deficiencies and we describe 13 deficiencies that subdivide the 300 kb between the cytological coordinates 102A6 and 102C1 into five discrete regions plus a 200-kb region from 102C1 to 102D6. Together these deficiencies substantially improve the mapping capabilities for mutant loci on the fourth chromosome. PMID:15466427

  10. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes.

    PubMed

    Krasikova, Alla; Fukagawa, Tatsuo; Zlotina, Anna

    2012-12-01

    Exploration into morphofunctional organisation of centromere DNA sequences is important for understanding the mechanisms of kinetochore specification and assembly. In-depth epigenetic analysis of DNA fragments associated with centromeric nucleosome proteins has demonstrated unique features of centromere organisation in chicken karyotype: there are both mature centromeres, which comprise chromosome-specific homogeneous arrays of tandem repeats, and recently evolved primitive centromeres, which consist of non-tandemly organised DNA sequences. In this work, we describe the arrangement and transcriptional activity of chicken centromere repeats for Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 and non-repetitive centromere sequences of chromosomes 5, 27, and Z using highly elongated lampbrush chromosomes, which are characteristic of the diplotene stage of oogenesis. The degree of chromatin packaging and fine spatial organisations of tandemly repetitive and non-tandemly repetitive centromeric sequences significantly differ at the lampbrush stage. Using DNA/RNA FISH, we have demonstrated that during the lampbrush stage, DNA sequences are transcribed within the centromere regions of chromosomes that lack centromere-specific tandem repeats. In contrast, chromosome-specific centromeric repeats Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 do not demonstrate any transcriptional activity during the lampbrush stage. In addition, we found that CNM repeat cluster localises adjacent to non-repetitive centromeric sequences in chicken microchromosome 27 indicating that centromere region in this chromosome is repeat-rich. Cross-species FISH allowed localisation of the sequences homologous to centromeric DNA of chicken chromosomes 5 and 27 in centromere regions of quail orthologous chromosomes.

  11. Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK

    PubMed Central

    Dubarry, Nelly; Barre, François-Xavier

    2010-01-01

    In bacteria, septum formation frequently initiates before the last steps of chromosome segregation. This is notably the case when chromosome dimers are formed by homologous recombination. Chromosome segregation then requires the activity of a double-stranded DNA transporter anchored at the septum by an integral membrane domain, FtsK. It was proposed that the transmembrane segments of proteins of the FtsK family form pores across lipid bilayers for the transport of DNA. Here, we show that truncated Escherichia coli FtsK proteins lacking all of the FtsK transmembrane segments allow for the efficient resolution of chromosome dimers if they are connected to a septal targeting peptide through a sufficiently long linker. These results indicate that FtsK does not need to transport DNA through a pore formed by its integral membrane domain. We propose therefore that FtsK transports DNA before membrane fusion, at a time when there is still an opening in the constricted septum. PMID:20033058

  12. A very rare case of trisomy 4q32.3-4q35.2 and trisomy 21q11.2-21q22.11 in a patient with recombinant chromosomes 4 and 21.

    PubMed

    Chen, Li-Sha; Xue, Dan; Xi, Zuo-Ming; Liu, Dan-Na; Zou, Peng-Shu; Ma, Ming; Xia, Ying; Chen, Xia-Hui; Qiu, Guang-Bin; Cao, Dong-Hua

    2015-05-25

    We report the case of a patient with a clinical phenotype consistent with Down Syndrome (DS) who has a novel karyotypic abnormality. Karyotypic analyses were performed to investigate the cause of two spontaneous abortions. A balanced translocation between chromosomes 4 and 21 was identified, along with an additional abnormal chromosome 21. We performed high-resolution banding, comparative genomic hybridization (CGH), and FISH studies in both the patient and her mother to define the abnormality and determine its origin. CGH revealed a gain in copy number on the long arm of chromosome 4, spanning at least 24.4 Mb, and a gain in copy number on the long arm of chromosome 21, spanning at least 16.2 Mb. FISH analysis using a chromosome 21 centromere probe and chromosome 4 long arm telomere (4pter) probe confirmed the origin of the marker chromosome. It has been confirmed by the State Key Laboratory of Medical Genetics of China that this is the first reported instance of the karyotype 47,XX,t(4;21)(q31.3;q11.2),+der(21)t(4;21)mat reported in the world.

  13. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes

    PubMed Central

    Beliveau, Brian J.; Boettiger, Alistair N.; Avendaño, Maier S.; Jungmann, Ralf; McCole, Ruth B.; Joyce, Eric F.; Kim-Kiselak, Caroline; Bantignies, Frédéric; Fonseka, Chamith Y.; Erceg, Jelena; Hannan, Mohammed A.; Hoang, Hien G.; Colognori, David; Lee, Jeannie T.; Shih, William M.; Yin, Peng; Zhuang, Xiaowei; Wu, Chao-ting

    2015-01-01

    Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis. PMID:25962338

  14. VizieR Online Data Catalog: Spectroscopy of main-belt Ch/Cgh-type asteroids (Vernazza+, 2016)

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    We conducted an extensive spectroscopic survey in the near-infrared range of 70 main-belt Ch/Cgh-type asteroids and 4 Ch/Cgh-type families and combined these measurements with available visible wavelength spectra. New data presented here are near-infrared asteroid spectral measurements for Ch- and Cgh-type asteroids from 0.7-2.5μm obtained using SpeX, the low- to medium-resolution near-IR spectrograph and imager on the 3m NASA InfraRed Telescope Facility (IRTF) located on Mauna Kea, HI. Observing runs were conducted remotely primarily from the Observatory of Paris-Meudon, France between 2010 April and 2012 January. The spectrograph SpeX, combined with a 0.8*15arcsec slit, was used in the low-resolution prism mode for acquisition of the spectra in the 0.7-2.5μm wavelength range. In order to monitor the high luminosity and variability of the sky in the near-IR, the telescope was moved along the slit during the acquisition of the data so as to obtain a sequence of spectra located at two different positions (A and B) on the array. In addition, we complemented our data set with additional near-infrared spectra retrieved from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) database (http://smass.mit.edu/). Combining these near-infrared measurements with available visible wavelength spectra (Bus, 1999PhDT........50B; Lazzaro et al., 2004Icar..172..179L) allows for the first time an extensive visible and near-infrared (VNIR) spectral database of main-belt Ch and Cgh types with D>45km (78% or 49/63 of all Ch and Cgh types listed in SMASS; see Table1). (1 data file).

  15. Isolates in a corridor of migrations: a high-resolution analysis of Y-chromosome variation in Jordan.

    PubMed

    Flores, Carlos; Maca-Meyer, Nicole; Larruga, Jose M; Cabrera, Vicente M; Karadsheh, Naif; Gonzalez, Ana M

    2005-01-01

    A high-resolution, Y-chromosome analysis using 46 binary markers has been carried out in two Jordan populations, one from the metropolitan area of Amman and the other from the Dead Sea, an area geographically isolated. Comparisons with neighboring populations showed that whereas the sample from Amman did not significantly differ from their Levantine neighbors, the Dead Sea sample clearly behaved as a genetic outlier in the region. Its high R1*-M173 frequency (40%) has until now only been found in northern Cameroonian samples. This contrasts with the comparatively low presence of J representatives (9%), which is the modal clade in Middle Eastern populations, including Amman. The Dead Sea sample also showed a high presence of E3b3a-M34 lineages (31%), which is only comparable to that found in Ethiopians. Although ancient and recent ties with sub-Saharan and eastern Africans cannot be discarded, it seems that isolation, strong drift, and/or founder effects are responsible for the anomalous Y-chromosome pool of this population. These results demonstrate that, at a fine scale, the smooth, continental clines detected for several Y-chromosome markers are often disrupted by genetically divergent populations.

  16. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    PubMed Central

    Davidsson, Josef; Collin, Anna; Björkhem, Gudrun; Soller, Maria

    2008-01-01

    Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k) genome-wide array-based comparative genomic hybridization (CGH). Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb) region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome. PMID:18194513

  17. Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis-effect lending support to bipolarization of the terminus.

    PubMed Central

    Corre, J; Patte, J; Louarn, J M

    2000-01-01

    A prophage lambda inserted by homologous recombination near dif, the chromosome dimer resolution site of Escherichia coli, is excised at a frequency that depends on its orientation with respect to dif. In wild-type cells, terminal hyper- (TH) recombination is prophage specific and undetectable by a test involving deletion of chromosomal segments between repeats identical to those used for prophage insertion. TH recombination is, however, detected in both excision and deletion assays when Deltadif, xerC, or ftsK mutations inhibit dimer resolution: lack of specialized resolution apparently results in recombinogenic lesions near dif. We also observed that the presence near dif of the prophage, in the orientation causing TH recombination, inhibits dif resolution activity. By its recombinogenic effect, this inhibition explains the enhanced prophage excision in wild-type cells. The primary effect of the prophage is probably an alteration of the dimer resolution regional control, which requires that dif is flanked by suitably oriented (polarized) stretches of DNA. Our model postulates that the prophage inserted near dif in the deleterious orientation disturbs chromosome polarization on the side of the site where it is integrated, because lambda DNA, like the chromosome, is polarized by sequence elements. Candidate sequences are oligomers that display skewed distributions on each oriC-dif chromosome arm and on lambda DNA. PMID:10628967

  18. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.

  19. Comparison of high resolution chromosome banding and fluorescence in situ hybridization (FISH) for the laboratory evaluation of Prader-Willi syndrome and Angelman syndrome

    SciTech Connect

    Delach, J.A.; Rosengren, S.S.; Kaplan, L.; Greenstein, R.M.; Cassidy, S.B.; Benn, P.A.

    1994-08-01

    The development of probes containing segments of DNA from chromosome region 15q11-q13 provides the opportunity to confirm the diagnosis of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) by fluorescence in situ hybridization (FISH). We have evaluated FISH studies and high resolution chromosome banding studies in 14 patients referred to confirm or rule out AS. In four patients (three from the PWS category and 1 from the AS group) chromosome analysis suggested that a deletion was present but FISH failed to confirm the finding. In one AS group patient, FISH identified a deletion not detectable by high resolution banding. Review of the clinical findings in the discrepant cases suggested that FISH results were correct and high resolution findings were erroneous. Studies with a chromosome 15 alpha satellite probe (D15Z) on both normal and abnormal individuals suggested that incorrect interpretation of chromosome banding may occasionally be attributable to alpha satellite polymorphism but other variation of 15q11-q13 chromosome bands also contributes to misinterpretation. We conclude that patients who have been reported to have a cytogenetic deletion of 15q11-q13 and who have clinical findings inconsistent with PWS and AS should be re-evaluated by molecular genetic techniques. 31 refs., 3 figs., 2 tabs.

  20. Detection of Clinically Relevant Exonic Copy-Number Changes by Array CGH

    PubMed Central

    Boone, Philip M.; Bacino, Carlos A.; Shaw, Chad A.; Eng, Patricia A.; Hixson, Patricia M.; Pursley, Amber N.; Kang, Sung-Hae L.; Yang, Yaping; Wiszniewska, Joanna; Nowakowska, Beata A.; Gaudio, Daniela del; Xia, Zhilian; Simpson-Patel, Gayle; Immken, LaDonna L.; Gibson, James B.; Tsai, Anne C.-H.; Bowers, Jennifer A.; Reimschisel, Tyler E.; Schaaf, Christian P.; Potocki, Lorraine; Scaglia, Fernando; Gambin, Tomasz; Sykulski, Maciej; Bartnik, Magdalena; Derwinska, Katarzyna; Wisniowiecka-Kowalnik, Barbara; Lalani, Seema R.; Probst, Frank J.; Bi, Weimin; Beaudet, Arthur L.; Patel, Ankita; Lupski, James R.; Cheung, Sau Wai; Stankiewicz, Pawel

    2011-01-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications—those including genomic intervals of a size smaller than a gene—have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes. PMID:20848651

  1. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

    PubMed

    Lou, Qunfeng; He, Yuhua; Cheng, Chunyan; Zhang, Zhonghua; Li, Ji; Huang, Sanwen; Chen, Jinfeng

    2013-01-01

    Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.

  2. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration

    PubMed Central

    Hong, Ru; Lin, Bingqing; Lu, Xinyi; Lai, Lan-Tian; Chen, Xin; Sanyal, Amartya; Ng, Huck-Hui; Zhang, Kun; Zhang, Li-Feng

    2017-01-01

    We carried out padlock capture, a high-resolution RNA allelotyping method, to study X chromosome inactivation (XCI). We examined the gene reactivation pattern along the inactive X (Xi), after Xist (X-inactive specific transcript), a prototype long non-coding RNA essential for establishing X chromosome inactivation (XCI) in early embryos, is conditionally deleted from Xi in somatic cells (Xi∆Xist). We also monitored the behaviors of X-linked non-coding transcripts before and after XCI. In each mutant cell line, gene reactivation occurs to ~6% genes along Xi∆Xist in a recognizable pattern. Genes with upstream regions enriched for SINEs are prone to be reactivated. SINE is a class of retrotransposon transcribed by RNA polymerase III (Pol III). Intriguingly, a significant fraction of Pol III transcription from non-coding regions is not subjected to Xist-mediated transcriptional silencing. Pol III inhibition affects gene reactivation status along Xi∆Xist, alters chromatin configuration and interferes with the establishment XCI during in vitro differentiation of ES cells. These results suggest that Pol III transcription is involved in chromatin structure re-organization during the onset of XCI and functions as a general mechanism regulating chromatin configuration in mammalian cells. PMID:28368037

  3. High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H.

    PubMed

    Shahinnia, Fahimeh; Druka, Arnis; Franckowiak, Jerome; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2012-02-01

    Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC(7)F(3) nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.

  4. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration.

    PubMed

    Hong, Ru; Lin, Bingqing; Lu, Xinyi; Lai, Lan-Tian; Chen, Xin; Sanyal, Amartya; Ng, Huck-Hui; Zhang, Kun; Zhang, Li-Feng

    2017-04-03

    We carried out padlock capture, a high-resolution RNA allelotyping method, to study X chromosome inactivation (XCI). We examined the gene reactivation pattern along the inactive X (Xi), after Xist (X-inactive specific transcript), a prototype long non-coding RNA essential for establishing X chromosome inactivation (XCI) in early embryos, is conditionally deleted from Xi in somatic cells (Xi(∆Xist)). We also monitored the behaviors of X-linked non-coding transcripts before and after XCI. In each mutant cell line, gene reactivation occurs to ~6% genes along Xi(∆Xist) in a recognizable pattern. Genes with upstream regions enriched for SINEs are prone to be reactivated. SINE is a class of retrotransposon transcribed by RNA polymerase III (Pol III). Intriguingly, a significant fraction of Pol III transcription from non-coding regions is not subjected to Xist-mediated transcriptional silencing. Pol III inhibition affects gene reactivation status along Xi(∆Xist), alters chromatin configuration and interferes with the establishment XCI during in vitro differentiation of ES cells. These results suggest that Pol III transcription is involved in chromatin structure re-organization during the onset of XCI and functions as a general mechanism regulating chromatin configuration in mammalian cells.

  5. CGH Celebrates Take Your Child To Work Day 2015

    Cancer.gov

    Shady Grove celebrated Take Your Child To Work Day this year with a variety of activities and sessions aimed at inspiring school-aged children to explore career paths in science and public service. CGH hosted its inaugural Take Your Child To Work Day session: An Introduction to Global Health.

  6. A high-resolution genetic map of mouse chromosome 5 encompassing the reeler (rl) locus

    SciTech Connect

    Beckers, M.C.; Bar, I.; Huynh-Thu, T.

    1994-10-01

    Using interspecific crosses between BALB/c and Mus spretus (SEG) mice, the murine reeler (rl) gene was mapped to the proximal region of chromosome 5 between the hepatocyte growth factor gene (Hgf) and the D5Mit66 microsatellite. The following order was defined: (centromere) - Cch12a/Hgf-D5Mit1-D5Nam1/D5-Nam2-rl/D5Mit61-D5Mit72-Xmv45-Htr5a-Peplb-D5Nam3-D5Mit66. Estimated distances between reeler and the nearest flanking markers D5Nam1 and D5Mit72 are 1.5 and 1.0 cM, respectively (95% confidence level), suggesting that the region could be physically mapped using a manageable number of YAC clones.

  7. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy.

    PubMed

    Traut, W; Winking, H

    2001-01-01

    We describe SC complements and results from comparative genomic hybridization (CGH) on mitotic and meiotic chromosomes of the zebrafish Danio rerio, the platyfish Xiphophorus maculatus and the guppy Poecilia reticulata. The three fish species represent basic steps of sex chromosome differentiation: (1) the zebrafish with an all-autosome karyotype; (2) the platyfish with genetically defined sex chromosomes but no differentiation between X and Y visible in the SC or with CGH in meiotic and mitotic chromosomes; (3) the guppy with genetically and cytogenetically differentiated sex chromosomes. The acrocentric Y chromosomes of the guppy consists of a proximal homologous and a distal differential segment. The proximal segment pairs in early pachytene with the respective X chromosome segment. The differential segment is unpaired in early pachytene but synapses later in an 'adjustment' or 'equalization' process. The segment includes a postulated sex determining region and a conspicuous variable heterochromatic region whose structure depends on the particular Y chromosome line. CGH differentiates a large block of predominantly male-specific repetitive DNA and a block of common repetitive DNA in that region.

  8. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    SciTech Connect

    Beckers, M.C.; Ernst, E.; Diez, E.

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  9. High-resolution G-banding and nucleolus-organizer regions of chromosomes of vole Microtus kirgisorum

    SciTech Connect

    Mazurok, N.A.; Rubtsov, N.B.; Ovechkina, Y.Y.

    1995-08-01

    The use of G-banding of chromosomes in combination with the pipette method of chromosome preparation at the early metaphase made it possible to distinguish about 520 segments in the haploid chromosome set of vole Microtus kirgisorum. The idiogram of M. kirgisorum chromosomes was obtained on the basis of detailed investigation of chromosomes at different condensation levels. Data of the localization and the number of nucleolus-organizer regions are given. 16 refs., 3 figs.

  10. Array-CGH study of partial trisomy 9p without mental retardation.

    PubMed

    Bouhjar, Inesse Ben Abdallah; Hannachi, Hanane; Zerelli, Soumaya Mougou; Labalme, Audrey; Gmidène, Abir; Soyah, Najla; Missaoui, Sonia; Sanlaville, Damien; Elghezal, Hatem; Saad, Ali

    2011-07-01

    Partial trisomy 9p is one of the most common detected autosomal structural anomalies, so the phenotype-genotype correlation of this rearrangement has been well described. Despite variation in size of the 9p duplications, trisomy 9p syndrome is characterized by typical dysmorphic features and a variable but constant psychomotor and mental retardation. Previously reported phenotype genotype correlation studies proposed that the critical region for phenotype is located in 9p22. We report here on a new patient with partial trisomy 9p13.3→9pter in an 8-year-old boy with typical trisomy 9p dysmorphic features but a normal mental development. Cytogenetics investigations showed that our patient karyotype was 47,XY,+ der(22)t(9;22)(p13.q11) inherited by a 3:1 disjunction of a maternal reciprocal translocation t(9;22)(p13.q11). FISH and array CGH analysis were used to better characterize duplicated chromosomal regions and showed a large duplication of chromosome 9p13.3→9pter associated to microduplication in 22q11.1. The size of the duplications in chromosomes 9p and 22q were estimated about 33.9 and 2.67 Mb, respectively. The comparison between this case and those reported in the literature allows us to support that all syndromes show variability and that not all partial trisomies 9p are associated with intellectual disability.

  11. High-resolution cytogenetic mapping of 342 new cosmid markers including 43 RFLP markers on human chromosome 17 by fluorescence in situ hybridization

    SciTech Connect

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo ); Saito, Hiroko; Nakamura, Yusuke )

    1993-07-01

    The authors have constructed a high-resolution cytogenetic map of human chromosome 17 with 342 cosmid markers, each newly isolated from a cosmid library constructed from a human-mouse hybrid cell line containing a single human chromosome 17. Direct mapping on R- and/or G-banded (pro)metaphase chromosomes by fluorescence in situ hybridization localized these markers throughout the chromosome, although density was highest in the R-band-dominant regions of 17p13, 17p11.2, 17q11.2-q12, 17q21.3, 17q23, and 17q25. By screening some of the cosmid clones, they identified 71 polymorphic systems with 43 markers; 11 of these are VNTRs. As the high-resolution cytogenetic map contains a large number of markers, it can provide useful landmarks for a contig map of chromosome 17. Furthermore, the map will contribute to positional cloning of aberrant genes responsible for inherited diseases such as Miller-Dieker syndrome (MDS), Smith-Magenis syndrome (SMS), and familial early-onset breast cancer, as well as putative tumor suppressor genes on this chromosome. 47 refs., 2 figs., 2 tabs.

  12. Array CGH on unstimulated blood does not detect all cases of Pallister-Killian syndrome: a skin biopsy should remain the diagnostic gold standard.

    PubMed

    Hodge, Jennelle C; Hulshizer, Rachael L; Seger, Pam; St Antoine, Angelique; Bair, Jennifer; Kirmani, Salman

    2012-03-01

    A child whose features are consistent with Pallister-Killian syndrome (PKS) did not have detectable tetrasomy 12p due to an additional isochromosome 12p in an unstimulated blood specimen by interphase FISH or array CGH analysis. The diagnosis of PKS was made through these methods solely in a skin biopsy specimen. To determine the sensitivity of our array CGH platform to tetrasomy 12p mosaicism, dilutions of DNA from both the child's skin fibroblasts and a PKS cell line were analyzed. Tetrasomy 12p at 10% mosaicism was identifiable but 5% was below the limit of detection. This result suggests through extrapolation that the tetrasomy 12p is present in <10% of cells in our patient's blood, confirming the tissue-limited mosaicism of PKS. Multiple recent studies show that array CGH provides greater sensitivity than chromosome analysis to detect mosaic abnormalities including that of tetrasomy 12p in blood specimens. However, our case demonstrates that the biology of PKS precludes the exclusive use of array CGH on blood for diagnosis. A tissue sample should continue to be the diagnostic gold standard for PKS.

  13. A high-resolution map of the chromosomal region surrounding the nude gene

    SciTech Connect

    Blackburn, C.C.; Griffith, J.; Morahan, G.

    1995-03-20

    The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor P subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region. 47 refs., 3 figs., 1 tab.

  14. Refining the 22q11.2 deletion breakpoints in DiGeorge syndrome by aCGH.

    PubMed

    Bittel, D C; Yu, S; Newkirk, H; Kibiryeva, N; Holt, A; Butler, M G; Cooley, L D

    2009-01-01

    Hemizygous deletions of the chromosome 22q11.2 region result in the 22q11.2 deletion syndrome also referred to as DiGeorge, Velocardiofacial or Shprintzen syndromes. The phenotype is variable but commonly includes conotruncal cardiac defects, palatal abnormalities, learning and behavioral problems, immune deficiency, and facial anomalies. Four distinct highly homologous blocks of low copy number repeat sequences (LCRs) flank the deletion region. Mispairing of LCRs during meiosis with unequal meiotic exchange is assumed to cause the recurrent and consistent deletions. The proximal LCR is reportedly located at 22q11.2 from 17.037 to 17.083 Mb while the distal LCR is located from 19.835 to 19.880 Mb. Although the chromosome breakpoints are thought to localize to the LCRs, the positions of the breakpoints have been investigated in only a few individuals. Therefore, we used high resolution oligonucleotide-based 244K microarray comparative genomic hybridization (aCGH) to resolve the breakpoints in a cohort of 20 subjects with known 22q11.2 deletions. We also investigated copy number variation (CNV) in the rest of the genome. The 22q11.2 breaks occurred on either side of the LCR in our subjects, although more commonly on the distal side of the reported proximal LCR. The proximal breakpoints in our subjects spanned the region from 17.036 to 17.398 Mb. This region includes the genes DGCR6 (DiGeorge syndrome critical region protein 6) and PRODH (proline dehydrogenase 1), along with three open reading frames that may encode proteins of unknown function. The distal breakpoints spanned the region from 19.788 to 20.122 Mb. This region includes the genes GGT2 (gamma-glutamyltransferase-like protein 2), HIC2 (hypermethylated in cancer 2), and multiple transcripts of unknown function. The genes in these two breakpoint regions are variably hemizygous depending on the location of the breakpoints. Our 20 subjects had 254 CNVs throughout the genome, 94 duplications and 160 deletions

  15. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.

    PubMed

    Stadhouders, Ralph; Kolovos, Petros; Brouwer, Rutger; Zuin, Jessica; van den Heuvel, Anita; Kockx, Christel; Palstra, Robert-Jan; Wendt, Kerstin S; Grosveld, Frank; van Ijcken, Wilfred; Soler, Eric

    2013-03-01

    Chromosome conformation capture (3C) technology is a powerful and increasingly popular tool for analyzing the spatial organization of genomes. Several 3C variants have been developed (e.g., 4C, 5C, ChIA-PET, Hi-C), allowing large-scale mapping of long-range genomic interactions. Here we describe multiplexed 3C sequencing (3C-seq), a 4C variant coupled to next-generation sequencing, allowing genome-scale detection of long-range interactions with candidate regions. Compared with several other available techniques, 3C-seq offers a superior resolution (typically single restriction fragment resolution; approximately 1-8 kb on average) and can be applied in a semi-high-throughput fashion. It allows the assessment of long-range interactions of up to 192 genes or regions of interest in parallel by multiplexing library sequencing. This renders multiplexed 3C-seq an inexpensive, quick (total hands-on time of 2 weeks) and efficient method that is ideal for the in-depth analysis of complex genetic loci. The preparation of multiplexed 3C-seq libraries can be performed by any investigator with basic skills in molecular biology techniques. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments. The protocol describes all materials, critical steps and bioinformatics tools required for successful application of 3C-seq technology.

  16. Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer

    NASA Astrophysics Data System (ADS)

    Guarnieri, Vittorio; Francini, Franco

    1997-12-01

    Last generation of digital printer is usually characterized by a spatial resolution enough high to allow the designer to realize a binary CGH directly on a transparent film avoiding photographic reduction techniques. These devices are able to produce slides or offset prints. Furthermore, services supplied by commercial printing company provide an inexpensive method to rapidly verify the validity of the design by means of a test-and-trial process. Notably, this low-cost approach appears to be suitable for a didactical environment. On the basis of these considerations, a set of software tools able to design CGH's has been developed. The guidelines inspiring the work have been the following ones: (1) ray-tracing approach, considering the object to be reproduced as source of spherical waves; (2) Optimization and speed-up of the algorithms used, in order to produce a portable code, runnable on several hardware platforms. In this paper calculation methods to obtain some fundamental geometric functions (points, lines, curves) are described. Furthermore, by the juxtaposition of these primitives functions it is possible to produce the holograms of more complex objects. Many examples of generated CGHs are presented.

  17. Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma.

    PubMed

    Ohata, Norihide; Ito, Sachio; Yoshida, Aki; Kunisada, Toshiyuki; Numoto, Kunihiko; Jitsumori, Yoshimi; Kanzaki, Hirotaka; Ozaki, Toshifumi; Shimizu, Kenji; Ouchida, Mamoru

    2006-12-01

    The molecular pathogenesis of osteosarcoma is very complicated and associated with chaotic abnormalities on many chromosomal arms. We analyzed 12 cases of osteosarcomas with comparative genomic hybridization (CGH) to identify chromosomal imbalances, and detected highly frequent chromosomal alterations in chromosome 6q, 8p, 10p and 10q. To define the narrow rearranged region on chromosome 6 with higher resolution, loss of heterozygosity (LOH) analysis was performed with 21 microsatellite markers. Out of 31 cases, 23 cases (74%) showed allelic loss at least with one marker on chromosome 6q. We identified two distinct commonly deleted regions on chromosome 6 using markers D6S1565 located at 6q16 and 6q23MS1 at 6q23. The expression analysis of genes located at the deleted region was performed, and the decreased mRNA expression of the CCNC gene, one of the regulators of cell cycle, was detected. Growth of osteosarcoma cell line was significantly suppressed after the CCNC cDNA transfection. Fine mapping of the deleted region containing a possible tumor suppressor gene and the transfection assay suggest that the CCNC is a candidate tumor suppressor gene.

  18. Bayesian Hidden Markov Modeling of Array CGH Data.

    PubMed

    Guha, Subharup; Li, Yi; Neuberg, Donna

    2008-06-01

    Genomic alterations have been linked to the development and progression of cancer. The technique of comparative genomic hybridization (CGH) yields data consisting of fluorescence intensity ratios of test and reference DNA samples. The intensity ratios provide information about the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens and normalization errors necessitate the use of statistics for learning about the genomic alterations from array CGH data. As increasing amounts of array CGH data become available, there is a growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a need for algorithms that can identify gains and losses in the number of copies based on statistical considerations, rather than merely detect trends in the data.We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy number. Localized amplifications (associated with oncogene mutations) and deletions (associated with mutations of tumor suppressors) are identified using posterior probabilities. Global trends such as extended regions of altered copy number are detected. Because the posterior distribution is analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme, and breast cancer are analyzed, and comparisons are made with some widely used algorithms to illustrate the reliability and success of the technique.

  19. Chromosomal instability, aneuploidy and routine high-resolution DNA content analysis in oral cancer risk evaluation.

    PubMed

    Giaretti, Walter; Pentenero, Monica; Gandolfo, Sergio; Castagnola, Patrizio

    2012-10-01

    Carcinogen exposure of the oral cavity is thought to create an extensive 'field cancerization'. According to this model, a very early precursor of oral cancer is a patch of normal-appearing mucosa in which stem cells share genetic/genomic aberrations. These precancerous fields then become clinically visible as white and red lesions (leuko- and erythro-plakias), which represent the vast majority of the oral potentially malignant disorders. This review focuses on aneuploidy (where it is from) and on biomarkers associated with DNA aneuploidy in oral mucosa and oral potentially malignant disorders, as detected by DNA image and flow cytometry. Data from the literature strongly support the association of DNA ploidy with dysplasia. However, work is still needed to prove the clinical value of DNA ploidy in large-scale prospective studies. Using high-resolution DNA flow cytometry with fresh/frozen material and the degree of DNA aneuploidy (DNA Index) might improve the prediction of risk of oral cancer development.

  20. A case report of 22q11 deletion syndrome confirmed by array-CGH method

    PubMed Central

    Sedghi, Maryam; Nouri, Narges; Abdali, Hossein; Memarzadeh, Mehrdad; Nouri, Nayereh

    2012-01-01

    Velo-cardio-facial syndrome (VCFS) is caused by a submicroscopic deletion on the long arm of chromosome 22 and affects approximately 1 in 4000 persons, making it the second most prevalent genetic syndrome after Down syndrome and the most common genetic syndrome associated with cleft palate. Most of the 22q11.2 deletion cases are new occurrences or sporadic; however, in about 10 % of families, the deletion is inherited and other family members are affected or at risk for passing this deletion to their children. This report describes a 1.5 years-old male child with clinical signs of velo-cardio-facial syndrome (VCFS) presented with heart defect, soft cleft palate, developmental delay, acrocephaly, seizure, MRI abnormalities and descriptive facial feature, such as hypertelorism. Array-CGH test was done to confirm the diagnosis; the result revealed a 2.6 Mbp deletion in 22q11.2 chromosome that containing TBX1 and COMT genes. Our data suggest that haploinsufficiency of TBX1 gene is probably a major contributor to some of the syndrome characteristic signs, such as heart defect. Because of developmental delay and dysmorphic facial feature were observed in the index's mother and relatives, inherited autosomal dominant form of VCF is probable, and MLPA (multiplex ligation-dependent probe amplification) test should be performed for parents to estimate the recurrent risk in next pregnancy. PMID:23267387

  1. Improved phylogenetic resolution and rapid diversification of Y-chromosome haplogroup K-M526 in Southeast Asia

    PubMed Central

    Karafet, Tatiana M; Mendez, Fernando L; Sudoyo, Herawati; Lansing, J Stephen; Hammer, Michael F

    2015-01-01

    The highly structured distribution of Y-chromosome haplogroups suggests that current patterns of variation may be informative of past population processes. However, limited phylogenetic resolution, particularly of subclades within haplogroup K, has obscured the relationships of lineages that are common across Eurasia. Here we genotype 13 new highly informative single-nucleotide polymorphisms in a worldwide sample of 4413 males that carry the derived allele at M526, and reconstruct an NRY haplogroup tree with significantly higher resolution for the major clade within haplogroup K, K-M526. Although K-M526 was previously characterized by a single polytomy of eight major branches, the phylogenetic structure of haplogroup K-M526 is now resolved into four major subclades (K2a–d). The largest of these subclades, K2b, is divided into two clusters: K2b1 and K2b2. K2b1 combines the previously known haplogroups M, S, K-P60 and K-P79, whereas K2b2 comprises haplogroups P and its subhaplogroups Q and R. Interestingly, the monophyletic group formed by haplogroups R and Q, which make up the majority of paternal lineages in Europe, Central Asia and the Americas, represents the only subclade with K2b that is not geographically restricted to Southeast Asia and Oceania. Estimates of the interval times for the branching events between M9 and P295 point to an initial rapid diversification process of K-M526 that likely occurred in Southeast Asia, with subsequent westward expansions of the ancestors of haplogroups R and Q. PMID:24896152

  2. A high-resolution linkage map of the achondroplasia critical region on human chromosome 4q16.3

    SciTech Connect

    Tiller, G.E.; Polumbo, P.A.

    1994-09-01

    Achondroplasia is the most common nonlethal skeletal dysplasia, with an incidence of greater than 1/40,000 births. Recently, a random search of the genome using highly polymorphic autosomal markers has localized the gene for achondroplasia to the distal portion of human chromosome 4p. We report here the construction of a high-resolution linkage map of the critical region including the achondroplasia locus. The CEPH panel of pedigrees was genotyped at several loci using highly polymorphic markers, including the Huntington locus (IT15), D4S43, D4S115, and the gene for the {beta}-subunit of rod cGMP phosphodiesterase (PDEB). These data were incorporated into the CEPH v.6.6 database and a multipoint map was generated using the LINKAGE programs v.5.1. Based on reported recombination events in achondroplasia pedigrees, the gene for achondroplasia lies distal to the anonymous marker D4S43, in the 8 cM region defined as follows: cen-IT15-D4S43-D4S98-[D4S115-D4S111]-D4S90-PDEB. The disparity between the genetic distance and the physical distance (2 mB) among these markers likely reflects the high rate of recombination within the region. Extension of this linkage map further toward the telomere and identification of distal recombinant markers should expedite efforts directed toward isolation of the gene for achondroplasia.

  3. Pallister-Killian syndrome: tetrasomy of 12pter-->12p11.22 in a boy with an analphoid, inverted duplicated marker chromosome.

    PubMed

    Huang, X-L; Isabel de Michelena, M; Leon, E; Maher, T A; McClure, R; Milunsky, A

    2007-11-01

    Supernumerary marker chromosomes (SMCs) without detectable alphoid DNA are predicted to have a neocentromere and have been referred to as mitotically stable neocentromere marker chromosomes (NMCs). Here we report the molecular cytogenetic characterization of a new case of Pallister-Killian syndrome (PKS) in a boy with an analphoid, inverted duplicated NMC derived from 12pter-->12p11.22 in his fibroblasts by using high-resolution comparative genetic hybridization (HR-CGH), multiplex fluorescent in situ hybridization (FISH) and bacterial artificial chromosome (BAC)-FISH mapping analyses with various alpha-satellite DNA probes, subtelomere probes and BAC-DNA probes. Precise identification of SMCs and NMCs is of essential importance in genetic counseling. HR-CGH is a more informative and often a faster way of precisely identifying the origin of SMCs. This case is the third report of PKS with an NMC containing an inverted duplication of partial 12p with available clinical data. These observations may help to determine the critical region for PKS and the mechanisms leading to the origin of the NMC derived from 12pter-->12p11.22 - a region that appears to be susceptible to the formation of neocentromeres. The use of subtelomeric probe PCP12p in buccal cells appears superior to the use of the centromere probe D12Z3 for the diagnosis of the PKS.

  4. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  5. The optimizations of CGH generation algorithms based on multiple GPUs for 3D dynamic holographic display

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian

    2016-10-01

    Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.

  6. Identification of Sex Chromosomes by Means of Comparative Genomic Hybridization in a Lizard, Eremias multiocellata.

    PubMed

    Wang, Cui; Tang, Xiaolong; Xin, Ying; Yue, Feng; Yan, Xuefeng; Liu, Bingbing; An, Bei; Wang, Xi; Chen, Qiang

    2015-04-01

    Eremias multiocellata is a viviparous lizard that is known to exhibit temperature-dependent sex determination (TSD). Conventional Giemsa staining under light microscope examination has identified the karyotype of this species to be 2 n=36 I+2 m, with no detectable heteromorphic sex chromosomes. However, a highly differentiated female-specific chromosome, W, which is homomorphic with the Z chromosome, is found in the present study by the high-resolution cytogenetic method of comparative genomic hybridization (CGH). The results show that E. multiocellata is a viviparous lizard with both TSD and ZW heterogametic sex chromosomes. Despite the fact that a different sex ratio of male offspring was found in two populations (separated by an altitude of 1400 m) in previous incubation experiments, we demonstrate, using genomic in situ hybridization (GISH), that there is no significant chromosomal loss or acquisition between the two populations. This suggests that temperature may play a more important role in lowland populations. These results most likely indicate that E. multiocellata is transitioning between the evolutionary processes of TSD and genotypic sex determination (GSD) systems, and also give clues to the effect of TSD versus GSD in this process.

  7. Testing and improving experimental parameters for the use of low molecular weight targets in array-CGH experiments.

    PubMed

    Stef, Marianne; Simon, Delphine; Burgelin, Ingrid; Guisle, Isabelle; Chevalier, Catherine; Delrue, Marie-Ange; Lacombe, Didier; Léger, Jean; Arveiler, Benoît

    2006-11-01

    Array-comparative genomic hybridization (CGH) has evolved as a useful technique for the detection and characterization of deletions, and, to a lesser extent, of duplications. The resolution of the technique is dictated by the genomic distance between targets spotted on the microarray, and by the targets' sizes. The use of region-specific, high-resolution microarrays is a specific goal when studying regions that are prone to rearrangements, such as those involved in deletion syndromes. The aim of the present study was to evaluate the best experimental conditions to be used for array-CGH analysis using low molecular weight (LMW) targets. The parameters tested were: the target concentration, the way LMW targets are prepared (either as linearized plasmids or as purified PCR products), and the way the targets are attached to the array-CGH slide (in a random fashion on amino-silane coated slides, or by one amino-modified end on epoxysilane-coated slides). As a test case, we constructed a microarray harboring LMW targets located in the CREBBP gene, mutations of which cause the Rubinstein-Taybi syndrome (RTS). From 10 to 15% of RTS patients have a CREBBP deletion. We showed that aminosilane- and epoxysilane-coated slides were equally efficient with targets above 1,000 bp in size. On the other hand, with the smallest targets, especially those below 500 bp, epoxysilane-coated slides were superior to aminosilane-coated slides, which did not allow deletion detection. Use of the high resolution array allowed us to map intragenic breakpoints with precision and to identify a very small deletion and a duplication that were not detected by the currently available techniques for finding CREBBP deletions.

  8. Effects of chromosomal variations on pharmacokinetic activity of zolpidem in healthy volunteers: an array-based comparative genomic hybridization study.

    PubMed

    Moon, Ho-Jin; Choi, Jin Soo; Park, E-Jin; Kang, Chin-Yang; Jeon, Yang-Whan; Lee, Kweon-Haeng; Rha, Hyoung Kyun; Han, Sang-Ick

    2007-05-18

    Zolpidem has been known as a very safe and effective hypnotic drug used to treat a variety of patients with insomnia. Even though the same dose of the medicine is administered to each patient, the blood level of zolpidem and the time required to obtain peak concentration are not consistent among different people. We evaluated the relationship between the peak concentrations of zolpidem and chromosomal imbalances using a high-resolution genome-wide array-based comparative genomic hybridization (CGH) in 16 healthy volunteers in order to detect the genetic factors underlying the variations. The present study showed that chromosomal losses were detected in the 4q35.2, 9p13.1 and 9p12 regions, and those gains were indicated in the 2p14, 11q13.4 and 15q11.2 regions. The abnormal regions were confirmed by fluorescence in situ hybridization (FISH) and real-time PCR. It is suggested that array-CGH analysis may be used as a measure for pharmacogenomic applications in the patients with insomnia and for further exploration of candidate genomic regions implicated in sleep disturbances.

