DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, D.R.; Hutchinson, J.L.
Eagle 11 is a prototype analytic model derived from the integration of the low resolution Eagle model with the high resolution SIMNET model. This integration promises a new capability to allow for a more effective examination of proposed or existing combat systems that could not be easily evaluated using either Eagle or SIMNET alone. In essence, Eagle II becomes a multi-resolution combat model in which simulated combat units can exhibit both high and low fidelity behavior at different times during model execution. This capability allows a unit to behave in a highly manner only when required, thereby reducing the overallmore » computational and manpower requirements for a given study. In this framework, the SIMNET portion enables a highly credible assessment of the performance of individual combat systems under consideration, encompassing both engineering performance and crew capabilities. However, when the assessment being conducted goes beyond system performance and extends to questions of force structure balance and sustainment, then SISMNET results can be used to ``calibrate`` the Eagle attrition process appropriate to the study at hand. Advancing technologies, changes in the world-wide threat, requirements for flexible response, declining defense budgets, and down-sizing of military forces motivate the development of manpower-efficient, low-cost, responsive tools for combat development studies. Eagle and SIMNET both serve as credible and useful tools. The integration of these two models promises enhanced capabilities to examine the broader, deeper, more complex battlefield of the future with higher fidelity, greater responsiveness and low overall cost.« less
SPARTAN II: An Instructional High Resolution Land Combat Model
1993-03-01
93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
C/sup 3/ and combat simulation - a survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, S.A. Jr.
1983-01-04
This article looks at the overlap between C/sup 3/ and combat simulation, from the point of view of the developer of combat simulations and models. In this context, there are two different questions. The first is: How and to what extent should specific models of the C/sup 3/ processes be incorporated in simulations of combat. Here the key point is the assessment of impact. In which types or levels of combat does C/sup 3/ play a role sufficiently intricate and closely coupled with combat performance that it would significantly affect combat results. Conversely, when is C/sup 3/ a known factormore » or modifier which can be simply accommodated without a specific detailed model being made for it. The second question is the inverse one. In the development of future C/sup 3/ systems, what rule should combat simulation play. Obviously, simulation of the operation of the hardware, software and other parts of the C/sup 3/ system would be useful in its design and specification, but this is not combat simulation. When is it necessary to encase the C/sup 3/ simulation model in a combat model which has enough detail to be considered a simulation itself. How should this outer combat model be scoped out as to the components needed. In order to build a background for answering these questions a two-pronged approach will be taken. First a framework for C/sup 3/ modeling will be developed, in which the various types of modeling which can be done to include or encase C/sup 3/ in a combat model are organized. This framework will hopefully be useful in describing the particular assumptions made in specific models in terms of what could be done in a more general way. Then a few specific models will be described, concentrating on the C/sup 3/ portion of the simulations, or what could be interpreted as the C/sup 3/ assumptions.« less
Schreckengaust, Richard; Littlejohn, Lanny; Zarow, Gregory J
2014-02-01
The lower extremity tourniquet failure rate remains significantly higher in combat than in preclinical testing, so we hypothesized that tourniquet placement accuracy, speed, and effectiveness would improve during training and decline during simulated combat. Navy Hospital Corpsman (N = 89), enrolled in a Tactical Combat Casualty Care training course in preparation for deployment, applied Combat Application Tourniquet (CAT) and the Special Operations Forces Tactical Tourniquet (SOFT-T) on day 1 and day 4 of classroom training, then under simulated combat, wherein participants ran an obstacle course to apply a tourniquet while wearing full body armor and avoiding simulated small arms fire (paint balls). Application time and pulse elimination effectiveness improved day 1 to day 4 (p < 0.005). Under simulated combat, application time slowed significantly (p < 0.001), whereas accuracy and effectiveness declined slightly. Pulse elimination was poor for CAT (25% failure) and SOFT-T (60% failure) even in classroom conditions following training. CAT was more quickly applied (p < 0.005) and more effective (p < 0.002) than SOFT-T. Training fostered fast and effective application of leg tourniquets while performance declined under simulated combat. The inherent efficacy of tourniquet products contributes to high failure rates under combat conditions, pointing to the need for superior tourniquets and for rigorous deployment preparation training in simulated combat scenarios. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Low-Resolution Screening of Early Stage Acquisition Simulation Scenario Development Decisions
2012-12-01
6 seconds) incorporating reload times and assumptions. Phit for min range is assumed to be 100% (excepting FGM- 148, which was estimated for a...User Interface HTN Hierarchical Task Network MCCDC Marine Corps Combat Development Command Phit Probability to hit the intended target Pkill...well beyond the scope of this study. 5. Weapon Capabilities Translation COMBATXXI develops situation probabilities to hit ( Phit ) and probabilities to
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Abductive networks applied to electronic combat
NASA Astrophysics Data System (ADS)
Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.
1990-08-01
A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since
Simulation Of Combat With An Expert System
NASA Technical Reports Server (NTRS)
Provenzano, J. P.
1989-01-01
Proposed expert system predicts outcomes of combat situations. Called "COBRA", combat outcome based on rules for attrition, system selects rules for mathematical modeling of losses and discrete events in combat according to previous experiences. Used with another software module known as the "Game". Game/COBRA software system, consisting of Game and COBRA modules, provides for both quantitative aspects and qualitative aspects in simulations of battles. COBRA intended for simulation of large-scale military exercises, concepts embodied in it have much broader applicability. In industrial research, knowledge-based system enables qualitative as well as quantitative simulations.
Detecting aircraft with a low-resolution infrared sensor.
Jakubowicz, Jérémie; Lefebvre, Sidonie; Maire, Florian; Moulines, Eric
2012-06-01
Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input data, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to estimate the detection performance of IR optronic systems; in this case, the scenario encompasses a lot of possible situations that must be indeed addressed, but cannot be singly simulated. In this paper, we focus on low-resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of poorly known aircraft and performing aircraft detection on the resulting set of low-resolution infrared images. It is based on a sensitivity analysis, which identifies inputs that have negligible influence on the computed IRS and can be set at a constant value, on a quasi-Monte Carlo survey of the code output dispersion, and on a new detection test taking advantage of level sets estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 90,000 simulated aircraft images. Assuming a white noise or a fractional Brownian background model, detection performances are very promising.
Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.
Clemente-Suárez, Vicente J; Robles-Pérez, José J
2013-09-01
In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Fogel, L. J.; Phelps, J. P.
1975-01-01
A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.
Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim
2014-03-01
This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Ten high-level karatekas participated in this study, which included official and simulated karate combat. Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l(-1)) compared to simulated karate combat (7.80±2.66 mmol.l(-1)) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas' perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event.
Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim
2013-01-01
Purpose This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Methods Ten high-level karatekas participated in this study, which included official and simulated karate combat. Results Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l-1) compared to simulated karate combat (7.80±2.66 mmol.l-1) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas’ perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Conclusion Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event. PMID:24868428
Intelligently interactive combat simulation
NASA Astrophysics Data System (ADS)
Fogel, Lawrence J.; Porto, Vincent W.; Alexander, Steven M.
2001-09-01
To be fully effective, combat simulation must include an intelligently interactive enemy... one that can be calibrated. But human operated combat simulations are uncalibratable, for we learn during the engagement, there's no average enemy, and we cannot replicate their culture/personality. Rule-based combat simulations (expert systems) are not interactive. They do not take advantage of unexpected mistakes, learn, innovate, and reflect the changing mission/situation. And it is presumed that the enemy does not have a copy of the rules, that the available experts are good enough, that they know why they did what they did, that their combat experience provides a sufficient sample and that we know how to combine the rules offered by differing experts. Indeed, expert systems become increasingly complex, costly to develop, and brittle. They have face validity but may be misleading. In contrast, intelligently interactive combat simulation is purpose- driven. Each player is given a well-defined mission, reference to the available weapons/platforms, their dynamics, and the sensed environment. Optimal tactics are discovered online and in real-time by simulating phenotypic evolution in fast time. The initial behaviors are generated randomly or include hints. The process then learns without instruction. The Valuated State Space Approach provides a convenient way to represent any purpose/mission. Evolutionary programming searches the domain of possible tactics in a highly efficient manner. Coupled together, these provide a basis for cruise missile mission planning, and for driving tank warfare simulation. This approach is now being explored to benefit Air Force simulations by a shell that can enhance the original simulation.
ERIC Educational Resources Information Center
Horne, Thomas
1988-01-01
Describes four IBM compatible flight simulator software packages: (1) "Falcon," air to air combat in an F-16 fighter; (2) "Chuck Yeager's Advanced Flight Trainer," test flight 14 different aircraft; (3) "Jet," air to air combat; and (4) "Flight Simulator," a realistic PC flight simulator program. (MVL)
Physiological responses and external validity of a new setting for taekwondo combat simulation.
Hausen, Matheus; Soares, Pedro Paulo; Araújo, Marcus Paulo; Porto, Flávia; Franchini, Emerson; Bridge, Craig Alan; Gurgel, Jonas
2017-01-01
Combat simulations have served as an alternative framework to study the cardiorespiratory demands of the activity in combat sports, but this setting imposes rule-restrictions that may compromise the competitiveness of the bouts. The aim of this study was to assess the cardiorespiratory responses to a full-contact taekwondo combat simulation using a safe and externally valid competitive setting. Twelve male national level taekwondo athletes visited the laboratory on two separate occasions. On the first visit, anthropometric and running cardiopulmonary exercise assessments were performed. In the following two to seven days, participants performed a full-contact combat simulation, using a specifically designed gas analyser protector. Oxygen uptake ([Formula: see text]), heart rate (HR) and capillary blood lactate measurements ([La-]) were obtained. Time-motion analysis was performed to compare activity profile. The simulation yielded broadly comparable activity profiles to those performed in competition, a mean [Formula: see text] of 36.6 ± 3.9 ml.kg-1.min-1 (73 ± 6% [Formula: see text]) and mean HR of 177 ± 10 beats.min-1 (93 ± 5% HRPEAK). A peak [Formula: see text] of 44.8 ± 5.0 ml.kg-1.min-1 (89 ± 5% [Formula: see text]), a peak heart rate of 190 ± 13 beats.min-1 (98 ± 3% HRmax) and peak [La-] of 12.3 ± 2.9 mmol.L-1 was elicited by the bouts. Regarding time-motion analysis, combat simulation presented a similar exchange time, a shorter preparation time and a longer exchange-preparation ratio. Taekwondo combats capturing the full-contact competitive elements of a bout elicit moderate to high cardiorespiratory demands on the competitors. These data are valuable to assist preparatory strategies within the sport.
Physiological responses and external validity of a new setting for taekwondo combat simulation
2017-01-01
Combat simulations have served as an alternative framework to study the cardiorespiratory demands of the activity in combat sports, but this setting imposes rule-restrictions that may compromise the competitiveness of the bouts. The aim of this study was to assess the cardiorespiratory responses to a full-contact taekwondo combat simulation using a safe and externally valid competitive setting. Twelve male national level taekwondo athletes visited the laboratory on two separate occasions. On the first visit, anthropometric and running cardiopulmonary exercise assessments were performed. In the following two to seven days, participants performed a full-contact combat simulation, using a specifically designed gas analyser protector. Oxygen uptake (V˙O2), heart rate (HR) and capillary blood lactate measurements ([La-]) were obtained. Time-motion analysis was performed to compare activity profile. The simulation yielded broadly comparable activity profiles to those performed in competition, a mean V˙O2 of 36.6 ± 3.9 ml.kg-1.min-1 (73 ± 6% V˙O2PEAK) and mean HR of 177 ± 10 beats.min-1 (93 ± 5% HRPEAK). A peak V˙O2 of 44.8 ± 5.0 ml.kg-1.min-1 (89 ± 5% V˙O2PEAK), a peak heart rate of 190 ± 13 beats.min-1 (98 ± 3% HRmax) and peak [La-] of 12.3 ± 2.9 mmol.L–1 was elicited by the bouts. Regarding time-motion analysis, combat simulation presented a similar exchange time, a shorter preparation time and a longer exchange-preparation ratio. Taekwondo combats capturing the full-contact competitive elements of a bout elicit moderate to high cardiorespiratory demands on the competitors. These data are valuable to assist preparatory strategies within the sport. PMID:28158252
Nikolaidis, Pantelis T; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G; Heller, Jan; Padulo, Johnny
2015-09-29
The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness.
Nikolaidis, Pantelis T.; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G.; Heller, Jan; Padulo, Johnny
2015-01-01
The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness. PMID:26557196
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Heymann, M.; Rajan, N.
1985-01-01
A mathematical formulation is proposed of a combat game between two opponents with offensive capabilities and offensive objective is proposed. Resolution of the combat involves solving two differential games with state constraints. Depending on the game dynamics and parameters, the combat can terminate in one of four ways: the first player wins; the second player wins; a draw (neither wins); or joint capture. In the first two cases, the optimal strategies of the two players are determined from suitable zero-sum games, whereas in the latter two the relevant games are nonzero-sum. Further, to avoid certain technical difficulties, the concept of a delta-combat game is introduced.
Diaz-Lara, Francisco Javier; Del Coso, Juan; Portillo, Javier; Areces, Francisco; García, Jose Manuel; Abián-Vicén, Javier
2016-10-01
Although caffeine is one of the most commonly used substances in combat sports, information about its ergogenic effects on these disciplines is very limited. To determine the effectiveness of ingesting a moderate dose of caffeine to enhance overall performance during a simulated Brazilian jiu-jitsu (BJJ) competition. Fourteen elite BJJ athletes participated in a double-blind, placebo-controlled experimental design. In a random order, the athletes ingested either 3 mg/kg body mass of caffeine or a placebo (cellulose, 0 mg/kg) and performed 2 simulated BJJ combats (with 20 min rest between them), following official BJJ rules. Specific physical tests such as maximal handgrip dynamometry, maximal height during a countermovement jump, permanence during a maximal static-lift test, peak power in a bench-press exercise, and blood lactate concentration were measured at 3 specific times: before the first combat and immediately after the first and second combats. The combats were video-recorded to analyze fight actions. After the caffeine ingestion, participants spent more time in offensive actions in both combats and revealed higher blood lactate values (P < .05). Performance in all physical tests carried out before the first combat was enhanced with caffeine (P < .05), and some improvements remained after the first combat (eg, maximal static-lift test and bench-press exercise; P < .05). After the second combat, the values in all physical tests were similar between caffeine and placebo. Caffeine might be an effective ergogenic aid for improving intensity and physical performance during successive elite BJJ combats.
Sotomayor, Teresita M
2010-01-01
The effectiveness of games as instructional tools has been debated over the past several decades. This is due to the lack of empirical data to support such claims. The US ARMY developed a game-based simulation to support Tactical Combat Casualty Care (TCCC) Training. The TC3 Game based Simulation is a first person game that allows a Soldier to play the role of a combat medic during an infantry squad mission in an urban environment. This research documents results from a training effectiveness evaluation conducted at the Department of Combat Medic Training (Ft Sam Houston) in an effort to explore the capability of the game based simulation as a potential tool to support the TCCC program of instruction. Reaction to training, as well as, acquisition of knowledge and transfer of skills were explored using Kirkpatrick's Model of Training Effectiveness Evaluation. Results from the evaluation are discussed.
Lopes-Silva, João Paulo; Da Silva Santos, Jonatas Ferreira; Artioli, Guilherme Giannini; Loturco, Irineu; Abbiss, Chris; Franchini, Emerson
2018-04-01
To investigate the effect of sodium bicarbonate (NaHCO 3 ) on performance and estimated energy system contribution during simulated taekwondo combat. Nine taekwondo athletes completed two experimental sessions separated by at least 48 h. Athletes consumed 300 mg/kg body mass of NaHCO 3 or placebo (CaCO 3 ) 90 min before the combat simulation (three rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration [La - ] and rating of perceived exertion (RPE) were measured before and after each round, whereas heart rate (HR) and the estimated contribution of the oxidative (W OXI ), ATP (adenosine triphosphate)-phosphocreatine (PCr) (W PCR ), and glycolytic (W [ La - ] ) systems were calculated during the combat simulation. [La - ] increased significantly after NaHCO 3 ingestion, when compared with the placebo condition (+14%, P = 0.04, d = 3.70). NaHCO 3 ingestion resulted in greater estimated glycolytic energy contribution in the first round when compared with the placebo condition (+31%, P = 0.01, d = 3.48). Total attack time was significantly greater after NaHCO 3 when compared with placebo (+13%, P = 0.05, d = 1.15). W OXI , W PCR , VO 2 , HR and RPE were not different between conditions (P > 0.05). NaHCO 3 ingestion was able to increase the contribution of glycolytic metabolism and, therefore, improve performance during simulated taekwondo combat.
Effect of Parachute Jump in the Psychophysiological Response of Soldiers in Urban Combat.
Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J
2017-06-01
The study of organic and psychological response during combat situations has been poorly reported despite its importance for soldiers training and specific instruction, so it was proposed as aim of the present investigation to analyze the effect of a tactical parachute simulated jump in psycho-physiological response of paratroopers' warfighters during an urban combat simulation. 19 male paratroopers (31.9 ± 6.2 year old; 173.6 ± 5.3 cm; 73.8 ± 8.3 Kg) of the Spanish Army were divided in two groups: parachute jump group (n:11) that conducted a simulated parachute jump and a urban combat maneuver and a non-parachute jump group (n:8) that only conducted an urban combat maneuver. We analyzed before and after the maneuver the rated perceived exertion, legs strength manifestation, blood lactate, cortical activation, heart rate variability, blood oxygen saturation and pressure, skin temperature, fine motor skills, and anxiety state. A tactical parachute simulated jump prior to an urban combat maneuver produce significantly (p < 0.05) higher heart rate and decrease in specific fine motor skills in comparison with no jump situation in professional Army paratroopers. Independently of the parachute jump, an urban combat maneuver produces a significant increase in rated perceived exertion, blood lactate, heart rate, legs strength, sympathetic modulation and anxiety response as well as a significant decrease in blood oxygen saturation and parasympathetic modulation.
Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo
Santos, Victor G. F.; Santos, Vander R. F.; Felippe, Leandro J. C.; Almeida, Jose W.; Bertuzzi, Rômulo; Kiss, Maria A. P. D. M.; Lima-Silva, Adriano E.
2014-01-01
The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks “Bandal Tchagui”) was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P < 0.05). Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05), but combat intensity was decreased following placebo (all P < 0.05). In conclusion, caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats. PMID:24518826
A formulation and analysis of combat games
NASA Technical Reports Server (NTRS)
Heymann, M.; Ardema, M. D.; Rajan, N.
1984-01-01
Combat which is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives is outlined. A target set is associated with each opponent in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously, or in neither, a joint capture or a draw, respectively, occurs. Resolution of the encounter is formulated as a combat game; as a pair of competing event constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero sum differential game. Otherwise the optimal strategies are computed from a resulting nonzero sum game. Since optimal combat strategies may frequently not exist, approximate or delta combat games are also formulated leading to approximate or delta optimal strategies. The turret game is used to illustrate combat games. This game is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit evasion games.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warshawsky, A.S.; Uzelac, M.J.; Pimper, J.E.
The Crew III algorithm for assessing time and dose dependent combat crew performance subsequent to nuclear irradiation was incorporated into the Janus combat simulation system. Battle outcomes using this algorithm were compared to outcomes based on the currently used time-independent cookie-cutter'' assessment methodology. The results illustrate quantifiable differences in battle outcome between the two assessment techniques. Results suggest that tactical nuclear weapons are more effective than currently assumed if performance degradation attributed to radiation doses between 150 to 3000 rad are taken into account. 6 refs., 9 figs.
NASA Technical Reports Server (NTRS)
Hague, D. S.
1977-01-01
Computer simulations of the one-on-one aerial combat encounter are generated under the control of specified guidance laws. Given an initial state, the vehicle and atmospheric characteristics, and the guidance laws, the aerial combat encounter is simulated by forward integration of the two vehicles' motions. The development of a combat guidance law which converts positional advantage into an improved firing opportunity is reported. A combination of lag, line of sight, and lead pursuit steering paths are followed in the guidance law. The law is based on steering error, target angle-off and the relative velocities. It readily is automated either as an onboard aid to manned aircraft pilots or as a combat guidance law for unmanned vehicles.
A formulation and analysis of combat games
NASA Technical Reports Server (NTRS)
Heymann, M.; Ardema, M. D.; Rajan, N.
1985-01-01
Combat is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives. With each opponent is associated a target in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously or in neither, a joint capture or a draw, respectively, is said to occur. Resolution of the encounter is formulated as a combat game; namely, as a pair of competing event-constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero-sum differential game. Otherwise the optimal strategies are computed from a resulting non-zero-sum game. Since optimal combat strategies frequencies may not exist, approximate of delta-combat games are also formulated leading to approximate or delta-optimal strategies. To illustrate combat games, an example, called the turret game, is considered. This game may be thought of as a highly simplified model of air combat, yet it is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit-evasion games.
1982-05-14
need for effective training--a situation which will be impaired until the AH-64 combat mission simulator , now under development, becomes available in...antisubmarine warfare system includes the capability to detect, classify, localize, and destroy the enemy. This capability includes multimillion dollar...to simulate combat situations will simulate only air-to-air activity. Air-to-ground and electronic counter countermeasures simulations were deleted
Architecture for an integrated real-time air combat and sensor network simulation
NASA Astrophysics Data System (ADS)
Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara
2007-04-01
An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.
NASA Astrophysics Data System (ADS)
Broström, G.; Carrasco, A.; Hole, L. R.; Dick, S.; Janssen, F.; Mattsson, J.; Berger, S.
2011-11-01
Oil spill modeling is considered to be an important part of a decision support system (DeSS) for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution), the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.
Sheffield, Benjamin; Brungart, Douglas; Tufts, Jennifer; Ness, James
2017-01-01
To examine the relationship between hearing acuity and operational performance in simulated dismounted combat. Individuals wearing hearing loss simulation systems competed in a paintball-based exercise where the objective was to be the last player remaining. Four hearing loss profiles were tested in each round (no hearing loss, mild, moderate and severe) and four rounds were played to make up a match. This allowed counterbalancing of simulated hearing loss across participants. Forty-three participants across two data collection sites (Fort Detrick, Maryland and the United States Military Academy, New York). All participants self-reported normal hearing except for two who reported mild hearing loss. Impaired hearing had a greater impact on the offensive capabilities of participants than it did on their "survival", likely due to the tendency for individuals with simulated impairment to adopt a more conservative behavioural strategy than those with normal hearing. These preliminary results provide valuable insights into the impact of impaired hearing on combat effectiveness, with implications for the development of improved auditory fitness-for-duty standards, the establishment of performance requirements for hearing protection technologies, and the refinement of strategies to train military personnel on how to use hearing protection in combat environments.
14 CFR 121.417 - Crewmember emergency training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... crewmember combats an actual or simulated fire using at least one type of installed hand fire extinguisher or... by paragraph (d) of this section for combatting fires aboard airplanes; (ii) At least one approved firefighting drill in which the crewmember combats an actual fire using at least one type of installed hand...
Slimani, Maamer; Davis, Philip; Franchini, Emerson; Moalla, Wassim
2017-10-01
The aim of this short review was to summarize data pertaining to the rating of perceived exertion (RPE) methods (RPE value and session-RPE) during combat sport-specific activities (i.e., competition and training) based on many factors, including contest type (i.e., official vs. simulated vs. training), combat rounds, age of participants and muscle groups, and their correlation with physiological variables (i.e., blood lactate concentration [La] and heart rate [HR]). The current review shows higher RPE in a match of mixed martial arts (MMAs) than Brazilian jiu-jitsu and kickboxing matches and during the competitive period compared with the precompetitive period. This could be explained by the longer duration of bouts, the higher percentage contribution of aerobic metabolism in MMA than other combat sports and contest type differences (simulated vs. official matches). Thus, this review found significant correlations between RPE or session-RPE, [La] and HR. Particularly, there was a stronger correlation between RPE and [La] during official striking (r = 0.81) than grappling combat sports matches (r = 0.53). In addition, a variation of correlation (moderate to large) between session-RPE and HR-based methods has been reported (i.e., Edwards' training load [r ranged between 0.58 and 0.95] and Banister training impulse [r ranged between 0.52 and 0.86]). Specifically, stronger correlation was apparent in combat sport competition that required a much higher percentage contribution of aerobic metabolism (e.g., karate) and in adult athletes than anaerobic-based combat sports (e.g., taekwondo) and young athletes, respectively. Indeed, the current review highlights that the correlations between session-RPE and HR-based methods were higher during official competition than training sessions. Session-RPE was affected by participants' competitive level, the intensity of session (high vs. low), the training modalities (tactical-technical vs. technical-development vs. simulated competition), and the training volume in combat sports athletes. Rating of perceived exertion is a valid tool for quantifying internal training and combat loads during short- and long-term training and simulated and official competitions in novice and elite combat sport athletes. Furthermore, both RPE methods may be a more reliable measure of intensity or effort when both anaerobic and aerobic systems are appreciably activated. Coaches, sports scientists, and athletes can use session-RPE method to quantify short-term training and combat loads in adult athletes during precompetitive period much more than long-term training and in young athletes during the competitive period. They can also use RPE to monitor combat and short- and long-term training loads to better plan and assist training programs and competitions.
NASA Technical Reports Server (NTRS)
Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.
1988-01-01
A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.
Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.
Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J
2018-03-02
Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.
Effect of Combat Stress in the Psychophysiological Response of Elite and Non-Elite Soldiers.
Tornero-Aguilera, José Francisco; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier
2017-06-01
We aimed to analyse the effect of combat stress in the psychophysiological responses of elite and non-elite soldiers. We analysed heart rate, cortical arousal, skin temperature, blood lactate concentration and lower body muscular strength before and after a tactical combat simulation in 40 warfighters divided in two groups: elite (n: 20; 28.5 ± 6.38 years) and non-elite (n:20; 31.94 ± 6.24 years) group. Elite presented a significantly higher lactate concentration after combat than non elite soldiers (3.8 ± 1.5 vs 6.6 ± 1.3 mmol/L). Non-elite soldiers had a higher heart rate pre and post the simulation than elite (82.9 ± 12.3 vs 64.4 ± 11. pre non elite and elite respectively; 93.0 ± 12.8 vs 88 ± 13.8 bpm post non elite and elite respectively). Elite soldiers presented higher lower muscular strength than elite in all test and before and after the combat simulation. Cortical arousal was not modified significantly in both groups. We conclude elite soldiers presented in combat a higher anaerobic metabolism activation and muscular strength than non-elite soldiers, but cardiovascular, cortical, and muscular strength manifestation presented the same response in both elite and non-elite soldiers.
Soldier Dimensions in Combat Models
1990-05-07
and performance. Questionnaires, SQTs, and ARTEPs were often used. Many scales had estimates of reliability but few had validity data. Most studies...pending its validation . Research plans were provided for applications in simulated combat and with simulation devices, for data previously gathered...regarding reliability and validity . Lack of information following an instrument indicates neither reliability nor validity information was provided by the
Modeling the Information Age Combat Model: An Agent-Based Simulation of Network Centric Operations
NASA Technical Reports Server (NTRS)
Deller, Sean; Rabadi, Ghaith A.; Bell, Michael I.; Bowling, Shannon R.; Tolk, Andreas
2010-01-01
The Information Age Combat Model (IACM) was introduced by Cares in 2005 to contribute to the development of an understanding of the influence of connectivity on force effectiveness that can eventually lead to quantitative prediction and guidelines for design and employment. The structure of the IACM makes it clear that the Perron-Frobenius Eigenvalue is a quantifiable metric with which to measure the organization of a networked force. The results of recent experiments presented in Deller, et aI., (2009) indicate that the value of the Perron-Frobenius Eigenvalue is a significant measurement of the performance of an Information Age combat force. This was accomplished through the innovative use of an agent-based simulation to model the IACM and represents an initial contribution towards a new generation of combat models that are net-centric instead of using the current platform-centric approach. This paper describes the intent, challenges, design, and initial results of this agent-based simulation model.
Physiological stress and performance analysis to karate combat.
Chaabene, Helmi; Hellara, Ilhem; Ghali, Faten B; Franchini, Emerson; Neffati, Fedoua; Tabben, Montassar; Najjar, Mohamed F; Hachana, Younés
2016-10-01
This study aimed to evaluate the relationship between physiological, and parameters of performance analysis during karate contest. Nine elite-level karate athletes participated in this study. Saliva sample was collected pre- and post-karate combat. Salivary cortisol (sC) post-combat 2 raised significantly compared to that recorded at pre-combat 1 (Δ%=105.3%; P=0.04; dz=0.78). The largest decrease of the salivary T/C ratio (sR) compared to pre-combat 1 was recorded post-combat 2 (Δ%=-43.5%; P=0.03). Moreover, blood lactate concentration post-combat 1 correlated positively to sCpost-combat 1 (r=0.66; P=0.05) and negatively to both salivary testosterone (sT) (r=-0.76; P=0.01) and sRpost-combat 1 (r=-0.76; P=0.01). There was no significant relationship between hormonal measures and parameters of match analysis. Although under simulated condition, karate combat poses large physiological stress to the karateka. Additionally, physiological strain to karate combat led to a catabolic hormonal response.
NASA Astrophysics Data System (ADS)
Lee, K. David; Colony, Mike
2011-06-01
Modeling and simulation has been established as a cost-effective means of supporting the development of requirements, exploring doctrinal alternatives, assessing system performance, and performing design trade-off analysis. The Army's constructive simulation for the evaluation of equipment effectiveness in small combat unit operations is currently limited to representation of situation awareness without inclusion of the many uncertainties associated with real world combat environments. The goal of this research is to provide an ability to model situation awareness and decision process uncertainties in order to improve evaluation of the impact of battlefield equipment on ground soldier and small combat unit decision processes. Our Army Probabilistic Inference and Decision Engine (Army-PRIDE) system provides this required uncertainty modeling through the application of two critical techniques that allow Bayesian network technology to be applied to real-time applications. (Object-Oriented Bayesian Network methodology and Object-Oriented Inference technique). In this research, we implement decision process and situation awareness models for a reference scenario using Army-PRIDE and demonstrate its ability to model a variety of uncertainty elements, including: confidence of source, information completeness, and information loss. We also demonstrate that Army-PRIDE improves the realism of the current constructive simulation's decision processes through Monte Carlo simulation.
1994-01-31
ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of
1993-12-15
and Control disqlay. Using M1 tank simulators in the Mounted Warfare Test Bed at Fort Knox, KY, the evaluation focused on tank battalion oierations...and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test Bed (MWTB) at Fort Knox, Kentucky, eight MOS-qualified...might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of interest is the implication for
Augmented Reality for Close Quarters Combat
None
2018-01-16
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Cockpit resource management skills enhance combat mission performance in a B-52 simulator
NASA Technical Reports Server (NTRS)
Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.
1989-01-01
A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.
NASA Technical Reports Server (NTRS)
Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene
2005-01-01
Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.
Lopes-Silva, João Paulo; Silva Santos, Jonatas Ferreira da; Branco, Braulio Henrique Magnani; Abad, César Cavinato Cal; Oliveira, Luana Farias de; Loturco, Irineu; Franchini, Emerson
2015-01-01
The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation. Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30). Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected. Furthermore, T30 (CAF: 869.1 ± 323.2 s; PLA: 735.5 ± 232.2 s, P = 0.58), HRR60s (CAF: 34 ± 8 bpm; PLA: 38 ± 9 bpm, P = 0.44), HRRτ (CAF: 182.9 ± 40.5 s, PLA: 160.3 ± 62.2 s, P = 0.23) and HRRamp (CAF: 70.2 ± 17.4 bpm; PLA: 79.2 ± 17.4 bpm, P = 0.16) were not affected by caffeine ingestion. Caffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation.
2015-01-01
Objectives The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation. Methods Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30). Results Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected. Furthermore, T30 (CAF: 869.1 ± 323.2 s; PLA: 735.5 ± 232.2 s, P = 0.58), HRR60s (CAF: 34 ± 8 bpm; PLA: 38 ± 9 bpm, P = 0.44), HRRτ (CAF: 182.9 ± 40.5 s, PLA: 160.3 ± 62.2 s, P = 0.23) and HRRamp (CAF: 70.2 ± 17.4 bpm; PLA: 79.2 ± 17.4 bpm, P = 0.16) were not affected by caffeine ingestion. Conclusions Caffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation. PMID:26539982
ERIC Educational Resources Information Center
Rocklyn, Eugene H.; And Others
Methods for better utilizing simulated combat systems for training officers are required by the Marine Corps to ensure efficient acquisition of combat decision-making skills. In support of this requirement, a review and analysis of several combat training systems helped to identify a set of major training problems. These included the small number…
Air Combat Training: Good Stick Index Validation. Final Report for Period 3 April 1978-1 April 1979.
ERIC Educational Resources Information Center
Moore, Samuel B.; And Others
A study was conducted to investigate and statistically validate a performance measuring system (the Good Stick Index) in the Tactical Air Command Combat Engagement Simulator I (TAC ACES I) Air Combat Maneuvering (ACM) training program. The study utilized a twelve-week sample of eighty-nine student pilots to statistically validate the Good Stick…
Combat Stress Decreases Memory of Warfighters in Action.
Delgado-Moreno, Rosa; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier
2017-08-01
The present research aimed to analyze the effect of combat stress in the psychophysiological response and attention and memory of warfighters in a simulated combat situation. Variables of blood oxygen saturation, heart rate, blood glucose, blood lactate, body temperature, lower body muscular strength manifestation, cortical arousal, autonomic modulation, state anxiety and memory and attention through a postmission questionnaire were analyzed before and after a combat simulation in 20 male professional Spanish Army warfighters. The combat simulation produces a significant increase (p < 0.05) in explosive leg strength, rated perceived exertion, blood glucose, blood lactate, somatic anxiety, heart rate, and low frequency domain of the HRV (LF) and a significant decrease of high frequency domain of the heart rate variability (HF). The percentage of correct response in the postmission questionnaire parameters show that elements more related with a physical integrity threat are the most correctly remembered. There were significant differences in the postmission questionnaire variables when participants were divided by the cortical arousal post: sounds no response, mobile phone correct, mobile phone no response, odours correct. The correlation analysis showed positive correlations: LF post/body temperature post, HF post/correct sound, body temperature post/glucose post, CFFTpre/lactate post, CFFT post/wrong sound, glucose post/AC pre, AC post/wrong fusil, AS post/SC post and SC post/wrong olfactory; and negative correlations: LF post/correct sound, body temperature post/lactate post and glucose post/lactate post. This data suggest that combat stress actives fight-flight system of soldiers. As conclusion, Combat stress produces an increased psychophysiological response that cause a selective decrease of memory, depending on the nature, dangerous or harmless of the objects.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
Alert Hypnotic Inductions: Use in Treating Combat Post-Traumatic Stress Disorder.
Eads, Bruce; Wark, David M
2015-10-01
Alert hypnosis can be a valuable part of the treatment protocol for the resolution of post-traumatic stress disorder (PTSD). Research indicates that combat veterans with PTSD are more hypnotically susceptible than the general population. For that reason, it is hypothesized that they should be better able to use hypnosis in treatment. As opposed to the traditional modality, eyes-open alert hypnosis allows the patient to take advantage of hypnotic phenomena while participating responsibly in work, social life, and recreation. Three case studies are reported on combat veterans with PTSD who learned to overcome their symptoms using alert hypnosis.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.
1992-01-01
A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.
Experiments in Error Propagation within Hierarchal Combat Models
2015-09-01
Bayesian Information Criterion CNO Chief of Naval Operations DOE Design of Experiments DOD Department of Defense MANA Map Aware Non-uniform Automata ...ground up” approach. First, it develops a mission-level model for one on one submarine combat in Map Aware Non-uniform Automata (MANA) simulation, an... Automata (MANA), an agent based simulation that can model the different postures of submarines. It feeds the results from MANA into stochastic
Severe Trauma Stress Inoculation Training for Combat Medics using High Fidelity Simulation
2013-12-01
why several programs have been developed to introduce TC3 principles to military medical providers (Physician Assistants (PA), nurses , and doctors... Practitioner and senior medical Non~Commissioned Officer (NCO) a practical working knowledge of how to deal with the injured patient in a combat...environment and under simulated battlefield conditions. TCMC, on the other hand, provides the Physician Assistant, Physician, Nurse Practitioner and senior
Cerda-Kohler, Hugo; Aguayo Fuentealba, Juan Carlos; Francino Barrera, Giovanni; Guajardo-Sandoval, Adrián; Jorquera Aguilera, Carlos; Báez-San Martín, Eduardo
2015-09-01
the aim of the study was to measure the heart rate recovery, blood lactate and movement acceleration during simulated taekwondo competition. twelve male subjects who belong to the national team, with at least five years of experience participated in this research. They performed a simulated combat to evaluate the following variables: (i) Blood lactate after one minute recovery between each round, (ii) Heart rate recovery (HRR) at thirty and sixty seconds in each minute rest between rounds, (iii) Peak acceleration (ACCp) in each round performed. The significance level was set at p < 005. the results showed no significant differences between winners and losers in the HRR at both, thirty and sixty seconds (p > 0.05), blood lactate (p > 0.05), peak acceleration (p > 0.05) and the average acceleration of combat (p = 0.18). There was no correlation between delta lactate and ACCp (r = 0.01; p = 0.93), delta lactate and HRR (r = -0.23; p = 0.18), and ACCp and HRR (r = 0.003; p = 0.98). these data suggest that studied variables would not be decisive in the simulated combat outcomes. Other factors such as technical-tactical or psychological variables could have a significant impact on athletic performance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
NASA Astrophysics Data System (ADS)
Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan
2016-10-01
The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.
Computer-automated opponent for manned air-to-air combat simulations
NASA Technical Reports Server (NTRS)
Hankins, W. W., III
1979-01-01
Two versions of a real-time digital-computer program that operates a fighter airplane interactively against a human pilot in simulated air combat were evaluated. They function by replacing one of two pilots in the Langley differential maneuvering simulator. Both versions make maneuvering decisions from identical information and logic; they differ essentially in the aerodynamic models that they control. One is very complete, but the other is much simpler, primarily characterizing the airplane's performance (lift, drag, and thrust). Both models competed extremely well against highly trained U.S. fighter pilots.
Optoelectronics applications in multimedia shooting training systems: SPARTAN
NASA Astrophysics Data System (ADS)
Glogowski, Tomasz; Hlosta, Pawel; Stepniak, Slawomir; Swiderski, Waldemar
2017-10-01
Multimedia shooting training systems are increasingly being used in the training of security staff and uniformed services. An advanced practicing-training system SPARTAN for simulation of small arms shooting has been designed and manufactured by Autocomp Management Ltd. and Military Institute of Armament Technology for the Polish Ministry of National Defence. SPARTAN is a stationary device designed to teach, monitor and evaluate the targeting of small arms and to prepare soldiers for: • firing the live ammunition at open ranges for combat targets and silhouettes • detection, classification and engagement of real targets upon different terrains, weather conditions and periods during the day • team work as a squad during the mission by using different types of arms • suitable reactions in untypical scenarios. Placed in any room the training set consists of: • the projection system that generates realistic 3D imaging of the battlefield (such as combat shooting range) in high-resolution • system that tracks weapons aiming points • sound system which delivers realistic mapping of acoustic surroundings • operator station with which the training is conducted and controlled • central processing unit based on PC computers equipped with specialist software realizing individual system functions • units of smart weapons equipped with radio communication modules, injection laser diodes and pneumatic reloading system. The system make possible training by firing in dynamic scenarios, using combat weapons and live ammunition against visible targets moving on a screen. The use of infrared camera for detecting the position of impact of a projectile.
Conflict Resolution: Strategies for the Elementary Classroom.
ERIC Educational Resources Information Center
Palmer, Jesse
2001-01-01
Describes three types of conflict: (1) conflict over resources; (2) conflict of needs; and (3) conflict of values. Discusses strategies for conflict resolution appropriate for K-4 students. Addresses ways for combating conflict, such as developing active listening techniques, decision-making skills, self-assessments, and using children's…
On the Lulejian-I Combat Model
1976-08-01
possible initial massing of the attacking side’s resources, the model tries to represent in a game -theoretic context the adversary nature of the...sequential game , as outlined in [A]. In principle, it is necessary to run the combat simulation once for each possible set of sequentially chosen...sequential game , in which the evaluative portion of the model (i.e., the combat assessment) serves to compute intermediate and terminal payoffs for the
1994-05-01
Command and Control display. Using Ml tank simulators in the Mounted Warfare Test Bed at Fort Knox, Kentucky, the researchers evaluated tank battalion... Warfare Test Bed (MWTB) at Fort Knox, Kentucky, eight MOS-qualified armor crews (battalion commander, battalion opera- tions officer, three company...concerned with identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
NASA Astrophysics Data System (ADS)
Schricker, Bradley C.; Antalek, Christopher
2006-05-01
The ability to make correct decisions while operating in a combat zone enables American and Coalition warfighters to better respond to any threats they may encounter due to the minimization of negative training the warfighter encountered during their live, virtual, and constructive (LVC) training exercises. By increasing the physical effects encountered by one's senses during combat scenarios, combat realism is able to be increased, which is a key component in the reduction in negative training. The use of LVC simulations for training and testing augmentation purposes depends on a number of factors, not the least of which is the accurate representation of the training environment. This is particularly true in the realm of tactical engagement training through the use of Tactical Engagement Simulation Systems (TESS). The training environment is perceived through human senses, most notably sight and hearing. As with other haptic devices, the sense of touch is gaining traction as a viable medium through which to express the effects of combat battle damage from the synthetic training environment to participants within a simulated training exercise. New developments in this field are promoting the safe use of an electronic stun device to indicate to a trainee that they have been hit by a projectile, from either direct or indirect fire, through the course of simulated combat. A growing number of examples suggest that this added output medium can greatly enhance the realism of a training exercise and, thus, improve the training value. This paper serves as a literature survey of this concept, beginning with an explanation of TESS. It will then focus on how the electronic stun effect may be employed within a TESS and then detail some of the noted pros and cons of such an approach. The paper will conclude with a description of potential directions and work.
Foulis, Stephen A; Redmond, Jan E; Frykman, Peter N; Warr, Bradley J; Zambraski, Edward J; Sharp, Marilyn A
2017-12-01
Foulis, SA, Redmond, JE, Frykman, PN, Warr, BJ, Zambraski, EJ, and Sharp, MA. U.S. Army physical demands study: reliability of simulations of physically demanding tasks performed by combat arms soldiers. J Strength Cond Res 31(12): 3245-3252, 2017-Recently, the U.S. Army has mandated that soldiers must successfully complete the physically demanding tasks of their job to graduate from their Initial Military Training. Evaluating individual soldiers in the field is difficult; however, simulations of these tasks may aid in the assessment of soldiers' abilities. The purpose of this study was to determine the reliability of simulated physical soldiering tasks relevant to combat arms soldiers. Three cohorts of ∼50 soldiers repeated a subset of 8 simulated tasks 4 times over 2 weeks. Simulations included: sandbag carry, casualty drag, and casualty evacuation from a vehicle turret, move under direct fire, stow ammunition on a tank, load the main gun of a tank, transferring ammunition with a field artillery supply vehicle, and a 4-mile foot march. Reliability was assessed using intraclass correlation coefficients (ICCs), standard errors of measurement (SEMs), and 95% limits of agreement. Performance of the casualty drag and foot march did not improve across trials (p > 0.05), whereas improvements, suggestive of learning effects, were observed on the remaining 6 tasks (p ≤ 0.05). The ICCs ranged from 0.76 to 0.96, and the SEMs ranged from 3 to 16% of the mean. These 8 simulated tasks show high reliability. Given proper practice, they are suitable for evaluating the ability of Combat Arms Soldiers to complete the physical requirements of their jobs.
2013-06-01
realistically representing the world in a simulation environment. A screenshot of the combat model used for this research is shown below. There are six...changes in use of technology (Ryan & Jons, 1992). Cost effectiveness and operational effectiveness are important, and it is extremely hard to achieve...effectiveness of ships using simulation and analytical models, to create a ship synthesis model, and most importantly, to develop decision making tools
An Examination of the Conceptual Basis of a Tactical, Logistical, and Air Simulation (ATLAS).
1980-03-01
guides the simulation from the start. From this scenario and the de - veloping tactical situation comes information which triggers the tactical-decision...effect of tactical aircraft in a combat situation together with the effect of weapons to destroy the aircraft. The presence of transport aircraft is...sector, the ability of that sector to resupply existing combat units, to transport replacement items and supplies, and to move the new unit through
DoD Simulations: Improved Assessment Procedures Would Increase the Credibility of Results.
1987-12-01
Carmonette Designed about 30 years ago, the Carmonette is a combined-arms combat model that simulates small-unit, ground combat involving the actions ...duels, its proper use is for larger engagements of combined-arms actions in which weapon-to- weapon data are used as input. The focus of the Carmonette...their contribution to the force, and their costs in personnel and funds. Its purpose is to assist in the selection of a preferred course of action to meet
2009-11-24
assisted by the Brigade Combat Team (BCT) Modernization effort, the use of Models and Simulations ( M &S) becomes more crucial in supporting major...in 2008 via a slice of the Current Force (CF) BCT structure. To ensure realistic operational context, a M &S System-of- Systems (SoS) level...messages, and constructive representation of platforms, vehicles, and terrain. The M &S federation also provided test control, data collection, and live
Future Combat Systems Use of M&S for T&E
2008-03-13
providing M &S for both SBA and objective operations. M &S WG Subgroup (EMS) IS&T SSEI / C4ISR / NSI Network Analysis & Modeling SoS Analysis 3CE MSO M &S...IPTs & OTPs Inter-CoP grid M &S Enterprise Management- SSEI / LRR Modeling and Simulation Implementation Strategy Approved for public release...Future Combat Systems Use of M &S for T&E DoD Modeling and Simulation Conference Acquisition and T&E M &S Practitioners Panel Phil Zimmerman, FCS M &S
1993-09-16
research staff members manned the TOC, and assumed key roles in the battalion staff. TOC staff members were selected for their extensive military ...CRA&I DTIC TAB Unannounced 0 Justification SBy - Distibution I Availability Codes Avail and / or Dist SpecialI 1 Field Unit at Fort Knox, Kentucky...Project Number Training Simulation 3 Approved for public release; distribution is unlimited. I iii I I I FOREWORD The Fort Knox Field Unit of the U.S
U.S. Combat Commands’ Participation in the Proliferation Security Initiative: A Training Manual
2009-01-01
cadmium-zinc- tellurium DHS Department of Homeland Security DoD Department of Defense EAA Export Administration Act EAR Export Administration Regulations EU...Pulsed fast neutron analysis PSI Proliferation Security Initiative Pu Plutonium SCO Shanghai Cooperation Organization SFI Security Freight Initiative...resolution) sodium iodide (NaI) and (intermediate-resolution) cadmium-zinc- tellurium (CZT) detectors may not have the energy resolution and/or sensitivity
The Evolution of Medical Training Simulation in the U.S. Military.
Linde, Amber S; Kunkler, Kevin
2016-01-01
The United States has been at war since 2003. During that time, training using Medical Simulation technology has been developed and integrated into military medical training for combat medics, nurses and surgeons. Efforts stemming from the Joint Programmatic Committee-1 (JPC-1) Medical Simulation and Training Portfolio has allowed for the improvement and advancement in military medical training by focusing on research in simulation training technology in order to achieve this. Based upon lessons learned capability gaps have been identified concerning the necessity to validate and enhance combat medial training simulators. These capability gaps include 1) Open Source/Open Architecture; 2) Modularity and Interoperability; and 3) Material and Virtual Reality (VR) Models. Using the capability gaps, JPC-1 has identified important research endeavors that need to be explored.
Hearing Protection Evaluation for the Combat Arms Earplug at Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Lovejoy
2007-03-01
The Idaho National Laboratory (INL) is managed by Battelle Energy Alliance, LLC (BEA) for the Department of Energy. The INL Protective Security Forces (Pro Force) are involved in training exercises that generate impulse noise by small arms fire. Force-on-force (FOF) training exercises that simulate real world scenarios require the Pro Force to engage the opposition force (OPFOR) while maintaining situational awareness through verbal communications. The Combat Arms earplug was studied to determine if it provides adequate hearing protection in accordance with the requirements of MIL-STD-1474C/D. The Combat Arms earplug uses a design that allows continuous noise through a critical orificemore » while effectively attenuating high-energy impulse noise. The earplug attenuates noise on a non linear scale, as the sound increases the attenuation increases. The INL studied the effectiveness of the Combat Arms earplug with a Bruel & Kjaer (B&K) head and torso simulator used with a selection of small arms to create impulse sound pressures. The Combat Arms earplugs were inserted into the B&K head and torso ears, and small arms were then discharged to generate the impulse noise. The INL analysis of the data indicates that the Combat Arms earplug does provide adequate protection, in accordance with MIL-STD-1474C/D, when used to protect against impulse noise generated by small arms fire using blank ammunition. Impulse noise generated by small arms fire ranged from 135–160 dB range unfiltered un-weighted. The Combat Arms earplug attenuated the sound pressure 10–25 dB depending on the impulse noise pressure. This assessment is consistent with the results of previously published studies on the Combat Arms earplug (see Section 5, “References”). Based upon these result, the INL intends to use the Combat Arms earplug for FOF training exercises.« less
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Hardware-in-the-loop simulation for undersea vehicle applications
NASA Astrophysics Data System (ADS)
Kelf, Michael A.
2001-08-01
Torpedoes and other Unmanned Undersea Vehicles (UUV) are employed by submarines and surface combatants, as well as aircraft, for undersea warfare. These vehicles are autonomous devices whose guidance systems rival the complexity of the most sophisticated air combat missiles. The tactical environment for undersea warfare is a difficult one in terms of target detection,k classification, and pursuit because of the physics of underwater sounds. Both hardware-in-the-loop and all-digital simulations have become vital tools in developing and evaluating undersea weapon and vehicle guidance performance in the undersea environment.
Huang, Ming-Xiong; Nichols, Sharon; Robb-Swan, Ashley; Angeles-Quinto, Annemarie; Harrington, Deborah L; Drake, Angela; Huang, Charles W; Song, Tao; Diwakar, Mithun; Risbrough, Victoria B; Matthews, Scott; Clifford, Royce; Cheng, Chung-Kuan; Huang, Jeffrey W; Sinha, Anusha; Yurgil, Kate A; Ji, Zhengwei; Lerman, Imanuel; Lee, Roland R; Baker, Dewleen G
2018-04-13
Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.
Heart rate and performance during combat missions in a flight simulator.
Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K
2007-04-01
The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.
Sen. Thune, John [R-SD
2013-10-31
Senate - 11/07/2013 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
2014-06-01
me both a better thinker and a better writer. I would also like to thank my thesis reader, Dr. Stephen “ Chef ” Chiabotti. His tremendous experience...mission in simulators or companion trainers. The key takeaway is that in an environment of specialization, squadron commanders will have to attain
Cortical Thickness Reduction in Combat Exposed U.S. Veterans with and without PTSD
Wrocklage, Kristen M.; Averill, Lynnette A.; Scott, J. Cobb; Averill, Christopher L.; Schweinsburg, Brian; Trejo, Marcia; Roy, Alicia; Weisser, Valerie; Kelly, Christopher; Martini, Brenda; Harpaz-Rotem, Ilan; Southwick, Steven M.; Krystal, John H.; Abdallah, Chadi G.
2017-01-01
We investigated the extent of cortical thinning in U.S. Veterans exposed to combat who varied in the severity of their posttraumatic stress disorder (PTSD) symptoms. In addition, we explored the neural correlates of PTSD symptom dimensions and the interactive effects of combat exposure and PTSD upon cortical thickness. Sixty-nine combat exposed Veterans completed high-resolution magnetic resonance imaging (MRI) scans to estimate cortical thickness. The Clinician Administered PTSD Scale (CAPS) and Combat Exposure Scale (CES) assessments were completed to measure current PTSD and historical combat severity, respectively. PTSD symptom dimensions (numbing, avoidance, reexperiencing, anxious arousal, and dysphoric arousal) were studied. Vertex-wise whole cerebrum analyses were conducted. We found widespread negative correlations between CAPS severity and cortical thickness, particularly within the prefrontal cortex. This prefrontal correlation remained significant after controlling for depression severity, medication status, and other potential confounds. PTSD dimensions, except anxious arousal, negatively correlated with cortical thickness in various unique brain regions. CES negatively correlated with cortical thickness in the left lateral prefrontal, regardless of PTSD diagnosis. A significant interaction between CES and PTSD diagnosis was found, such that CES negatively correlated with cortical thickness in the non-PTSD, but not in the PTSD, participants. The results underscore the severity of cortical thinning in U.S. Veterans suffering from high level of PTSD symptoms, as well as in Veterans with no PTSD diagnosis but severe combat exposure. The latter finding raises considerable concerns about a concealed injury potentially related to combat exposure in the post-9/11 era. PMID:28279623
Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD.
Wrocklage, Kristen M; Averill, Lynnette A; Cobb Scott, J; Averill, Christopher L; Schweinsburg, Brian; Trejo, Marcia; Roy, Alicia; Weisser, Valerie; Kelly, Christopher; Martini, Brenda; Harpaz-Rotem, Ilan; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G
2017-05-01
We investigated the extent of cortical thinning in U.S. Veterans exposed to combat who varied in the severity of their posttraumatic stress disorder (PTSD) symptoms. In addition, we explored the neural correlates of PTSD symptom dimensions and the interactive effects of combat exposure and PTSD upon cortical thickness. Sixty-nine combat exposed Veterans completed high-resolution magnetic resonance imaging (MRI) scans to estimate cortical thickness. The Clinician Administered PTSD Scale (CAPS) and Combat Exposure Scale (CES) assessments were completed to measure current PTSD and historical combat severity, respectively. PTSD symptom dimensions (numbing, avoidance, reexperiencing, anxious arousal, and dysphoric arousal) were studied. Vertex-wise whole cerebrum analyses were conducted. We found widespread negative correlations between CAPS severity and cortical thickness, particularly within the prefrontal cortex. This prefrontal correlation remained significant after controlling for depression severity, medication status, and other potential confounds. PTSD dimensions, except anxious arousal, negatively correlated with cortical thickness in various unique brain regions. CES negatively correlated with cortical thickness in the left lateral prefrontal, regardless of PTSD diagnosis. A significant interaction between CES and PTSD diagnosis was found, such that CES negatively correlated with cortical thickness in the non-PTSD, but not in the PTSD, participants. The results underscore the severity of cortical thinning in U.S. Veterans suffering from high level of PTSD symptoms, as well as in Veterans with no PTSD diagnosis but severe combat exposure. The latter finding raises considerable concerns about a concealed injury potentially related to combat exposure in the post-9/11 era. Published by Elsevier B.V.
Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.
2006-09-29
The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.
2003-11-01
de défense sur des matériels, des hommes et des doctrines préexistants, mais part au contraire d’une analyse des menaces et du... hommes et les doctrines. Comme on le verra ultérieurement, cette nouvelle démarche d’ingénierie du système de défense, qui se veut proactive et non...résolvent sous des contraintes de zéro mort ou tout au moins de pertes minimales, dont l ’« acceptabilité » est essentiellement facteur de
A survey on the measure of combat readiness
NASA Astrophysics Data System (ADS)
Wen, Kwong Fook; Nor, Norazman Mohamad; Soon, Lee Lai
2014-09-01
Measuring the combat readiness in military forces involves the measures of tangible and intangible elements of combat power. Though these measures are applicable, the mathematical models and formulae used focus mainly on either the tangible or the intangible elements. In this paper, a review is done to highlight the research gap in the formulation of a mathematical model that incorporates tangible elements with intangible elements to measure the combat readiness of a military force. It highlights the missing link between the tangible and intangible elements of combat power. To bridge the gap and missing link, a mathematical model could be formulated that measures both the tangible and intangible aspects of combat readiness by establishing the relationship between the causal (tangible and intangible) elements and its effects on the measure of combat readiness. The model uses multiple regression analysis as well as mathematical modeling and simulation which digest the capability component reflecting its assets and resources, the morale component reflecting human needs, and the quality of life component reflecting soldiers' state of satisfaction in life. The results of the review provide a mean to bridge the research gap through the formulation of a mathematical model that shows the total measure of a military force's combat readiness. The results also significantly identify parameters for each of the variables and factors in the model.
NASA Astrophysics Data System (ADS)
Smith, Wilford; Nunez, Patrick
2005-05-01
This paper describes the work being performed under the RDECOM Power and Energy (P&E) program (formerly the Combat Hybrid Power System (CHPS) program) developing hybrid power system models and integrating them into larger simulations, such as OneSAF, that can be used to find duty cycles to feed designers of hybrid power systems. This paper also describes efforts underway to link the TARDEC P&E System Integration Lab (SIL) in San Jose CA to the TARDEC Ground Vehicle Simulation Lab (GVSL) in Warren, MI. This linkage is being performed to provide a methodology for generating detailed driver profiles for use in the development of vignettes and mission profiles for system design excursions.
2006-09-01
application with the aim of finding an affordable display with acceptable resolution and field of view (5DT, Cyvisor, eMagin ). The HMD that was chosen was the... eMagin z800, which contains OLED displays capable of 800x600 (SVGA) resolution with a 40 degree diagonal field of view (http://www.emagin.com
NASA Astrophysics Data System (ADS)
Kerlin, Barbara D.; Johnson, William P.
1989-05-01
Ongoing research and evaluation projects sponsored by the Army Medical Research and Development Command are leading towards filmless radiography in the combat casualty care system of the 1990s. With the elimination of film, the question arises as to the most appropriate medium for archiving and transporting x-ray images and related patient data with the wounded between facilities. This paper considers the pros and cons of the various candidate media in relation to their specifications, availability, and appropriateness under simulated combat casualty care conditions.
Effectiveness of a Driving Intervention on Safe Community Mobility for Returning Combat Veterans
2016-05-01
Simulator drive development underway. Key personnel appointed and meet regularly to advance study aims. Effectiveness of a Driving Intervention on Safe ...AWARD NUMBER: W81XWH-15-1-0032 TITLE: Effectiveness of a Driving Intervention on Safe Community Mobility for Returning Combat Veterans...is a follow-on to prior DOD funded work “Efficacy of a Driving Intervention Program on Safe Community Mobility for Combat Veterans”. Funding for the
The comparative behaviour of two combat boots under impact.
Newell, Nicolas; Masouros, Spyros D; Pullen, Andy D; Bull, Anthony M J
2012-04-01
Improvised explosive devices have become the characteristic weapon of conflicts in Iraq and Afghanistan. While little can be done to mitigate against the effects of blast in free-field explosions, scaled blast simulations have shown that the combat boot can attenuate the effects on the vehicle occupants of anti-vehicular mine blasts. Although the combat boot offers some protection to the lower limb, its behaviour at the energies seen in anti-vehicular mine blast has not been documented previously. The sole of eight same-size combat boots from two brands currently used by UK troops deployed to Iraq and Afghanistan were impacted at energies of up to 518 J, using a spring-assisted drop rig. The results showed that the Meindl Desert Fox combat boot consistently experienced a lower peak force at lower impact energies and a longer time-to-peak force at higher impact energies when compared with the Lowa Desert Fox combat boot. This reduction in the peak force and extended rise time, resulting in a lower energy transfer rate, is a potentially positive mitigating effect in terms of the trauma experienced by the lower limb. Currently, combat boots are tested under impact at the energies seen during heel strike in running. Through the identification of significantly different behaviours at high loading, this study has shown that there is rationale in adding the performance of combat boots under impact at energies above those set out in international standards to the list of criteria for the selection of a combat boot.
Current target acquisition methodology in force on force simulations
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Miller, Brian; Mazz, John P.
2017-05-01
The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.
NASA Astrophysics Data System (ADS)
Shorts, Vincient F.
1994-09-01
The Janus combat simulation offers the user a wide variety of weather effects options to employ during the execution of any simulation run, which can directly influence detection of opposing forces. Realistic weather effects are required if the simulation is to accurately reproduce 'real world' results. This thesis examines the mathematics of the Janus weather effects models. A weather effect option in Janus is the sky-to-ground brightness ratio (SGR). SGR affects an optical sensor's ability to detect targets. It is a measure of the sun angle in relation to the horizon. A review of the derivation of SGR is performed and an analysis of SGR's affect on the number of optical detections and detection ranges is performed using an unmanned aerial vehicle (UAV) search scenario. For comparison, the UAV's are equipped with a combination of optical and thermal sensors.