  9. High-resolution Y chromosome haplotypes of Israeli and Palestinian Arabs reveal geographic substructure and substantial overlap with haplotypes of Jews.

    PubMed

    Nebel, A; Filon, D; Weiss, D A; Weale, M; Faerman, M; Oppenheim, A; Thomas, M G

    2000-12-01

    High-resolution Y chromosome haplotype analysis was performed in 143 paternally unrelated Israeli and Palestinian Moslem Arabs (I&P Arabs) by screening for 11 binary polymorphisms and six microsatellite loci. Two frequent haplotypes were found among the 83 detected: the modal haplotype of the I&P Arabs (approximately 14%) was spread throughout the region, while its one-step microsatellite neighbor, the modal haplotype of the Galilee sample (approximately 8%), was mainly restricted to the north. Geographic substructuring within the Arabs was observed in the highlands of Samaria and Judea. Y chromosome variation in the I&P Arabs was compared to that of Ashkenazi and Sephardic Jews, and to that of North Welsh individuals. At the haplogroup level, defined by the binary polymorphisms only, the Y chromosome distribution in Arabs and Jews was similar but not identical. At the haplotype level, determined by both binary and microsatellite markers, a more detailed pattern was observed. Single-step microsatellite networks of Arab and Jewish haplotypes revealed a common pool for a large portion of Y chromosomes, suggesting a relatively recent common ancestry. The two modal haplotypes in the I&P Arabs were closely related to the most frequent haplotype of Jews (the Cohen modal haplotype). However, the I&P Arab clade that includes the two Arab modal haplotypes (and makes up 32% of Arab chromosomes) is found at only very low frequency among Jews, reflecting divergence and/or admixture from other populations.

  10. Detection of Short-Range DNA Interactions in Mammalian Cells Using High-Resolution Circular Chromosome Conformation Capture Coupled to Deep Sequencing.

    PubMed

    Millau, Jean-François; Gaudreau, Luc

    2015-01-01

    DNA interactions shape the genome to physically and functionally connect regulatory elements to their target genes. Studying these interactions is crucial to understanding the molecular mechanisms that regulate gene expression. In this chapter, we present a protocol for high-resolution circular chromosome conformation capture coupled to deep sequencing. This methodology allows to investigate short-range DNA interactions (<100 kbp) and to obtain high-resolution DNA interaction maps of loci. It is a powerful tool to explore how regulatory elements and genes are connected together.

  11. Programmable CGH on photochromic plates coded with DMD generated masks.

    PubMed

    Alata, R; Pariani, G; Zamkotsian, F; Lanzoni, P; Bianco, A; Bertarelli, C

    2017-03-20

    Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing. Present technology allows for recording binary CGHs. We propose a Digital Micro-mirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. Opaque at rest, this plate becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, with a contrast greater than 50, which was reconstructed with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates.

  12. Array-CGH is an effective first-tier diagnostic test for EFTUD2-associated congenital mandibulofacial dysostosis with microcephaly.

    PubMed

    Gandomi, S K; Parra, M; Reeves, D; Yap, V; Gau, C-L

    2015-01-01

    Mandibulofacial dysostosis with microcephaly (MFDM) is a sporadic malformation syndrome with severe craniofacial abnormalities, microcephaly, developmental delay, and dysmorphic features. Most cases of clinically diagnosed MFDM remain genetically unexplained, and to the best of our knowledge a total of 35 patients, 31 different mutations, 4 deletions, and 6 reports have been published. Our proband was born at 36 weeks gestation with microcephaly, microcrania, cleft palate, severe retrognathia, oral and pharyngeal dysphagia, bilateral proximal radioulnar synostosis, 11 thoracic ribs, abnormal magnetic resonance imaging (MRI) findings including simplified gyral pattern and mild dilatation of the posterior bodies of the lateral ventricles secondary to thinning of the white matter, high-pitched cry due to unilateral vocal cord paralysis, and dysmorphic features. Array comparative genomic hybridization (aCGH) + single nucleotide polymorphism (SNP) analysis identified a likely de novo pathogenic deletion on chromosome 17q21.31, encompassing the EFTUD2 gene. Our case represents the fifth reported proband to have MFDM caused by small deletions involving EFTUD2. All known mutations involving EFTUD2 result in genetic haploinsufficiency, consistent with our proband's case as well. Her phenotypic features both overlap and expand on the clinical features of previously reported cases, and her genetic diagnosis also supports the use of aCGH as a first-tier testing option for this disorder.

  13. High-resolution physical mapping of a 250-kb region of human chromosome 11q24 by genomic sequence sampling (GSS)

    SciTech Connect

    Selleri, L.; Smith, M.W.; Holmsen, A.L.

    1995-04-10

    A physical map of the region of human chromosome 11q24 containing the FLI1 gene, disrupted by the t(11;22) translocation in Ewing sarcoma and primitive neuroectodermal tumors, was analyzed by genomic sequence sampling. Using a 4- to 5-fold coverage chromosome 11-specific library, 22 region-specific cosmid clones were identified by phenol emulsion reassociation hybridization, with a 245-kb yeast artificial chromosome clone containing the FLI1 gene, and by directed {open_quotes}walking{close_quotes} techniques. Cosmid contigs were constructed by individual clone fingerprinting using restriction enzyme digestion and assembly with the Genome Reconstruction and AsseMbly (GRAM) computer algorithm. The relative orientation and spacing of cosmid contigs with respect to the chromosome were determined by the structural analysis of cosmid clones and by direct visual in situ hybridization mapping. Each cosmid clone in the contig was subjected to {open_quotes}one-pass{close_quotes} end sequencing, and the resulting ordered sequence fragments represent {approximately}5% of the complete DNA sequence, making the entire region accessible by PCR amplification. The sequence samples were analyzed for putative exons, repetitive DNAs, and simple sequence repeats using a variety of computer algorithms. Based upon the computer predictions, Southern and Northern blot experiments led to the independent identification and localization of the FLI1 gene as well as a previously unknown gene located in this region of chromosome 11q24. This approach to high-resolution physical analysis of human chromosomes allows the assembly of detailed sequence-based maps. 62 refs., 7 figs.

  14. Ultra High-Resolution Gene Centric Genomic Structural Analysis of a Non-Syndromic Congenital Heart Defect, Tetralogy of Fallot

    PubMed Central

    Bittel, Douglas C.; Zhou, Xin-Gang; Kibiryeva, Nataliya; Fiedler, Stephanie; O’Brien, James E.; Marshall, Jennifer; Yu, Shihui; Liu, Hong-Yu

    2014-01-01

    Tetralogy of Fallot (TOF) is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH) microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months). Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs) ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1) for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001). We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects. PMID:24498113

  15. CGH and OCC Announce a New, Two-Year Funding Opportunity for NCI-designated Cancer Centers

    Cancer.gov

    CGH and OCC announce a new funding opportunity available from CGH for cancer prevention and control (CPC) researchers at NCI-designated cancer centers: Administrative Supplements to Promote Cancer Prevention and Control Research in Low and Middle Income Countries.

  16. Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies

    PubMed Central

    Vissers, L. E. L. M.; Stankiewicz, P.; Yatsenko, S. A.; Crawford, E.; Creswick, H.; Proud, V. K.; de Vries, B. B. A.; Pfundt, R.; Marcelis, C. L. M.; Zackowski, J.; Bi, W.; van Kessel, A. Geurts; Lupski, J. R.

    2007-01-01

    Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved. Here, we report a molecular cytogenetic analysis of two patients with congenital anomalies and unbalanced de novo CCRs involving chromosome 17p using high-resolution array-based comparative genomic hybridization (array CGH) and fluorescent in situ hybridization (FISH). In the first patient, a 4-month-old boy with developmental delay, hypotonia, growth retardation, coronal synostosis, mild hypertelorism, and bilateral club feet, we found a duplication of the Charcot-Marie–Tooth disease type 1A and Smith-Magenis syndrome (SMS) chromosome regions, inverted insertion of the Miller-Dieker lissencephaly syndrome region into the SMS region, and two microdeletions including a terminal deletion of 17p. The latter, together with a duplication of 21q22.3-qter detected by array CGH, are likely the unbalanced product of a translocation t(17;21)(p13.3;q22.3). In the second patient, an 8-year-old girl with mental retardation, short stature, microcephaly and mild dysmorphic features, we identified four submicroscopic interspersed 17p duplications. All 17 breakpoints were examined in detail by FISH analysis. We found that four of the breakpoints mapped within known low-copy repeats (LCRs), including LCR17pA, middle SMS-REP/LCR17pB block, and LCR17pC. Our findings suggest that the LCR burden in proximal 17p may have stimulated the formation of these CCRs and, thus, that genome architectural features such as LCRs may have been instrumental in the generation of these CCRs. PMID:17457615

  17. Cryptic trisomy 5q35.2qter and deletion 1p36.3 characterised using FISH and array-based CGH.

    PubMed

    Utine, Eda G; Alanay, Yasemin; Aktas, Dilek; Alikasifoglu, Mehmet; Boduroglu, Koray; Vermeesch, Joris; Tuncbilek, Ergul; Fryns, Jean-Pierre

    2008-01-01

    A 10(6/12)-year-old boy was referred to the genetics department because of mental retardation and dysmorphic findings including microcephaly, flat face, down-slanting palpebral fissures, strabismus, prominent ears, bulbous nasal tip, down-turned corners of the mouth, narrow palate, clinodactyly of the fifth fingers and generalised eczema. Cytogenetic analysis revealed a karyotype of 47,XY,+mar of paternal origin. Multicolour FISH showed the marker chromosome to be derived from chromosome 15. For further elucidation of the phenotype, array-based comparative genomic hybridisation (aCGH) was performed, which revealed dup(5)(q35.2qter) and del(1)(p36.3). Parental FISH analysis revealed that the translocation occurred de novo. Despite the presence of a clinical phenotype along with a microscopically visible chromosomal aberration, a complex cryptic cytogenetic abnormality was causative for the phenotype of the patient. Elucidation of this complex aberration required combination of the whole cytogenetic toolbox.

  18. Analysis of plant meiotic chromosomes by chromosome painting.

    PubMed

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  19. A de novo 2.78-Mb duplication on chromosome 21q22.11 implicates candidate genes in the partial trisomy 21 phenotype

    PubMed Central

    Weisfeld-Adams, James D; Tkachuk, Amanda K; Maclean, Kenneth N; Meeks, Naomi L; Scott, Stuart A

    2016-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and in the majority of cases is the result of complete trisomy 21. The hypothesis that the characteristic DS clinical features are due to a single DS critical region (DSCR) at distal chromosome 21q has been refuted by recently reported segmental trisomy 21 cases characterised by microarray-based comparative genomic hybridisation (aCGH). These rare cases have implicated multiple regions on chromosome 21 in the aetiology of distinct features of DS; however, the map of chromosome 21 copy-number aberrations and their associated phenotypes remains incompletely defined. We report a child with ID who was deemed very high risk for DS on antenatal screening (1 in 13) and has partial, but distinct, dysmorphologic features of DS without congenital heart disease (CHD). Oligonucleotide aCGH testing of the proband detected a previously unreported de novo 2.78-Mb duplication on chromosome 21q22.11 that includes 16 genes; however, this aberration does not harbour any of the historical DSCR genes (APP, DSCR1, DYRK1A and DSCAM). This informative case implicates previously under-recognised candidate genes (SOD1, SYNJ1 and ITSN1) in the pathogenesis of specific DS clinical features and supports a critical region for CHD located more distal on chromosome 21q. In addition, this unique case illustrates how the increasing resolution of microarray and high-throughput sequencing technologies can continue to reveal new biology and enhance understanding of widely studied genetic diseases that were originally described over 50 years ago. PMID:27840696

  20. Physical Maps of the Six Smallest Chromosomes of Saccharomyces Cerevisiae at a Resolution of 2.6 Kilobase Pairs

    PubMed Central

    Riles, L.; Dutchik, J. E.; Baktha, A.; McCauley, B. K.; Thayer, E. C.; Leckie, M. P.; Braden, V. V.; Depke, J. E.; Olson, M. V.

    1993-01-01

    Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae are presented. In order of increasing size, they are chromosomes I, VI, III, IX, V and VIII, comprising 2.49 megabase pairs of DNA. The maps are based on the analysis of an overlapping set of lambda and cosmid clones. Overlaps between adjacent clones were recognized by shared restriction fragments produced by the combined action of EcoRI and HindIII. The average spacing between mapped cleavage sites is 2.6 kb. Five of the six chromosomes were mapped from end to end without discontinuities; a single internal gap remains in the map of chromosome IX. The reported maps span an estimated 97% of the DNA on the six chromosomes; nearly all the missing segments are telomeric. The maps are fully cross-correlated with the previously published SfiI/NotI map of the yeast genome by A. J. Link and M. V. Olson. They have also been cross-correlated with the yeast genetic map at 51 loci. PMID:8514151

  1. Array CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor

    PubMed Central

    del Carmen Crespo, María; Vallespín, Elena; Palomares-Bralo, María; Martin-Arenas, Rubén; Rueda-Arenas, Inmaculada; Silvestre de Faria, Paulo Antonio; García-Miguel, Purificación; Lapunzina, Pablo; Regla Vargas, Fernando; Seuanez, Hector N.; Martínez-Glez, Víctor

    2015-01-01

    Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analyzed by aCGH, 22% of chromosome abnormalities were novel. All constitutional alterations identified in blood were segmental (in 28.6% of patients) and were also present in the paired tumor samples. Two segmental gains (2p21 and 20q13.3) and one loss (19q13.31) present in blood had not been previously described in WT. We also describe, for the first time, a small, constitutive partial gain of 3p22.1 comprising 2 exons of CTNNB1, a gene associated to WT. Among somatic alterations, novel structural chromosomal abnormalities were found, like gain of 19p13.3 and 20p12.3, and losses of 2p16.1-p15, 4q32.5-q35.1, 4q35.2-q28.1 and 19p13.3. Candidate genes included in these regions might be constitutively (SIX3, SALL4) or somatically (NEK1, PIAS4, BMP2) operational in the development and progression of WT. To our knowledge this is the first report of CNV in paired blood and tumor samples in sporadic WT. PMID:26317783

  2. The proximal chromosome 14q microdeletion syndrome: delineation of the phenotype using high resolution SNP oligonucleotide microarray analysis (SOMA) and review of the literature.

    PubMed

    Torgyekes, Edina; Shanske, Alan L; Anyane-Yeboa, Kwame; Nahum, Odelia; Pirzadeh, Sara; Blumfield, Einat; Jobanputra, Vaidehi; Warburton, Dorothy; Levy, Brynn

    2011-08-01

    We report on two patients with overlapping small interstitial deletions involving regions 14q12 to 14q13.1. Both children had severe developmental delay, failure to thrive, microcephaly, and distinctive facial features, including abnormal spacing of the eyes, epicanthal folds, sloping forehead, low-set ears, rounded eyebrows with triangular media aspect and outer tapering, depressed and broad nasal bridge, small mouth, a long philtrum, and a prominent Cupid's bow. Brain MRI of both children showed partial agenesis of the corpus callosum. Our first patient had bilateral hypoplastic optic nerves causing blindness, mild hearing impairment, sinus arrhythmia, abnormal temperature regulation, frequent apneic episodes, myoclonic jerks, and opisthotonus. Our second patient had a seizure disorder confirmed by EEG, sleep apnea, chronic interstitial lung disease, and several episodes of pneumonia and gastroenteritis. Cytogenetic analysis showed a normal karyotype in Patient 1 and a unique apparently balanced three-way translocation in Patient 2 involving chromosomes 4, 14, and 11. High resolution SNP Oligonucleotide Microarray Analysis (SOMA) revealed a deletion in the proximal region of chromosome 14q overlapping with the deletion of our first patient, and no copy number changes in chromosomes 4 and 11. Here, we review and compare published cases with a deletion involving the 14q12-22.1 chromosomal region in an effort to correlate phenotype and genotype. We also examine the underlying genomic architecture to identify the possible mechanism of the chromosomal abnormality. Our review found a patient with a mirror duplication of our first patient's deletion, confirming the existence of an underlying genomic structural instability in the region. © 2011 Wiley-Liss, Inc.

  3. Chromosomal Microarray Analysis of Consecutive Individuals with Autism Spectrum Disorders Using an Ultra-High Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders

    PubMed Central

    Ho, Karen S.; Wassman, E. Robert; Baxter, Adrianne L.; Hensel, Charles H.; Martin, Megan M.; Prasad, Aparna; Twede, Hope; Vanzo, Rena J.; Butler, Merlin G.

    2016-01-01

    Copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) significantly contribute to understanding the etiology of autism spectrum disorder (ASD) and other related conditions. In recognition of the value of CMA testing and its impact on medical management, CMA is in medical guidelines as a first-tier test in the evaluation of children with these disorders. As CMA becomes adopted into routine care for these patients, it becomes increasingly important to report these clinical findings. This study summarizes the results of over 4 years of CMA testing by a CLIA-certified clinical testing laboratory. Using a 2.8 million probe microarray optimized for the detection of CNVs associated with neurodevelopmental disorders, we report an overall CNV detection rate of 28.1% in 10,351 consecutive patients, which rises to nearly 33% in cases without ASD, with only developmental delay/intellectual disability (DD/ID) and/or multiple congenital anomalies (MCA). The overall detection rate for individuals with ASD is also significant at 24.4%. The detection rate and pathogenic yield of CMA vary significantly with the indications for testing, age, and gender, as well as the specialty of the ordering doctor. We note discrete differences in the most common recurrent CNVs found in individuals with or without a diagnosis of ASD. PMID:27941670

  4. A method for detecting significant genomic regions associated with oral squamous cell carcinoma using aCGH.

    PubMed

    Kim, Ki-Yeol; Kim, Jin; Kim, Hyung Jun; Nam, Woong; Cha, In-Ho

    2010-05-01

    Array comparative genomic hybridization (aCGH) provides a genome-wide technique for identifying chromosomal aberrations in human diseases, including cancer. Chromosomal aberrations in cancers are defined as regions that contain an increased or decreased DNA copy number, relative to normal samples. The identification of genomic regions associated with systematic aberrations provides insights into initiation and progression of cancer, and improves diagnosis, prognosis, and therapy strategies. The McNemar test can be used to detect differentially expressed genes after discretization of gene expressions in a microarray experiment for the matched dataset. In this study, we propose a method to detect significantly altered DNA regions, shifted McNemar test, which is based on the standard McNemar test and takes into account changes in copy number variations and the region size throughout the whole genome. In addition, this novel method can be used to detect genomic regions associated with the progress of oral squamous cell carcinoma (OSCC). The performance of the proposed method was evaluated based on the homogeneity within the selected regions and the classification accuracies of the selected regions. This method might be useful for identifying new candidate genes that neighbor known genes based on the whole-genomic variation because it detects significant chromosomal regions, not independent probes.

  5. A contiguous high-resolution radiation hybrid map of 44 loci from the distal portion of the long arm of human chromosome 5.

    PubMed

    Warrington, J A; Wasmuth, J J

    1996-07-01

    A contiguous high-resolution map of 44 loci from a 35-Mb portion of the distal region of the long arm of human chromosome 5, q21-q35, was produced using radiation hybrid (RH) mapping in conjunction with a natural deletion mapping panel. The map includes 30 genes, four sequence-tagged site (STS) loci, and 10 DNA markers. Newly mapped markers fill two gap regions that were present in previous maps, between markers FER-IL4 and IL3-IL9. Identifying the position of genes on the physical map aids in positional cloning efforts and contributes to our understanding of the overall organization of the human genome.

  6. Array CGH data modeling and smoothing in Stationary Wavelet Packet Transform domain

    PubMed Central

    Huang, Heng; Nguyen, Nha; Oraintara, Soontorn; Vo, An

    2008-01-01

    Background Array-based comparative genomic hybridization (array CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci and the reliable detection of local one-copy-level variations. Characterization of these DNA copy number changes is important for both the basic understanding of cancer and its diagnosis. In order to develop effective methods to identify aberration regions from array CGH data, many recent research work focus on both smoothing-based and segmentation-based data processing. In this paper, we propose stationary packet wavelet transform based approach to smooth array CGH data. Our purpose is to remove CGH noise in whole frequency while keeping true signal by using bivariate model. Results In both synthetic and real CGH data, Stationary Wavelet Packet Transform (SWPT) is the best wavelet transform to analyze CGH signal in whole frequency. We also introduce a new bivariate shrinkage model which shows the relationship of CGH noisy coefficients of two scales in SWPT. Before smoothing, the symmetric extension is considered as a preprocessing step to save information at the border. Conclusion We have designed the SWTP and the SWPT-Bi which are using the stationary wavelet packet transform with the hard thresholding and the new bivariate shrinkage estimator respectively to smooth the array CGH data. We demonstrate the effectiveness of our approach through theoretical and experimental exploration of a set of array CGH data, including both synthetic data and real data. The comparison results show that our method outperforms the previous approaches. PMID:18831782

  7. Clinical experience with array CGH: case presentations from nine months of practice.

    PubMed

    Poss, Alexis F; Goldenberg, Paula C; Rehder, Catherine W; Kearney, Hutton M; Melvin, Elizabeth C; Koeberl, Dwight D; McDonald, Marie T

    2006-10-01

    A total of 124 individuals were tested in the initial 9 months that array CGH technology was offered to clinical genetics patients. In 11 of these patients array CGH identified a previously unsuspected diagnosis. A suspected diagnosis was confirmed in three patients. A single case in this series proved to be a polymorphic copy number variant. This paper describes five of the patients with previously unsuspected diagnoses in detail. We suggest that array CGH is an improved tool ready for routine use in clinical genetics.

  8. Design and fabrication of CGH for 600mm diameter SiC primary mirror surface figure testing

    NASA Astrophysics Data System (ADS)

    Pang, Zhihai; Ma, Zhen; Fan, Xuewu; Zou, Gangyi

    2016-09-01

    Computer-generated hologram (CGH) is an effective way to compensate wavefront aberration in null test of aspheric surfaces and freeform surfaces. Our strategies of CGH design for 600mm diameter SiC primary mirror surface figure testing are presented, and an experiment demonstrating the compensation test results of CGH is reported. We design a CGH including two sections on the same substrate in order to align the CGH to the incident wavefront: main section for compensating wavefront in null test, alignment section for adjusting the relative position between CGH and interferometer. In order to isolate different orders of diffraction, we used power carrier to make different orders of diffraction come to focus at different position along the axis to avoid ghost reflections. We measured the 600mm diameter SiC primary mirror using this CGH, and the surface test result is 0.033λ rms.

  9. aCGH detects partial tetrasomy of 12p in blood from Pallister-Killian syndrome cases without invasive skin biopsy.

    PubMed

    Theisen, Aaron; Rosenfeld, Jill A; Farrell, Sandra A; Harris, Catharine J; Wetzel, Heather H; Torchia, Beth A; Bejjani, Bassem A; Ballif, Blake C; Shaffer, Lisa G

    2009-05-01

    Pallister-Killian syndrome (PKS) is a genetic disorder characterized by mental retardation, seizures, streaks of hypo- or hyperpigmentation and dysmorphic features. PKS is associated with tissue-limited mosaic partial tetrasomy of 12p, usually caused by an isochromosome 12p. The mosaicism is usually detected in cultured skin fibroblasts or amniotic cells and rarely in phytohemagluttinin-stimulated lymphocytes, which suggests stimulation of T-lymphocytes may distort the percentage of abnormal cells. We recently reported on the identification by microarray-based comparative genomic hybridization (aCGH) of a previously unsuspected case of partial tetrasomy of 12p caused by an isochromosome 12p. Here we report on seven additional individuals with partial tetrasomy of 12p characterized by our laboratory. All individuals were referred for mental retardation/developmental delay and/or dysmorphic features. In each case, aCGH using genomic DNA extracted from whole peripheral blood detected copy-number gain for all clones for the short arm of chromosome 12. In all but one case, FISH on metaphases from cultured lymphocytes did not detect the copy-number gain; in the remaining case, metaphase FISH on cultured lymphocytes showed an isochromosome in 10% of cells. However, interphase FISH using probes to 12p on peripheral blood smears showed additional hybridization signals in 18-70% of cells. Microarray and FISH analysis on cultured skin biopsies from four individuals confirmed the presence of an isochromosome 12p. Our results demonstrate the usefulness of aCGH with genomic DNA from whole peripheral blood to detect chromosome abnormalities that are not present in stimulated blood cultures and would otherwise require invasive skin biopsies for identification.

  10. Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists.

    PubMed

    Sengupta, Sanghamitra; Zhivotovsky, Lev A; King, Roy; Mehdi, S Q; Edmonds, Christopher A; Chow, Cheryl-Emiliane T; Lin, Alice A; Mitra, Mitashree; Sil, Samir K; Ramesh, A; Usha Rani, M V; Thakur, Chitra M; Cavalli-Sforza, L Luca; Majumder, Partha P; Underhill, Peter A

    2006-02-01

    Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000-15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era--not Indo-European--expansions have shaped the distinctive South Asian Y-chromosome landscape.

  11. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11.

    PubMed

    Hu, Jie; Sathanoori, Malini; Kochmar, Sally; Madan-Khetarpal, Suneeta; McGuire, Marianne; Surti, Urvashi

    2013-01-01

    We report a patient with a maternally inherited unbalanced complex chromosomal rearrangement (CCR) involving chromosomes 4, 9, and 11 detected by microarray comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). This patient presents with clinical features of 9p deletion syndrome and Silver-Russell syndrome (SRS). Chromosome analysis performed in 2000 showed what appeared to be a simple terminal deletion of chromosome 9p22.1. aCGH performed in 2010 revealed a 1.63 Mb duplication at 4q28.3, a 15.48 Mb deletion at 9p24.3p22.3, and a 1.95 Mb duplication at 11p15.5. FISH analysis revealed a derivative chromosome 9 resulting from an unbalanced translocation between chromosomes 9 and 11, a chromosome 4 fragment inserted near the breakpoint of the translocation. The 4q28.3 duplication does not contain any currently known genes. The 9p24.3p22.3 deletion region contains 36 OMIM genes including a 3.5 Mb critical region for the 9p-phenotype. The 11p15.5 duplication contains 49 OMIM genes including H19 and IGF2. Maternal aCGH was normal. However, maternal chromosomal and FISH analyses revealed an apparently balanced CCR involving chromosomes 4, 9, and 11. To the best of our knowledge, this is the first report of a patient with maternally inherited trans-duplication of the entire imprinting control region 1 (ICR1) among the 11p15.5 duplications reported in SRS patients. This report supports the hypothesis that the trans-duplication of the maternal copy of ICR1 alone is sufficient for the clinical manifestation of SRS and demonstrates the usefulness of combining aCGH with karyotyping and FISH for detecting cryptic genomic imbalances.

  12. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    DOE PAGES

    Lyons, Jessica

    2014-12-11

    Cassava Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculent Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480more » meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. Here, we used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.« less

  13. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    PubMed

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop.

  14. Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga.

    PubMed

    Mirabal, Sheyla; Herrera, Kristian J; Gayden, Tenzin; Regueiro, Maria; Underhill, Peter A; Garcia-Bertrand, Ralph L; Herrera, Rene J

    2012-01-25

    The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the "slow boat" model being the most widely accepted, though other conjectures (i.e., the "express train" and "entangled bank" hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami.

  15. Brief communication: new Y-chromosome binary markers improve phylogenetic resolution within haplogroup R1a1.

    PubMed

    Pamjav, Horolma; Fehér, Tibor; Németh, Endre; Pádár, Zsolt

    2012-12-01

    Haplogroup R1a1-M198 is a major clade of Y chromosomal haplogroups which is distributed all across Eurasia. To this date, many efforts have been made to identify large SNP-based subgroups and migration patterns of this haplogroup. The origin and spread of R1a1 chromosomes in Eurasia has, however, remained unknown due to the lack of downstream SNPs within the R1a1 haplogroup. Since the discovery of R1a1-M458, this is the first scientific attempt to divide haplogroup R1a1-M198 into multiple SNP-based sub-haplogroups. We have genotyped 217 R1a1-M198 samples from seven different population groups at M458, as well as the Z280 and Z93 SNPs recently identified from the "1000 Genomes Project". The two additional binary markers present an effective tool because now more than 98% of the samples analyzed assign to one of the three sub-haplogroups. R1a1-M458 and R1a1-Z280 were typical for the Hungarian population groups, whereas R1a1-Z93 was typical for Malaysian Indians and the Hungarian Roma. Inner and Central Asia is an overlap zone for the R1a1-Z280 and R1a1-Z93 lineages. This pattern implies that an early differentiation zone of R1a1-M198 conceivably occurred somewhere within the Eurasian Steppes or the Middle East and Caucasus region as they lie between South Asia and Eastern Europe. The detection of the Z93 paternal genetic imprint in the Hungarian Roma gene pool is consistent with South Asian ancestry and amends the view that H1a-M82 is their only discernible paternal lineage of Indian heritage.

  16. High-resolution meiotic and physical mapping of the Best`s vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    SciTech Connect

    Weber, B.H.F.; Vogt, G.; Walker, D.

    1994-09-01

    Vitelliform macular dystrophy, also known as Best`s disease, is a juvenile-onset macular degeneration with autosomal dominant inheritance. It is characterized by well-demarcated accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium (RPE) and classically results in an egg yolk-like appearance of the macula. Typically, carriers of the disease gene show a specific electrophysiological sign which can be detected by electrooculography (EOG). The EOG measures a standing potential between the cornea and the retina which is primarily generated by the RPE. The histopathological findings as well as the EOG abnormalities suggest that Best`s disease is a generalized disorder of the RPE. The basic biochemical defect is still unknown. As a first step in the positional cloning of the defective gene, the Best`s disease locus was mapped to chromosome 11 between markers at D11S871 and INT2. Subsequently, his region was refined to a 3.7 cM interval flanked by loci D11S903 and PYGM. To further narrow the D11S903-PYGM interval and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best`s disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best`s disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 and at D11S480 in band q13.2-13.3. Our study demonstrates that the physical size of the Best`s disease region is exceedingly larger than was previously estimated from the genetic data due to the proximity of the defective gene to the centromere of chromosome 11.

  17. Regional deletion and amplification on chromosome 6 in a uveal melanoma case without abnormalities on chromosomes 1p, 3 and 8.

    PubMed

    van Gils, Walter; Kilic, Emine; Brüggenwirth, Hennie T; Vaarwater, Jolanda; Verbiest, Michael M; Beverloo, Berna; van Til-Berg, Marjan E; Paridaens, Dion; Luyten, Gregorius P; de Klein, Annelies

    2008-02-01

    Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Loss of the long arm and gain of the short arm of chromosome 6 are frequently observed chromosomal aberrations in UM, together with loss of chromosome 1p36, loss of chromosome 3 and gain of chromosome 8. This suggests the presence of one or more oncogenes on 6p and tumor suppressor genes at 6q that are involved in UM development. Both regions, however, have not been well defined yet. Furthermore in other neoplasms gain of 6p and loss of 6q are frequently occurring events. In this case report, we describe the delineation of a partial gain on chromosome 6p and a partial deletion on 6q in a UM with the objective to pinpoint smaller candidate regions on chromosome 6 involved in UM development. Conventional cytogenetics, comparative genomic hybridization (CGH) and fluorescence in-situ hybridization (FISH) were used to delineate regions of loss and gain on chromosome 6 in this UM patient. With conventional cytogenetics a deleted region was found on chromosome 6q that was further delineated to a region ranging from 6q16.1 to 6q22 using CGH and FISH. A region of gain from 6pter to 6p21.2 was also demarcated with CGH and FISH. No other deletions or amplifications on recurrently involved chromosomes were found in this patient. This study indicates the presence of one or more tumor suppressor genes on chromosomal region 6q16.1-6q22 and the presence of one or more oncogenes on chromosomal region 6pter-6p21.2, which are likely to be important in UM and other tumors.

  18. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  19. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model.

    PubMed

    Corre, Christina; Friedel, Miriam; Vousden, Dulcie A; Metcalf, Ariane; Spring, Shoshana; Qiu, Lily R; Lerch, Jason P; Palmert, Mark R

    2016-03-01

    Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.

  20. High-resolution genetic mapping of the sucrose octaacetate taste aversion (Soa) locus on mouse Chromosome 6.

    PubMed

    Bachmanov, A A; Li, X; Li, S; Neira, M; Beauchamp, G K; Azen, E A

    2001-09-01

    An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine 'taster' (Soa(a)), 'nontaster' (Soa(b)), and 'demitaster' (Soa(c)) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soa(b), B6.SW-Soa(a), and C3.SW-Soa(a/c) and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in an approximately 1-cM (3.3-4.9 Mb) region including the Prp locus.

  1. Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphisms

    PubMed Central

    Vermeulen, Mark; Wollstein, Andreas; van der Gaag, Kristiaan; Lao, Oscar; Xue, Yali; Wang, Qiuju; Roewer, Lutz; Knoblauch, Hans; Tyler-Smith, Chris; de Knijff, Peter; Kayser, Manfred

    2012-01-01

    We analysed 67 short tandem repeat polymorphisms from the non-recombining part of the Y-chromosome (Y-STRs), including 49 rarely-studied simple single-copy (ss)Y-STRs and 18 widely-used Y-STRs, in 590 males from 51 populations belonging to 8 worldwide regions (HGDP-CEPH panel). Although autosomal DNA profiling provided no evidence for close relationship, we found 18 Y-STR haplotypes (defined by 67 Y-STRs) that were shared by two to five men in 13 worldwide populations, revealing high and widespread levels of cryptic male relatedness. Maximal (95.9%) haplotype resolution was achieved with the best 25 out of 67 Y-STRs in the global dataset, and with the best 3-16 markers in regional datasets (89.6-100% resolution). From the 49 rarely-studied ssY-STRs, the 25 most informative markers were sufficient to reach the highest possible male lineage differentiation in the global (92.2% resolution), and 3-15 markers in the regional datasets (85.4-100%). Considerably lower haplotype resolutions were obtained with the three commonly-used Y-STR sets (Minimal Haplotype, PowerPlex Y®, and AmpFlSTR® Yfiler®). Six ssY-STRs (DYS481, DYS533, DYS549, DYS570, DYS576 and DYS643) were most informative to supplement the existing Y-STR kits for increasing haplotype resolution, or – together with additional ssY-STRs - as a new set for maximizing male lineage differentiation. Mutation rates of the 49 ssY-STRs were estimated from 403 meiotic transfers in deep-rooted pedigrees, and ranged from ~4.8×10−4 for 31 ssY-STRs with no mutations observed to 1.3×10−2 and 1.5×10−2 for DYS570 and DYS576, respectively, the latter representing the highest mutation rates reported for human Y-STRs so far. Our findings thus demonstrate that ssY-STRs are useful for maximizing global and regional resolution of male lineages, either as a new set, or when added to commonly-used Y-STR sets, and support their application to forensic, genealogical and anthropological studies. PMID:19647704

  2. Shared language, diverging genetic histories: high-resolution analysis of Y-chromosome variability in Calabrian and Sicilian Arbereshe

    PubMed Central

    Sarno, Stefania; Tofanelli, Sergio; De Fanti, Sara; Quagliariello, Andrea; Bortolini, Eugenio; Ferri, Gianmarco; Anagnostou, Paolo; Brisighelli, Francesca; Capelli, Cristian; Tagarelli, Giuseppe; Sineo, Luca; Luiselli, Donata; Boattini, Alessio; Pettener, Davide

    2016-01-01

    The relationship between genetic and linguistic diversification in human populations has been often explored to interpret some specific issues in human history. The Albanian-speaking minorities of Sicily and Southern Italy (Arbereshe) constitute an important portion of the ethnolinguistic variability of Italy. Their linguistic isolation from neighboring Italian populations and their documented migration history, make such minorities particularly effective for investigating the interplay between cultural, geographic and historical factors. Nevertheless, the extent of Arbereshe genetic relationships with the Balkan homeland and the Italian recipient populations has been only partially investigated. In the present study we address the genetic history of Arbereshe people by combining highly resolved analyses of Y-chromosome lineages and extensive computer simulations. A large set of slow- and fast-evolving molecular markers was typed in different Arbereshe communities from Sicily and Southern Italy (Calabria), as well as in both the putative Balkan source and Italian sink populations. Our results revealed that the considered Arbereshe groups, despite speaking closely related languages and sharing common cultural features, actually experienced diverging genetic histories. The estimated proportions of genetic admixture confirm the tight relationship of Calabrian Arbereshe with modern Albanian populations, in accordance with linguistic hypotheses. On the other hand, population stratification and/or an increased permeability of linguistic and geographic barriers may be hypothesized for Sicilian groups, to account for their partial similarity with Greek populations and their higher levels of local admixture. These processes ultimately resulted in the differential acquisition or preservation of specific paternal lineages by the present-day Arbereshe communities. PMID:26130483

  3. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution

    PubMed Central

    Rens, Willem; Grützner, Frank; O'Brien, Patricia C. M.; Fairclough, Helen; Graves, Jennifer A. M.; Ferguson-Smith, Malcolm A.

    2004-01-01

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution. PMID:15534209

  4. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  5. A prenatally ascertained, maternally inherited 14.8 Mb duplication of chromosomal bands Xq13.2-q21.31 associated with multiple congenital abnormalities in a male fetus.

    PubMed

    Sismani, C; Donoghue, J; Alexandrou, A; Karkaletsi, M; Christopoulou, S; Konstantinidou, A E; Livanos, P; Patsalis, P C; Velissariou, V

    2013-11-01

    Duplications of the X chromosome are rare cytogenetic findings, and have been associated with an abnormal phenotype in the male offspring of apparently normal or near normal female carriers. We report on the prenatal diagnosis of a duplication on the long arm of chromosome X from chromosomal band Xq13.2 to q21.31 in a male fetus with increased nuchal translucency in the first trimester and polyhydramnios at 22 weeks of gestation. Amniocentesis was undertaken and cytogenetic analysis revealed additional chromosomal material in the long arm of chromosome X at position Xq13. Analysis with high resolution array CGH revealed the additional material is in fact a duplication of the region Xq13.2-q21.13. The duplication is 14.8 Mb in size and includes fourteen genes: SLC16A2, KIAA2022, ABCB7, ZDHHC15, ATRX, MAGT1, ATP7A, PGK1, TBX22, BRWD3, POU3F4, ZNF711, POF1B and CHM. Analysis of the parents revealed the mother to be a carrier of the same duplication. After elected termination of the pregnancy at 28 weeks a detailed autopsy of the fetus allowed for genotype-phenotype correlations.

  6. Constitutive heterochromatin polymorphisms in human chromosomes identified by whole comparative genomic hybridization

    PubMed Central

    Dávila-Rodríguez, M.I.; Cortés Gutiérrez, E.I.; Cerda Flores, R.M.; Pita, M.; Fernández, J.L.; López-Fernández, C.; Gosálvez, J.

    2011-01-01

    Whole comparative genomic hybridization (W-CGH) is a new technique that reveals cryptic differences in highly repetitive DNA sequences, when different genomes are compared using metaphase or interphase chromosomes. W-CGH provides a quick approach to identify differential expansion of these DNA sequences at the single-chromosome level in the whole genome. In this study, we have determined the frequency of constitutive chromatin polymorphisms in the centromeric regions of human chromosomes using a whole-genome in situ cross-hybridization method to compare the whole genome of five different unrelated individuals. Results showed that the pericentromeric constitutive heterochromatin of chromosome 6 exhibited a high incidence of polymorphisms in repetitive DNA families located in pericentromeric regions. The constitutive heterochromatin of chromosomes 5 and 9 was also identified as highly polymorphic. Although further studies are necessary to corroborate and assess the overall incidence of these polymorphisms in human populations, the use of W-CGH could be pertinent and of clinical relevance to assess rapidly, from a chromosomal viewpoint, genome similarities and differences in closely related genomes such as those of relatives, or in more specific situations such as bone marrow transplantation where chimerism is produced in the recipient. PMID:22073375

  7. Analysis of a familial three way translocation involving chromosomes 3q, 6q, and 15q by high resolution banding and fluorescent in situ hybridisation (FISH) shows two different unbalanced karyotypes in sibs.