2014-07-14
Air Force Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and...Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and combat sounds...items such as wave generators, heavy-duty fans to simulate high winds, strobe lights to simulate lightning , water spray and injection systems to
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
2015-03-01
Defense DODAF Department of Defense Architecture Framework DOE design of experiment EMMI energy , mass, material wealth, information FNF fire and... energy or blast power (depending on the type of projectile). Tank munitions have significant penetrative ability and can cause serious damage to...survivability of ground combat vehicles during ground force maneuver operations. The simulation results indicated that the presence of air defense
A Report on Deliverable Three: Determine a Standard Performance Test for Military Suction Device Use
2017-09-20
prehospital combat casualty care have unique performance requirements and should be tested in a manner that effectively simulates the anticipated...artificial airway or assisted ventilation . Loss of patient airway in tactical and combat environments commonly occurs. The proximate cause can be...points related to avoidance of adverse effects in the performance of suction: There are no contraindications to suctioning, however prolonged
Bridge, Craig A; Sparks, Andy S; McNaughton, Lars R; Close, Graeme L; Hausen, Matheus; Gurgel, Jonas; Drust, Barry
2018-05-17
Bridge, CA, Sparks, SA, McNaughton, LR, Close, GL, Hausen, M, Gurgel, J, and Drust, B. Repeated exposure to taekwondo combat modulates the physiological and hormonal responses to subsequent bouts and recovery periods. J Strength Cond Res XX(X): 000-000, 2018-This study examined the physiological and hormonal responses to successive taekwondo combats using an ecologically valid competition time structure. Ten elite male international taekwondo competitors (age 19 ± 3 years) took part in a simulated championship event. The competitors performed 4 combats that were interspersed with different recovery intervals (63 ± 4, 31 ± 3 and 156 ± 5 minutes, respectively). Heart rate (HR) was measured during the combats and venous blood samples were obtained both before and after each combat to determine the plasma metabolite and hormone concentrations. The plasma noradrenaline (21.8 ± 12.8 vs. 15.0 ± 7.0 nmol·l) and lactate (13.9 ± 4.2 vs. 10.5 ± 3.2 mmol·l) responses were attenuated (p < 0.05) between combat 1 and 4. Higher (p < 0.05) HR responses were evident in the final combat when compared with the earlier combats. Higher (p < 0.05) resting HR (139 ± 10 vs. 127 ± 12 b·min), plasma lactate (3.1 ± 1.2 vs. 2.0 ± 0.7 mmol·l), glycerol (131 ± 83 vs. 56 ± 38 μmol·l) and nonesterified free fatty acid (0.95 ± 0.29 vs. 0.71 ± 0.28 mmol·l) concentrations were measured before combat 3 compared with combat 1. Repeated exposure to taekwondo combat using an ecologically valid time structure modulates the physiological and hormonal responses to subsequent bouts and recovery periods. Strategies designed to assist competitors to effectively manage the metabolic changes associated with the fight schedule and promote recovery between the bouts may be important during championship events.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.
1993-01-01
A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.
Kip, Kevin E.; Rosenzweig, Laney; Hernandez, Diego F.; Shuman, Amy; Diamond, David M.; Girling, Sue Ann; Sullivan, Kelly L.; Wittenberg, Trudy; Witt, Ann M.; Lengacher, Cecile A.; Anderson, Brian; McMillan, Susan C.
2014-01-01
Background As many as 70% of veterans with chronic pain treated within the US Veterans Administration (VA) system may have posttraumatic stress disorder (PTSD), and conversely, up to 80% of those with PTSD may have pain. We describe pain experienced by US service members and veterans with symptoms of PTSD, and report on the effect of Accelerated Resolution Therapy (ART), a new, brief exposure-based therapy, on acute pain reduction secondary to treatment of symptoms of PTSD. Methods A randomized controlled trial of ART versus an attention control (AC) regimen was conducted among 45 US service members/veterans with symptoms of combat-related PTSD. Participants received a mean of 3.7 sessions of ART. Results Mean age was 41.0 + 12.4 years and 20% were female. Most veterans (93%) reported pain. The majority (78%) used descriptive terms indicative of neuropathic pain, with 29% reporting symptoms of a concussion or feeling dazed. Mean pre-/post-change on the Pain Outcomes Questionnaire (POQ) was −16.9±16.6 in the ART group versus −0.7±14.2 in the AC group (p=0.0006). Among POQ subscales, treatment effects with ART were reported for pain intensity (effect size = 1.81, p=0.006), pain-related impairment in mobility (effect size = 0.69, p=0.01), and negative affect (effect size = 1.01, p=0.001). Conclusions Veterans with symptoms of combat-related PTSD have a high prevalence of significant pain, including neuropathic pain. Brief treatment of symptoms of combat-related PTSD among veterans by use of ART appears to acutely reduce concomitant pain. PMID:24959325
Simulation of effect of anti-radar stealth principle
NASA Astrophysics Data System (ADS)
Zhao, Borao; Xing, Shuchen; Li, Chunyi
1988-02-01
The paper presents simulation methods and results of the anti-radar stealth principle, proving that anti-radar stealth aircraft can drastically reduce the combat efficiency of an air defense radar system. In particular, when anti-radar stealth aircraft are coordinated with jamming as a self-defense soft weapon, the discovery probability, response time and hit rate of the air defense radar system are much lower, with extensive reduction in jamming power and maximum exposure distance of self-defense and long-range support. The paper describes an assumed combat situation and construction of a calculation model for the aircraft survival rate, as well as simulation results and analysis. Four figures show an enemy bomber attacking an airfield, as well as the effects of the radar effective reflecting surface on discovery probability, guidance radius, aircraft survival and exposure distance (for long-range support and jamming).
An automated methodology development. [software design for combat simulation
NASA Technical Reports Server (NTRS)
Hawley, L. R.
1985-01-01
The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.
A two-dimensional air-to-air combat game - Toward an air-combat advisory system
NASA Technical Reports Server (NTRS)
Neuman, Frank
1987-01-01
Air-to-air combat is modeled as a discrete differential game, and by constraining the game to searching for the best guidance laws from the sets of those considered for each opponent, feedback and outcome charts are obtained which can be used to turn one of the automatic opponents into an intelligent opponent against a human pilot. A one-on-one two-dimensional fully automatic, or manned versus automatic, air-to-air combat game has been designed which includes both attack and evasion alternatives for both aircraft. Guidance law selection occurs by flooding the initial-condition space with four simulated fights for each initial condition, depicting the various attack/evasion strategies for the two opponents, and recording the outcomes. For each initial condition, the minimax method from differential games is employed to determine the best choice from the available strategies.
2014-02-01
Chamber construction has been completed and swine experiments have been initiated. The NMRC Center for Hypobaric Experimentation, Simulation and...Aeromedical evacuation, en-route care, hypobaric conditions, hypobaric chamber, swine model 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...diminished morbidity and mortality among combat casualties. However, not much is known about the effects of long range aero-medical evacuation in hypobaric
Super resolution reconstruction of infrared images based on classified dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng
2018-05-01
Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.
Infrared imagery acquisition process supporting simulation and real image training
NASA Astrophysics Data System (ADS)
O'Connor, John
2012-05-01
The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.
2015-01-01
Endy M. Daehner, John Matsumura, Thomas J. Herbert , Jeremy R. Kurz, Keith Walters Integrating Operational Energy Implications into System-Level... George Guthridge, and Megan Corso for their clear guid- ance and assistance throughout the study. We also received valuable information and insights from...helped with processing modeling and simulation outputs. Laura Novacic and Donna Mead provided invaluable administrative assistance and help with
2006-09-01
logistical resources necessary to sustain its movement toward assigned objectives while being supported by a CSSE in an expanding maneuver warfare...thesis defines a logistics process and develops a simulation where the GCE consumes logistical resources necessary to sustain its movement toward...the MAGTF is responsible for responding to the logistics needs of the MAGTF Ground Combat Element (GCE) in order to sustain its movement. Yet
Pasquier, Pierre; Mérat, Stéphane; Malgras, Brice; Petit, Ludovic; Queran, Xavier; Bay, Christian; Boutonnet, Mathieu; Jault, Patrick; Ausset, Sylvain; Auroy, Yves; Perez, Jean Paul; Tesnière, Antoine; Pons, François; Mignon, Alexandre
2016-05-18
The French Military Health Service has standardized its military prehospital care policy in a ''Sauvetage au Combat'' (SC) program (Forward Combat Casualty Care). A major part of the SC training program relies on simulations, which are challenging and costly when dealing with more than 80,000 soldiers. In 2014, the French Military Health Service decided to develop and deploy 3D-SC1, a serious game (SG) intended to train and assess soldiers managing the early steps of SC. The purpose of this paper is to describe the creation and production of 3D-SC1 and to present its deployment. A group of 10 experts and the Paris Descartes University Medical Simulation Department spin-off, Medusims, coproduced 3D-SC1. Medusims are virtual medical experiences using 3D real-time videogame technology (creation of an environment and avatars in different scenarios) designed for educational purposes (training and assessment) to simulate medical situations. These virtual situations have been created based on real cases and tested on mannequins by experts. Trainees are asked to manage specific situations according to best practices recommended by SC, and receive a score and a personalized feedback regarding their performance. The scenario simulated in the SG is an attack on a patrol of 3 soldiers with an improvised explosive device explosion as a result of which one soldier dies, one soldier is slightly stunned, and the third soldier experiences a leg amputation and other injuries. This scenario was first tested with mannequins in military simulation centers, before being transformed into a virtual 3D real-time scenario using a multi-support, multi-operating system platform, Unity. Processes of gamification and scoring were applied, with 2 levels of difficulty. A personalized debriefing was integrated at the end of the simulations. The design and production of the SG took 9 months. The deployment, performed in 3 months, has reached 84 of 96 (88%) French Army units, with a total of 818 hours of connection in the first 3 months. The development of 3D-SC1 involved a collaborative platform with interdisciplinary actors from the French Health Service, a university, and videogame industry. Training each French soldier with simulation exercises and mannequins is challenging and costly. Implementation of SGs into the training program could offer a unique opportunity at a lower cost to improve training and subsequently the real-time performance of soldiers when managing combat casualties; ideally, these should be combined with physical simulations.
A method to assess the situation of air combat based on the missile attack zone
NASA Astrophysics Data System (ADS)
Shi, Zhenqing; Liang, Xiao Long; Zhang, Jiaqiang; Liu, Liu
2018-04-01
Aiming at the question that we rarely consider the impact of target's attack zone in traditional situation assessment so that the assessment result is not comprehensive enough, a method that takes target's attack zone into account is presented. This paper has obtained the attack zone and the non-escape zone as the basis for quantitative analysis using the rapid simulation method and the air-to-air missile mathematical model. The situation of air combat is assessed by the ratio of the advantage function values of both sides, and the advantage function is constructed based on some influential factors such as height, speed, distance and angle. The simulation results have shown the effectiveness of this method.
Method and Process for the Creation of Modeling and Simulation Tools for Human Crowd Behavior
2014-07-23
Support• Program Executive Office Ground Combat Systems • Program Executive Office Soldier TACOM LCMC MG Michael J. Terry Assigned/Direct Support...environmental technologies and explosive ordnance disposal Fire Control: Battlefield digitization; embedded system software; aero ballistics and...MRAD – Handheld stand-off NLW operated by Control Force • Simulated Projectile Weapon • Simulated Handheld Directed Energy NLW ( VDE ) – Simulated
Combating Terrorism Technical Support Office. 2008 Review
2009-01-15
threat object displayed at the operator control unit of the robotic platform. Remote Utility Conversion Kit The Remote Utility Conversion Kit (RUCK) is a...three- dimensional and isometric simulations and games. Develop crowd models, adversarial behavior models, network-based simulations, mini-simulations...Craft-Littoral The modular unmanned surface craft-littoral ( MUSCL ) is a spin- off of EOD/LIC’s Unmanned Reconnaissance Observation Craft, developed
ERIC Educational Resources Information Center
Hunsaker, L. Phillip
2007-01-01
Purpose: The purpose of this paper is to describe two social simulations created to assess leadership potential and train leaders to make effective decisions in turbulent environments. One is set in the novel environment of a lunar moon colony and the other is a military combat command. The research generated from these simulations for assessing…
NASA Astrophysics Data System (ADS)
Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria
2008-05-01
Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria
2008-05-08
Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. Thismore » work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.« less
Study of a very low cost air combat maneuvering trainer aircraft
NASA Technical Reports Server (NTRS)
Hill, G. C.; Bowles, J. V.
1976-01-01
A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.
2015-05-01
2015 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2015 Abstract A Non-Combatant Evacuation...Standing Senate Committee on Foreign Affairs and International Trade recommended that more frequent assessments of NEO plans be conducted...étrangères et du commerce international a recommandé que des évaluations dans ses missions à l’étranger soient faites plus fréquemment
NASA Technical Reports Server (NTRS)
Hase, Chris
2010-01-01
In August 2003, the Secretary of Defense (SECDEF) established the Adaptive Planning (AP) initiative [1] with an objective of reducing the time necessary to develop and revise Combatant Commander (COCOM) contingency plans and increase SECDEF plan visibility. In addition to reducing the traditional plan development timeline from twenty-four months to less than twelve months (with a goal of six months)[2], AP increased plan visibility to Department of Defense (DoD) leadership through In-Progress Reviews (IPRs). The IPR process, as well as the increased number of campaign and contingency plans COCOMs had to develop, increased the workload while the number of planners remained fixed. Several efforts from collaborative planning tools to streamlined processes were initiated to compensate for the increased workload enabling COCOMS to better meet shorter planning timelines. This paper examines the Joint Strategic Capabilities Plan (JSCP) directed contingency planning and staffing requirements assigned to a combatant commander staff through the lens of modeling and simulation. The dynamics of developing a COCOM plan are captured with an ExtendSim [3] simulation. The resulting analysis provides a quantifiable means by which to measure a combatant commander staffs workload associated with development and staffing JSCP [4] directed contingency plans with COCOM capability/capacity. Modeling and simulation bring significant opportunities in measuring the sensitivity of key variables in the assessment of workload to capability/capacity analysis. Gaining an understanding of the relationship between plan complexity, number of plans, planning processes, and number of planners with time required for plan development provides valuable information to DoD leadership. Through modeling and simulation AP leadership can gain greater insight in making key decisions on knowing where to best allocate scarce resources in an effort to meet DoD planning objectives.
Kip, Kevin E; Rosenzweig, Laney; Hernandez, Diego F; Shuman, Amy; Sullivan, Kelly L; Long, Christopher J; Taylor, James; McGhee, Stephen; Girling, Sue Ann; Wittenberg, Trudy; Sahebzamani, Frances M; Lengacher, Cecile A; Kadel, Rajendra; Diamond, David M
2013-12-01
Therapies for post-traumatic stress disorder (PTSD) endorsed by the Department of Defense and Veterans Administration are relatively lengthy, costly, and yield variable success. We evaluated Accelerated Resolution Therapy (ART) for the treatment of combat-related psychological trauma. A randomized controlled trial of ART versus an Attention Control (AC) regimen was conducted among 57 U.S. service members/veterans. After random assignment, those assigned to AC were offered crossover to ART, with 3-month follow-up on all participants. Self-report symptoms of PTSD and comorbidities were analyzed among study completers and by the intention-to-treat principle. Mean age was 41 ± 13 years with 19% female, 54% Army, and 68% with prior PTSD treatment. The ART was delivered in 3.7 ± 1.1 sessions with a 94% completion rate. Mean reductions in symptoms of PTSD, depression, anxiety, and trauma-related guilt were significantly greater (p < 0.001) with ART compared to AC. Favorable results for those treated with ART persisted at 3 months, including reduction in aggression (p < 0.0001). Adverse treatment-related events were rare and not serious. ART appears to be a safe and effective treatment for symptoms of combat-related PTSD, including refractory PTSD, and is delivered in significantly less time than therapies endorsed by the Department of Defense and Veterans Administration. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Combat Simulation Using Breach Computer Language
1979-09-01
simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model
Developing Performance Measures for Army Aviation Collective Training
2011-05-01
simulation-based training, such as ATX, is determined by performance improvement of participants within the virtual-training environment (Bell & Waag ...of the collective behavior (Bell & Waag , 1998). In ATX, system-based (i.e., simulator) data can be used to extract measures such as timing of events...to CABs. 20 21 References Bell, H. H., & Waag , W. L. (1998). Evaluating the effectiveness of flight simulators for training combat
Classification of response-types for single-pilot NOE helicopter combat tasks
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.
1987-01-01
Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.
ERIC Educational Resources Information Center
Gardner, Susan G.; Ellis, Burl D.
Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…
Defense.gov - Special Report: Travels with Lynn
social media. Story Simulation Center Provides Taste of Combat MARINE CORPS BASE CAMP PENDELTON, Calif Force's battle simulation center at Marine Corps Base Camp Pendleton, Calif. Story 'Adaptable' U.S. Troops Visits Vandenberg Air Force Base and Los Angeles Lynn Visits Navy and Marine Bases About This Site DoD
Advanced Simulator for Combat, Transport Vehicles, Submarines, Vessels, Airplanes and Helicopters
2004-10-01
simulation experiments. 3.1 Road vehicles - lane change test In order to evaluate the driving dynamics and also the driving safety of road vehicles...8] L.D. Chen, Y. Papelis, G. Watson, D. Solis. NADS at the University of Iowa: A Tool for Driving Safety Research, In Proceedings of 1st Human
Piloted simulation of one-on-one helicopter air combat at NOE flight levels
NASA Technical Reports Server (NTRS)
Lewis, M. S.; Aiken, E. W.
1985-01-01
A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.
The effects of gender, flow and video game experience on combat identification training.
Plummer, John Paul; Schuster, David; Keebler, Joseph R
2017-08-01
The present study examined the effects of gender, video game experience (VGE), and flow state on multiple indices of combat identification (CID) performance. Individuals were trained on six combat vehicles in a simulation, presented through either a stereoscopic or non-stereoscopic display. Participants then reported flow state, VGE and were tested on their ability to discriminate friend vs. foe and identify both pictures and videos of the trained vehicles. The effect of stereoscopy was not significant. There was an effect of gender across three dependent measures. For the two picture-based measures, the effect of gender was mediated by VGE. Additionally, the effect of gender was moderated by flow state on the identification measures. Overall, the study suggests that gender differences may be overcome by VGE and by achieving flow state. Selection based on these individual differences may be useful for future military simulation. Practitioner Summary: This work investigates the effect of gender, VGE and flow state on CID performance. For three measures of performance, there was a main effect of gender. Gender was mediated by previous VGE on two measures, and gender was moderated by flow state on two measures.
Toward XML Representation of NSS Simulation Scenario for Mission Scenario Exchange Capability
2003-09-01
app.html Deitel , H. M., Deitel , P. J., Nieto, T. R., Lin, T. M., Sadhu, P. (2001). XML How to Program . Upper Saddle River: Prentice Hall...Combat XXI Program ...........................13 2. Transition NSS to a Java Environment ...........................................13 3. Shift to an...STATEMENT The Naval Simulation System (NSS) is a powerful computer program developed by the Navy to provide a force-on-force modeling and simulation
1984-09-01
based training systems and hence to realize an embedded trainer that is both intelligent and effective . The o(Continued) DO,; FOAM AM 71 1ឹ...Performance Effectiveness and Simulation Approved for public releate; dlitribution unlimited iii &a3laAfc*ia £&&etaL* ■’—’,£-«.■£./■.,’-f...oriented approaches to computer-based training systems and hence realise an embedded trainer that is both intelli- gent and effective . To this end
Research on air and missile defense task allocation based on extended contract net protocol
NASA Astrophysics Data System (ADS)
Zhang, Yunzhi; Wang, Gang
2017-10-01
Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.
Coswig, Victor S; Gentil, Paulo; Bueno, João C A; Follmer, Bruno; Marques, Vitor A; Del Vecchio, Fabrício B
2018-01-01
Among combat sports, Judo and Brazilian Jiu-Jitsu (BJJ) present elevated physical fitness demands from the high-intensity intermittent efforts. However, information regarding how metabolic and neuromuscular physical fitness is associated with technical-tactical performance in Judo and BJJ fights is not available. This study aimed to relate indicators of physical fitness with combat performance variables in Judo and BJJ. The sample consisted of Judo ( n = 16) and BJJ ( n = 24) male athletes. At the first meeting, the physical tests were applied and, in the second, simulated fights were performed for later notational analysis. The main findings indicate: (i) high reproducibility of the proposed instrument and protocol used for notational analysis in a mobile device; (ii) differences in the technical-tactical and time-motion patterns between modalities; (iii) performance-related variables are different in Judo and BJJ; and (iv) regression models based on metabolic fitness variables may account for up to 53% of the variances in technical-tactical and/or time-motion variables in Judo and up to 31% in BJJ, whereas neuromuscular fitness models can reach values up to 44 and 73% of prediction in Judo and BJJ, respectively. When all components are combined, they can explain up to 90% of high intensity actions in Judo. In conclusion, performance prediction models in simulated combat indicate that anaerobic, aerobic and neuromuscular fitness variables contribute to explain time-motion variables associated with high intensity and technical-tactical variables in Judo and BJJ fights.
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Developing close combat behaviors for simulated soldiers using genetic programming techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Richard J.; Schaller, Mark J.
2003-10-01
Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positionsmore » using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.« less
Artificial immune system approach for air combat maneuvering
NASA Astrophysics Data System (ADS)
Kaneshige, John; Krishnakumar, Kalmanje
2007-04-01
Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.
A Methodology for Validation of High Resolution Combat Models
1988-06-01
TELEOLOGICAL PROBLEM ................................ 7 C. EPISTEMOLOGICAL PROBLEM ............................. 8 D. UNCERTAINTY PRINCIPLE...theoretical issues. "The Teleological Problem"--How a model by its nature formulates an explicit cause-and-effect relationship that excludes other...34experts" in establishing the standard for reality. Generalization from personal experience is often hampered by the parochial aspects of the
Exploitation of Self Organization in UAV Swarms for Optimization in Combat Environments
2008-03-01
behaviors and entangled hierarchy into Swarmfare [59] UAV simulation environment to include these models. • Validate this new model’s success through...Figure 4.3. The hierarchy of control emerges from the entangled hierarchy of the state relations at the simulation , swarm and rule/behaviors level...majors, major) Abstract Model Types (AMT) Figure A.1: SO Abstract Model Type Table 142 Appendix B. Simulators Comparision Name MATLAB Multi UAV MultiUAV
Keebler, Joseph R; Jentsch, Florian; Schuster, David
2014-12-01
We investigated the effects of active stereoscopic simulation-based training and individual differences in video game experience on multiple indices of combat identification (CID) performance. Fratricide is a major problem in combat operations involving military vehicles. In this research, we aimed to evaluate the effects of training on CID performance in order to reduce fratricide errors. Individuals were trained on 12 combat vehicles in a simulation, which were presented via either a non-stereoscopic or active stereoscopic display using NVIDIA's GeForce shutter glass technology. Self-report was used to assess video game experience, leading to four between-subjects groups: high video game experience with stereoscopy, low video game experience with stereoscopy, high video game experience without stereoscopy, and low video game experience without stereoscopy. We then tested participants on their memory of each vehicle's alliance and name across multiple measures, including photographs and videos. There was a main effect for both video game experience and stereoscopy across many of the dependent measures. Further, we found interactions between video game experience and stereoscopic training, such that those individuals with high video game experience in the non-stereoscopic group had the highest performance outcomes in the sample on multiple dependent measures. This study suggests that individual differences in video game experience may be predictive of enhanced performance in CID tasks. Selection based on video game experience in CID tasks may be a useful strategy for future military training. Future research should investigate the generalizability of these effects, such as identification through unmanned vehicle sensors.
Diaz-Manzano, Montaña; Robles-Pérez, José Juan; Herrera-Mendoza, Ketty; Herrera-Tapias, Beliña; Fernández-Lucas, Jesús; Aznar-Lain, Susana; Clemente-Suárez, Vicente Javier
2018-03-24
Caffeine is one of the ergogenic substances most used by warfighters in current operation areas, but the effect on the organic response and operational performed is already poor knowledge. This research aimed to study the acute effect of 400 mg of caffeine monohydrate on the psycho-physiological response and rifle marksmanship of warfighters during a close quarter combat simulation. We analysed parameter of heart rate, blood lactate, cortical arousal, state anxiety and marksmanship of 20 Spanish Army veteran warfighters before and after a close quarter combat simulation in a double-blind procedure, also a correlation analysis was conducted between all the study variables. Marksmanship of warfighters did not improve with the caffeine ingestion, but it produced an increase in blood lactate concentration (caffeine: 1.9 ± 0.5 vs. 9.2 ± 1.1 mmol.l -1 ; placebo: 1.8 ± 0.7 vs. 6.9 ± 2.2 mmol.l -1 ), cortical arousal (% of change: caffeine: 2.51; placebo: -1.96) and heart rate (caffeine: 80.0 ± 7.2 vs. 172.9 ± 28.2 bpm; placebo: 79.3 ± 6.4 vs. 154.0 ± 26.8 bpm). In addition, higher heart rate values correlated negatively with marksmanship in close quarter combat. We concluded that caffeine intake did not improve the warfighters rifle marksmanship in close quarter combat possibly due to the increase in the physiological response.
Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh,A.; Sridhar, P.; Leshchenko, S.
2006-01-01
Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps.more » A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.« less
1985-06-01
8217 .. = . . - , . . ’ ’ ’- . .’- ’, . -. . ’ -. . . .- . -. .. .. - . . % , -. . REFERENCES * Belier , F. H., Thompson, T. J., &Osborne, A. D. (Draft, 1981). Basic rifle marksmanship
Johnson, Don; Johnson, Sabine
2014-01-01
Military healthcare personnel, including nurse anesthetists, must have the knowledge and skills to care for the extensive, severe injuries incurred on the battlefield. No studies have compared the 2 teaching strategies of using the human patient simulator (HPS) and a CD-ROM in caring for combat injuries relative to critical thinking and performance using nurse anesthesia participants. A prospective, pretest-posttest experimental, mixed design (within and between) was used to determine if there were statistically significant differences in HPS and CD-ROM educational strategies relative to caring for patients who have trauma. Two instruments were used: critical thinking, which consisted of multiple-choice questions; and a combat performance instrument that measured ability to care for patients. A repeated analysis of variance and a least significant difference post-hoc test were used to analyze the data. The HPS group performed better than the CD-ROM and control groups relative to performance (P=.000) but not on critical thinking (P=.239). There was no difference between the CD-ROM and control group (P=.171) on the combat performance instrument. In this study, the HPS method of instruction was a more effective method of teaching than the CD-ROM approach.
Guidance for Development of a Flight Simulator Specification
2007-05-01
the simulated line of sight to the moon is less than one degree, and that the moon appears to move smoothly across the visual scene. The phase of the...Agencies have adopted the definition used by Optics Companies (this definition has also been adopted in this revision of the Air Force Guide...simulators that require tracking the target as it slues across the displayed scene, such as with air -to-ground or air -to- air combat tasks. Visual systems
1990-12-01
system should provide for and support control of the major strategic groupings of forces, which simul - taneously conduct operations in several TSMAs... simulated . Enploymet o’/ Military Transport A viatlim 87 Throughout all phases of the preparation and conduct of assault landing operations, radio maskirovka...airfields are refueled and, simul - taneously. combat equipment. ammunition, and other cargo requiring one hour’s loading time are loaded in the aircraft
A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft
NASA Technical Reports Server (NTRS)
Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III
1959-01-01
As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.
Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher
NASA Astrophysics Data System (ADS)
Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory
2004-08-01
As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.
Artificial intelligence (AI) based tactical guidance for fighter aircraft
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Goodrich, Kenneth H.
1990-01-01
A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.
Sen. Casey, Robert P., Jr. [D-PA
2011-03-09
Senate - 03/09/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
The fog of war: decrements in cognitive performance and mood associated with combat-like stress.
Lieberman, Harris R; Bathalon, Gaston P; Falco, Christina M; Morgan, Charles A; Niro, Philip J; Tharion, William J
2005-07-01
Anecdotal reports from military conflicts suggest cognitive performance and mood are severely degraded by the stress of combat. However, little objective information is available to confirm these observations. Our laboratory had several unique opportunities to study cognitive function in warfighters engaged in exercises designed to simulate the stress of combat. These studies were conducted in different environments with two different types of military volunteers. In one study, subjects were officers, with an average 9 yr of military service, who were members of an elite U.S. Army unit, the Rangers. In the other study, participants were younger, mostly enlisted, trainees with only 3 yr of military experience on average, in training to determine if they would qualify for an elite U.S. Navy unit, the SEALS. We administered a variety of identical, computer-based cognitive tests to both groups. In both groups, during stressful combat-like training, every aspect of cognitive function assessed was severely degraded compared with baseline, pre-stress performance. Relatively simple cognitive functions such as reaction time and vigilance were significantly impaired, as were more complex functions, including memory and logical reasoning. The deficits observed were greater than those typically produced by alcohol intoxication, treatment with sedating drugs, or clinical hypoglycemia. Undoubtedly, such decrements would severely degrade operational effectiveness. Furthermore, it is likely such cognitive decrements would be greater during actual combat. War planners, doctrine developers, and warfighters, especially leaders, need to be aware that combat stress will result in extensive and severe deficits in cognitive performance.
Trauma Care Training for National Police Nurses in Colombia
Rubiano, Andrés M.; Sánchez, Álvaro I.; Guyette, Francis; Puyana, Juan C.
2010-01-01
Introduction In response to a requirement for advanced trauma care nurses to provide combat tactical medical support, the antinarcotics arm of the Colombian National Police (CNP) requested the Colombian National Prehospital Care Association to develop a Combat Tactical Medicine Course (MEDTAC course). Objective To evaluate the effectiveness of this course in imparting knowledge and skills to the students. Methods We trained 374 combat nurses using the novel MEDTAC course. We evaluated students using pre-and postcourse performance with a 45-question examination. Field simulations and live tissue exercises were evaluated by instructors using a Likert scale with possible choices of 1 to 4. Interval estimation of proportions was calculated with a 95% confidence interval (95% CI). Differences in didactic test scores were assessed using a t-test at 0.05 level of statistical significance. Results Between March 2006 and July 2007, 374 combat nursing students of the CNP were trained. The difference between examination scores before and after the didactic part of the course was statistically significant (p < 0.01). After the practical session of the course, all participants (100%) demonstrated competency on final evaluation. Conclusions The MEDTAC course is an effective option improving the knowledge and skills of combat nurses serving in the CNP. MEDTAC represents a customized approach for military trauma care training in Colombia. This course is an example of specialized training available for groups that operate in austere environments with limited resources. PMID:19947877
Gentil, Paulo; Bueno, João C.A.; Follmer, Bruno; Marques, Vitor A.; Del Vecchio, Fabrício B.