    PubMed Central

    Wieczorek, D; Engels, H; Viersbach, R; Henke, B; Schwanitz, G; Passarge, E

    1998-01-01

    We report on a familial three way translocation involving chromosomes 3, 6, and 15 identified by prometaphase banding and fluorescence in situ hybridisation (FISH). Two mentally retarded sibs with different phenotypic abnormalities, their phenotypically normal sister and mother, and two fetuses of the phenotypically normal sister were analysed. The terminal regions of chromosomes 3q, 6q, and 15q were involved in a reciprocal translocation, in addition to a paracentric inversion of the derivative chromosome 15. Conventional cytogenetic studies with high resolution GTG banding did not resolve this rearrangement. FISH using whole chromosome paints (WCPs) identified the chromosomal regions involved, except the aberrant region of 3q, which was undetectable with these probes. Investigation of this region with the subtelomeric FISH probe D3S1445/D3S1446 showed a balanced karyotype, 46,XX,t(3;15;6) (q29;q26.1;q26), inv der(15) (q15.1q26.1) in two adult females and one fetus. It was unbalanced in two sibs, showing two different types of unbalanced translocation resulting in partial trisomy 3q in combination with partial monosomy 6q in one patient and partial trisomy 15q with partial monosomy 6q in the other patient and one fetus. These represent apparently new chromosomal phenotypes. Images PMID:9678698

  8. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  9. Array-CGH and clinical characterization in a patient with subtelomeric 6p deletion without ocular dysgenesis.

    PubMed

    Piccione, Maria; Antona, R; Salzano, E; Cavani, S; Malacarne, M; Morreale Bubella, R; Pierluigi, M; Viaggi, C D; Corsello, Giovanni

    2012-01-01

    Subtelomeric terminal 6p deletion has been recognized as a clinically identifiable syndrome including facial dysmorphism, malformation of the anterior eye chamber, hearing loss, heart defects, and developmental delay. Genotype-phenotype correlations of previously published patients have strongly suggested anterior eye segment anomalies as one of the major malformations of the syndrome if the critical 6p25 region contains the FOXC 1 gene. In addition, the presence in this region of one or more genes involved in hearing loss has been hypothesized. We report a patient with a 47,XYY karyotype and submicroscopic terminal 6p deletion. Further characterization of the deletion with array comparative genome hybridization also revealed a cryptic microduplication on chromosome 19. The patient showed dysmorphic features, neuromotor retardation, and profound language impairment, in absence of hearing loss and structural eye anomalies. As far as we know this is the first reported terminal 6p25.1 deletion case without eye dysgenesis precisely characterized by array-CGH. Our result suggests that the genes in this region may not be obvious candidates for hearing loss and demonstrate the need for further elucidation of the function of the genes involved in eye developmental processes.

  10. Copy-Number Variations Observed in a Japanese Population by BAC Array CGH: Summary of Relatively Rare CNVs

    PubMed Central

    Satoh, Yasunari; Sasaki, Keiko; Shimoichi, Yuko; Sugita, Keiko; Katayama, Hiroaki; Takahashi, Norio

    2012-01-01

    Copy-number variations (CNVs) may contribute to genetic variation in humans. Reports regarding existence and characteristics of CNVs in a large apparently healthy Japanese cohort are quite limited. We report the data from a screening of 213 unrelated Japanese individuals using comparative genomic hybridization based on a bacterial artificial chromosome microarray (BAC aCGH). In a previous paper, we summarized the data by focusing on highly polymorphic CNVs (in ≥5.0 % of the individuals). However, rare variations have recently received attention from scientists who espouse a hypothesis called “common disease and rare variants.” Here, we report CNVs identified in fewer than 10 individuals in our study population. We found a total of 126 CNVs at 52 different BAC regions in the genome. The CNVs observed at 27 of the 52 BAC-regions were found in only one unrelated individual. The majority of CNVs found in this study were not identified in the Japanese who were examined in the other studies. Family studies were conducted, and the results demonstrated that the CNVs were inherited from one parent in the families. PMID:22315515

  11. Unique Combination of 22q11 and 14qter Microdeletion Syndromes Detected Using Oligonucleotide Array-CGH

    PubMed Central

    Zrnová, E.; Vranová, V.; Šoukalová, J.; Slámová, I.; Vilémová, M.; Gaillyová, R.; Kuglík, P.

    2012-01-01

    We report an infant with a unique combination of 22q11 deletion syndrome and 14q terminal deletion syndrome. The proband had clinical symptoms compatible with diagnosis of 22q11 deletion syndrome: microcephaly, micrognathia, high-arched palate, hypertelorism, short palpebral fissures, square nasal root, prominent tubular nose, hypoplastic nasal alae, bulbous nasal tip, dysplastic low-set ears, short philtrum, and heart defect, but no cell-mediated immunodeficiency typical for the syndrome. G-banding and fluorescence in situ hybridization analyses revealed a karyotype 45,XY,der(14)t(14;22)(q32.3;q11.2),-22.ish del(14)(q32.33)(D14S1420-),del(22)(q11.2q11.2)(N25-). Subsequent analyses disclosed a translocation between chromosomes 14 and 22 in the proband's mother with a deleted 14q telomere. Using comparative genome hybridization on oligonucleotide-based microarray (array-CGH), the deletion at 22q11.21 in the size of ∼4.25 Mb was revealed in the proband as well as the deletion of the telomeric area at 14q32.33qter (∼3.24 Mb) in the proband and his mother. However, both the proband and his mother showed mild symptoms (microcephaly, thin lips, carp-shaped mouth) typical for patients with the described terminal 14q deletion syndrome. PMID:22511897

  12. A highly conserved pericentromeric domain in human and gorilla chromosomes.

    PubMed

    Pita, M; Gosálvez, J; Gosálvez, A; Nieddu, M; López-Fernández, C; Mezzanotte, R

    2009-01-01

    Significant similarity between human and gorilla genomes has been found in all chromosome arms, but not in centromeres, using whole-comparative genomic hybridization (W-CGH). In human chromosomes, centromeric regions, generally containing highly repetitive DNAs, are characterized by the presence of specific human DNA sequences and an absence of homology with gorilla DNA sequences. The only exception is the pericentromeric area of human chromosome 9, which, in addition to a large block of human DNA, also contains a region of homology with gorilla DNA sequences; the localization of these sequences coincides with that of human satellite III. Since highly repetitive DNAs are known for their high mutation frequency, we hypothesized that the chromosome 9 pericentromeric DNA conserved in human chromosomes and deriving from the gorilla genome may thus play some important functional role.

  13. High-Throughput Screening for Spermatogenesis Candidate Genes in the AZFc Region of the Y Chromosome by Multiplex Real Time PCR Followed by High Resolution Melting Analysis

    PubMed Central

    Alechine, Evguenia; Corach, Daniel

    2014-01-01

    Microdeletions in the AZF region of the Y chromosome are among the most frequent genetic causes of male infertility, although the specific role of the genes located in this region is not fully understood. AZFa and AZFb deletions impair spermatogenesis since no spermatozoa are found in the testis. Deletions of the AZFc region, despite being the most frequent in azoospermic patients, do not correlate with spermatogenic failure. Therefore, the aim of this work was to develop a screening method to ascertain the presence of the main spermatogenesis candidate genes located in the AZFc region in the light of the identification of those responsible for spermatogenic failure. DAZ, CDY, BPY2, PRY, GOLGA2LY and CSGP4LY genes were selected on the basis of their location in the AZFc region, testis-only expression, and confirmed or predicted protein codification. AMEL and SRY were used as amplification controls. The identification of Real Time PCR products was performed by High Resolution Melting analysis with SYTO 9 as intercalating dye. The herein described method allows a rapid, simple, low-cost, high-throughput screening for deletions of the main AZFc genes in patients with spermatogenic failure. This provides a strategy that would accelerate the identification of spermatogenesis candidate genes in larger populations of patients with non-obstructive idiopathic azoospermia. PMID:24828879

  14. High-throughput screening for spermatogenesis candidate genes in the AZFc region of the Y chromosome by multiplex real time PCR followed by high resolution melting analysis.

    PubMed

    Alechine, Evguenia; Corach, Daniel

    2014-01-01

    Microdeletions in the AZF region of the Y chromosome are among the most frequent genetic causes of male infertility, although the specific role of the genes located in this region is not fully understood. AZFa and AZFb deletions impair spermatogenesis since no spermatozoa are found in the testis. Deletions of the AZFc region, despite being the most frequent in azoospermic patients, do not correlate with spermatogenic failure. Therefore, the aim of this work was to develop a screening method to ascertain the presence of the main spermatogenesis candidate genes located in the AZFc region in the light of the identification of those responsible for spermatogenic failure. DAZ, CDY, BPY2, PRY, GOLGA2LY and CSGP4LY genes were selected on the basis of their location in the AZFc region, testis-only expression, and confirmed or predicted protein codification. AMEL and SRY were used as amplification controls. The identification of Real Time PCR products was performed by High Resolution Melting analysis with SYTO 9 as intercalating dye. The herein described method allows a rapid, simple, low-cost, high-throughput screening for deletions of the main AZFc genes in patients with spermatogenic failure. This provides a strategy that would accelerate the identification of spermatogenesis candidate genes in larger populations of patients with non-obstructive idiopathic azoospermia.

  15. Further delineation of novel 1p36 rearrangements by array-CGH analysis: narrowing the breakpoints and clarifying the "extended" phenotype.

    PubMed

    Giannikou, Krinio; Fryssira, Helen; Oikonomakis, Vasilis; Syrmou, Areti; Kosma, Konstantina; Tzetis, Maria; Kitsiou-Tzeli, Sofia; Kanavakis, Emmanouel

    2012-09-15

    High resolution oligonucleotide array Comparative Genome Hybridization technology (array-CGH) has greatly assisted the recognition of the 1p36 contiguous gene deletion syndrome. The 1p36 deletion syndrome is considered to be one of the most common subtelomeric microdeletion syndromes and has an incidence of ~1 in 5000 live births, while respectively the "pure" 1p36 microduplication has not been reported so far. We present seven new patients who were referred for genetic evaluation due to Developmental Delay (DD), Mental Retardation (MR), and distinct dysmorphic features. They all had a wide phenotypic spectrum. In all cases previous standard karyotypes were negative. Array-CGH analysis revealed five patients with interstitial 1p36 microdeletion (four de novo and one maternal) and two patients with de novo reciprocal duplication of different sizes. These were the first reported "pure" 1p36 microduplication cases so far. Three of our patients carrying the 1p36 microdeletion syndrome were also found to have additional pathogenetic aberrations. These findings (del 3q27.1; del 4q21.22-q22.1; del 16p13.3; dup 21q21.2-q21.3; del Xp22.12) might contribute to the patients' severe phenotype, acting as additional modifiers of their clinical manifestations. We review and compare the clinical and array-CGH findings of our patients to previously reported cases with the aim of clearly delineating more accurate genotype-phenotype correlations for the 1p36 syndrome that could allow for a more precise prognosis.

  16. Purification, partial characterization, and heterologous radioimmunoassay of growth hormone (cGH) in red deer.

    PubMed

    Curlewis, J D; Loudon, A S; McNeilly, A S

    1992-10-01

    Red deer growth hormone (cGH; 3.3 mg) was purified from an aqueous extract of seven pituitary glands (4.01 g wet weight) by preparative gel filtration on Sephadex G-100, gel filtration on Sephadex G-100 SF, and anion exchange chromatography on DEAE-Sepharose CL-6B. Purified cGH gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight under reducing conditions of 20,000 Da and gave a single peak on reverse-phase high-performance liquid chromatography. N-Terminal amino acid determination of 42 residues gave a sequence identical with those published for bovine and ovine GH. In a radioreceptor assay based on binding of iodinated recombinant bovine GH (rbGH) to liver microsomes prepared from a pregnant ewe, cGH was equipotent with an ovine GH (oGH) standard. In an oGH radioimmunoassay, cGH diluted in parallel with oGH and rbGH. Using this assay plasma GH concentrations were determined in adult nonpregnant red deer hinds over a 12-month period. There was a significant seasonality in plasma GH concentrations with concentrations consistently low between mid-May and mid-September. This is the period when voluntary food intake and liveweight gain are greatest. It is suggested that in the presence of low plasma GH concentrations nutrients may be diverted toward lipogenesis and hence promote fat deposition.

  17. Genomic Aberrations in an African American Colorectal Cancer Cohort Reveals a MSI-Specific Profile and Chromosome X Amplification in Male Patients

    PubMed Central

    Brim, Hassan; Lee, Edward; Abu-Asab, Mones S.; Chaouchi, Mohamed; Razjouyan, Hadi; Namin, Hassanzadeh; Goel, Ajay; Schäffer, Alejandro A.; Ashktorab, Hassan

    2012-01-01

    Objective DNA aberrations that cause colorectal cancer (CRC) occur in multiple steps that involve microsatellite instability (MSI) and chromosomal instability (CIN). Herein, we studied CRCs from AA patients for their CIN and MSI status. Experimental Design Array CGH was performed on 30 AA colon tumors. The MSI status was established. The CGH data from AA were compared to published lists of 41 TSG and oncogenes in Caucasians and 68 cancer genes, proposed via systematic sequencing for somatic mutations in colon and breast tumors. The patient-by-patient CGH profiles were organized into a maximum parsimony cladogram to give insights into the tumors' aberrations lineage. Results The CGH analysis revealed that CIN was independent of age, gender, stage or location. However, both the number and nature of aberrations seem to depend on the MSI status. MSI-H tumors clustered together in the cladogram. The chromosomes with the highest rates of CGH aberrations were 3, 5, 7, 8, 20 and X. Chromosome X was primarily amplified in male patients. A comparison with Caucasians revealed an overall similar aberration profile with few exceptions for the following genes; THRB, RAF1, LPL, DCC, XIST, PCNT, STS and genes on the 20q12-q13 cytoband. Among the 68 CAN genes, all showed some level of alteration in our cohort. Conclusion Chromosome X amplification in male patients with CRC merits follow-up. The observed CIN may play a distinctive role in CRC in AAs. The clustering of MSI-H tumors in global CGH data analysis suggests that chromosomal aberrations are not random. PMID:22879877

  18. Marker chromosomes.

    PubMed

    Rao, Kiran Prabhaker; Belogolovkin, Victoria

    2013-04-01

    Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.

  19. Design and validation of a pericentromeric BAC clone set aimed at improving diagnosis and phenotype prediction of supernumerary marker chromosomes

    PubMed Central

    2013-01-01

    Background Small supernumerary marker chromosomes (sSMCs) are additional, structurally abnormal chromosomes, generally smaller than chromosome 20 of the same metaphase spread. Due to their small size, they are difficult to characterize by conventional cytogenetics alone. In regard to their clinical effects, sSMCs are a heterogeneous group: in particular, sSMCs containing pericentromeric euchromatin are likely to be associated with abnormal outcomes, although exceptions have been reported. To improve characterization of the genetic content of sSMCs, several approaches might be applied based on different molecular and molecular-cytogenetic assays, e.g., fluorescent in situ hybridization (FISH), array-based comparative genomic hybridization (array CGH), and multiplex ligation-dependent probe amplification (MLPA). To provide a complementary tool for the characterization of sSMCs, we constructed and validated a new, FISH-based, pericentromeric Bacterial Artificial Chromosome (BAC) clone set that with a high resolution spans the most proximal euchromatic sequences of all human chromosome arms, excluding the acrocentric short arms. Results By FISH analysis, we assayed 561 pericentromeric BAC probes and excluded 75 that showed a wrong chromosomal localization. The remaining 486 probes were used to establish 43 BAC-based pericentromeric panels. Each panel consists of a core, which with a high resolution covers the most proximal euchromatic ~0.7 Mb (on average) of each chromosome arm and generally bridges the heterochromatin/euchromatin junction, as well as clones located proximally and distally to the core. The pericentromeric clone set was subsequently validated by the characterization of 19 sSMCs. Using the core probes, we could rapidly distinguish between heterochromatic (1/19) and euchromatic (11/19) sSMCs, and estimate the euchromatic DNA content, which ranged from approximately 0.13 to more than 10 Mb. The characterization was not completed for seven sSMCs due to a

  20. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality.

  1. Three tumor-suppressor regions on chromosome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer

    SciTech Connect

    Bepler, G.; Garcia-Blanco, A. )

    1994-06-07

    Non-small-cell lung cancer is the leading cause of cancer death for men and women in the industrialized nations. Identification of regions for genes involved in its pathogenesis has been difficult. Data presented here show three distinct regions identified on chromosome 11p. Two regions on 11p13 distal to the Wilms tumor gene WT1 and on 11p15.5 between the markers HBB and D11S860 are described. The third region on the telomere of 11p15.5 has been previously described and is further delineated in this communication. By high-resolution mapping the size of each of these regions was estimated to be 2-3 megabases. The frequency of somatic loss of genetic information in these regions (57%, 71%, and 45%, respectively) was comparable to that seen in heritable tumors such as Wilms tumor (55%) and retinoblastoma (70%) and suggests their involvement in pathogenesis of non-small-cell lung cancer. Gene dosage analyses revealed duplication of the remaining allele in the majority of cases in the 11p13 and the proximal 11p15.5 region but rarely in the distal 11p15.5 region. In tumors with loss of heterozygosity in all three regions any combination of duplication or simple deletion was observed, suggesting that loss of heterozygosity occurs independently and perhaps at different points in time. These results provide a basis for studies directed at cloning potential tumor-suppressor genes in these regions and for assessing their biological and clinical significance in non-small-cell lung cancer.

  2. A prenatally ascertained de novo terminal deletion of chromosomal bands 1q43q44 associated with multiple congenital abnormalities in a female fetus.

    PubMed

    Sismani, Carolina; Christopoulou, Georgia; Alexandrou, Angelos; Evangelidou, Paola; Donoghue, Jacqueline; Konstantinidou, Anastasia E; Velissariou, Voula

    2015-01-01

    Terminal deletions in the long arm of chromosome 1 result in a postnatally recognizable disorder described as 1q43q44 deletion syndrome. The size of the deletions and the resulting phenotype varies among patients. However, some features are common among patients as the chromosomal regions included in the deletions. In the present case, ultrasonography at 22 weeks of gestation revealed choroid plexus cysts (CPCs) and a single umbilical artery (SUA) and therefore amniocentesis was performed. Chromosomal analysis revealed a possible terminal deletion in 1q and high resolution array CGH confirmed the terminal 1q43q44 deletion and estimated the size to be approximately 8 Mb. Following termination of pregnancy, performance of fetopsy allowed further clinical characterization. We report here a prenatal case with the smallest pure terminal 1q43q44 deletion, that has been molecularly and phenotypically characterized. In addition, to our knowledge this is the first prenatal case reported with 1q13q44 terminal deletion and Pierre-Robin sequence (PRS). Our findings combined with review data from the literature show the complexity of the genetic basis of the associated syndrome.

  3. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH

    PubMed Central

    Vallespín, Elena; Villaverde, Cristina; Martín-Arenas, Rubén; Vélez-Monsalve, Camilo; Lorda-Sánchez, Isabel; Nevado, Julián; Trujillo-Tiebas, María José; Lapunzina, Pablo; Ayuso, Carmen; Corton, Marta

    2017-01-01

    Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening. PMID:28231309

  4. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis.

    PubMed

    Gu, Heng; Jiang, Jian-hui; Li, Jian-ying; Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  5. A Familial Cri-du-Chat/5p Deletion Syndrome Resulted from Rare Maternal Complex Chromosomal Rearrangements (CCRs) and/or Possible Chromosome 5p Chromothripsis

    PubMed Central

    Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family. PMID:24143197

  6. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes

    PubMed Central

    2014-01-01

    Background Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. However, there is still very limited information about the relationship between morphokinetic parameters, chromosomal compositions and implantation potential. Accordingly, this study aimed at investigating the effects of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing on pregnancy and implantation outcomes for patients undergoing preimplantation genetic screening (PGS). Methods A total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. These sibling MII oocytes were then randomized into two groups after ICSI: 1) Group A, oocytes (n = 582) were cultured in the time-lapse system and 2) Group B, oocytes (n = 581) were cultured in the conventional incubator. For both groups, whole genomic amplification and array CGH testing were performed after trophectoderm biopsy on day 5. One to two euploid blastocysts within the most predictive morphokinetic parameters (Group A) or with the best morphological grade available (Group B) were selected for transfer to individual patients on day 6. Ongoing pregnancy and implantation rates were compared between the two groups. Results There were significant differences in clinical pregnancy rates between Group A and Group B (71.1% vs. 45.9%, respectively, p = 0.037). The observed implantation rate per embryo transfer significantly increased in Group A compared to Group B (66.2% vs. 42.4%, respectively, p = 0.011). Moreover, a significant increase in ongoing pregnancy rates was also observed in Group A compared to Group B (68.9% vs. 40.5%. respectively, p = 0.019). However, there was no significant difference in miscarriage rate between the time-lapse system and the conventional incubator (3.1% vs. 11.8%, respectively, p = 0.273). Conclusions This is the first prospective investigation using

  7. Screening of 50 cypriot patients with autism spectrum disorders or autistic features using 400K custom array-CGH.

    PubMed

    Kousoulidou, Ludmila; Moutafi, Maria; Nicolaides, Paola; Hadjiloizou, Stavros; Christofi, Christos; Paradesiotou, Anna; Anastasiadou, Violetta; Sismani, Carolina; Patsalis, Philippos C

    2013-01-01

    Autism spectrum disorders (ASDs) comprise a distinct entity of neurodevelopmental disorders with a strong genetic component. Despite the identification of several candidate genes and causative genomic copy number variations (CNVs), the majority of ASD cases still remain unresolved. We have applied microarray-based comparative genomic hybridization (array-CGH) using Agilent 400K custom array in the first Cyprus population screening for identification of ASD-associated CNVs. A cohort of 50 ASD patients (G1), their parents (G2), 50 ethnically matched normal controls (G3), and 80 normal individuals having children with various developmental and neurological conditions (G4) were tested. As a result, 14 patients were found to carry 20 potentially causative aberrations, two of which were de novo. Comparison of the four population groups revealed an increased rate of rare disease-associated variants in normal parents of children with autism. The above data provided additional evidence, supporting the complexity of ASD aetiology in comparison to other developmental disorders involving cognitive impairment. Furthermore, we have demonstrated the rationale of a more targeted approach combining accurate clinical description with high-resolution population-oriented genomic screening for defining the role of CNVs in autism and identifying meaningful associations on the molecular level.

  8. Exome Sequencing of Germline DNA from Non-BRCA1/2 Familial Breast Cancer Cases Selected on the Basis of aCGH Tumor Profiling

    PubMed Central

    Hilbers, Florentine S.; Meijers, Caro M.; Laros, Jeroen F. J.; van Galen, Michiel; Hoogerbrugge, Nicoline; Vasen, Hans F. A.; Nederlof, Petra M.; Wijnen, Juul T.; van Asperen, Christi J.; Devilee, Peter

    2013-01-01

    The bulk of familial breast cancer risk (∼70%) cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis. PMID:23383274

  9. Zoom-in array comparative genomic hybridization (aCGH) to detect germline rearrangements in cancer susceptibility genes.

    PubMed

    Staaf, Johan; Borg, Ake

    2010-01-01

    Disease predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements, including deletions or duplications that are challenging, to detect and characterize using standard PCR-based mutation screening methods. Such rearrangements range from single exons up to hundreds of kilobases of sequence in size. Array-based comparative genomic hybridization (aCGH) has evolved as a powerful technique to detect copy number alterations on a genome-wide scale. However, the conventional genome-wide approach of aCGH still provides only limited information about copy number status for individual exons. Custom-designed aCGH arrays focused on only a few target regions (zoom-in aCGH) may circumvent this drawback. Benefits of zoom-in aCGH include the possibility to target almost any region in the genome, and an unbiased coverage of exonic and intronic sequence facilitating convenient design of primers for sequence determination of the breakpoints. Furthermore, zoom-in aCGH can be streamlined for a particular application, for example, focusing on breast cancer susceptibility genes, with increased capacity using multiformat design.

  10. Genomic CGH-assessed structural DNA alterations in rectal carcinoma as related to local recurrence following primary operation for cure.

    PubMed

    Kodeda, K; Asting, A Gustafsson; Lönnroth, C; Derwinger, K; Wettergren, Y; Nordgren, S; Gustavsson, B; Lundholm, K

    2012-10-01

    Several factors determine overall outcome and possible local recurrence after curative surgery for rectal carcinoma. Surgical performance is usually believed to be the most pertinent factor, followed by adjuvant oncological treatment and tumor histopathology. However, chromosomal instability is common in colorectal cancer and tumor clones are assumed to differ in aggressiveness and potential of causing local recurrence. The aim of this study was, therefore, to evaluate if genetic alterations in primary rectal carcinoma are predictive of local recurrences. A large clinical database with linked bio-bank allowed for careful matching of two patient groups (R0) resected for rectal carcinoma. One group had developed early, isolated local recurrences and the other group seemed cured after 93 months follow-up. DNA from the primary tumors was analysed with array-CGH (comparative genomic hybridization) including 55,000 genomic probes. DNA from all primary tumors in both groups displayed previously reported and well-recognised DNA aberrations in colorectal carcinoma. Significant copy number gains were confirmed in the 4q31.1-31.22 region in DNA from tumors with subsequent local recurrence. Twenty-two affected genes in this region code for products with high relevance in tumor biology (p53 regulation, cell cycle activity, transcription). DNA from rectal carcinoma displayed well-known aberrations as described for colon carcinoma with no obvious prediction of local rectal recurrence. Gains in the 4q31.1-31.22 DNA region are highly potential for local recurrence despite R0 resection to be confirmed in larger patient materials.

  11. DNA profiling by array comparative genomic hybridization (CGH) of peripheral blood mononuclear cells (PBMC) and tumor tissue cell in non-small cell lung cancer (NSCLC).

    PubMed

    Baik, Seung-Ho; Jee, Bo-Keun; Choi, Jin-Soo; Yoon, Hyoung-Kyu; Lee, Kweon-Haeng; Kim, Yeul-Hong; Lim, Young

    2009-09-01

    Lung tumor cell DNA copy number alteration (CNA) was expected to display specific patterns such as a large-scale amplification or deletion of chromosomal arms, as previously published data have reported. Peripheral blood mononuclear cell (PBMC) CNA however, was expected to show normal variations in cancer patients as well as healthy individuals, and has thus been used as normal control DNA samples in various published studies. We performed array CGH to measure and compare genetic changes in terms of the CNA of PBMC samples as well as DNA isolated from tumor tissue samples, obtained from 24 non-small cell lung cancer patients. Contradictory to expectations, our studies showed that the PBMC CNA also showed chromosomal variant regions. The list included well-known tumor-associated NTRK1, FGF8, TP53, and TGFbeta1 genes and potentially novel oncogenes such as THPO (3q27.1), JMJD1B, and EGR1 (5q31.2), which was investigated in this study. The results of this study highlighted the connection between PBMC and tumor cell genomic DNA in lung cancer patients. However, the application of these studies to cancer prognosis may pose a challenge due to the large amount of information contained in genetic predisposition and family history that has to be processed for useful downstream clinical applications.

  12. Array-CGH predicts prognosis in plasma cell post-transplantation lymphoproliferative disorders.

    PubMed

    Sarkozy, Clémentine; Kaltenbach, Sophie; Faurie, Pierre; Canioni, Danielle; Berger, Françoise; Traverse-Glehen, Alexandra; Ghesquieres, Hervé; Salles, Gilles; Bachy, Emmanuel; Alyanakian, Marie-Alexandra; Hermine, Olivier; Neven, Bénédicte; Macintyre, Elizabeth; Romana, Serge; Molina, Thierry Jo; Suarez, Felipe; Asnafi, Vahid; Bruneau, Julie

    2017-03-01

    Plasma-cell post-transplantation lymphoproliferative disorder (PC-PTLD) is a rare monomorphic PTLD entity divided into plasma cell myeloma (PCM) and plasmacytoma-like lesion (PLL) PTLD. To date, there are no exhaustive published cytogenetic data on PC-PTLD. We report array-based comparative genomic hybridization (aCGH) of 10 cases of PCM and PLL-PTLD. Patients had received kidney (n = 6), heart (n = 2), lung (n = 1) or bone marrow (n = 1) transplantation. There were six men and median age at time of PTLD was 56.5 years (3-74). We identified two different cytological features, plasmacytic and plasmablastic, among six PLL and three PCM PTLD. Eight cases were associated with EBV. First line treatment was heterogeneous: rituximab alone (n = 5), CHOP-like (n = 3) and multiple myeloma-like (n = 1). One patient died before any treatment. After a median follow-up of 19.5 months (0-150), five patients died (four from PTLD) and five were alive without evidence of disease. By aCGH, 5/10 demonstrated a complex profile. The most frequent abnormalities were +7q (5/10), +16q (5/10), +17q (5/10), +17p (4/10), +5q (4/10), t7 (4/10), t9 (3/10), del1p (3/10). No del17p13 (TP53) were observed. Del1p32.3 (CDKN2C) was observed in 2 cases. On univariate prognostic analysis, a complex aCGH was associated with a shorter OS. Thus, cytogenetic abnormalities seem to be closely related to those reported in multiple myeloma or diffuse large B cell lymphoma. Complex aCGH constitutes an unfavorable prognostic marker and aCGH should be integrated in the evaluation of patients with PLL/PCM-PTLD. © 2016 Wiley Periodicals, Inc.

  13. Array CGH characterization of an unbalanced X-autosome translocation associated with Xq27.2-qter deletion, 11q24.3-qter duplication and Xq22.3-q27.1 duplication in a girl with primary amenorrhea and mental retardation.

    PubMed

    Chen, Chih-Ping; Lin, Shuan-Pei; Chern, Schu-Rern; Kuo, Yu-Ling; Wu, Peih-Shan; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2014-02-01

    We present array comparative genomic hybridization (aCGH) characterization of an unbalanced X-autosome translocation with an Xq interstitial segmental duplication in a 16-year-old girl with primary ovarian failure, mental retardation, attention deficit disorder, learning difficulty and facial dysmorphism. aCGH analysis revealed an Xq27.2-q28 deletion, an 11q24.3-q25 duplication, and an inverted duplication of Xq22.3-q27.1. The karyotype was 46,X,der(X)t(X;11)(q27.2;q24.3) dup(X)(q27.1q22.3). We discuss the genotype-phenotype correlation in this case. Our case provides evidence for an association of primary amenorrhea and mental retardation with concomitant unbalanced X-autosome translocation and X chromosome rearrangement.

  14. [Chromosomal organization of the genomes of small-chromosome plants].

    PubMed

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species.

  15. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.

    PubMed

    Misceo, Doriana; Capozzi, Oronzo; Roberto, Roberta; Dell'oglio, Maria P; Rocchi, Mariano; Stanyon, Roscoe; Archidiacono, Nicoletta

    2008-09-01

    In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of approximately 1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the last common ancestor of all living lesser apes was made by combining these data with previous results in Nomascus leucogenys, Hoolock hoolock, and Symphalangus syndactylus. The definition of the ancestral synteny organization facilitated tracking the cascade of chromosomal changes from the Hominoidea ancestor to the present day karyotype of Hylobates and Nomascus. Each chromosomal rearrangement could be placed within an approximate phylogenetic and temporal framework. We identified 12 lar-specific rearrangements and five previously undescribed rearrangements that occurred in the Hylobatidae ancestor. The majority of the chromosomal differences between lar gibbons and humans are due to rearrangements that occurred in the Hylobatidae ancestor (38 events), consistent with the hypothesis that the genus Hylobates is the most recently evolved lesser ape genus. The rates of rearrangements in gibbons are 10 to 20 times higher than the mammalian default rate. Segmental duplication may be a driving force in gibbon chromosome evolution, because a consistent number of rearrangements involves pericentromeric regions (10 events) and centromere inactivation (seven events). Both phenomena can be reasonably supposed to have strongly contributed to the euchromatic dispersal of segmental duplications typical of pericentromeric regions. This hypothesis can be more fully tested when the sequence of this gibbon species becomes available. The detailed synteny map provided here will, in turn, substantially facilitate sequence assembly efforts.

  16. Impact of centralization on aCGH-based genomic profiles for precision medicine in oncology

    PubMed Central

    Commo, F.; Ferté, C.; Soria, J. C.; Friend, S. H.; André, F.; Guinney, J.

    2015-01-01

    Background Comparative genomic hybridization (CGH) arrays are increasingly used in personalized medicine programs to identify gene copy number aberrations (CNAs) that may be used to guide clinical decisions made during molecular tumor boards. However, analytical processes such as the centralization step may profoundly affect CGH array results and therefore may adversely affect outcomes in the precision medicine context. Patients and methods The effect of three different centralization methods: median, maximum peak, alternative peak, were evaluated on three datasets: (i) the NCI60 cell lines panel, (ii) the Cancer Cell Line Encyclopedia (CCLE) panel, and (iii) the patients enrolled in prospective molecular screening trials (SAFIR-01 n = 283, MOSCATO-01 n = 309), and compared with karyotyping, drug sensitivity, and patient-drug matching, respectively. Results Using the NCI60 cell lines panel, the profiles generated by the alternative peak method were significantly closer to the cell karyotypes than those generated by the other centralization strategies (P < 0.05). Using the CCLE dataset, selected genes (ERBB2, EGFR) were better or equally correlated to the IC50 of their companion drug (lapatinib, erlotinib), when applying the alternative centralization. Finally, focusing on 24 actionable genes, we observed as many as 7.1% (SAFIR-01) and 6.8% (MOSCATO-01) of patients originally not oriented to a specific treatment, but who could have been proposed a treatment based on the alternative peak centralization method. Conclusion The centralization method substantially affects the call detection of CGH profiles and may thus impact precision medicine approaches. Among the three methods described, the alternative peak method addresses limitations associated with existing approaches. PMID:25538175

  17. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai

    2017-02-01

    The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.

  18. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  19. Modeling Chromosomes

    ERIC Educational Resources Information Center

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  20. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma.

    PubMed

    Zettl, Andreas; Ott, German; Makulik, Angela; Katzenberger, Tiemo; Starostik, Petr; Eichler, Thorsten; Puppe, Bernhard; Bentz, Martin; Müller-Hermelink, Hans Konrad; Chott, Andreas

    2002-11-01

    Genetic alterations in enteropathy-type T-cell lymphoma (ETL) are unknown so far. In this series, 38 cases of ETL were analyzed by comparative genomic hybridization (CGH). CGH revealed chromosomal imbalances in 87% of cases analyzed, with recurrent gains of genetic material involving chromosomes 9q (in 58% of cases), 7q (24%), 5q (18%), and 1q (16%). Recurrent losses of genetic material occurred on chromosomes 8p and 13q (24% each), and 9p (18%). In this first systematic genetic study on ETL, chromosomal gains on 9q (minimal overlapping region 9q33-q34) were found to be highly characteristic of ETL. Fluorescence in situ hybridization analysis on four cases of ETL, using a probe for 9q34, indicated frequent and multiple gains of chromosomal material at 9q34 (up to nine signals per case). Among 16 patients with ETL who survived initial disease presentation, patients with more than three chromosomal gains or losses (n = 11) followed a worse clinical course than those with three or less imbalances (n = 5). The observation of similar genetic alterations in ETL and in primary gastric (n = 4) and colonic (n = 1) T-cell lymphoma, not otherwise specified, is suggestive of a genetic relationship of gastrointestinal T-cell lymphomas at either localization.

  1. Complex Mosaic Ring Chromosome 11 Associated with Hemizygous Loss of 8.6 Mb of 11q24.2qter in Atypical Jacobsen Syndrome.

    PubMed

    Galvão Gomes, Alexandra; Paiva Grangeiro, Carlos H; Silva, Luiz R; Oliveira-Gennaro, Flávia G; Pereira, Ciro S; Joaquim, Tatiana M; Panepucci, Rodrigo A; Squire, Jeremy A; Martelli, Lucia

    2017-01-01

    Jacobsen syndrome (JBS) is a contiguous gene deletion syndrome involving terminal chromosome 11q. The haploinsufficiency of multiple genes contributes to the overall clinical phenotype, which can include the variant Paris-Trousseau syndrome, a transient thrombocytopenia related to FLI1 hemizygous deletion. We investigated a boy with features of JBS using classic cytogenetic methods, FISH and high-resolution array CGH. The proband was found to have a mosaic ring chromosome 11 resulting in a hemizygous 11q terminal deletion of 8.6 Mb, leading to a copy number loss of 52 genes. The patient had a hemizygous deletion in the FLI1 gene region without apparent thrombocytopenia, and he developed diabetes mellitus type I, which has not previously been described in the spectrum of disorders associated with JBS. The relationship of some of the genes within the context of the phenotype caused by a partial deletion of 11q has provided insights concerning the developmental anomalies presented in this patient with atypical features of JBS.

  2. A continuous high-resolution physical map spanning 17 megabases of the q12, q13.1, and q13.2 cytogenetic bands of human chromosome 19

    SciTech Connect

    Garcia, E.; Elliott, J.; Gorvad, A.

    1995-05-01

    The authors report the construction of a high-resolution physical map of a 17-Mb region that encompasses the entire q12, q13.1, and q13.2 bands of human chromosome 19. The continuous map extends from a region approximately 400 kb centromeric of the D1j9S7 marker to the excision repair cross-complementing rodent repair deficiency complementation group 1 (ERCC1) locus. The ordered clone map has been obtained starting from a foundation of cosmid contigs assembled by automated fingerprinting and localized to the cytogenetic map by fluorescence in situ hybridization (FISH). Clonal continuity of the map has been achieved by binning and linking the premapped cosmid contigs by means of yeast artificial chromosomes (YACs). The map consists of a single contig composed of 169 YAC members (minimal spanning path of 18 YACs) linking 165 cosmid contigs. Eighty percent, or about 13.2 Mb of the entire regions spanned by the map, has been resolved to the EcoRI restriction map level. Twenty-nine sequence-tagged sites associated with genetic markers or derived from FISH-mapped cosmids have been placed on the map. In addition to the ERCC1 gene area, the map includes the location of the creatine kinase muscle locus (CKM), imidazoledipeptidase (PEPD), glucophosphate isomerase (GPI), myelin-associated glycoprotein (MAG), the apolipoprotein E and C (APOE and APOC) genes, and the ryanodine receptor (RYR1) gene. This type of map provides a source of continuously overlapping DNA segments at a level of resolution two orders of magnitude higher than that obtained using YACs alone. In addition, it provides ready-to-use reagents for detailed analyses at the gene level, FISH studies of chromosomal aberrations, and DNA sequencing. 53 refs., 5 tabs., 5 figs.

  3. Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition

    PubMed Central

    Sato, Michio; Yagishita, Fumitoshi; Mino, Takashi; Uchiyama, Nahoko; Patel, Ashay; Chooi, Yit-Heng; Goda, Yukihiro; Xu, Wei; Noguchi, Hiroshi; Yamamoto, Tsuyoshi; Hotta, Kinya; Houk, Kendall N.; Tang, Yi

    2016-01-01

    Understanding enzymatic Diels—Alder (DA) reactions that can form complex natural product scaffold is of considerable interest. Sch 210972 1, a potential anti-HIV fungal natural product, contains a decalin core that is proposed to form via a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo 1 and a diastereomeric exo adducts of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin-like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. PMID:26360642

  4. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 22 associated with cat eye syndrome.

    PubMed

    Chen, Chih-Ping; Ko, Tsang-Ming; Chen, Yi-Yung; Su, Jun-Wei; Wang, Wayseen

    2013-09-15

    We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1-q11.21 encompassing CECR1-CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22).

  5. Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH.