2018-01-01
Background Among combat sports, Judo and Brazilian Jiu-Jitsu (BJJ) present elevated physical fitness demands from the high-intensity intermittent efforts. However, information regarding how metabolic and neuromuscular physical fitness is associated with technical-tactical performance in Judo and BJJ fights is not available. This study aimed to relate indicators of physical fitness with combat performance variables in Judo and BJJ. Methods The sample consisted of Judo (n = 16) and BJJ (n = 24) male athletes. At the first meeting, the physical tests were applied and, in the second, simulated fights were performed for later notational analysis. Results The main findings indicate: (i) high reproducibility of the proposed instrument and protocol used for notational analysis in a mobile device; (ii) differences in the technical-tactical and time-motion patterns between modalities; (iii) performance-related variables are different in Judo and BJJ; and (iv) regression models based on metabolic fitness variables may account for up to 53% of the variances in technical-tactical and/or time-motion variables in Judo and up to 31% in BJJ, whereas neuromuscular fitness models can reach values up to 44 and 73% of prediction in Judo and BJJ, respectively. When all components are combined, they can explain up to 90% of high intensity actions in Judo. Discussion In conclusion, performance prediction models in simulated combat indicate that anaerobic, aerobic and neuromuscular fitness variables contribute to explain time-motion variables associated with high intensity and technical-tactical variables in Judo and BJJ fights. PMID:29844991
Evaluation of camouflage pattern performance of textiles by human observers and CAMAELEON
NASA Astrophysics Data System (ADS)
Heinrich, Daniela H.; Selj, Gorm K.
2017-10-01
Military textiles with camouflage pattern are an important part of the protection measures for soldiers. Military operational environments differ a lot depending on climate and vegetation. This requires very different camouflage pattern to achieve good protection. To find the best performing pattern for given environments we have in earlier evaluations mainly applied observer trials as evaluation method. In these camouflage evaluation test human observers were asked to search for targets (in natural settings) presented on a high resolution PC screen, and the corresponding detection times were recorded. Another possibility is to base the evaluation on simulations. CAMAELEON is a licensed tool that ranks camouflaged targets by their similarity with local backgrounds. The similarity is estimated through the parameters local contrast, orientation of structures in the pattern and spatial frequency, by mimicking the response and signal processing in the visual cortex of the human eye. Simulations have a number of advantages over observer trials, for example, that they are more flexible, cheaper, and faster. Applying these two methods to the same images of camouflaged targets we found that CAMAELEON simulation results didn't match observer trial results for targets with disruptive patterns. This finding now calls for follow up studies in order to learn more about the advantages and pitfalls of CAMAELEON. During recent observer trials we studied new camouflage patterns and the effect of additional equipment, such as combat vests. In this paper we will present the results from a study comparing evaluation results of human based observer trials and CAMAELEON.
Hierarchical Task Network Prototyping In Unity3d
2016-06-01
visually debug. Here we present a solution for prototyping HTNs by extending an existing commercial implementation of Behavior Trees within the Unity3D game ...HTN, dynamic behaviors, behavior prototyping, agent-based simulation, entity-level combat model, game engine, discrete event simulation, virtual...commercial implementation of Behavior Trees within the Unity3D game engine prior to building the HTN in COMBATXXI. Existing HTNs were emulated within
2004-11-01
military effectiveness, history provides us the answer: In “ Megatrends ”, John Naisbitt, writes about technology itself without knowing that a...Control Simulations; viii. Urban Planning; ix. Urban Combat; x. Chemical Biological Radiological, and Nuclear (CBRN) Evaluations; xi. Military...Capability Management. DRDC Ottawa TM 2004-221 83 References 1. Naisbitt, J. Megatrends . Warner Books, 290 pages, 1982. 2
A model is presented which is a computer simulation of a duel involving two helicopter sections, a scout and an attack section, and an armored mobile...constructed in an attempt to include the possible effects of terrain on tactics used by the combatants in the duel . The computer program, logic and model results are included. (Author)
Reactive Planning in Air Combat Simulation
2003-06-01
International Simulation Technology and Training conference, (SimTecT 96), Melbourne , Australia, 1996. [TID 98] TIDHAR G., HEINZE C., SELVESTREL M...HEI 98] HEINZE C., SMITH B., CROSS M., "Thinking Quickly: Agents for Modelling Air Warfare", In Proceedings of Australian Joint conference on...Artificial Intelligence, AJCAI 98, Brisbane, Australia, 1998. [HEI 01] HEINZE C., GOSS S., JOSEFSSON T., BENNETT K., WAUGH S., LLOYD I., MURRAY G., OLDFIELD
Evaluation of Littoral Combat Ships for Open-Ocean Anti-Submarine Warfare
2016-03-01
known. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory Using a Historical Case...coverage over a small area. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory...Defense Tech, May 30. Hill, R R, R G Carl, and L E Champagne . “Using agent-based simulation to empirically examine search theory using a
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay
2009-05-01
Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.
Sen. Whitehouse, Sheldon [D-RI
2011-12-17
Senate - 12/17/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Voice Vote. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Issues and Attitudes Concerning Combat-Experienced Black Vietnam Veterans
Oxley, Leo L.
1987-01-01
The therapist, whether black, white, or a member of any other ethnic group, must improve his or her objectivity and empathic accessibility by becoming knowledgeable about a minority subculture. The goal is to assist the black veteran to come to some resolution with an imperfect society and to become a legitimate, productive, contributing citizen, who happens to live in a hostile environment. PMID:3820329
Sen. Feingold, Russell D. [D-WI
2010-04-22
Senate - 04/22/2010 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Influence of maneuverability on helicopter combat effectiveness
NASA Technical Reports Server (NTRS)
Falco, M.; Smith, R.
1982-01-01
A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
Satellite Data Used to Combat Fires
NASA Technical Reports Server (NTRS)
2002-01-01
This visible light/infrared composite image over Montana and Idaho was acquired by the Moderate-resolution Imaging Spectroradiometer on Aug. 23, 2000. The image shows the locations of actively burning wildfires (red pixels) and the thick shroud of smoke they produced (grey-blue pixels). There were 57 wildfires burning across both states. A single MODIS image can be up to 2,330 kilometers wide, allowing fire scientists to monitor a much larger area than can be covered on the ground or by aircraft. Also, because MODIS has detectors that are sensitive to thermal infrared wavelengths of 3.70 and 3.90 micrometers, it can detect fires on the surface even through heavy smoke. For more information, see: NASA Satellite Data Used Operationally to Help Combat Fires in the West Image courtesy MODIS Science Team, Reto Stockli, and Robert Simmon.
The United States Army 1995 Modernization Plan. Force 21
1995-04-06
being modified to support the requirements and new dangers of our changing times. It is often said that we study history so as not to repeat thu...intuitive sense of battle gained from study and expertise. Training remains the key to modem, combat-ready Light Forces. Effective modemization and...Devices, Simulators and Simulations (TADSS) Light Forces training is supported by the Combined Arms Training Strategy (CATS). CATS is a descriptive
Analysis of Error Propagation Within Hierarchical Air Combat Models
2016-06-01
Model Simulation MANA Map Aware Non-Uniform Automata MCET Mine Warfare Capabilities and Effectiveness Tool MOE measure of effectiveness MOP measure of...model for a two-versus-two air engagement between jet fighters in the stochastic, agent-based Map Aware Non- uniform Automata (MANA) simulation...Master’s thesis, Naval Postgraduate School, Monterey, CA. McIntosh, G. C. (2009). MANA-V (Map aware non-uniform automata – Vector) supplementary manual
Combat Vehicle Command and Control System Architecture Overview
1994-10-01
inserted in the software. • Interactive interface displays and controls were prepared using rapidly prototyped software and were retained at the MWTB for...being simulated "* controls , sensor displays, and out-the-window displays for the crew "* computer image generators (CIGs) for out-the-window and...black hot viewing modes. The commander may access a number of capabilities of the CITV simulation, described below, from controls located around the
Computational Simulation of High-Speed Projectiles in Air, Water, and Sand
2007-12-03
Supercavitating projectiles can be used for underwater mine neutralization, beach and surf zone mine clearance, littoral ASW, and neutralizing combat...swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating ...is formed. Neaves and Edwards [1] simulated this case using a supercavitation code developed at NSWC-PC. The results presented are in good agreement
A Description of the Ship Combat System Simulation
1984-09-01
developed by NWC, NOSC, NSWC, and CACI, Inc. SCSS is supported by naval and industrial laboratories throughout the country. The users of the...34’. 1lhutlon/ *A i ~n o 1. * Ruido i/iI NSWC TR 84-182 CONTENTS Page INTRODUCTION................................ .. . . .. . .. .. .. ... 1 SIMULATION...Isuch as a contract), Navy or private industry , can obtain the mulation by becoming a member of this Users’ Group. Additional information garding the
Web-Based Army Repeatable Lesson in Operational Combat (WARLOC)
2014-06-01
United States Army B.A., St. John’s University, 1996 Austin T. Starken Captain, United States Army B.S., Florida Institute of Technology, 2005 Submitted...Simulation Games. New York, NY: Continuum International Publishing Group, 2012. [25] J. Peterson , Playing at the World: A History of Simulating Wars, People...Serious Games and Virtual Worlds in Education, Professional Development, and Healthcare. Ed. Hershey , PA: IGI Global, 2013. [Online]. Available
Satterly, Steven; Nelson, Daniel; Zwintscher, Nathan; Oguntoye, Morohunranti; Causey, Wayne; Theis, Bryan; Huang, Raywin; Haque, Mohamad; Martin, Matthew; Bickett, Gerald; Rush, Robert M
2013-01-01
1. Evaluate hemostatic bandages by the end user using subjective and objective criteria. 2. Determine if user training and education level impact overall hemostatic outcomes. 3. Our hypothesis was that prior medical training would be directly linked to improved hemostatic outcomes in noncompressible hemorrhage indepen- dent of dressing used. Military personnel were given standardized instruction on hemostatic dressings as part of a tactical combat casualty care course (TC3). Soldiers were randomized to a hemostatic dressing. Proximal arterial (femoral and axillary) injuries were created in extremities of live tissue models (goat or pig). Participants attempted hemostasis through standardized dressing application. Evaluation of hemostasis was performed at 2- and 4-minute intervals by physicians blinded to participants' training level. Military personnel that are due to deploy are given "refresher" instruction by their units as well as participating in the TC3 to further hone their medical skills prior to deployment. The TC3 is simulation training designed to simulate combat environments and real-life trauma scenarios. Military personnel due to deploy, physicians (residents and board certified surgeons), animal care technicians, and veterinarian support. Celox 42 (33%), ChitoGauze 11 (9%), Combat Gauze 45 (35%), and HemCon wafer 28 (22%) bandages were applied in 126 arterial injuries created in 45 animals in a standardized model of hemorrhage. Overall, no significant difference in hemostasis and volume of blood loss was seen between the 4 dressings at 2 or 4 minutes. Combat gauze was the most effective at controlling hemorrhage, achieving 83% hemostasis by 4 minutes. Combat gauze was also rated as the easiest dressing to use by the soldiers (p<0.05). When compared to nonmedical personnel, active duty soldiers with prior medical training improved hemostasis at 4 minutes by 20% (p = 0.05). There is no significant difference in hemostasis between hemostatic bandages for proximal arterial hemorrhage. Hemostasis significantly improves between 2 and 4 minutes using direct pressure and hemostatic agents. Prior medical training leads to 20% greater efficacy when using hemostatic dressings. Published by Elsevier Inc.
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
Utility of an Occupational Therapy Driving Intervention for a Combat Veteran
Monahan, Miriam; Canonizado, Maria; Winter, Sandra
2014-01-01
Many combat veterans are injured in motor vehicle crashes shortly after returning to civilian life, yet little evidence exists on effective driving interventions. In this single-subject design study, we compared clinical test results and driving errors in a returning combat veteran before and after an occupational therapy driving intervention. A certified driving rehabilitation specialist administered baseline clinical and simulated driving assessments; conducted three intervention sessions that discussed driving errors, retrained visual search skills, and invited commentary on driving; and administered a postintervention evaluation in conditions resembling those at baseline. Clinical test results were similar pre- and postintervention. Baseline versus postintervention driving errors were as follows: lane maintenance, 23 versus 7; vehicle positioning, 5 versus 1; signaling, 2 versus 0; speed regulation, 1 versus 1; visual scanning, 1 versus 0; and gap acceptance, 1 versus 0. Although the intervention appeared efficacious for this participant, threats to validity must be recognized and controlled for in a follow-up study. PMID:25005503
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun
Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less
U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy
2008-10-08
detained Uighurs at Guantanamo Bay prison; weapons nonproliferation; port security; security for the Olympics in Beijing in August 2008; sanctions...the others for Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism...transform — the closer bilateral relationship pursued by President Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought
U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy
2008-10-29
Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism. On September 20-21...bilateral relationship pursued by President Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought counterterrorism...attacks), and its image as a responsible world power helped explain China’s supportive stance. However, Beijing also worried about U.S. military action
Combat Identification with Sequential Observations, Rejection Option, and Out-of-Library Targets
2005-09-01
nature of the entities sharing the battlespace is unknown. Here CID characterizes those entities using information from a variety of sources. The goal...producing high-resolution returns with signif - icantly enhanced target to clutter (and noise) ratios through Doppler filtering and clutter...treat the subject from a natural science perspective. The following 43 subsections on the various model selection techniques are derived from these
Adaptive optical fluorescence microscopy.
Ji, Na
2017-03-31
The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.
Kip, Kevin E; Shuman, Amy; Hernandez, Diego F; Diamond, David M; Rosenzweig, Laney
2014-01-01
This article describes a new, brief exposure-based psychotherapy known as Accelerated Resolution Therapy (ART) that is currently being evaluated as a treatment for combat-related post-traumatic stress disorder (PTSD). We describe a case report of an Army veteran with combat-related PTSD who was treated with 2 sessions of ART and experienced significant clinical improvement. We then discuss the theoretical basis and major components of the ART protocol, including use of lateral left-right eye movements, and differentiate ART with evidence-based psychotherapies currently endorsed by the Department of Defense and Veterans Administration. The number of military personnel who have served in the wars in Iraq and Afghanistan and are afflicted with PTSD is likely in the hundreds of thousands. The ART protocol, which is delivered in 2 to 5 sessions and without homework, uses the psychotherapeutic practices of imaginal exposure and imagery rescripting (IR) facilitated through sets of eye movements. In addition to its brevity, a novel component of ART is use of IR to "replace" negative imagery (and other sensations) with positive imagery. This theoretical description of ART and single case report provide a rationale for future formal evaluation of ART for treatment of military-related PTSD. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Roesler, E. L.; Bosler, P. A.; Taylor, M.
2016-12-01
The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A
2004-01-01
Cognitive Task Analysis Abstract As Department of Defense (DoD) leaders rely more on modeling and simulation to provide information on which to base...capabilities and intent. Cognitive Task Analysis (CTA) Cognitive Task Analysis (CTA) is an extensive/detailed look at tasks and subtasks performed by a...Domain Analysis and Task Analysis: A Difference That Matters. In Cognitive Task Analysis , edited by J. M. Schraagen, S.
2006-06-01
Appendix A. Demographic Questionnaire 25 Appendix B. Attentional Control Survey 27 Appendix C. NASA - TLX Questionnaire 29 Appendix D. Simulator...the National Aeronautics and Space Administration task load index ( NASA - TLX ) questionnaire (appendix C) (Hart & Staveland, 1988). The NASA - TLX is a...There were 2-minute breaks between experimental sessions. Participants assessed their workload using the NASA - TLX after they completed each
Modeling and Analysis of Resolve and Morale for the Long War’
2007-12-01
Alexandria, Virginia, 1995 Bratley, Paul , Bennett L. Fox, and Linus E. Schrage, A Guide to Simulation (2nd ed.), Springer-Verlag, New York, 1987 Bross... Paul J., Measuring the “Will to Fight” in Simulation, Lockheed Martin Corporation, 73rd MORS Symposium Working Group 33 Presentation, DTIC...115, 2004 MacKay, Niall, “Lanchester combat models”, Mathematics Today, Volume 42, Number 5, Pages 170-173, 2006 Macioce, Paul , “Viscoelastic
Peramaki, Ed R
2011-05-01
Radiographic assessment of combat injuries has been an important component of casualty care in every major conflict of the 20th and 21st centuries. The advent of multislice computed tomography scanners has provided physicians with the ability to visualize organ injury at submillimetre resolution, changing the way war wounds are treated. Modern wars are, for the most part, asymmetric conflicts where improvised explosive devices have replaced artillery as a major cause of casualties. Both bullets and explosive devices wreak distinctive patterns of injury on the human body. Being able to recognize these patterns and their potential associated morbidities will allow medical personnel to provide expert and timely care to some of the most severely injured patients on earth. This series of pictorial essays will review the radiographic patterns of combat-related injury encountered in southern Afghanistan in 2008-2009.
Statistical Observations of Positioning, Navigation, and Timing in a Combat Simulation
2015-03-26
GPS spoofing attacks," in Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago , 2011. 63 [10] A. Pinker and...D. Shepard , "Characterization of receiver response to spoofing attacks," University of Texas at Austin, Austin, Texas, 2011. 65
Future directions in flight simulation: A user perspective
NASA Technical Reports Server (NTRS)
Jackson, Bruce
1993-01-01
Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.
Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.
Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L
2016-01-01
Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue.
U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy
2009-05-07
the others for Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism...Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought counterterrorism cooperation, shifting from issues about weapons...supportive stance. However, Beijing also worried about U.S. military action near China, U.S.-led alliances, Japan’s active role in the war on terrorism
Fatigue Effects on Human Performance in Combat: A Literature Review. Volume 1
1991-08-01
sleep data to assess if there was a tie between sleep patterns/levels and the subjectively rated unit performance. HTI also examined pro- and post ...vertical functional systems. This choice of "level of resolution" is based upon a requirement to represent the fact that not all subunits of, for example ...were initiated, in particular, engagement and synchronization across vertical functional systems. NTC results also provided examples of the extreme
Laboratory and Field Evaluation of Rapid Setting Cementitious Materials for Large Crater Repair
2010-05-01
frame used within which to complete the repair was the current NATO standard of 4 hr. A total of 6 simulated craters were prepared, with each repair...Combat Command 129 Andrews Street Langley Air Force Base, VA 23665 ERDC TR-10-4 ii Abstract: Current practice for expedient runway repair...penalty. Numerous commercial products are available. A full-scale field test was conducted using rapid setting materials to repair simulated bomb craters
An Intelligent Tutoring System (ITS) for Future Combat Systems (FCS) Robotic Vehicle Command
2003-01-01
relevant to student feedback, as a free - play simulation allows for a degree of flexibility where negative outcomes may occur even if the student has...principle. As the underlying simulation is a free - play environment, the student is free to do things that the ITS does not anticipate. This...principles. This is especially challenging in a real-time free - play scenario, because even with just one scenario, different students executing different
Instrumental resolution of the chopper spectrometer 4SEASONS evaluated by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kajimoto, Ryoichi; Sato, Kentaro; Inamura, Yasuhiro; Fujita, Masaki
2018-05-01
We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.
Warship Combat System Selection Methodology Based on Discrete Event Simulation
2010-09-01
Platform (from Spanish) PD Damage Probability xiv PHit Hit Probability PKill Kill Probability RSM Response Surface Model SAM Surface-Air Missile...such a large target allows an assumption that the probability of a hit ( PHit ) is one. This structure can be considered as a bridge; therefore, the
Modeling and Assessment of Alternative Cooling Methods of the Combat Operation Center
2012-12-01
through the employment of a measure designed to remove heat load at a lower rate of power consumption than an ECU. 3. The Simulation To test the...24 G. PROCEDURE FOR TESTING PROPOSED SOLUTIONS .....................25 1. The Model...ASSUMPTIONS .............................................................................................28 1. July 2010 COC (v2) test
The Ardennes Campaign Simulation Data Base (ACSDB). Volume 1. Volume 2
1990-02-07
Railway Artillery Battalion RRArtBt Railway Artillery Battery SS Schutzstaffeln (indicates combat elements of SS -- Waffen SS) SSArtBN SS Artillery...34 Rocket Launcher) Battalion VWBty Volkswerfer ("People’s" Rocket Launcher) Battery VTB Volga Tartar Battalion Note: SS = Waffen SS (Schutz Staffeln
Rand Symposium on Pilot Training and the Pilot Career. (Santa Monica, Calif., Feb. 23-27, 1970).
ERIC Educational Resources Information Center
Stewart, W. A.; Wainstein, E. S.
This document contains discussions of the following: The pilot career; Career and education; The pilot skill--definition, measurement, and retention; Relevance of training to combat; Selection; Motivation; Training innovations and the role of research; Simulators; The instructor pilot; Topics for research. (Author/CK)
Modeling Sound as a Non-Lethal Weapon in the COMBAT(XXI) Simulation Model
2005-06-01
Kilgore in ‘ Apocalypse Now !’ [Ref 4] blasting Wagner from his Cavalry helicopters. Moving from film to recent history, consider how General Noriega...Military Operations Research Society, 71 4. Coppola, F. F. (Producer). (1979). Apocalypse now . [Motion Picture] Hollywood, California: United Artists
14 CFR 121.417 - Crewmember emergency training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... fire extinguishers, with emphasis on type of extinguisher to be used on different classes of fires; and... handling of emergency situations including— (i) Rapid decompression; (ii) Fire in flight or on the surface... crewmember combats an actual or simulated fire using at least one type of installed hand fire extinguisher or...
14 CFR 121.417 - Crewmember emergency training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... fire extinguishers, with emphasis on type of extinguisher to be used on different classes of fires; and... handling of emergency situations including— (i) Rapid decompression; (ii) Fire in flight or on the surface... crewmember combats an actual or simulated fire using at least one type of installed hand fire extinguisher or...
14 CFR 121.417 - Crewmember emergency training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... fire extinguishers, with emphasis on type of extinguisher to be used on different classes of fires; and... handling of emergency situations including— (i) Rapid decompression; (ii) Fire in flight or on the surface... crewmember combats an actual or simulated fire using at least one type of installed hand fire extinguisher or...
Resolution requirements for numerical simulations of transition
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff
1989-01-01
The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.
NASA Astrophysics Data System (ADS)
Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.
2017-07-01
Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
A general CFD framework for fault-resilient simulations based on multi-resolution information fusion
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-10-01
We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.
Retrieved Products from Simulated Hyperspectral Observations of a Hurricane
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John
2015-01-01
Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.
2012-06-15
pp. 535-543. [17] Compere , M., Goodell, J., Simon, M., Smith, W., and Brudnak, M., 2006, "Robust Control Techniques Enabling Duty Cycle...Technical Paper, 2006-01-3077. [18] Goodell, J., Compere , M., Simon, M., Smith, W., Wright, R., and Brudnak, M., 2006, "Robust Control Techniques for...Smith, W., Compere , M., Goodell, J., Holtz, D., Mortsfield, T., and Shvartsman, A., 2007, "Soldier/Harware-in-the-Loop Simulation- Based Combat Vehicle
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Owens, A. J.
1975-01-01
A detailed description is presented of the computer programs in order to provide an understanding of the mathematical and geometrical relationships as implemented in the programs. The individual sbbroutines and their underlying mathematical relationships are described, and the required input data and the output provided by the program are explained. The relationship of the adaptive maneuvering logic program with the program to drive the differential maneuvering simulator is discussed.
2010-09-01
agent-based modeling platform known as MANA. The simulation is exercised over a broad range of different weapon systems types with their capabilities...Navy B.A., University of Florida, 2004 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MODELING ...aerial vehicle (UAV) will have. This study uses freely available data to build a simulation utilizing an agent-based modeling platform known as MANA
The role of simulation in space operations training
NASA Astrophysics Data System (ADS)
Ocasio, Frank; Atkins, Dana
The expanding use of computer simulation to train aerospace personnel is reviewed emphasizing the increasing complexity of responsibilities in the operations segment. The inefficiency of on-the-job training is discussed, and the simulation technologies employed by the USAF Combat Crew Training Squadron are described. The Mission Control Complex-Kernel is employed to simulate an operational Satellite Control Squadron (SCS) and a downscaled SCS. A system for telemetry simulation is incorporated into the launch and early-orbit segments of the training, and the training emphasizes time-critical actions, schedule adherence, and the interaction with external organizations. Hands-on training is required to supplement the simulator training which cannot be used to simulate anomalies in satellites and ground systems. The use of a centralized simulator as an instructional tool facilitates and expedites the transition of the student to operational levels.
Feigning combat-related posttraumatic stress disorder on the personality assessment inventory.
Calhoun, P S; Earnst, K S; Tucker, D D; Kirby, A C; Beckham, J C
2000-10-01
This study examined whether individuals who were instructed on the Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM-IV]; American Psychiatric Association, 1994) criteria for posttraumatic stress disorder (PTSD) could feign PTSD on the Personality Assessment Inventory (PAI; Morey, 1991). The study also investigated whether PAI indexes of symptom exaggeration, the Negative Impression Management (NIM) scale and the Malingering index, could identify individuals feigning PTSD. The diagnostic rule for PTSD (Morey, 1991, 1996) was applied to the profiles of a group of 23 veterans with combat-related PTSD and 23 male undergraduates instructed to malinger PTSD. Seventy percent of the student malingerers produced profiles that received diagnostic consideration for PTSD. The NIM cutting score (> or = 8) was highly effective in detecting simulation of PTSD but resulted in the misclassification of a large number of true PTSD cases. There were no significant differences in the overall efficiency of the test with various validity criteria. We discuss the implications of these findings for the use of the PAI in the diagnosis of combat-related PTSD.
Effect of Uniform Design on the Speed of Combat Tourniquet Application: A Simulation Study.
Higgs, Andrew R; Maughon, Michael J; Ruland, Robert T; Reade, Michael C
2016-08-01
Tourniquets are issued to deployed members of both the United States (U.S. military and the Australian Defence Force (ADF). The ease of removing the tourniquet from the pocket of the combat uniform may influence its time to application. The ADF uniform uses buttons to secure the pocket, whereas the U.S. uniform uses a hook and loop fastener system. National differences in training may influence the time to and effectiveness of tourniquet application. To compare the time taken to retrieve and apply a tourniquet from the pocket of the Australian and the U.S. combat uniform and compare the effectiveness of tourniquet application. Twenty participants from both nations were randomly selected. Participants were timed on their ability to remove a tourniquet from their pockets and then apply it effectively. The U.S. personnel removed their tourniquets in shorter time (median 2.5 seconds) than Australians (median 5.72 seconds, p < 0.0001). ADF members (mean 41.36 seconds vs. 58.87 seconds, p < 0.037) applied the tourniquet more rapidly once removed from the pocket and trended to apply it more effectively (p = 0.1). The closure system of pockets on the combat uniform might influence the time taken to apply a tourniquet. Regular training might also reduce the time taken to apply a tourniquet effectively. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
SPARTAN: An Instructional High Resolution Land Combat Model
1992-03-01
being: Next Event Time Advance - this method initializes the time clock at zero and updates the clock to the time of the next most imminent event and...whenever the soldier’s movement attribute switch is on and his speed is greater than zero . When startmove is called, it begins by performing several...status attribute goes to zero , his movement goes to zero , and his posture goes to prone. Lastly, the "killsoldier" subprogram is called which removes
Navy Littoral Combat Ship (LCS) Program: Background and Issues for Congress
2014-03-05
Earlier Press Reports That DOD Was Considering Truncating Program .......................... 16 February 24, 2014, Press Report About Navy Work on...the Navy’s decision (see “Manning and Deployment” above) to increase the size of the LCS core crew to about 50. A November 18, 2013, press report...2010. For a press article on this issue, see Cid Standifer, “FY-11 LCS Contracts On Hold Because Of Continuing Resolution,” Inside the Navy, March
JPRS Report, Near East & South Asia
1989-08-31
This means that we will face a true and complete explosion in this region. Every- where, in all parts of the world, the talk is about disarmament...combat poisons, chemical weapons. What does that mean ? Should there be a war because of losing this chance for peace, it will be a disastrous war...of the non- aligned countries. We do not need thick books of reso- lutions. We need clear and concise resolutions that will express the essence of
NASA Astrophysics Data System (ADS)
Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.
2018-04-01
We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when simulated at the coarse resolution compared to the finer resolution. Annual-average PM2.5 concentrations are higher across most of northern and eastern Europe but lower over parts of southwest Europe at the coarse compared to the finer resolution. Across Europe, differences in the AF associated with long-term exposure to population-weighted MDA8 O3 range between -0.9 and +2.6 % (largest positive differences in southern Europe), while differences in the AF associated with long-term exposure to population-weighted annual mean PM2.5 range from -4.7 to +2.8 % (largest positive differences in eastern Europe) of the total mortality. Therefore this study, with its unique focus on Europe, demonstrates that health impact assessments calculated using modelled pollutant concentrations, are sensitive to a change in model resolution by up to ˜ ±5 % of the total mortality across Europe.
2011-04-01
Combat Skills: Modeling and Research Methods Anna T. Cianciolo, Brian T. Crabb, Peter S. Schaefer, Steven Jackson, & Jeff Grover. January 2010...operations: Low fidelity simulations for assessment. In Bartone, P., Johnsen, B., Eid, J., Violanti, J. C., & Laberg , J. (Eds.) Enhancing human
2001-09-01
Oriented Discrete Event Simulation,” Master’s Thesis in Operations Research, Naval Postgraduate School Monterey, CA, 1996. 12. Arntzen , A., “Software...Dependent Hit Probabilities”, Naval Research Logistics, Vol. 31, pp. 363-371, 1984. 3 Arntzen , A., “Software Components for Air Defense Planning
40th Combat Aviation Brigade and USS Ponce conduct interoperability
training exercise > National Guard > Guard News - The National Guard Skip to main content Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & ; Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle
Linking Combat Systems Capabilities and Ship Design Through Modeling and Computer Simulation
2013-09-01
23 C. OVERVIEW OF FIVE—PARAMETER METHOD .................................24 1. Lift /Drag Ratio (L/D Ratio...FOR TESTING ..............29 1. Parameter 1: Lift /Drag Ratio (calculated value) ............................29 2. Parameter 2: Overall Propulsion...34 G. METRIC CONVERSIONS—JANE’S DATA ............................................35 H. DECOMPOSITION – LIFT TO DRAG RATIO AND
Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft
NASA Technical Reports Server (NTRS)
McManus, John W.; Goodrich, Kenneth H.
1990-01-01
A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.
Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.
1997-06-01
The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.
Villar, Rodrigo; Gillis, Jason; Santana, Givanildo; Pinheiro, Daniel S; Almeida, André L R A
2018-02-01
Villar, R, Gillis, J, Santana, G, Pinheiro, DS, and Almeida, ALRA. Association between anaerobic metabolic demands during simulated Brazilian jiu-jitsu combat and specific jiu-jitsu anaerobic performance test. J Strength Cond Res 32(2): 432-440, 2018-The aims of this study were to design a specific Jiu-Jitsu anaerobic performance test (JJAPT) and investigate the relationship between blood lactate ([La]), heart rate (HR), and rating of perceived exertion (RPE) during simulated Brazilian Jiu-Jitsu combat (SBJJC) and JJAPT. Nine male elite Brazilian medium heavy weight athletes performed a 10-minute SBJJC and JJAPT that required performance of a common BJJ technique for 5 consecutive bouts of 1-minute with 45-second rest between bouts. [La] was measured by a lactate analyzer, HR by an HR monitor, and RPE using Borg's scale, and the number of repetitions of butterfly lifts (NBL) was recorded. During JJAPT, NBL decreased in the fourth and fifth bouts (p ≤ 0.05) with increases in [La], HR, and RPE (p ≤ 0.05), indicating that the JJAPT measured anaerobic performance. [La] during SBJJC was not different than [La] at the third and fourth bouts, but was significantly different than the fifth bout (p ≤ 0.05). [La] showed strong correlation between SBJJC and JJAPT for the third (r = 0.80, p ≤ 0.05), fourth (r = 0.83, p ≤ 0.05), and fifth (r = 0.82, p ≤ 0.05) bouts, but not between the HR and RPE. The JJAPT with 4 bouts presented the best combination of stimulus and highest correlation with SBJJC, supporting its use to assess anaerobic performance of BJJ athletes. These data will aid coaches and athletes to better understand the demands of their sport and may help to monitor adaptation in sport-specific performance across periodized training plans.
NASA Astrophysics Data System (ADS)
Philip, S.; Martin, R. V.; Keller, C. A.
2015-11-01
Chemical transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemical transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to temporal resolution. Subsequently, we compare the tracers simulated with operator durations from 10 to 60 min as typically used by global chemical transport models, and identify the timesteps that optimize both computational expense and simulation accuracy. We found that longer transport timesteps increase concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production at longer transport timesteps. Longer chemical timesteps decrease sulfate and ammonium but increase nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by an order of magnitude from fine (5 min) to coarse (60 min) temporal resolution. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth. Simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) temporal resolution. Chemical timesteps twice that of the transport timestep offer more simulation accuracy per unit computation. However, simulation error from coarser spatial resolution generally exceeds that from longer timesteps; e.g. degrading from 2° × 2.5° to 4° × 5° increases error by an order of magnitude. We recommend prioritizing fine spatial resolution before considering different temporal resolutions in offline chemical transport models. We encourage the chemical transport model users to specify in publications the durations of operators due to their effects on simulation accuracy.
NASA Astrophysics Data System (ADS)
Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.
2012-12-01
This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.
Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2018-06-01
We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...
2016-10-22
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
Army Airspace Command and Control (A2C2): Action Plan for Issue Resolution
1993-09-01
INFO Information INTEL Intelligence IPR In-Process Review IVIS Inter-Vehicular Information System JACC Joint Airspace Control Center JAOC Joint Air...base, centralized such as intelligence at Fort Huachuca and combat service support at Fort Lee , or a combination of both. It is no longer efficient to...Regiment (ATS) Ft. Bragg, NC 28307 ATTN: AFZF-ATS-C (LTC Ledbetter ) (919) 396-8899/7649 Bldg 87009, 16th Street Ft. Hood, TX 76544 Commander, 1st
Optimization model of conventional missile maneuvering route based on improved Floyd algorithm
NASA Astrophysics Data System (ADS)
Wu, Runping; Liu, Weidong
2018-04-01
Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.
Allen, Jonathan E.; Brown, Trevor S.; Gardner, Shea N.; McLoughlin, Kevin S.; Forsberg, Jonathan A.; Kirkup, Benjamin C.; Chromy, Brett A.; Luciw, Paul A.; Elster, Eric A.
2014-01-01
Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. PMID:24829242
Davison, Eve H; Kaiser, Anica Pless; Spiro, Avron; Moye, Jennifer; King, Lynda A; King, Daniel W
2016-02-01
About a decade ago we proposed the notion of late-onset stress symptomatology, to characterize the later-life emergence of symptoms related to early-life warzone trauma among aging combat Veterans. We hypothesized that aging-related challenges (role transition and loss, death of family members and friends, physical and cognitive decline) might lead to increased reminiscence, and possibly distress, among Veterans who had previously dealt successfully with earlier traumatic events. Recently, we have reexamined our earlier ideas, to better reflect our developing understanding of this phenomenon, and to incorporate more contemporary perspectives on posttraumatic growth and resilience. As a result, we have broadened our conceptualization to later-adulthood trauma reengagement (LATR). We suggest that in later life many combat Veterans confront and rework their wartime memories in an effort to find meaning and build coherence. Through reminiscence, life review, and wrestling with issues such as integrity versus despair, they intentionally reengage with experiences they avoided or managed successfully earlier in life, perhaps without resolution or integration. This article links LATR to classic gerontologic notions, and elaborates how the LATR process can lead positively to personal growth or negatively to increased symptomatology. We also address the role of preventive intervention in enhancing positive outcomes for Veterans who reengage with their wartime memories in later life. Published by Oxford University Press on behalf of the Gerontological Society of America 2015.
Cockpit Resource Management (CRM) training in the 1550th combat crew training wing
NASA Technical Reports Server (NTRS)
Fiedler, Michael T.
1987-01-01
The training program the 1550th Combat Crew Training Wing at Kirtland Air Force Base, New Mexico, implemented in September 1985 is discussed. The program is called Aircrew Coordination Training (ACT), and it is designed specifically to help aircrew members work more effectively as a team in their respective aircraft and hopefully to reduce human factors-related accidents. The scope of the 1550th CCTW's training responsibilities is described, the structure of the program, along with a brief look at the content of the academic part of the course. Then the Mission-Oriented Simulator Training (MOST) program is discussed; a program similar to the Line Oriented Flight Training (LOFT) programs. Finally, the future plans for the Aircrew Coordination Training Program at the 1550th is discussed.
Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.
1992-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
Trial maneuver generation and selection in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.
1993-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
2002-12-19
The first X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its sixth flight on Dec. 19, 2002, raising its landing gear in flight for the first time. The X-45A flew for 40 minutes and reached an airspeed of 195 knots and an altitude of 7,500 feet. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Effects of prescribed fire on wintering, bark-foraging birds in northern Arizona
Theresa L. Pope
2006-01-01
Forest management practices of the past century have led to an increase in unnatural and destructive crown fires in ponderosa pine (Pinus ponderosa) forests of the southwest. To combat large fires, forest managers are attempting to simulate past fire regimes of low-intensity surface fires using prescribed fire. While there have been many studies...
ERIC Educational Resources Information Center
Chesler, David J.
An improved general methodological approach for the development of computer-assisted evaluation of trainee performance in the computer-based simulation environment is formulated in this report. The report focuses on the Tactical Advanced Combat Direction and Electronic Warfare system (TACDEW) at the Fleet Anti-Air Warfare Training Center at San…
Piloted Aircraft Environment Simulation Techniques
1978-04-01
raS’I.Al. lIIf~iiI~.1 labL. lot. Rolmotion -oft. skylicav - ow d Roll rMotion -oft Skylicape - Off Fig 6 a A Effect of roll motion and akyscape, an msatwntn...greater realism and pilot involvement than ground based simu- lation, it still lacks some of the pilot motivating factors of actual combat. Flight
NASA Astrophysics Data System (ADS)
Lee, G.; Miller, A. J.
2017-12-01
Urban stream restoration efforts are commonly undertaken to combat channel degradation and restore natural stream hydrology. We examine changes in flood patterns along an approximately 1.5-mile reach of Minebank Run, located in Towson, MD, by comparing pre-restoration morphology from surveys conducted in 2001, post-restoration morphology in 2007, and current conditions in 2017 following damage to the restoration project from persistent flooding. Hydraulic modeling was conducted in HEC-RAS 2D using three alternative scenarios: 1) topographic contours from a 2001 survey of pre-restoration topography combined with 2005 LiDAR, 2) 2007 survey combined with 2005 LiDAR data representing the post-restoration channel morphology, and 3) a March 2017 DEM of current channel conditions. The 2017 DEM was created using Structure from Motion (SfM) from high resolution 4K video collected via Unmanned Aerial Vehicle (UAV) flights at a resolution of 0.05 meters. Flood hydrographs from a USGS stream gage located within the study reach as well as a simulated hydrograph of the 100-year storm event were routed through the pre-restoration, post-restoration, and current modeled terrain and analyzed for changes in water-surface elevation and depth, inundation extent, 2-d velocity fields, and translation vs. attenuation of the flood wave to assess the net impact on potential flood hazards. In addition, our study demonstrates that SfM is a quick and inexpensive method for collecting topographic data for hydrologic modeling, assessing stream characteristics including channel bed roughness, and for examining short term changes of channel morphology at a very fine scale.
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim
2016-04-01
The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).
Fowler, A R; Bushardt, S C; Jones, M A
1993-06-01
The way nurses resolve conflict may be leading them to quit their jobs or leave the profession altogether. Conflict is inevitable in a dynamic organization. What is important is not to avoid conflict but to seek its resolution in a constructive manner. Organizational conflict is typically resolved through one of five strategies: withdrawal, force, conciliation, compromise, or confrontation. A recent study of nurses in three different hospitals showed that the approach they use most is withdrawal. This might manifest itself in a request to change shifts or assignments and may lead to a job change and, eventually, abandonment of the field altogether. Given this scenario, changing nurses' conflict resolution style may help administrators combat the nursing shortage. Healthcare organizations must examine themselves to determine why nurses so frequently use withdrawal; then they must restructure work relationships as needed. Next, organizations need to increase nurses' awareness of the problem and train them to use a resolution style more conducive to building stable relationships: confrontation. Staff should also be trained in effective communications skills to develop trust and openness in their relationships.
Situation assessment in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Chappell, Alan R.; Arbuckle, P. Douglas
1992-01-01
Paladin is a real-time tactical decision generator for air combat engagements. Paladin uses specialized knowledge-based systems and other Artificial Intelligence (AI) programming techniques to address the modern air combat environment and agile aircraft in a clear and concise manner. Paladin is designed to provide insight into both the tactical benefits and the costs of enhanced agility. The system was developed using the Lisp programming language on a specialized AI workstation. Paladin utilizes a set of air combat rules, an active throttle controller, and a situation assessment module that have been implemented as a set of highly specialized knowledge-based systems. The situation assessment module was developed to determine the tactical mode of operation (aggressive, defensive, neutral, evasive, or disengagement) used by Paladin at each decision point in the air combat engagement. Paladin uses the situation assessment module; the situationally dependent modes of operation to more accurately represent the complex decision-making process of human pilots. This allows Paladin to adapt its tactics to the current situation and improves system performance. Discussed here are the details of Paladin's situation assessment and modes of operation. The results of simulation testing showing the error introduced into the situation assessment module due to estimation errors in positional and geometric data for the opponent aircraft are presented. Implementation issues for real-time performance are discussed and several solutions are presented, including Paladin's use of an inference engine designed for real-time execution.
1987-09-01
inverse transform method to obtain unit-mean exponential random variables, where Vi is the jth random number in the sequence of a stream of uniform random...numbers. The inverse transform method is discussed in the simulation textbooks listed in the reference section of this thesis. X(b,c,d) = - P(b,c,d...Defender ,C * P(b,c,d) We again use the inverse transform method to obtain the conditions for an interim event to occur and to induce the change in
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
Regional model simulations of New Zealand climate
NASA Astrophysics Data System (ADS)
Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.
1998-03-01
Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.
Recce NG: from Recce sensor to image intelligence (IMINT)
NASA Astrophysics Data System (ADS)
Larroque, Serge
2001-12-01
Recce NG (Reconnaissance New Generation) is presented as a complete and optimized Tactical Reconnaissance System. Based on a new generation Pod integrating high resolution Dual Band sensors, the system has been designed with the operational lessons learnt from the last Peace Keeping Operations in Bosnia and Kosovo. The technical solutions retained as component modules of a full IMINT acquisition system, take benefit of the state of art in the following key technologies: Advanced Mission Planning System for long range stand-off Manned Recce, Aircraft and/or Pod tasking, operating sophisticated back-up software tools, high resolution 3D geo data and improved/combat proven MMI to reduce planning delays, Mature Dual Band sensors technology to achieve the Day and Night Recce Mission, including advanced automatic operational functions, as azimuth and roll tracking capabilities, low risk in Pod integration and in carrier avionics, controls and displays upgrades, to save time in operational turn over and maintenance, High rate Imagery Down Link, for Real Time or Near Real Time transmission, fully compatible with STANAG 7085 requirements, Advanced IMINT Exploitation Ground Segment, combat proven, NATO interoperable (STANAG 7023), integrating high value software tools for accurate location, improved radiometric image processing and open link to the C4ISR systems. The choice of an industrial Prime contractor mastering across the full system, all the prior listed key products and technologies, is mandatory to a successful delivery in terms of low Cost, Risk and Time Schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Pollack, Jeremy; Holbrook, Colin; Fessler, Daniel M T; Sparks, Adam Maxwell; Zerbe, James G
2018-06-18
The perceived support of supernatural agents has been historically, ethnographically, and theoretically linked with confidence in engaging in violent intergroup conflict. However, scant experimental investigations of such links have been reported to date, and the extant evidence derives largely from indirect laboratory methods of limited ecological validity. Here, we experimentally tested the hypothesis that perceived supernatural aid would heighten inclinations toward coalitional aggression using a realistic simulated coalitional combat paradigm: competitive team paintball. In a between-subjects design, US paintball players recruited for the study were experimentally primed with thoughts of supernatural support using a guided visualization exercise analogous to prayer, or with a control visualization of a nature scene. The participants then competed in a team paintball battle game modeled after "Capture the Flag." Immediately before and after the battle, participants completed surveys assessing confidence in their coalitional and personal battle performance. Participants assessed their coalition's prospects of victory and performance more positively after visualizing supernatural aid. Participants primed with supernatural support also reported inflated assessments of their own performance. Importantly, however, covarying increases in assessments of their overall coalition's performance accounted for the latter effect. This study provided support for the hypothesis that perceived supernatural support can heighten both prospective confidence in coalitional victory and retrospective confidence in the combat performance of one's team, while highlighting the role of competitive play in evoking the coalitional psychology of intergroup conflict. These results accord with and extend convergent prior findings derived from laboratory paradigms far removed from the experience of combat. Accordingly, the field study approach utilized here shows promise as a method for investigating coalitional battle dynamics in a realistic, experientially immersive manner.
Ouergui, Ibrahim; Davis, Philip; Houcine, Nizar; Marzouki, Hamza; Zaouali, Monia; Franchini, Emerson; Gmada, Nabil; Bouhlel, Ezzedine
2016-05-01
The aim of the current study was to investigate the hormonal, physiological, and physical responses of simulated kickboxing competition and evaluate if there was a difference between winners and losers. Twenty athletes of regional and national level participated in the study (mean ± SD age 21.3 ± 2.7 y, height 170.0 ± 5.0 cm). Hormone (cortisol, testosterone, growth hormone), blood lactate [La], and glucose concentrations, as well as upper-body Wingate test and countermovement-jump (CMJ) performances, were measured before and after combats. Heart rate (HR) was measured throughout rounds 1, 2, and 3 and rating of perceived exertion (RPE) was taken after each round. All combats were recorded and analyzed to determine the length of different activity phases (high-intensity, low-intensity, and referee pause) and the frequency of techniques. Hormones, glucose, [La], HR, and RPE increased (all P < .001) precombat to postcombat, while a decrease was observed for CMJ, Wingate test performance, body mass (all P < .001), and time of high-intensity activities (P = .005). There was no difference between winners and losers for hormonal, physiological, and physical variables (P > .05). However, winners executed more jab cross, total punches, roundhouse kicks, total kicks, and total attacking techniques (all P < .042) than losers. Kickboxing is an intermittent physically demanding sport that induces changes in the stress-related hormones soliciting the anaerobic lactic system. Training should be oriented to enhance kickboxers' anaerobic lactic fitness and their ability to strike at a sufficient rate. Further investigation is needed to identify possible differences in tactical and mental abilities that offer some insight into what makes winners winners.
Crew Integration & Automation Testbed and Robotic Follower Programs
2001-05-30
Evolving Technologies for Reduced Crew Operation” Vehicle Tech Demo #1 (VTT) Vehicle Tech Demo #2 ( CAT ATD) Two Man Transition Future Combat...Simulation Advanced Electronic Architecture Concept Vehicle Shown with Onboard Safety Driver Advanced Interfaces CAT ATD Exit Criteria...Provide 1000 Hz control loop for critical real-time tasks CAT Workload IPT Process and Product Schedule Crew Task List Task Timelines Workload Analysis
Carrier Air Wing Tactics Incorporating Navy Unmanned Combat Air System (NUCAS)
2010-03-01
Profile Curves of Mean Target Casualty Rate Versus GBU-31 Phit and NUCAS Sensor Aperture (After SAS Institute, 2010...Prediction Profile Curve of Mean Blue Survivability Percent Versus AIM- 120 Weapons Phit (After SAS Institute, 2010...Weapons Phit is a major factor in target destruction and blue survivability. Our approach shows how simulation, data farming techniques, and data
Dynamic Bayesian Networks as a Probabilistic Metamodel for Combat Simulations
2014-09-18
test is commonly used for large data sets and is the method of comparison presented in Section 5.5. 4.3.3 Kullback - Leibler Divergence Goodness of Fit ...methods exist that might improve the results. A goodness of fit test using the Kullback - Leibler Divergence was proposed in the first paper, but still... Kullback - Leibler Divergence Goodness of Fit Test . . .
Aircrew Combat Preparation Training
1989-07-21
the evaluator must rely on his memory and short notes for a record of flight situations. Observation of simulated flight activity was the second most... hypnosis , positive thinking, meditation, and biofeedback. This mental conditioning enhances concentration or relaxation and reduces nervousness and...and not to dwell on the possibility of losing. Regular sessions of self- hypnosis , meditation, and biofeedback prior to competition lessen the possibil
Generating Enhanced Natural Environments and Terrain for Interactive Combat Simulations (GENETICS)
2005-09-01
split to avoid T-junctions ........................................................................52 Figure 2-23 Longest edge bisection...database. This feature allows trainers the flexibility to use the same terrain repeatedly or use a new one each time, forcing trainees to avoid ...model are favored to create a good surface approximation. Cracks are avoided by projecting primitives and their respective textures onto multiple
Patch models and their applications to multivehicle command and control.
Rao, Venkatesh G; D'Andrea, Raffaello
2007-06-01
We introduce patch models, a computational modeling formalism for multivehicle combat domains, based on spatiotemporal abstraction methods developed in the computer science community. The framework yields models that are expressive enough to accommodate nontrivial controlled vehicle dynamics while being within the representational capabilities of common artificial intelligence techniques used in the construction of autonomous systems. The framework allows several key design requirements of next-generation network-centric command and control systems, such as maintenance of shared situation awareness, to be achieved. Major features include support for multiple situation models at each decision node and rapid mission plan adaptation. We describe the formal specification of patch models and our prototype implementation, i.e., Patchworks. The capabilities of patch models are validated through a combat mission simulation in Patchworks, which involves two defending teams protecting a camp from an enemy attacking team.
Comparison of combat and non-combat burns from ongoing U.S. military operations.
Kauvar, David S; Cancio, Leopoldo C; Wolf, Steven E; Wade, Charles E; Holcomb, John B
2006-05-15
Military burns result from either combat or non-combat causes. We compared these etiologies from patients involved in ongoing conflicts to evaluate their impact and provide prevention recommendations. All military patients with significant burns treated at the United States Army Institute of Surgical Research from April 2003 to May 2005 were reviewed. Injuries were categorized as having resulted from combat or non-combat causes. Demographics, burn severity and pattern, mortality, and early outcomes were compared. There were 273 burn patients seen with 63% injured in combat. A high early rate of non-combat injuries was noted. Feedback on non-combat burn prevention was provided to the combat theater, and the incidence of non-combat burns decreased. Mean age and time from injury to admission did not differ. The majority of combat injuries resulted from explosive device detonation. Waste burning, ammunition handling, and gasoline caused most non-combat injuries. Combat casualties had more associated and inhalation injuries and greater full-thickness burn size; total body surface area burned was equivalent. The hands and the face were the most frequently burned body areas. Mortality was 5% in combat and 2% in non-combat patients. The majority of survivors in both groups returned to military duty. The disparity in full-thickness burn size and incidence of inhalation and associated injuries resulted from differing mechanisms of injury, with explosions and penetrating trauma more common in combat wounds. Despite the severity of combat burns, mortality was low and outcomes generally good. Non-combat burns are preventable and have decreased in incidence.
NASA Astrophysics Data System (ADS)
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-01
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-10
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Particle Number Dependence of the N-body Simulations of Moon Formation
NASA Astrophysics Data System (ADS)
Sasaki, Takanori; Hosono, Natsuki
2018-04-01
The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.
Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack
NASA Technical Reports Server (NTRS)
Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.
1982-01-01
A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.
NASA Astrophysics Data System (ADS)
Soares, P. M. M.; Cardoso, R. M.
2017-12-01
Regional climate models (RCM) are used with increasing resolutions pursuing to represent in an improved way regional to local scale atmospheric phenomena. The EURO-CORDEX simulations at 0.11° and simulations exploiting finer grid spacing approaching the convective-permitting regimes are representative examples. The climate runs are computationally very demanding and do not always show improvements. These depend on the region, variable and object of study. The gains or losses associated with the use of higher resolution in relation to the forcing model (global climate model or reanalysis), or to different resolution RCM simulations, is known as added value. Its characterization is a long-standing issue, and many different added-value measures have been proposed. In the current paper, a new method is proposed to assess the added value of finer resolution simulations, in comparison to its forcing data or coarser resolution counterparts. This approach builds on a probability density function (PDF) matching score, giving a normalised measure of the difference between diverse resolution PDFs, mediated by the observational ones. The distribution added value (DAV) is an objective added value measure that can be applied to any variable, region or temporal scale, from hindcast or historical (non-synchronous) simulations. The DAVs metric and an application to the EURO-CORDEX simulations, for daily temperatures and precipitation, are here presented. The EURO-CORDEX simulations at both resolutions (0.44o,0.11o) display a clear added value in relation to ERA-Interim, with values around 30% in summer and 20% in the intermediate seasons, for precipitation. When both RCM resolutions are directly compared the added value is limited. The regions with the larger precipitation DAVs are areas where convection is relevant, e.g. Alps and Iberia. When looking at the extreme precipitation PDF tail, the higher resolution improvement is generally greater than the low resolution for seasons and regions. For temperature, the added value is smaller. AcknowledgmentsThe authors wish to acknowledge SOLAR (PTDC/GEOMET/7078/2014) and FCT UID/GEO/50019/ 2013 (Instituto Dom Luiz) projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara
This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less
NASA Astrophysics Data System (ADS)
Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson
2017-03-01
Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.
Computational modeling of blast exposure associated with recoilless weapons combat training
NASA Astrophysics Data System (ADS)
Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.
2017-11-01
Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not wearing blast gauges themselves. By accurately understanding the blast exposure and its variations across an individual, more meaningful correlations with physiologic response including potential TBI spectrum physiology associated with sub-concussive blast exposure can be established. As blast injury thresholds become better defined, results from these reconstructions can provide important insights into approaches for reducing possible risk of injury to personnel operating shoulder-launched weapons.
NASA Technical Reports Server (NTRS)
Ford, J. P.
1982-01-01
A survey conducted to evaluate user preference for resolution versus speckle relative to the geologic interpretability of spaceborne radar images is discussed. Thirteen different resolution/looks combinations are simulated from Seasat synthetic-aperture radar data of each of three test sites. The SAR images were distributed with questionnaires for analysis to 85 earth scientists. The relative discriminability of geologic targets at each test site for each simulation of resolution and speckle on the images is determined on the basis of a survey of the evaluations. A large majority of the analysts respond that for most targets a two-look image at the highest simulated resolution is best. For a constant data rate, a higher resolution is more important for target discrimination than a higher number of looks. It is noted that sand dunes require more looks than other geologic targets. At all resolutions, multiple-look images are preferred over the corresponding single-look image. In general, the number of multiple looks that is optimal for discriminating geologic targets is inversely related to the simulated resolution.
Combat musculoskeletal wounds in a US Army Brigade Combat Team during operation Iraqi Freedom.
Belmont, Philip J; Thomas, Dimitri; Goodman, Gens P; Schoenfeld, Andrew J; Zacchilli, Michael; Burks, Rob; Owens, Brett D
2011-07-01
A prospective, longitudinal analysis of musculoskeletal combat injuries sustained by a large combat-deployed maneuver unit has not previously been performed. A detailed description of the musculoskeletal combat casualty care statistics, distribution of wounds, and mechanisms of injury incurred by a US Army Brigade Combat Team during "The Surge" phase of Operation Iraqi Freedom was performed using a centralized casualty database and an electronic medical record system. Among the 4,122 soldiers deployed, there were 242 musculoskeletal combat wounds in 176 combat casualties. The musculoskeletal combat casualty rate for the Brigade Combat Team was 34.2 per 1,000 soldier combat-years. Spine, pelvis, and long bone fractures comprised 55.9% (33 of 59) of the total fractures sustained in combat. Explosions accounted for 80.7% (142 of 176) of all musculoskeletal combat casualties. Musculoskeletal combat casualty wound incidence rates per 1,000 combat-years were as follows: major amputation, 2.1; minor amputation, 0.6; open fracture, 5.0; closed fracture, 6.4; and soft-tissue/neurovascular injury, 32.8. Among musculoskeletal combat casualties, the likelihood of a gunshot wound causing an open fracture was significantly greater (45.8% [11 of 24]) when compared with explosions (10.6% [15 of 142]) (p = 0.0006). Long bone amputations were more often caused by explosive mechanisms than gunshot wounds. A large burden of complex orthopedic injuries has resulted from the combat experience in Operation Iraqi Freedom. This is because of increased enemy reliance on explosive devices, the use of individual and vehicular body armor, and improved survivability of combat-injured soldiers.
Advanced helmet mounted display (AHMD)
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag
2007-04-01
Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.
Potential Applications of Manual Games,
1984-02-01
34 just because some electronic equipment is used to keep track of logistics, combat results, and force status. Even a highly computerized game like...D-A152 541 POTENTIAL APPLICATIONS OF MANUAL GAMES (U) RAND CORP ii SANTA MONICA CA T A BROW~N FEB 84 RAND/P-6957 UNCLASI7FIED F/G 12/2 N El..I 111 1...128 112.5 111 m; * _ 1.8 I1111 ’I’ll MICROCOPY RESOLUTION TEST CHART NATI NAl fii~ t1 RI 1A L4k, I POTENTIAL APPLICATIONS OF MANUJAL GAMES Lfl N Lfl
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Bryan, Greg L.; Ostriker, Jeremiah P.
We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (∼10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 10{sup 9} M{sub ⊙} dwarf halo. Wemore » find that in high-density media (≳50 cm{sup −3}) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.« less
2017-03-30
and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) Chad P. Stocker March 30, 2017 Submitted to...to Defense Acquisition University in partial fulfillment of the requirement of the Senior Service College Fellowship CREDIBLE LEADERSHIP AT PEO...of Credible Leadership at Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service
The effects of multiple aerospace environmental stressors on human performance
NASA Technical Reports Server (NTRS)
Popper, S. E.; Repperger, D. W.; Mccloskey, K.; Tripp, L. D.
1992-01-01
An extended Fitt's law paradigm reaction time (RT) task was used to evaluate the effects of acceleration on human performance in the Dynamic Environment Simulator (DES) at Armstrong Laboratory, Wright-Patterson AFB, Ohio. This effort was combined with an evaluation of the standard CSU-13 P anti-gravity suit versus three configurations of a 'retrograde inflation anti-G suit'. Results indicated that RT and error rates increased 17 percent and 14 percent respectively from baseline to the end of the simulated aerial combat maneuver and that the most common error was pressing too few buttons.
2012-06-01
brianmccue@alum.mit.edu Letters to the Editor, John Willis, Augustine Consulting, Inc., jwillis@aciedge.com Modeling and Simulation , James N. Bexfield, FS, OSD...concepts that are now being applied to modern analytical thinking. The tuto- rials are free to MORS members and $75 for the day for nonmembers. The...Overview of Agent- based Modeling and Simulation and Complex Adaptive Systems • Visual Data Analysis • Analyzing Combat Identification • Guidelines for
Goetz, Jared M; Pitman, Seth R; Tanev, Kaloyan S; Pitman, Roger K; Chemtob, Claude M
2016-01-01
This study evaluated the degree of mixed-handedness in predominantly right-handed Vietnam combat veteran twins and their identical, combat-unexposed cotwins. The "high-risk" cotwins of combat veterans with combat-related posttraumatic stress disorder (PTSD) had more mixed-handedness (i.e., less right-handedness) than the "low-risk" cotwins of combat veterans without PTSD. Self-reported combat exposure in combat-exposed twins was a mediator of the association between handedness in their unexposed cotwins and PTSD in the twins themselves. We conclude that mixed-handedness is a familial risk factor for combat-related PTSD. This risk may be mediated in part by a proclivity for mixed-handed soldiers and Marines to experience heavier combat.