    PubMed

    Caselli, R; Speciale, C; Pescucci, C; Uliana, V; Sampieri, K; Bruttini, M; Longo, I; De Francesco, S; Pramparo, T; Zuffardi, O; Frezzotti, R; Acquaviva, A; Hadjistilianou, T; Renieri, A; Mari, F

    2007-01-01

    We describe three patients with retinoblastoma, dysmorphic features and developmental delay. Patients 1 and 2 have high and broad forehead, deeply grooved philtrum, thick anteverted lobes and thick helix. Patient 1 also has dolicocephaly, sacral pit/dimple and toe crowding; patient 2 shows intrauterine growth retardation and short fifth toe. Both patients have partial agenesis of corpus callosum. Patient 3 has growth retardation, microcephaly, thick lower lip and micrognathia. Using array-comparative genomic hybridization (CGH), we identified a 13q14 de novo deletion in patients 1 and 2, while patient 3 had a 7q11.21 maternally inherited deletion, probably not related to the disease. Our results confirm that a distinct facial phenotype is related to a 13q14 deletion. Patients with retinoblastoma and malformations without a peculiar facial phenotype may have a different deletion syndrome or a casual association of mental retardation and retinoblastoma. Using array-CGH, we defined a critical region for mental retardation and dysmorphic features. We compared this deletion with a smaller one in a patient with retinoblastoma (case 4) and identified two distinct critical regions, containing 30 genes. Four genes appear to be good functional candidates for the neurological phenotype: NUFIP1 (nuclear fragile X mental retardation protein 1), HTR2A (serotonin receptor 2A), PCDH8 (prothocaderin 8) and PCDH17 (prothocaderin 17).

  6. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    PubMed Central

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  7. Clinical Implementation of Chromosomal Microarray Analysis: Summary of 2513 Postnatal Cases

    PubMed Central

    Lu, Xinyan; Shaw, Chad A.; Patel, Ankita; Li, Jiangzhen; Cooper, M. Lance; Wells, William R.; Sullivan, Cathy M.; Sahoo, Trilochan; Yatsenko, Svetlana A.; Bacino, Carlos A.; Stankiewicz, Pawel; Ou, Zhishu; Chinault, A. Craig; Beaudet, Arthur L.; Lupski, James R.; Cheung, Sau W.; Ward, Patricia A.

    2007-01-01

    Background Array Comparative Genomic Hybridization (a-CGH) is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA). Methods and Findings CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5%) of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872) with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524) abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs) of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. Conclusions This large set of clinical results demonstrates the significantly improved sensitivity of CMA for the

  8. Controversies about the chromosomal stability of cultivated mesenchymal stem cells: their clinical use is it safe?

    PubMed

    Ferreira, Reginaldo Justino; Irioda, Ana Carolina; Cunha, Ricardo Correa; Francisco, Julio Cesarm; Guarita-Souza, Luiz Cesar; Srikanth, Garikipati Venkata Naga; Nityanand, Soniya; Rosati, Roberto; Chachques, Juan Carlos; de Carvalho, Katherine Athayde Teixeira

    2012-09-01

    The usefulness of adult stem cells in research and therapeutic applications highly relies on their genomic integrity and stability. Many laboratories including ours have addressed this concern using methods such as karyotyping, Qbanding, fluorescent in situ hybridization, array CGH, flow cytometry and Pap test to evaluate number and structure of chromosomes and cellular phenotype. This review attempts to summarize the findings reported so far for the studies on chromosomal aberrations in adult stem cells and warrant to perform certain basic tests before transplantation to avoid any adverse reactions, which will thus aid in better therapeutic output after cellular transplantation in the treatment of various diseases.

  9. An Xq22.3 duplication detected by comparative genomic hybridization microarray (Array-CGH) defines a new locus (FGS5) for FG syndrome.

    PubMed

    Jehee, Fernanda Sarquis; Rosenberg, Carla; Krepischi-Santos, Ana Cristina; Kok, Fernando; Knijnenburg, Jeroen; Froyen, Guy; Vianna-Morgante, Angela M; Opitz, John M; Passos-Bueno, Maria Rita

    2005-12-15

    FG syndrome is an X-linked multiple congenital anomalies (MCA) syndrome. It has been mapped to four distinct loci FGS1-4, through linkage analysis (Xq13, Xp22.3, and Xp11.4-p11.3) and based on the breakpoints of an X chromosome inversion (Xq11:Xq28), but so far no gene has been identified. We describe a boy with FG syndrome who has an inherited duplication at band Xq22.3 detected by comparative genomic hybridization microarray (Array-CGH). These duplication maps outside all four loci described so far for FG syndrome, representing therefore a new locus, which we propose to be called FGS5. MID2, a gene closely related to MID1, which is known to be mutated in Opitz G/BBB syndrome, maps within the duplicated segment of our patient. Since FG and Opitz G/BBB syndromes share many manifestations we considered MID2 a candidate gene for FG syndrome. We also discuss the involvement of other potential genes within the duplicated segment and its relationship with clinical symptoms of our patient, as well as the laboratory abnormalities found in his mother, a carrier of the duplication.

  10. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Zhen; Li, Junwen; Muhammad, Jamshed; Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  11. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0–153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0–153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0–153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%–11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection. PMID:26262992

  12. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    SciTech Connect

    Lyons, Jessica

    2014-12-11

    Cassava Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculent Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. Here, we used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.

  13. Bacterial Chromosome Organization and Segregation

    PubMed Central

    Toro, Esteban; Shapiro, Lucy

    2010-01-01

    Bacterial chromosomes are generally ∼1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segregation of daughter chromosomes and anchoring of DNA to the cell envelope. Active segregation by a mitotic machinery appears to be common; however, the mode of chromosome segregation varies significantly from species to species. PMID:20182613

  14. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    SciTech Connect

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  15. Using aCGH to study intraspecific genetic variability in two pathogenic molds, Aspergillus fumigatus and Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intraspecific molecular divergence is the basis of all sequence-based typing methods employed in many clinical laboratories to differentiate strains of pathogenic fungi. We have examined the feasibility of using array comparative genomic hybridization (aCGH) approaches to explore the extent of gene...

  16. Detailed phenotype-genotype study in five patients with chromosome 6q16 deletion: narrowing the critical region for Prader-Willi-like phenotype.

    PubMed

    Bonaglia, Maria Clara; Ciccone, Roberto; Gimelli, Giorgio; Gimelli, Stefania; Marelli, Susan; Verheij, Joke; Giorda, Roberto; Grasso, Rita; Borgatti, Renato; Pagone, Filomena; Rodrìguez, Laura; Martinez-Frias, Maria-Luisa; van Ravenswaaij, Conny; Zuffardi, Orsetta

    2008-12-01

    Most patients with an interstitial deletion of 6q16 have Prader-Willi-like phenotype, featuring obesity, hypotonia, short hands and feet, and developmental delay. In all reported studies, the chromosome rearrangement was detected by karyotype analysis, which provides an overview of the entire genome but has limited resolution. Here we describe a detailed clinical presentation of five patients, two of whom were previously reported, with overlapping interstitial 6q16 deletions and Prader-Willi-like phenotype. Our patients share the following main features with previously reported cases: global developmental delay, hypotonia, obesity, hyperphagia, and eye/vision anomalies. All rearrangement breakpoints have been accurately defined through array-CGH at about 100 Kb resolution. We were able to narrow the shortest region of deletion overlap for the presumed gene(s) involved in the Prader-Willi-like syndrome to 4.1 Mb located at 6q16.1q16.2. Our results support the evidence that haploinsufficiency of the SIM1 gene is responsible for obesity in these patients. A possible involvement of the GRIK2 gene in autistic-like behaviour, of POPDC3 in heart development, and of MCHR2 in the control of feeding behaviour and energy metabolism is also hypothesized.

  17. Statistical methods for detecting genomic alterations through array-based comparative genomic hybridization (CGH).

    PubMed

    Wang, Yuedong; Guo, Sun-Wei

    2004-01-01

    Array-based comparative genomic hybridization (ABCGH) is an emerging high-resolution and high-throughput molecular genetic technique that allows genome-wide screening for chromosome alterations associated with tumorigenesis. Like the cDNA microarrays, ABCGH uses two differentially labeled test and reference DNAs which are cohybridized to cloned genomic fragments immobilized on glass slides. The hybridized DNAs are then detected in two different fluorochromes, and the significant deviation from unity in the ratios of the digitized intensity values is indicative of copy-number differences between the test and reference genomes. Proper statistical analyses need to account for many sources of variation besides genuine differences between the two genomes. In particular, spatial correlations, the variable nature of the ratio variance and non-Normal distribution call for careful statistical modeling. We propose two new statistics, the standard t-statistic and its modification with variances smoothed along the genome, and two tests for each statistic, the standard t-test and a test based on the hybrid adaptive spline (HAS). Simulations indicate that the smoothed t-statistic always improves the performance over the standard t-statistic. The t-tests are more powerful in detecting isolated alterations while those based on HAS are more powerful in detecting a cluster of alterations. We apply the proposed methods to the identification of genomic alterations in endometrium in women with endometriosis.

  18. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles.

    PubMed

    Montiel, E E; Badenhorst, D; Tamplin, J; Burke, R L; Valenzuela, N

    2017-02-01

    Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8-20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1-a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.

  19. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus.

    PubMed

    Hartmann, Sylvia; Gesk, Stefan; Scholtysik, René; Kreuz, Markus; Bug, Stefanie; Vater, Inga; Döring, Claudia; Cogliatti, Sergio; Parrens, Marie; Merlio, Jean-Philippe; Kwiecinska, Anna; Porwit, Anna; Piccaluga, Pier Paolo; Pileri, Stefano; Hoefler, Gerald; Küppers, Ralf; Siebert, Reiner; Hansmann, Martin-Leo

    2010-02-01

    Little is known about genomic aberrations in peripheral T cell lymphoma, not otherwise specified (PTCL NOS). We studied 47 PTCL NOS by 250k GeneChip single nucleotide polymorphism arrays and detected genomic imbalances in 22 of the cases. Recurrent gains and losses were identified, including gains of chromosome regions 1q32-43, 2p15-16, 7, 8q24, 11q14-25, 17q11-21 and 21q11-21 (> or = 5 cases each) as well as losses of chromosome regions 1p35-36, 5q33, 6p22, 6q16, 6q21-22, 8p21-23, 9p21, 10p11-12, 10q11-22, 10q25-26, 13q14, 15q24, 16q22, 16q24, 17p11, 17p13 and Xp22 (> or = 4 cases each). Genomic imbalances affected several regions containing members of nuclear factor-kappaB signalling and genes involved in cell cycle control. Gains of 2p15-16 were confirmed in each of three cases analysed by fluorescence in situ hybridization (FISH) and were associated with breakpoints at the REL locus in two of these cases. Three additional cases with gains of the REL locus were detected by FISH among 18 further PTCL NOS. Five of 27 PTCL NOS investigated showed nuclear expression of the REL protein by immunohistochemistry, partly associated with genomic gains of the REL locus. Therefore, in a subgroup of PTCL NOS gains/rearrangements of REL and expression of REL protein may be of pathogenetic relevance.

  20. The method to reduce the spinal error in the aspheric mirror testing with the CGH

    NASA Astrophysics Data System (ADS)

    Yan, Fengtao; Fan, Bin; Hou, Xi; Wu, Fan; Lei, Baiping; Liu, Haitao; Zhao, Hongshen

    2016-09-01

    Interferometric optical testing using computer-generated holograms(CGHs) has proven to supply a very good and accurate measurements method of the aspheric surfaces. However, the CGHs are diffractive optical elements which use diffraction to create wavefronts of light with desired amplitudes and phases. The different diffraction order of the light would be make some ghost image to the fringe pattern. It would introduce some spinal error to the measurement results. This error would not be avoided after the CGH designed and manufactured. In this work, we take two measurement steps to reduce the spinal error. The first step, the apheric mirror was tested with the CGHs. The second step, the aspheric mirror was tested with transmission sphere directly. Then the subaperture theory was used to obtain the final measurement results of the aspheric mirror surface. The experimental demonstrations were provided by testing an aspheric mirror. The results are shown that this method could reduce the spinal error.

  1. Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement.

    PubMed

    Jarosova, Marie; Urbankova, Helena; Plachy, Radek; Papajik, Tomas; Holzerova, Milena; Balcarkova, Jana; Pikalova, Zuzana; Divoky, Vladimir; Indrak, Karel

    2010-02-01

    Array-based comparative genomic hybridization (arrayCGH) studies in chronic lymphocytic leukemia (CLL) have revealed novel recurrent chromosomal imbalances, such as a gain of chromosome 2p. However, a detailed cytogenetic analysis of the 2p gain region has not been elucidated. Here, we present cytogenetic and molecular cytogenetic analysis of 16 such cases selected from a group of 200 patients with CLL based on CGH and/or arrayCGH data. We revealed significant heterogeneity of the region of gain on 2p in CLL, including a new recurrent aberration: the dicentric chromosome, dic(2;18). In our cases, the region of gain involved three genes (MYCN, REL, and ALK) and was associated with an unmutated IgVH status in 14 out of 16 cases. We consider this aberration clinically important in CLL and suggest that an examination of the gene(s) located in region of gain should be included in the routine fluorescence in situ hybridization screening method used for patients with CLL.

  2. Trisomy of chromosome 16p13.3 due to an unbalanced insertional translocation into chromosome 22p13.

    PubMed

    de Ravel, Thomy; Aerssens, Peter; Vermeesch, Joris R; Fryns, Jean-Pierre

    2005-01-01

    A dysmorphic boy with severe mental retardation was found on array CGH to have an insertional translocation of chromosome 16p13.3 into the short arm of chromosome 22, karyotype 46,XY,.ish der(22),ins(22;16)(p13;p13.3p13.3) de novo. His clinical features overlap with the reported cases of 'duplication 16p' syndrome, namely a round face, hypertelorism, a long philtrum, micrognathia, a thin upper lip, a posterior cleft palate and low set, simple ears, clubbed feet, severe developmental delay, psychomotor retardation and seizures. This 4-year boy with trisomy 16p13.3 has the smallest duplication reported of this critical region, which could not be detected without array CGH. The maximal duplicated region is gene rich and contains about 80 genes and/or candidate genes. Assignment of the genes that contribute to the observed phenotype awaits the characterisation of other patients with small duplications in this region.

  3. A 10.46 Mb 12p11.1-12.1 interstitial deletion coincident with a 0.19 Mb NRXN1 deletion detected by array CGH in a girl with scoliosis and autism.

    PubMed

    Soysal, Yasemin; Vermeesch, Joris; Davani, Nooshin Ardeshir; Hekimler, Kuyaş; Imirzalioğlu, Necat

    2011-07-01

    We present a 12-year-old girl with de novo karyotype 46,XX,del(12)(p11.1p12.1). Array CGH revealed in addition to a 10.466 Mb interstitial deletion on 12p11.1→12p12.1 a 0.191 Mb deletion on 2p16.3. The girl presented with mild facial dysmorphism consisting of microcephaly, hypertelorism, downslanting palpebral fissures, strabismus, broad nasal base, bulbous nose, short philtrum, micro/retrognathia, irregular tooth arrangement, phalangeal deformity in distal phalanges of hands, 5th finger camptodactyly, brachydactyly in feet, history of joint hypermobility, and scoliosis. She was considered to have mild to moderate mental retardation and ascertained for an autism spectrum disorder(ASD). Short arm of chromosome 12 interstitial deletions are rarely reported whereas point mutations and deletions of NRXN1, which is located on chromosome 2p16.3, are associated with ASDs. In this article we present and discuss the phenotypic consequences of a patient who was affected by deletions of two different chromosomal regions.

  4. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

  5. Amplification and overexpression of CTTN and CCND1 at chromosome 11q13 in Esophagus squamous cell carcinoma (ESCC) of North Eastern Chinese Population.

    PubMed

    Hu, Xiaoxia; Moon, Ji Wook; Li, Shibo; Xu, Weihong; Wang, Xianfu; Liu, Yuanyuan; Lee, Ji-Yun

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and is a major cause of cancer-related mortality. The combination of genetics, diet, behavior, and environment plays an important role in the carcinogenesis of ESCC. To characterize the genomic aberrations of this disease, we investigated the genomic imbalances in 19 primary ESCC cases using high-resolution array comparative genomic hybridization (CGH). All cases showed either loss or gain of whole chromosomes or segments of chromosome(s) with variable genomic sizes. The copy number alterations per case affected the median 34% (~ 1,034Mb/3,000Mb) of the whole genome. Recurrent gains were 1q21.3-qter, 3q13.11-qter, 5pter-p11, 7pter-p15.3, 7p12.1-p11.2, 7q11-q11.2, 8p12-qter, 11q13.2-q13.3, 12pter-p13.31, 17q24.2, 20q11.21-qter, and 22q11.21-q11.22 whereas the recurrent losses were 3pter-p11.1, 4pter-p12, 4q28.3-q31.22, 4q31.3-q32.1, 9pter-p12, 11q22.3-qter and 13q12.11-q22.1. Amplification of 11q13 resulting in overexpression of CTTN/CCND1 was the most prominent finding, which was observed in 13 of 19 ESCC cases. These unique profiles of copy number alteration should be validated by further studies and need to be taken into consideration when developing biomarkers for early detection of ESCC.

  6. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients

    PubMed Central

    De Gregori, M; Ciccone, R; Magini, P; Pramparo, T; Gimelli, S; Messa, J; Novara, F; Vetro, A; Rossi, E; Maraschio, P; Bonaglia, M C; Anichini, C; Ferrero, G B; Silengo, M; Fazzi, E; Zatterale, A; Fischetto, R; Previderé, C; Belli, S; Turci, A; Calabrese, G; Bernardi, F; Meneghelli, E; Riegel, M; Rocchi, M; SGuerneri; Lalatta, F; Zelante, L; Romano, C; Fichera, Ma; Mattina, T; Arrigo, G; Zollino, M; Giglio, S; Lonardo, F; Bonfante, A; Ferlini, A; Cifuentes, F; Van Esch, H; Backx, L; Schinzel, A; Vermeesch, J R; Zuffardi, O

    2007-01-01

    Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome‐wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis. PMID:17766364

  7. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed.

  8. High-Resolution Mapping of a Genetic Locus Regulating Preferential Carbohydrate Intake, Total Kilocalories, and Food Volume on Mouse Chromosome 17

    PubMed Central

    Gularte-Mérida, Rodrigo; DiCarlo, Lisa M.; Robertson, Ginger; Simon, Jacob; Johnson, William D.; Kappen, Claudia; Medrano, Juan F.; Richards, Brenda K.

    2014-01-01

    The specific genes regulating the quantitative variation in macronutrient preference and food intake are virtually unknown. We fine mapped a previously identified mouse chromosome 17 region harboring quantitative trait loci (QTL) with large effects on preferential macronutrient intake-carbohydrate (Mnic1), total kilcalories (Kcal2), and total food volume (Tfv1) using interval-specific strains. These loci were isolated in the [C57BL/6J.CAST/EiJ-17.1-(D17Mit19-D17Mit50); B6.CAST-17.1] strain, possessing a ∼40.1 Mb region of CAST DNA on the B6 genome. In a macronutrient selection paradigm, the B6.CAST-17.1 subcongenic mice eat 30% more calories from the carbohydrate-rich diet, ∼10% more total calories, and ∼9% more total food volume per body weight. In the current study, a cross between carbohydrate-preferring B6.CAST-17.1 and fat-preferring, inbred B6 mice was used to generate a subcongenic-derived F2 mapping population; genotypes were determined using a high-density, custom SNP panel. Genetic linkage analysis substantially reduced the 95% confidence interval for Mnic1 (encompassing Kcal2 and Tfv1) from 40.1 to 29.5 Mb and more precisely established its boundaries. Notably, no genetic linkage for self-selected fat intake was detected, underscoring the carbohydrate-specific effect of this locus. A second key finding was the separation of two energy balance QTLs: Mnic1/Kcal2/Tfv1 for food intake and a newly discovered locus regulating short term body weight gain. The Mnic1/Kcal2/Tfv1 QTL was further de-limited to 19.0 Mb, based on the absence of nutrient intake phenotypes in subcongenic HQ17IIa mice. Analyses of available sequence data and gene ontologies, along with comprehensive expression profiling in the hypothalamus of non-recombinant, cast/cast and b6/b6 F2 controls, focused our attention on candidates within the QTL interval. Zfp811, Zfp870, and Btnl6 showed differential expression and also contain stop codons, but have no known biology related to food

  9. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  10. Lampbrush chromosomes enable study of cohesin dynamics.

    PubMed

    Austin, Christopher; Novikova, Natalya; Guacci, Vincent; Bellini, Michel

    2009-01-01

    The lampbrush chromosomes present in the nuclei of amphibian oocytes offer unique biological approaches for study of the mechanisms that regulate chromatin structure with high spatial resolution. We discuss fundamental aspects of the remarkable organization and plasticity exhibited by lampbrush chromosomes. We then utilize lampbrush chromosomes to characterize the chromosomal distribution and dynamics of cohesin, the four-protein complex (RAD21/MCD1/SCC1, SMC1, SMC3, SCC3/SA2) responsible for sister chromatid cohesion. We find that endogenous SMC3 and newly expressed hRAD21 co-localize on chromosomal axes, sites where sister chromatids are tightly paired. We present evidence suggesting that hRAD21 recruitment to lampbrush chromosomes is modulated by chromosomal SMC1 and SMC3. Notably, using a technique for de novo chromosome assembly, we demonstrate that both SMC3 and hRAD21 are recruited to single, unreplicated lampbrush chromatids. Finally, we used our novel method of analyzing the oocyte nucleus under oil combined with fluorescence recovery after photobleaching, to provide direct evidence that cohesin is highly dynamic at discrete, condensed chromosomal regions. Collectively, these data demonstrate that lampbrush chromosomes provide a unique and powerful tool for combining biochemical and cytological analyses for dissection of complex chromosomal processes.

  11. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia.

    PubMed

    Chandrasekharappa, Settara C; Lach, Francis P; Kimble, Danielle C; Kamat, Aparna; Teer, Jamie K; Donovan, Frank X; Flynn, Elizabeth; Sen, Shurjo K; Thongthip, Supawat; Sanborn, Erica; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A

    2013-05-30

    Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.

  12. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.

    PubMed

    Deregowska, Anna; Skoneczny, Marek; Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Rawska, Ewa; Skoneczna, Adrianna; Lewinska, Anna; Wnuk, Maciej

    2015-10-13

    Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains.

  13. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts

    PubMed Central

    Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Rawska, Ewa; Skoneczna, Adrianna

    2015-01-01

    Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains. PMID:26384347

  14. Mechanisms of chromosome behaviour during mitosis

    PubMed Central

    Walczak, Claire E.; Cai, Shang; Khodjakov, Alexey

    2010-01-01

    For over a century, scientists have strived to understand the mechanisms that govern the accurate segregation of chromosomes during mitosis. The most intriguing feature of this process, which is particularly prominent in higher eukaryotes, is the complex behaviour exhibited by the chromosomes. This behaviour is based on specific and highly regulated interactions between the chromosomes and spindle microtubules. Recent discoveries, enabled by high-resolution imaging combined with the various genetic, molecular, cell biological and chemical tools, support the idea that establishing and controlling the dynamic interaction between chromosomes and microtubules is a major factor in genomic fidelity. PMID:20068571

  15. Genome architecture: domain organization of interphase chromosomes.

    PubMed

    Bickmore, Wendy A; van Steensel, Bas

    2013-03-14

    The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.

  16. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  17. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    PubMed

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  18. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes.

    PubMed

    Ezaz, Tariq; Quinn, Alexander E; Miura, Ikuo; Sarre, Stephen D; Georges, Arthur; Marshall Graves, Jennifer A

    2005-01-01

    The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used molecular cytogenetic and differential banding techniques to reveal sex chromosomes in this species. Comparative genomic hybridization (CGH), GTG- and C-banding identified a highly heterochromatic microchromosome specific to females, demonstrating female heterogamety (ZZ/ZW) in this species. We isolated the P. vitticeps W chromosome by microdissection, re-amplified the DNA and used it to paint the W. No unpaired bivalents were detected in male synaptonemal complexes at meiotic pachytene, confirming male homogamety. We conclude that P. vitticeps has differentiated previously unidentifable W and Z micro-sex chromosomes, the first to be demonstrated in an agamid lizard. Our finding implies that heterochromatinization of the heterogametic chromosome occurred during sex chromosome differentiation in this species, as is the case in some lizards and many snakes, as well as in birds and mammals. Many GSD reptiles with cryptic sex chromosomes may also prove to have micro-sex chromosomes. Reptile microchromosomes, long dismissed as non-functional minutiae and often omitted from karyotypes, therefore deserve closer scrutiny with new and more sensitive techniques.

  19. A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis.

    PubMed

    Finkers-Tomczak, Anna; Danan, Sarah; van Dijk, Thijs; Beyene, Amelework; Bouwman, Liesbeth; Overmars, Hein; van Eck, Herman; Goverse, Aska; Bakker, Jaap; Bakker, Erin

    2009-06-01

    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class.

  20. Polymerase Chain Reaction-based Suppression of Repetitive Sequences in Whole Chromosome Painting Probes for FISH

    SciTech Connect

    Dugan, L C; Pattee, M; Williams, J; Eklund, M; Bedford, J S; Christian, A T

    2004-04-21

    We have developed a method to suppress the PCR amplification of repetitive sequences in whole chromosome painting probes by adding Cot-1 DNA to the amplification mixture. The repetitive sequences in the Cot-1 DNA bind to their homologous sequences in the probe library, prevent the binding of primers, and interfere with extension of the probe sequences, greatly decreasing PCR efficiency selectively across these blocked regions. A second labeling reaction is then done and this product is resuspended in FISH hybridization mixture without further addition of blocking DNA. The hybridization produces little if any non-specific binding on any other chromosomes. We have been able to successfully use this procedure with both human and rat chromosome probes. This technique should be applicable in producing probes for CGH, M-FISH and SKY, as well as reducing the presence of repetitive DNA in genomic libraries.

  1. A novel 47.2 Mb duplication on chromosomal bands Xq21.1-25 associated with mental retardation.

    PubMed

    Jin, Zhijuan; Yu, Li; Geng, Juan; Wang, Jian; Jin, Xingming; Huang, Hong

    2015-08-01

    We present array comparative genomic hybridization (aCGH) characterization of a novel Xq21.1-25 duplication in a 2-year-old girl with facial dysmorphism, mental retardation and short stature. Analysis of aCGH results revealed a 47,232kb duplication region that harbored 231 RefSeq genes, including 32 OMIM genes. Ten genes (i.e., ZNF711, SRPX2, RAB40AL, MID2, ACSL4, PAK3, UBE2A, UPF3B, CUL4B, and GRIA3) in the duplication interval have been associated with mental retardation. We discuss the genotype-phenotype correlation in this case. Our case provides evidence for an association of mental retardation with X chromosome duplication.

  2. Cri-Du-Chat Syndrome: Clinical Profile and Chromosomal Microarray Analysis in Six Patients

    PubMed Central

    Espirito Santo, Layla Damasceno; Moreira, Lília Maria Azevedo; Riegel, Mariluce

    2016-01-01

    Cri-du-chat syndrome is a chromosomal disorder caused by a deletion of the short arm of chromosome 5. The disease severity, levels of intellectual and developmental delay, and patient prognosis have been related to the size and position of the deletion. Aiming to establish genotype-phenotype correlations, we applied array-CGH to evaluate six patients carrying cytogenetically detected deletions of the short arm of chromosome 5 who were followed at a genetics community service. The patients' cytogenetic and clinical profiles were reevaluated. A database review was performed to predict additional genes and regulatory elements responsible for the characteristic phenotypic and behavioral traits of this disorder. Array-CGH analysis allowed for delineation of the terminal deletions, which ranged in size from approximately 11.2 Mb to 28.6 Mb, with breakpoints from 5p15.2 to 5p13. An additional dup(8)(p23) (3.5 Mb), considered to be a benign copy number variation, was also observed in one patient. The correlation coefficient value (ρ = 0.13) calculated indicated the presence of a weak relationship between developmental delay and deletion size. Genetic background, family history, epigenetic factors, quantitative trait locus polymorphisms, and environmental factors may also affect patient phenotype and must be taken into account in genotype-phenotype correlations. PMID:27144168

  3. Cri-Du-Chat Syndrome: Clinical Profile and Chromosomal Microarray Analysis in Six Patients.

    PubMed

    Espirito Santo, Layla Damasceno; Moreira, Lília Maria Azevedo; Riegel, Mariluce

    2016-01-01

    Cri-du-chat syndrome is a chromosomal disorder caused by a deletion of the short arm of chromosome 5. The disease severity, levels of intellectual and developmental delay, and patient prognosis have been related to the size and position of the deletion. Aiming to establish genotype-phenotype correlations, we applied array-CGH to evaluate six patients carrying cytogenetically detected deletions of the short arm of chromosome 5 who were followed at a genetics community service. The patients' cytogenetic and clinical profiles were reevaluated. A database review was performed to predict additional genes and regulatory elements responsible for the characteristic phenotypic and behavioral traits of this disorder. Array-CGH analysis allowed for delineation of the terminal deletions, which ranged in size from approximately 11.2 Mb to 28.6 Mb, with breakpoints from 5p15.2 to 5p13. An additional dup(8)(p23) (3.5 Mb), considered to be a benign copy number variation, was also observed in one patient. The correlation coefficient value (ρ = 0.13) calculated indicated the presence of a weak relationship between developmental delay and deletion size. Genetic background, family history, epigenetic factors, quantitative trait locus polymorphisms, and environmental factors may also affect patient phenotype and must be taken into account in genotype-phenotype correlations.

  4. Somatic Mosaicism in Cases with Small Supernumerary Marker Chromosomes

    PubMed Central

    Liehr, Thomas; Karamysheva, Tatyana; Merkas, Martina; Brecevic, Lukrecija; Hamid, Ahmed B.; Ewers, Elisabeth; Mrasek, Kristin; Kosyakova, Nadezda; Weise, Anja

    2010-01-01

    Somatic mosaicism is something that is observed in everyday lives of cytogeneticists. Chromosome instability is one of the leading causes of large-scale genome variation analyzable since the correct human chromosome number was established in 1956. Somatic mosaicism is also a well-known fact to be present in cases with small supernumerary marker chromosomes (sSMC), i.e. karyotypes of 47,+mar/46. In this study, the data available in the literature were collected concerning the frequency mosaicism in different subgroups of patients with sSMC. Of 3124 cases with sSMC 1626 (52%) present with somatic mosaicism. Some groups like patients with Emanuel-, cat-eye- or i(18p)- syndrome only tend rarely to develop mosaicism, while in Pallister-Killian syndrome every patient is mosaic. In general, acrocentric and non-acrocentric derived sSMCs are differently susceptible to mosaicism; non-acrocentric derived ones are hereby the less stable ones. Even though, in the overwhelming majority of the cases, somatic mosaicism does not have any detectable clinical effects, there are rare cases with altered clinical outcomes due to mosaicism. This is extremely important for prenatal genetic counseling. Overall, as mosaicism is something to be considered in at least every second sSMC case, array-CGH studies cannot be offered as a screening test to reliably detect this kind of chromosomal aberration, as low level mosaic cases and cryptic mosaics are missed by that. PMID:21358988

  5. Array-CGH reveals recurrent genomic changes in Merkel cell carcinoma including amplification of L-Myc.

    PubMed

    Paulson, Kelly G; Lemos, Bianca D; Feng, Bin; Jaimes, Natalia; Peñas, Pablo F; Bi, Xiaohui; Maher, Elizabeth; Cohen, Lisa; Leonard, J Helen; Granter, Scott R; Chin, Lynda; Nghiem, Paul

    2009-06-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with poorly characterized genetics. We performed high resolution comparative genomic hybridization on 25 MCC specimens using a high-density oligonucleotide microarray. Tumors frequently carried extra copies of chromosomes 1, 3q, 5p, and 6 and lost chromosomes 3p, 4, 5q, 7, 10, and 13. MCC tumors with less genomic aberration were associated with improved survival (P=0.04). Tumors from 13 of 22 MCC patients had detectable Merkel cell polyomavirus DNA, and these tumors had fewer genomic deletions. Three regions of genomic alteration were of particular interest: a deletion of 5q12-21 occurred in 26% of tumors, a deletion of 13q14-21 was recurrent in 26% of tumors and contains the well-characterized tumor suppressor RB1, and a previously unreported focal amplification at 1p34 was present in 39% of tumors and centers on L-Myc (MYCL1). L-Myc is related to the c-Myc proto-oncogene, has transforming activity, and is amplified in the closely related small cell lung cancer. Normal skin showed no L-Myc expression, whereas 4/4 MCC specimens tested expressed L-Myc RNA in relative proportion to the DNA copy number gain. These findings suggest several genes that may contribute to MCC pathogenesis, most notably L-Myc.

  6. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    PubMed

    Wang, Wei; Wang, Shenyuan; Hou, Chenglin; Xing, Yanping; Cao, Junwei; Wu, Kaifeng; Liu, Chunxia; Zhang, Dong; Zhang, Li; Zhang, Yanru; Zhou, Huanmin

    2014-01-01

    Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  7. Genome-Wide Detection of Copy Number Variations among Diverse Horse Breeds by Array CGH

    PubMed Central

    Hou, Chenglin; Xing, Yanping; Cao, Junwei; Wu, Kaifeng; Liu, Chunxia; Zhang, Dong; Zhang, Li; Zhang, Yanru; Zhou, Huanmin

    2014-01-01

    Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses. PMID:24497987

  8. Characterization of a balanced complex chromosomal rearrangement carrier ascertained through a fetus with dup15q26.3 and del5p15.33: case report.

    PubMed

    Lledo, Belen; Ortiz, Jose Antonio; Morales, Ruth; Manchon, Irene; Galan, Francisco; Bernabeu, Andrea; Bernabeu, Rafael

    2013-09-01

    Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than two chromosomes which rarely appear in individuals with normal phenotypes. These individuals report fertility problems, recurrent miscarriages, or congenital anomalies in newborn offspring as a consequence of either meiotic failure or imbalanced chromosome segregation. A CCR involving chromosomes 5, 15, and 18 was discovered in a phenotypically normal man through a fetus with congenital malformations and partial trisomy of chromosome 15 and monosomy of chromosome 5. Ultrasound examination at 20 weeks of gestation showed severe oligoamnios and hydrothorax. Prenatal cytogenetic analysis and array comparative genomic hybridization (array-CGH) revealed a female fetus with dup15q26.3 and del5p15.33. We diagnosed the CCR using three-color fluorescence in situ hybridization (three-color FISH), and a balanced CCR using array-CGH and FISH was diagnosed in the paternal karyotype. The father is a carrier of a balanced translocation 46,XY,t(5;15;18)(p15.31;q26.3;p11.2). Due to the complexity of these rearrangements the diagnosis is difficult and the reproductive outcome uncertain. Reporting such rare cases is important to enable such information to be used for genetic counseling in similar situations and help estimate the risk of miscarriage or of newborns with congenital abnormalities.

  9. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  10. A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation.

    PubMed

    Ozgen, Heval M; Staal, Wouter G; Barber, John C; de Jonge, Maretha V; Eleveld, Marc J; Beemer, Frits A; Hochstenbach, Ron; Poot, Martin

    2009-02-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic etiology. Cytogenetic abnormalities have been detected in 5-10% of the patients with autism. In this study, we present the clinical, cytogenetic and array-comparative genomic hybridization (array-CGH) evaluation of a 13-year-old male with severe developmental delay, facial dysmorphic features, autism and self mutilation. The patient was found to carry a de novo duplication of chromosome region 8p21 of minimally 6.14 and maximally 6.58 Mb as ascertained by bacterial artificial chromosome (BAC)-based array-CGH. Hitherto, only a few patients with autism with cytogenetically visible duplications involving the chromosome 8p21 region have been described, but the extent of these duplications has not been determined at the molecular level. This represents the smallest rearrangement of chromosomal region 8p21 as yet found in a patient with autism. For 11 of the 36 genes with known functions located within this duplication clear transcription in the brain was found. Of those the STMN4 and DPYSL2 genes are the most likely candidate genes to be involved in neuronal development, and, if altered in gene-dosage, in the autistic phenotype of our patient.

  11. Molecular cytogenetic and phenotypic characterization of ring chromosome 13 in three unrelated patients.

    PubMed

    Abdallah-Bouhjar, Inesse B; Mougou-Zerelli, Soumaya; Hannachi, Hanene; Gmidène, Abir; Labalme, Audrey; Soyah, Najla; Sanlaville, Damien; Saad, Ali; Elghezal, Hatem

    2013-09-01

    We report on the cytogenetic and molecular investigations of constitutional de-novo ring chromosome 13s in three unrelated patients for better understanding and delineation of the phenotypic variability characterizing this genomic rearrangement. The patient's karyotypes were as follows: 46,XY,r(13)(p11q34) dn for patients 1 and 2 and 46,XY,r(13)(p11q14) dn for patient 3, as a result of the deletion in the telomeric regions of chromosome 13. The patients were, therefore, monosomic for the segment 13q34 → 13qter; in addition, for patient 3, the deletion was larger, encompassing the segment 13q14 → 13qter. Fluorescence in situ hybridization confirmed these rearrangement and array CGH technique showed the loss of at least 2.9 Mb on the short arm and 4.7 Mb on the long arm of the chromosome 13 in patient 2. Ring chromosome 13 (r(13)) is associated with several phenotypic features like intellectual disability, marked short stature, brain and heart defects, microcephaly and genital malformations in males, including undescended testes and hypospadias. However, the hearing loss and speech delay that were found in our three patients have rarely been reported with ring chromosome 13. Although little is known about its etiology, there is interesting evidence for a genetic cause for the ring chromosome 13. We thus performed a genotype-phenotype correlation analysis to ascertain the contribution of ring chromosome 13 to the clinical features of our three cases.

  12. [Accidental finding of a cri du chat syndrome in an adult patient by means of array-CGH].

    PubMed

    Ferreirós-Martínez, Raquel; López-Manzanares, Lydia; Alonso-Cerezo, Concepción

    2014-07-16

    Introduccion. El sindrome cri du chat (SCDC) tiene su origen en una delecion parcial o total del brazo corto del cromosoma 5, y es uno de los sindromes de delecion cromosomica mas frecuentes en humanos. La mayoria de los pacientes se diagnostica entre el primer mes y el primer año de vida, si bien aqui se describe el hallazgo de un SCDC en una mujer con sospecha de ataxia espinocerebelar y antecedentes familiares de trastorno bipolar y ataxia, con especial atencion a las caracteristicas clinicas y las tecnicas diagnosticas que permitieron su identificacion. Caso clinico. Mujer de 46 años que presentaba una inteligencia limite, intervenida a los 43 años de faquectomia bilateral. El inicio de la sintomatologia fue durante la infancia, e incluia hipoacusia, ataxia, disartria, disfagia, depresion, deterioro cognitivo y trastorno bipolar. La exploracion fisica revelo microcefalia, micrognatia, pies equinos y ataxia. Se realizo cariotipo y array-CGH en sangre periferica. La paciente presentaba una traslocacion que involucraba los cromosomas 5 y 15, y una inversion del cromosoma 9: 45,XX,inv9(p11q13);t(5,15)(p15.33;q11.2). El array-CGH mostro una delecion de 2,91 Mb en 5p15.33, formula genomica arr 5p15.33 (151537-3057771)x1, que involucraba 20 genes, incluyendo el gen TERT. Conclusiones. La delecion de multiples genes confirmo el diagnostico de SCDC y es la responsable del fenotipo de la paciente. Se pone de manifiesto la importancia de utilizar tecnicas adecuadas de diagnostico (array-CGH, cariotipo en sangre periferica) y la correcta eleccion de estas.

  13. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  14. Technique to 'Map' Chromosomal Mosaicism at the Blastocyst Stage.

    PubMed

    Taylor, Tyl H; Griffin, Darren K; Katz, Seth L; Crain, Jack L; Johnson, Lauren; Gitlin, Susan

    2016-01-01

    The purpose of this study was to identify a technique that allows for comprehensive chromosome screening (CCS) of individual cells within human blastocysts along with the approximation of their location in the trophectoderm relative to the inner cell mass (ICM). This proof-of-concept study will allow for a greater understanding of chromosomal mosaicism at the blastocyst stage and the mechanisms by which mosaicism arises. One blastocyst was held by a holding pipette and the ICM was removed. While still being held, the blastocyst was further biopsied into quadrants. To separate the individual cells from the biopsied sections, the sections were placed in calcium/magnesium-free medium with serum for 20 min. A holding pipette was used to aspirate the sections until individual cells were isolated. Individual cells from each section were placed into PCR tubes and prepped for aCGH. A total of 18 cells were used for analysis, of which 15 (83.3%) amplified and provided a result and 3 (16.7%) did not. Fifteen cells were isolated from the trophectoderm; 13 (86.7%) provided an aCGH result, while 2 (13.3%) did not amplify. Twelve cells were euploid (46,XY), while 1 was complex abnormal (44,XY), presenting with monosomy 7, 10, 11, 13, and 19, and trisomy 14, 15, and 21. A total of 3 cells were isolated from the ICM; 2 were euploid (46,XY) and 1 did not amplify. Here, we expand on a previously published technique which disassociates biopsied sections of the blastocyst into individual cells. Since the blastocyst sections were biopsied in regard to the position of the ICM, it was possible to reconstruct a virtual image of the blastocyst while presenting each cell's individual CCS results.

  15. Human chromosome 8.

    PubMed Central

    Wood, S

    1988-01-01

    The role of human chromosome 8 in genetic disease together with the current status of the genetic linkage map for this chromosome is reviewed. Both hereditary genetic disease attributed to mutant alleles at gene loci on chromosome 8 and neoplastic disease owing to somatic mutation, particularly chromosomal translocations, are discussed. PMID:3070042

  16. B chromosomes: from cytogenetics to systems biology.

    PubMed

    Valente, Guilherme T; Nakajima, Rafael T; Fantinatti, Bruno E A; Marques, Diego F; Almeida, Rodrigo O; Simões, Rafael P; Martins, Cesar

    2017-02-01

    Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.

  17. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines

    PubMed Central

    Hidalgo, Alfredo; Monroy, Alberto; Arana, Rosa Ma; Taja, Lucía; Vázquez, Guelaguetza; Salcedo, Mauricio

    2003-01-01

    Background Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. Methods We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. Results All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. Conclusions Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma. PMID:12659655

  18. Mitotic chromosome structure

    SciTech Connect

    Heermann, Dieter W.

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  19. Characterization of Genomic Alterations in Radiation-Associated Breast Cancer among Childhood Cancer Survivors, Using Comparative Genomic Hybridization (CGH) Arrays

    PubMed Central

    Yang, Xiaohong R.; Killian, J. Keith; Hammond, Sue; Burke, Laura S.; Bennett, Hunter; Wang, Yonghong; Davis, Sean R.; Strong, Louise C.; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E.; Robison, Leslie L.; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D.; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an “amplifier” genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings. PMID:25764003

  20. Non-meiotic chromosome instability in human immature oocytes

    PubMed Central

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25–45 years of age) and 24 IVF oocyte donors (18–33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes. PMID:23695274

  1. Non-meiotic chromosome instability in human immature oocytes.

    PubMed

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; Del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-02-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.

  2. B Chromosomes - A Matter of Chromosome Drive.

    PubMed

    Houben, Andreas

    2017-01-01

    B chromosomes are supernumerary chromosomes which are often preferentially inherited, deviating from usual Mendelian segregation. The balance between the so-called chromosome drive and the negative effects that the presence of Bs applies on the fitness of their host determines the frequency of Bs in a particular population. Drive is the key for understanding most B chromosomes. Drive occurs in many ways at pre-meiotic, meiotic or post-meiotic divisions, but the molecular mechanism remains unclear. The cellular mechanism of drive is reviewed based on the findings obtained for the B chromosomes of rye, maize and other species. How novel analytical tools will expand our ability to uncover the biology of B chromosome drive is discussed.

  3. Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins.

    PubMed

    Gatto, Kaleb Pretto; Busin, Carmen Silvia; Lourenço, Luciana Bolsoni

    2016-01-01

    The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species.

  4. Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins

    PubMed Central

    Gatto, Kaleb Pretto; Busin, Carmen Silvia; Lourenço, Luciana Bolsoni

    2016-01-01

    The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species. PMID:27214234

  5. The Precarious Prokaryotic Chromosome

    PubMed Central

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other “precarious” features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  6. B-chromosome evolution.

    PubMed Central

    Camacho, J P; Sharbel, T F; Beukeboom, L W

    2000-01-01

    B chromosomes are extra chromosomes to the standard complement that occur in many organisms. They can originate in a number of ways including derivation from autosomes and sex chromosomes in intra- and interspecies crosses. Their subsequent molecular evolution resembles that of univalent sex chromosomes, which involves gene silencing, heterochromatinization and the accumulation of repetitive DNA and transposons. B-chromosome frequencies in populations result from a balance between their transmission rates and their effects on host fitness. Their long-term evolution is considered to be the outcome of selection on the host genome to eliminate B chromosomes or suppress their effects and on the B chromosome's ability to escape through the generation of new variants. Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes. PMID:10724453

  7. Supernumerary small ring chromosome.

    PubMed Central

    Kaffe, S; Kim, H J; Hsu, L Y; Brill, C B; Hirschhorn, K

    1977-01-01

    A supernumerary small ring chromosome was found in 30% of cultured peripheral leucocytes and 50% of skin fibroblasts in a 6-year-old boy with mild mental retardation and midline cleft palate. The extra chromosome appeared to carry a densely staining region on Giemsa banding. The banding patterns of the remaining 46 chromosomes were normal. C banding indicated that the ring chromosome contained mainly centromeric constitutive heterochromatin. Chromosome analysis of both parents showed normal karyotypes by both conventional and banding techniques; thus the origin of the ring chromosome could not be determined. Images PMID:604496

  8. Ring chromosome 4.

    PubMed Central

    McDermott, A; Voyce, M A; Romain, D

    1977-01-01

    A mentally and physically retarded boy with a 46,XY,ring (4) (p16q35) chromosome complement is described. Chromosome banding showed that the amount of chromosome material deleted from the ring chromosome 4 was minimal, apparently no more than the telomeres. Chromosomal aberrations appear to be restricted to the production of double-sized dicentric rings, and aneuploidy. The mosiacism resulting from the behavioural peculiarities of ring chromosomes is described as dynamic mosaicism. It is suggested that the clinical features associated with this ring chromosome are more likely to be the result of the effects of a diploid/monosomy 4/polysomy 4 mosaicism than to the deficiency of the telomeric regions of the chromosome. Images PMID:881718

  9. Chromosome Disorder Outreach

    MedlinePlus

    ... BLOG Join Us Donate You are not alone. Chromosome Disorder Outreach, Inc. is a non-profit organization, ... Support For all those diagnosed with any rare chromosome disorder. Since 1992, CDO has supported the parents ...

  10. Human X chromosome

    SciTech Connect

    1993-12-31

    Chapter 21, describes in detail the human X chromosome. X chromatin (or Barr body) formation, inactivation and reactivation of the X chromosome, X;Y translocations, and sex reversal are discussed. 30 refs., 3 figs.

  11. Genome-Wide Microarray Expression and Genomic Alterations by Array-CGH Analysis in Neuroblastoma Stem-Like Cells

    PubMed Central

    Martínez-Soto, Soledad; Legarra, Sheila; Pata-Merci, Noémie; Guegan, Justine; Danglot, Giselle; Bernheim, Alain; Meléndez, Bárbara; Rey, Juan A.; Castresana, Javier S.

    2014-01-01

    Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells. PMID:25392930

  12. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  13. Chromosomal Disorders and Autism.

    ERIC Educational Resources Information Center

    Gillberg, Christopher

    1998-01-01

    This paper reviews the literature on chromosomal aberrations in autism, especially possible gene markers. It notes that Chromosome 15 and numerical and structural abnormalities of the sex chromosomes have been most frequently reported as related to the genesis of autism. (Author/DB)

  14. The human Y chromosome.

    PubMed Central

    Goodfellow, P; Darling, S; Wolfe, J

    1985-01-01

    Despite its central role in sex determination, genetic analysis of the Y chromosome has been slow. This poor progress has been due to the paucity of available genetic markers. Whereas the X chromosome is known to include at least 100 functional genetic loci, only three or four loci have been ascribed to the Y chromosome and even the existence of several of these loci is controversial. Other factors limiting genetic analysis are the small size of the Y chromosome, which makes cytogenetic definition difficult, and the absence of extensive recombination. Based on cytogenetic observation and speculation, a working model of the Y chromosome has been proposed. In this classical model the Y chromosome is defined into subregions; an X-Y homologous meiotic pairing region encompassing most of the Y chromosome short arm and, perhaps, including a pseudoautosomal region of sex chromosome exchange; a pericentric region containing the sex determining gene or genes; and a long arm heterochromatic genetically inert region. The classical model has been supported by studies on the MIC2 loci, which encode a cell surface antigen defined by the monoclonal antibody 12E7. The X linked locus MIC2X, which escapes X inactivation, maps to the tip of the X chromosome short arm and the homologous locus MIC2Y maps to the Y chromosome short arm; in both cases, these loci are within the proposed meiotic pairing region. MIC2Y is the first biochemically defined, expressed locus to be found on the human Y chromosome. The proposed simplicity of the classical model has been challenged by recent molecular analysis of the Y chromosome. Using cloned probes, several groups have shown that a major part of the Y chromosome short arm is unlikely to be homologous to the X chromosome short arm. A substantial block of sequences of the short arm are homologous to sequences of the X chromosome long arm but well outside the pairing region. In addition, the short arm contains sequences shared with the Y chromosome

  15. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    PubMed

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  16. Chromosome instability syndromes

    SciTech Connect

    1993-12-31

    Chapter 11, discusses chromosome instability syndromes. The focus is on the most extensively studied genotypic chromosomal aberrations which include Bloom syndrome, Fanconi anemia, ataxia telangiectasia, and xeroderma pigmentosum. The great interest in these syndromes is out of proportion to their rare occurrence; however, studies of genotypic chromosome breakage have been inspired by the hope of throwing light on chromosome structure and behavior. A table is given which relates chromosomal aberrations in Bloom syndrome which may cause or promote cancer. 34 refs., 3 figs., 1 tab.

  17. Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer

    PubMed Central

    Holcomb, Ilona N.; Young, Janet M.; Coleman, Ilsa M.; Salari, Keyan; Grove, Douglas I.; Hsu, Li; True, Lawrence D.; Roudier, Martine P.; Morrissey, Colm M.; Higano, Celestia S.; Nelson, Peter S.; Vessella, Robert L.; Trask, Barbara J.

    2009-01-01

    Androgen deprivation is the mainstay of therapy for progressive prostate cancer. Despite initial and dramatic tumor inhibition, most men eventually fail therapy and die of metastatic castration-resistant (CR) disease. Here, we characterize the profound degree of genomic alteration found in CR tumors using array CGH, gene expression arrays, and FISH. By cluster analysis, we show that the similarity of the genomic profiles from primary and metastatic tumors is driven by the patient. Using data adjusted for this similarity, we identify numerous high-frequency alterations in the CR tumors, such as 8p loss and chromosome 7 and 8q gain. By integrating array CGH and expression array data, we reveal genes whose correlated values suggest they are relevant to prostate cancer biology. We find alterations that are significantly associated with the metastases of specific organ sites, and others with CR tumors versus the tumors of patients with localized prostate cancer not treated with androgen deprivation. Within the high-frequency sites of loss in CR metastases, we find an over-representation of genes involved in cellular lipid metabolism, including PTEN. Finally, using FISH we verify the presence of a gene fusion between TMPRSS2 and ERG suggested by chromosome-21 deletions detected by array CGH. We find the fusion in 54% of our CR tumors, and 81% of the fusion-positive tumors contain cells with multiple copies of the fusion. Our investigation lays the foundation for a better understanding of and possible therapeutic targets for CR disease, the poorly responsive and final stage of prostate cancer. PMID:19773449

  18. Identification of proximal 1p36 deletions using array-CGH: a possible new syndrome.

    PubMed

    Kang, S-H L; Scheffer, A; Ou, Z; Li, J; Scaglia, F; Belmont, J; Lalani, S R; Roeder, E; Enciso, V; Braddock, S; Buchholz, J; Vacha, S; Chinault, A C; Cheung, S W; Bacino, C A

    2007-10-01

    Monosomy 1p36 is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. Typically, the deletions span <10 Mb of 1pter-1p36.23 and result in mental retardation, developmental delay, sensorineural hearing loss, seizures, cardiomyopathy and cardiovascular malformations, and distinct facies including large anterior fontanel, deep-set eyes, straight eyebrows, flat nasal bridge, asymmetric ears, and pointed chin. We report five patients with 'atypical' proximal interstitial deletions from 1p36.23-1p36.11 using array-comparative genomic hybridization. Four patients carry large overlapping deletions of approximately 9.38-14.69 Mb in size, and one patient carries a small 2.97 Mb deletion. Interestingly, these patients manifest many clinical characteristics that are different from those seen in 'classical' monosomy 1p36 syndrome. The clinical presentation in our patients included: pre- and post-natal growth deficiency (mostly post-natal), feeding difficulties, seizures, developmental delay, cardiovascular malformations, microcephaly, limb anomalies, and dysmorphic features including frontal and parietal bossing, abnormally shaped and posteriorly rotated ears, hypertelorism, arched eyebrows, and prominent and broad nose. Most children also displayed hirsutism. Based on the analysis of the clinical and molecular data from our patients and those reported in the literature, we suggest that this chromosomal abnormality may constitute yet another deletion syndrome distinct from the classical distal 1p36 deletion syndrome.

  19. Isolation and characterization of DNA probes for human chromosome 21.

    PubMed

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  20. Development of a sequential multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus bubalis, 2n = 50) chromosomes.

    PubMed

    Pauciullo, Alfredo; Perucatti, Angela; Iannuzzi, Alessandra; Incarnato, Domenico; Genualdo, Viviana; Di Berardino, Dino; Iannuzzi, Leopoldo

    2014-08-01

    The development of new molecular techniques (array CGH, M-FISH, SKY-FISH, etc.) has led to great advancements in the entire field of molecular cytogenetics. However, the application of these methods is still very limited in farm animals. In the present study, we report, for the first time, the production of 13 river buffalo (Bubalus bubalis, 2n = 50) chromosome-specific painting probes, generated via chromosome microdissection and the DOP-PCR procedure. A sequential multicolor-FISH approach is also proposed on the same slide for the rapid identification of river buffalo chromosome/arms, namely, 1p-1q, 2p-2q, 3p-3q, 4p-4q, 5p-5q, 18, X, and Y, using both conventional and late-replicating banded chromosome preparations counterstained by DAPI. The provided 'bank' of chromosome-specific painting probes is useful for any further cytogenetic investigation not only for the buffalo breeds, but also for other species of the family Bovidae, such as cattle, sheep, and goats, for chromosome abnormality diagnosis, and, more generally, for evolutionary studies.

  1. Comparative chromosome painting in Carnivora and Pholidota.

    PubMed

    Perelman, P L; Beklemisheva, V R; Yudkin, D V; Petrina, T N; Rozhnov, V V; Nie, W; Graphodatsky, A S

    2012-01-01

    The order of Carnivora has been very well characterized with over 50 species analyzed by chromosome painting and with painting probe sets made for 9 Carnivora species. Representatives of almost all families have been studied with few exceptions (Otariidae, Odobenidae, Nandiniidae, Prionodontidae). The patterns of chromosome evolution in Carnivora are discussed here. Overall, many Carnivora species retained karyotypes that only slightly differ from the ancestral carnivore karyotype. However, there are at least 3 families in which the ancestral carnivore karyotype has been severely rearranged - Canidae, Ursidae and Mephitidae. Here we report chromosome painting of yet another Carnivora species with a highly rearranged karyotype, Genetta pardina. Recurrent rearrangements make it difficult to define the ancestral chromosomal arrangement in several instances. Only 2 species of pangolins (Pholidota), a sister order of Carnivora, have been studied by chromosome painting. Future use of whole-genome sequencing data is discussed in the context of solving the questions that are beyond resolution of conventional banding techniques and chromosome painting.

  2. Persistent super-diffusive motion of Escherichia coli chromosomal loci.

    PubMed

    Javer, Avelino; Kuwada, Nathan J; Long, Zhicheng; Benza, Vincenzo G; Dorfman, Kevin D; Wiggins, Paul A; Cicuta, Pietro; Lagomarsino, Marco Cosentino

    2014-05-30

    The physical nature of the bacterial chromosome has important implications for its function. Using high-resolution dynamic tracking, we observe the existence of rare but ubiquitous 'rapid movements' of chromosomal loci exhibiting near-ballistic dynamics. This suggests that these movements are either driven by an active machinery or part of stress-relaxation mechanisms. Comparison with a null physical model for subdiffusive chromosomal dynamics shows that rapid movements are excursions from a basal subdiffusive dynamics, likely due to driven and/or stress-relaxation motion. Additionally, rapid movements are in some cases coupled with known transitions of chromosomal segregation. They do not co-occur strictly with replication, their frequency varies with growth condition and chromosomal coordinate, and they show a preference for longitudinal motion. These findings support an emerging picture of the bacterial chromosome as off-equilibrium active matter and help developing a correct physical model of its in vivo dynamic structure.

  3. Chromosomes in the flow to simplify genome analysis.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Safář, Jan; Bartoš, Jan; Kubaláková, Marie; Simková, Hana

    2012-08-01

    Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.

  4. Digital imaging of Giemsa-banded human chromosomes: eigenanalysis and the Fourier phase reconstruction

    NASA Astrophysics Data System (ADS)

    Jericevic, Zeljko; McGavran, Loris; Smith, Louis C.

    1991-05-01

    The new methodology of chromosome analysis based on eigenanalysis and iterative Fourier synthesis has been developed. The approach is inspired by the analysis developed in electron microscopy of particles, and has been modified to address particular problems of chromosome analysis. Preliminary results on data sets containing 40-80 images for each of the human chromosomes indicate that this methodology provides an improvement of chromosome band resolution and potentially can provide cytogeneticist with some new insights. The proposed procedure is a novel approach in chromosome analysis and represents a significant contribution to quantitative cytogenetics. It opens the possibility of identifying defects in chromosome banding pattern automatically.

  5. A human chromosome 7 yeast artificial chromosome (YAC) resource: Construction, characterization, and screening

    SciTech Connect

    Green, E.D.; Braden, V.V.; Fulton, R.S.

    1995-01-01

    The paradigm of sequence-tagged site (STS)-content mapping involves the systematic assignment of STSs to individual cloned DNA segments. To date, yeast artificial chromosomes (YACs) represent the most commonly employed cloning system for constructing STS maps of large genomic intervals, such as whole human chromosomes. For developing a complete YAC-based STS-content map of human chromosome 7, we wished to utilize a limited set of YAC clones that were highly enriched for chromosome 7 DNA. Toward that end, we have assembled a human chromosome 7 YAC resource that consists of three major components: (1) a newly constructed library derived from a human-hamster hybrid cell line containing chromosome 7 as its only human DNA; (2) a chromosome 7-enriched sublibrary derived from the CEPH mega-YAC collection by Alu-polymerase chain reaction (Alu-PCR)-based hybridization; and (3) a set of YACs isolated from several total genomic libraries by screening for >125 chromosome 7 STSs. In particular, the hybrid cell line-derived YACs, which comprise the majority of the clones in the resource, have a relatively low chimera frequency (10-20%) based on mapping isolated insert ends to panels of human-hamster hybrid cell lines and analyzing individual clones by fluorescence in situ hybridization. An efficient strategy for polymerase chain reaction (PCR)-based screening of this YAC resource, which totals 4190 clones, has been developed and utilized to identify corresponding YACs for >600 STSs. The results of this initial screening effort indicate that the human chromosome 7 YAC resource provides an average of 6.9 positive clones per STS, a level of redundancy that should support the assembly of large YAC contigs and the construction of a high-resolution STS-content map of the chromosome. 72 refs., 4 figs., 3 tabs.

  6. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    PubMed Central

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  7. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    PubMed

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  8. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    PubMed Central

    Cobo, Ana Cristina; Milán, Miguel; Al-Asmar, Nasser; García-Herrero, Sandra; Mir, Pere; Simón, Carlos

    2014-01-01

    The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation. PMID:24877108

  9. Sequence conservation on the Y chromosome

    SciTech Connect

    Gibson, L.H.; Yang-Feng, L.; Lau, C.

    1994-09-01

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid pools were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.

  10. 47,XY,+der(X)t(X;18)(p11.4;p11.22): A Unique Aneuploidy Associated with Klinefelter Syndrome due to an Extra Derivative X Chromosome Inherited Maternally.

    PubMed

    Liang, Ji; Zhang, Yongsheng; Wang, Ruixue; Liang, Zuowen; Yue, Jiaming; Liu, Ruizhi

    2015-01-01

    A derivative X chromosome formed by translocation involving an X chromosome and a chromosome 18 in a Klinefelter syndrome (KS) patient with a 47,XXY karyotype has not been reported before. In this study, we present the clinical and molecular cytogenetic characteristics. The patient presented with small testes and azoospermia. G-banding analysis identified the karyotype as 47,XY,del(X)(p?11.4). Array CGH detected a 10.36-Mb duplication of chromosome region 18p11.22p11.32 (14,316-10,377,516) and a 111.18-Mb duplication of chromosome region Xp11.4q28 (61,931, 689-155,111,583), in addition to the normal chromosome 18 and an X chromosome. FISH results further revealed the extra 18p located at the end of the short arm of a deleted X chromosome, forming a derivative X chromosome. Finally, we identified the karyotype of the patient as 47,XY,+der(X)t(X;18)(p11.4;p11.22). The derivative X chromosome was maternally inherited. To our knowledge, this rare karyotype has not yet been reported in the literature. The present study may suggest a novel karyotype associated with KS.

  11. A girl with deletion 9q22.1-q22.32 including the PTCH and ROR2 genes identified by genome-wide array-CGH.

    PubMed

    Nowakowska, Beata; Kutkowska-Kaźmierczak, Anna; Stankiewicz, Paweł; Bocian, Ewa; Obersztyn, Ewa; Ou, Zhishuo; Cheung, Sau Wai; Cai, Wei-Wen

    2007-08-15

    The underlying genetic cause of mental retardation (MR) remains unknown in about half of the cases. Recently, using whole genome array comparative genomic hybridization (array-CGH), submicroscopic genetic imbalances have been detected in up to 20% of patients with an unexplained MR, dysmorphic features, and apparently normal karyotype. Here, we present a 12-year-old girl with features of basal cell nevus syndrome (BCNS), pulmonary valve stenosis, and MR, in whom array-CGH identified a 7.7 Mb deletion on 9q22.1-q22.32. The deleted region includes, among others, the ROR2 and PTCH genes. Haploinsufficiency of PTCH causes the BCNS syndrome and mutations in ROR2 have been found in an autosomal recessive Robinow syndrome and a dominantly inherited brachydactyly type 1B. We speculate that haploinsufficiency of ROR2 may contribute to pulmonary valve stenosis. Because of an age-dependent penetrance, BCNS may be challenging for diagnosis particularly when the features are not part of a typical clinical spectrum of BCNS. Early diagnosis of BCNS is important for preventing the development of associated tumors and better care of the patient. Our data confirm the previous observations that application of the whole genome array-CGH should be considered in selected patients with undiagnosed MR and dysmorphic features.

  12. Molecular cytogenetic and phenotypic characterization of ring chromosome 13 in three unrelated patients

    PubMed Central

    Abdallah-Bouhjar, Inesse B.; Mougou-Zerelli, Soumaya; Hannachi, Hanene; Gmidène, Abir; Labalme, Audrey; Soyah, Najla; Sanlaville, Damien; Saad, Ali; Elghezal, Hatem

    2013-01-01

    We report on the cytogenetic and molecular investigations of constitutional de-novo ring chromosome 13s in three unrelated patients for better understanding and delineation of the phenotypic variability characterizing this genomic rearrangement. The patient’s karyotypes were as follows: 46,XY,r(13)(p11q34) dn for patients 1 and 2 and 46,XY,r(13)(p11q14) dn for patient 3, as a result of the deletion in the telomeric regions of chromosome 13. The patients were, therefore, monosomic for the segment 13q34 → 13qter; in addition, for patient 3, the deletion was larger, encompassing the segment 13q14 → 13qter. Fluorescence in situ hybridization confirmed these rearrangement and array CGH technique showed the loss of at least 2.9 Mb on the short arm and 4.7 Mb on the long arm of the chromosome 13 in patient 2. Ring chromosome 13 (r(13)) is associated with several phenotypic features like intellectual disability, marked short stature, brain and heart defects, microcephaly and genital malformations in males, including undescended testes and hypospadias. However, the hearing loss and speech delay that were found in our three patients have rarely been reported with ring chromosome 13. Although little is known about its etiology, there is interesting evidence for a genetic cause for the ring chromosome 13. We thus performed a genotype-phenotype correlation analysis to ascertain the contribution of ring chromosome 13 to the clinical features of our three cases. PMID:27625853

  13. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    PubMed

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36.

  14. Array-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies

    PubMed Central

    2014-01-01

    Background Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. Methods Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent’s 180 K microarray platform. Results Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. Conclusion This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries. PMID:25016475

  15. Individual information beam broadcasting system using a PAL-SLM based CGH beam former for the location based information services

    NASA Astrophysics Data System (ADS)

    Osawa, Shunichi; Itoh, Hideo; Nakamura, Yoshiyuki; Nishimura, Takuichi; Lin, Xin; Tokuda, Masamitsu

    2006-01-01

    As an implementation of ubiquitous information service environments, we have been researching location-based information service systems at indoor and short distance area. The system should provide adequate information services, which fit the user's attributes, such as language, knowledge level and the volume of information, what is so-called "Right now, Here, and for Me" information services. Keeping privacy and security of the user is an important issue. Spatial optical communication technique is used for the system because the technique is easy to implement a location- and direction-based communication system. Information broadcasting in an area can be realized by an omnidirectional modulated light emission. However, the omnidirectional beam causes spill out of secure information to others, and has lower energy conservation than a focused beam communication. In this paper, a new spatial optical information broadcasting system, which can focus modulated beams only to intended users. CGH (Computer Generated Hologram) technique on a SLM (Spatial Light Modulator) is proposed and demonstrated. The system is composed of a PAL-SLM (Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator), an eye-safe semiconductor laser or a semiconductor laser pumped YAG laser for the beam emitter, and an infrared video camera with an infrared LED illuminator for user locator. Experimental results of beam deflecting characteristics are described on beam uniformity, deflecting angle and the enhancement, communication characteristics, and real time tracking of user with a corner-reflecting sheet.

  16. Chromosomal differentiation of cells

    SciTech Connect

    1993-12-31

    Chapter 16, discusses the chromosomal differentiation of cells. The chromosomes of differentiated cells have been much less studies than those of meristematic or germline cells, probably because such cells do not usually divide spontaneously. However, in many cases they can be induced to undergo mitosis. 26 refs., 2 figs.

  17. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.

    PubMed

    Vicoso, Beatriz; Kaiser, Vera B; Bachtrog, Doris

    2013-04-16

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes.

  18. Molecular-cytogenetic characterisation of sex cord-stromal tumours: CGH analysis in sertoli cell tumours of the testis.

    PubMed

    Verdorfer, I; Höllrigl, A; Strasser, U; Susani, M; Hartmann, A; Rogatsch, H; Mikuz, G

    2007-04-01

    Sertoli cell tumours (SCT) are rare and poorly explored neoplasias, and the genetic features of these uncommon tumours are largely unknown. Data about chromosomal aberrations in human SCT of the testis are very rare. We present in this paper the first molecular-cytogenetic study of SCT of the testis. DNA was isolated from paraffin-embedded tumour material from 11 patients with unilateral SCT. We used comparative genomic hybridisation to investigate changes in DNA copy number. The detected DNA imbalances showed variation from case to case, indicating a high genetic heterogeneity. Chromosomal aberrations were detected in 9 of the 11 tumours evaluated, with 13 losses versus 14 gains. The most frequent aberrations detected were gain of chromosome X (5 of 11 cases) followed by losses of entire or part of chromosomes 2 and 19 in three cases. This study suggests a high variability in histomorphological and genetic patterns. Only gain of the entire chromosome X seems to be a frequent aberration in these tumours. Further studies of these tumour types are necessary to clarify the significance of chromosomal alterations in carcinogenesis of SCT.

  19. XYY chromosome anomaly and schizophrenia.

    PubMed

    Rajagopalan, M; MacBeth, R; Varma, S L

    1998-02-07

    Sex chromosome anomalies have been associated with psychoses, and most of the evidence is linked to the presence of an additional X chromosome. We report a patient with XYY chromosome anomaly who developed schizophrenia.

  20. Sexually antagonistic chromosomal cuckoos

    PubMed Central

    Rice, William R.; Gavrilets, Sergey; Friberg, Urban

    2009-01-01

    The two kinds of sex chromosomes in the heterogametic parent are transmitted to offspring with different sexes, causing opposite-sex siblings to be completely unrelated for genes located on these chromosomes. Just as the nest-parasitic cuckoo chick is selected to harm its unrelated nest-mates in order to garner more shared resources, sibling competition causes the sex chromosomes to be selected to harm siblings that do not carry them. Here we quantify and contrast this selection on the X and Y, or Z and W, sex chromosomes. We also develop a hypothesis for how this selection can contribute to the decay of the non-recombining sex chromosome. PMID:19364719

  1. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  2. Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescence in situ hybridization and quantitative image analysis

    SciTech Connect

    Marrone, B.L.; Campbell, E.W.; Anzick, S.L.; Shera, K.; Campbell, M.; Yoshida, T.M.; McCormick, M.K.; Deaven, L. )

    1994-05-01

    Yeast artificial chromosome (YAC) clones from low-frequency chimeric libraries of human chromosomes 16 and 21 were mapped onto human diploid fibroblast metaphase chromosomes using fluorescence in situ hybridization (FISH) and digital imaging microscopy. YACs mapped onto chromosome 21 were selected to provide subregional location and ordering of known and unknown markers on the long arm of chromosome 21, particularly in the Down syndrome region (q22). YACs mapped onto chromosome 16 were selected to overlap regions spanning chromosome 16 cosmid maps. YAC clones were indirectly labeled with fluorescein, and the total DNA of the chromosome was counterstained with propidium iodide. A single image containing both the FISH signal and the whole chromosome was acquired for each chromosome of interest containing the fluorescent probe signal in a metaphase spread. From the digitized image, the fluorescence intensity profile through the long axis of the chromosome gave the total chromosome length and the probe position. The map position of the probe was expressed as the fractional length (FL) of the total chromosome relative to the end of the short arm (Flpter). From each clone hybridized, 20-40 chromosome images were analyzed. Thirty-eight YACs were mapped onto chromosome 16, and their FLs were distributed along the short and long arms. On chromosome 21, 47 YACs were mapped, including 12 containing known markers. To confirm the order of a dense population of YACs within the Down syndrome region, a two-color mapping strategy was used in which an anonymous YAC was located relative to one or two known markers on the metaphase chromosome. The chromosome FL maps have a 1- to 2-Mb resolution, and the FL measurement of each probe has a typical standard error of 0.5-1 Mb. 14 refs., 3 figs., 3 tabs.

  3. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization.

    PubMed

    Chung, Yeun-Jun; Jonkers, Jos; Kitson, Hannah; Fiegler, Heike; Humphray, Sean; Scott, Carol; Hunt, Sarah; Yu, Yuejin; Nishijima, Ichiko; Velds, Arno; Holstege, Henne; Carter, Nigel; Bradley, Allan

    2004-01-01

    Microarray-based comparative genomic hybridization (CGH) has become a powerful method for the genome-wide detection of chromosomal imbalances. Although BAC microarrays have been used for mouse CGH studies, the resolving power of these analyses was limited because high-density whole-genome mouse BAC microarrays were not available. We therefore developed a mouse BAC microarray containing 2803 unique BAC clones from mouse genomic libraries at 1-Mb intervals. For the general amplification of BAC clone DNA prior to spotting, we designed a set of three novel degenerate oligonucleotide-primed (DOP) PCR primers that preferentially amplify mouse genomic sequences while minimizing unwanted amplification of contaminating Escherichia coli DNA. The resulting 3K mouse BAC microarrays reproducibly identified DNA copy number alterations in cell lines and primary tumors, such as single-copy deletions, regional amplifications, and aneuploidy.

  4. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  5. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  6. Human chromosome 22.

    PubMed Central

    Kaplan, J C; Aurias, A; Julier, C; Prieur, M; Szajnert, M F

    1987-01-01

    The acrocentric chromosome 22, one of the shortest human chromosomes, carries about 52 000 kb of DNA. The short arm is made up essentially of heterochromatin and, as in other acrocentric chromosomes, it contains ribosomal RNA genes. Ten identified genes have been assigned to the long arm, of which four have already been cloned and documented (the cluster of lambda immunoglobulin genes, myoglobin, the proto-oncogene c-sis, bcr). In addition, about 10 anonymous DNA segments have been cloned from chromosome 22 specific DNA libraries. About a dozen diseases, including at least four different malignancies, are related to an inherited or acquired pathology of chromosome 22. They have been characterised at the phenotypic or chromosome level or both. In chronic myelogenous leukaemia, with the Ph1 chromosome, and Burkitt's lymphoma, with the t(8;22) variant translocation, the molecular pathology is being studied at the DNA level, bridging for the first time the gap between cytogenetics and molecular genetics. PMID:3550088

  7. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  8. THE HUMAN CHROMOSOME

    PubMed Central

    Abuelo, J. G.; Moore, Dorothy E.

    1969-01-01

    Human lymphocytes were grown in short-term tissue culture and were arrested in metaphase with Colcemid. Their chromosomes were prepared by the Langmuir trough-critical point drying technique and were examined under the electron microscope. In addition, some chromosomes were digested with trypsin, Pronase, or DNase. The chromosomes consist entirely of tightly packed, 240 ± 50-A chromatin fibers. Trypsin and Pronase treatments induce relaxation of fiber packing and reveal certain underlying fiber arrangements. Furthermore, trypsin treatment demonstrates that the chromatin fiber has a 25–50 A trypsin-resistant core surrounded by a trypsin-sensitive sheath. DNase digestion suggests that this core contains DNA. PMID:5775795

  9. Chromosome Segregation Mechanisms

    PubMed Central

    Nicklas, R. Bruce

    1974-01-01

    Most aspects of chromosome distribution to the daughter cells in meiosis and mitosis are now understood, at the cellular level. The most striking evidence that the proposed explanation is valid is that it correctly predicts the outcome of experiments on living cells in which the experimenter (1) can determine the distribution of any chosen chromosome to a chosen daughter cell, (2) can induce a mal-orientation, and (3) can stabilize a mal-orientation, causing non-disjunction of a chosen bivalent. Recent reviews of chromosome distribution mechanisms are also considered, in an attempt to clarify the remaining unsolved problems. PMID:4442702

  10. The unique sex chromosome system in platypus and echidna.

    PubMed

    Ferguson-Smith, M A; Rens, W

    2010-10-01

    A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain often sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.

  11. Similar Sister Chromatid Arrangement in Mono- and Holocentric Plant Chromosomes.

    PubMed

    Schubert, Veit; Zelkowski, Mateusz; Klemme, Sonja; Houben, Andreas

    2016-01-01

    Due to the X-shape formation at somatic metaphase, the arrangement of the sister chromatids is obvious in monocentric chromosomes. In contrast, the sister chromatids of holocentric chromosomes cannot be distinguished even at mitotic metaphase. To clarify their organization, we differentially labelled the sister chromatids of holocentric Luzula and monocentric rye chromosomes by incorporating the base analogue EdU during replication. Using super-resolution structured illumination microscopy (SIM) and 3D rendering, we found that holocentric sister chromatids attach to each other at their contact surfaces similar to those of monocentrics in prometaphase. We found that sister chromatid exchanges (SCEs) are distributed homogeneously along the whole holocentric chromosomes of Luzula, and that their occurrence is increased compared to monocentric rye chromosomes. The SCE frequency of supernumerary B chromosomes, present additionally to the essential A chromosome complement of rye, does not differ from that of A chromosomes. Based on these results, models of the sister chromatid arrangement in mono- and holocentric plant chromosomes are presented.

  12. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  13. Monosomy of chromosome 17 in breast cancer during interpretation of HER2 gene amplification

    PubMed Central

    Brunelli, Matteo; Nottegar, Alessia; Bogina, Giuseppe; Caliò, Anna; Cima, Luca; Eccher, Albino; Vicentini, Caterina; Marcolini, Lisa; Scarpa, Aldo; Pedron, Serena; Brunello, Eleonora; Knuutila, Sakari; Sapino, Anna; Marchiò, Caterina; Bria, Emilio; Molino, Annamaria; Carbognin, Luisa; Tortora, Giampaolo; Jasani, Bharat; Miller, Keith; Merdol, Ibrahim; Zanatta, Lucia; Laurino, Licia; Wirtanen, Tiina; Zamboni, Giuseppe; Marconi, Marcella; Chilosi, Marco; Manfrin, Erminia; Martignoni, Guido; Bonetti, Franco

    2015-01-01

    Monosomy of chromosome 17 may affect the assessment of HER2 amplification. Notably, the prevalence ranges from 1% up to 49% due to lack of consensus in recognition. We sought to investigate the impact of monosomy of chromosome 17 to interpretation of HER2 gene status. 201 breast carcinoma were reviewed for HER2 gene amplification and chromosome 17 status. FISH analysis was performed by using double probes (LSI/CEP). Absolute gene copy number was also scored per each probe. HER2 FISH test was repeated on serial tissue sections, ranging in thickness from 3 to 20 µm. Ratio was scored and subsequently corrected by monosomy after gold control test using the aCGH method to overcome false interpretation due to artefactual nuclear truncation. HER2 immunotests was performed on all cases. 26/201 cases were amplified (13%). Single signals per CEP17 were revealed in 7/201 (3.5%) cases. Five out of 7 cases appeared monosomic with aCGH (overall, 5/201, 2.5%) and evidenced single signals in >60% of nuclei after second-look on FISH when matching both techniques. Among 5, one case showed amplification with a pattern 7/1 (HER2/CEP17>2) of copies (3+ at immunotest); three cases revealed single signals per both probes (LSI/CEP=1) and one case revealed a 3:1 ratio; all last 4 cases showed 0/1+ immunoscore. We concluded that: 1) monosomy of chromosome 17 may be observed in 2.5% of breast carcinoma; 2) monosomy of chromosome 17 due to biological reasons rather than nuclear truncation was observed when using the cut-off of 60% of nuclei harboring single signals; 3) the skewing of the ratio due to single centromeric 17 probe may lead to false positive evaluation; 4) breast carcinomas showing a 3:1 ratio (HER2/CEP17) usually show negative 0/1+ immunoscore and <6 gene copy number at FISH. PMID:26328251

  14. Combined microdeletions and CHD7 mutation causing severe CHARGE/DiGeorge syndrome: clinical presentation and molecular investigation by array-CGH.

    PubMed

    Kaliakatsos, Marios; Giannakopoulos, Aristeidis; Fryssira, Helena; Kanariou, Maria; Skiathitou, Anna-Venetia; Siahanidou, Tania; Giannikou, Krinio; Makrythanasis, Periklis; Kanavakis, Emmanuel; Tzetis, Maria

    2010-11-01

    Phenotypic variation in CHARGE syndrome remains unexplained. A subcategory of CHARGE patients show overlapping phenotypic characteristics with DiGeorge syndrome (thymic hypo/aplasia, hypocalcemia, T-cell immunodeficiency). Very few have been tested or reported to carry a mutation of the CHD7 (chromodomain helicase DNA-binding domain) gene detected in two-thirds of CHARGE patients. In an attempt to explore the genetic background of a severe CHARGE/DiGeorge phenotype, we performed comparative genomic array hybridization in an infant carrier of a CHD7 mutation. The high-resolution comparative genomic array hybridization revealed interesting findings, including a deletion distal to the DiGeorge region and disruptions in other chromosomal regions of genes implicated in immunological and other functions possibly contributing to the patient's severe phenotype and early death.

  15. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  16. Chromosome evolution in Eulipotyphla.