Center for the Study of Traumatic Stress. Annual Report 2009
2009-01-01
Department of Defense (DoD) concerns around traumatic exposure to war, operations other than war, weapons of mass destruction, natural disasters...consequences resulting from the traumatic impact of: 1) the possibility, or actual use, of weapons of mass destruction (WMD) during combat, acts of...simulation exercises dealing with chemical and biological terrorism. This early work generated an unprecedented body of research, including a
Definition of Aviation Turbine Fuel Contamination under Simulated Combat Conditions
1977-09-01
metals ill a riet system as would quIarttz. The plagio - clase thus con tribiites no0 seven t to ttile test. As a reSU~ti t i A.( . Test O ust reail l...the test package inl that oxides of’ iron. quartz. and mineralls inl thle plagio )Clase feldspar tammiji were idemitt Iitd t’or example, 210 see
Groundwars Version 5.0. User’s Guide
1992-08-01
model, Monte Carlo, land duel , heterogeneous forces, TANKWARS, target acquisition, combat survivability 19. ABSTRACT (Continue on reverse if necessary...land duel between two heterogeneous forces. The model simuJ.ates individual weapon systems and employs Monte Carlo probability theory as its primary...is a weapon systems effectiveness model which provides the results of a land duel between two forces. The model simulates individual weapon systems
Detailed Comparisons of COMBAT Data to Wave-Optics Simulations
2015-10-18
2010 along the path between Mauna Loa and Haleakala and is one of many to investigate atmospheric effects in long horizontal optical paths [1-7]. The...Relatively strong jitter sources near transmitter ( atmosphere or telescope). Rationale: Turbulence -induced scintillation alone does not explain the...Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS
2011-07-01
joined the project team in the statistical and research coordination role. Dr. Collin is an employee at the University of Pittsburgh. A successful...3. Submit to Ft. Detrick Completed Milestone: Statistical analysis planning 1. Review planned data metrics and data gathering tools...approach to performance assessment for continuous quality improvement. Analyzing data with modern statistical techniques to determine the
Averill, Christopher L; Satodiya, Ritvij M; Scott, J Cobb; Wrocklage, Kristen M; Schweinsburg, Brian; Averill, Lynnette A; Akiki, Teddy J; Amoroso, Timothy; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G
2017-01-01
Two decades of human neuroimaging research have associated volume reductions in the hippocampus with posttraumatic stress disorder. However, little is known about the distribution of volume loss across hippocampal subfields. Recent advances in neuroimaging methods have made it possible to accurately delineate 10 gray matter hippocampal subfields. Here, we apply a volumetric analysis of hippocampal subfields to data from a group of combat-exposed Veterans. Veterans (total, n = 68, posttraumatic stress disorder, n = 36; combat control, n = 32) completed high-resolution structural magnetic resonance imaging. Based on previously validated methods, hippocampal subfield volume measurements were conducted using FreeSurfer 6.0. The Clinician-Administered PTSD Scale assessed posttraumatic stress disorder symptom severity; Beck Depression Inventory assessed depressive symptom severity. Controlling for age and intracranial volume, partial correlation analysis examined the relationship between hippocampal subfields and symptom severity. Correction for multiple comparisons was performed using false discovery rate. Gender, intelligence, combat severity, comorbid anxiety, alcohol/substance use disorder, and medication status were investigated as potential confounds. In the whole sample, total hippocampal volume negatively correlated with Clinician-Administered PTSD Scale and Beck Depression Inventory scores. Of the 10 hippocampal subfields, Clinician-Administered PTSD Scale symptom severity negatively correlated with the hippocampus-amygdala transition area (HATA). Beck Depression Inventory scores negatively correlated with dentate gyrus, cornu ammonis 4 (CA4), HATA, CA2/3, molecular layer, and CA1. Follow-up analysis limited to the posttraumatic stress disorder group showed a negative correlation between Clinician-Administered PTSD Scale symptom severity and each of HATA, CA2/3, molecular layer, and CA4. This study provides the first evidence relating posttraumatic stress disorder and depression symptoms to abnormalities in the HATA, an anterior hippocampal region highly connected to prefrontal-amygdala circuitry. Notably, dentate gyrus abnormalities were associated with depression severity but not posttraumatic stress disorder symptoms. Future confirmatory studies should determine the extent to which dentate gyrus volume can differentiate between posttraumatic stress disorder- and depression-related pathophysiology.
United States Air Force Statistical Digest, Fiscal Year 1966, Twenty First Edition
1966-09-30
Economic Repair "m.. Abnor- Normal Ene "", Flying Cause Ene "", Aban- MISSION, DESIGN,Tested Fair ""’ Storage AND SERIESum to De - Deter- Deter- Action... De - Wear Deter- Deter- on on on Non- mentor struc- and Iore- tors- Combat Combat Combat Combat Ene ""School tion Tear tion tion Mission Mission...AND SERIESFairum to De - .Deter- Deter- on on on Non- mentWearor strue- iora- tore- Combat Combat Combat Combat Ene "\\YandSchool tion tion tion Mission
Toward 10-km mesh global climate simulations
NASA Astrophysics Data System (ADS)
Ohfuchi, W.; Enomoto, T.; Takaya, K.; Yoshioka, M. K.
2002-12-01
An atmospheric general circulation model (AGCM) that runs very efficiently on the Earth Simulator (ES) was developed. The ES is a gigantic vector-parallel computer with the peak performance of 40 Tflops. The AGCM, named AFES (AGCM for ES), was based on the version 5.4.02 of an AGCM developed jointly by the Center for Climate System Research, the University of Tokyo and the Japanese National Institute for Environmental Sciences. The AFES was, however, totally rewritten in FORTRAN90 and MPI while the original AGCM was written in FORTRAN77 and not capable of parallel computing. The AFES achieved 26 Tflops (about 65 % of the peak performance of the ES) at resolution of T1279L96 (10-km horizontal resolution and 500-m vertical resolution in middle troposphere to lower stratosphere). Some results of 10- to 20-day global simulations will be presented. At this moment, only short-term simulations are possible due to data storage limitation. As ten tera flops computing is achieved, peta byte data storage are necessary to conduct climate-type simulations at this super-high resolution global simulations. Some possibilities for future research topics in global super-high resolution climate simulations will be discussed. Some target topics are mesoscale structures and self-organization of the Baiu-Meiyu front over Japan, cyclogenecsis over the North Pacific and typhoons around the Japan area. Also improvement in local precipitation with increasing horizontal resolution will be demonstrated.
A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.
2000-01-01
The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.
Assessment of the effects of horizontal grid resolution on long ...
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.
Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer
NASA Astrophysics Data System (ADS)
Granroth, G. E.; Hahn, S. E.
2015-01-01
Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (ORNL), has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores). This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.
The relative entropy is fundamental to adaptive resolution simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreis, Karsten; Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy withmore » respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.« less
The relative entropy is fundamental to adaptive resolution simulations
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Potestio, Raffaello
2016-07-01
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
Unraveling the martian water cycle with high-resolution global climate simulations
NASA Astrophysics Data System (ADS)
Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste
2017-07-01
Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.
B-29 Superfortress Engine in the Altitude Wind Tunnel
1944-07-21
The resolution of the Boeing B-29 Superfortress’ engine cooling problems was one of the Aircraft Engine Research Laboratory’s (AERL) key contributions to the World War II effort. The B-29 leapfrogged previous bombers in size, speed, and altitude capabilities. The B–29 was intended to soar above anti-aircraft fire and make pinpoint bomb drops onto strategic targets. Four Wright Aeronautical R-3350 engines powered the massive aircraft. The engines, however, frequently strained and overheated due to payload overloading. This resulted in a growing number of engine fires that often resulted in crashes. The military asked the NACA to tackle the overheating issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the fuel injection system’s flow rate. Single-cylinder studies resolved a valve failure problem by a slight extension of the cylinder head, and researchers in the Engine Research Building combated uneven heating with a new fuel injection system. Investigations during the summer of 1944 in the Altitude Wind Tunnel, which could simulate flight conditions at high altitudes, led to reduction of drag and improved air flow by reshaping the cowling inlet and outlet. The NACA modifications were then flight tested on a B-29 bomber that was brought to the AERL.
Chelette, T L
1997-06-01
Advances in technology have equipped high-performance combat aircraft with the capability of delivering higher and higher sustained acceleration or G-forces on the pilots flying them. While the physiological effects of increased g-forces on the human body continue to be investigated, studies examining the effects of acceleration on the cognitive abilities of high-performance aircraft pilots remain sparse. Additionally, as higher technology is making its way into the cockpit, so are female pilots. With even fewer studies investigating women's physiological and cognitive tolerances to the stressors in the high-performance cockpit and flight environment, Dr. Chelette's study aimed to investigate these issues. Examining pilot workload, flight task abilities, and the effects of sleeplessness on both male and female pilots, Dr. Chelette's results revealed findings that will make their way into the high-performance cockpit of the future.
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.
2002-11-21
The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
The effects of aircraft (B-52) overflights on ancient structures
NASA Astrophysics Data System (ADS)
Battis, J. C.
1994-03-01
To simulate combat missions for the American bomber force, the Air Combat Command conducts low altitude training flights along routes throughout the U.S.A. This paper presents the results of an effort to evaluate the effect of these overflights on the many archaeologically significant structures located beneath the training routes. This study has shown that: (1) low overflights can induce measurable vibrations in these ancient structures; (2) the overflight induced motions do not constitute an appreciable threat to the sites; and (3) the observed levels of motion are no greater than those induced by sources in the natural environment. Although these findings are specific to overflights by B-52s, comparison of the low frequency acoustic signature of the B-52 and that of the B-1B overflights should not pose a significantly greater threat to the structures than B-52 overflights.
NASA Soil Moisture Active Passive (SMAP) Applications
NASA Astrophysics Data System (ADS)
Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.
2014-05-01
The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin
2015-05-15
Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence intomore » thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less
A new synoptic scale resolving global climate simulation using the Community Earth System Model
NASA Astrophysics Data System (ADS)
Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana
2014-12-01
High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."
Above-real-time training (ARTT) improves transfer to a simulated flight control task.
Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin
2012-06-01
The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.
Gerhardt, Robert T; Hermstad, Erik L; Oakes, Michael; Wiegert, Richard S; Oliver, Jeffrey
2008-01-01
To develop and assess impact of a focused review of International Trauma Life Support (ITLS) and combat casualty care with hands-on procedure training for U.S. Army medics deploying to Iraq. The setting was a U.S. Army Medical Department Center and School and Camp Eagle, Iraq. Investigators developed and implemented a command-approved prospective educational intervention with a post hoc survey. Subjects completed a three-day course with simulator and live-tissue procedure laboratories. At deployment's end, medics were surveyed for experience, confidence, and preparedness in treating various casualty severity levels. Investigators used two-tailed t-test with unequal variance for continuous data and chi-square for categorical data. Twenty-nine medics deployed. Eight completed the experimental program. Twenty-one of 25 (84%) available medics completed the survey including six of the eight (75%) experimental medics. The experimental group reported significantly greater levels of preparedness and confidence treating "minimal," "delayed," and "immediate" casualties at arrival in Iraq. These differences dissipated progressively over the time course of the deployment. This experimental program increased combat medic confidence and perceived level of preparedness in treating several patient severity levels. Further research is warranted to determine if the experimental intervention objectively improves patient care quality and translates into lives saved early in deployment.
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru; Sato, Yushi; Nomoto, Ken'ichi; Maeda, Keiichi; Nakasato, Naohito; Hachisu, Izumi
2017-04-01
We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N, from a few 104 to a few 107 in order to check mass resolution convergence, where SPH simulations with N > 107 (or a space resolution of several 106 cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 104 to 107 cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲106 cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Leung, Lai-Yung R.; Zhao, Chun
This study presents a diagnosis of a multi-resolution approach using the Model for Prediction Across Scales - Atmosphere (MPAS-A) for simulating regional climate. Four AMIP experiments are conducted for 1999-2009. In the first two experiments, MPAS-A is configured using global quasi-uniform grids at 120 km and 30 km grid spacing. In the other two experiments, MPAS-A is configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America embedded inside a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VR simulationsmore » reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aqua-planet simulations, the characteristics of the global high-resolution simulation in moist processes only developed near the boundary of the refined region. In contrast, the AMIP simulations with VR grids are able to reproduce the high-resolution characteristics across the refined domain, particularly in South America. This indicates the importance of finely resolved lower-boundary forcing such as topography and surface heterogeneity for the regional climate, and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Outside of the refined domain, some upscale effects are detected through large-scale circulation but the overall climatic signals are not significant at regional scales. Our results provide support for the multi-resolution approach as a computationally efficient and physically consistent method for modeling regional climate.« less
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
Optimized MCT IR-modules for high-performance imaging applications
NASA Astrophysics Data System (ADS)
Breiter, R.; Eich, D.; Figgemeier, H.; Lutz, H.; Wendler, J.; Rühlich, I.; Rutzinger, S.; Schallenberg, T.
2014-06-01
In today's typical military operations situational awareness is a key element for mission success. In contrast to what is known from conventional warfare with typical targets such as tanks, asymmetric scenarios now dominate military operations. These scenarios require improved identification capabilities, for example the assessment of threat levels posed by personnel targets. Also, it is vital to identify and reliably distinguish between combatants, non-combatants and friendly forces. To satisfy these requirements, high-definition (HD) large format systems are well suited due to their high spatial and thermal resolution combined with high contrast. Typical applications are sights for long-range surveillance, targeting and reconnaissance platforms as well as rotorcraft pilotage sight systems. In 2012 AIM presented first prototypes of large format detectors with 1280 × 1024 elements in a 15μm pitch for both spectral bands MWIR and LWIR. The modular design allows integration of different cooler types, like AIM's split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. Large format FPAs have been fabricated using liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) grown MCT. To offer high resolution in a more compact configuration AIM started the development of a 1024 × 768 10μm pitch IRmodule. Keeping electro/optical performance is achieved by a higher specific charge handling capacity of the readout integrated circuit (ROIC) in a 0.18μm Si CMOS technology. The FPA size fits to a dewar cooler configuration used for 640 × 512 15μm pitch modules.
Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.
Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang
2017-01-01
Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.
Ashley, Wendy; Brown, Jodi Constantine
2015-01-01
Many veterans do not seek assistance for mental health concerns despite the staggering prevalence of trauma-related symptomatology. Barriers to service provision include personal and professional stigma and inter-veteran attitudes that dictate who is more or less deserving of services. Veteran attitudes are shaped by military culture, which promotes a hyper-masculine paradigm upholding combat experience as the defining feature of the "ideal soldier." The stratification of soldiers into combat or non-combat status creates a hierarchy of combat elitism that extends far beyond active duty. This pilot study surveyed veterans (n = 24) to explore how combat experience may affect attitudes toward help seeking. Findings indicate combat and non-combat veterans are less accepting of non-combat veterans' help-seeking behavior, supporting the notion that veterans' attitudes toward help seeking are influenced by combat status. Despite limitations, the results of this study reflect a need for increased attention to the attitudes veterans have about each other and themselves.
NASA Astrophysics Data System (ADS)
Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid
2018-04-01
In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.
Neck muscle activity in fighter pilots wearing night-vision equipment during simulated flight.
Ang, Björn O; Kristoffersson, Mats
2013-02-01
Night-vision goggles (NVG) in jet fighter aircraft appear to increase the risk of neck strain due to increased neck loading. The present aim was, therefore, to evaluate the effect on neck-muscle activity and subjective ratings of head-worn night-vision (NV) equipment in controlled simulated flights. Five experienced fighter pilots twice flew a standardized 2.5-h program in a dynamic flight simulator; one session with NVG and one with standard helmet mockup (control session). Each session commenced with a 1-h simulation at 1 Gz followed by a 1.5-h dynamic flight with repeated Gz profiles varying between 3 and 7 Gz and including aerial combat maneuvers (ACM) at 3-5 Gz. Large head-and-neck movements under high G conditions were avoided. Surface electromyographic (EMG) data was simultaneously measured bilaterally from anterior neck, upper and lower posterior neck, and upper shoulder muscles. EMG activity was normalized as the percentage of pretest maximal voluntary contraction (%MVC). Head-worn equipment (helmet comfort, balance, neck mobility, and discomfort) was rated subjectively immediately after flight. A trend emerged toward greater overall neck muscle activity in NV flight during sustained ACM episodes (10% vs. 8% MVC for the control session), but with no such effects for temporary 3-7 Gz profiles. Postflight ratings for NV sessions emerged as "unsatisfactory" for helmet comfort/neck discomfort. However, this was not significant compared to the control session. Helmet mounted NV equipment caused greater neck muscle activity during sustained combat maneuvers, indicating increased muscle strain due to increased neck loading. In addition, postflight ratings indicated neck discomfort after NV sessions, although not clearly increased compared to flying with standard helmet mockup.
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru
2018-05-01
We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.
Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li
2011-06-01
Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility
NASA Astrophysics Data System (ADS)
Sano, Tadafumi; Hori, Jun-ichi; Takahashi, Yoshiyuki; Yashima, Hiroshi; Lee, Jaehong; Harada, Hideo
2017-09-01
In this study, we carried out Monte Carlo simulations to obtain the energy resolution of the neutron flux for TOF measurements in the KURRI-LINAC pulsed neutron facility. The simulation was performed on the moderated neutron flux from the pac-man type moderator at the energy range from 0.1 eV to 10 keV. As the result, we obtained the energy resolutions (ΔE/E) of about 0.7% to 1.3% between 0.1 eV to 10 keV. The energy resolution obtained from Monte Carlo simulation agreed with the resolution using the simplified evaluation formula. In addition, we compared the energy resolution among KURRI-LINAC and other TOF facilities, the energy dependency of the energy resolution with the pac-man type moderator in KURRI-LINAC was similar to the J-PARC ANNRI for the single-bunch mode.
Machine Learning Predictions of a Multiresolution Climate Model Ensemble
NASA Astrophysics Data System (ADS)
Anderson, Gemma J.; Lucas, Donald D.
2018-05-01
Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.
The implementation of sea ice model on a regional high-resolution scale
NASA Astrophysics Data System (ADS)
Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter
2015-09-01
The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.
2018-01-01
REPORT TR-MSG-098 Urban Combat Advanced Training Technology Architecture (Architecture de technologie avancée pour l’entraînement au combat urbain...REPORT TR-MSG-098 Urban Combat Advanced Training Technology Architecture (Architecture de technologie avancée pour l’entraînement au combat...3 1-2 1.3 Illustration of the Need for UCATT by Contemporary Example Situations 1-3 1.3.1 RNLA: Connection of NLD Mobile Combat Training Centre to
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
High Resolution Regional Climate Simulations over Alaska
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.
2016-12-01
In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.
2014-02-28
A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less
The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication
Utilization of Short-Simulations for Tuning High-Resolution Climate Model
NASA Astrophysics Data System (ADS)
Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.
2016-12-01
Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (< 10 days ) and longer ( 1 year) Perturbed Parameters Ensemble (PPE) simulations at low resolution to identify model feature sensitivity to parameter changes. The CAPT tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in greater detail once an educated set of parameter choice is selected. Limitations on using short-term simulations for tuning climate model are also discussed.
1983-09-13
TASK Titan Systems, Inc. AREA & WORK UNIT NUMBEPS P.O. Box 12139 La Jolla, California 92037 5261D 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT...ICB:M 0. 00 STRATEGIC E:0MPE 1. FC5 SLBM 0. 00 * S.EA AED) I. ?: CARRIER BATTLE cORC’UF IC). 00 SURFACE COMBAT ANTS 4. 5 1 AIR SUFER I ORITY (LANDi EASED
Human Performance in Continuous Operations. Volume 3. Technical Documentation
1980-03-01
completed for the U. S. Commander, V Corps. Artillery, by Manning (1978). Manning collected information which bears on the following three questions: 0 Can...performance data were not collected in these pre- liminary studies. Field Studies of Continuous Tank OperationsLI __ _ _ __ _ _ _ To simulate a combat...on routine, monotonous tasks tends A show rapid and severe decrement after peri- odk of more than 24 hours without sleep. I Increasing task complexity
Designing Assessments of Microworld Training for Combat Service Support Staff
2003-01-01
training for distribution management skills as a part of a larger project that entailed making changes to the current structure, content, and methods...of CSS training. Microworld models are small-scale simulations of organizations and operations. They are useful for training distribution management processes...pilot studies using a microworld model for U.S. Army Reserve (USAR) soldiers in Distribution Management Centers. The degree to which trainees learned
Assessing the Robustness of Graph Statistics for Network Analysis Under Incomplete Information
strategy for dismantling these networks based on their network structure. However, these strategies typically assume complete information about the...combat them with missing information . This thesis analyzes the performance of a variety of network statistics in the context of incomplete information by...leveraging simulation to remove nodes and edges from networks and evaluating the effect this missing information has on our ability to accurately
Ignoring the Innocent: Non-combatants in Urban Operations and in Military Models and Simulations
2006-01-01
such a model yields is a sufficiency theorem , a single run does not provide any information on the robustness of such theorems . That is, given that...often formally resolvable via inspection, simple differentiation, the implicit function theorem , comparative statistics, and so on. The only way to... Pythagoras , and Bactowars. For each, Grieger discusses model parameters, data collection, terrain, and other features. Grieger also discusses
Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion
2007-06-01
17 CN normal force coefficient . . . . . . . . . . . . . . . . . . . . 17 CA axial force coefficient...slug·ft2 Ixzb 0 slug·ft2 The aircraft has a single engine inlet for a single, centerline mounted turbofan engine. For purposes of this research, the...assumed to remain constant for each simulation run and were based on an assumed 10% fuel load with full weapons [2]. The rest of these values were
Tactile Instrument for Aviation
2000-07-30
response times using 8 tactor locations was repeated with a dual memory /tracking task or an air combat simulation to evaluate the effectiveness of the...Global Positioning/Inertial Navigation System technologies into a single system for evaluation in an UH-60 Helicopter. A 10-event test operation was... evaluation of the following technology areas need to be pursued: • Integration of tactile instruments with helmet mounted displays and 3D audio displays
Marine light attack helicopter close air support trainer for situation awareness
2017-06-01
environmental elements outside the aircraft. The initial environment elements included in the trainer are those relating directly to the CAS execution...ambient environmental elements. These elements were limited the few items required to create a virtual environment . The terrain is simulated to...words) In today’s dynamic combat environment , the importance of Close Air Support (CAS) has increased significantly due to a greater need to avoid
Developing Realistic Behaviors in Adversarial Agents for Air Combat Simulation
1993-12-01
34Building Symbolic Primitives with Continuous Control Rou- tines." Proceedings of the 1st International Conference on Aritificial Intelligence Planning...shortcoming is the minimal Air Force participation in this field. 1-1 Some of the artificial intelligence (AI) personnel at the Air Force Institute of... intelligent system that operates in a moderately complex or unpredictable environment must be reactive. In being reactive the intelligent system must
Device 2E6 (ACMS) Air Combat Maneuvering Simulator Instructor Console Review.
1983-12-01
While the device provides some new features which support training such as a debrief facility and a computer based instructor training module, the...Equipment Center, Orlando, FL (in printing). - 11 - -~.-. -- ~ --- NAVTRAEQUI PCEN 82-M-0767- 1 PROJECTORS DOE COMPUTER SYSTEMS Figure 1. General...arrangement (2E6) - 12 7 NAVTRAEQUIPCEN 82-M--0767-1 d. instructor stations, e. computer systems, ftarget model subsystem, g. debrief subsystem, h
Interservice/Industry Training, Simulation and Conference. Abstracts.
1999-12-02
solutions in the areas of military training, exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to...view, such as that required for driver training or aerial combat. VR headsets have a distracting weight and inertia that makes them unsuitable for...exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to restrictions in the availability of supporting
Microworld Simulations: A New Dimension in Training Army Logistics Management Skills
2004-01-01
Providing effective training to Army personnelis always challenging, but the Army facessome new challenges in training its logisticsstaff managers in...soldiers are stationed and where materiel and services are readily available. The design and management of the Army’s Combat Ser- vice Support (CSS) large...scale logistics systems are increasingly important. The skills that are required to manage these systems are difficult to train. Large deployments
The effects of a human patient simulator vs. a CD-ROM on performance.
Johnson, Don; Corrigan, Theresa; Gulickson, Gary; Holshouser, Elizabeth; Johnson, Sabine
2012-10-01
Military health care personnel need to have skills relative to caring for patients on the battlefield. No studies have compared the two teaching strategies of using the human patient simulator (HPS) and a CD-ROM in caring for combat injuries. The objective of this study was to determine if there were statistically significant differences in HPS and CD-ROM educational strategies relative to caring for patients who have trauma. A pretest/post-test prospective experimental design was used. Anesthesia students were randomly assigned to one of three groups: HPS, CD-ROM, or a control group. A valid and reliable instrument, Combat Performance, was used to evaluate the participant's ability to give care to trauma patients. A repeated analysis of variance and a least significant difference post hoc test were used to analyze the data. The HPS group performed better than the CD-ROM and control groups relative to performance (p = 0.001). There was no difference between the CD-ROM and control group (p = 0.171). We speculate that the HPS group performed better than the CD-ROM group because of the realism. In this study, the HPS method of instruction was a more effective method of teaching than the CD-ROM approach.
An Assessment of CFD Effectiveness for Vortex Flow Simulation to Meet Preliminary Design Needs
NASA Technical Reports Server (NTRS)
Raj, P.; Ghaffari, F.; Finley, D. B.
2003-01-01
The low-speed flight and transonic maneuvering characteristics of combat air vehicles designed for efficient supersonic flight are significantly affected by the presence of free vortices. At moderate-to-high angles of attack, the flow invariably separates from the leading edges of the swept slender wings, as well as from the forebodies of the air vehicles, and rolls up to form free vortices. The design of military vehicles is heavily driven by the need to simultaneously improve performance and affordability.1 In order to meet this need, increasing emphasis is being placed on using Modeling & Simulation environments employing the Integrated Product & Process Development (IPPD) concept. The primary focus is on expeditiously providing design teams with high-fidelity data needed to make more informed decisions in the preliminary design stage. Extensive aerodynamic data are needed to support combat air vehicle design. Force and moment data are used to evaluate performance and handling qualities; surface pressures provide inputs for structural design; and flow-field data facilitate system integration. Continuing advances in computational fluid dynamics (CFD) provide an attractive means of generating the desired data in a manner that is responsive to the needs of the preliminary design efforts. The responsiveness is readily characterized as timely delivery of quality data at low cost.
Climate simulations and projections with a super-parameterized climate model
Stan, Cristiana; Xu, Li
2014-07-01
The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less
Playing With Conflict: Teaching Conflict Resolution through Simulations and Games
ERIC Educational Resources Information Center
Powers, Richard B.; Kirkpatrick, Kat
2013-01-01
Playing With Conflict is a weekend course for graduate students in Portland State University's Conflict Resolution program and undergraduates in all majors. Students participate in simulations, games, and experiential exercises to learn and practice conflict resolution skills. Graduate students create a guided role-play of a conflict. In addition…
NASA Astrophysics Data System (ADS)
Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di
2016-09-01
The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.
NASA Astrophysics Data System (ADS)
Lin, Changgui; Chen, Deliang; Yang, Kun; Ou, Tinghai
2018-01-01
Current climate models commonly overestimate precipitation over the Tibetan Plateau (TP), which limits our understanding of past and future water balance in the region. Identifying sources of such models' wet bias is therefore crucial. The Himalayas is considered a major pathway of water vapor transport (WVT) towards the TP. Their steep terrain, together with associated small-scale processes, cannot be resolved by coarse-resolution models, which may result in excessive WVT towards the TP. This paper, therefore, investigated the resolution dependency of simulated WVT through the central Himalayas and its further impact on precipitation bias over the TP. According to a summer monsoon season of simulations conducted using the weather research forecasting (WRF) model with resolutions of 30, 10, and 2 km, the study found that finer resolutions (especially 2 km) diminish the positive precipitation bias over the TP. The higher-resolution simulations produce more precipitation over the southern Himalayan slopes and weaker WVT towards the TP, explaining the reduced wet bias. The decreased WVT is reflected mostly in the weakened wind speed, which is due to the fact that the high resolution can improve resolving orographic drag over a complex terrain and other processes associated with heterogeneous surface forcing. A significant difference was particularly found when the model resolution is changed from 30 to 10 km, suggesting that a resolution of approximately 10 km represents a good compromise between a more spatially detailed simulation of WVT and computational cost for a domain covering the whole TP.
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Understanding climate variability and global climate change using high-resolution GCM simulations
NASA Astrophysics Data System (ADS)
Feng, Xuelei
In this study, three climate processes are examined using long-term simulations from multiple climate models with increasing horizontal resolutions. These simulations include the European Center for Medium-range Weather Forecasts (ECMWF) atmospheric general circulation model (AGCM) runs forced with observed sea surface temperatures (SST) (the Athena runs) and a set of coupled ocean-atmosphere seasonal hindcasts (the Minerva runs). Both sets of runs use different AGCM resolutions, the highest at 16 km. A pair of the Community Climate System Model (CCSM) simulations with ocean general circulation model (OGCM) resolutions at 100 and 10 km are also examined. The higher resolution CCSM run fully resolves oceanic mesoscale eddies. The resolution influence on the precipitation climatology over the Gulf Stream (GS) region is first investigated. In the Athena simulations, the resolution increase generates enhanced mean GS precipitation moderately in both large-scale and sub-scale rainfalls in the North Atlantic, with the latter more tightly confined near the oceanic front. However, the non-eddy resolving OGCM in the Minerva runs simulates a weaker oceanic front and weakens the mean GS precipitation response. On the other hand, an increase in CCSM oceanic resolutions from non-eddy-resolving to eddy resolving regimes greatly improves the model's GS precipitation climatology, resulting in both stronger intensity and more realistic structure. Further analyses show that the improvement of the GS precipitation climatology due to resolution increases is caused by the enhanced atmospheric response to an increased SST gradient near the oceanic front, which leads to stronger surface convergence and upper level divergence. Another focus of this study is on the global warming impacts on precipitation characteristic changes using the high-resolution Athena simulations under the SST forcing from the observations and a global warming scenario. As a comparison, results from the coarse resolution simulation are also analyzed to examine the dependence on resolution. The increasing rates of globally averaged precipitation amount for the high and low resolution simulations are 1.7%/K-1 and 1.8%/K-1, respectively. The sensitivities for heavy, moderate, light and drizzle rain are 6.8, -1.2, 0.0, 0.2%/K-1 for low and 6.3, -1.5, 0.4, -0.2%/K -1 for high resolution simulations. The number of rainy days decreases in a warming scenario, by 3.4 and 4.2 day/year-1, respectively. The most sensitive response of 6.3-6.8%/K-1 for the heavy rain approaches that of the 7%/K-1 for the Clausius-Clapeyron scaling limit. During the twenty-first century simulation, the increases in precipitation are larger over high latitude and wet regions in low and mid-latitudes. Over the dry regions, such as the subtropics, the precipitation amount and frequency decrease. There is a higher occurrence of low and heavy rain from the tropics to mid-latitudes at the expense of the decreases in the frequency of moderate rain. In the third part, the inter-annual variability of the northern hemisphere storm tracks is examined. In the Athena simulations, the leading modes of the observed storm track variability are reproduced realistically by all runs. In general, the fluctuations of the model storm tracks in the North Pacific and Atlantic basins are largely independent of each other. Within each basin, the variations are characterized by the intensity change near the climatological center and the meridional shift of the storm track location. These two modes are associated with major teleconnection patterns of the low frequency atmospheric variations. These model results are not sensitive to resolution. Using the Minerva hindcast initialized in November, it is shown that a portion of the winter (December-January) storm track variability is predictable, mainly due to the influences of the atmospheric wave trains induced by the El Nino and Southern Oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi
We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less activemore » with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.« less
Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio
2014-01-01
The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.