    PubMed

    Biltueva, L; Vorobieva, N

    2012-01-01

    We integrated chromosome painting information on 5 core-insectivora species available in the literature with new Zoo-FISH data for Iberian shrew (Sorex granarius) and Altai mole (Talpa altaica). Our analysis of these 7 species allowed us to determine the chromosomal features of Eulipotyphla genomes and to update the previously proposed ancestral karyotype for 2 main groups of the Sorex genus. The chromosome painting evidence with human painting probes (HSA) reveals the presence of the 2 unique associations HSA4/5 and 1/10p/12/22b, which support Eulipotyphla. There are a series of synapomorphies both for Erinaceidae (HSA3/1/5, 3/17, 11/15 and 10/20) and for Soricinae (HSA5/9, 6/7/16, 8/3/21 and 11/12/22). We found associations that link Talpidae/Erinaceidae (HSA7/8, 1/5 and 1/19p), Talpidae/Soricidae (HSA1/8/4) and Erinaceidae/Soricidae (HSA4/20 and 2/13). Genome conservation in Eulipotyphla was estimated on the basis of the number of evolutionary breaks in the ancestral mammalian chromosomes. In total, 7 chromosomes of the boreo-eutherian ancestor (BEA8 or 10, 9, 17, 18, 20-22) were retained in all eulipotyphlans studied; among them moles show the highest level of chromosome conservation. The integration of sequence data into the chromosome painting information allowed us to further examine the chromosomal syntenies within a phylogenetic perspective. Based on our analysis we offer the most parsimonious reconstruction of phylogenetic relationships in Eulipotyphla. The cytogenetic reconstructions based on these data do not conflict with molecular phylogenies supporting basal position of Talpidae in the order.

  17. [Sex chromosomes and meiosis].

    PubMed

    Guichaoua, M-R; Geoffroy-Siraudin, C; Tassistro, V; Ghalamoun-Slaimi, R; Perrin, J; Metzler-Guillemain, C

    2009-01-01

    Sex chromosome behaviour fundamentally differs between male and female meiosis. In oocyte, X chromosomes synapse giving a XX bivalent which is not recognizable in their morphology and behaviour from autosomal bivalents. In human male, X and Y chromosomes differ from one another in their morphology and their genetic content, leading to a limited pairing and preventing genetic recombination, excepted in homologous region PAR1. During pachytene stage of the first meiotic prophase, X and Y chromosomes undergo a progressive condensation and form a transcriptionally silenced peripheral XY body. The condensation of the XY bivalent during pachytene stage led us to describe four pachytene substages and to localize the pachytene checkpoint between substages 2 and 3. We also defined the pachytene index (PI=P1+P2/P1+P2+P3+P4) which is always less than 0.50 in normal meiosis. XY body undergoes decondensation at diplotene stage, but transcriptional inactivation of the two sex chromosomes or Meiotic Sex Chromosome Inactivation (MSCI) persists through to the end of spermatogenesis. Sex chromosome inactivation involves several proteins, some of them were now identified. Two isoforms of the HP1 protein, HP1beta and HP1gamma, are involved in the facultative heterochromatinization of the XY body, but the initiation of this process involves the phosphorylation of the protein H2AX by the kinase ATR whose recruitment depends on BRCA1. Extensive researches on the inactivation of the sex chromosomes during male meiosis will allow to a better understanding of some male infertilities.

  18. Genetic markers on chromosome 7.

    PubMed Central

    Tsui, L C

    1988-01-01

    Chromosome 7 is frequently associated with chromosome aberrations, rearrangements, and deletions. It also contains many important genes, gene families, and disease loci. This brief review attempts to summarise these and other interesting aspects of chromosome 7. With the rapid accumulation of cloned genes and polymorphic DNA fragments, this chromosome has become an excellent substrate for molecular genetic studies. PMID:3290488

  19. Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS.

    PubMed

    Moore, E; Magee, H; Coyne, J; Gorey, T; Dervan, P A

    1999-03-01

    For a variety of technical reasons it is rarely possible to study cytogenetic abnormalities in ductal carcinoma in situ (DCIS) using traditional techniques. However, by combining molecular biology and computerized image analysis it is possible to carry out cytogenetic analyses on formalin-fixed, paraffin-embedded tissue, using comparative genomic hybridization (CGH). The purpose of this study was to identify the prevalence of chromosomal amplifications and deletions in high-grade DCIS and to look specifically for unique or consistent abnormalities in this pre-invasive cancer. Twenty-three cases of asymptomatic, non-palpable, screen-detected, high-grade DCIS were examined using CGH on tumour cells obtained from histology slides. All cases showed chromosomal abnormalities. A wide variety of amplifications and deletions were spread across the genome. The most frequent changes were gains of chromosomes 17 (13 of 23), 16p (13 of 23), and 20q (9 of 23) and amplifications of 11q13 (22 of 23), 12q 24.1-24.2 (12 of 23), 6p21.3 (11 of 23), and 1q31-qter (6 of 23). The most frequent deletions were on 13q 21.3-q33 (7 of 23), 9p21 (4 of 23), and 6q16.1 (4 of 23). These findings indicate that high-grade DCIS is, from a cytogenetic viewpoint, an advanced lesion. There was no absolutely consistent finding in every case, but amplification of 11q13 was found in 22 of the 23 cases. The precise significance of this is unknown at present. This region of chromosome 11q harbours a number of known oncogenes, including cyclin D1 andINT2. It is likely that many of these findings are the result of accumulated chromosomal abnormalities, reflecting an unstable genome in established malignancy.

  20. Mechanisms and Consequences of Small Supernumerary Marker Chromosomes: From Barbara McClintock to Modern Genetic-Counseling Issues

    PubMed Central

    Baldwin, Erin L.; May, Lorraine F.; Justice, April N.; Martin, Christa L.; Ledbetter, David H.

    2008-01-01

    Supernumerary marker chromosomes (SMCs) are common, but their molecular content and mechanism of origin are often not precisely characterized. We analyzed all centromere regions to identify the junction between the unique chromosome arm and the pericentromeric repeats. A molecular-ruler clone panel for each chromosome arm was developed and used for the design of a custom oligonucleotide array. Of 27 nonsatellited SMCs analyzed by array comparative genomic hybridization (aCGH) and/or fluorescence in situ hybridization (FISH), seven (approximately 26%) were shown to be unique sequence negative. Of the 20 unique-sequence-positive SMCs, the average unique DNA content was approximately 6.5 Mb (range 0.3–22.2 Mb) and 33 known genes (range 0–149). Of the 14 informative nonacrocentric SMCs, five (approximately 36%) contained unique DNA from both the p and q arms, whereas nine (approximately 64%) contained unique DNA from only one arm. The latter cases are consistent with ring-chromosome formation by centromere misdivision, as first described by McClintock in maize. In one case, a r(4) containing approximately 4.4 Mb of unique DNA from 4p was also present in the proband's mother. However, FISH revealed a cryptic deletion in one chromosome 4 and reduced alpha satellite in the del(4) and r(4), indicating that the mother was a balanced ring and deletion carrier. Our data, and recent reports in the literature, suggest that this “McClintock mechanism” of small-ring formation might be the predominant mechanism of origin. Comprehensive analysis of SMCs by aCGH and FISH can distinguish unique-negative from unique-positive cases, determine the precise gene content, and provide information on mechanism of origin, inheritance, and recurrence risk. PMID:18252220

  1. FtsK actively segregates sister chromosomes in Escherichia coli.

    PubMed

    Stouf, Mathieu; Meile, Jean-Christophe; Cornet, François

    2013-07-02

    Bacteria use the replication origin-to-terminus polarity of their circular chromosomes to control DNA transactions during the cell cycle. Segregation starts by active migration of the region of origin followed by progressive movement of the rest of the chromosomes. The last steps of segregation have been studied extensively in the case of dimeric sister chromosomes and when chromosome organization is impaired by mutations. In these special cases, the divisome-associated DNA translocase FtsK is required. FtsK pumps chromosomes toward the dif chromosome dimer resolution site using polarity of the FtsK-orienting polar sequence (KOPS) DNA motifs. Assays based on monitoring dif recombination have suggested that FtsK acts only in these special cases and does not act on monomeric chromosomes. Using a two-color system to visualize pairs of chromosome loci in living cells, we show that the spatial resolution of sister loci is accurately ordered from the point of origin to the dif site. Furthermore, ordered segregation in a region ∼200 kb long surrounding dif depended on the oriented translocation activity of FtsK but not on the formation of dimers or their resolution. FtsK-mediated segregation required the MatP protein, which delays segregation of the dif-surrounding region until cell division. We conclude that FtsK segregates the terminus region of sister chromosomes whether they are monomeric or dimeric and does so in an accurate and ordered manner. Our data are consistent with a model in which FtsK acts to release the MatP-mediated cohesion and/or interaction with the division apparatus of the terminus region in a KOPS-oriented manner.

  2. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  3. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  4. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, Richard M.; Gray, Joe W.; Hirschfeld, Tomas B.

    1986-01-01

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  5. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients

    PubMed Central

    Yu, Xiao-Wei; Wei, Zhen-Tong; Jiang, Yu-Ting; Zhang, Song-Ling

    2015-01-01

    Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed. PMID:26628946

  6. Philadelphia chromosome duplication as a ring-shaped chromosome.

    PubMed

    Borjas-Gutierrez, Cesar; Gonzalez-Garcia, Juan Ramon

    2016-01-01

    The gain of a second copy of the Philadelphia chromosome is one of the main secondary chromosomal changes related to the clonal evolution of cells with t(9;22) in chronic myelogenous leukemia. This gain causes the acquisition of another copy of the BCR/ABL1 fusion gene. Isochromosomes of the der(22) chromosome or double minute chromosomes are well known to lead an increased copy number of BCR/ABL1 gene. There is no antecedent of Philadelphia chromosome duplication as a ring chromosome. A recent published report contains evidence that strongly suggests that the Philadelphia chromosome was duplicated as a ring chromosome, observation that was overlooked by the authors. The instability inherent to the ring chromosome increases the risk of emergence of clones containing more and more BCR/ABL1 gene copies, which would produce increased fitness for clonal selection, resulting in worsening of the patient's prognosis.

  7. Chromosome 10q tetrasomy: First reported case

    SciTech Connect

    Blackston, R.D.; May, K.M.; Jones, F.D.

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  8. "Chromosome": a knowledge-based system for the chromosome classification.

    PubMed

    Ramstein, G; Bernadet, M

    1993-01-01

    Chromosome, a knowledge-based analysis system has been designed for the classification of human chromosomes. Its aim is to perform an optimal classification by driving a tool box containing the procedures of image processing, pattern recognition and classification. This paper presents the general architecture of Chromosome, based on a multiagent system generator. The image processing tool box is described from the met aphasic enhancement to the fine classification. Emphasis is then put on the knowledge base intended for the chromosome recognition. The global classification process is also presented, showing how Chromosome proceeds to classify a given chromosome. Finally, we discuss further extensions of the system for the karyotype building.

  9. 2013 CGH Awardees

    Cancer.gov

    The National cancer institute, CENTER FOR GLOBAL HEALTH, in collaboration with the OFFICE OF CANCER CENTERS, is pleased to announce the 2013 awardees of the Request for Proposals for Pilot Collaborations with Low- and Mid-Income Countries (LMICs) in Global Cancer Research or Global Health Research at NCI-Designated Cancer Centers.  In 2013, the Center for Global Health and the Office of Cancer Centers developed a funding opportunity to promote research collaborations between NCI-Designated Cancer Centers with institutions in LMICs.

  10. Sex Chromosome Drive

    PubMed Central

    Helleu, Quentin; Gérard, Pierre R.; Montchamp-Moreau, Catherine

    2015-01-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548

  11. Meiotic sex chromosome inactivation.

    PubMed

    Turner, James M A

    2007-05-01

    X chromosome inactivation is most commonly studied in the context of female mammalian development, where it performs an essential role in dosage compensation. However, another form of X-inactivation takes place in the male, during spermatogenesis, as germ cells enter meiosis. This second form of X-inactivation, called meiotic sex chromosome inactivation (MSCI) has emerged as a novel paradigm for studying the epigenetic regulation of gene expression. New studies have revealed that MSCI is a special example of a more general mechanism called meiotic silencing of unsynapsed chromatin (MSUC), which silences chromosomes that fail to pair with their homologous partners and, in doing so, may protect against aneuploidy in subsequent generations. Furthermore, failure in MSCI is emerging as an important etiological factor in meiotic sterility.

  12. Chromosome 2 (2p16) abnormalities in Carney complex tumours

    PubMed Central

    Matyakhina, L; Pack, S; Kirschner, L; Pak, E; Mannan, P; Jaikumar, J; Taymans, S; Sandrini, F; Carney, J; Stratakis, C

    2003-01-01

    Carney complex (CNC) is an autosomal dominant multiple endocrine neoplasia and lentiginosis syndrome characterised by spotty skin pigmentation, cardiac, skin, and breast myxomas, and a variety of endocrine and other tumours. The disease is genetically heterogeneous; two loci have been mapped to chromosomes 17q22–24 (the CNC1 locus) and 2p16 (CNC2). Mutations in the PRKAR1A tumour suppressor gene were recently found in CNC1 mapping kindreds, while the CNC2 and perhaps other genes remain unidentified. Analysis of tumour chromosome rearrangements is a useful tool for uncovering genes with a role in tumorigenesis and/or tumour progression. CGH analysis showed a low level 2p amplification recurrently in four of eight CNC tumours; one tumour showed specific amplification of the 2p16-p23 region only. To define more precisely the 2p amplicon in these and other tumours, we completed the genomic mapping of the CNC2 region, and analysed 46 tumour samples from CNC patients with and without PRKAR1A mutations by fluorescence in situ hybridisation (FISH) using bacterial artificial chromosomes (BACs). Consistent cytogenetic changes of the region were detected in 40 (87%) of the samples analysed. Twenty-four samples (60%) showed amplification of the region represented as homogeneously stained regions (HSRs). The size of the amplicon varied from case to case, and frequently from cell to cell in the same tumour. Three tumours (8%) showed both amplification and deletion of the region in their cells. Thirteen tumours (32%) showed deletions only. These molecular cytogenetic changes included the region that is covered by BACs 400-P-14 and 514-O-11 and, in the genetic map, corresponds to an area flanked by polymorphic markers D2S2251 and D2S2292; other BACs on the centromeric and telomeric end of this region were included in varying degrees. We conclude that cytogenetic changes of the 2p16 chromosomal region that harbours the CNC2 locus are frequently observed in tumours from CNC

  13. Mapping pachytene chromosomes of coffee using a modified protocol for fluorescence in situ hybridization

    PubMed Central

    Iacia, Ana Amélia Sanchez; Pinto-Maglio, Cecília A. F.

    2013-01-01

    Fluorescence in situ hybridization (FISH) is the most direct method for physically mapping DNA sequences on chromosomes. Fluorescence in situ hybridization mapping of meiotic chromosomes during the pachytene stage is an important tool in plant cytogenetics, because it provides high-resolution measurements of physical distances. Fluorescence in situ hybridization mapping of coffee pachytene chromosomes offers significant advantages compared with FISH mapping of somatic chromosomes, because pachytene chromosomes are 30 times longer and provide additional cytological markers. However, the application of this technique to pachytene chromosomes has been complicated by problems in making preparations of meiotic chromosomes and by difficulties in the application of standard FISH protocols. We have been able to overcome most of these obstacles in applying the FISH technique to the pachytene chromosomes of coffee plants. Digesting the external callose layer surrounding the pollen mother cells (PMCs) in conjunction with other procedures permitted suitable pachytene chromosomes to be obtained by increasing cell permeability, which allowed the probe sequences to enter the cells. For the first time, hybridization signals were registered on coffee pachytene chromosomes using the FISH technique with a repetitive sequence as a probe. We obtained slides on which 80 % of the PMCs had hybridization signals, resulting in FISH labelling with high efficiency. The procedure does not seem to be dependent on the genotype, because hybridization signals were detected in genetically different coffee plants. These findings enhance the possibilities for high-resolution physical mapping of coffee chromosomes. PMID:24244840

  14. Vibrios Commonly Possess Two Chromosomes

    PubMed Central

    Okada, Kazuhisa; Iida, Tetsuya; Kita-Tsukamoto, Kumiko; Honda, Takeshi

    2005-01-01

    The prevalence of the two-chromosome configuration was investigated in 34 species of vibrios and closely related species. Pulsed-field gel electrophoresis of undigested genomic DNA suggested that vibrios commonly have two chromosomes. The size of the large chromosome is predominantly within a narrow range (3.0 to 3.3 Mb), whereas the size of the small chromosome varies considerably among the vibrios (0.8 to 2.4 Mb). This fact suggests that the structure of the small chromosome is more flexible than that of the large chromosome during the evolution of vibrios. PMID:15629946

  15. Characterization of a de novo complex chromosomal rearrangement in a patient with cri-du-chat and trisomy 5p syndromes.

    PubMed

    Vera-Carbonell, Ascensión; Bafalliu, Juan Antonio; Guillén-Navarro, Encarna; Escalona, Ariadna; Ballesta-Martínez, María J; Fuster, Carme; Fernández, Asunción; López-Expósito, Isabel

    2009-11-01

    Two syndromes with abnormalities of the short arm of chromosome 5 have been described: cri-du-chat (resulting from 5p deletion) and trisomy 5p. We report for the first time a patient with both syndromes, resulting from a complex chromosomal rearrangement with an inverted duplication of 5p13.1-p14.2, a deletion of 5p14.2-pter, and a duplication of 5p12, characterized by array-CGH and BAC clones. The patient showed phenotypic characteristics of both syndromes and died at 3 months of age as a result of cardiorespiratory failure, probably associated with the clinical severity of the trisomy 5p syndrome. We propose a potential causative mechanism for this rearrangement.

  16. Chromosomes and clinical anatomy.

    PubMed

    Gardner, Robert James McKinlay

    2016-07-01

    Chromosome abnormalities may cast light on the nature of mechanisms whereby normal anatomy evolves, and abnormal anatomy arises. Correlating genotype to phenotype is an exercise in which the geneticist and the anatomist can collaborate. The increasing power of the new genetic methodologies is enabling an increasing precision in the delineation of chromosome imbalances, even to the nucleotide level; but the classical skills of careful observation and recording remain as crucial as they always have been. Clin. Anat. 29:540-546, 2016. © 2016 Wiley Periodicals, Inc.

  17. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    PubMed

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16).

  18. Casein kinase II promotes target silencing by miRISC through direct phosphorylation of the DEAD-box RNA helicase CGH-1

    PubMed Central

    Alessi, Amelia F.; Khivansara, Vishal; Han, Ting; Freeberg, Mallory A.; Moresco, James J.; Tu, Patricia G.; Montoye, Eric; Yates, John R.; Karp, Xantha; Kim, John K.

    2015-01-01

    MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway. PMID:26669440

  19. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  20. Chromosome Variations And Human Behavior

    ERIC Educational Resources Information Center

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  1. Chromosomes, cancer and radiosensitivity

    SciTech Connect

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  2. Why Chromosome Palindromes?

    PubMed Central

    Betrán, Esther; Demuth, Jeffery P.; Williford, Anna

    2012-01-01

    We look at sex-limited chromosome (Y or W) evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the “palindromes as protectors” view: (1) genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2) under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes. PMID:22844637

  3. The Y Chromosome

    ERIC Educational Resources Information Center

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  4. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  5. [Dicentric Y chromosome].

    PubMed

    Abdelmoula, N Bouayed; Amouri, A

    2005-01-01

    Dicentric Y chromosomes are the most common Y structural abnormalities and their influence on gonadal and somatic development is extremely variable. Here, we report the third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. We find 78 new cases for which molecular studies (PCR or FISH) have been widely applied to investigate SRY (68% of cases), GBY, ZFY, RFS4Y, GCY and different genes at AZF region. For dic(Yq), all cases (n = 20) were mosaic for 45,X and 4 of them were also mosaic for a 46,XY cell line. When breakpoints were available (15/20 cases), they were in Yp11. 50% of cases were phenotypic female and 20% phenotypic male while 20% of cases were reported with gonadal dysgenesis. Gonadal histology was defined in 8 cases but only in one case, gonadal tissu was genetically investigated because of gonadoblastoma. For dic(Yp) (n = 55), mosaicism concerned only 45,X cell line and was found in 50 cases while the remainder five cases were homogeneous. When breakpoints were available, it was at Yq11 in 50 cases and at Yq12 in two cases. 54% of cases were phenotypic female, 26% were phenotypic male and 18% were associated with genitalia ambiguous. SRY was analyzed in 33 cases, sequenced in 9 cases and was muted in only one case. Gonads were histologically explored in 34 cases and genetically investigated in 8 cases. Gonadoblastoma was found in only two cases. Through this review, it seems that phenotype-genotype correlations are still not possible and that homogeneous studies of dic(Y) in more patients using molecular tools for structural characterization of the rearranged Y chromosome and assessment of mosaicism in many organs are necessary to clarify the basis of the phenotypic heterogeneity of dicentric Y chromosomes and then to help phenotypic prediction of such chromosome rearrangement.

  6. Karyotyping human chromosomes by optical and X-ray ptychography methods.

    PubMed

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; Estandarte, Ana K; Xiong, Gang; Harder, Ross; Parmar, Neha; Yusuf, Mohammed; Zhang, Fucai; Robinson, Ian K

    2015-02-03

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the mass of chromosomes and perform a partial karyotype from the results. We also obtain high spatial resolution using this technique with synchrotron source x-rays.

  7. Chromosomal microarray analysis in a girl with mental retardation and spina bifida.

    PubMed

    Ben Abdallah, Inesse; Hannachi, Hanene; Soyah, Najla; Saad, Ali; Elghezal, Hatem

    2011-01-01

    Chromosomal imbalances comprise a major cause of mental retardation, particularly in association with congenital malformations and dysmorphic features. Chromosomal analysis using banded karyotyping is limited by the low resolution of this technique, and cryptic chromosomal rearrangements cannot be detected. We describe a 6-year-old girl with mental retardation, mild growth, congenital malformation, and facial anomalies. Chromosomal analysis with karyotyping produced normal results. Because the phenotype suggested chromosomal abnormality, microarray comparative genomic hybridization was used to search for a possible cryptic anomaly. A subtelomeric chromosomal imbalance, consisting of partial trisomy 2q35 and partial monosomy 3p26, was detected and confirmed using fluorescence in situ hybridization. This rearrangement was inherited from an equilibrated maternal t(2;3) reciprocal translocation. Comparative genomic hybridization array in similar situations is useful in detecting cryptic chromosomal rearrangements, identifying genes contained in deleted or duplicated regions, establishing a precise phenotype-genotype correlation, and offering unambiguous genetic counseling.

  8. A cohesin-based structural platform supporting homologous chromosome pairing in meiosis.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    The pairing and recombination of homologous chromosomes during the meiotic prophase is necessary for the accurate segregation of chromosomes in meiosis. However, the mechanism by which homologous chromosomes achieve this pairing has remained an open question. Meiotic cohesins have been shown to affect chromatin compaction; however, the impact of meiotic cohesins on homologous pairing and the fine structures of cohesion-based chromatin remain to be determined. A recent report using live-cell imaging and super-resolution microscopy demonstrated that the lack of meiotic cohesins alters the chromosome axis structures and impairs the pairing of homologous chromosomes. These results suggest that meiotic cohesin-based chromosome axis structures are crucial for the pairing of homologous chromosomes.

  9. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

    PubMed Central

    Hughes, Simon; Yoshimoto, Maisa; Beheshti, Ben; Houlston, Richard S; Squire, Jeremy A; Evans, Andrew

    2006-01-01

    Background Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample. Results To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH). Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed. Conclusion An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from small cell clusters and

  10. Scanning electron microscope studies of human metaphase chromosomes.

    PubMed

    Shemilt, L A; Estandarte, A K C; Yusuf, M; Robinson, I K

    2014-03-06

    Scanning electron microscopy (SEM) is used to evaluate potential chromosome preparations and staining methods for application in high-resolution three-dimensional X-ray imaging. Our starting point is optical fluorescence microscopy, the standard method for chromosomes, which only gives structural detail at the 200 nm scale. In principle, with suitable sample preparation protocols, including contrast enhancing staining, the surface structure of the chromosomes can be viewed at the 1 nm level by SEM. Here, we evaluate a heavy metal nucleic-acid-specific stain, which gives strong contrast in the backscattered electron signal. This study uses SEM to examine chromosomes prepared in different ways to establish a sample preparation protocol for X-rays. Secondary electron and backscattered electron signals are compared to evaluate the effectiveness of platinum-based stains used to enhance the contrast.

  11. Synchronization of chromosome dynamics and cell division in bacteria.

    PubMed

    Thanbichler, Martin

    2010-01-01

    Bacterial cells have evolved a variety of regulatory circuits that tightly synchronize their chromosome replication and cell division cycles, thereby ensuring faithful transmission of genetic information to their offspring. Complex multicomponent signaling cascades are used to monitor the progress of cytokinesis and couple replication initiation to the separation of the two daughter cells. Moreover, the cell-division apparatus actively participates in chromosome partitioning and, particularly, in the resolution of topological problems that impede the segregation process, thus coordinating chromosome dynamics with cell constriction. Finally, bacteria have developed mechanisms that harness the cell-cycle-dependent positioning of individual chromosomal loci or the nucleoid to define the cell-division site and control the timing of divisome assembly. Each of these systems manages to integrate a complex set of spatial and temporal cues to regulate and execute critical steps in the bacterial cell cycle.

  12. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons

    PubMed Central

    Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta

    2012-01-01

    Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276

  13. Microgravitational effects on chromosome behavior (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  14. The gene orders on human chromosome 15 and chicken chromosome 10 reveal multiple inter- and intrachromosomal rearrangements.

    PubMed

    Crooijmans, R P; Dijkhof, R J; Veenendaal, T; van der Poel, J J; Nicholls, R D; Bovenhuis, H; Groenen, M A

    2001-11-01

    Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution human-chicken comparative map was constructed from human chromosome 15. Mapping, sequencing, and ordering of specific chicken bacterial artificial chromosomes has improved the comparative map of chromosome 15 (Hsa15) and the homologous regions in chicken with almost 100 new genes and/or expressed sequence tags. A comparison of Hsa15 with chicken identified seven conserved chromosomal segments between the two species. In chicken, these were on chromosome 1 (Gga1; two segments), Gga5 (two segments), and Gga10 (three segments). Although four conserved segments were also observed between Hsa15 and mouse, only one of the underlying rearrangement breakpoints was located at the same position as in chicken, indicating that the rearrangements generating the other three breakpoints occurred after the divergence of the rodent and the primate lineages. A high-resolution comparison of Gga10 with Hsa15 identified 19 conserved blocks, indicating the presence of at least 16 intrachromosomal rearrangement breakpoints in the bird lineage after the separation of birds and mammals. These results improve our knowledge of the evolution and dynamics of the vertebrate genomes and will aid in the clarification of the mechanisms that underlie the differentiation between the vertebrate species.

  15. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  16. Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11.

    PubMed

    Romana, Serge; Radford-Weiss, Isabelle; Lapierre, Jean-Michel; Doye, Valérie; Geoffroy, Marie-Claude

    2016-09-01

    Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.

  17. SOME CHROMOSOME NUMBERS OF DRAPARNALDIA.

    PubMed

    Carroll, J W; Deason, T R

    1969-03-01

    The variability exhibited by Draparnaldia both in nature and in the laboratory makes it difficult to identify the species. The natural variability of Draparnaldia was amplified by the environmental conditions and the media used in this study. With the hope that chromosome studies would aid in taxonomic characterization by providing additional differentiating criteria, special attention was devoted to adapting techniques which could be used to determine chromosome numbers of Draparnaldia isolates. The chromosome numbers reported herein are as follows: (1) Draparnaldia glomerata, Isolate #1, isolated from Davis Falls, Montevallo, Alabama, was found to have a chromosome number of 13. (2) Draparnaldia Isolate #2, an unidentified species obtained from Anniston, Alabama, was found to have a chromosome number of 13. (3) Draparnaldia acuta, Isolate #3 from Northwood Lake, Northport, Alabama, exhibited 26 chromosomes. (4) Draparnaldia plumosa strain 423 (Indiana Culture Collection), 418/a (Cambridge) was observed to have a chromosome number of 13.

  18. Automated Chromosome Breakage Assessment

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth

    1985-01-01

    An automated karyotyping machine was built at JPL in 1972. It does computerized karyotyping, but it has some hardware limitations. The image processing hardware that was available at a reasonable price in 1972 was marginal, at best, for this job. In the meantime, NASA has developed an interest in longer term spaceflights and an interest in using chromosome breakage studies as a dosimeter for radiation or perhaps other damage that might occur to the tissues. This uses circulating lymphocytes as a physiological dosimeter looking for chromosome breakage on long-term spaceflights. For that reason, we have reactivated the automated karyotyping work at JPL. An update on that work, and a description of where it appears to be headed is presented.

  19. Chromosome 19 International Workshop

    SciTech Connect

    Pericak-Vance, M.A. . Medical Center); Ropers, H.H. . Dept. of Human Genetics); Carrano, A.J. )

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  20. Chromosomal evolution in Rodentia.

    PubMed

    Romanenko, S A; Perelman, P L; Trifonov, V A; Graphodatsky, A S

    2012-01-01

    Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution.

  1. Radiation hybrid map of barley chromosome 3H

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...

  2. Construction of human chromosome 21-specific yeast artificial chromosomes

    SciTech Connect

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.; Antonarakis, S.E. ); Cheung, Meichi; Kan, Yuetwai )

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtained from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.

  3. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    PubMed

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS.

  4. Distinctive Skeletal Abnormalities With No Microdeletions or Microduplications on Array-CGH in a Boy With Mohr Syndrome (Oro-Facial-Digital Type II)

    PubMed Central

    Kaissi, Ali Al; Pospischill, Renata; Grill, Franz; Ganger, Rudolf

    2015-01-01

    We describe a constellation of distinctive skeletal abnormalities in an 8-year-old boy who presented with the full clinical criteria of oro-facial-digital (OFD) type II (Mohr syndrome): bony changes of obtuse mandibular angle, bimanual hexadactyly and unilateral synostosis of the metacarpo-phalanges of 3-4, bilateral coxa valga associated with moderate hip subluxation, over-tubulation of the long bones, vertical talus of the left foot and talipes equinovarus of the right foot respectively. Interestingly, we encountered variable minor malformations in his parents, confirming the autosomal recessive pattern of inheritance. There were no microdeletions or microduplications after performing array-CGH-analysis. We report what might be a constellation of unreported skeletal abnormalities in a child with OFD type II (Mohr syndrome). PMID:26566416

  5. High Precision Metrology on the Ultra-Lightweight W 50.8 cm f/1.25 Parabolic SHARPI Primary Mirror using a CGH Null Lens

    NASA Technical Reports Server (NTRS)

    Antonille, Scott

    2004-01-01

    For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.

  6. Stretching the rules: monocentric chromosomes with multiple centromere domains.

    PubMed

    Neumann, Pavel; Navrátilová, Alice; Schroeder-Reiter, Elizabeth; Koblížková, Andrea; Steinbauerová, Veronika; Chocholová, Eva; Novák, Petr; Wanner, Gerhard; Macas, Jiří

    2012-01-01

    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.

  7. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    PubMed Central

    Neumann, Pavel; Navrátilová, Alice; Schroeder-Reiter, Elizabeth; Koblížková, Andrea; Steinbauerová, Veronika; Chocholová, Eva; Novák, Petr; Wanner, Gerhard; Macas, Jiří

    2012-01-01

    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3–5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel “meta-polycentric” functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function. PMID:22737088

  8. B Chromosomes – A Matter of Chromosome Drive

    PubMed Central

    Houben, Andreas

    2017-01-01

    B chromosomes are supernumerary chromosomes which are often preferentially inherited, deviating from usual Mendelian segregation. The balance between the so-called chromosome drive and the negative effects that the presence of Bs applies on the fitness of their host determines the frequency of Bs in a particular population. Drive is the key for understanding most B chromosomes. Drive occurs in many ways at pre-meiotic, meiotic or post-meiotic divisions, but the molecular mechanism remains unclear. The cellular mechanism of drive is reviewed based on the findings obtained for the B chromosomes of rye, maize and other species. How novel analytical tools will expand our ability to uncover the biology of B chromosome drive is discussed. PMID:28261259

  9. A method for determination of the in situ distribution of chromosomal proteins.

    PubMed

    Silver, L M; Elgin, S C

    1976-02-01

    A technique has been developed for "staining" cytological preparations by indirect immunofluorescent methods that permits determination of the in situ distribution of chromosomal proteins. The method is particularly oriented to the use of polytene chromosome squashes from Drosophila salivary glands. Control experiments indicate that the fixation methods used allow little or no extraction or rearrangement of the chromosomal proteins. The results obtained demonstrate the specific in vivo chromosomal locations of nonhistone proteins purified from isolated chromatin. The technique is apparently capable of resolution at the level of the chromomere or band, the unit of genetic organization in Drosophila.

  10. Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms

    PubMed Central

    2013-01-01

    Background An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML. Results We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature. Conclusions The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with other patients. PMID:24330778

  11. Complex rearranged small supernumerary marker chromosomes (sSMC), three new cases; evidence for an underestimated entity?

    PubMed Central

    Trifonov, Vladimir; Fluri, Simon; Binkert, Franz; Nandini, Adayapalam; Anderson, Jasen; Rodriguez, Laura; Gross, Madeleine; Kosyakova, Nadezda; Mkrtchyan, Hasmik; Ewers, Elisabeth; Reich, Daniela; Weise, Anja; Liehr, Thomas

    2008-01-01

    Background Small supernumerary marker chromosomes (sSMC) are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22)t(11;22)(q23;q11), only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22) and two were maternally derived: a der(18)t(8;18) and a der(13 or 21)t(13 or 21;18). Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH) or array based comparative genomic hybridization (array-CGH) might identify them to be more frequent than only ~0.9% among all sSMC. PMID:18471318

  12. Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation

    PubMed Central

    Hallor, K H; Staaf, J; Jönsson, G; Heidenblad, M; Vult von Steyern, F; Bauer, H C F; IJszenga, M; Hogendoorn, P C W; Mandahl, N; Szuhai, K; Mertens, F

    2007-01-01

    The initiating somatic genetic events in chordoma development have not yet been identified. Most cytogenetically investigated chordomas have displayed near-diploid or moderately hypodiploid karyotypes, with several numerical and structural rearrangements. However, no consistent structural chromosome aberration has been reported. This is the first array-based study characterising DNA copy number changes in chordoma. Array comparative genomic hybridisation (aCGH) identified copy number alterations in all samples and imbalances affecting 5 or more out of the 21 investigated tumours were seen on all chromosomes. In general, deletions were more common than gains and no high-level amplification was found, supporting previous findings of primarily losses of large chromosomal regions as an important mechanism in chordoma development. Although small imbalances were commonly found, the vast majority of these were detected in single cases; no small deletion affecting all tumours could be discerned. However, the CDKN2A and CDKN2B loci in 9p21 were homo- or heterozygously lost in 70% of the tumours, a finding corroborated by fluorescence in situ hybridisation, suggesting that inactivation of these genes constitute an important step in chordoma development. PMID:18071362

  13. Rapid detection of genomic imbalances using micro-arrays consisting of pooled BACs covering all human chromosome arms.

    PubMed

    Knijnenburg, Jeroen; van der Burg, Marja; Nilsson, Philomeen; Ploos van Amstel, Hans Kristian; Tanke, Hans; Szuhai, Károly

    2005-10-12

    A strategy is presented to select, pool and spot human BAC clones on an array in such a way that each spot contains five well performing BAC clones, covering one chromosome arm. A mini-array of 240 spots was prepared representing all human chromosome arms in a 5-fold as well as some controls, and used for comparative genomic hybridization (CGH) of 10 cell lines with aneusomies frequently found in clinical cytogenetics and oncology. Spot-to-spot variation within five replicates was below 6% and all expected abnormalities were detected 100% correctly. Sensitivity was such that replacing one BAC clone in a given spot of five by a BAC clone from another chromosome, thus resulting in a change in ratio of 20%, was reproducibly detected. Incubation time of the mini-array was varied and the fluorescently labelled target DNA was diluted. Typically, aneusomies could be detected using 30 ng of non-amplified random primed labelled DNA amounts in a 4 h hybridization reaction. Potential application of these mini-arrays for genomic profiling of disseminated tumour cells or of blastomeres for preimplantation genetic diagnosis, using specially designed DNA amplification methods, are discussed.

  14. [Association of chromosome 17q copy number variation with overall survival of patients with hepatocellular carcinoma and screening of potential target genes].

    PubMed

    Zhang, Jing; Wen, Bingji; Cong, Wenming; Chen, Lyu; Jiang, Jun; Pan, Wei; He, Jiajia; Zhu, Zhongzheng

    2015-10-01

    OBJECTIVE To assess the association of copy number variations (CNVs) in chromosome 17q with the overall survival(OS) of patients with hepatocellular carcinoma(HCC), and to screen for target genes contained in the OS-related CNVs. METHODS A total of 174 HCC cases were enrolled. For 66 patients, the follow-up data was available. High-resolution Agilent Hu-244A array comparative genomic hybridization (aCGH) and Affymetrix U133 Plus 2.0 expression arrays were used to detect CNVs and gene expression of genes from the 17q region, respectively. The association of CNVs and OS was assessed with Log-rank test, Kaplan-Meier survival analysis, and Cox proportional hazards models. The gene expression in HCCs with 17q gain, HCCs without, and non-tumor liver tissues were compared with a Mann-Whitney U test. RESULTS Univariate association analysis showed that copy number gain in 17q25.1-25.3 was significantly associated with reduced OS (Log-rank test, P = 0.00002), and HCC cases with 17q25.1-25.3 gain had a 4.76-fold (95%CI: 2.31-9.81) increased hazard ratio (HR) for death from HCC, as compared to those without the gain. Multivariate Cox proportional hazards regression model revealed 17q25.1-25.3 gain to be an independent prognostic marker for poor OS (HR = 3.17, 95%CI: 1.39-7.26, P = 0.006). The expression levels of 18 genes in 17q25.1-25.3 including SLC9A3R1, GRB2, and TK1 were significantly increased in HCCs with gain than in those without (all P < 0.01) and non-tumor liver tissues (all P < 0.01). CONCLUSION The association of 17q25.1-25.3 gain with reduced OS has indicated that it is a prognostic marker for poor patient survival in HCC, for which SLC9A3R1, GRB2, and TK1 are candidate genes.

  15. Polymer Models of Interphase Chromosomes

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Kondev, Jané; Bressen, Debra; Haber, James

    2006-03-01

    Experiments during interphase, the growth phase of the cell cycle in eukaryotic cells, have shown that parts of chromosomes are tethered to the nuclear periphery[1]. Using a simple polymer model of interphase chromosomes that includes tethering, we compute the probability distribution for the distance between two marked points on the chromosome. These calculations are inspired by recent experiments with two or more fluorescent markers placed along the chromosome[2]. We demonstrate how experiments of this kind, in conjunction with simpe polymer models, can be used to systematically dissect the spatial organization of interphase chromosomes in the nucleus of living cells. This comparison of theory with experiments has lead to the conclusion that the structure of chromosome III in yeast is consistent with a 10nm-fiber model of chromatin. [1]Wallace F. Marshall. Current Biology, 12, 2002. [2] Kerstin Bystricky, Patrick Heun, Lutz Gehlen, Jörg Langowski and Susan M. Gasser. PNAS, 101(47) 2004

  16. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  17. Structural differences in chromosomes distinguish species in the tomato clade.

    PubMed

    Anderson, L K; Covey, P A; Larsen, L R; Bedinger, P; Stack, S M

    2010-07-01

    The tomato clade of Solanaceae is composed of 12 species that are all diploid with the same chromosome number and morphology. Species in the tomato clade are considered to have evolved primarily by genic changes rather than large-scale chromosomal rearrangements because pachytene chromosomes in F(1) hybrids synapse normally along their lengths and linkage maps of intra- and inter-specific hybrids are co-linear. However, small inversions have been reported between tomato and some of its wild relatives. Therefore, we reevaluated 5 F(1) hybrids using high-resolution, electron microscopic examination of pachytene chromosome (= synaptonemal complex) spreads to determine whether any minor structural changes had occurred among species in the tomato clade, which were not easily visible using light microscopic analysis of conventional chromosome squashes. Our study revealed a number of unexpected synaptic configurations such as mismatched kinetochores, inversion loops and reciprocal translocations. Most of these structural differences were in or close to heterochromatin that has comparatively few genes and little recombination, so they would be expected to have little effect on the evident colinearity of linkage maps, especially in euchromatin. However, these results demonstrate that substantial changes in chromosome structure have occurred among species within the tomato clade.

  18. Reorganization of chromosome architecture in replicative cellular senescence

    PubMed Central

    Criscione, Steven W.; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A.; Sedivy, John M.; Neretti, Nicola

    2016-01-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells. PMID:26989773

  19. Molecular genetic linkage maps of mouse chromosomes 4 and 6.

    PubMed

    Bahary, N; Zorich, G; Pachter, J E; Leibel, R L; Friedman, J M

    1991-09-01

    We have generated a moderate resolution genetic map of mouse chromosomes 4 and 6 utilizing a (C57BL/6J x Mus spretus) F1 x Mus spretus backcross with RFLPs for 31 probes. The map for chromosome 4 covers 77 cM and details a large region of homology to human chromosome 1p. The map establishes the breakpoints in the mouse 4-human 1p region of homology to a 2-cM interval between Ifa and Jun in mouse and to the interval between JUN and ACADM in human. The map for mouse chromosome 6 spans a 65-cM region and contains a large region of homology to human 7q. These maps also provide chromosomal assignment and order for a number of previously unmapped probes. The maps should allow the rapid regional assignment of new markers to mouse chromosomes 4 and 6. In addition, knowledge of the gene order in mouse may prove useful in determining the gene order of the homologous regions in human.

  20. Physical mapping of human chromosome 16. Annual progress report

    SciTech Connect

    Sutherland, G.R.

    1993-08-01

    We aim to isolate cDNAs mapping to human chromosome 16 and localise such cDNAs on the high resolution physical map. In collaboration with LANL, PCR primers will be synthesised from cDNA sequences mapped to chromosome 16 and used as ESTs in the generation of mega-YAC contigs for this chromosome. Probing of high density cosmid grids will enable integration of the ESTs into cosmid contigs and location of the cosmid contigs on the YAC contig. A hn-cDNA library has been constructed from the hybrid CY18 which contains chromosome 16 as the only human chromosome. A modified screening protocol has been successfully developed and 15 hn-cDNA clones have been sequenced and localised on the hybrid map. Sequence analysis of four of these revealed that they were known cDNAs, which are now mapped to chromosome 16. Development of techniques to allow the isolation of longer cDNAs from the identified exons is in progress. This will depend on PCR amplification of cDNAs from a total human CDNA library.

  1. A simple filtration technique for obtaining purified human chromosomes in suspension.

    PubMed

    Yusuf, Mohammed; Parmar, Neha; Bhella, Gurdeep K; Robinson, Ian K

    2014-05-01

    Here we present a simple method for cleaning polyamine human mitotic chromosomes in solution. This was achieved by filtering intact (unburst) nuclei along with both large and small cytoplasmic debris through a series of different pore sized filters. Pure human chromosomes were recovered using a simple reverse filtration step. Fluorescence microscopy was used to validate the chromosome suspension after each filtration step. This reverse filtration technique is an improvement in both procedure time and chromosome recovery compared to currently used post-purification methods. Chromosomes purified by our method could be used for many applications, such as structural studies using microfluidics and high resolution imaging or generation of chromosome paints and sequencing after flow cytometry.

  2. The bovine bivariate flow karyotype and peak identification by chromosome painting with PCR-generated probes.

    PubMed

    Schmitz, A; Oustry, A; Chaput, B; Bahri-Darwich, I; Yerle, M; Millan, D; Frelat, G; Cribiu, E P

    1995-06-01

    A bovine bivariate flow karyotype has been established from a primary fibroblast cell culture carrying a 4;10 Robertsonian translocation. From 27 to 36 populations could be resolved by flow cytometry although the anticipated number was 31. Separation of chromosomal pairs into two populations explains this high resolution and confirms the high level of heteromorphism previously observed. We used a PARM-PCR (Priming Authorizing Random Mismatches) procedure for the production of paint probes from flow-sorted chromosome fractions. These probes were used for chromosome identification by fluorescence in situ hybridization (FISH) on R-banded metaphase spreads. We present the localization of all the bovine chromosome types on the flow karyotype. Twenty-two chromosome types including the translocated chromosome were sorted as pure fractions.

  3. Characterization of human chromosomal material exchange with regard to the chromosome translocations using next-generation sequencing data.

    PubMed

    Xu, Chao; Zhang, Jigang; Wang, Yu-Ping; Deng, Hong-Wen; Li, Jian

    2014-10-27

    As an important subtype of structural variations, chromosomal translocation is associated with various diseases, especially cancers, by disrupting gene structures and functions. Traditional methods for identifying translocations are time consuming and have limited resolutions. Recently, a few studies have employed next-generation sequencing (NGS) technology for characterizing chromosomal translocations on human genome, obtaining high-throughput results with high resolutions. However, these studies are mainly focused on mechanism-specific or site-specific translocation mapping. In this study, we conducted a comprehensive genome-wide analysis on the characterization of human chromosomal material exchange with regard to the chromosome translocations. Using NGS data of 1,481 subjects from the 1000 Genomes Project, we identified 15,349,092 translocated DNA fragment pairs, ranging from 65 to 1,886 bp and with an average size of approximately 102 bp. On average, each individual genome carried about 10,364 pairs, covering approximately 0.069% of the genome. We identified 16 translocation hot regions, among which two regions did not contain repetitive fragments. Results of our study overlapped with a majority of previous results, containing approximately 79% of approximately 2,340 translocations characterized in three available translocation databases. In addition, our study identified five novel potential recurrent chromosomal material exchange regions with greater than 20% detection rates. Our results will be helpful for an accurate characterization of translocations in human genomes, and contribute as a resource for future studies of the roles of translocations in human disease etiology and mechanisms.

  4. Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction.

    PubMed

    Evans, Andrew J; Gallie, Brenda L; Jewett, Michael A S; Pond, Gregory R; Vandezande, Kirk; Underwood, John; Fradet, Yves; Lim, Gloria; Marrano, Paula; Zielenska, Maria; Squire, Jeremy A

    2004-01-01

    Metaphase-based comparative genomic hybridization (CGH) has identified recurrent regions of gain on different chromosomes in bladder cancer, including 6p22. These regions may contain activated oncogenes important in disease progression. Using quantitative multiplex polymerase chain reaction (QM-PCR) to study DNA from 59 bladder tumors, we precisely mapped the focal region of genomic gain on 6p22. The marker STS-X64229 had copy number increases in 38 of 59 (64%) tumors and the flanking markers, RH122450 and A009N14, had copy number gains in 33 of 59 (56%) and 26 of 59 (45%) respectively. Contiguous gain was present for all three markers in 14 of 59 (24%) and for two (RH122450 and STS-X64229) in 25 of 59 (42%). The genomic distance between the markers flanking STS-X64229 is 0.5 megabases, defining the minimal region of gain on 6p22. Locus-specific interphase fluorescence in situ hybridization confirmed the increased copy numbers detected by QM-PCR. Current human genomic mapping data indicates that an oncogene, DEK, is centrally placed within this minimal region. Our findings demonstrate the power of QM-PCR to narrow the regions identified by CGH to facilitate identifying specific candidate oncogenes. This also represents the first study identifying DNA copy number increases for DEK in bladder cancer.

  5. 3.2 Mb microdeletion in chromosome 7 bands q22.2-q22.3 associated with overgrowth and delayed bone age.

    PubMed

    Uliana, Vera; Grosso, Salvatore; Cioni, Maddalena; Ariani, Francesca; Papa, Filomena T; Tamburello, Silvia; Rossi, Elisa; Katzaki, Eleni; Mucciolo, Mafalda; Marozza, Annabella; Pollazzon, Marzia; Mencarelli, Maria Antonietta; Mari, Francesca; Balestri, Paolo; Renieri, Alessandra

    2010-01-01

    We report a patient with mental retardation, epilepsy, overgrowth, delayed bone age, peculiar facial features, corpus callosum hypoplasia, enlarged cisterna magna and right cerebellar hypoplasia. Array-CGH analysis revealed the presence of a de novo 3.2 Mb interstitial deletion of the long arm of chromosome 7 involving bands q22.2-q22.3. The rearrangement includes 15 genes and encompasses a genomic region that represents a site of frequent loss of heterozygosity in myeloid malignancies. Four genes are implicated in the control of cell cycle: SRPK2, MLL5, RINT1 and LHFPL3. Haploinsufficiency of these genes might therefore be associated with overgrowth and could confer susceptibility to cancers or other tumours, so that attention to this possibility would be appropriate during regular medical review. In conclusion, array-CGH analysis should be performed in patients with overgrowth where the known causes have already been excluded, because some still unclassified overgrowth syndromes may be caused by subtle genomic imbalances.

  6. The XXXXY Chromosome Anomaly

    PubMed Central

    Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.

    1966-01-01

    The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822

  7. Chromosome Connections: Compelling Clues to Common Ancestry

    ERIC Educational Resources Information Center

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  8. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    PubMed

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  9. Distance between homologous chromosomes results from chromosome positioning constraints.

    PubMed

    Heride, Claire; Ricoul, Michelle; Kiêu, Kien; von Hase, Johann; Guillemot, Vincent; Cremer, Christoph; Dubrana, Karine; Sabatier, Laure

    2010-12-01

    The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.

  10. Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome.

    PubMed

    Gribble, Susan M; Wiseman, Frances K; Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J; Stebbings, Lucy A; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L J; Fisher, Elizabeth M C; Carter, Nigel P

    2013-01-01

    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype--phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.

  11. Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    PubMed Central

    Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.

    2013-01-01

    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509

  12. Chromosome anomalies in bone marrow as primary cause of aplastic or hypoplastic conditions and peripheral cytopenia: disorders due to secondary impairment of RUNX1 and MPL genes

    PubMed Central

    2012-01-01

    Background Chromosome changes in the bone marrow (BM) of patients with persistent cytopenia are often considered diagnostic for a myelodysplastic syndrome (MDS). Comprehensive cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in cases with cytopenia without morphological signs of MDS. Results Chromosome anomalies were found in the BM of three patients, without any morphological evidence of MDS: 1) an acquired complex rearrangement of chromosome 21 in a boy with severe aplastic anaemia (SAA); the rearrangement caused the loss of exons 2–8 of the RUNX1 gene with subsequent hypoexpression. 2) a constitutional complex rearrangement of chromosome 21 in a girl with congenital thrombocytopenia; the rearrangement led to RUNX1 disruption and hypoexpression. 3) an acquired paracentric inversion of chromosome 1, in which two regions at the breakpoints were shown to be lost, in a boy with aplastic anaemia; the MPL gene, localized in chromosome 1 short arms was not mutated neither disrupted, but its expression was severely reduced: we postulate that the aplastic anaemia was due to position effects acting both in cis and in trans, and causing Congenital Amegakaryocytic Thrombocytopenia (CAMT). Conclusions A clonal anomaly in BM does not imply per se a diagnosis of MDS: a subgroup of BM hypoplastic disorders is directly due to chromosome structural anomalies with effects on specific genes, as was the case of RUNX1 and MPL in the patients here reported with diagnosis of SAA, thrombocytopenia, and CAMT. The anomaly may be either acquired or constitutional, and it may act by deletion/disruption of the gene, or by position effects. Full cytogenetic investigations, including a-CGH, should always be part of the diagnostic evaluation of patients with BM aplasia/hypoplasia and peripheral cytopenias. PMID:23025896

  13. Chromosomal microarray analysis of functional Xq27-qter disomy and deletion 3p26.3 in a boy with Prader-Willi like features and hypotonia.

    PubMed

    Ben-Abdallah-Bouhjar, Inesse; Hannachi, Hanene; Labalme, Audrey; Gmidène, Abir; Mougou, Soumaya; Soyah, Najla; Gribaa, Moez; Sanlaville, Damien; Elghezal, Hatem; Saad, Ali

    2012-01-01

    Duplications of the long arm of the X chromosome are rare. The infantile phenotype shares some resemblance with the Prader-Willi syndrome, presenting severe psychomotor retardation, facial dysmorphic features with a broad face, a small mouth and a thin pointed nose, hypotonia, urogenital malformation and proneness to infections. We report a boy with an additional Xq27-qter chromosome segment translocated onto the short arm of chromosome 3. The karyotype was 46,XY,der(3)t(X;3)(q27.3; p26.3)mat. This cryptic unbalanced X-autosome translocation resulted in Xq27-qter functional disomy and a deletion 3p26.3. A detailed analysis of the constitutional chromosomal changes in the patient was performed using array-CGH, FISH and PCR. The aim was to characterize the size and the location of the duplication Xq27-qter (8.18 Mb) and of the deletion 3p26.3 (1.05 Mb), to establish phenotype-genotype correlations and to offer genetic counselling.

  14. Primary hyperoxaluria type 1 and brachydactyly mental retardation syndrome caused by a novel mutation in AGXT and a terminal deletion of chromosome 2.

    PubMed

    Tammachote, Rachaneekorn; Kingsuwannapong, Nelawat; Tongkobpetch, Siraprapa; Srichomthong, Chalurmpon; Yeetong, Patra; Kingwatanakul, Pornchai; Monico, Carla G; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2012-09-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by mutations in the alanine:glyoxylate aminotransferase (AGXT) gene, located on chromosome 2q37. Mutant AGXT leads to excess production and excretion of oxalate, resulting in accumulation of calcium oxalate in the kidney, and progressive loss of renal function. Brachydactyly mental retardation syndrome (BDMR) is an autosomal dominant disorder, caused by haploinsufficiency of histone deacetylase 4 (HDAC4), also on chromosome 2q37. It is characterized by skeletal abnormalities and developmental delay. Here, we report on a girl who had phenotypes of both PH1 and BDMR. PCR-sequencing of the coding regions of AGXT showed a novel missense mutation, c.32C>G (p.Pro11Arg) inherited from her mother. Functional analyses demonstrated that it reduced the enzymatic activity to 31% of the wild-type and redirected some percentage of the enzyme away from the peroxisome. Microsatellite and array-CGH analyses indicated that the proband had a paternal de novo telomeric deletion of chromosome 2q, which included HDAC4. To our knowledge, this is the first report of PH1 and BDMR, with a novel AGXT mutation and a de novo telomeric deletion of chromosome 2q.

  15. A YAC contig map of plasmodium falciparum chromosome 4: Characterization of a DNA amplification between two recently separated isolates

    SciTech Connect

    Rubio, J.P.; Triglia, T.; Cowman, A.F.

    1995-03-20

    We have generated a physical map of Plasmodium falciparum chromosome 4 using yeast artificial chromosomes (YACs). The map is defined by a YAC contig spanning approximately 1.05 Mb, which has been restriction mapped to a resolution of 30 kb and is punctuated by 22 sequence-tagged sites. The physical information obtained has enabled us to compare and contrast the structure of chromosome 4 in detail between FCR3 and B8, two recently separated isolates of P. falciparum, leading to characterization of a novel chromosome polymorphism occurring in a subtelomeric region. Comparison of chromosomes 4 from 10 different isolates has shown that chromosome size polymorphisms are restricted to both subtelomeric regions. These analyses provide a high-resolution physical map that will be important to complement genetic analysis of this human pathogen. 42 refs., 6 figs., 1 tab.

  16. Advances in plant chromosome genomics.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Simková, Hana

    2014-01-01

    Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics.

  17. Visualization of early chromosome condensation

    PubMed Central

    Kireeva, Natashe; Lakonishok, Margot; Kireev, Igor; Hirano, Tatsuya; Belmont, Andrew S.

    2004-01-01

    Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIα and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150–200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200–300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial “glue.” PMID:15353545

  18. Cohesin in determining chromosome architecture

    SciTech Connect

    Haering, Christian H.; Jessberger, Rolf

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  19. Organization of the bacterial chromosome.

    PubMed Central

    Krawiec, S; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation. PMID:2087223

  20. Genetics Home Reference: ring chromosome 20 syndrome

    MedlinePlus

    ... Home Health Conditions ring chromosome 20 syndrome ring chromosome 20 syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Ring chromosome 20 syndrome is a condition that affects the ...

  1. Genetics Home Reference: ring chromosome 14 syndrome

    MedlinePlus

    ... Home Health Conditions ring chromosome 14 syndrome ring chromosome 14 syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Ring chromosome 14 syndrome is a condition characterized by seizures ...

  2. Bacterial chromosome organization and segregation

    PubMed Central

    Badrinarayanan, Anjana; Le, Tung BK; Laub, Michael T

    2016-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly one millimeter long, or approximately 1000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length-scales, highlighting the functions of various DNA-binding proteins and impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  3. Chromosome choreography: the meiotic ballet.

    PubMed

    Page, Scott L; Hawley, R Scott

    2003-08-08

    The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.

  4. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  5. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer.

    PubMed

    Nymark, Penny; Guled, Mohamed; Borze, Ioana; Faisal, Ali; Lahti, Leo; Salmenkivi, Kaisa; Kettunen, Eeva; Anttila, Sisko; Knuutila, Sakari

    2011-08-01

    Lung cancer has the highest mortality rate of all of the cancers in the world and asbestos-related lung cancer is one of the leading occupational cancers. The identification of asbestos-related molecular changes has long been a topic of increasing research interest. The aim of this study was to identify novel asbestos-related molecular correlates by integrating miRNA expression profiling with previously obtained profiling data (aCGH and mRNA expression) from the same patient material. miRNA profiling was performed on 26 tumor and corresponding normal lung tissue samples from highly asbestos-exposed and non-exposed patients, and on eight control lung tissue samples. Data analyses on miRNA expression, and integration of miRNA and previously obtained mRNA data were performed using Chipster. A separate analysis was used to integrate miRNA and previously obtained aCGH data. Both known and new lung cancer-associated miRNAs and target genes with inverse correlation were discovered. Furthermore, DNA copy number alterations (e.g., gain at 12p13.31) were correlated with the deregulated miRNAs. Specifically, thirteen novel asbestos-related miRNAs (over-expressed: miR-148b, miR-374a, miR-24-1*, Let-7d, Let-7e, miR-199b-5p, miR-331-3p, and miR-96 and under-expressed: miR-939, miR-671-5p, miR-605, miR-1224-5p and miR-202) and inversely correlated target genes (e.g., GADD45A, LTBP1, FOSB, NCALD, CACNA2D2, MTSS1, EPB41L3) were identified. In addition, over-expression of the well known squamous cell carcinoma-associated miR-205 was linked to down-regulation of the DOK4 gene. The miRNAs/genes presented here may represent interesting targets for further investigation and could eventually have potential diagnostic implications.

  6. Genome-Wide Deletion Screening with the Array CGH Method in Mouse Offspring Derived from Irradiated Spermatogonia Indicates that Mutagenic Responses are Highly Variable among Genes.

    PubMed

    Asakawa, Jun-Ichi; Kodaira, Mieko; Miura, Akiko; Tsuji, Takahiro; Nakamoto, Yoshiko; Imanaka, Masaaki; Kitamura, Jun; Cullings, Harry; Nishimura, Mayumi; Shimada, Yoshiya; Nakamura, Nori

    2016-12-01

    Until the end of the 20th century, mouse germ cell data on induced mutation rates, which were collected using classical genetic methods at preselected specific loci, provided the principal basis for estimates of genetic risks from radiation in humans. The work reported on here is an extension of earlier efforts in this area using molecular methods. It focuses on validating the use of array comparative genomic hybridization (array CGH) methods for identifying radiation-induced copy number variants (CNVs) and specifically for DNA deletions. The emphasis on deletions stems from the view that it constitutes the predominant type of radiation-induced genetic damage, which is relevant for estimating genetic risks in humans. In the current study, deletion mutations were screened in the genomes of F1 mice born to unirradiated or 4 Gy irradiated sires at the spermatogonia stage (100 offspring each). The array CGH analysis was performed using a "2M array" with over 2 million probes with a mean interprobe distance of approximately 1 kb. The results provide evidence of five molecularly-confirmed paternally-derived deletions in the irradiated group (5/100) and one in the controls (1/100). These data support a calculation, which estimates that the mutation rate is 1 × 10(-2)/Gy per genome for induced deletions; this is much lower than would be expected if one assumes that the specific locus rate of 1 × 10(-5)/locus per Gy (at 34 loci) is applicable to other genes in the genome. The low observed rate of induced deletions suggests that the effective number of genes/genomic regions at which recoverable deletions could be induced would be only approximately 1,000. This estimate is far lower than expected from the size of the mouse genome (>20,000 genes). Such a discrepancy between observation and expectation can occur if the genome contains numerous genes that are far less sensitive to radiation-induced deletions, if many deletion-bearing offspring are not viable or if the current

  7. Technologies for large-scale physical mapping of human chromosomes

    SciTech Connect

    Beugelsdijk, T.J.

    1994-12-01

    Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.

  8. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    NASA Astrophysics Data System (ADS)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  9. Cytogenetic analysis of quinoa chromosomes using nanoscale imaging and spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Yangquanwei, Zhong; Neethirajan, Suresh; Karunakaran, Chithra

    2013-11-01

    Here we present a high-resolution chromosomal spectral map derived from synchrotron-based soft X-ray spectromicroscopy applied to quinoa species. The label-free characterization of quinoa metaphase chromosomes shows that it consists of organized substructures of DNA-protein complex. The analysis of spectra of chromosomes using the scanning transmission X-ray microscope (STXM) and its superposition of the pattern with the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proves that it is possible to precisely locate the gene loci and the DNA packaging inside the chromosomes. STXM has been successfully used to distinguish and quantify the DNA and protein components inside the quinoa chromosomes by visualizing the interphase at up to 30-nm spatial resolution. Our study represents the successful attempt of non-intrusive interrogation and integrating imaging techniques of chromosomes using synchrotron STXM and AFM techniques. The methodology developed for 3-D imaging of chromosomes with chemical specificity and temporal resolution will allow the nanoscale imaging tools to emerge from scientific research and development into broad practical applications such as gene loci tools and biomarker libraries.

  10. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae

    PubMed Central

    Trussart, Marie; Yus, Eva; Martinez, Sira; Baù, Davide; Tahara, Yuhei O.; Pengo, Thomas; Widjaja, Michael; Kretschmer, Simon; Swoger, Jim; Djordjevic, Steven; Turnbull, Lynne; Whitchurch, Cynthia; Miyata, Makoto; Marti-Renom, Marc A.; Lluch-Senar, Maria; Serrano, Luís

    2017-01-01

    DNA-binding proteins are central regulators of chromosome organization; however, in genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of such bacteria adopt defined three-dimensional structures remains unexplored. Here we combine Hi-C and super-resolution microscopy to determine the structure of the Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure, with a global symmetry between two arms that connect opposite poles, one bearing the chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We provide evidence that genes within the same domain tend to be co-regulated, suggesting that chromosome organization influences transcriptional regulation, and that supercoiling regulates local organization. This study extends the current understanding of bacterial genome organization and demonstrates that a defined chromosomal structure is a universal feature of living systems. PMID:28272414

  11. CHROMOSOMAL MAPPING IN STRAINS OF STAPHYLOCOCCUS AUREUS,

    DTIC Science & Technology

    STAPHYLOCOCCUS AUREUS , CHROMOSOMES), (*CHROMOSOMES, MAPPING), NITROSO COMPOUNDS, GUANIDINES, GENETICS, MUTATIONS, DRUGS, TOLERANCES(PHYSIOLOGY), TEST METHODS, DEOXYRIBONUCLEIC ACIDS, INHIBITION, RESISTANCE(BIOLOGY).

  12. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  13. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  14. Reference-assisted chromosome assembly.

    PubMed

    Kim, Jaebum; Larkin, Denis M; Cai, Qingle; Asan; Zhang, Yongfen; Ge, Ri-Li; Auvil, Loretta; Capitanu, Boris; Zhang, Guojie; Lewin, Harris A; Ma, Jian

    2013-01-29

    One of the most difficult problems in modern genomics is the assembly of full-length chromosomes using next generation sequencing (NGS) data. To address this problem, we developed "reference-assisted chromosome assembly" (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end reads. Evaluation of results using simulated and real genome assemblies indicates that our approach can substantially improve genomes generated by a wide variety of de novo assemblers if a good reference assembly of a closely related species and outgroup genomes are available. We used RACA to reconstruct 60 Tibetan antelope (Pantholops hodgsonii) chromosome fragments from 1,434 SOAPdenovo sequence scaffolds, of which 16 chromosome fragments were homologous to complete cattle chromosomes. Experimental validation by PCR showed that predictions made by RACA are highly accurate. Our results indicate that RACA will significantly facilitate the study of chromosome evolution and genome rearrangements for the large number of genomes being sequenced by NGS that do not have a genetic or physical map.

  15. Human chromosomal bands: nested structure, high-definition map and molecular basis.

    PubMed

    Costantini, Maria; Clay, Oliver; Federico, Concetta; Saccone, Salvatore; Auletta, Fabio; Bernardi, Giorgio

    2007-02-01

    In this paper, we report investigations on the nested structure, the high-definition mapping, and the molecular basis of the classical Giemsa and Reverse bands in human chromosomes. We found the rules according to which the approximately 3,200 isochores of the human genome are assembled in high (850-band) resolution bands, and the latter in low (400-band) resolution bands, so forming the nested mosaic structure of chromosomes. Moreover, we identified the borders of both sets of chromosomal bands at the DNA sequence level on the basis of our recent map of isochores, which represent the highest-resolution, ultimate bands. Indeed, beyond the 100-kb resolution of the isochore map, the guanine and cytosine (GC) profile of DNA becomes turbulent owing to the contribution of specific sequences such as exons, introns, interspersed repeats, CpG islands, etc. The isochore-based level of definition (100 kb) of chromosomal bands is much higher than the cytogenetic definition level (2-3 Mb). The major conclusions of this work concern the high degree of order found in the structure of chromosomal bands, their mapping at a high definition, and the solution of the long-standing problem of the molecular basis of chromosomal bands, as these could be defined on the basis of compositional DNA properties alone.

  16. Relatives with opposite chromosome constitutions, rec(10)dup(10p)inv(10)(p15.1q26.12) and rec(10)dup(10q)inv(10)(p15.1q26.12), due to a familial pericentric inversion.

    PubMed

    Ciuladaite, Zivile; Preiksaitiene, Egle; Utkus, Algirdas; Kučinskas, Vaidutis

    2014-01-01

    Large pericentric inversions in chromosome 10 are rare chromosomal aberrations with only few cases of familial inheritance. Such chromosomal rearrangements may lead to production of unbalanced gametes. As a result of a recombination event in the inversion loop, 2 recombinants with duplicated and deficient chromosome segments, including the regions distal to the inversion, may be produced. We report on 2 relatives in a family with opposite terminal chromosomal rearrangements of chromosome 10, i.e. rec(10)dup(10p)inv(10) and rec(10)dup(10q)inv(10), due to familial pericentric inversion inv(10)(p15.1q26.12). Based on array-CGH results, we characterized the exact genomic regions involved and compared the clinical features of both patients with previous reports on similar pericentric inversions and regional differences within 10p and 10q. The fact that both products of recombination are viable indicates a potentially high recurrence risk of unbalanced offspring. This report of unbalanced rearrangements in chromosome 10 in 2 generations confirms the importance of screening for terminal imbalances in patients with idiopathic intellectual disability by molecular cytogenetic techniques such as FISH, MLPA or microarrays. It also underlines the necessity for FISH to define structural characteristics of such cryptic intrachromosomal rearrangements and the underlying cytogenetic mechanisms.

  17. Mosaic partial trisomy 19p12-q13.11 due to a small supernumerary marker chromosome: a locus associated with Asperger syndrome?

    PubMed

    Faucz, Fabio Rueda; Souza, Josiane; Bonalumi Filho, Aguinaldo; Sotomaior, Vanessa Santos; Frantz, Egon; Antoniuk, Sergio; Rosenfeld, Jill A; Raskin, Salmo

    2011-09-01

    In the neurodevelopmentally impaired population the frequency of small supernumerary marker chromosomes (sSMC) is about 0.3%. To find the origin of a sSMC in a 4-year-old boy with Asperger syndrome (AS) a microarray-based comparative genomic hybridization (aCGH), using a 135K-feature whole-genome microarray, and Metaphase FISH analysis, was performed. The sSMC was characterized as being composed of 18.4 Mb from 19p12q13.11. Based on the size and genic content, it is expected that the partial trisomy detected is responsible for the characteristics observed in the patient. In that case it could be an indication of a novel locus associated with AS.

  18. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  19. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization.

    PubMed

    Gorringe, Kylie L; Boussioutas, Alex; Bowtell, David D L

    2005-03-01

    Gastric cancer (GC) frequently displays changes in DNA copy number, but few studies have precisely correlated specific genetic alterations with changes in gene expression. We undertook both array comparative genomic hybridization (aCGH) and expression analyses of 20 primary GCs using a cDNA microarray with more than 9,300 genes. Diverse clinical and histopathologic tumor subtypes, including signet-ring tumors and tumors at the gastroesophageal junction, were analyzed. All tumors showed changes in gene copy number, with the majority showing multiple changes. Regions of gain and loss were generally consistent with previous cytogenetic reports; however, the use of aCGH greatly increased the resolution of measured genomic change. By comparing gene expression and high-resolution measurement of gene copy number directly, we were able to identify several regions of high-level gain associated with substantially increased gene expression that have not been defined previously in GC. Novel candidate oncogenes included dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) and protein tyrosine kinase 7 (PTK7).

  20. Analysis of chromosome 21 yeast artificial chromosome (YAC) clones

    SciTech Connect

    Tassone, F. A. Gemelli School of Medicine, Rome ); Cheng, S.; Gardiner, K. )

    1992-12-01

    Chromosome 21 contains genes relevant to several important diseases. Yeast artificial chromosome (YAC) clones, because they span >100 kbp, will provide attractive material for initiating searches for such genes. Twenty-two YAC clones, each of which maps to a region of potential relevance either to aspects of the Down syndrome phenotype or to one of the other chromosome 21-associated genetic diseases, have been analyzed in detail. Clones total [approximately]6,000 kb and derive from all parts of the long arm. Rare restriction-site maps have been constructed for each clone and have been used to determine regional variations in clonability, methylation frequency, CpG island density, and CpG island frequency versus gene density. This information will be useful for the isolation and mapping of new genes to chromosome 21 and for walking in YAC libraries. 48 refs., 3 figs., 4 tabs.

  1. Analysis of chromosome 21 yeast artificial chromosome (YAC) clones.

    PubMed Central

    Tassone, F; Cheng, S; Gardiner, K

    1992-01-01

    Chromosome 21 contains genes relevant to several important diseases. Yeast artificial chromosome (YAC) clones, because they span > 100 kbp, will provide attractive material for initiating searches for such genes. Twenty-two YAC clones, each of which maps to a region of potential relevance either to aspects of the Down syndrome phenotype or to one of the other chromosome 21-associated genetic diseases, have been analyzed in detail. Clones total approximately 6,000 kb and derive from all parts of the long arm. Rare restriction-site maps have been constructed for each clone and have been used to determine regional variations in clonability, methylation frequency, CpG island density, and CpG island frequency versus gene density. This information will be useful for the isolation and mapping of new genes to chromosome 21 and for walking in YAC libraries. Images Figure 2 Figure 1 PMID:1463009

  2. [Chromosome analysis and genetic testing].

    PubMed

    Isobe, Yasushi; Miura, Ikuo

    2014-03-01

    Chromosomal and genetic tests are essential to establish correct diagnoses of the lymphoma. When the tissue examination is planned, these should be done simultaneously with the morphological and immunophenotypic evaluations. Chromosome analyses can identify the genomic alterations of tumor cells. Some chromosome abnormalities define disease subtypes. For example, recurrent 14q32 translocations involving the immunoglobulin heavy chain locus support the diagnosis of B-cell lymphoma, and their translocation partners identify the types. In contrast, genetic testings are performed to confirm the presence of certain abnormalities including gene rearrangements, mutations, amplifications and deletions in each case. These results provide us detailed information for diagnosis, prognosis, and choice of therapy.

  3. Chromosome Segregation in Vibrio cholerae

    PubMed Central

    Ramachandran, R.; Jha, J; Chattoraj, DK

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation. PMID:25732338

  4. Chromosome observation by scanning electron microscopy using ionic liquid.

    PubMed

    Dwiranti, Astari; Lin, Linyen; Mochizuki, Eiko; Kuwabata, Susumu; Takaoka, Akio; Uchiyama, Susumu; Fukui, Kiichi

    2012-08-01

    Electron microscopy has been used to visualize chromosome since it has high resolution and magnification. However, biological samples need to be dehydrated and coated with metal or carbon before observation. Ionic liquid is a class of ionic solvent that possesses advantageous properties of current interest in a variety of interdisciplinary areas of science. By using ionic liquid, biological samples need not be dehydrated or metal-coated, because ionic liquid behaves as the electronically conducting material for electron microscopy. The authors have investigated chromosome using ionic liquid in conjunction with electron microscopy and evaluated the factors that affect chromosome visualization. Experimental conditions used in the previous studies were further optimized. As a result, prewarmed, well-mixed, and low concentration (0.5∼1.0%) ionic liquid provides well-contrasted images, especially when the more hydrophilic and the higher purity ionic liquid is used. Image contrast and resolution are enhanced by the combination of ionic liquid and platinum blue staining, the use of an indium tin oxide membrane, osmium tetroxide-coated coverslip, or aluminum foil as substrate, and the adjustment of electron acceleration voltage. The authors conclude that the ionic-liquid method is useful for the visualization of chromosome by scanning electron microscopy without dehydration or metal coating.

  5. Numerous transitions of sex chromosomes in Diptera.

    PubMed

    Vicoso, Beatriz; Bachtrog, Doris

    2015-04-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

  6. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  7. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits.

    PubMed

    Yen, Chueh-Chuan; Liang, Shu-Ching; Jong, Yiin-Jeng; Chen, Yann-Jang; Lin, Chi-Hung; Chen, Yuh-Min; Wu, Yu-Chung; Su, Wu-Chou; Huang, Chi-Ying F; Tseng, Szu-Wen; Whang-Peng, Jacqueline

    2007-09-01

    Chromosomal aberrations of malignant cells from pleural effusions of 31 cases of lung adenocarcinoma were analyzed. Pooled CGH results showed frequent amplifications on chromosome arms 1p (22.6%), 1q (35.5%), 2q (25.8%), 3q (38.7%), 4q (41.9%), 5p (41.9%), 5q (51.6%), 6p (19.4%), 6q (25.8%), 7p (41.9%), 7q (35.5%), 8q (32.3%), 12q (38.7%), 13q (22.6%), 14q (35.5%), 17q (19.4%), Xp (22.6%), and Xq (38.7%). Frequent deletions were found on 1p (19.4%), 3p (16.1%), 4q (16.1%), 8p (25.8%), 9p (22.6%), 9q (29.0%), 10q (22.6%), 13q (22.6%), 16p (19.4%), 16q (22.6%), 17p (29.0%), 18q (16.1%), 19p (41.9%), 19q (32.3%), 20p (19.4%) and 22q (29%). These genomic changes were generally found consistent with previous reports of CGH analysis of primary tumors of lung adenocarcinoma. Loss of 19q and 22q were more frequently found in our studies (32.3% and 29.0%, respectively) than studies of primary tumors (less than 7% for both genetic changes). Gain of 11p, although not a frequent finding, was relatively more common in this (16%) than other studies (range, 2.9-11.8%). Interestingly, occurrences of 3p loss and 11p gain were higher in smokers than non-smokers, and deletion of 3p and increased copy number of 11p and Xp appeared more often in male than female patients. Among 17 male patients, gain of chromosomal 11p was a frequent aberration in tumors of smokers, while gain of Xp was more easily found in tumors of non-smokers. One candidate gene located within 11p15, lactate dehydrogenase C (LDHC), was selected for further study. Three cases with 11p gain had amplified FISH signals of LDHC. Also tumors from smokers or male had significantly higher transcript level of LDHC than non-smokers or female, respectively. The results demonstrate that different cytogenetic changes of malignant pleural effusions from lung adenocarcinoma are correlated with genders and smoking habits. The role of LDHC in the carcinogenesis of smoking-related lung adenocarcinoma, especially in male patients with

  8. Chromosome 5 workshop.

    PubMed

    Crowe, R R; Vieland, V

    1998-01-01

    In schizophrenia, evidence consistent with linkage in the 5q23.3-q31.1 region emerged from three independent samples. In addition, a moderately retarded woman with schizophrenia with an interstitial deletion overlapping this region was reported at the workshop. A second region of interest for schizophrenia is the 5p14.1-p13.1 region, where lod scores as high as 4.37 were found in one pedigree. Chromosome 5p15 gave a non-parametric linkage (NPL) score of 2.18 (p < 0.02) in one study. Several genome scans have not found evidence of excess allele sharing in these regions, although in most cases the genome scans did not include the markers that had resulted in provisional evidence of linkage. A large pedigree of bipolar illness has shown provisional evidence of linkage at, or near, the dopamine transporter locus at 5p15.3; the maximum lod score obtained was 2.72 at D5S417. In other regions, a genome scan of bipolar disorder gave NPL scores of 2.98 at D5S812 and 3.76 at D5S423. The third disorder of interest is attention deficit hyperactivity disorder (ADHD) because two studies have reported an association with the 480 bp allele at the dopamine transporter locus. A poster presented at the Congress reported a failure to replicate the association in a sample with considerable power to detect the effect size previously reported.

  9. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  10. Afghanistan from a Y-chromosome perspective.

    PubMed

    Lacau, Harlette; Gayden, Tenzin; Regueiro, Maria; Chennakrishnaiah, Shilpa; Bukhari, Areej; Underhill, Peter A; Garcia-Bertrand, Ralph L; Herrera, Rene J

    2012-10-01

    Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.

  11. A Copy Number Variant on Chromosome 20q13.3 Implicated in Thinness and Severe Obesity

    PubMed Central

    Hasstedt, Sandra J.; Xin, Yuanpei; Mao, Rong; Lewis, Tracey; Adams, Ted D.; Hunt, Steven C.

    2015-01-01

    Background/Objectives. To identify copy number variants (CNVs) which are associated with body mass index (BMI). Subjects/Methods. CNVs were identified using array comparative genomic hybridization (aCGH) on members of pedigrees ascertained through severely obese (BMI ≥ 35 kg/m2) sib pairs (86 pedigrees) and thin (BMI ≤ 23 kg/m2) probands (3 pedigrees). Association was inferred through pleiotropy of BMI with CNV log⁡2 intensity ratio. Results. A 77-kilobase CNV on chromosome 20q13.3, confirmed by real-time qPCR, exhibited deletions in the obese subjects and duplications in the thin subjects (P = 2.2 × 10−6). Further support for the presence of a deletion derived from inference by likelihood analysis of null alleles for SNPs residing in the region. Conclusions. One or more of 7 genes residing in a chromosome 20q13.3 CNV region appears to influence BMI. The strongest candidate is ARFRP1, which affects glucose metabolism in mice. PMID:26881067

  12. Microdeletion of chromosome 1q21.3 in fraternal twins is associated with mental retardation, microcephaly, and epilepsy

    PubMed Central

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Aktas, Dilek; Alikasifoglu, Mehmet

    2017-01-01

    Summary Reported here are twins, both of whom have a 1q21.3 microdeletion and who exhibit key features common to previously reported cases such as microcephaly and developmental delay. However, some clinical findings and deleted genes differed from those in previously reported cases. The karyotype was normal 46, XX for both of the twins. Array comparative genomic hybridization (CGH) identified a 2.6 Mb deletion on chromosome 1q21.3 (chr1: 153,514,121–156,171,335 bp) in case 1 and a 1.6 Mb deletion on chromosome 1q21.3 (chr1: 154,748,365–156,358,923 bp) in case 2. The deleted region includes DPM3, MUC1, GBA, PKLR, RIT1, and LAMTOR2 in both siblings. To the extent known, this is the second report of a 1q21.3 microdeletion in a family with mental retardation, developmental delay, seizures, and some dysmorphic features, thus expanding the phenotypic spectrum. PMID:28357185

  13. The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription.

    PubMed

    Abdel-Rahman, Wael M; Lotsari-Salomaa, Johanna E; Kaur, Sippy; Niskakoski, Anni; Knuutila, Sakari; Järvinen, Heikki; Mecklin, Jukka-Pekka; Peltomäki, Päivi

    2016-01-01

    All colorectal cancer cell lines except RKO displayed active β-catenin/TCF regulated transcription. This feature of RKO was noted in familial colon cancers; hence our aim was to dissect its carcinogenic mechanism. MFISH and CGH revealed distinct instability of chromosome structure in RKO. Gene expression microarray of RKO versus 7 colon cancer lines (with active Wnt signaling) and 3 normal specimens revealed 611 differentially expressed genes. The majority of the tested gene loci were susceptible to LOH in primary tumors with various β-catenin localizations as a surrogate marker for β-catenin activation. The immunohistochemistry of selected genes (IFI16, RGS4, MCTP1, DGKI, OBCAM/OPCML, and GLIPR1) confirmed that they were differentially expressed in clinical specimens. Since epigenetic mechanisms can contribute to expression changes, selected target genes were evaluated for promoter methylation in patient specimens from sporadic and hereditary colorectal cancers. CMTM3, DGKI, and OPCML were frequently hypermethylated in both groups, whereas KLK10, EPCAM, and DLC1 displayed subgroup specificity. The overall fraction of hypermethylated genes was higher in tumors with membranous β-catenin. We identified novel genes in colorectal carcinogenesis that might be useful in personalized tumor profiling. Tumors with inactive Wnt signaling are a heterogeneous group displaying interaction of chromosomal instability, Wnt signaling, and epigenetics.