Effects of Drake Passage on a strongly eddying global ocean
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2015-04-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('eddies') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the eddy field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.
Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0
NASA Astrophysics Data System (ADS)
Sekiya, Takashi; Miyazaki, Kazuyuki; Ogochi, Koji; Sudo, Kengo; Takigawa, Masayuki
2018-03-01
We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. The 1.1° simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56° resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8° bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.
Low-resolution simulations of vesicle suspensions in 2D
NASA Astrophysics Data System (ADS)
Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George
2018-03-01
Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Wilson, R.J.; Hemler, R.S.
1999-11-15
The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less
Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C
2016-07-01
Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
NASA Astrophysics Data System (ADS)
Samarin, S. N.; Saramad, S.
2018-05-01
The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.
NASA Astrophysics Data System (ADS)
Heidari, M.; Cortes-Huerto, R.; Donadio, D.; Potestio, R.
2016-10-01
In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.; Ashfaq, M.; Rastogi, D.
2016-12-01
The magnitude and frequency of hydroclimate extremes are projected to increase in the conterminous United States (CONUS) with significant implications for future water resource planning and flood risk management. Nevertheless, apart from the change of natural environment, the choice of model spatial resolution could also artificially influence the features of simulated extremes. To better understand how the spatial resolution of meteorological forcings may affect hydroclimate projections, we test the runoff sensitivity using the Variable Infiltration Capacity (VIC) model that was calibrated for each CONUS 8-digit hydrologic unit (HUC8) at 1/24° ( 4km) grid resolution. The 1980-2012 gridded Daymet and PRISM meteorological observations are used to conduct the 1/24° resolution control simulation. Comparative simulations are achieved by smoothing the 1/24° forcing into 1/12° and 1/8° resolutions which are then used to drive the VIC model for the CONUS. In addition, we also test how the simulated high and low runoff conditions would react to change in precipitation (±10%) and temperature (+1°C). The results are further analyzed for various types of hydroclimate extremes across different watersheds in the CONUS. This work helps us understand the sensitivity of simulated runoff to different spatial resolutions of climate forcings and also its sensitivity to different watershed sizes and characteristics of extreme events in the future climate conditions.
NASA Astrophysics Data System (ADS)
Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing
2018-04-01
The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.
1982-09-01
Fight Combat Effectiveness Organizational Assessment Package Morale Combat Effectiveness Model Cohesion Leadership 20. AIISTRACT (COe/Mie do ,eae aide If...of combat readiness. The major psychosocial dimensions which contribute to combat effectiveness of a military unit (morale leadership , cohesion, and...psychosocial dimensions in the combat effectiveness model (morale, leadership , and cohesion) in addition to training, logistics, alienation, and work group
Recent progress in simulating galaxy formation from the largest to the smallest scales
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-05-01
Galaxy formation simulations are an essential part of the modern toolkit of astrophysicists and cosmologists alike. Astrophysicists use the simulations to study the emergence of galaxy populations from the Big Bang, as well as the formation of stars and supermassive black holes. For cosmologists, galaxy formation simulations are needed to understand how baryonic processes affect measurements of dark matter and dark energy. Owing to the extreme dynamic range of galaxy formation, advances are driven by novel approaches using simulations with different tradeoffs between volume and resolution. Large-volume but low-resolution simulations provide the best statistics, while higher-resolution simulations of smaller cosmic volumes can be evolved with self-consistent physics and reveal important emergent phenomena. I summarize recent progress in galaxy formation simulations, including major developments in the past five years, and highlight some key areas likely to drive further advances over the next decade.
NASA Astrophysics Data System (ADS)
Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki
2017-12-01
This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
NASA Astrophysics Data System (ADS)
Lofverstrom, Marcus; Liakka, Johan
2018-04-01
Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers
NASA Astrophysics Data System (ADS)
Bassett, Gene Marcel
1993-01-01
Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.
NASA Astrophysics Data System (ADS)
von Storch, Jin-Song
2014-05-01
The German consortium STORM was built to explore high-resolution climate simulations using the high-performance computer stored at the German Climate Computer Center (DKRZ). One of the primary goals is to quantify the effect of unresolved (and parametrized) processes on climate sensitivity. We use ECHAM6/MPIOM, the coupled atmosphere-ocean model developed at the Max-Planck Institute for Meteorology. The resolution is T255L95 for the atmosphere and 1/10 degree and 80 vertical levels for the ocean. We discuss results of stand-alone runs, i.e. the ocean-only simulation driven by the NCEP/NCAR renalaysis and the atmosphere-only AMIP-type of simulation. Increasing resolution leads to a redistribution of biases, even though some improvements, both in the atmosphere and in the ocean, can clearly be attributed to the increase in resolution. We represent also new insights on ocean meso-scale eddies, in particular their effects on the ocean's energetics. Finally, we discuss the status and problems of the coupled high-resolution runs.
Impact of Cumulative Combat Stress on Learning in an Academic Environment
ERIC Educational Resources Information Center
Shea, Kevin Peter; Fishback, Sarah Jane
2012-01-01
The stress of multiple combat tours has created a combat-tested but combat-weary Army. While most soldiers have coped successfully with combat stress, many return home with problems that include posttraumatic stress disorder (PTSD), depression, anxiety, aggressive behavior, insomnia, and reduced memory and concentration skills. Education is…
Why Does Military Combat Experience Adversely Affect Marital Relations?
ERIC Educational Resources Information Center
Gimbel, Cynthia; Booth, Alan
1994-01-01
Describes investigation of ways in which combat decreases marital quality and stability. Results support three models: (1) factors propelling men into combat also make them poor marriage material; (2) combat causes problems that increase marital adversity; and (3) combat intensifies premilitary stress and antisocial behavior which then negatively…
Analysis of a combat problem - The turret game
NASA Technical Reports Server (NTRS)
Ardema, M.; Heymann, M.; Rajan, N.
1987-01-01
The turret game is defined and solved to illustrate the nature of games of combat. This game represents a highly simplified version of air combat, yet it is sufficiently complex so as to exhibit a rich variety of combat phenomena. A review of the formulation of delta-combat games is included.
Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia
2003-01-01
This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
Fast-time Simulation of an Automated Conflict Detection and Resolution Concept
NASA Technical Reports Server (NTRS)
Windhorst, Robert; Erzberger, Heinz
2006-01-01
This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.
Methodology for determination and use of the no-escape envelope of an air-to-air-missile
NASA Technical Reports Server (NTRS)
Neuman, Frank
1988-01-01
A large gap exists between optimal control and differential-game theory and their applications. The purpose of this paper is to show how this gap may be bridged. Missile-avoidance of realistically simulated infrared heat-seeking, fire-and-forget missile is studied. In detailed simulations, sweeping out the discretized initial condition space, avoidance methods based on pilot experience are combined with those based on simplified optimal control analysis to derive an approximation to the no-escape missile envelopes. The detailed missile equations and no-escape envelopes were then incorporated into an existing piloted simulation of air-to-air combat to generate missile firing decisions as well as missile avoidance commands. The use of these envelopes was found to be effective in both functions.
Clausen, Ashley N.; Billinger, Sandra A.; Sisante, Jason-Flor V.; Suzuki, Hideo; Aupperle, Robin L.
2017-01-01
Background: Combat-exposed veteran populations are at an increased risk for developing cardiovascular disease. The anterior cingulate cortex (ACC) and insula have been implicated in both autonomic arousal to emotional stressors and homeostatic processes, which may contribute to cardiovascular dysfunction in combat veteran populations. The aim of the present study was to explore the intersecting relationships of combat experiences, rostral ACC and posterior insula volume, and cardiovascular health in a sample of combat veterans. Method: Twenty-four male combat veterans completed clinical assessment of combat experiences and posttraumatic stress symptoms. Subjects completed a magnetic resonance imaging scan and autosegmentation using FreeSurfer was used to estimate regional gray matter volume (controlling for total gray matter volume) of the rostral ACC and posterior insula. Flow-mediated dilation (FMD) was conducted to assess cardiovascular health. Theil-sen robust regressions and Welch's analysis of variance were used to examine relationships of combat experiences and PTSD symptomology with (1) FMD and (2) regional gray matter volume. Results: Increased combat experiences, deployment duration, and multiple deployments were related to smaller posterior insula volume. Combat experiences were marginally associated with poorer cardiovascular health. However, cardiovascular health was not related to rostral ACC or posterior insula volume. Conclusion: The present study provides initial evidence for the relationships of combat experiences, deployment duration, and multiple deployments with smaller posterior insula volume. Results may suggest that veterans with increased combat experiences may exhibit more dysfunction regulating the autonomic nervous system, a key function of the posterior insula. However, the relationship between combat and cardiovascular health was not mediated by regional brain volume. Future research is warranted to further clarify the cardiovascular or functional impact of smaller posterior insula volume in combat veterans. PMID:29312038
Battalion Command Group Performance in Simulated Combat
1979-03-01
public release; distribution unlinrited. ARI Research Reports and Technicai,, Papaers are -6tended",for sponsors of R&D0,tasks-and other, research and...FORT LEAVENWORTH, KANSAS DD C _UN 19 1979 ’I •U. S. Army Research Institute for the Behavioral and Social Sciences March 1979 Approved for public...release; distribution unlimited. -0’. S, ARMY RESEARCH INSTITUTE FOR T-HE BEHAVIORAL AND-SOCIAL SCIENCES A Field -Operating, Agency under’,the
1992-10-09
PROGRAM CATALOG OF WAR GAMES 92-30805 U *3fl91\\k~o 9 2 SECURITY CLASSIFICATION OF THIS PAGE I ,i REPORT DOCUMENTATION PAGE la. REPORT SECURITY...4401 Ford Ave ELEMENT NO. NO. NO. ACCESSION NO. AIyxndriA. VA 229i2-14O1 --. 11. TITLE (Include Security Classification) Catalog of War Games 12...SCURITY CLASSIFICATiON OF THIS PAGE DECLARATION OF ACCORD 1. PURPOSE This catalog provides information on the primary war games , combat simulations
Development of Quantitative Specifications for Simulating the Stress Environment
1992-03-01
reconsideration of Broadbent’s filter model of selective attention. Ouarterlv Journal of Experimental P, 2&, 167-178. Szpiler, J. A., & Epstein, S. (1976...Justifloation / ~~By . . Availabiltty Co0eu blat A~imii~Ia Spcil LIST OF FIGURES Figure Page I Model of Stress and Performance ................... 9 2...no tradition of performance in the face of combat, no role models , no weapons, and little preparation for this environment. In discussing maintenance
Aircraft Simulator: Multiple-Cockpit Combat Mission Trainer Network.
1984-01-01
Force Human Resources Laboratory (AFHRL), the Air Force Office of Scientific Research (AFOSR), and the Southeastern Center for Electrical Engineering...New York: IEEE Press. Rapumno, R. A. , A Shimsaki, N. (1974). Synchronization of earth stations to satellite-switched sequences. Comunications ...Satellite Technology, 33 (Progress in Astronautics and Aeronautics) , 411-429. Tobagi, F. A. (1980). Multiaccess protocols in packet comunication systems. IEEE TMS. C". , 4 (vol. CO-28), 468-488. 27 ORR .0--000
System Engineering and Evolution Decision Support
2001-09-30
collection of Tuple Space model was first conceived in the mid- 1980 at objects that isolates the requestor of services from the Yale University by...Academic Press, NY, 1980 , pp. 325-347. [2] V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, Re-engineering the Janus(A) Combat Simulation System...Naval Postgraduate School Monterey, CA 93943-5100 3. Research Office, Code 09 Naval Postgraduate School Monterey, CA 93943-5000 4. Dr. David Hislop U.S
A Simulation on Organizational Communication Patterns During a Terrorist Attack
2008-06-01
and the Air Support Headquarters. The call is created at the time of attack, and it automatically includes a request for help. Reliability of...communication conditions. 2. Air Support call : This call is produced for just the Headquarters of Air Component, only in case of armed attacks. The request can...estimated speed of armored vehicles in combat areas (West-Point Organization, 2002). When a call for air support is received, an information
Blue Flag Distributed Wargaming System
1992-07-01
combat simulation , and multi- site video teleconferencing (VTC). The Warrior Flag 90 feasibility demonstration was sponsored by the 4441st Tactical...provide RS-422 cross patching, loop -back and test points. At the hub six CSUs and two fiber optic modems were cabled in the normal-thru configuration...spare crypto or the fiber optic modem may be placed on-line via a patch. Loop plugs were provided for testing. Clock switches were provided to switch
M&S Decision/Role-Behavior Decompositions
2007-10-17
M &S Decision/Role-Behavior Decompositions Wargaming and Analysis Workshop Military Operations Research Society 17 October 2007 Paul Works, Methods...number. 1. REPORT DATE 17 OCT 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE M &S Decision/Role-Behavior...transmission. • Combat models and simulations ( M &S) continue, in most cases, to model “effects-level” representations of SA, decisions, and behaviors. – M &S
Assessing the Treatment of Airborne Tactical High Energy Lasers in Combat Simulations
2003-03-01
Raymond A . Physics for Scientists and Engineers (4th edition). Philadelphia: Saunders College Publishing, 1996. Sirak, Michael. “Industry Vies...supported, my efforts on a single page, several individuals are noteworthy. I’d like to thank Dr. Hill for getting me into this mess. The promise of a ...research topic with some application in an area of personal interest was a welcome departure from otherwise mundane, academic choices. I’d also
Defining Spatial Information Requirements for Asymmetric Threat Behaviour in Simulation
2010-10-01
research and development initiative to gain a shared understanding and to develop a standardized language . As such, the HF and M&S domains work...call- sign ) to bring their full power to bear on them. When the target is in range all members of the IED cell will prepare for combat, with emphasis...1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074. Defining Spatial Information
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)
2002-01-01
In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.
A multimodel intercomparison of resolution effects on precipitation: simulations and theory
NASA Astrophysics Data System (ADS)
Rauscher, Sara A.; O'Brien, Travis A.; Piani, Claudio; Coppola, Erika; Giorgi, Filippo; Collins, William D.; Lawston, Patricia M.
2016-10-01
An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961-2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov-Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolution over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. This theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.
Reliability and validity of a combat exposure index for Vietnam era veterans.
Janes, G R; Goldberg, J; Eisen, S A; True, W R
1991-01-01
The reliability and validity of a self-report measure of combat exposure are examined in a cohort of male-male twin pairs who served in the military during the Vietnam era. Test-retest reliability for a five-level ordinal index of combat exposure is assessed by use of 192 duplicate sets of responses. The chance-corrected proportion in agreement (as measured by the kappa coefficient) is .84. As a measure of criterion-related validity, the combat index is correlated with the award of combat-related military medals ascertained from the military records. The probability of receiving a Purple Heart, Bronze Star, Commendation Medal and Combat Infantry Badge is associated strongly with the combat exposure index. These results show that this simple index is a reliable and valid measure of combat exposure.
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Keller, Christoph A.
2016-05-01
Chemistry-transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemistry-transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to operator duration. Subsequently, we compare the species simulated with operator durations from 10 to 60 min as typically used by global chemistry-transport models, and identify the operator durations that optimize both computational expense and simulation accuracy. We find that longer continuous transport operator duration increases concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production with longer transport operator duration. Longer chemical operator duration decreases sulfate and ammonium but increases nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by up to a factor of 5 from fine (5 min) to coarse (60 min) operator duration. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, secondary inorganic aerosols, ozone and carbon monoxide with a finer temporal or spatial resolution taken as "truth". Relative simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) operator duration. Chemical operator duration twice that of the transport operator duration offers more simulation accuracy per unit computation. However, the relative simulation error from coarser spatial resolution generally exceeds that from longer operator duration; e.g., degrading from 2° × 2.5° to 4° × 5° increases error by an order of magnitude. We recommend prioritizing fine spatial resolution before considering different operator durations in offline chemistry-transport models. We encourage chemistry-transport model users to specify in publications the durations of operators due to their effects on simulation accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
2017-04-20
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko
A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less
2016-06-16
procedure. The predictive capabilities of the high-resolution computational fluid dynamics ( CFD ) simulations of urban flow are validated against a very...turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach a Department of Mechanical Engineering, University
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
Martindale, Sarah L; Morissette, Sandra B; Rowland, Jared A; Dolan, Sara L
2017-01-01
The purpose of this study was to determine how sleep quality affects cognitive functioning in returning combat veterans after accounting for effects of combat exposure, posttraumatic stress disorder (PTSD), and mild traumatic brain injury (mTBI) history. This was a cross-sectional assessment study evaluating combat exposure, PTSD, mTBI history, sleep quality, and neuropsychological functioning. One hundred and nine eligible male Iraq/Afghanistan combat veterans completed an assessment consisting of a structured clinical interview, neuropsychological battery, and self-report measures. Using partial least squares structural equation modeling, combat experiences and mTBI history were not directly associated with sleep quality. PTSD was directly associated with sleep quality, which contributed to deficits in neuropsychological functioning independently of and in addition to combat experiences, PTSD, and mTBI history. Combat experiences and PTSD were differentially associated with motor speed. Sleep affected cognitive function independently of combat experiences, PTSD, and mTBI history. Sleep quality also contributed to cognitive deficits beyond effects of PTSD. An evaluation of sleep quality may be a useful point of clinical intervention in combat veterans with cognitive complaints. Improving sleep quality could alleviate cognitive complaints, improving veterans' ability to engage in treatment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Scaling a Convection-Resolving RCM to Near-Global Scales
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Chadha, T.; Kwasniewski, G.; Hoefler, T.; Lapillonne, X.; Lüthi, D.; Osuna, C.; Schar, C.; Schulthess, T. C.; Vogt, H.
2017-12-01
In the recent years, first decade-long kilometer-scale resolution RCM simulations have been performed on continental-scale computational domains. However, the size of the planet Earth is still an order of magnitude larger and thus the computational implications of performing global climate simulations at this resolution are challenging. We explore the gap between the currently established RCM simulations and global simulations by scaling the GPU accelerated version of the COSMO model to a near-global computational domain. To this end, the evolution of an idealized moist baroclinic wave has been simulated over the course of 10 days with a grid spacing of up to 930 m. The computational mesh employs 36'000 x 16'001 x 60 grid points and covers 98.4% of the planet's surface. The code shows perfect weak scaling up to 4'888 Nodes of the Piz Daint supercomputer and yields 0.043 simulated years per day (SYPD) which is approximately one seventh of the 0.2-0.3 SYPD required to conduct AMIP-type simulations. However, at half the resolution (1.9 km) we've observed 0.23 SYPD. Besides formation of frontal precipitating systems containing embedded explicitly-resolved convective motions, the simulations reveal a secondary instability that leads to cut-off warm-core cyclonic vortices in the cyclone's core, once the grid spacing is refined to the kilometer scale. The explicit representation of embedded moist convection and the representation of the previously unresolved instabilities exhibit a physically different behavior in comparison to coarser-resolution simulations. The study demonstrates that global climate simulations using kilometer-scale resolution are imminent and serves as a baseline benchmark for global climate model applications and future exascale supercomputing systems.
Modeling the Effects of Stress: An Approach to Training
NASA Technical Reports Server (NTRS)
Cuper, Taryn
2010-01-01
Stress is an integral element of the operational conditions experienced by combat medics. The effects of stress can compromise the performance of combat medics who must reach and treat their comrades under often threatening circumstances. Examples of these effects include tunnel vision, loss of motor control, and diminished hearing, which can result in an inability to perceive further danger, satisfactorily treat the casualty, and communicate with others. While many training programs strive to recreate this stress to aid in the experiential learning process, stress inducement may not always be feasible or desired. In addition, live simulations are not always a practical, convenient, and repeatable method of training. Instead, presenting situational training on a personal computer is proposed as an effective training platform in which the effects of stress can be addressed in a different way. We explore the cognitive and motor effects of stress, as well as the benefits of training for mitigating these effects in real life. While many training applications focus on inducing stress in order to "condition" the stress response, the author explores the possibilities of modeling stress to produce a similar effect. Can presenting modeled effects of stress help prepare or inoculate soldiers for stressful situations in which they must perform at a high level? This paper investigates feasibility of modeling stress and describes the preliminary design considerations of a combat medic training system that utilizes this method of battlefield preparation.
Combat Agility Management System (CAMS)
NASA Technical Reports Server (NTRS)
Skow, Andrew; Porada, William
1994-01-01
The proper management of energy becomes a complex task in fighter aircraft which have high angle of attack (AOA) capability. Maneuvers at high AOA are accompanied by high bleed rates (velocity decrease), a characteristic that is usually undesirable in a typical combat arena. Eidetics has developed under NASA SBIR Phase 1 and NAVAIR SBIR Phase 2 contracts a system which allows a pilot to more easily and effectively manage the trade-off of energy (airspeed or altitude) for turn rate while not imposing hard limits on the high AOA nose pointing capability that can be so important in certain air combat maneuver situations. This has been accomplished by incorporating a two-stage angle of attack limiter into the flight control laws. The first stage sets a limit on AOA to achieve a limit on the maximum bleed rate (selectable) by limiting AOA to values which are dependent on the aircraft attitude and dynamic pressure (or flight path, velocity, and altitude). The second stage sets an AOA limit near the AOA for C(sub l max). One of the principal benefits of such a system is that it enables a low-experience pilot to become much more proficient at managing his energy. The Phase 2 simulation work is complete, and an exploratory flight test on the F-18 HARV is planned for the Fall of 1994 to demonstrate/validate the concept.
Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...
The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew
2012-01-01
This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...
2016-12-19
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Resolution requirements for aero-optical simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Ali; Wang Meng; Moin, Parviz
2008-11-10
Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less
NASA Technical Reports Server (NTRS)
Ford, J. P.; Arvidson, R. E.
1989-01-01
The high sensitivity of imaging radars to slope at moderate to low incidence angles enhances the perception of linear topography on images. It reveals broad spatial patterns that are essential to landform mapping and interpretation. As radar responses are strongly directional, the ability to discriminate linear features on images varies with their orientation. Landforms that appear prominent on images where they are transverse to the illumination may be obscure to indistinguishable on images where they are parallel to it. Landform detection is also influenced by the spatial resolution in radar images. Seasat radar images of the Gran Desierto Dunes complex, Sonora, Mexico; the Appalachian Valley and Ridge Province; and accreted terranes in eastern interior Alaska were processed to simulate both Venera 15 and 16 images (1000 to 3000 km resolution) and image data expected from the Magellan mission (120 to 300 m resolution. The Gran Desierto Dunes are not discernable in the Venera simulation, whereas the higher resolution Magellan simulation shows dominant dune patterns produced from differential erosion of the rocks. The Magellan simulation also shows that fluvial processes have dominated erosion and exposure of the folds.
A New Approach to Modeling Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.
2017-12-01
The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.
2013-09-01
control GCE ground combat element LCE logistics combat element MAGTF Marine Air Ground Task Force MWCS Marine Wing Communications Squadron NPS Naval...elements: command element (CE), ground combat el- ement ( GCE ), aviation combat element (ACE), and logistics combat element (LCE). Each ele- ment...This layer provides unimpeded high-speed connectivity between remote sites and the Internet. Limited security policies are applied at this level to
Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations
Lu, Wei; Han, Lee D.; Liu, Cheng; ...
2016-05-05
In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less
Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation
NASA Technical Reports Server (NTRS)
Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R
2006-01-01
The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Putman, William; Nattala, J.
2014-01-01
This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.
Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles
NASA Astrophysics Data System (ADS)
Ernest, Nicholas D.
Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space, counter enemy threats, cope with losses in communications, and destroy mission-critical targets. Monte Carlo simulations of the resulting controllers were tested in mission scenarios that are distinct from the training scenarios to determine the training effectiveness in new environments and the presence of deep learning. Despite an incredibly large solution space, LETHA has demonstrated remarkable effectiveness in training intelligent controllers for the UCAV squadron and shown robustness to drastically changing states, uncertainty, and limited information while maintaining extreme levels of computational efficiency.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.
2017-10-01
The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.
NASA Astrophysics Data System (ADS)
Biercamp, Joachim; Adamidis, Panagiotis; Neumann, Philipp
2017-04-01
With the exa-scale era approaching, length and time scales used for climate research on one hand and numerical weather prediction on the other hand blend into each other. The Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) represents a European consortium comprising partners from climate, weather and HPC in their effort to address key scientific challenges that both communities have in common. A particular challenge is to reach global models with spatial resolutions that allow simulating convective clouds and small-scale ocean eddies. These simulations would produce better predictions of trends and provide much more fidelity in the representation of high-impact regional events. However, running such models in operational mode, i.e with sufficient throughput in ensemble mode clearly will require exa-scale computing and data handling capability. We will discuss the ESiWACE initiative and relate it to work-in-progress on high-resolution simulations in Europe. We present recent strong scalability measurements from ESiWACE to demonstrate current computability in weather and climate simulation. A special focus in this particular talk is on the Icosahedal Nonhydrostatic (ICON) model used for a comparison of high resolution regional and global simulations with high quality observation data. We demonstrate that close-to-optimal parallel efficiency can be achieved in strong scaling global resolution experiments on Mistral/DKRZ, e.g. 94% for 5km resolution simulations using 36k cores on Mistral/DKRZ. Based on our scalability and high-resolution experiments, we deduce and extrapolate future capabilities for ICON that are expected for weather and climate research at exascale.
NASA Astrophysics Data System (ADS)
Adams, P. J.; Marks, M.
2015-12-01
The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.
Spatial resolution limits for the isotropic-3D PET detector X’tal cube
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga
2013-11-01
Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals was improved 39% relative to the (1 mm)3 cubic crystals. On the other hand, spatial resolution with (0.5 mm)3 cubic crystals was improved 47% relative to the (1 mm)3 cubic crystals. The X’tal cube promises better spatial resolution for the 3D crystal block with isotropic resolution.
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.
2017-03-01
The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).
NASA Astrophysics Data System (ADS)
Barthlott, C.; Hoose, C.
2015-11-01
This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling (COSMO) model. Six intensive observation periods of the HOPE (HD(CP)2 Observational Prototype Experiment) measurement campaign conducted in spring 2013 and 1 summer day of the same year are simulated. By means of a series of grid-refinement resolution tests (horizontal grid spacing 2.8, 1 km, 500, and 250 m), the applicability of the COSMO model to represent real weather events in the gray zone, i.e., the scale ranging between the mesoscale limit (no turbulence resolved) and the large-eddy simulation limit (energy-containing turbulence resolved), is tested. To the authors' knowledge, this paper presents the first non-idealized COSMO simulations in the peer-reviewed literature at the 250-500 m scale. It is found that the kinetic energy spectra derived from model output show the expected -5/3 slope, as well as a dependency on model resolution, and that the effective resolution lies between 6 and 7 times the nominal resolution. Although the representation of a number of processes is enhanced with resolution (e.g., boundary-layer thermals, low-level convergence zones, gravity waves), their influence on the temporal evolution of precipitation is rather weak. However, rain intensities vary with resolution, leading to differences in the total rain amount of up to +48 %. Furthermore, the location of rain is similar for the springtime cases with moderate and strong synoptic forcing, whereas significant differences are obtained for the summertime case with air mass convection. Domain-averaged liquid water paths and cloud condensate profiles are used to analyze the temporal and spatial variability of the simulated clouds. Finally, probability density functions of convection-related parameters are analyzed to investigate their dependance on model resolution and their impact on cloud formation and subsequent precipitation.
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...
NASA Technical Reports Server (NTRS)
McManus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.
NASA Astrophysics Data System (ADS)
Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.
2017-12-01
Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model capturesmore » modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age - consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.« less
Integration of High-resolution Data for Temporal Bone Surgical Simulations
Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas
2016-01-01
Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
NASA Astrophysics Data System (ADS)
Collier, J. C.; Zhang, G. J.
2006-05-01
Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to TRMM satellite-derived and surface gauge-based rainfall rates over the U.S. and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental mountains. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP-NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale mid-tropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon-season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.
Combat veterans: impressions of an analytic observer in a non-analytic setting.
Stein, Herbert H
2007-01-01
The hallmark presentation of combat trauma-nightmares, waking hallucinations, intrusive traumatic memories, and extreme affective reactions to environmental triggers-may best be conceptualized as part of an adaptive mechanism intended to protect the individual against a repetition of trauma. Combat veterans continuously must cope with the extreme affects that combat induced. Fear, rage, guilt, and grief predominate. Their mental and emotional life is complicated by a conscience split between war zone and civilian morality and by the special group dynamics of combat. Optimal clinical understanding of combat-related trauma, whether in a psychoanalytic or general mental health setting, requires an awareness of the interaction of the personal dynamics of each individual with the specific characteristics of their combat situation.
2007-01-24
Marc Compere , Ph.D.2 Jarrett Goodell3 Science Application International Corporation 14901 Olde Towne Parkway, Suite 200 1Marietta, GA 30068...ELEMENT NUMBER 6. AUTHOR(S) Mark Brudnak; Mike Pozolo; Victor Paul; Syed Mohammad; Dale Holtz; Wilford Smith; Marc Compere ; Jarrett Goodell; Todd...City, MI, June 2006. 3. Marc Compere , M.; Jarrett Goodell, J.; Simon, M; Smith, W.; Brudnak, M, “Robust Control Techniques Enabling Duty Cycle
1987-03-01
model is one in which words or numerical descriptions are used to represent an entity or process. An example of a symbolic model is a mathematical ...are the third type of model used in modeling combat attrition. Analytical models are symbolic models which use mathematical symbols and equations to...simplicity and the ease of tracing through the mathematical computations. In this section I will discuss some of the shortcoming which have been
2008-03-01
it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have
2015-03-01
domains. Major model functions include: • Ground combat: Light and heavy forces. • Air mobile forces. • Future forces. • Fixed-wing and rotary-wing...Constraints: • Study must be completed no later than 31 December 2014. • Entity behavior limited to select COMBATXXI Mobility , Unmanned Aerial System...and SQL backend , as well as any open application programming interface API. • Allows data transparency and data driven navigation through the model
1978-09-01
generally recognized that the best possible configura- tion for engines operating at high speeds and at high-pressure levels is probably the single...engines is invariably accom- plished by the operation of computer simulation models that generate specific numerical data rather than the generalized re...lationships common to other forms of prime mover based on units of mass or volume. Thus, providing such generalized relation- ships for a Stirling
A method of distributed avionics data processing based on SVM classifier
NASA Astrophysics Data System (ADS)
Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing
2018-03-01
Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.