  14. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infection detected by comparative genomic hybridization

    PubMed Central

    Sakakura, C; Hagiwara, A; Taniguchi, H; Yamaguchi, T; Yamagishi, H; Takahashi, T; Koyama, K; Nakamura, Y; Abe, T; Inazawa, J

    1999-01-01

    Thirty-five hepatocellular carcinomas (HCCs) associated with hepatitis C virus (HCV) were analysed by comparative genomic hybridization (CGH), to screen for changes in copy-number of DNA sequences. Chromosomal losses were noted in 1p34–36 (37%), 4q12–21 (48%), 5q13–21 (35%), 6q13–16 (23%), 8p21–23 (28%), 13q (20%), 16q (33%) and 17p13 (37%). Gains were noted in 1q (46%), 6p (20%), 8q21–24 (31%) and 17q (43%). High level gains indicative of gene amplifications were found in 7q31 (3%), 11q13 (3%), 14q12 (6%) and 17q12 (3%); amplification at 14q12 may be characteristic for HCCs. No significant difference in chromosomal aberrations was noted between carcinomas associated with HCV-infection in our study and those reported earlier in HCCs infected with hepatitis B virus (HBV), indicating that both HBV- and HCV-related carcinomas may progress through a similar cascade of molecular events. © 1999 Cancer Research Campaign PMID:10471057

  15. The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription

    PubMed Central

    Lotsari-Salomaa, Johanna E.; Kaur, Sippy; Niskakoski, Anni; Mecklin, Jukka-Pekka

    2016-01-01

    All colorectal cancer cell lines except RKO displayed active β-catenin/TCF regulated transcription. This feature of RKO was noted in familial colon cancers; hence our aim was to dissect its carcinogenic mechanism. MFISH and CGH revealed distinct instability of chromosome structure in RKO. Gene expression microarray of RKO versus 7 colon cancer lines (with active Wnt signaling) and 3 normal specimens revealed 611 differentially expressed genes. The majority of the tested gene loci were susceptible to LOH in primary tumors with various β-catenin localizations as a surrogate marker for β-catenin activation. The immunohistochemistry of selected genes (IFI16, RGS4, MCTP1, DGKI, OBCAM/OPCML, and GLIPR1) confirmed that they were differentially expressed in clinical specimens. Since epigenetic mechanisms can contribute to expression changes, selected target genes were evaluated for promoter methylation in patient specimens from sporadic and hereditary colorectal cancers. CMTM3, DGKI, and OPCML were frequently hypermethylated in both groups, whereas KLK10, EPCAM, and DLC1 displayed subgroup specificity. The overall fraction of hypermethylated genes was higher in tumors with membranous β-catenin. We identified novel genes in colorectal carcinogenesis that might be useful in personalized tumor profiling. Tumors with inactive Wnt signaling are a heterogeneous group displaying interaction of chromosomal instability, Wnt signaling, and epigenetics. PMID:27047543

  16. Comprehensive Analyses of White-Handed Gibbon Chromosomes Enables Access to 92 Evolutionary Conserved Breakpoints Compared to the Human Genome.

    PubMed

    Weise, Anja; Kosyakova, Nadezda; Voigt, Martin; Aust, Nadine; Mrasek, Kristin; Löhmer, Sharon; Rubtsov, Nikolai; Karamysheva, Tatyana V; Trifonov, Vladimir A; Hardekopf, David; Jančušková, Tereza; Pekova, Sona; Wilhelm, Kathleen; Liehr, Thomas; Fan, Xiaobo

    2015-01-01

    Gibbon species (Hylobatidae) impress with an unusually high number of numerical and structural chromosomal changes within the family itself as well as compared to other Hominoidea including humans. In former studies applying molecular cytogenetic methods, 86 evolutionary conserved breakpoints (ECBs) were reported in the white-handed gibbon (Hylobates lar, HLA) with respect to the human genome. To analyze those ECBs in more detail and also to achieve a better understanding of the fast karyotype evolution in Hylobatidae, molecular data for these regions are indispensably necessary. In the present study, we obtained whole chromosome-specific probes by microdissection of all 21 HLA autosomes and prepared them for aCGH. Locus-specific DNA probes were also used for further molecular cytogenetic characterization of selected regions. Thus, we could map 6 yet unreported ECBs in HLA with respect to the human genome. Additionally, in 26 of the 86 previously reported ECBs, the present approach enabled a more precise breakpoint mapping. Interestingly, a preferred localization of ECBs within segmental duplications, copy number variant regions, and fragile sites was observed.

  17. Origin and domestication of papaya Yh chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  18. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  19. B chromosomes and sex in animals.

    PubMed

    Camacho, J P M; Schmid, M; Cabrero, J

    2011-01-01

    Supernumerary (B) chromosomes are dispensable elements found in many eukaryote genomes in addition to standard (A) chromosomes. In many respects, B chromosomes resemble sex chromosomes, so that a common ancestry for them has frequently been suggested. For instance, B chromosomes in grasshoppers, and other insects, show a pycnotic cycle of condensation-decondensation during meiosis remarkably similar to that of the X chromosome. In some cases, B chromosome size is even very similar to that of the X chromosome. These resemblances have led to suggest the X as the B ancestor in many cases. In addition, sex chromosome origin from B chromosomes has also been suggested. In this article, we review the existing evidence for both evolutionary pathways, as well as sex differences for B frequency at adult and embryo progeny levels, B chromosome effects or B chromosome transmission. In addition, we review cases found in the literature showing sex-ratio distortion associated with B chromosome presence, the most extreme case being the paternal sex ratio (PSR) chromosomes in some Hymenoptera. We finally analyse the possibility of B chromosome regularisation within the host genome and, as a consequence of it, whether B chromosomes can become regular members of the host genome.

  20. Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis

    PubMed Central

    Challa, Kiran; Lee, Min-Su; Shinohara, Miki; Kim, Keun P.; Shinohara, Akira

    2016-01-01

    Meiosis-specific cohesin, required for the linking of the sister chromatids, plays a critical role in various chromosomal events during meiotic prophase I, such as chromosome morphogenesis and dynamics, as well as recombination. Rad61/Wpl1 (Wapl in other organisms) negatively regulates cohesin functions. In this study, we show that meiotic chromosome axes are shortened in the budding yeast rad61/wpl1 mutant, suggesting that Rad61/Wpl1 negatively regulates chromosome axis compaction. Rad61/Wpl1 is required for efficient resolution of telomere clustering during meiosis I, indicating a positive effect of Rad61/Wpl1 on the cohesin function required for telomere dynamics. Additionally, we demonstrate distinct activities of Rad61/Wpl1 during the meiotic recombination, including its effects on the efficient processing of intermediates. Thus, Rad61/Wpl1 both positively and negatively regulates various cohesin-mediated chromosomal processes during meiosis. PMID:26825462

  1. Microelasticity of Single Mitotic Chromosomes

    NASA Astrophysics Data System (ADS)

    Poirier, Michael; Eroglu, Sertac; Chatenay, Didier; Marko, John F.; Hirano, Tatsuya

    2000-03-01

    The force-extension behavior of mitotic chromosomes from the newt TVI tumor cell line was studied using micropipette manipulation and force measuring techniques. Reversible, linear elastic response was observed for extensions up to 5 times the native length; the force required to double chromosome length was 1 nanonewton (nN). For further elongations, the linear response teminates at a force plateau of 15 nN and at an extension of 20x. Beyond this extension, the chromosome breaks at elongations between 20x and 70x. These results will be compared to the similar behavior of mitotic chromosomes from explanted newt cells (Poirier, Eroglu, Chatenay and Marko, Mol. Biol. Cell, in press). Also, the effect of biochemical modifications on the elasticity was studied. Ethidium Bromide, which binds to DNA, induces up to a 10 times increase in the Young's modulus. Anti-XCAP-E, which binds to a putative chromosome folding protein, induces up to a 2 times increase in the Young's modulus. Preliminary results on the dynamical relaxation of chromosomes will also be presented. Support of this research through a Biomedical Engineering Research Grant from The Whitaker Foundation is gratefully acknowledged.

  2. Computational model for chromosomal instabilty

    NASA Astrophysics Data System (ADS)

    Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina

    2015-03-01

    Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.

  3. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  4. Conflict resolution.

    PubMed

    Levin, Roger

    2006-03-01

    The sooner conflict is identified and confronted, the more quickly it can be resolved (and the sooner, the better). When this is accomplished calmly and objectively, many areas of conflict will be eliminated. Addressing conflict as it arises also sends a clear message to the team that the practice seeks resolution, not punishment or negative consequences. In addition, the dentist and the office manager need to lead by example by avoiding gossip and encouraging open communication. The goal is to go from a parent-child relationship with the dental team to an adult-adult relationship using this series of managerial conflict resolution steps.

  5. Distal Deletion of Chromosome 11q Encompassing Jacobsen Syndrome without Platelet Abnormality.

    PubMed

    Sheth, Frenny J; Datar, Chaitanya; Andrieux, Joris; Pandit, Anand; Nayak, Darshana; Rahman, Mizanur; Sheth, Jayesh J

    2014-01-01

    Terminal 11q deletion, known as Jacobsen syndrome (JBS), is a rare genetic disorder associated with numerous dysmorphic features. We studied two cases with multiple congenital anomalies that were cytogenetically detected with deletions on 11q encompassing JBS region: 46,XX,der(11) del(11)(q24). Array comparative genomic hybridization (aCGH) analysis confirmed partial deletion of 11.8-11.9 Mb at 11q24.1q25 (case 1) and 13.9-14 Mb deletion at 11q23.3q25 together with 7.3-7.6 Mb duplication at 12q24.32q24.33 (case 2). Dysmorphism because of the partial duplication of 12q was not overtly decipherable over the Jacobsen phenotype except for a triangular facial profile. Aberrant chromosome 11 was inherited from phenotypically normal father, carrier of balanced translocation 46,XY,t(11;12)(q23.3; q24.32). In the present study, both cases had phenotypes that were milder than the ones described in literature despite having large deletion size. Most prominent features in classical JBS is thrombocytopenia, which was absent in both these cases. Therefore, detailed functional analysis of terminal 11q region is warranted to elucidate etiology of JBS and their clinical presentation.

  6. Molecular and phenotypic characterization of ring chromosome 22 in two unrelated patients.

    PubMed

    Hannachi, H; Mougou, S; Benabdallah, I; Soayh, N; Kahloul, N; Gaddour, N; Le Lorc'h, M; Sanlaville, D; El Ghezal, H; Saad, A

    2013-01-01

    We report on the cytogenetic and molecular characterization of a constitutional de novo ring chromosome 22 (r(22)) in 2 unrelated patients with emphasis on different hypotheses proposed to explain the phenotypic variability characterizing this genomic disorder. In both patients, molecular investigations using FISH and array-CGH techniques revealed a 22q terminal deletion involving the 22q13.33 critical region. The size of the deletion was estimated to at least 1.35 Mb in the first proband and to only 300 kb in the second. They both exhibited the major features of r(22) syndrome, but the first patient was more profoundly affected. He had a more severe phenotype, further complicated by behavioral anomalies, autistic-like features with abnormal EEG pattern and brain MRI profile. Haploinsufficiency of the SHANK3 gene, lying in the minimal critical region, is nowadays considered as responsible for most neurobehavioral anomalies. Nevertheless, phenotypic severity and occurrence of additional features in the first patient suggest a potential involvement of one or more specific gene(s) located proximally to SHANK3 (as PLXNB2, PANX2, ALG12 or MLC1), acting either independently of it or by regulating or promoting its expression and thus disrupting its function when deleted.

  7. Response to chemotherapy is not related to chromosome instability in synovial sarcoma

    PubMed Central

    Chakiba, C.; Lagarde, P.; Pissaloux, D.; Neuville, A.; Brulard, C.; Pérot, G.; Coindre, J. M.; Terrier, P.; Ranchere-Vince, D.; Ferrari, A.; Collini, P.; Suurmeijer, A. J. H.; Blay, J. Y.; Terrisse, S. A.; Piperno-Neumann, S.; Averous, G.; Bui, B.; Orbach, D.; Italiano, A.; Chibon, F.

    2014-01-01

    Background Synovial sarcoma (SS) is an aggressive soft-tissue tumor. Despite being considered as a chemosensitive disease, the real impact of perioperative chemotherapy on metastasis-free survival (MFS) is controversial. We have shown that metastatic relapse of SS is strongly associated with genomic complexity. There are no data regarding the potential correlation between genomic complexity and response to chemotherapy. Patients and methods The study population included 65 SS patients diagnosed between 1991 and 2013 and with available tissue material. Genomic profiling was carried out by using array-CGH. Forty-five SS out of the 65 patients were treated with neoadjuvant anthracycline/ifosfamide-based chemotherapy. Radiological response was assessed according to RECIST criteria. Histological response was defined by the percentage of recognizable tumor cells on the surgical specimen. Results Genomic complexity was significantly associated with MFS. However, there was no statistically significant association between radiological or histological response and genomic complexity. Conclusion The absence of significant association between response to chemotherapy and genomic complexity suggests that the prognostic value of chromosome instability in SS is independent of response to chemotherapy; mechanisms leading to metastatic relapse of SS are intrinsic to the biology of the tumor and current cytotoxic drugs are only poorly efficient to prevent it. PMID:25070544

  8. Genotype–Phenotype Association Studies of Chromosome 8p Inverted Duplication Deletion Syndrome

    PubMed Central

    Davis, Ryan; Youngblom, Janey; Gregg, Jeff

    2015-01-01

    Individuals diagnosed with chromosome 8p inverted duplication deletion (invdupdel(8p)) manifest a wide range of clinical features and cognitive impairment. The purpose of this study is to employ array CGH technology to define more precisely the cytogenetic breakpoints and regions of copy number variation found in several individuals with invdupdel(8p), and compare these results with their neuropsychological characteristics. We examined the cognitive-behavioral features of two male and two female children, ages 3–15 years, with invdupdel(8p). We noted cognitive deficits that ranged from mild to severe, and adaptive behavior composites that ranged from significantly to substantially lower than adequate levels. CARS scores, a measure of autistic behavior, identified three children with autism or autistic-like features. Three of the four children exhibited attention deficits and hyperactivity consistent with a DSM-IV-TR diagnosis of ADHD. One child showed extreme emotional lability. Interestingly, intellectual disability was not correlated with deletion size, nor was the deletion location associated with the autistic phenotype. On the other hand, the duplication length in 8p21.1/8p22 was associated with cognitive deficit. In addition, a small locus of over-expression in 8p21.3 was common for all three participants diagnosed as autistic. A limitation of the study is its small sample size. Further analyses of the deleted and over-expressed regions are needed to ascertain the genes involved in cognitive function and, possibly, autism. PMID:21259039

  9. Human chromosomes: Structure, behavior, and effects

    SciTech Connect

    Therman, E.; Susman, M.

    1993-12-31

    The book `Human Chromosomes: Structure, Behavior, and Effects` covers the most important topics regarding human chromosomes and current research in cytogenetics. Attention is given both to structure and function of autosomes and sex chromosomes, as well as definitions and causes of chromosomal aberrations. This often involves discussion about various aspects of the cell cycle (both mitosis and meiosis). Methods and techniques involved in researching and mapping human chromosomes are also discussed.

  10. NCAI Resolutions

    ERIC Educational Resources Information Center

    American Indian Journal of the Institute for the Development of Indian Law, 1977

    1977-01-01

    Five Major Policy Resolutions were adopted, without objection, at the 33rd Annual Convention of the National Congress of American Indians (NCAI) held in Salt Lake City, Utah, in October 1976. The issues involved were: Treaties and Trust Responsibilities, Tribal Government, Jurisdiction, Federal Administration and Structure of Indian Affairs, and…

  11. [Molecular cytogenetic methods for studying interphase chromosomes in human brain cells].

    PubMed

    Iurov, I Iu; Vorsanova, S G; Solov'ev, I V; Iurov, Iu B

    2010-09-01

    One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.

  12. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays

    PubMed Central

    Gribble, Susan M; Ng, Bee Ling; Prigmore, Elena; Fitzgerald, Tomas; Carter, Nigel P

    2012-01-01

    Aarray painting is a technique that uses microarray technology to rapidly map chromosome translocation breakpoints. previous methods to map translocation breakpoints have used fluorescence in situ hybridization (FIsH) and have consequently been labor-intensive, time-consuming and restricted to the low breakpoint resolution imposed by the use of metaphase chromosomes. array painting combines the isolation of derivative chromosomes (chromosomes with translocations) and high-resolution microarray analysis to refine the genomic location of translocation breakpoints in a single experiment. In this protocol, we describe array painting by isolation of derivative chromosomes using a MoFlo flow sorter, amplification of these derivatives using whole-genome amplification and hybridization onto commercially available oligonucleotide microarrays. although the sorting of derivative chromosomes is a specialized procedure requiring sophisticated equipment, the amplification, labeling and hybridization of Dna is straightforward, robust and can be completed within 1 week. the protocol described produces good quality data; however, array painting is equally achievable using any combination of the available alternative methodologies for chromosome isolation, amplification and hybridization. PMID:19893508

  13. Male reproductive function and the human Y chromosome: is selection acting on the Y?

    PubMed

    McElreavey, Ken; Quintana-Murci, Lluís

    2003-01-01

    The human Y chromosome encodes genes that are essential for male sex determination, spermatogenesis and protection against Turner stigmata. In recent years mutations have been identified in Y-chromosome genes associated with these phenotypes and a series of microdeletions of the long arm of the Y have been defined that are specifically associated with male infertility. In parallel, the discovery of polymorphic markers on the Y, comprising of both slow-mutating binary markers and rapidly-mutating microsatellites, has enabled the high resolution definition of a large number of paternal lineages (haplogroups). These Y-chromosome haplogroups have been extensively used to trace population movements and understand human origins and histories, but recently a growing number of association studies have been performed aimed at assessing the relationship between the Y-chromosome background and Y-linked phenotypes such as infertility and male-specific cancers. These preliminary studies, comparing haplogroup distributions between case and control populations, are promising and suggest an association between different Y-chromosome lineages, sperm counts and prostate cancer. However, we highlight the need to extend these studies to other world populations. Increased sample numbers and a better haplogroup resolution using additional binary markers in association studies are necessary. By these approaches novel associations between Y-chromosome haplotypes and disease may be revealed and the degree to which selection is acting on the human Y chromosome may be determined.

  14. Chromosome I controls chromosome II replication in Vibrio cholerae.

    PubMed

    Baek, Jong Hwan; Chattoraj, Dhruba K

    2014-02-01

    Control of chromosome replication involves a common set of regulators in eukaryotes, whereas bacteria with divided genomes use chromosome-specific regulators. How bacterial chromosomes might communicate for replication is not known. In Vibrio cholerae, which has two chromosomes (chrI and chrII), replication initiation is controlled by DnaA in chrI and by RctB in chrII. DnaA has binding sites at the chrI origin of replication as well as outside the origin. RctB likewise binds at the chrII origin and, as shown here, to external sites. The binding to the external sites in chrII inhibits chrII replication. A new kind of site was found in chrI that enhances chrII replication. Consistent with its enhancing activity, the chrI site increased RctB binding to those chrII origin sites that stimulate replication and decreased binding to other sites that inhibit replication. The differential effect on binding suggests that the new site remodels RctB. The chaperone-like activity of the site is supported by the finding that it could relieve the dependence of chrII replication on chaperone proteins DnaJ and DnaK. The presence of a site in chrI that specifically controls chrII replication suggests a mechanism for communication between the two chromosomes for replication.

  15. The map of chromosome 20.

    PubMed Central

    Simpson, N E

    1988-01-01

    The number of gene assignments to human chromosome 20 has increased slowly until recently. Only seven genes and one fragile site were confirmed assignments to chromosome 20 at the Ninth Human Gene Mapping Workshop in September 1987 (HGM9). One fragile site, 13 additional genes, and 10 DNA sequences that identify restriction fragment length polymorphisms (RFLPs), however, were provisionally added to the map at HGM9. Five mutated genes on chromosome 20 have a relation to disease: a mutation in the adenosine deaminase gene results in a deficiency of the enzyme and severe combined immune deficiency; mutations in the gene for the growth hormone releasing factor result in some forms of dwarfism; mutations in the closely linked genes for the hormones arginine vasopressin and oxytocin and their neurophysins are probably responsible for some diabetes insipidus; and mutations in the gene that regulates both alpha-neuraminidase and beta-galactosidase activities determine galactosialidosis. The gene for the prion protein is on chromosome 20; it is related to the infectious agent of kuru, Creutzfeld-Jacob disease, and Gertsmann-Straussler syndrome, although the nature of the relationship is not completely understood. Two genes that code for tyrosine kinases are on the chromosome, SRC1 the proto-oncogene and a gene (HCK) coding for haemopoietic kinase (an src-like kinase), but no direct relation to cancer has been shown for either of these kinases. The significance of non-random loss of chromosome 20 in the malignant diseases non-lymphocytic leukaemia and polycythaemia vera is not understood. Twenty-four additional loci are assigned to the chromosome: five genes that code for binding proteins, one for a light chain of ferritin, genes for three enzymes (inosine triphosphatase, s-adenosylhomocysteine hydrolase, and sterol delta 24-reductase), one for each of a secretory protein and an opiate neuropeptide, a cell surface antigen, two fragile sites, and 10 DNA sequences (one

  16. Heteromorphic variants of chromosome 9

    PubMed Central

    2013-01-01

    Background Heterochromatic variants of pericentromere of chromosome 9 are reported and discussed since decades concerning their detailed structure and clinical meaning. However, detailed studies are scarce. Thus, here we provide the largest ever done molecular cytogenetic research based on >300 chromosome 9 heteromorphism carriers. Results In this study, 334 carriers of heterochromatic variants of chromosome 9 were included, being 192 patients from Western Europe and the remainder from Easter-European origin. A 3-color-fluorescence in situ hybridization (FISH) probe-set directed against for 9p12 to 9q13~21.1 (9het-mix) and 8 different locus-specific probes were applied for their characterization. The 9het-mix enables the characterization of 21 of the yet known 24 chromosome 9 heteromorphic patterns. In this study, 17 different variants were detected including five yet unreported; the most frequent were pericentric inversions (49.4%) followed by 9qh-variants (23.9%), variants of 9ph (11.4%), cenh (8.2%), and dicentric- (3.8%) and duplication-variants (3.3%). For reasons of simplicity, a new short nomenclature for the yet reported 24 heteromorphic patterns of chromosome 9 is suggested. Six breakpoints involved in four of the 24 variants could be narrowed down using locus-specific probes. Conclusions Based on this largest study ever done in carriers of chromosome 9 heteromorphisms, three of the 24 detailed variants were more frequently observed in Western than in Eastern Europe. Besides, there is no clear evidence that infertility is linked to any of the 24 chromosome 9 heteromorphic variants. PMID:23547710

  17. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  18. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study

    PubMed Central

    Gonçalves, Anthony; Bertucci, François; Guille, Arnaud; Garnier, Severine; Adelaide, José; Carbuccia, Nadine; Cabaud, Oliver; Finetti, Pascal; Brunelle, Serge; Piana, Gilles; Tomassin-Piana, Jeanne; Paciencia, Maria; Lambaudie, Eric; Popovici, Cornel; Sabatier, Renaud; Tarpin, Carole; Provansal, Magali; Extra, Jean-Marc; Eisinger, François; Sobol, Hagay; Viens, Patrice; Lopez, Marc; Ginestier, Christophe; Charafe-Jauffret, Emmanuelle; Chaffanet, Max; Birnbaum, Daniel

    2016-01-01

    Background Routine feasibility and clinical impact of genomics-based tumor profiling in advanced breast cancer (aBC) remains to be determined. We conducted a pilot study to evaluate whether precision medicine could be prospectively implemented for aBC patients in a single center and to examine whether patient-derived tumor xenografts (PDX) could be obtained in this population. Results Thirty-four aBC patients were included. Actionable targets were found in 28 patients (82%). A targeted therapy could be proposed to 22 patients (64%), either through a clinical trial (n=15) and/or using already registered drugs (n=21). Ten patients (29%) eventually received targeted treatment, 2 of them deriving clinical benefit. Of 22 patients subjected to mouse implantation, 10 had successful xenografting (45%), mostly in triple-negative aBC. Methods aBC patients accessible to tumor biopsy were prospectively enrolled at the Institut Paoli-Calmettes in the BC-BIO study (ClinicalTrials.gov, NCT01521676). Genomic profiling was established by whole-genome array comparative genomic hybridization (aCGH) and targeted next-generation sequencing (NGS) of 365 candidate cancer genes. For a subset of patients, a sample of fresh tumor was orthotopically implanted in humanized cleared fat pads of NSG mice for establishing PDX. Conclusions Precision medicine can be implemented in a single center in the context of clinical practice and may allow genomic-driven treatment in approximately 30% of aBC patients. PDX may be obtained in a significant fraction of cases. PMID:27765906

  19. Chromosome photoinactivation, a new method for high speed chromosome sorting

    SciTech Connect

    Martin, J.C.; Park, M.; Han, K.T.; Cram, L.S. )

    1993-01-01

    A new optical high-speed chromosome sorting concept is under development which relies on chromosome inactivation rather than droplet sorting to meet the demands of large volume sorting for cloning into large insert vectors. Inactivation can be achieved by photosensitizing and cross-linking metaphase chromosomes. By eliminating the need to create droplets, sorting rates 50 to 100 times faster than the sorting rates of commercial sorters will be achieved. Preliminary experiments using 8-methoxy psoralen in combination with UV doses of about 20 kJ/m2 have shown that: (1) DNA is cross-linked and remains double stranded even under denaturing conditions, (2) the ability of psoralen treated plasmid DNA to transect E. coli XL1-Blue cells is totally blocked following UV exposure, and (3) an average of one interstrand cross-link per 6 kb is produced with these UV doses.

  20. Spatial ordering of chromosomes enhances the fidelity of chromosome partitioning in cyanobacteria.

    PubMed

    Jain, Isha H; Vijayan, Vikram; O'Shea, Erin K

    2012-08-21

    Many cyanobacteria have been shown to harbor multiple chromosome copies per cell, yet little is known about the organization, replication, and segregation of these chromosomes. Here, we visualize individual chromosomes in the cyanobacterium Synechococcus elongatus via time-lapse fluorescence microscopy. We find that chromosomes are equally spaced along the long axis of the cell and are interspersed with another regularly spaced subcellular compartment, the carboxysome. This remarkable organization of the cytoplasm along with accurate midcell septum placement allows for near-optimal segregation of chromosomes to daughter cells. Disruption of either chromosome ordering or midcell septum placement significantly increases the chromosome partitioning error. We find that chromosome replication is both asynchronous and independent of the position of the chromosome in the cell and that spatial organization is preserved after replication. Our findings on chromosome organization, replication, and segregation in S. elongatus provide a basis for understanding chromosome dynamics in bacteria with multiple chromosomes.

  1. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  2. Chromosome segregation in plant meiosis

    PubMed Central

    Zamariola, Linda; Tiang, Choon Lin; De Storme, Nico; Pawlowski, Wojtek; Geelen, Danny

    2014-01-01

    Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved. PMID:24987397

  3. Dean flow fractionation of chromosomes

    NASA Astrophysics Data System (ADS)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  4. X microchromosome with additional chromosome anomalies found in Ullrich-Turner syndrome

    SciTech Connect

    Wydner, K.L.; Sciorra, L.J.; Singer-Granick, C.

    1995-03-27

    Using standard cytogenetic methods coupled with molecular techniques, the following karyotype mos 45,X/46,XXq+/46,X-mar(X)/47,XXq+, +mar(X), was identified in a patient with Ullrich-Turner syndrome (UTS). High-resolution banding (n = 650) of the metaphase chromosomes yielded a breakpoint at q28 on the Xq+ rearranged chromosome. FISH was used to determine the presence of Y-containing DNA in the Xq+ and the mar(X) chromosomes. The following molecular probes were used: DYZ1, DYZ3, and spectrum orange WCP Y. The lack of specific hybridization of these probes was interpreted as a low risk of gonadoblastoma in this patient. Using X-chromosome- and centromere-specific probes, FISH demonstrated the presence of hybridizing material on both rearranged chromosomes, the Xq+ and mar(X). Finally, we determined that the mar(X) and Xq+ chromosomes contained telomeres in the absence of any interstitial telomeric hybridizing material. A micro-X chromosome is present in this UTS patient. Delineation of events leading toward the mechanisms responsible for the multiple DNA rearrangements required to generate the micro-X and Xq+ chromosomes awaits future studies. 25 refs., 6 figs., 1 tab.

  5. Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Graziosi, C; Sakai, R K; Romans, P; Miller, L H; Wellems, T E

    1990-09-01

    A procedure for in situ hybridization to polytene chromosomes from the ovarian nurse cells of Anopheles gambiae Giles has been developed. This procedure involves a modification of established methods for Drosophila larval salivary gland polytene chromosomes. Treatment of chromosome squashes with xylene followed by slow rehydration provides required resolution of chromosome banding patterns, possibly because fatty contaminants are removed from ovarian nurse cell preparations. Using this procedure, unique DNA sequences from a genomic library of An. gambiae have been mapped on adult mosquito polytene chromosomes. The ability to locate genetic markers on chromosomes will allow correlation of physical and genetic maps. Such maps will facilitate identification of genetic loci and expand our knowledge of the genomic organization of An. gambiae.

  6. Structure and function of eukaryotic chromosomes

    SciTech Connect

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  7. A male newborn with VACTERL association and Fanconi anemia with a FANCB deletion detected by array comparative genomic hybridization (aCGH).

    PubMed

    Umaña, Luis A; Magoulas, Pilar; Bi, Weimin; Bacino, Carlos A

    2011-12-01

    We report on a male newborn with multiple congenital abnormalities consistent with the diagnosis of VACTERL association (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies), who had Fanconi anemia (complementation group B) recognized by the detection of a deletion in chromosome Xp22.2 using an oligonucleotide array. The diagnosis of Fanconi anemia was confirmed by increased chromosomal breakage abnormalities observed in cultured cells that were treated with cross-linking agents. This is the first report in the literature of Fanconi anemia complementation group B detected by oligonucleotide array testing postnatally.

  8. STUDIES ON THE ISOLATION OF METAPHASE CHROMOSOMES

    PubMed Central

    ChoraŻy, M.; Bendich, A.; Borenfreund, E.; Hutchison, D. J.

    1963-01-01

    A method for the isolation of metaphase chromosomes from mouse L1210 leukemia cells has been developed. Cells, arrested at metaphase with colchicine, were exposed to hypotonic solution and the pH was then adjusted to 5.6 to stabilize the chromosomes. The metaphase figures were subsequently disrupted and the chromosomes isolated by a series of differential centrifugations in sucrose. The isolated chromosomes were well preserved, as judged by morphological criteria. The effect of various enzymes and chemical agents on the isolated chromosomes was studied. Chymotrypsin, trypsin, and deoxyribonuclease caused a marked disintegration of the chromosomes, whereas treatment with pepsin and ribonuclease induced no significant morphological alterations. PMID:14069802

  9. Genomic DNA extraction methods using formalin-fixed paraffin-embedded tissue.

    PubMed

    Potluri, Keerti; Mahas, Ahmed; Kent, Michael N; Naik, Sameep; Markey, Michael

    2015-10-01

    As new technologies come within reach for the average cytogenetic laboratory, the study of chromosome structure has become increasingly more sophisticated. Resolution has improved from karyotyping (in which whole chromosomes are discernible) to fluorescence in situ hybridization and comparative genomic hybridization (CGH, with which specific megabase regions are visualized), array-based CGH (aCGH, examining hundreds of base pairs), and next-generation sequencing (providing single base pair resolution). Whole genome next-generation sequencing remains a cost-prohibitive method for many investigators. Meanwhile, the cost of aCGH has been reduced during recent years, even as resolution has increased and protocols have simplified. However, aCGH presents its own set of unique challenges. DNA of sufficient quantity and quality to hybridize to arrays and provide meaningful results is required. This is especially difficult for DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Here, we compare three different methods for acquiring DNA of sufficient length, purity, and "amplifiability" for aCGH and other downstream applications. Phenol-chloroform extraction and column-based commercial kits were compared with adaptive focused acoustics (AFA). Of the three extraction methods, AFA samples showed increased amplicon length and decreased polymerase chain reaction (PCR) failure rate. These findings support AFA as an improvement over previous DNA extraction methods for FFPE tissues.

  10. Using Chromosomes to Teach Evolution: Chromosomal Rearrangements in Speciation Events.

    ERIC Educational Resources Information Center

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  11. Genomewide Significant Linkage to Stuttering on Chromosome 12

    PubMed Central

    Riaz, Naveeda; Steinberg, Stacy; Ahmad, Jamil; Pluzhnikov, Anna; Riazuddin, Sheikh; Cox, Nancy J.; Drayna, Dennis

    2005-01-01

    Stuttering is a common and sometimes severe communication disorder, of unknown primary etiology, that exists in populations worldwide. Many types of evidence suggest a genetic contribution to stuttering; however, the complex inheritance of this disorder has hindered identification of these factors. We have employed highly inbred families to increase the power of linkage analysis of this disorder. Forty-four Pakistani families with documented or probable consanguinity, from the city of Lahore and surrounding areas, were included. Each family contained multiple cases of stuttering, which were diagnosed using the Stuttering Severity Instrument. Using the Marshfield Weber 9 marker panel, we performed a genomewide linkage scan focused on affected individuals and their parents. The analysis included 199 genotyped individuals, 144 affected and 55 unaffected. The Pedigree Relationship Statistical Test (PREST) was used to identify pedigrees that required additional specification of inbreeding. Initial nonparametric analysis gave evidence of linkage on chromosomes 1, 5, 7, and 12. Additional genotyping was performed on chromosome 12 to a 5-cM level of resolution, and 16 additional individuals were then included, bringing the number of families to 46. Analysis of the enlarged data set provided consistent evidence of linkage on chromosome 12: the Shomoz scoring function gave a nonparametric LOD score of 4.61, and a LOD score of 3.51 was obtained using the Sall scoring function. These results suggest that a locus on chromosome 12q may contain a gene with a large effect in this sample. PMID:15714404

  12. The use of chromosomal microarray for prenatal diagnosis.

    PubMed

    Dugoff, Lorraine; Norton, Mary E; Kuller, Jeffrey A

    2016-10-01

    Chromosomal microarray analysis is a high-resolution, whole-genome technique used to identify chromosomal abnormalities, including those detected by conventional cytogenetic techniques, as well as small submicroscopic deletions and duplications referred to as copy number variants. Because chromosomal microarray analysis has a greater resolution than conventional karyotyping, it can detect deletions and duplications down to a 50- to 100-kb level. The purpose of this document is to discuss the technique, advantages, and disadvantages of chromosomal microarray analysis and its indications and limitations. We recommend the following: (1) that chromosomal microarray analysis be offered when genetic analysis is performed in cases with fetal structural anomalies and/or stillbirth and replaces the need for fetal karyotype in these cases (GRADE 1A); (2) that providers discuss the benefits and limitations of chromosomal microarray analysis and conventional karyotype with patients who are considering amniocentesis and chorionic villus sampling (CVS), and that both options should be available to women who choose to undergo diagnostic testing (GRADE 1B); (3) that pre- and posttest counseling should be performed by trained genetic counselors, geneticists, or other providers with expertise in the complexities of interpreting chromosomal microarray analysis results (Best Practice); (4) that patients be informed that chromosomal microarray analysis does not detect every genetic disease or syndrome and specifically does not detect autosomal-recessive disorders associated with single gene point mutations, as well as that chromosomal microarray analysis can detect consanguinity and nonpaternity in some cases (Best Practice); (5) that patients in whom a fetal variant of uncertain significance is detected by prenatal diagnosis receive counseling from experts who have access to databases that provide updated information concerning genotype-phenotype correlations (Best Practice).

  13. Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22.

    PubMed Central

    Naeem, R.; Lux, M. L.; Huang, S. F.; Naber, S. P.; Corson, J. M.; Fletcher, J. A.

    1995-01-01

    Ring chromosomes are found in most dermatofibrosarcoma protuberans (DFSPs), and recent reports demonstrate that portions of the DFSP ring chromosomes derive from chromosome 17. In this study we characterized ring chromosomes in three DFSPs using a combined approach of karyotyping, chromosome painting, and comparative genomic hybridization. Chromosome painting demonstrated that the ring chromosomes in each DFSP were composed of discontinuous, interwoven sequences from chromosomes 17 and 22. Amplification of chromosomes 17 and 22 sequences was confirmed in each of these cases by comparative genomic hybridization, and over-representation of chromosomes 17 and 22 sequences was also demonstrated by comparative genomic hybridization in 1 of 2 cytogenetically unremarkable DFSPs. We conclude that amplification of chromosomes 17 and 22 sequences, in ring form, is a characteristic aberration in DFSP. Images Figure 1 Figure 2 PMID:7495279

  14. Multiscale image enhancement of chromosome banding patterns

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Castleman, Kenneth R.

    1996-10-01

    Visual examination of chromosome banding patterns is an important means of chromosome analysis. Cytogeneticists compare their patient's chromosome image against the prototype normal/abnormal human chromosome banding patterns. Automated chromosome analysis instruments facilitate this by digitally enhancing the chromosome images. Currently available systems employing traditional highpass/bandpass filtering and/or histogram equalization are approximately equivalent to photomicroscopy in their ability to support the detection of band pattern alterations. Improvements in chromosome image display quality, particularly in the detail of the banding pattern, would significantly increase the cost-effectiveness of these systems. In this paper we present our work on the use of multiscale transform and derivative filtering for image enhancement of chromosome banding patterns. A steerable pyramid representation of the chromosome image is generated by a multiscale transform. The derivative filters are designed to detect the bands of a chromosome, and the steerable pyramid transform is chosen based on its desirable properties of shift and rotation invariance. By processing the transform coefficients that correspond to the bands of the chromosome in the pyramid representation, contrast enhancement of the chromosome bands can be achieved with designed flexibility in scale, orientation and location. Compared with existing chromosome image enhancement techniques, this new approach offers the advantage of selective chromosome banding pattern enhancement that allows designated detail analysis. Experimental results indicate improved enhancement capabilities and promise more effective visual aid to comparison of chromosomes to the prototypes and to each other. This will increase the ability of automated chromosome analysis instruments to assist the evaluation of chromosome abnormalities in clinical samples.

  15. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  16. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  17. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  18. Detection of amplified or deleted chromosomal regions

    SciTech Connect

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. Detection Of Amplified Or Deleted Chromosomal Regions

    SciTech Connect

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  20. An Automated System for Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.