Mahoney, Peter; Carr, Debra; Harrison, Karl; McGuire, Ruth; Hepper, Alan; Flynn, Daniel; Delaney, Russ J; Gibb, Iain
2018-03-07
Six synthetic head models wearing ballistic protective helmets were used to recreate two military combat-related shooting incidents (three per incident, designated 'Incident 1' and 'Incident 2'). Data on the events including engagement distances, weapon and ammunition types was collated by the Defence Science and Technology Laboratory. The models were shot with 7.62 × 39 mm ammunition downloaded to mean impact velocities of 581 m/s (SD 3.5 m/s) and 418 m/s (SD 8 m/s), respectively, to simulate the engagement distances. The damage to the models was assessed using CT imaging and dissection by a forensic pathologist experienced in reviewing military gunshot wounds. The helmets were examined by an MoD engineer experienced in ballistic incident analysis. Damage to the helmets was consistent with that seen in real incidents. Fracture patterns and CT imaging on two of the models for Incident 1 (a frontal impact) were congruent with the actual incident being modelled. The results for Incident 2 (a temporoparietal impact) produced realistic simulations of tangential gunshot injury but were less representative of the scenario being modelled. Other aspects of the wounds produced also exhibited differences. Further work is ongoing to develop the models for greater ballistic injury fidelity.
NASA Astrophysics Data System (ADS)
Gagneza, G. P. S.; Chandramohan, Sujatha
2018-05-01
Designing the suspension system of a tracked combat vehicle (CV) is really challenging as it has to satisfy conflicting requirements of good ride comfort, vehicle handling and stability characteristics. Many studies in this field have been reported in literature and it has been found that torsion bars satisfy the designer's conflicting requirements of good ride and handling and thus have reserved a place for themselves as the most widely used suspension system for military track vehicles. Therefore, it is imperative to evaluate the effectiveness of the torsion bar under dynamic conditions of undulating terrain and validating the same by correlating it with computer simulation results. Thus in the present work, the dynamic simulation of a 2N + 4 degrees of freedom (DOF) mathematical model has been carried out using MATLAB Simulink and the vibration levels were also measured experimentally on a 12 wheel stationed high mobility military tracked infantry combat vehicle (ICV BMP-II) traversing different terrain, that is, Aberdeen proving ground (APG) and Sinusoidal, at a constant vehicle speed. The dynamic force transmitted to the hull CG through the 12 torsion bar suspension systems was computed to be around 26,700 N and found to match the measured values. The vibration isolation of the torsion bar in bounce was found to be effective, with a transmissibility from the road wheel to the hull of about 0.6.
Development of high resolution simulations of the atmospheric environment using the MASS model
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan
1989-01-01
Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.
Simulations and Evaluation of Mesoscale Convective Systems in a Multi-scale Modeling Framework (MMF)
NASA Astrophysics Data System (ADS)
Chern, J. D.; Tao, W. K.
2017-12-01
It is well known that the mesoscale convective systems (MCS) produce more than 50% of rainfall in most tropical regions and play important roles in regional and global water cycles. Simulation of MCSs in global and climate models is a very challenging problem. Typical MCSs have horizontal scale of a few hundred kilometers. Models with a domain of several hundred kilometers and fine enough resolution to properly simulate individual clouds are required to realistically simulate MCSs. The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has shown some capabilities of simulating organized MCS-like storm signals and propagations. However, its embedded CRMs typically have small domain (less than 128 km) and coarse resolution ( 4 km) that cannot realistically simulate MCSs and individual clouds. In this study, a series of simulations were performed using the Goddard MMF. The impacts of the domain size and model grid resolution of the embedded CRMs on simulating MCSs are examined. The changes of cloud structure, occurrence, and properties such as cloud types, updraft and downdraft, latent heating profile, and cold pool strength in the embedded CRMs are examined in details. The simulated MCS characteristics are evaluated against satellite measurements using the Goddard Satellite Data Simulator Unit. The results indicate that embedded CRMs with large domain and fine resolution tend to produce better simulations compared to those simulations with typical MMF configuration (128 km domain size and 4 km model grid spacing).
NASA Astrophysics Data System (ADS)
Yao, Zhixiong; Tang, Youmin; Chen, Dake; Zhou, Lei; Li, Xiaojing; Lian, Tao; Ul Islam, Siraj
2016-12-01
This study examines the possible impacts of coupling processes on simulations of the Indian Ocean Dipole (IOD). Emphasis is placed on the atmospheric model resolution and physics. Five experiments were conducted for this purpose, including one control run of the ocean-only model, four coupled experiments using two different versions of the Community Atmosphere Model (CAM4 and CAM5) and two different resolutions. The results show that the control run could effectively simulate various features of the IOD. The coupled experiments run at the higher resolution yielded more realistic IOD period and intensity than their counterparts at the low resolution. The coupled experiments using CAM5 generally showed a better simulation skill in the tropical Indian SST climatology and phase-locking than those using CAM4, but the wind anomalies were stronger and the IOD period were longer in the former experiments than in the latter. In all coupled experiments, the IOD intensity was much stronger than the observed intensity, which is attributable to wind-thermocline depth feedback and thermocline depth-subsurface temperature feedback. The CAM5 physics seems beneficial for the simulation of summer rainfall over the eastern equatorial Indian Ocean and the CAM4 physics tends to produce less biases over the western equatorial Indian Ocean, whereas the higher resolution tends to generate unrealistically strong meridional winds. The IOD-ENSO relationship was captured reasonably well in coupled experiments, with improvements in CAM5 relative to CAM4. However, the teleconnection of the IOD-Indian summer monsoon and ENSO-Indian summer monsoon was not realistically simulated in all experiments.
NASA Technical Reports Server (NTRS)
Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.
2004-01-01
High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.
Combating terrorism : how five foreign countries are organized to combat terrorism
DOT National Transportation Integrated Search
2000-04-01
In fiscal year 1999, the federal government spent about $10 billion to combat terrorism. Over 40 federal departments, agencies, and bureaus have a role in combating terrorism. Recognizing that other governments have had more experience dealing with t...
Combat and Operational Stress: Minimizing Its Adverse Effects on Service Members
2008-04-18
munitions. Combat stress has received many labels since the First World War. These labels include “shell shock, war neurosis , psychoneurosis, combat...war neurosis and psychoneurosis carried an inherently negative connotation because they implied by their name that a mental illness or disorder...who became combat stress casualties. In 1916, the term war neurosis replaced shell shocked as the number of combat stress casualties continued due
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
A multimodel intercomparison of resolution effects on precipitation: simulations and theory
Rauscher, Sara A.; O?Brien, Travis A.; Piani, Claudio; ...
2016-02-27
An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961–2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov–Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolutionmore » over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. In conclusion, this theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.« less
Energy resolution of pulsed neutron beam provided by the ANNRI beamline at the J-PARC/MLF
NASA Astrophysics Data System (ADS)
Kino, K.; Furusaka, M.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Harada, M.; Hirose, K.; Kai, T.; Kimura, A.; Kin, T.; Kitatani, F.; Koizumi, M.; Maekawa, F.; Meigo, S.; Nakamura, S.; Ooi, M.; Ohta, M.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Hori, J.
2014-02-01
We studied the energy resolution of the pulsed neutron beam of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF). A simulation in the energy region from 0.7 meV to 1 MeV was performed and measurements were made at thermal (0.76-62 meV) and epithermal energies (4.8-410 eV). The neutron energy resolution of ANNRI determined by the time-of-flight technique depends on the time structure of the neutron pulse. We obtained the neutron energy resolution as a function of the neutron energy by the simulation in the two operation modes of the neutron source: double- and single-bunch modes. In double-bunch mode, the resolution deteriorates above about 10 eV because the time structure of the neutron pulse splits into two peaks. The time structures at 13 energy points from measurements in the thermal energy region agree with those of the simulation. In the epithermal energy region, the time structures at 17 energy points were obtained from measurements and agree with those of the simulation. The FWHM values of the time structures by the simulation and measurements were found to be almost consistent. In the single-bunch mode, the energy resolution is better than about 1% between 1 meV and 10 keV at a neutron source operation of 17.5 kW. These results confirm the energy resolution of the pulsed neutron beam produced by the ANNRI beamline.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
A Molecular Dynamics Simulation of the Human Lysozyme – Camelid VHH HL6 Antibody System
Su, Zhi-Yuan; Wang, Yeng-Tseng
2009-01-01
Amyloid diseases such as Alzheimer’s and thrombosis are characterized by an aberrant assembly of specific proteins or protein fragments into fibrils and plaques that are deposited in various tissues and organs. The single-domain fragment of a camelid antibody was reported to be able to combat against wild-type human lysozyme for inhibiting in-vitro aggregations of the amyloidogenic variant (D67H). The present study is aimed at elucidating the unbinding mechanics between the D67H lysozyme and VHH HL6 antibody fragment by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different pulling velocities. The results of the simulation indicated that stretching forces of more than two nano Newton (nN) were required to dissociate the proteinantibody system, and the hydrogen bond dissociation pathways were computed. PMID:19468335
Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1
NASA Technical Reports Server (NTRS)
Harris, T. M.; Beerman, D. A.
1983-01-01
A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight.
DEM Based Modeling: Grid or TIN? The Answer Depends
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Moreno, H. A.
2015-12-01
The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.
NASA Astrophysics Data System (ADS)
Fuentes-Franco, Ramon; Koenigk, Torben
2017-04-01
Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
Combating child homicide: preventive policing for the new millennium.
Boudreaux, Monique C; Lord, Wayne D
2005-04-01
High-profile media coverage of crimes against children has heightened public awareness of critical child safety needs and issues. However, numerous research studies in the area of child homicide have illustrated the importance of the power of science to correct false perceptions and misinformation, improving how to best serve and protect our children. Age-based analyses of childhood crime patterns have vastly improved how law enforcement and social service practitioners identify, investigate, and resolve child victimization cases. Future protective efforts must involve multiagency and multidisciplinary collaboration. Law enforcement, social service clinicians, educators, and academicians should jointly develop and implement pragmatic and effective prevention, detection, and resolution programs and policies.
Parametric Analysis of Airland Combat Model in High Resolution
1988-09-01
continue Fprint MOE, UTILITY matrix figure 10. Flow chart of the advanced model 22 WAVE2 = numeric value (1. 2. or 12) which is supposed to be given by the...model user" if WAVE2 = 1. it will bc a BATTLE I case. and all Red forccs on Av’enue-2 attack to nodc-2S ; if \\VAVE2= 2. it will also be a BATTLE I case...but all Red forces on Aenue-2 attack to node-27 ; if WAVE2 = 12. it will be a BATTLE2 case. These outputs will be analyzed in more detail in the next
NASA Astrophysics Data System (ADS)
Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.
2012-04-01
The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.
NASA Astrophysics Data System (ADS)
Li, Huidong; Wolter, Michael; Wang, Xun; Sodoudi, Sahar
2017-09-01
Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.
The Combat-Exclusion Policy for Military Women.
ERIC Educational Resources Information Center
Schneider, Dorothy; Schneider, Carl J.
1986-01-01
Reviews the history and meaning of the combat exclusion policy for United States servicewomen. Noting that combat duty is often essential to career advancement in the military, this article describes several cases of discrimination resulting from the effects of the combat exclusion. (JDH)
NASA Astrophysics Data System (ADS)
Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong
2018-02-01
Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.
Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels
2012-01-01
Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in the CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile, and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.
2009-01-01
We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.
Simulating the x-ray image contrast to setup techniques with desired flaw detectability
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
Schauer, Steven G; Cunningham, Cord W; Fisher, Andrew D; DeLorenzo, Robert A
2017-12-01
Introduction Select units in the military have improved combat medic training by integrating their functions into routine clinical care activities with measurable improvements in battlefield care. This level of integration is currently limited to special operations units. It is unknown if regular Army units and combat medics can emulate these successes. The goal of this project was to determine whether US Army combat medics can be integrated into routine emergency department (ED) clinical care, specifically medication administration. Project Design This was a quality assurance project that monitored training of combat medics to administer parenteral medications and to ensure patient safety. Combat medics were provided training that included direct supervision during medication administration. Once proficiency was demonstrated, combat medics would prepare the medications under direct supervision, followed by indirect supervision during administration. As part of the quality assurance and safety processes, combat medics were required to document all medication administrations, supervising provider, and unexpected adverse events. Additional quality assurance follow-up occurred via complete chart review by the project lead. Data During the project period, the combat medics administered the following medications: ketamine (n=13), morphine (n=8), ketorolac (n=7), fentanyl (n=5), ondansetron (n=4), and other (n=6). No adverse events or patient safety events were reported by the combat medics or discovered during the quality assurance process. In this limited case series, combat medics safely administered parenteral medications under indirect provider supervision. Future research is needed to further develop this training model for both the military and civilian setting. Schauer SG , Cunningham C W, Fisher AD , DeLorenzo RA . A pilot project demonstrating that combat medics can safely administer parenteral medications in the emergency department. Prehosp Disaster Med. 2017;32(6):679-681.
Women Warriors: Why the Robotics Revolution Changes the Combat Equation
2016-03-01
combat. U.S. Army RDECOM PRISM 6, no. 1 FEATURES | 91 Women Warriors Why the Robotics Revolution Changes the Combat Equation1 BY LINELL A. LETENDRE...underappreciated—fac- tor is poised to alter the women in combat debate: the revolution in robotics and autonomous systems. The technology leap afforded by...developing robotic and autonomous systems and their potential impact on the future of combat. Revolution in Robotics: A Changing Battlefield20 The
2016-06-01
of technology and near-global Internet accessibility, a web -based program incorporating interactive maps to record personal combat experiences does...not exist. The Combat Stories Map addresses this deficiency. The Combat Stories Map is a web -based Geographic Information System specifically designed...iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Despite the proliferation of technology and near-global Internet accessibility, a web
Serious game training improves performance in combat life-saving interventions.
Planchon, Jerome; Vacher, Anthony; Comblet, Jeremy; Rabatel, Eric; Darses, Françoise; Mignon, Alexandre; Pasquier, Pierre
2018-01-01
In modern warfare, almost 25% of combat-related deaths are considered preventable if life-saving interventions are performed. Therefore, Tactical Combat Casualty Care (TCCC) training for soldiers is a major challenge. In 2014, the French Military Medical Service supported the development of 3D-SC1 ® , a serious game designed for the French TCCC program, entitled Sauvetage au Combat de niveau 1 (SC1). Our study aimed to evaluate the impact on performance of additional training with 3D-SC1 ® . The study assessed the performance of soldiers randomly assigned to one of two groups, before (measure 1) and after (measure 2) receiving additional training. This training involved either 3D-SC1 ® (Intervention group), or a DVD (Control group). The principal measure was the individual performance (on a 16-point scale), assessed by two investigators during a hands-on simulation. First, the mean performance score was compared between the two measures for Intervention and Control groups using a two-tailed paired t-test. Second, a multivariable linear regression was used to determine the difference in the impacts of 3D-SC1 ® and DVD training, and the order of presentation of the two scenarios, on the mean change from baseline in performance scores. A total of 96 subjects were evaluated: seven could not be followed-up, while 50 were randomly allocated to the Intervention group, and 39 to the Control group. Between measure 1 and measure 2, the mean (SD) performance score increased from 9.9 (3.13) to 14.1 (1.23), and from 9.4 (2.97) to 12.5 (1.83), for the Intervention group and Control group, respectively (p<0.0001). The adjusted mean difference in performance scores between 3D-SC1 ® and DVD training was 1.1 (95% confidence interval -0.3, 2.5) (p=0.14). Overall, the study found that supplementing SC1 training with either 3D-SC1 ® or DVD improved performance, assessed by a hands-on simulation. However, our analysis did not find a statistically significant difference between the effects of these two training tools. 3D-SC1 ® could be an efficient and pedagogical tool to train soldiers in life-saving interventions. In the current context of terrorist threat, a specifically-adapted version of 3D-SC1 ® may be a cost-effective and engaging way to train a large civilian public. Copyright © 2017 Elsevier Ltd. All rights reserved.
Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains
NASA Astrophysics Data System (ADS)
Reckinger, S.; Petersen, M. R.; Reckinger, S. J.
2016-02-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.
Combat Experience and Mental Health in the Israel National Health Survey.
Lubin, Gadi; Barash, Igor; Levinson, Daphna
2016-01-01
To compare the mental health status of those who participated in combat related activities during their service with that of soldiers whose army service did not include combat related activities Method: A representative sample extracted from the National Population Register of non-institutionalized residents aged 21 or older of Israel was used in this crosssectional survey. Data on mental health disorders, sociodemographic background and army service were collected using face-to-face computer-assisted interviews. Combat experience per se was not associated with lifetime diagnosis of PTSD. Former combat soldiers had significantly lower lifetime prevalence and 12 months prevalence of any mood or anxiety disorders including PTSD. This work is in line with previous literature showing that combat exposure, as such, has limited contribution to lifetime PTSD in some groups of veterans. The inverse relationship between combat exposure and PTSD might be explained by the selection of potential combatants among all recruits and by the heightened preparedness to military life stressors.
The Application of High Energy Resolution Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.
2012-04-01
Radiation detectors installed at key interdiction points provide defense against nuclear smuggling attempts by scanning vehicles and traffic for illicit nuclear material. These hypothetical threat scenarios may be modeled using radiation transport simulations. However, high-fidelity models are computationally intensive. Furthermore, the range of smuggler attributes and detector technologies create a large problem space not easily overcome by brute-force methods. Previous research has demonstrated that decomposing the scenario into independently simulated components using Green's functions can simulate photon detector signals with coarse energy resolution. This paper extends this methodology by presenting physics enhancements and numerical treatments which allow for an arbitrary level of energy resolution for photon transport. As a result, spectroscopic detector signals produced from full forward transport simulations can be replicated while requiring multiple orders of magnitude less computation time.
Atmospheric blocking in the Climate SPHINX simulations: the role of orography and resolution
NASA Astrophysics Data System (ADS)
Davini, Paolo; Corti, Susanna; D'Andrea, Fabio; Riviere, Gwendal; von Hardenberg, Jost
2017-04-01
The representation of atmospheric blocking in numerical simulations, especially over the Euro-Atlantic region, still represents a main concern for the climate modelling community. We here discuss the Northern Hemisphere winter atmospheric blocking representation in a set of 30-year simulations which has been performed in the framework of the PRACE project "Climate SPHINX". Simulations were run using the EC-Earth Global Climate Model with several ensemble members at 5 different horizontal resolutions (ranging from 125 km to 16 km). Results show that the negative bias in blocking frequency over Europe becomes negligible at resolutions of about 40 km and finer. However, the blocking duration is still underestimated by 1-2 days, suggesting that the correct blocking frequencies are achieved with an overestimation of the number of blocking onsets. The reasons leading to such improvements are then discussed, highlighting the role of orography in shaping the Atlantic jet stream: at higher resolution the jet is weaker and less penetrating over Europe, favoring the breaking of synoptic Rossby waves over the Atlantic stationary ridge and thus increasing the simulated blocking frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin
2015-05-01
Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regardingmore » the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less
NASA Astrophysics Data System (ADS)
Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea
2017-11-01
Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.
Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET
NASA Astrophysics Data System (ADS)
Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan
2013-06-01
TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble duringmore » the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.« less
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...
2017-07-06
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2018-06-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2017-09-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
Simulations of Madden-Julian Oscillation in High Resolution Atmospheric General Circulation Model
NASA Astrophysics Data System (ADS)
Deng, Liping; Stenchikov, Georgiy; McCabe, Matthew; Bangalath, HamzaKunhu; Raj, Jerry; Osipov, Sergey
2014-05-01
The simulation of tropical signals, especially the Madden-Julian Oscillation (MJO), is one of the major deficiencies in current numerical models. The unrealistic features in the MJO simulations include the weak amplitude, more power at higher frequencies, displacement of the temporal and spatial distributions, eastward propagation speed being too fast, and a lack of coherent structure for the eastward propagation from the Indian Ocean to the Pacific (e.g., Slingo et al. 1996). While some improvement in simulating MJO variance and coherent eastward propagation has been attributed to model physics, model mean background state and air-sea interaction, studies have shown that the model resolution, especially for higher horizontal resolution, may play an important role in producing a more realistic simulation of MJO (e.g., Sperber et al. 2005). In this study, we employ unique high-resolution (25-km) simulations conducted using the Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HIRAM) to evaluate the MJO simulation against the European Center for Medium-range Weather Forecasts (ECMWF) Interim re-analysis (ERAI) dataset. We specifically focus on the ability of the model to represent the MJO related amplitude, spatial distribution, eastward propagation, and horizontal and vertical structures. Additionally, as the HIRAM output covers not only an historic period (1979-2012) but also future period (2012-2050), the impact of future climate change related to the MJO is illustrated. The possible changes in intensity and frequency of extreme weather and climate events (e.g., strong wind and heavy rainfall) in the western Pacific, the Indian Ocean and the Middle East North Africa (MENA) region are highlighted.
Meddings, David R; O’Connor, Stephanie M
1999-01-01
Objective To examine the circumstances surrounding weapon injury and combatant status of those injured by weapons. Design Prospective cohort study. Setting Northwestern Cambodia after departure of United Nations peacekeeping force. Subjects 863 people admitted to hospital for weapon injuries over 12 months. Main outcome measures Annual incidence of weapon injury by time period; proportions of injuries inflicted as a result of interfactional combat (combat injuries) and outside such combat (non-combat injuries) by combatant status and weapon type. Results The annual incidence of weapon injuries was higher than the rate observed before the peacekeeping operation. 30% of weapon injuries occurred in contexts other than interfactional combat. Most commonly these were firearm injuries inflicted intentionally on civilians. Civilians accounted for 71% of those with non-combat injuries, 42% of those with combat related injuries, and 51% of those with weapon injuries of either type. Conclusions The incidence of weapon injuries remained high when the disarmament component of a peacekeeping operation achieved only limited success. Furthermore, injuries occurring outside the context of interfactional combat accounted for a substantial proportion of all weapon injuries, were experienced disproportionately by civilians, and were most likely to entail the intentional use of a firearm against a civilian. Key messagesThe study took place in Cambodia after a United Nations peacekeeping operation that achieved only limited success in disarmamentA substantial proportion of weapon injuries was inflicted in contexts unrelated to interfactional combatThese injuries were most commonly firearm injuries inflicted intentionally on civiliansWidespread availability of weapons can facilitate social violence PMID:10445922
Impact of tropical cyclones on modeled extreme wind-wave climate
Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...
2017-02-16
Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less
Impact of tropical cyclones on modeled extreme wind-wave climate
NASA Astrophysics Data System (ADS)
Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan
2017-02-01
The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
NASA Astrophysics Data System (ADS)
Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin
2016-04-01
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.
Survey of Army Weapons Training and Weapons Training Devices.
1976-04-01
er li-68 (MANICON), May 1968. AD 671 128. Nichols, Thomas C. and Theodore R. Powers. oonlig)ht and Ni t Vi1- bilitv. Research Memorandum, HumRRO...Rpsources Laboratories, Brooks AFB, Texas, 1972. GENERAL Training th.vics (Cont’d) Fitzpatrick, Robert. Toiward a Theory of Simulation. System Develop- ment...Evaluation of the Tank, Combat, Full Tracked: 105mm Gun, M60. HumPRO Consulting Report, February 1961 (FIREPOWER VIII). AD 487 893. ’ hHunt , William T
1991-06-28
and examined various models as possible alternatives to TRANSMO. None of the candidate models met all CAA’s requirements, so a major TERP recommendation...will simulate the mobilization of U.S. forces, deployment of forces and supplies across an intertheater network, and deployment of forces and... supplies to the combat zone. 1.2 Phase !1 IV&V Summary Potomac Systems Engineering, Inc. (PSE), is providing IV&V support to CAA during the GDAS development
The Hunter-Killer Model, Version 2.0. User’s Manual.
1986-12-01
Contract No. DAAK21-85-C-0058 Prepared for The Center for Night Vision and Electro - Optics DELNV-V Fort Belvoir, Virginia 22060 This document has been...INQUIRIES Inquiries concerning the Hunter-Killer Model or the Hunter-Killer Database System should be addressed to: 1-1 I The Night Vision and Electro - Optics Center...is designed and constructed to study the performance of electro - optic sensor systems in a combat scenario. The model simulates a two-sided battle
Computer Control and Activation of Six-Degree-of-Freedom Simulator
1983-01-01
Evaluation of Matrices 54 Calculation of Linear Coefficients 54 Off-Line Calculations for Aircraft 59 Off-Line Calculations for Combat Vehicle 61 Table...468 in. 59 Physical concept tail-boom control system 203 Vlll 60 Tail-boom control system block diagram 204 61 Block diagram for position...configuration. Now, since Z must be diagonal, it follows that the principal elements of Z are given by 13 where and a) = ^11 ^12’ 2 2 ^21 ^22 ’ 61
Distributed Tactical Decision Support by Using Real-Time Database System
1987-11-01
appendix A and detailed in depth in the Advanced Combat Direction System Specification (reference 5). The assumption is that ’ ime 0 (TO) of any contact...CONSTELLATION LAUNCH I F14A CAPM 330 350 10000 STOP At simulated engagement minute 30. the following orders are next submitted to the event generator...time of contact (ETC). There is the assumption in the ETC calculation that COURSE will change such that the new report would be on a dead- reckoning
Heat Stress Illness in a Mechanized Infantry Brigade During Simulated Combat at Fort Irwin
1994-05-01
this expanded concept of risk measurement and tracking, at least partly, feasible. Year(s) # heat Primary (Sumncr only) illnesses/10.000/week Activity...operations. Inibntly 28-34, May-June 1992. Clowes, G.H.A., and O’Donnell, T.F. Jr. Current concepts : heat stroke. New England Journal of Medicine 291(11...V.M.. Role of dehydration in heat stress-induced variations in mental performance. Archives of Environmental Healh 43: 15-17, 1988. Halbertstadt, Hans
2016-02-01
changes in ambient conditions such as cabin pressure and temperature could potentially have detrimental effects on the already vulnerable brain. There...during simulated long-range aero-medical evacuation has adverse effects on brain blood flow and tissue oxygenation , as well as lung function in swine...is a dearth of knowledge about the effects of long range aero-medical evacuation on injured organs, as well as an emerging published database
2015-12-01
USS Port Royal hit a coral reef in order to provide an independent review of the damage the ship sustained. Our classified report discussed...explosion. Underwater explosions create a shock wave and a highly compressed gas bubble that expands and contracts. This can cause a type of vertical or...conditions also remains unknown. Due to the dynamic nature of waves , the Navy cannot rely on modeling and simulation alone to provide an accurate
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
2012-09-01
following 500 trials with 1000 replications with single reward upon attainment of the goal state by algorithm and policy. DQ- C with -greedy obtained...aspects of the civilian population rather than combat forces. These agents rep- resent not a single human, but a population segment. Similar...TD(λ) combines elements of MC and TD methods into a single framework to estimate the value of each state, V(s), through the use of eligibility traces
2014-06-01
motion capture data used to determine position and orientation of a Soldier’s head, turret and the M2 machine gun • Controlling and acquiring user/weapon...data from the M2 simulation machine gun • Controlling paintball guns used to fire at the GPK during an experimental run • Sending and receiving TCP...Mounted, Armor/Cavalry, Combat Engineers, Field Artillery Cannon Crewmember, or MP duty assignment – Currently M2 .50 Caliber Machine Gun qualified
Physiological Monitoring During Simulation Training and Testing
2005-07-29
35. Participants varied in combat experience, rank, and competence with video games . Subject’s years of service ranged from less than 1 year to 15...Shoothouse Exercises Figure 10 SVRTUALRE6MCA ’ Experiment I Video game VS. Real world In this study, we asked the question of whether or not the action of...playing a video game would affect the outcome of the performance in the real shoothouse and real village. There is some evidence in the literature that
2004-03-01
When applying experience to new situations, the process is very similar. Faced with a new situation, a human generally looks for ways in which...find the best course of action, the human would compare current goals to those it faced in the previous experiences and choose the path that...154. Saperstein, Alvin (1995) “War and Chaos”. American Scientist, vol. 84. November-December 1995. pp. 548-557. 155. Sargent, Robert G . (1991
2012-08-01
soldiers via microclimate cooling [13]. Unfortunately, a common method for direct cooling of the soldiers – surface cooling – can cause cutaneous...Intermittent, Regional Microclimate Cooling," Journal of Applied Physiology, vol. 94, pp. 1841-48, 2003. [18] L. A. Stephenson, C. R. Vernieuw, W...Leammukda and M. A. Kolka, "Skin Temperature Feedback Optimizes Microclimate Cooling," Aviation, Space and Environmental Medicine, vol. 78, pp. 377-382
A Study of Simulation Effectiveness in Modeling Heavy Combined Arms Combat in Urban Environments
2007-05-01
Printing Office, 1987), 51. 2The old FM 17-15 (Tank Platoon) described bypassing urban areas. The new manual, FM 3-20.15 (dtd. 22 February 2007...hardened positions and counter the German’s crew-served weapons and armored counter-attacks.15 In addition to the moderately successful M4 tanks...the successful urban operations since and during WWII, it involved the use of heavy armor and combined arms. When the NVA and Vietcong captured Hue
1989-05-01
and OP. Veritable ------------------ - -60 4 r -0.81 80 1.0 905. 0.2 98 - - -- - 0P.Vri99 0 2 4 6 8 10 A frack APFV.’Defence MG FIG 8. DEFENCE MG...by the gunner affect whether or not the shell impacts the intended target. * Damage and failure simulation for electrical, hydraulic , weapons, and
1978-07-24
will include an implicit air function that will perform the air planning and requesting associated with the various headquarters. The decision structure...air headquarters (The ATAF/TAA) will be included in the CIC to perform the implementation of the decisions /goals of the C21 elements, 1-4...realistic fashion. Once the AMPs have been formed, the operational process of launching, mission implementation etc. is no longer keyed to the decision cycle